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2. Using identification techniques and empirical data, identify
a suitable model structure for the process* and estimate
typical values of model parameters.

3. Based on the model, formulate a prediction strategy for the
stochastic process, and hence a resource management policy.

The policy so obtained is dynamic in the sense that it varies the alloca-
tion of the system resource to a user job depending upon the recent past
behavior of the job. It, thus, provides the run time optimization not

possible with the queueing theory approach. Also, notice that the
individuality of the job is fully exploited. The key step in the
approach is the formulation of the stochastic process model in such a way
that the allocation problem reduces to a prediction problem. we exemplify
this approach by formulating control-theoretic policies for CPU schedluing
and page replacement. Policies for allocation of other shared resources

(e.g., disks) can be, similarly, formulated.

<I

*The term process is used here exclusively in the control-theoretic

sense of stochastic process. To avoid confusion, the term task is

used to denote computer processes e.g., we say "ready tasks" instead

of "ready processes."
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This thesis proposes the application of control theory to the

dynamic optimization of computer systems performance. Until now,

queueing theory has been extensively used in the evaluation and modeling

of computer systems. It is a good design and static analysis tool.

However, it provides little run time guidance. For dynamic (run time)

optimization we need to exploit modern control theoretic techniques such

as state space models, stochastic filtering and estimation, time series

analysis, etc. in this thesis, a general control theoretic approach is

proposed for the formulation of operating systems resource management

policies. The approach is exemplified by formulating policies for CPU

and memory management.

The problem of CPU management is that of deciding which task from

among a set of ready tasks should be run next. The main problem

encountered in the practical implementation of theoretically optimal

algorithms is that the service-time requirements of tasks are unknown.

The proposed solution is to model the CPU demand as a stochastic

process, and to predict the future demands of a job from its past

behavior. Several analytical results concerning the effect of

prediction errors are derived. An empirical study of program behavior

is made to find a suitable predictor. Several different models arc

compared. Finally, it is shown that a zeroth order autoregressive

moving average model is the most appropriate one. Based on this

observation an adaptive scheduling algorithm called "SPRPT" (Shortest

Predicted Remaining Processing Time) is proposed.

I - -e
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The problem of memory management is also formulated as the problem

of predicting future page references from past program behavior. Using

a zero-one stochastic process model for page references, it is shown

that the process is non-stationary. Empirical analysis is presented to

show that the page reference pattern can be satisfactorily modeled by an

autoregressive integrated moving average model of order 1,1,1. A two

stage exponential predictor is derived for the model. Based on this

predictor a new algorithm called "ARIMA Page Replacement Algorithm" is

proposed. This algorithm is shown to be easy to implement. It is shown

that many conventional page replacement algorithms, including Working

Set, are merely boundary cases of the ARIMA algorithm. The conditions

under which these conventional algorithms are optimal are described.

The limitations of the formulation and possible directions for future

extensions are also discussed.

The ARIMA model does not take into account the fact that a binary

process takes only two values, 0 or 1. This discrepancy is removed by

developing Boolean models for such processes. It is shown that if a

binary process is Markov of a finite known order, it can be modeled as

the output of a Boolean (switching) system driven by a set of binary

white noises. Modeling, estimation, and prediction of the process using

the Boolean model is described. A method is developed for optimal

non-linear prediction under any given non-linear cost criterion. All

the results are then generalized to k-ary processes, i.e., processes

which take integer values between 0 and k-1. Finally, the application

of the model to the problem of memory management is described.
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Control-theoretic view

Conventionally an operating system is defined as the set of

computer program modules which control the allocation and use of

equipment resources such as the central processing unit (CPU), main

memory, secondary storage, IO devices and files (MaD741. These

programs resolve conflicts, attempt to optimize performance, and

interface between the user program and computer resources (hardware and

system software).

1.1 CONTROL-THEORETIC VIEW OF AN OPERUTI&NG S.STEM

For a control theorist, an operating system is a set of

controllers which exercise control over the allocation of some system

resource. The goal of each controller is to optimize system performance

while operating within the constraints of resource availability.

Figure 1.1 shows some of the components of an operating system.

The Controllers are represented by circles. The "load controller"

controls the number of jobs allowed to log in. The job controller (job

scheduler, or high level dispatcher) controls the transfer of jobs from

the "submitted" queue to the "ready" queue. This decision is based upon

the availability of resources like memory, magtapes, etc. The CPU

controller (task dispatcher, or low level scheduler) controls the

allocation of the CPU. It selects a task from the set of ready tasks

and allows it to run. The paging controller (page replacement

algorithm, or memory management algorithm) controls the transfer of

pages from virtual memory (disk or drum) to primary memory, and so on.

- - - -- i
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Control-theoretic view

The control components of an operating system are not much

different from those of other systems, except probably, in that they are

non-mechanical. Obviously, there is much that can be gained from

control theory in the design and modeling of these components.

Unfortunately, very little control theory has been used for this purpose

so far. Compared with the highly developed theory ofcontrol systems,

most control algorithms used in operating systems today are "primitive".

1._2QUEUEING-THEORETIC VIEW OF AN OPERATING SYSTEM

Most models of computer systems used today are queueing-theoretic.

From a queueing-theoretic viewpoint, each controller of the operating

system is a server. Thus, an operating system is a queueing network.

One very popular queueing model, called "Central Server Model", is shown

in Figure 1.2. In this figure, circles represent servers and rectangles

indicate the location of queues. Such queueing models have been used to

explain many phenomena occuring in computer systems [Buz71]. Typical

questions that have been answered using this approach are the

following :

1. What is the average throughput?

2. What is the average utilization of the CPU, I/O devices etc.

3. What is the average response time?

4. What is the bottleneck in the system (would a higher speed disk do

better)?

5. What is the optimal degree of multiprogramming?

_ A _,
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Queueing-theoretic view

A vast amount of literature has been published to answer these and

similar questions under a variety of assumptions, restrictions and

generalizations. For chronological surveys and bibliographies see

[McK69, Mun75, Kle76, LiC77]. Some of the issues investigated are the

following :

I. Service Discipline: M/M/1, G/M/1, MIG/I, FCFS, or priority

service, e.g., see (Shu76].

2. Types of jobs: one or many classes [BCM75).

3. Devices included: Terminals only (Sch67], terminals and I/O

devices [Buz71].

4. State dependent or stationary probabilities (Che75]

5. Exact or approximate solutions [GaS73, Gel75, CHW75]

6. Part by part (hicrarchical) solutions or whole solution [BCE75].

In spite of the wide applications of queueing theory, there are

some inherent limitations to its usefulness.

.L LIMITATIONS OF QU _EG THEORY

Queueing theory represents only average statistics. It tries to

represent a number of jobs by the average characteristics of the class.

The "individuality" of a job is ignored. In this sense, it is a static

analysis. It cannot satisfactorily represent timz varyiij phenomena or

dynamics. Therefore, It is good only as a design time tool. It cannot

be used at operation time, for which we need adaptive techniques that

can adapt to the individual characteristics and time-varying behavior of

,9
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Limitations of queueing theory

Jobs. To give a concrete example, a queueing model is ideal for telling

whether the disk is the bottleneck in the system or whether a faster CPU

will increase efficiency (both design time questions). However, once we

have acquired the proper disk and CPU, it does not tell us which job

from a given a set of jobs should be given the CPU or the disk next.

This is a dynamic decision problem, which can only be solved by the

application of techniques from decision and control theory.

Queueing theory is good for modeling a computer system and, to a

certain extent, its subsystems. However, when we come down to the level

of a program, it cannot model its behavior (because there are no queues

to be modeled). Given all the known information about a program, it

cannot tell what the program behavior is likely to be in the near

future. This is a prediction problem. Again, control theory must be

used for this purpose.

Queueing theory cannot model the interaction between the space and

time demands of a program. Since the theory cannot model either the

space demand behavior of a program or its time demand behavior, it

certainly is inadequate for modeling the interaction between the two.

Bad memory management may cause frequent page faults and may degrade the

performance of an otherwise good scheduling policy. Still, the memory

and the CPU allocation policies of most operating systems to date are

more or less independent. This is due to a lack of clear undcrstandlng

of the interaction between them. With the application of control theory

we hope to remedy this situation, because, riven control-theortio
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Limitations of queueing theory

models of two systems, their joint model can be obtained by modeling the

cross-correlation between the two.

1.4 ADDITIONAL EXPECTATION FOH CONTROL THEORY

There are many concepts like stability, controllability, and

parameter sensitivity, that are well established in control theory but

have not been used in computer systems modeling. We hope that the

control-theoretic approach will eventually lead to a better

understanding of t1se -e concepts as applied to computer systems. For

example, take the oncept of stability. Instability in computer systems

occurs in the for of excessive overhead caused by frequent switching of

CpU between jobs, or by frequent oscillation of pages between main and

secondary memory.. Instability in The control-theoretic approach is

especially suitable for stability studies, e.g., for determining the

effect of sudden demand variations, or the effect of measurement delays.

There are well established techniquec for this purpose.

Controllability studies of computer systems could similarly help

us to determine whether it is possitle to reach the optimum performance

state. Parameter sensitivity is already a big issue even in current

queueing models. One of the major studies that investigated the

applicability of queueing models to a real interactive system was

conducted by Moore at the University of Michigan [Moo71]. One

conclusion of the study was that queueing models are very sensitive to

parameter values which vary considerably with time and load variptions.
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Expectations from control theory

Again, control theory with its well established techniques for

sensitivity analysis provides better hope.

SURVEY OF APPLICATIONS OF CONTROL THEORY

Wilkes was probably the first to strongly advocate the

exploitation of control theory for computer systems modeling. In his

paper [Wil73), he stated:

"We are not yet in a position, end perhaps never will
be, to write down equations of motion for computer systems.
However this does not exclude the design of a control
system. Indeed, it is just in circumstances where the
dynamical equation are not fully understood or when the
system must operate in an environment that can vary over a
wide range that control engineering comes into its own."

The paper presents many arpuments for applying control theory. We do

not intend to duplicate those arguments here. To illustrate his ideas,

Wilkes proposed a general model of paging systems.

Adaptive policies for many components of operating systems have

been proposed. Dynamic tuning of allocation policies to improve

throughput in multiproqramming systems has been suggested by Wulf

[Wul69]. An adaptive implementation of a load controller is described

in [WI171 . Blevins and Rampmoorthy have investiqated the feasibility

of a dynamically adaptive operating system [EIR76J. Two different

techniques for adaptive control of the degree of multiprogramming have

been described in [DKL76].
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The need for a control-theoretic approach was also stressed by

Arnold and Gagliardi [ArG74]. They proposed a state space formulaticn

using resource utilization as the state variables. A dynamic

programming approach to memory management and scheduling problems is

described in [Lew74, Lew76]. A survey of some early applications of

statistical techniques to computer systems analysis can be found in

[Ash72].

The work most closely related to this thesis is that of Arnold

(Arn75, Arn78]. Using correlation properties of the memory demand

behavior of programs, he has investigated the applicability of the

Wiener filter theory to the design of a memory management policy.

1.6 PRINCIPAL CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

In this thesis we propose the following general control-theorctic

approach to the formulation of resource management policies for

operating systems.

1. In order to develop a resource management policy, model the

corresponding program behavior as a stochastic process.

2. Using identification techniques and empirical data, identify a

suitable model structure for the process* and estimate typical

values of model parameters.

* The term process ijs used here exclusively in the control-theoretic

sense of stochastic process. To avoid confusion, the term i' is used
to denote computer processcb e.g., we say "rea.dy tasks" inrite'd of
"ready processes".
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Contributions and organization

3. Based on the model, formulate a prediction strategy for the

stochastic process, and hence a resource management policy.

The policy so obtained is dynamic in the sense that it varies the

allocation of the system resource to a user job depending upon the

recent past behavior of the job. It, thus, provides the run time

optimization not possible with the queueing theory approach. Also,

notice that the individuality of the job is fully exploited. The key

step in the approach is the formulation of the stochastic process model

in such a way that the allocation problem reduces to a prediction

problem. We exemplify this approach by formulating control-theoretic

policies for CPU scheduling and page replacement. Policies for

allocation of other shared resources (e.g., disks) can be, similarly,

formulated.

Formulation of the CPU scheduling policy is described in

Chapter Il. The time taken by successive compute bursts of a program is

modeled as a stochastic process. It is shown that the main problem is

that of predicting the future demands of a job from its past behavior.

