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ABSTRACT

In this paper we consider the three node, acyclic, Jackson queueing

network discussed by Simon and Foley (1980). We provide a solution to

the sojourn time problem for a given customer. To the best of our

knowledge, this is the first solution to the sojourn time problem in

any acyclic Jackson network with overtaking.

Key words: Sojourn times
Acyclic Jackson Networks
Distribution of Sojourn Times.
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1. Introduction and Background. A customer's sojourn time in a queueing

network is the total amount of time the customer spends in the network.

Equivalently, it is the sum of the customer's sojourn times at each of

the queues it visits while in the network. The equilibrium or steady

state sojourn time distribution in a queueing network is the sojourn time

distribution of a customer who sees an equilibrium queue length distribu-

tion upon his arrival to the network. In this paper, we analyze the

equilibrium sojourn time distribution in a three node Jackson network.

The network, which we will refer to as the three node network,

consists of three single server queues each having exponential service

times with parameter u, i= 1,2,3, at queue i, FIFO queueing discipline

and infinite queueing capacity. There is an exogenous arrival process to

queue 1 with parameter A. Customers departing queue 1 go, with probability

p, to queue 2, and, with probability l-p, to queue 3. Customers departing

queue 2 go to queue 3 and customers departing queue 3 leave the network.

This network is shown in Figure 1.
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In the three node network a customer C's sojourn time is either the

sum of C's sojourn times in queue 1, queue 2, and queue 3 if C takes the

route from queue 1 to queue 2 to queue 3 or the sum of C's sojourn times

in queue 1 and queue 3 if C takes the route from queue 1 to queue 3.

Determining the equilibrium sojourn time is not trivial since if C takes

the route from queue 1 to queue 2 to queue 3, C's sojourn times in queue 1

and queue 3 are dependent.

* :That the sojourn times of a customer in queue 1 and queue 3 are

dependent given the customer goes to queue 2 was first observed by

Mitrani (1979). He observed that if C's sojourn time in queue I was long

enough to guarantee a large number of arrivals to queue 1, then while C

is at queue 2 many of those customers at queue 1 could depart from queue 1

and go directly to queue 3. Hence, the expected number of customers at

queue 3 upon C's arrival there given his long sojourn time at queue 1 is

larger than the unconditioned expected queue length there. Hence, C's

expected sojourn time at queue 3 given his long sojourn time at queue 1 is

larger than C's unconditional sojourn time at queue 3. Simon and Foley

(1979) formalized this argument.

In a queueing network a customer a is said to overtake a customer b if

there exists a pair of queues A and B in the network such that a and b go

from A to B, either directly or indirectly, such that a departs queue A

before b but arrives to queue B after b. It is this overtaking which causes

the dependence of C's sojourn times in queue 1 and queue 3. In fact

Lemoine (1979) showed that in networks without overtaking the individual

sojourn times are independent. Such overtaking occur, of course, when there

are alternate paths between 2 nodes.
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Kiessler (1980) in an simulation analysis of the three node network

showed that even though C's sojourn times in queue 1 and queue 3 are

dependent the correlation coefficient of the sojourn times between these

queues was insignificant at the a = .05 level. Further, the sojourn time

distribution assuming the sojourn times in queue 1 and queue 3 to be

independent was not significantly different from the actual distribution.

In this paper we will derive an expression for the equilibrium

sojourn time distribution in the three node network. We consider the

network's queue length as a stationary Markov process, i.e., a Markov

process given it's equilibrium distribution. We start at an arbitrary

arrival time to queue 1 and using a Palm distribution move this arrival

to the origin. Finding the total sojourn time distribution can be

4 |reduced to finding the sojourn time in queue 3 given A, where A is the

customer's sojourn times in queue 2 and queue 1 and that the customer

takes the route from queue 1 to queue 2 to queue 3. This problem is

reduced to finding the queue length distribution at queue 3 when the

customer arrives there given A. Then we look at the queue length

distribution at queue 3 when the customer arrives there given A and the

queue length at queue 2 when the customer arrives to queue 2. Then we

find the joint queue 1, queue 3 distribution when the customer arrives to

queue 3 given A and the queue length at queue 2 when the customer arrives

there. Working backwards the equilibrium sojourn time can be computed.

2. Formal Problem Statement. For rbe three queue network, let

Qi(t) - be the queue length in queue i at time t for i- 1,2,3;

9(t) - (Ql(t),Q2(t),Q3(t)).