A few analytical results are derived concerning the increase in the mean

weighted flow time due to prediction error. Correlation techniques

(also called time series analysis techniques) are used to identify a

suitable model structure for the stochastic process. Empirical data on

the CPU demand behavior of users of an actual time sharing system is

used for this purpose. Details of the procedure used for modeling and

parameter estimation from the data are included. In particular, it is

1.
| t ii== in/li a m il'iaibili...
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shown that the CPU demand process is a stationary stochastic procss

having very little autocorrelation. The efficiency of several

autoregressive moving average (ARMA) models is compared. The finil

conclusion is that the gains are very small and that a zeroth order

non-zero mean white noise ( ARMA(O,O) ) model is appropriate for the

process. Based on this conclusion, several different predicion schemes

are proposed. An adaptive scheduling algorithm called "Shortest

Predicted Remaining Processing Time" (SPRPT) is proposed.

In Chapter III, the problem of page replacement is formulated as a

prediction problem. Using a stochastic process model of memory demrA

behavior, suggested by Arnold [Arn75], an expression is derived for the

cost of prediction error. The identification analysis shows thct tlw

process is non-stationary. The non-stationarity is, however,

hom%:*neous in the sense that the first differences of the process arc

stationary. An autoregressive integrated movinz average model of order

1,1,1 ( ARIMA(1,1,1) ) is shown to be an appropriate model for the

process. A two step exponential predictor is derived for the model.

Based on this predictor, a new page replacement algorithm called tv.

"ARIMA" algorithm is proposed. Even though the origin of the algcrithi

lies in complex control-theoretic ideas, its final implementation is

very simple. Moreover, it turns out that many conventional page

replacement algorithms like the working set algorithm [Den6], Arnold's

Wiener filter algorithm (Arn75], and the independent reference model

[ADUTI] are special cases of the ARIMA algorithm. The control-theoretir

derivation of the conditions under which these algorithms are optimal
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presented.

Chapter IV is devoted to developing new techniques for analysis of

binary processes like the memory demand process. The ARIMA model does

not take into account the fact that a binary process takes only two

values, 0 or 1. In this chapter, an attempt is made to remove this

discrepancy. It is shown that if a binary process is Markov of a finite

known order, it can be modeled as the output of a Boolean (switching)

system driven by a set of binary white noises. Modeling, estimation,

and prediction of the process using the Boolean model is described. A

method is developed for optimal non-linear prediction under any given

linear or non-linear cost criterion. All the results are then

generalized to k-ary processes, i.e., processes which take integer

values between 0 and k-.1 . The model is shown to be applicable to a

class of non-stationary processes also. Finally, the application of the

model to the problem of memory management is described.

In this thesis we make extensive use of control-theoretic terms

and concepts. However, since a mdjority of the readers of the thesis

are likely to be computer scientists, a tutorial approach is followed in

deriving the control-theoretic results. Whenever possible, simple and

intuitive explanations of the infcrences based on control theory are

provided. A brief explanation of ARIMA models, uhich are used

extensively in this thesis, is given in Appendix A. Further details of

control-theoretic concepts can be obtained from [Ne173, BoJ70, Pst7O,

BrH69].

S
I tl L ,... 1
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2.1 PROBLFM STATEMENT

The problem of CPU management is that of deciding which task from

among a set of ready tasks be given the CPU next. In the literature

this problem is also referred to as low level scheduling, short term

scheduling, or process dispatching. There has been a considerable

amount of work on designing scheduling strategies 4 or optimizing

different cost criteria, single or multiprocessor strategies,and for

different precedence constraints among the jobs [Cof76]. A common

underlying assumption in all these researches is that the CPU time

required by each job is known. For example, the simplest scheduling

problem is that of scheduling n independent tasks with known CPU time

requirements of t1, t2, ... Itn respectively on a single processor In such

a way as to minimize average finish time for all users. If the jobs

were scheduled in lexicographic order (i.e., 1,2,...n), the average

finish time would be

R - (n i+l)t i

A very well known solution to this problem is due to

Smith (Sm156]. This solution is called "SPT" or Shortest Processing

Time rule i.e., the jobs are given the CPU ±n the order of

non-decreasing CPU demand For those not familiar with this fact the

following example should prove convincing.

Example : Consider scheduling two jobs J1 and J2 with each requiring

only one cycle of computation followed by output. The time required for

CPU and I/O are shown in Fipure 2.1 . The scheduling decision is to

i7
I.
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107 

1/0
J, 0 CPU

15 / 0

J2 6 CPU

A. Job J, is scheduled first. Averoge Response time 17+1 =24
2 2

Cp0 
1 

J2CPU

time 0 10 16 17

.. Job J2 is sche.uled first. Averoge Response time 21 2 22
22

I/0
CPU J2 1 '

time 0 6 16 21 23

Figure 2.1 Optimal scheduling of two jobs

' g'
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decide which of the jobs gets the CPU first. Obviously there are only

two options: J1 first, or J2 first. The calculation of the average

response times to the users in the two cases are also shown in the

figure. It is clear that scheduling the shorter job first gives a lower

average response time.

In the case of Line printer scheduling, the service time

requirements can be predicted reasonably accurately from the size of the

file to be printed or by counting the number of linefeeds and formfeeds

if necessary. However, in the case of the CPU, there is no known method

of predicting the future CPU time requirements of the job. This makes

SPT and all similar scheduling strategies unimplementable.

In the absence of knowledge of program behavior, the operating

system designer is left to use his own ad hoc prediction strategy. One

such strategy is to assume that all the tasks are going to take the saxe

(a fixed quantum of) time. The tasks are, therefore, given the CPU in a

round robin fashion for the fixed quantum of time, and if a task has not

completed by the end of the quantum, it is put back on the run queue.

It is obvious that full-information strategies like SPT perform better

than no-information strategies like the fixed-quantum round robin. This

point is illustrated in Figure 2.2 where it is shown that if job J,

happens to be the first in the queue the response time is 25; otherwise,

it is 24.5. In both cases it is more th3n the SPT response time.

i'
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A. Round robin with Ji first. Average Response time- 23 + 25
2 -2

IAO

CPU J J J2I 2 "I J-;1 J J J2 J1 J2 J1 J JI J

time 0 .12 16 23 27

witr~ 23+26
B. Round robin with J2 first. Average Response time 2 24 -

22

CPU -J2 J J2 J1 J? J1 , JI J 2 J1 J2 iJ JI. JI JI Jir
time 0 11 16 23 26

Figure 2,2: Round robin scheduling with unit quantum time

, .
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Up till now we have assumed that all the tasks arrive

simultaneously and are ready for processing at the same time.

Obviously, this is not the case in a real computer system, where, tasks

arrive intermittently. The optimal scheduling strategy is still

basically the same. At each point in time one makes the best selection

from among those jobs available, considering only the rcmaining

processing time of the job that is currently being executed. This

generalization of SPT is called the Shortest Remaining Processing Time

(SRPT) rule [Smi78]. This minimizes the mean flow time if there is no

extra cost involved in resuming a preempted job. Other results for the

case of simultaneous arrival are similarly applicable. Note, in

particular, that it is not necesjary to have ?ny advance infrmarticn

about job arrivals.
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2.2 CONTROL THEORETIC FORMULATION

Consider a program in a uniprogramming situation. Figure 2.3

shows the typical time behavior of the program*. The program oscillates

between CPU and I/0 devices (Disk, Teletype, Card reader, Magnetic tape

etc.). Most program have three phases. During the first phase they do

very little computation, spending most of the time collecting parameter

values from the user. The program then enters a computation phase

consisting generally of one or more loops. Finally, the program outputs

the results. The computation phase constitutes a major portion of the

life of the program. The cyclic nature of this phase (due to loops)

makes the program behavior somewhat predictable. While in a loop, the

program repeatedly references the same set of pages, and makes similar

CPU and I/O demands. Under the name of "Principle of Locality", this

behavior has been successfully exploited for memory management. The

working set strategy of memory management is partly based on this

principle. This strategy states that the set of pages referenced during

the last time interval T are more likely to be referenced in the near

future than other pages.

The CPU management equivalent of the WS strategy is to say that

the length of the last CPU burst is the likely length of the next CPU

burst. This strategy has been used in many operating systems, though

there are many different forms of its implementations. One

* The same is applicable to a program in a multiprogramming si uation
provided the time scale represents "virtual time".

* . -.
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Input Phase Computation Phase I Output Phose

1/0

CPU - .......... LI

Figure 2.3: CPU and 1/0 demands of a typical program
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implementation method is to put a job taking a lot of CPU time on a low

priority queue so that the next time it will get the CPU only afer those

jobs which have taken less CPU time this cycle. Unfortunately, this

principle, although commonly used, hav never been theoretically

explained.

One aim of the research reported here was to check the validity of

this "Next Equal to Last" (NEL) principle, and, if it was found invalid,

to find a strategy for the best prediction of the future CPU demand of a

program from its past behavior. We model the CPU demands of a job as a

stochastic process. The kth CPU burst is modeled as a random variable

z(k). One way of representing a stochastic process is to model it as

the output of a control system driven by white noise (see Figure 2.4).

Thus, as seen by the CPU scheduler, the program is like a control system

which generates successive CPU demands. A general time series model for

such a process is given by the following equation:

z(t) = f(z(1),z(2),...,z(i-1),e(1),e(2),...,e(t))

Where z(t) represents tth CPU burst and e(t) is the tth random shock. A

linearized and time invariant form of the above equation is the well

known ARMA(p,q) model (see Appendix A for details on ARMA models)

z(0) = w+alz(t-1)+ .... +ap z(tp)+e(t).ble(t_1)-...-b qe(tq)

We choose this formulation to model the CPU demand behavior of

programs, because there are well established techniques to find such

models from empirical data. Once a suitable AHMA model is found, it is

easy to convert it to other models (e.g., state space model), if

necessary.

- "-'V . .- -
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Noise e~t )Linear System CPU
Demands z Ct)

Figure 2.4-. CPU demands modeled as a stochastic process
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La EFFECT OF PREDICTION ERRORS

In order to study the effect of prediction errors, we need to

choose a performance measure. Consider the problem of scheduling n

independent tasks with CPU time requirements of t lt 2, ...,tn

respectively on a single processor. A schedule consists of specifying

the sequence in which the tasks should be given to the processor. There

are many different performance measures for comparing different

schedules. The measure most commonly used for single processor

scheduling is "Mean Weighted Finish Time" (MWFT). It is defined as

follows:

C=1

n wifi

Where fi is the finishing time of ith task and wi is the weight or

deferral cost of the task. It was shown by Smith (Smi563 that this cost

criterion is minimized by arranging the tasks in the order of

non-decreasing ratio ti/wi" If all the tasks have equal deferral costs,

i.e., vi wI :1, then the cost c is called average finishing time or

average response time. It follows from the above that the average

response time is minimized by sequencing the tasks in the order of

non-decreasing ti. This rule is commonly known as "Shortest Processing

Time" (SPT) rule.

It has been shown that SPT also minimizes the following cost

criteria [CMM61]:

1. Mean power of finishing time 1rL fik
n i
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2. Mean waiting time 1 (ftn - t (fi-ti)

3. Mean power of waiting time.

4. Mean lateness (time beyond deadline).

5. Mean tardiness if all jobs are tardy.

6. Mean number of tasks waiting

However, SPT does not optimize the following cost criteria (all of which

are functions of due dates):

1. Maximum lateness

2. Maximum tardiness

3. Mean tardiness

4. Number of tardy jobs.

Fortunately, due dates are rarely, if ever, specified for CPU scheduling

and hence the above criteria are of no practical interest. For a

computer user the most important criterion is a low response time*.

Since a job consists of several CPU-I/O cycles (or CPU-I/O tasks), the

response time is the sum of the finishing time of these tasks of the

job. A" increase in the finishing time of a task directly contributes

to an increase in the response time.

* Some researchers believe that It is the consistency of response timr
rather than minimality that is of concern to a user (HoP72. For
example, If a program takes 1 minute on one day, it Is quite bothersome
to the user if it takes 5 minutes on another day. However, the prop'r
control point for this criterion is loid control (control cf the nunber
of users allowed to log in or the nuTber of batch jobs allowed to rum
simultaneously). Therefore, we do not consider this criterion.
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In the following, we derive a few analytical results corcerning

the increase in mean weighted finishing time (MWFT) of tasks due to

prediction errors. We first consider a very general case where the time

requirements of all jobs are to be predicted. Then we consider another

case, where only one job is considered for prediction, the compute time

requirements of other jobs is assumed to be known. The results are

presented as Theorems 2.3.1 and 2.3.2 below. The proofs of theorems are

given in Appendix B.

2.3.1 Theorem (Non-deterministic Case] : Consider a set of n tasks T

TI, ..., Tn- with compute time requirements of to, t1l, .. , tn

respectively, where all the times are unknown and are predicted as to,

fl, ..., rn- 1 etc. The predictor is such that the predicted time ti is

a random variable with distribution Fi(ti). The increase in the mean

finishing time (MFT) due to prediction error is given by

n (i-i) tii=O

where 1 Predicted position of T

a)

= f Fj(t)] fi(t)dt

0

..L2 THEOREM [Deterministic Case) Given a set of n tasks

T0,Tl,...,TnI with compute time requirements of to,tl,... ,tn~ 1

respectively, where t ,...,tn1 are known exactly and to is predicted as

tp, then the increase in mean weighted finishing time (MWFT) due to

prediction error is given by:

A!
• . l • ,

t
.,. . . . . , -, .owa.",



CPU Management Page 2-14
Effect of Predictton Errors

C = ( wOtk - wktO)"
kel

tk

Where I=fk : --

wk

to( o tplwO) if to<t p

k(tp/wO, to/w O ) if tp>t0

Informally, I is the set of indices of tasks lying between the piedictEd

and the real position of To. J is the interval between to/w0 and tp/w O .

2.3.2.1 corollary : The increase in mean finishing time (wk=1 vk) due

to to predicted as tp is given by

2 - E!tk-tO,

keI
where I = {k tO<tk<t p or tp<tk<tO }

One implication of this corollary is that only those tasks that

lie in between the predicted and actual position of the task contribute

to the increase in MFT. Thus if the compute time of various tasks are

arranged in increasing order and plotted as shown in the Figure 2.5,

then the increase in MFT is represented by the hatched area. In the

special case, when these compute times are linearly increasing, the

increase in MFT is proportional to square of the prediction error. This

fact is stated by the following corollary whose proof is given in

Appendix B.

2.3.2.2 corollary : If tk=kT, k=1,2,...,n-1 then the increase in NFT

due to t0 predicted as tp is given approximately by:

c )2
c ?(to-tp)

F ~ ~ 'E. ea'0 ...
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Increase in MFT due to
predicting to as tp

Time
Required tp.---------------
tk

Task number k

Figure 2.5: Increase in MFT due to prediction error

m 
ii
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It is seen from above theorems that the error in prediction of

computer time of a job affects the relative placement of all other jobs

in a very complicated fashion. For example, it is possible that the

time tf... ,tn 1  are far away from one another so that the predicted

value Vi even though away from ti may not result in any change in the

order and hence the net effect on MFT may be zero. On the other hand,

it is also possible that the times t0 1... ,tnl are very near to each

other so that a slight prediction error may result in a substantial

change in the schedule and hence in the MFT. Therefore, except in some

very special cases, e.g., in corollary 2.3.2.2, it is not possible to

express the cost of misprediction as a function of predicion error

alone. That is, there is no one simple "f" such that c~f(t 0 ,tp )

represents the loss function. We, therefore, choose to use the

conventional least square criterion to predict the compute time. In

other words, we seek to predict in such a way that the average value of

square difference between the predicted and the actual value is minimum.

A-.
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g,. DATA COLLECTION

This section describes the experiment to collect data on CPU

demands of actual programs. The experiment was conducted on a real user

environment in our Aiken Computation Laboratory. The laboratory has a

DECsystem-10 computer with TOPS-1O operating system. The system is

mainly a research facility for use by graduate students.

The TOPS-10 operating system maintains a number of queues among

which the jobs are distributed. For example, there is a queue for jobs

waiting to be run, a queue for jobs waiting for disc I/0, a queue for

jobs waiting for TTY I/O etc. Thus, the easiest way to get the data we

require is to watch the queue history of the program i.e., to note the

queue the job is in and to repeat the observation at every clock tick*.

Table 2.1 gives major details of the experiment. It consisted of

19 different runs spread over a month. Each run consisted of randomly

selecting a user and watching his queue history for a period of about 45

minutes. Along with the queue history which was observed every clock

tick, many other parameters like program name, memory used, etc. were

also recorded every second.

The data was later translated to produce the CPU demand processes

of individual programs. This produced 550 CPU dcmand processes

consisting of the length of successive CPU bursts (total CPU usage

.--.-- ...--------------.--..---..... ---- -- -- --.- .--. .---...-- .--..-- . ---

* In all subsequent discussions, the unit of time will be a clock tick
called "Jiffy" in DISC terminology. A jiffy is the cycle period of the
line power supply i.e., 1/60th of a eecond.

I
4 ,o .



CPU Management Page 2-18
Data Collection

TABLE 2.1 : DATA COLLECTION EXPERIMENT

Duration of the experiment I month

Number of runs 19

Duration of each run 45 minutes

Number of programs observed 550

Number of programs with 80 or more bursts 33
Number of program histories analyzed 33

Number of user histories obtained 19

Number of user histories analyzed 8

between successive I/O requests). However, most of thr-e proirami

processes were too short i.e., consisted of only a small number of

observations (number of CPU bursts). Only 33 processes had 80 or more

observations. These were chosen for correlation analysis.

We also obtained 19 user processes - one for each run. These

consist of lengths of successive CPU demands of the user regardless of

the program being run. Of these user processes, alternate (actually

only 8) processes were selected for analysis. The list of the processes

selected for analysis is shown in Table 2.2 . The processes are named

"XXXXX.YNN' where XXXXX is either "USER" for user processes or the

program name. Y is the user identification (letters A, B, C,...) and N

is the serial number of the program in a particular run. Thus MAIN.R55

stands for the 55th program run by user R. "MAIN" is the name of thn

5 5
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program. Table 2.2 also gives the type of the program, number of

observations in the process, its mean value, standard deviation sz, and

P-VALUE. The term P-VALUE will be explained later under the Chi-square

test.

The developmental nature of the environment is obvious from the

table. Notice that 14 (42%) of the programs are editing (SOS and TECO),

7 (21%) are FORTRAN programs, and 4 (12%) are ELI programs. FORTRAN and

ELI are the main languages used at our laboratory. Most users follow a

cycle of editing (TECO), compiling (FORTR), and running the program, and

then reediting etc. This is typical of research and development

environments. In a production environment in an industry, less amount

of editing and more application program execution is expected. However,

as we shall see later, the CPU demand behavior of editing programs and

application programs are not very different except that the mean value

of CPU burst in an editing program tends to be much lower than that in

an application program. Therefore, it is plausible that the results

obtained here also hold in a production environment.

A I
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Table 2.2 List of CPU Demand Processes Analyzed

S. No. Process N z sz  P-VALUE Progravn
Name Chi-Sq Type

1. COMP2.G63 158 24.8 85.0 0.000 FORTRAN Provram
2. ECL.B1 81 11.2 18.q 0.241 ELI Prcgrm
3. ECL.B2 260 74.7 379.9 0.006 ELI Program
4. ECL.S1 448 49.0 306.9 0.997 ELI Program
5. ECL.S2 270 77.6 528.5 0.999 ELI Propram
6. FORTR.P21 113 5.4 7.8 0,178 FORTWAN c rpiIcr

7. FORTR.P30 234 6.3 7.6 0.412 FOR'IRAN compilkr
8. FORTH.P8 349 6.2 6.7 0.000 FORTRAN compiler
9. FORTR.Q17 253 5.2 6.1 0.001 FORTRAN comnilkr

10. FRCDO.CI 141 606.7 1298.0 0.047 FORTRAN Prok'ran
11. FHCDO.CII 158 184.2 578.8 0.003 FORTRAN Pro-tram
12. M786S.UI 504 1.5 5.7 0.000 FORTRAN Provram
13. MAIN.QIO 204 8.4 7.4 0.000 FORTRAN Prozrar
14. MAIN.019 98 8.2 5.9 0.000 FORTRAN Proqram
15. MAIN.R55 129 3.4 3.4 0.230 FORTRAN Prozram
16. P.A19 222 9.2 23.4 0.000 FORTRAN Prozram,
17. PIP.G18 140 1.1 0.7 0.088 Peripherpl I/C
16. PIP.G45 84 1.0 0.8 0.000 Peripheral I/C
19. PIP.G60 225 0.9 0.3 0.000 Peripheral /C j
20. SOS.A21 422 1.9 2.7 0.000 Text Editor
21. SOS.A22 85 2.0 2.7 0.6416 Text Editor
22. SOS.A23 103 1.5 1.3 0.374 Tcxt Editor
23. SOS.A6 110 2.8 3.1 0.606 Text Editor
24. 7ECO.B8 90 3.7 6.6 0.916 Text Editor
25. TECO.F1 92 2.7 4.6 0.540 TExt Editor
26. TECO.F20 199 5.7 6.3 0.018 Text Editor
27. TECO.G37 116 28.0 t22.2 0.272 Text Editor
28. TECO.G38 221 17.2 64.8 0.140 Text Editor
29. TECO.055 114 4.3 4.5 0.000 Text Editor
30. TECO.HI 168 2.2 2.8 0,001 Text Editor
31. TECO.J5 90 6,4 6.4 0.s74 Text Editor
32. TECO.PI 138 4.6 12.6 0.979 Tcxt Editor
33. TECO.P13 84 4.3 5.5 0.568 Text Editor
34. USER.B 587 37.0 257.7 0.000
35. USER.D 259 52.0 329.2 1.000
36. USER.F 680 5.5 17.5 1.000
37. USER. H 413 6.5 39.9 1.000
38. USER.L 372 4.2 7.8 0.000
39. USER.N 471 30.2 187.5 0.999
40. USER.P 1629 7.1 17.5 0.000
41. USER.T 262 25.1 112.0 0.554
--------------------------------------------------------------------

.-. .I
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Z,5 DATA ANALXSLI

The aim of data analysis is to find one suitable model structure

for CPU demand behavior of programs. The two main steps of data

analysis are model identification and parameter estimation. The first

step consists of studying the first and the second order statistics of

the data in order to identify a class of models suitable for the

process. In the second step, these models are fitted to each process to

find the maximum achievable gain. Finally, these different models are

compared to give one general model for all CPU demand processes. A

large part of the data analysis reported here was done on a time series

analysis package TS developed by Professor Vandalae of Harvard Business

School.

Statistical techniques are very often misused and results

misinterpreted. It is easy to driw misleadinF conclusions unless the

statistical procedures are fully understood and used properly. for

example, we have noticed that in most of the computer science

literature, correlation techniques are used without significance tests,

parameters estimated without their confidence intervals, and so on. We,

therefore, decided to explain the methodology along with the results.

In the following we have tried to describe the reasoning behind each

inference that we draw. The description is, however, brief due to space

limitations and references are provided for further details whenever

necessary.
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2,5, 1 Model U~I:[ ,_ta

Model identification consists of studying the characteristic

behavior of the first and the second order statistics of the data. The

goal of this step is to identify a model structure or a class of models

suitable for the data. Notice that this does not include finding an

exact model equation; that is part of the next step on parameter

estimation. The statistics used for model identification in this

analysis are data plots, autocorrelations, partial autocorrelations,

inverse autocorrelations, and Chi square test. The inferences drawn

from these statistics are now described.

2 . .1I Data Plot:

The very first step in any identification procedure must be to plot the

data and to study its general time behavior. The plots of CPU demands

of some of the programs analyzed are shown in Figure 2.6 . These are

typical of all the programs analyzed. Very often a program has just one

or two large CPU bursts which if plotted would obscure the details at

lower values. Therefore, the Y-axis scales have been so chosen that at

least 95% of the data are shown in the graph. Very large value are

shown cut off at the largest plottable value. Notice the following

characteristic behavior of thee araphs:

A. No Trend : A trend (monotonous increase or decrease) in the data is

an indication of non-stationarity, though its absence does not confirm

stationarity. For a stationary series, the mean of the data does not

depend upon time; it is constant. Therrfore, such a series takes trips

lt
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away from the mean, but it returns repeatedly during its history.

F.rtunately, none of the CPU demand processes show a trend. Thus we can

hope for stationarity. A more conclusive test of stationarity via the

autocorrelation function will be described in the next section.

B. Violent Variations : Notice that the series does not stay at any

one level even for short intervals. This indicates that a WS-type

prediction scheme (i(t+1)=z(t), i.e., the current CPU burst size is a

good estimate of the next one) is probably not very valid. We may have

to use some more sophisticated scheme.

2...2 Autocorrelation Function :

As the n~me implies, the autocorrelation function is a measure of the

correlation between the present and the past observations. It is

therefore, also a measure of the predictability of future from the paet.

Mathematically, the autocorrelation function is the normalized

autocovariance function. The latter is defined as follows:

Cov(k) = E[(z(t)-z)(z(t+k)-Z)]

By dividing the autocovariance function by the variance (Cov(O)) wZ get

the autocorrelation function C(k):

C(k) = Cov(k)/Cov(O)

Obviously, to be of any value, a stcchastic process should have

finite memory, i.e., the present observation must be correlated only

with those in the finite past. In other words, the autocorrelation

function should die down to zero at very large laps. Such processes arr

called stationary because after a while they achieve "equilibrium" and

.4
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their behavior does not depend upon initial conditions (long past).