From the comments made in section 1, {Q(t); t ]R} is a stationary Narkov
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process in which a customer, C, arrives to the network at time 0 and

1 
i

9 Pr{Q(O) = i1 + ,i2, 3 = (1-P1)p1  (1-P2)p
2 (1- 3 ()

where pl=A/tl, p2 pA/112, and p3 - A/u3, ii 2 i3 c IN - {0,1,2,...).

Note that the distribution Pr is actually the Palm probability of the

stationary Markov process {Q(t); t c IRI embedded at arrival times to the

network.

Let

S = C's sojourn time in the network;

Si C's sojourn time in queue i, i= 1,2,3;

r1 if C takes the route from queue 1 to queue 2, to queue 3
R -

r2 if C takes the route from queue 1 to queue 3.

Then C's sojourn time distribution is given by

Pr{S < t) mpPr{S < tIR = r 1 )+(l-p)Pr{S < tIR = r2 }

f f0-YPr{3 < t-u-y S2 -U,S 1 -y,R=r I }

9 -Pr{S 2  (u,u+du)l 1 = y,R= • Fr{S1  (y,y+dy) R=rI

+(l-p)ft Pr{S3 _ t-yIS 2 =y,R=r 2 . Pr{S2 c (y,y+dy) R-r2
1 (2)

" 3. Solution. From Simon and Foley (1979), we have

b• t2
PrQ 2 (y)-i 2 +lS 1 =y,R-r(1  -P(2 )P2 , 2 c IN, (3)

and

*' * *1PrQ 3 (y) -i 3 +llSluy,Rsr 2
= ( 1 -p 3 )p 3

3 , i3 1 cI. (4)

It follows from (1), (3), and (4) that

' ,, II Il l II 4



Pr{S 1 c (y,y+dy) IR-r I }  ( A-)e- u-~ dy, i =1,2, (5)

Pr{S2 c (u,u+du)IS,=y,R=r l  =(2 2- pX)e 2  du, (6)

and

Pr{S3 < t-YIS,=y,R=r2 }l-e (7)

Hence, the only term not known in (2) is

p
Pr{S 3 < t-u-YIS 2 =uSl  y,R= r1). (8)

This is C's sojourn time in queue 3 given C's sojourn times in queues 1

and 2 and that C takes the route rI. The remainder of this paper deals

with the calculation of this quantity.

4. Calculation of P{S 3 _< t-u-yjS 2 =U,Sl=my,R= r 1l. Note that

Pr{S 3 < t-u-yIS2 .u,S1 = y,R= r,}

= Pr{S 3 <St-u-YIQ3(u+y) = iS2 = U,Sl =y,R =rl)

Pr{Q 3(u+y) iiS2 = u,S1 =y,R = r1  (9)

The first term on the right hand side of (9) is C's sojourn time at queue

3 given the queue length at queue 3 when C arrives there. Hence,

Pr{S3 < t-u-y iQ3 (u 7y) - i,S 2 =u, S= y,R r 1 ) = *i(t-u-y) (10)

* where

F(t-u-y) - 1 - eP 3• t-u-y)

* and F*i is the ith fold convolution of F with itself.

Now
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Pr{Q 3(u+y) iIS2 u,S1 y,R' r1 l

M=1 Vr{Q 3 (u+y)= iIQ2 (y) m,S2 =u, S=yRrl}

Pr{Q 2 (u+y) =mIS 2 =u,S1 =y,R=rl}. (11)

The following lemma determines the second factor on the right hand side

of (11).

rn-1
Lemma 1. Pr{Q2(y)= mlS 2 =u,S1 =y,R=r I  (py)m epy2 2 1 (rn-i)!

Proof. From (3) and (6) we have

Pr{Q2(y) = mlS 2 = u,S1 =y,R=r I

Pr{S 2 c (u,u+du)Q 2 (y) m,Sl = y,R= rl}Pr{Q 2 (y) =mIS, = y,R= rI }
Pr(S2 C (uu+du)S l = y,R = r1 }22

( 2u)
m -  rnu -i

P2 (m-i)! e du(l-P 2)p2

~-(p2-p'X)
P (2-pX)e du

L = {P~~u(-i e p u l

Hence, all we need to determine is

Pr{Q 3(u+y) iIQ 2(y) 
= rnS2  ys

i y' R=rz}.