Autocorrelation functions (ACF) of some of the CPU demand

processes are shown in Figure 2.7 . These are typical of all the

programs analyzed. The dashed lines indicate the 95% confidence

interval of the ACF for the given sample. The expression given above

for C(k) is valid only for infinite sample sizes. For finite sample

sizes the calculated values are only an approximation tD the theoretical

ACF. Thus if r(k) denotes the standard deviation of C(k), then a

calculated value for theoretically zero autocorrelation (C(k)=O) may lie

anywhere between O.1.98r(k) with 95% probability. In simple words, nny

value between the dotted lines can be effectively assumed to be zero

with 95% confidence. The variance r(k) can be calculated by Bartlett's

formula [Bar46]. In computer science literature, this significance test

is almost always omitted, resulting in misleading conclusions.

The characteristic features of the ACF and the inference that we

can draw are now described.

A. The ACF dies down to zero very auickly. This indicates that the CPU

demand process is stationary. If the ACF had not died down quickly, we

would have had to analyze the ACF of the first and higher differences of

the process.

B. The ACF is non-zyro only for I or 2 lg. We can, therefore,

restrict our consideration to VIA models of order less than 2.

-- -'"-
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It is very important to remember that the sample autocorrelations

are only estimates of the actual autocorrelations for the process which

generated the data at hand. Therefore, the analyst must be on the look

out for general characteristics which are recognizable in the sample

correlogram and not automatically attach significance to every detail.

For example, there is a 5% probability that a theoretically zero

correlation will show up as significant (above the dashed lines).

Therefore, one or two significant correlations at large lags in some of

the cases shown should not alarm us.

C. The ACF is positive. A positive correlation between successive

values indicates that a large CPU demand in one cycle implies a large

demand in the next cycle. Therefore, a program that took a long CPU

time during last cycle can be expected to be CPU bound at least for the

next cycle and put on a lower priority queue.

D. The value of ACF is rather small. The ACF at lower lag values even

though non-zero and positive is really very small (of the order of 0.1).

This partially dulls the hope expressed in the last inference. The

correlation being small, the gain in the predictability of the future

from the past will be small. In nontrol theoretic terms, we are,

perhaps, headed for a zeroth order model.

2I." a& Part ial Auo m~-I Funl,9.0

The PACF is the dual of the ACF. Like the ACF gives an idea of the

order of the MA models, PACF gives an idea of the order of AR models.

If the process is modeled by an AR model of order p:

z(t) w + alz(t-1) + a2 z(t-2) + ... + apz(t-p) + e(t)

*... --..
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Then theOcoefficient ap of the last AR term z(t-p) is defined as the

value of PACF at lag p. Naturally, if the real process generating the

data had an AR model of order n, then we would expect PACF to be zero at

all lags greater than n. Thus the cut-off point of the PACF gives the

order of' AR model.

The PACFs of some of the CPU demand processes are shown in

Figure 2.8 . The dashed lines indicate the 95% confidence interval for

the PACF for given sample sizes. It was shown by Quenouille [Que49]

that the approximate standard error of the PACF is n-0 .5 . The

characteristic attributes of these PACFs and their implications are now

described.

A. The PACF dies down to zero very quickly. In fact in most cases the

PACF is significant (above the dashed lines) only for lags 1 or 2. This

means that we do not have to bother about very high order AR models to

model these processes. A first or second order model will do.

B. The PACF is positive at low lags. Notice that the PACF for almost

all processes is positive at lag 1. Only in 1 or 2 cases is PACF(1)

negative. The positive value implies that a CPU bursts gives a pot:itive

contribution to thc estimate of the next burst. It therefore confirms

our previous conclusion that a large CPU burst is more likely to be

followed by another large burst.

L... Chi Saar ic j RnLoq[

One way of viewing the process of modeling a time series is as an

attempt to find a transformation that reduces the observed data to

. . . . - : .. . . :. .. .. . . . -7LA
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random noise. The first question, therefore, is whether the data itself

is a random noise. Theoretically, the autocorrelation of random noise

will be zero at all lags. In practice, it will have small non-zero

values. Bartlett's formula for the standard error of the ACF provides

some guidance to test the smallness. A better quantitative test of

randomness is due to Box and Pierce (BoP7O]. They have suggested a

statistic that offers a test of the smallness of a whole set of sample

autocorrelations for lags I through k. This is the Q statistic given by

Q = N c(j)2

Q is approximately Chi-square distributed with k degrees of freedom.

Using the Q statistic one can calculate the probability that the given

sample came from a white noise process. This probability is listed in

the Table 2.2 under P-VALUE. Notice that 22 of the 33 processes

analyzed have non-zero P-VALUE, 16 have P-VALUE greater than 10%, and 8

have P-VALUE greater than 50%. Of the 8 user processes analyzed 4 have

a P-VALUE of 1, i.e., they are almost surely random noises. The high

randomness of the user processes is a result of their being mixtures of

severa] program traces, many of which have no relation to one another.

2..15 jvser.a Autogq.l atg Function

The inverse autosorrelations of a time series are defined to be the

autocorrelations associated with the inverse of the spectral density of

the series, i.e.,

IACF = Inv. Fourier Transform [ 1
Fourier Transfrm ACF)3

The IACFs were first proposed by Cleveland [Cle72]. He claims that they

, , - • 4?
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are useful in identifying non-zero coefficients in an ARMA model.

However, their utility in model identification is still a point of

debate among statisticians [Par72]. We calculated the inverse

autocorrelation functions for all of our CPU demand data processes.

However, in most cases these functions did not give much additicnal

information. Only in some (2 or 3) cases, where the processes behaved

abnormally (a low order ARMA model was not adequate), did we gain some

insight into modeling these particular cases.

In order to illustrate the use of IACF, let us consider one such

case : the CPU demand behavior of program FRCDO.C11 . Its ACF and PACF

were insignificAnt everywhere except at lags 5, 6, and 14. Obviously, a

low order ARMA model would not work for this process. As we will see in

the next section of wodel fitting, that an AR(2) model resulted in only

1.6% improvement over a zeroth order model. The inverse autccorrelation

for this process (assuraing orders of I through 8 for the AR part of the

model) are shown in Table 2.3 . Notice that all columns except 5 and 6

are zero. Cleveland suggests that this indicates an appropriate model

would have a 6th order AR part with only 5th and 6th coefficients

non-zero and all other coefficient zero, i.e., a model of the follcwing

type :

z(t) = w + a5 z(t_5) + a6z(t-6) + e(t)

Obviously, these high order models are of no interest to us

because of their applicability only in rare cases, and also because of

the rather small rain even in these cases.

dim"I
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Table 2.3 : Inverse Autocorrelations of FRCDO.C11

m ri(1) ri(2) ri(3) ri(4) ri(5) ri(6) ri(7) ri(8)

1 -0.076

2 -0.091 0.100

3 -0.074 0.087 0.080

4 -0.072 0.090 0.077 0.014

5 -0.078 0.066 0.046 0.038 -0.162

6 -0.011 0.062 0.026 0.001 -0.135 -0.189

7 -0.018 0.056 0.027 0.003 -0.132 -0.190 0.016

8 -0.019 0.095 0.052 -0.003 -0.140 -0.205 0.026 -0.107

ri(n) = nth inverse autocorrelation

m Order of the AR model used for calculating ri.
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2.5.2 L Estimj~jat

In order to find one general model for all CPU demand processes we

fitted several models to each process, and found the best parameter

estimates and hence the maximum improvement available. The details of

the model fitting procedure and the results obtained are the topic of

this section.

The net conclusion of the identification step discussed in the

last section are the following

1. The CPU demand process is a stationary process.

2. The order of the ABMA model required to model the process i

rather small - of the order of 1 or 2.

We, the-efore, limited our search for thm bcst model to the cla5s

of ARMA(p,q) models with p~q < 2. This clpss includes the follovinc s4x

models.

1. 0 0 White Noise z(t)=w+e(t)

2. 0 1 MA(1) z(t)=w+e(t)-bje(t_1)

3. 0 2 MA(2) z(t)=w+e(t)-be(t_1)_b 2 e(t_2)

4. 1 0 AR(1) z(t)=w+aiz(t_1)+e(t)

5. 1 1 ARMA(1,1) z(t)=w+alz(t-l'+e(t)_ble(t_ )

6. 2 0 AR(2) z(t)=w+alz(t-l)+q2z(t_2)+e(t )

.t
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Let us consider the general case of fitting an ARMA(p,q) model to

a process. The model is

z(t)-alz(t-1)-...-apz(t-p) = w+e(t)-bje(t-1)-...-bqe(t-q)

The parameter estimation problem is to find the "best" estimate of

the parameters 9 ={w, a1 ,...,ap , b1 ,...,bq}, and the variance se of

e(t). Here the best is defined in the sense of maximum likelihood (ML).

The likelihood function is the probability p(z:g,s2) that a given set of
e

parameter values would have given rise to the observed data. If the

noise e(t) is assumed to be normal then it can be shown that the ML

estimates are obtained by maximizing the sum-of-square function [Ne172,

p943:

N 2e
SSR(9) r et(e)

t=1

Once MLE of 9 has been obtained, VLE of s2 is just-2 SSR(O) e

e N

The superscript ^ denotes ML estimate. We illustrate the estimation

procedure with a sample case.

A Sam2le Case : Figure 2.9 presents the output from the program ESTIMA

for the case of fitting an ARMA(1,1) model to ECL.S2 process. The first

portion of the output describes the problem, i.e., number of

observations, order of differencing, initial guess values for pirameters

etc. Then the iterations towards ML estimate begin. The Gauss-Newton

method is used to find the optimal. We now describe the importance of

each of the results shown in Figure 2.9

. .U
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CPU DEMAND BEHAVIOR OF ECL (S-2)

NOBS = 270
INITIAL VALUES

AR( 1) 0.1000E+O0
MA( 1) -0.1000E+00
CONST 0.7500E+02

MODEL WITH D = 0 DS = 0 S = 0

MEAN = 81.67 SD = 528.9 (NOBS, 270)

INIT SSR 0.7540E+08

ITER SSR ESTIMATES
1 2 3

1 0.7473E+08 3.905E-02 -7.193E-02 78.0
2 0.7472E+08 -1.716E-02 -0.122 82.9
3 0.7471E+08 -7.497E-02 -0.180 87.7
4 0.7471E+08 -5.205E-02 -0.157 85.9
5 0.7471E+08 -6.595E-02 -0.171 87.0

REL. CHANGE IN SSR <= 0.I0OOE-05
FINAL SSR = 0.7471E+08
5 ITERATIONS
CPU DEMAND BEHAVIOF OF ECL (S-2)

PARAMETER ESTIMATES

EST SE EST/SE 95% CONF LIMITS
AR( 1) -0.066 0.569 -0.116 -1.181 1.049
MA( 1) -0.171 0.563 -0.304 -1.27? 0.932
CONST 87.001 59.532 1.46! -29.682 203.684

EST.RES.SD 5.2899E+02
EST.RES.SD(WITH BACK FORECAST) = 5.2899E+02

R SQR 0.011
ADJ R SOR 0.004
D.F. = 267
F = 1.474 (2,267 DF) P-VALUE = 0.231

CORRELATION MATRIX

AR( 1) V<A( 1)
MA( 1) 0.994

CON( 3) -0.780 -0.776

(CONTINUED...)

I f
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CPU DEMAND BEHAVIOR OF ECL (S-2)

AUTOCORRELATIONS OF RESIDUALS
LAGS ROW SE
1 -8 .06 -0.00 -0.01 -0.02 0.04 -0.02 -0.01 -0.01 -0.01
9-16 .06 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01

CHI-SQUARE TEST P-VALUE
Q( 8) = .679 6 D.F. 0.995
Q(16) = 1.06 14 D.F. 1.000

CROSS CORRELATIONS OF RESIDUALS AND THE SERIES
ZERO LAG = 0.99
LAGS E(T) ,Z(T+K)
1 -8 0.10 -0.01 -0.02 0.03 -0.01 -0.01 -0.01 -0.01
9-16 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02

CHI-SQUARE TEST P-VALUE
Q( 8) = 3.59 6 D.F. 0.732
Q(16) = 4.03 14 D.F. 0.995

LAGS E(T+K) ,Z(T)
1 -8 -0.00 -0.01 -0.02 0.03 -0.02 -0.01 -0.01 -0.02
9-16 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02

CHI-SQUARE TEST P-VALUE
Q( 8) = .649 6 D.F. 0.996
Q(16) = 1.10 14 D.F. 1.000

Figure 2.9 Output of the Parameter Estimation Program
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. Stopin Criterion: Regardless of the optimization technique used

one has to decide when to stop iteration. Various stopping criteria and

justifications for their use have been discussed by Muralidharan and

Jain (MuJ75]. The ESTIMA program stops whenever any of the following

criteria are satisfied:

1. Relative change in SSR is less than 10- 6 .

2. Absolute change in SSR is less taan 10-6.

3. The step size is less than 10-6 .

4. Number of iteration reaches a limit of 30 (a bad likelihood

function).

In almost all cases of CPU demand modeling, the optimization

program stopped on the first criterion.

B. Confidence Interval It is important to remember that MLE of the

parameters are, after all, random variables since they are functions Cf

the data. It can be shown (BoJ7O, p226] that MLE in large samples are

joint normally distributed with mean value equal to the true parameter

values and variance covariance matrix given by

V(6) = 2s2 Q-1

e

where the (i,j)th element of the matrix 0 is given by

d2SQiJ = d9 d ,J= 1,2,....,p~q-1

id.j

Taking the square root of the disqonal elements of the estimated

varianee-covariance matrix, we get the estimated standard deviation of

the parameter estimates or the standard error denoted SE(4i). A 9

7-
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confidence interval for Qj is given by ei 1.96"SE(4i).

C._. Uily of the Model : We test the utility of the model in terms of

R2  and F-test. R2  is the fraction of the variarce explained by 'he

model. It is calculated by the following formula

R2  var(e(t)]
var[z(t)]

1/N e2(t)

t=1
=1-------------------

1/n (z(t)_2)
2

t=1

This criterion for measuring the utility of a model does not

penalize the model for its use of parameters. Generally the addition of

any parameter to a model may be expected to reduce SSR and s2 since the
e

additional parameter offers one additional degree of freedom along which

to reduce them. Consequently, to penalize a model for its use of

parameter or degrees of freedom, one may compute estimates of g2 by
e

dividing SSR by N-k i.e., the net remaining degrees of freedom. This

corrected measure of improvement is called Adjusted R?

I/(N-k) r e2 (t)

R2
adj 1 ---------------ad =I -

11(N-1) r" (z(t)-2) 2

N-1 2 k-i

= ZV N-k

A negative or very low value of Hd j indicates that the model is really

not worth the trouble.

,Z
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The utility of a model can also be assessed by the F-test. This

test compares two hypotheses

H1 9=0

HO 9=0

It can be shown that the likelihood ratio F given by

F P(z/Hl1) Re/k
P(Z/HO) - (l-R2)1(N-k)

is F-distributed with k and N-k degrees of Freedom [BOJ7O p2661. The

probability that a F-distributed variable has the calculated F value is

given in the output as P-VALUE. P large P-VALUE implies that the

parameter values are significantly different from zero. For example,

the ARMA(1,1) model for ECL.S2 has -, P-VALUE of C.2'-11. Thiu z~ valu*.

indicates futility of the ARIMA model for this process.

D. Back Forecastine The values of e~t) in the expression for SSR are

calculated as follows

e(t) =z(t) - aiz(t-i) + bie(t-i) - w

It is immediately appax int that there is a problem here because we have,

no value for e0,*** ,e-q+, and z(0),. . .,z(-p). One solution is to Fssu'~e

e(l) through e(q) as zero and start using the above equ3tion frcm t~q+l.

An alternative soluticon to this starting value problem is a back

forecasting procedure suggested by Box and Jenkins [BoJ7O, p212]. The

ESTIMA output gives the standard dcvint ion of the residusis with and

without the back forecastinv.
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E. Correlation Matrix Also given in the ESTIMA output is the

estimated correlation matrix of the parameter estimates. The

correlation between two parameters is obtained by taking their estimated

covariance form the variance-covariance matrix described before and

dividing it by the product of their standard errors. In this example,

the correlation between a1 and b1 is estimated to be 0.994. This high

correlation indicates that one of the two parameters is highly dependent

on the other and therefore one of them can be omitted from the model and

the model order reduced without seriously affecting the performance.

F. Dagnostic Checks on the Residuals : There are two kinds of tests

that can be applied to residuals to test the adequacy of a model. These

are the whiteness test and the cross-correlation test. If the model is

adequate, we would expect to find that the residuals (t) have the

property of random noise - in particular, that they are not serially

correlated. Autocorrelation, if evident in the residuals, may help to

suggest the direction in which the model should be modified. To test

whiteness, we use the Q-statistic discussed before. In the example

shown, the Q-statistic is 1.06 which corresponds to a probability

(P-value) of 1.000. This high p-value confirms the uncorrelatedness of

residuals.

The cross-correlation test is based on the czrrelation between the

residuals and the process. An important property of the theoretical

disturbances is that they are correlated with the present and future

values of z, but not with the past values, i.e.,

W.I
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Cov[z(t-k),e(t)] = 0 k>O

Cov[z(t+k),e(t)] 0 0 k>O

As an additional check on the model, corresponding sample

cross-correlations between residuals and the process are displayed in

ESTIMA output.

:1i
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2.5.3 Choosing aGeneral Model:

The results of parameter estimation for 5 different models of 41

different CPU demand processes analyzed are listed in Tables 2.4 through

2.8 . In these tables, w, al, a2, bl, and b2 , if present, are model

parameters; s is the standard deviation of the residuals. R2 1 R2

e adj,

P-value for F-test, and P-value for Chi-square test are as explained

previously in sections 2.5.2.C and 2.5.1.4 .

Our next task is to choose the model which best represents CPU

demand behavior of programs. There are many ways of defining the

"best". For example, one criterion that we first explored was the

following

For each process find the best model (the one giving the

highest R2 , or R2dj), and choose the model that is best for a

majority of the processes.

We rejected this criterion on the grounds that it does not reflect

the fact that for programs with large variances even a small R2 is good,

whereas for programs with low variances even a large R2 is not much use.

Thus the net reduction in SSR rather than R2 should be the criterion for

selection. We, therefore, decided to use the following criterion

For each type or model, find the total (sum of) reduction in

SSR achieved by the model for all programs, and choose the

model that gives the highest reduction.
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Table 2.4 Parameter Estimaticn for ARMA(1,1) Model

z(t) = w + alz(t.l) + e(t) - ble(t-1)

Process a1  b1  se R2  R2di P-VAL P-VAL
Name 1 F-test Chi-sq

COMP2.G63 7.00 0.71 0.38 77.3 0.185 0.175 0.000 0.190
ECL.BI 8.98 0.19 -0.17 18.1 0.118 0.095 0.007 0.884
ECL.B? 20.89 0.72 0.53 363.7 0.066 0.058 0.000 0.9J9
ECL.SI 27.55 0.44 0.44 309.6 0.000 0.004 0.000 0.090
ECL.S2 83.68 -0.08 -0.19 527.4 0.011 0.004 0.214 0.000
FORTR.P21 0.74 0.86 0.75 7.7 0.042 0.025 0.094 0.377
FORTR.P30 0.76 0.88 0.80 7.6 0.025 0.017 0.053 0.925
FORTR.P8 0.10 0.98 0.93 6.7 0.044 0.038 0.000 0.049
FORTR.Q17 0.82 0.84 0.69 6.0 0.068 0.061 0.000 0.364
FRCDO.CI 394.10 0.36 0.70 1232.1 0.112 0.100 0.000 0.364
FHCDO.C11 243.75 -0.32 -0.42 579.7 0.010 0.003 0.470 0.001
M786S.U1 1.60 -0.01 -0.39 5.4 0.127 0.123 0.00' 0.000
MAIN.Q1O 1.18 0.85 0.55 6.5 0.244 0.237 0.000 0.955
MAIN.Q19 1.81 0.77 0.42 5.3 0.207 0.190 0.003 0.000
MAIN.BR5 iii n.*9 n.j11 3.14 0.0, 0.'28 0.cEI 0 .
P.A19 2.70 0.70 0.47 22.5 0.093 0.085 0.000 0.000
PIP.G18 0.53 0.56 0.35 0.7 0.049 0.035 0.031 0.409
PIP.G45 -0.04 1.01 0 .33 0.6 0.500 0.488 0.000 0.552
PIP.G60 -0.02 0.10 0.82 0.3 0.292 0.285 0.000 0.910
SOS.A21 0.03 0.98 0.92 2.6 0.077 0.072 0.000 0.000
SOS.A22 0.26 0.87 0.73 2.7 0.064 0.041 0.067 0.997
SOS.A23 0.41 0.74 0.83 1.4 0.015 0.005 0.476 0.370
SOS.A6 -0.04 1.01 0.96 3.1 0.029 0.011 0.210 0.557
TECO.B8 6.16 -0.66 -0.53 6.6 0.031 0.008 0.258 0.966
TECO.F1 0.24 0.10 0.98 4.6 0.023 0.001 0.343 0.594
TECO.F20 0.82 0.86 0.73 6.2 0.056 0.047 0.003 0.731
TECO.G37 1.74 0.94 0.91 123.0 0.005 0.013 0.763 0.268
TECO.G38 2.47 0.85 0.78 64.6 0.019 0.010 0.124 0.221
TECO.G55 0.69 0.84 0.59 4.2 0.160 0.145 O.OO 0.960
TECO.H1 0.56 0.74 0.52 2.7 0.100 0.089 0.010 0.706
TECO.J5 0.82 0.87 0.72 6.3 0.069 0.048 0.044 0.649
TECO.P1 4.45 0.05 -0.10 12.8 0.021 0,006 0.240 0.000
TECO.P13 2.57 0.41 0.25 5.6 0.027 0.003 0.325 0.C67
USER.B 9.12 0.7c 0.55 247.2 0.082 0.079 0.000 0.770
USER.D 45.22 0.13 0.10 330.3 0.001 0.007 0.864 0.000
USER.F 0.82 0.85 0.84 17.6 0.001 0.002 0.74! 0.000
USER.H 7.01 -0.07 -0.13 40.0 0.003 0.002 0.548 0.000
USER.L 1.44 0.66 0.59 7.8 0.009 0.003 0.195 0.001
USER.N 23.87 0.21 0.13 187.1 0.006 3.002 0.222 0.000
USER.P 1.64 0.77 0."3 17.1 0.04$ 0.047 0.000 0.096
USER.T 12.11 0.52 0.39 111.3 0.022 0.014 0.059 0.852

---- --- ---- --- ---- --- --- ---- --- ---- --- ---- --- ---



CPU Management Page 2-47
Data Analysis

Table 2.5 : Parameter Estimation for AR(1) Model

z(t) = w + alz(t.1) + e(t)

Process w a 2 R2
Name adj P-VALUE P-VALUENameF-test Chi-sq

COMP2.G63 14.39 0.41 77.6 0.172 0.167 0.000 0.014
ECL.B1 7.33 0.34 18.0 0.113 0.102 0.002 0.867
ECL.B2 60.56 0.19 373.8 0.036 0.032 0.002 0.531
ECL.SI 49.31 -0.01 309.3 0.000 0.002 0.893 0.995
ECL.S2 69.39 0.11 526.6 0.011 0.007 0.085 0.000
FORTR.P21 5.19 0.05 7.9 0.003 0.006 0.572 0.297
FORTR.P30 6.07 0.05 7.7 0.002 0.002 0.485 0.521
FORTR.P8 5.57 0.10 6.8 0.010 0.007 0.058 0.003
FORTR.Q17 4.44 0.10 6.1 0.024 0.020 0.014 0.029
FRCDO.C1 727.58 0.10 1277.3 0.039 0.032 0.019 0.058
FRCDO.C11 169.95 0.08 579.0 0.006 0.001 0.339 0.001
M786S.U1 1.06 0.33 5.5 0.110 0.108 0.000 0.872
MAIN.Q1O 4.75 0.10 6.7 0.184 0.180 0.000 0.091
MAIN.Q19 4.79 0.41 5.5 0.161 0.152 O.COO 0.000
MAIN.R55 2.81 0.10 3.4 0.031 0.023 0.046 0.593
P.A19 6.99 0.24 22.9 0.057 0.052 0.000 0.000
PIP.G18 0.94 0.22 0.7 0.041 0.034 0.017 0.457
PIP.G45 0.17 0.87 0.7 0.441 0.434 0.000 0.000
PIP.G60 0.49 0.49 0.4 0.164 0.160 0.000 0.000
SOS.A21 1.92 0.02 2.7 0.001 0.002 0.622 0.000
SOS.A22 1.68 0.18 2.7 0.031 0.01q 0.107 0.970
SOS.A23 1.57 -0.03 1.4 0.001 0.009 0.766 0.379
SOS.A6 2.66 0.06 3.1 0.004 0.006 0.538 0.666
TECO.B8 4.17 0.10 6.6 0.015 0.004 0.246 0.941
TEuO.FI 2.93 -0.08 4.7 0.007 0.004 0.440 0.638
TECO.F20 4.92 0.14 6.3 0.021 0.016 0.041 0.266
TECO.G37 27.70 0.01 122.7 0.000 0.009 0.896 0.303
TECO.G38 16.89 0.02 65.0 0.000 0.004 0.753 0.148
TECO.G55 2.87 0.34 4.3 0.113 0.105 0.000 0.708
TECO.H1 1.60 0.28 2.7 0.079 0.074 0.000 0.660
TECO.J5 4.84 0.10 6.3 0.059 0.048 0.021 0.797
TECO.PI 4.01 0.14 12.8 0.021 0.013 0.092 0.000
TECO.P13 3.67 0.15 5.6 0.023 0.011 0.170 O.q54
USER.B 29.04 0.21 251.9 0.046 0.044 0.000 0.010
USER.D 50.41 0.04 329.7 0.001 0.003 0.586 0.000
USER.F 5.54 0.01 17.5 0.000 0.001 0.782 0.000
USER.H 6.18 0.05 39.9 0.003 0.000 0.276 0.000
USER.L 4.11 0.04 7.8 0.002 0.001 0.433 0.001
USER.N 27.82 0.08 187.1 0.006 0.004 0.085 0.000
USER.P 5.82 0.18 17.2 0.033 0.032 0.000 0.000
USER.T 21.97 0.12 111.4 0.015 0.012 0.044 0.791