Remark. We will analyze the (Ql(V),Q 3 (v); v c (y,y+u]) process at departure )

points from queue 2. The reason for analyzing this joint process is that

to determine Q3(u+y) we need to know the departure process from queue 1

in the interval (y,u+y]. In order to determine the departure process from
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queue 1 in this interval we need to know Q 1(v) for v c (y,y+uI. Wtith this

in mind we get

Pr(Q (u+y) =i IQ (Y) =rnS =u,S1=yR-rl)

Z Pr{Q I(u+y) -ill Q3 (u+Y) -i
1 1 0 J1 0 J2 =0

Q2(y) =ISQ3(y) =j 2 ,Q 2 (y) =mS 2 =u,Sl=y,R=rl1

Pr{Q 1 (y) j 19Q3 (y) =j2 Q2 (Y) ,S2=US =,R-ri.()

From Simon and Foley (1979), the second factor on the right hand side of

(12) is

Define

z time from y until the ith departure from queue 2 after y for

Now,

*Pr(Q 3(u+y)=i,Q1 (u+y)=ilIQl(y)=jl5 Q3(y)=j 2,Q2(y)=mS 2=uS1=-y, R-rl

*Pr{ Q3(y+u)u'iQ(u+y)-i 1, Z - 1 C (zm- -9 - - d ~

*Qi(y)=i 1'Q3(y)uj2 ,Q2 (y)-MZuhzm.lZm2 nzm2...,z 1zis 2 uS 1y,R-r 1)

7



*Pr{Q I(z M 1 )'.t1 Q3 (z m-1 )=k1 Z m-z m 2 E (z I--zm2 -1-zm2+M1

Q (z m- 2 ).I 2 Q3 (zm 2 )-k 2 " *.,Qi(y)=jIiQ 3 (y)=j2 Zm- 2 zm..2 "" .. 1Zi

Q2(y)=rnS 2=uSl=y R=r,}

*Pr{Q 1(z 1) =x 1,Q3 (z I)=k lt, 1 Z 1 E (iz 1 +dz1 ) IQ1(y)=JiQ 3(y)=i2,Q2(y)=m

S 2=U,S17Y R-r 1 ). (13)

We can break each term in this product form down as follows.

For h=i..ml

Pr{Q(zh )=LhQ 3 (zh )=kh, z h z h-l E:( (Zh z mhi'Z mh- Z h-+dz mh)

z fm-h mhl**' Zg=z1,Q(y)=J1,Q 3(y)-J 2,Q2(y)=nS 2=uSl=y R-r 1

=Pr{Q 1(z mh =9 mhQ 3 (zh )=k mhI Z-h- z hlml=iZhlQl (z h-)=9mh-l'

Q3 (z mh-l)k mhi'" "ly=lQ(y'2Mhlzmhl "Z~l

Q2(y)=mS 2 =u,S1=y,R-r1 I

-PrIZ - £Zn-- (z M1-z Iilz,--z M +dz I(z Mh1)fmhl

Q3( -h)k mm-h-l m*"Qlrn-h-i' rn-h rn'-h- m-h-1 rn-h-I 3nhi

Q2(y)-m9S2=uSl=y, R~r 11 (14)

The following two lenmmas interpret each factor on the right hand side

of equation (14).



Lemma 2. For hl,...,m,

Pr(Q ( zmh) =tm-h'Q 3 (z m- h) =km-h I Zmh-Zmhl=zmh-zmh1Ql(z m- h -l) m-h-l'

Q3(Z m-h-l )w =M-h-l, • •,QI(Y)=Jl, Q3(Y)ffJ 2 , Zm-h_ lfZm-h-l,** • -,ZZ 1

1

Q2 (y)=m,S2=u,Sliy,Rr 1 }

- Pr{Q1 (z m- h) ".m-h'Q 3 
(z m- h)-k I Zm-h-ZM-h-l'Zm-h- Zm-hlQl (Zm- h - 1 ).t M-h-l

Q3 
(z m-h-l )-km-h-l'Q2 (y)m,S2 u,Slffy,gr 1 . (15)

Proof. Note that
I

(a) Ql(z mh)=Ql(z m-h 1) + the number of arrivals to queue 1 in (Z mh-l,Zm-h ]

- the number of departures from queue 1 in (Zmth-lzm- h ]

and

(b) Q3(Zm-h-l)=Q3(Zmrh) + the number of departures from queue 1 in (Zm-h-l,Zm-h]

who go to queue 3 + the departure from queue 2 at

Zm-h - the number of departures from queue 3 in

(Zm-h-l' zM-h]

Since the arrival process to queue 1 is Poisson and the service times at queue

1 and queue 3 are exponential only Q1(z mhll),Q3(zm hi 1) and Zm-h-Z -h 1 are

needed to compute the probability of Ql(zm-h),Q 3 (zm-h). Hence, the result

follows. 0

In order to compute the right hand side of (15) we need to know the

departure process from queue 1 in the interval (Zm-h_lZ mh].