---
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Table 2.6 : Parameter Estimation for MA(1) Model

z(t) = w + e(t) - ble(t-1)

Process w b s 2  R2  P-VALUE P-VALUE
Name 1 e adj F-test Chi-sq

COMP2.G63 24.76 -0.31 79.7 0.127 0.121 0.000 0.000
ECL.B1 11.13 -0.32 18.0 0.112 0.101 0.002 0.921
ECL.B2 74.70 -0.14 375.6 0.026 0.023 0.009 0.210
ECL.S1 49.00 0.01 309.3 0.000 0.002 0.891 0.995
ECL.S2 77.55 -0.11 526.5 0.011 0.008 0.080 0.000
FORTR.P21 5.49 -0.05 7.9 0.002 0.007 0.605 0.283
FORTR.P30 6.36 -0.04 7.7 0.002 0.00- 0.522 0.498
FORTR.P8 6.21 -0.09 6.8 0.009 0.006 0.079 0.002
FORTR.Q1f 5.26 -0.11 6.1 0.017 0.013 0.039 0.012
FRCDO.C1 610.29 0.40 1253.3 0.075 0.068 0.001 0.070
FRCDO.C1I 184.04 -0.09 578.6 0.007 0.001 0.291 0.001
M786S.U1 1.58 -0.38 5.4 0.127 0.125 0.000 0.000
MAIN.Q1O 8.39 -0.34 6.9 0.134 0.130 0.000 0.000
MAIN.Q19 8.17 -0.26 5.7 0.102 0.093 0.001 0.000
MAIN.R55 3.42 -0,14 3.4 0.024 0.017 0.078 0.532
P.A19 9.19 -0.17 23.1 0.039 0.035 0.003 0.000
PIP.G18 1.19 -0.17 0.7 0.031 0.024 0.036 0.392
PIP.G45 1.03 -0.43 0.8 0.213 0.204 0.000 0.054
PIP.G60 0.95 -0.30 0.4 0.098 0.094 0.000 0.000
SOS.A21 1.96 -0.02 2.7 0.000 0.002 0.665 0.000
SOS.A22 2.04 -0.17 2.7 0.029 0.017 0.122 0.959
SOS.A23 1.53 0.04 1.4 0.001 0.0C9 0.741 0.372
SOS.A6 2.83 -0.06 3.1 0.003 0.006 0.542 0.665
TECO.B8 3.71 0.09 6.6 0.011 0.000 0.316 0.040
TECO.F1 2.71 0.10 4.7 0.007 0.004 0.443 0.633
TECO.F20 5.76 -0.12 6.3 0.017 0.012 0.067 0.178
TECO.G37 28.04 -0.01 122.7 0.000 0.009 0.897 0.303
TECO.G38 17.26 -0.02 65.0 0.000 0.004 0,761 0.148
TECO.G55 4.35 -0.24 4.? 0.077 0.059 0.003 0.210
TECO.H1 2.24 -0.21 2.8 0.059 0.053 0.002 0.262
TECO.J5 6.41 -0.24 6.3 0.059 0.048 0.021 n.805
TECO.PI 4.69 -0.14 12.8 0.021 0.014 0.091 0.000
TECO.P13 4.34 -0.12 5.6 0.018 0.006 0.221 0.011
USER.E 36.93 -0.16 253.5 0.034 0.032 0.000 0.000
USER.D 52.25 -0.04 329.7 0.001 0.013 0.587 0.000
USER.F 5.59 -0.01 17.5 0.000 0.001 0.783 0.000
USER.H 6.53 -0.05 39.9 0.003 0.000 0.27h 0.000
USER.L 4.28 -0.03 7.f 0.001 0.001 0.473 0.001
USER.N 30.22 -0.0 187.2 0.006 0.004 0.0P9 0.000
USER.P 7.10 -0.15 17.3 0.027 0.027 0.000 0.000
USER.T 25.11 -0.10 111.6 0.013 0.009 0.069 1.'If4

---- .
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Table 2.7 Parameter Estimation for AR(2) Model

z(t) = w + alz(t-1) + a2 z(t-2) + e(t)

Procee3s w a a2  
5e R2  R2Sa2 se R adj P-VAL P-VAL

Name F-test Chi-sq

COMP2.G63 12.71 0.37 0.11 77.4 0.183 0.172 0.000 0.137
ECL.B1 8.00 0.37 -0.09 18.0 0.120 0.097 0.007 0.906
ECL.B2 49.42 0.15 0.18 368.4 0.067 0.060 0.000 0.980
ECL.S1 49.94 -0.01 -0.01 309.6 0.000 0.004 0.956 0.991
ECL.S2 71.08 0.11 -0.02 527.4 0.C12 0.004 0.211 0.000
FORTR.P21 4.62 0.05 0.11 7.9 0.014 0.004 0.456 0.214
FORTR.P30 5.46 0.04 0.10 7.7 0.012 0.003 0.260 0.766
FORTR.P8 5.09 0.09 0.08 6.7 0.017 0.012 0.048 0.010
FORTR.Q17 3.51 0.10 0.21 6.0 0.065 0.058 0.000 0.325
FRCDO.C1 888.04 0.10 -0.22 125'1.6 0.084 0.071 0.002 0.105
FRCDO.C11 187.83 0.10 -0.10 577.8 0.016 0.004 0.231 0.000
M786S.U1 1.19 0.37 -0.13 5.4 0.124 0.121 0.000 0.000
MAIN.Q1O 3.69 0.34 0.21 6.6 0.220 0.213 0.000 0.582
MAIN.Q19 3.32 0.31 0.27 5.3 0.220 0.203 0.000 0.002
MAIN.R55 2.43 0.10 0.13 3.4 0.048 0.033 0.045 0.665
P.A19 5.35 0.18 0.23 22.3 0.106 0.098 0.000 0.000
PIP.G18 0.81 0.18 0.14 0.7 0.056 0.042 0.020 0.428
PIP.G45  -0.03 0.10 0.38 0.6 0.52- 0.514 0.000 0.911
PIP.G60 0.30 0.33 0.36 0.3 0.232 0.225 0.000 0.024
SOS.A21 1.62 0.02 0.15 2.7 0.023 0.019 0.007 0.000
SOS.A22 1.58 0.17 0.06 2.7 0.034 0.011 0.237 0.964
SOS.A23 1.72 -0.03 -0.09 1.4 0.009 0.011 0.628 0.449
SOS.A6 2.62 0.06 0.01 3.1 0.004 0.015 0.819 0.595
TECO.B8 3.47 0.10 0.16 6.6 0.041 0.019 0.159 0.994
TECO.F1 2.92 -0.08 0.00 4.7 0.007 0.016 0.744 0.565
TECO.F20 4.30 0.13 0.13 6.3 0.036 0.026 0.027 0.397
TECO.G37 27.51 0.01 0.01 123.2 0.000 0.01b 0.989 0.243
TECO.G38 16.21 0.02 0.04 65.1 0.002 0.007 0.802 0.117
TECO.G55 2.20 0.26 0.23 4.2 0.157 0.12 0.000 0.965
TECO.H1 1.36 0.24 0.15 2.7 0.100 0.089 0.000 0.751
TECO.J5 4.98 0.25 -0.03 6.3 0.09 0.038 0.069 0.752
TECO.P1 4.08 0.15 -0.02 12.8 0.021 0.006 0.239 0.000
TECO.P13 3.25 0.14 0.11 5.6 0.035 0.011 0.241 0.957
USER.B 23.51 0.17 0.19 247.6 0.080 0.077 0.000 0.684
USER.D 50.35 0.04 0.00 330.3 0.001 0.007 0.862 0.000
USER.F 5.49 0.01 0.01 17.6 0.000 0.003 0.944 0.000
USEH.H 6.22 0.05 -0.01 40.0 0.003 0.002 0.549 0.000
USER.L 3.69 0.04 0.10 7.8 0.012 0.006 0.116 0.001
USER.N 27.53 0.08 0.01 187.3 0.006 0.002 0.222 0.000
USER.P 5.28 0.16 0.09 17.1 0.041 0.040 0.300 0.003
USEH.T 19.67 0.11 0.10 111.0 0.026 0.018 0.033 0.937

--- i

' i o.
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Table 2.8 Parameter Estimation for MA(2) Model

z(t) w + e(t) - ble(t-1) - b2e(t-2)

Process w b b e R2  R2  PVAL P-VAL
Name 1F-test Chi-sq

COMP2.G63 24.75 -0.39 -0.21 77.8 0.175 0.165 0.000 0.051
ECL.B1 11.09 -0.38 -0.10 18.0 0.121 0.099 0.00f 0.891
ECL.B2 74.57 -0.12 -0.17 370.8 0.055 G.047 0.031 0.F34
ECL.S1 49.00 0.01 0.01 309.6 0.000 0.004 0.961 0.991
ECL.S2 77.56 -0.11 0.01 527.4 0.012 0.004 0.213 0.000
FORTR.P21 5.48 -0.01 -0.07 7.9 0.008 0.010 0.640 0.198
FORTR.P30 6.36 -0.03 -0.08 7.7 0.009 0.000 0.350 0.682
FORTR.P8 6.20 -0.08 -0.06 6.8 0.014 0.008 0.090 0.005

FORTR.Q17 5.25 -0.12 -0.15 6.0 0.049 0.041 0.C02 0.171
FRCDO.CI 615.91 0.31 0.21 1226.4 0.121 0.108 0.000 0.429
FRCDO.C11 1811.48 -0.07 0.09 578.4 0.01U 0.002 0.330 0.001
M786S.U1 1.58 -0.38 0.00 5.4 0.127 0.123 0.000 0.000
MAIN.Q1O 8.38 -0.31 -0.19 6.8 0.163 0.155 0.000 0.003
MAIN.Q19 8.13 -0.30 -0.22 5.5 0.170 0.153 0.000 0.000

MAItI.R55 3.41 -0.14 -0.16 3.4 0.047 0.032 0.047 0.702
P.A19 9.16 -0.13 -0.23 22.5 0.087 0.079 0.000 0.000
PIP.G18 1.20 -0.18 -0.18 0.7 0.057 0.043 0.01F 0.398
PIP.G45 1.03 -0.44 -0.56 0.7 0.416 0.401 0.000 0.964
PIP.G60 0.95 -0.35 -0.27 0.4 0.162 0.155 0.000 0.000

SOS.A21 1.96 0.01 -0.13 2.7 0.019 0.0!4 0.018 0.000
SOS.A22 2.04 -0.16 -0.02 2.7 0.029 0.005 0.299 0.9h1
SOS.A23 1.53 0.05 0.10 1.4 0.011 0.009 0.581 0.434
SOS.A6 2.83 -0.06 -0.01 3.1 0.003 0.015 0.830 0.593
TECO.B8 3.70 0.12 -0.16 6.6 0.040 0.018 0.172 0.992
TECO.FI 2.71 0.08 -0.01 4.7 0.007 0.016 0.744 0.565
TECO.F20 5.76 -0.11 -0.09 6.3 0.028 0.018 0.064 0.276
TECO.G37 28.03 -0.01 -0.01 123.2 0.000 0.018 0.990 0.243
TECO.G38 17.25 0.00 -0.04 65.1 0.002 0.008 0.8u7 0.110
TECO.G55 4.33 -0.23 -0.27 4.2 0.137 0.122 O.OCO 0.819
TECO.H1 2.24 -0.24 -0.20 2.7 0.095 0.0?4 0.000 0.743
TECO.J5 6.41 -0.25 -0.03 6.3 0.060 0.038 0.068 0.757
TECO.P1 4.69 -0.15 -0.01 12.8 0.021 0.006 0.240 0.000
TECO.P13 4.32 -0.15 -0.16 5.5 0.041 0.017 0.185 0.991
USER.B 36.95 -0.15 -0.16 249.9 0.063 0.0'0 0.000 0.096
USER.D 52.27 -0.04 -0.00 ;30.3 0.001 0.007 0.862 0.000
USER.F 5.59 -0.01 -0.01 17.6 O.roo 9.003 0.947 0.000
USER.H 6.53 -0.05 0.00 40.0 0.003 0.002 0.548 0.000
USER.L 4.28 -0.01 -0.11 7.8 0.012 0.007 0.110 0.001

USER.N 30.21 -0.08 -0.02 187.3 0.006 0.002 0.224 0.000
USER.P 7.10 -0.16 -0.09 17.2 0.03( 0.035 0.000 0.000
USER.T 25.07 -0.12 -0.11 111.0 0.026 0.019 0.032 0.9411

-- ----------- ----------- ---------
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Table 2.9 Comparison of Different Models

Model Net Reduction in Total SSR

Program User
Processes Processes

ARMA(1,1) 6.3% 3.9%

AR(1) 2.6% 2.3%

MA(1) 4.0% 1.7%

AR(2) 5.2% 3.8%

MA(2) 6.6% 3.0%

The total reduction in SSR for various model types are listed in

Table 2.9 . The reductions have been expressed as a fraction of total

SSR for Oth order model ( z(t) = Z+e(t) ). We see that for program

processes the maximum reduction achievable is only 6.6% if we choose the

MA(2) model.+ The gain is only 3.9% in case of USER processes. The next

questio, is whether with this little reduction it is worth while having

a two parameter model. In our judgment*, it is too much work for too

* The analysis presented in this section is more of a qualitative nature
than quantitative. Hence, personal preferences and biases of the
analysts may well affect the final conclusion. However, it is the,
approach rather than the result that we deem more important. It is
quite possible for some analyst to dlsapree with our conclusions.
However, they can still follcw our approach and come up with a
scheduling algorithm based on control theoretic arguments.

t I
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little gain and the zeroth order model is good enough. Our conclusion

is also backed up by many of the observaticns made during the

identificat.on step, viz., violent variations in the process, smnll

values of ACF and PACF, non-zero probabilities in chi-square tests etc.
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2.6 SCHEDULING ALGORITHM BASED ON THE ZEROTH ORDER MODEL

The net conclusion of the analysis so far is that the CPU demand

behavior of programs is best represented by the following Oth order

model:

z(t) = Z+e(t)

Since, e(t) is uncorrelated zero mean noise, it cannot be predicted, and

the best estimate of the future CPU demand is its mean value, i.e.,

Z(t) = Z

where 2 = I
N z(k)k=1

The problem in using the above formula is that Z can be calculated only

after all values of z(t), t=1,2,...,N are known. What we need now is an

adaptive technique to calculate Z and update it each time a new

observation is obtained. Some of the possible adaptive methods are

discussed below.

1. Current Average : Average of all values observed up to t-1.

2 t =  z(k) t0l

t-1

t-2 1

zt1+ -:-z(t-1)

(lat)Etl + atz(t-1) where at= 1

Here, zt denotes the current estimate of the mean.

, !
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2. Exponentialy W7e Ayec.__

Zt = (1-a)zt_ 1 + az(t-1)

This is a specialization of case I above with at taken to be a constant

rather than a variable.

. Average of the last n values : n~constant

Zt = I f z(t-k)
n k-

Notice that the special case n=1 corresponds to the NEL (Next Equal To

Last) strategy.

Regardless of which formula is used for prediction, the scheduling

algorithm basically remains the same. We call it SPRPT (Shortest

Predicted Remaining Processing Time) algorithm. It can be stated as

follows:

Each time a job leaves CPU for I/O, the CPU time taken by the

job is noted and the current estimate of mean value is

updated. This gives the estimate of the next CPU demand of

this job. Scheduling is done at suitable intervals (e.q.,

eck interrupts, or whenever a job changes state etc.), and

the job with the shortest predicted remaining time is selected

* A recent survey of current operating systems reveilEd that Dijkstra's
T.H.E. operating system uses a schedulinp alrorithm based on
exponentially weighted average of previous CPU demands [kcW761.
However, the algorithm was based on the simple Irgument that I/O bound
program should be giveh preferential CPU sllocation, and that a program
should not be classified as CPU bound simply because it took lpr.e CPU
time during the last buret. The exponential weirhted averave wns
thought to be a better indicator of CPU boundedncss.

. .... .....
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for CPU allocation.

Notice that the SPRPT algcrithm does not require any extra book

keeping other than what is already done by the operaing system. Most

operating systems record CPU time used by programs for accounting and

billing purposes.

f
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A control theoretic formulation of the CPU management problem has

been presented. The problem has been formulated as one of predicting

the future CPU demand of a job based on its previous demands. scveral

analytical expressions for the effect of prediction errors on the mean

finishing time of tasks have been derived. The results of an experI'ment

to study the behavior of actual program have been reported. The

empirical study shows that the CPU demands of program follow a white

noise model. The best least-squares predictor for the next CPU burst

is, therefore, the current mean. Three different schemes for adaptive

prediction have beEn proposed. An adaptive scheduling alvorithm called

SPRPT has been proposed.

I ~~~ ~ o ... ii ,11...
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3. PROBLEM STATEMENT

Memory management is the technique whereby an operating system

creates an illusion of virtually unlimited memory even though the actual

physical memory is limited. Thus, a user program having memory

requirement larger than the available physical main memory can be run on

the system. This is accomplished by dividing the user program into

several equal size (say 1K Words) pieces called pages. The whole

program is stored on a secondary memory (drum or disk) and only a few

pages are loaded in the primary (core) memory. The program is then

allowed to run. Obviously, the program will be interrupted when it

tries to reference a page that is net in the primary memory. Til :

situation is called "pige fault".

On a page fault, the demanded page is brought in to the core.

Space for the incoming page is obtained by removing either a page of

this same program or a page of some other program residing in the core.

In the first case, total core memory available to each program rf.iains

fixed, and in the second case, it vpries with time. The former scheme

is known as fixed partitioning and the latter as variable or dynamic

partitioning. In either case, when a new page is brought In, an old

page must be removed from the core. The page to be removed is

determined by usirA a pa;c replacement algorithm. Thus, the chief

problem in memory management is that of page replacement.

*I.
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Intuitively, the best page to remove is the one that will never be

needed again or, at least, not for a long time. In fact, it has been

proved that for fixed memory partitioning, the best page to remove is

the one that will not be referenced for the longest interval of time.

This policy called 'MIN' is optimal in the sense that it minimizes the

total number of page faults (Bel663. However, this requires advance

knowledge of the future page references (a prediction problem!). A

realizable approximation to MIN is the Least Recently Used (LRU) policy

which assumes that the page that has not been referenced for the longest

interval in the past is the one that will not be referenced for the

longest interval in future, and is the candidate for replacement.

In case of variable memory partitioning, it has been shown that

MIN and its LRU approximations are not optimal. The optimal pa~e

replacement policy in this case (called VMIN algorithm) is to remove all

those pages that will not be referenced during the next T time interval

(t, t+T), where T = R/U is the ratio of the cost of bringing a new page

in the main memory from secondary memory to the cost of keeping a paqe

in the main memory for unit time [PrF76). Again, this is only of

theoretical interest, because it requires knowledge of the future page

reference string.

A realizable approximation to VMIN policy is the Working Set (WS)

Policy [Den68]. According to this policy, the pages most likely to be

referenced in the next T interval (t, t+T) are those which have been

referenced during last T interval (t-T, t). All other papes can

ji
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therefore be removed. The interval T is called the window size.

Both LRU and WS try to predict the future reference pattern from

the past behavior of the program. Efficient operation of these

algorithms is dependent upon the degree of locality of reference in

programs. In statistical terms, the principle of locality states that

there is a high correlation between the immediate future and the recent

past behavior of a program.

I|



Memory Management Page 3-5
Control-theoretic Formulation

3,,2 CONTROL THFORETIC FORMU LATION

It is obvious from the previous discussion that the problem of

page replacement is a prediction problem. If we can somehow model the

page reference string as a stochastic process, we can use modern control

theoretic prediction algorithms such as Wiener filter, or Kalman filter

etc. to predict future page reference string.

There are many ways to model the reference string as a stochastic

process. Ideally the model should be such that it incorporptes all the

information contained in the page reference string. However, such a

model becomes very complex and difficult to analyze. We, therefore,

choose to begin with a rather simple stochastic process model suggested

by Arnold (Arn75]. More complexity may be introduced in the future

work. The implications of this simplification, and limitations of the

conclusion drawn from this model are discussed in the last section of

this chapter. It turns out that even this simplified model gives us

much useful insight in to the problem. The stochastic process is,

therefore, described next.

The page reference pattern of a given (say ith) pnge of a program

can be modeled as a zero-one process as follows :

I if the page is referenced in the
I kth interval ( (k-1)T < t < kT )

z(k) <!

f\ 0 otherwise



Memory Management Page 3-6
Control-theoretic Formulation

A sample trajectory of the process is shown in Figure 3.1. The

problem of page replacement is that of predicting z(k) given trajectory

up to time (k-1)T, i.e., finding the best estimate i(k) of z(k) from

measurements up to time (k-I)T. This problem is well known in control

theory. There, much work has been done on the prediction of stochastic

processes.

L Qf
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z t)

II

Figure 3.1 References to a page modelled as a binary stochastic process
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%3 COST EXPRESSION

In this section we derive an expression for the cost of imperfect

prediction. In memory management with fixed memory partitioning,

generally the objective is to minimize the chances of page faults. In

the ease of variable partitioning, however, page faults alone do not

provide an adequate criterion. Ihis is because it is always possible to

reduce page faults for one particular program by giving it more memory.

This, however, penalizes other programs which must operate with less

memory. Thus, an additional objective is to keep memory usage also to a

minimum. This second cost is often referred to as space time product.

The total cost is, therefore, calculated as follows.

Let H = Cost of a page fault

= Cost of bringing a new page in to memory

and U = Cost of memory usage

= Cost of withholding one page of memory from other

users for unit time

Let V(k) denote the predicted value of z(k) from information available

at time (k-1)T. Due to imperfect knowledge of the future, z(k) and i(k)

are not the same. A price has to be paid for errors in prediction. If

both z and i can take only 0, 1 values, then there are only 4 cases to

be considered as shown in Table 3.1.

Thus the additional cost due to imperfect prediction of z is given

by

C 2 Rzi + Ulii

4k-
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TABLE ., : Costs of memory management

Decision Additional
z I Based on 1 Cost Remark

0 0 Remove 0

0 1 Keep UT The page is not referenced
but still kept.

1 0 Remove R A page fault occurs.

1 1 Keep 0 The page is referenced and
it is in the memory.

Our aim should be choose i such that the expected cost E[C] is minimum.

E[C] = E[RzE + UTZ!]

If we choose our decision interval T such that T:R/U or R:UT, we have

E[C] E[ R(z! + 1)]

- E[ R(z-R) 2 ]

=R E[(z-i) 2 ]

- R times the mean square prediction error

Note that the second equality above holds only if both z and z are

zero-one valued variables, not otherwise.

A classic solution to the least square prediction problem is due

to Wiener(Pap65, p. 408]. lt consists of designing a linear system

(Wiener filter) with impulse response h(u) such that the output of the

system is the estimate i(t) when input is z(k), 0 < k < t-1 (see

Figure 3.2).

L.b(u)z(t-u)
u21

The Impulse response h(u) can be obtained by solving the Wiener-Hopf
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Post Linear Systemn Peice

votions, hU)

Figjure 3.2: Wiener filter predictcor. h (u) is given by
solution to Wiener-Hopt equation,
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equation

C(k) t(k-u)h(u) k:O, 1, 2,

u=1

where C(k) = autocorrelation function of z(t). The memory management

problem can, therefore, be solved by measuring C(k) and solving the

Wiener-Hopf equation.