9
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* Lemma 3.

Pr{ Z m-Z 1 e (z - z-z +d )Q z . 1Q z =

Q rn r-i =z ....i.LZ z ZUS=,-
QiY ViV3 Y)=J 2 PZrn=M- i** M , ZIn, Q2 (y)=rnS 2=u, 1=yR 1 }

(1 if z =u

= 0 otherwise; (6

and for hl,.m1

P r nZ-h rn -h-i rn -h -h-i ' rn-h -rn-h-i d n-h ) Q1 (zn-h-l)i t r-h-i

92 (y)-n,S S2=u, S1=y, R-r I}

- h U-Zh h-i
U~on 0~~~ rnh- m < hZ +(Zm~~ zh < u (17)

Proof. The proof of (16) is trivial since C departs queue 2 at y-+u with

probability 1 on S 2-u,S1 =-y. The remainder of the proof deals with

showing (17).

It is clear that for

m-h-lZ< y+ zm < Y+u

given S 2 uQ 2(y)-n,S1-Y,R-r1, and Z mhil'*** . zl, mhlZ Mhi is

*independent of Q 1 (z mhi1),Q3(z -h-1)' Ql(y),Q3(y) . Hence (17) equals

PrU m-h-z -h-l C (rn-h- rn-h-i' z mh Z m-h-1+dz Mh)

z -- ~ mhl " ., 1 z 1 S2 muS 1-y,Rmr1 ,'Q2 (y)m

10



Pr{Zmh-Z mh-l £ (Zh-ZhlZmh- mh+dZ h ) ,Q2 (y)=m l

Z mh-l-z mZh 1 ,..,Zl=zS 2=uS =YR-r1 }

SPr{Q 2(y)=mZh l ,-h-' 1  2

Let D(a,b) be the number of departures from queue 2 in the interval (a,b).

Then on S2=U,Sl=y,R=r,

I D(y,y+u) = Q2(y ) - 1

since C sees exactly Q2(y) - 1 customers ahead of him at y, the time at

which C enters queue 2, and since the queueing discipline is FIFO. These

Q2(y) - 1 customers must complete service at queue 2 in (y,y+u) and are

the only customers to complete service at queue 2 during this interval.

Hence (18) becomes

Pr{Zm-h-Zm-h 1  (Z m-h-Z mhi1 , Zm-h- Zm-hl+d m-h) ,D(y+zm-hl' y+u)h-1 I

Zm hml m_, .. , ZlI=z 1 , 2 =u,Sly,Rr 1}

Pr D(y+z hiy+u)-h mh-lZmh.Rrl. (19)

Since or, S2 -u,S1-y,R-r1 the departure process from queue 2 on the interval

(y,y+u) is a Poisson process (cf. Simon and Foley (1979)) we get that

Zm-h-Z mhl,D(Y+Zm-h,Y+U) and D(Y+Zm h-I,Y+u) are independent of

Zm-h_2,.., Z1 given Z mh-l,S2 =U,Sl=Y,R-rl and depend on Zm-h_ 1 in that we

need Z mh-l+(Z mh-Z < u. So for 0 < y+z hi <y+z hi + (mh-Zmhl)

= y+Zh <u (19) equals

I
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PrZ uh-ZM-hl C (z mh-z mhil, Z nt-Z-h-l+dzm-h) IS2 'U,SlfyRfr I }

Pr(D(y+z ,y+u)=h-lIS 2=u,Sl=Y,R=r1 }

Pr{D(Y+zMhl, y+u)=h I S2=uSiYR=r 1

-p(Z mh-zm-h I ) (px(u-Zmh)) h -  -PX(U-Zm h)
ple (h-l)! e

(pX(UZm-h-l) h pA(uZ mhil)
t h! e

h-i
h U-Zmh as desired. 0

U -h-l U-hl1

5. Conclusions. Equation (15) still must be calculated. To calculate

(15) we need the time dependent departure process from the M/M/I queue.

Rosenshine and Pegden (1981) have determined this for the special case

where the queue starts empty. However, we need the distribution of

this process for an arbitrary initial queue length. Even if (15) can

be calculated, we still need to put all the pieces together. That is,

(15) into (14), (14) into (13), (13) into (12), (12) into (11), (10)

and (11) into (9) and (5), (6), (7), and (9) into (2). These will be

subjects of later papers.
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