Strictly speaking the Wiener filter technique is not applicable to

binary processes. For example, the output of the predictor will not be

necessarily 0 or 1. It may take any Value. The analysis is, therefore,

approximate. The reason for the choice of this method for initial

analysis is that there is no as convenient a way of modeling binary

processes* as for continuous processes. In fact, the techniques for

modeling, estimation, and prediction of continuous processes are so well

developed that it is no longer necessary to solve the Wiener-Hopf

equation in order to find the optimal predictor. Simply, by looking at

the shape of the autocorrelation function, it is possible to guess the

model of the system that could have generated the process [BoJ70 &

Nel73J. For example, an exponentially decayinR autocorrelation function

implies an AR(1) model, i.e., the impulse response h(u) (the solution of

the Wiener-Hopf equation) is zero every where except at u=1. These

"Time Series Analysis Techniques" provide very convenient means for

modeling empirical data.

---------------------------------------------------
* We have developed some techniques for modeling biniry processes.
These techniques and their applications to page reference process are
described in the next chipter. In this chapter we report the resutts
using conventional techniques.

- -
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3.4NO-STATIONARITY OF THE PAGE REFEREjCE PROCESS

Arnold [Arn75] has reported the results of autocorrelation

measurements on a number of programs. His conclusion is that in most

cases the autocorrelation function has the following form

C(k) = p + (1-p)qk with p > 0 and q:constant

Arnold reports in his paper that one of the main findings of his

measurements is the fact that the autocorrelation function does not ao

to zero, i.e., the constant piO.

An important implication of this observation is that the page

reference process is a non-stationary stochastic process. In fact, a

commonly used test for stationarity is to verify that the

autocorrelation function C(k) dies down to zero ?t large lass (PoJ70].

A simple explanation is that if the correlation between z(k) and z(O) is

zero for large k, the effect of the initial conditions will not be felt

after large enough k, and the process will eventually reach a state of

"statistical equilibrium" called stationarity.

There are unlimited number of ways in which a process cn be

non-stationary. However, mest of the real world non-stationary

processes exhibit a "homogeneou" non-stationary behavior such that sonv

suitable difference of the process is stationary. For example, If tn'

process exhibits homogeneity in the sense that apart from local level

( i.e., local mean ), one part of' the series behgves much like any other

part, then the first differencc of the process may be found t( be

_ _ _ ... . . . . .... . ... . .. .. . . ... .... .. . . . . f
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stationary.

To model such non-stationary processes, therefore, one studies the

autocorrelation function of 1st, 2nd, 3rd, ... differences until a

stationary process is obtained. Thus, to model z(t) we should study the

autocorrelation functions of

Dz(t) z(t) - z(t-1)

D2z(t) Dz(t) - Dz(t-1)

Ddz(t) Dd-lz(t) - Dd-lz(t-l)

till a stationary process Ddz(t) is found.

The non-stationarity of page reference process z(t) can be

explained as follows. Even though the program behavior may be

stationary in one locality, the frequency of reference to a particular

page varies as the program progresses from one locality to the next.

Thus, the process z(t) may behave like a set of locally stationary

processes, i.e., like a homogeneous non-st3'.ionary process whose mean

value varies. If this is so, the first difference of z(t) must be

stationary. At this point this is just a hypothesis. The

identification results presented in the next section confirm this

hypot hesis.
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. ARIMA MODEL OF PAGE REFERENCE BEHAVIOR

This section describes the results of modeling the 1st and higher

differences of the page reference process. The data for analysis was

supplied by Arnold. It consisted of a reference string trace of the

MUDDLE compiler. About 5 different pages were chosen for analysis.

The autocorrelation functions of some of the pages studied is

shown in Figure 3.3. The broken lines indicate the 95% confidence

interval of the ACF for the given sample. It is obvious frcm this

figure that the process is non-stationary and further differencing is

necessary. The first difference process y(t) is defined as

y(t) = z2.)-z(t-1)

In almost all cases studied the first differences turned out to be

stationary. Sample autocorrelation (ACF) and partial autccorrelation

(PACF) functions are shown in Figure 3.4. The common characteristics of

these functions and the inferences that we can draw from these are now

described.

A. The ACF cuts off at large jags This implies that the 1st

differences are stationary and no further differencing is neccesary.

Thus the appropriate model for the page reference process z(t) would be

an ARIMA(p,I,q) model (Puto-Regressive Integrated Movin7 Average model

of order p,1,q) for some suitable p, and q.
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B. The mean of the difference Drpobess 15jQ z.r This means that

the constant term in the ARMA model for y(t) could be taken as zero.

This property of y(t) is least surprising because a little arithmetic

shows that this must be so.

yMt = z(t)-z(t-1)

Hence, mean of y(t) = N1

t=:2

= [z(t)-z(t-1)]
t=:2

z(N)-z(l)
N-1

=0 or -L
-N-1

C. Both ACF and PACF are laresL Al la afte which they die cut

slowly. Of course, there are a few jumps at other lags* and the fall is

not smooth. The main point is that C(I) and 0(l) are not insignificant

as was the case for CPU demand processes. Therefore, suitable low order

model for y(t) is ARMA(I,1) model. To see this clearly, consider the

* Some pages show periodic peaks in the ACF even at large lags. This
happens for the pages that are in a big (with respect to interval T)
program loop. If the total time of the loop is kT (say), the page is
referenced every k intervals. Thus z(t) and z(t+k) are highly
correlated, and so are z(t) and z(t+jk), J=2,3,... This will cause
peaks in ACF at lags jk, J=1,2,3,... In conventional time series
analysis this behavior is called "seasonal". Though it is not very
difficult to model this behavior, we will not consider this here in
order to keep the analysis simple.

---- -
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ARMA model

y(t) - ay(t-1) e(t) - be(t-1)

The ACF and PACF of this process for different relative values of

parameters a and b are shown in Figure 3.5. The exact expressions are

as follows

C(O) = 1 0(0) 1

C(1) = a-b
C(1) 0(1) = a-b

1-2ab+b
2

C(k+l) = aC(k) k>O 0(k+1) = bO(k) k>0

The comparison of Figure 3.4 with Figure 3.5 shows that a

ARMA(1,1) model with b>a>O could be used for y(t).

D. The ACF as well PACF are negaIve at la J., This observation along

with the expressions for C(I) and 0(1) given above further confirm the

constraint guessed above, i.e., b>a. Tne fact that the successive

values of y(t) will always be negatively correlated can easily be seen

as follows:

y(t)=1 => z(t):1 => y(t+l)=O or -1

y(t)=-1 => z(t)=O => y(t+1)=O or I

Thus a positive value of' y(t) implies that that the next value will be

zero or negative and vice versa.

The parameter vilues obtained fer the cases analyzed Pre listed in

Table 3.2. Notice that a and b do satisfy the constraints (b>i>O)

conjectured above. In addition we notice that b is almost always nearer

to 1 and a is nearer to 0. Also listed in the table is thf relative

.p.- ,, .
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,b

1.0 _ _ _ _ _ _ _ _ _ _ _ _ _

Ck kkk

Ck ' kk

Ck Okk1.

-I.00

~~Okk

-1 .0

Figure 3.5: Autocorrelation and partial autocorrelation functions Ck and Okk

for ARMA (1,I) Model
y(1) - ay(t-1) e (t -be(t-1)

- I -.
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TABLE _,2 Parameter values for the ARIMA(1,1,1) model

(1-aB)(1-B)z(t) = (1-bB)e(t)

-------------------------------------------------------------

Page # a b R2

44 0.654 0.961 14.1%

79 0.446 0.856 17.3%

172 0.345 0.822 20.6%

206 0.0 0.858 41.4%

226 0.0 0.783 38.2%

reduction in the variance (R2 ) achieved by the model. Notice that the

model does provide significant gain in prediction efficiency over a

zeroth order model.

The fact that ARMA(1,1) is the appropriate low order model for

y(t) is further confirmed by comparing it with other low order models

like AR(1), MA(1), or AR(2). The relative efficiency of these models is

listed in Table 3.3. Notice that in all cases analyzed, the ARMA(1,1)

model turns out to be the most efficient.

Since y(t) is the first difference process of z(t), z(t) is said

to be the first "integrated" process of y(t). Thus an Auto Regressive

Moving Average (ARMA) model of order 1,1 for y(t) implies an Auto

Regressive Integrated Moving Average (ARIMA) model of order 1,1,1 for

z(t). The model equation for y(t) is

'I
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(1-aB)y(t) (1-bB)e(t)

where B is the backward shift operator (By(t) = y(t-1)). Further since,

y(t) = z(t)-z(t-1) = (1-B)z(t)

the model equation for z(t) is given by the following equation

(1-aS)(1-B)z(t) = (1-bB)e(t)

TABLE . : Comparison of ARMA models of 1st difference process

y(t) = z(t) - z(t-1)

List of R2 (5 reduction in variance) for different models of y(t)

Page # AR(1) AR(2) MA(1) ARMA(1,1)

44 4.6% 6.0% 6.4% 14.1%

79 7.6% 13.2% 17.3%

172 13.2% 16.9% 19.1% 20.6%

206 25.0% 29.0% 41.4% 41.4%

226 25.4% 29.5% 38.2% 38.2%

-- -------- -------- -------- ------
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3.6 PAGE REFERENCE PREDICTION USING THP ARML1 1l M.D

The net conclusion of the last section is that the page reference

behavior of programs can be appropriately modeled by an ARIMA(1,1,1)

model

(1-aB)(1-E)z(t)=(1-bB)e(t)

where z(t) is the binary page reference process, e(t) is white noise, 2

is the backward shift operator, and a, b are model parameters with

b>a>O. Using this model, we can derive equations for prediction of z(t)

based on process observations up to time t-1. In the followinF, we

derive two such sets of equations called "open loop" and "closed loop"

predictors. An implementation of open loop predictor using two

exponential weighted averages is also discussed.

3.6.1 Oen Loop Prcdictor : The usual way to derivc a predictor for any

ARIMA model is to transform it into an equivalent AR model. For our

ARIMA(I,1,1) model, this is done as follows:

e(t) =----a--)- z(t)
1-bB

I1- (l+a-b)B -(b-s)(1-b) 2  z(t)
i=2

= z(t)-(l+a-b)z(t-)-(b-a)(1-b) i-2z(t-i).
i:2

or, z(t) = e(t)+(1+a-h)z(t-1)+(b-a)(1-b) "F i2g ti
L-
i=2

*1

. . . . . ,. *o - -....- - ~ -. - - -
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Since e(t) is white noise and can not be estimated or predicted

from the previous observations, the best estimate of z(t) from

observations up to time t-1 is given by:

2(t)= (1+a-b)z(t-1)+(b-a)(1-b) lbl-2z~t-l )4-bi t± [3.1)
i=2

This equation is very inconvenient to use because it requires knowledge

of all previous observations. One way to simplify it is to ignore the

higher order terms (terms with small coefficients). In practice, terms

after the 5th lag can be easily ignored without much loss in accuracy.

A more ingenious procedure is to rewrite the equation 3.1 as

follows:

i(t) = (1-c)z(t-1) + c z(t-2) [3.2]

where c=b-a>O and z(t-2) is defined as (1-b) times the summation term in

the equation 3.1. It can be recursively calculated as follows:

(t-2) = (1-b)z(t-2) + b2(t-3) with 2(0)=0 [3.3]

Notice that both the equations 3.2 and 3.3 represent exponential

weighted averages. However, the weighting coefficients in the two

equations are quite different, because b-c = a 1 0.

E .9._-. : A somewhat different equstion for the

predictor can be derived as follows:

z(t) I-bB
(1-aB)(1-B) e(t)

"e(t) +-(-----------P,(0)

(1 a-b) - aB=e~t) +------------e~t
(1-aH)( 1-2) et

0'.A
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= et).-b- aP (1-aB)(1-B)
= et) (1-aB)(1-B) -b Z(t-1)

=e(t) + (I±2-b) -aB zt1
1-bb z(t)

Hence i(t) (l1a-b) -aB zt1
I -bB ztl

or (I-bB)i(t) = (l~a-b) - aB~z(t-1)

or =()b2tl (1+a-b)z(t-l) -az(t-2)

or 1(t) =(l+a)z(t-l) - az(t-2) -~~-)-~-)

= (l~a)z(t-1) - az(t-2) -be(t-l) (3.4)J

where e(t) =z(t)-z(t)

"Error in prediction at t

"Innovation sequence

The block diagram representations of predictors given by equpt ion 3

and 3.4~ are shown in Figure 3.6. It is obvious from the diagramns why w

call these predictors open loop and closed loop respectively.
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z(t-1) Open loop 2(t>1Predictor

zI ____

Figure 3.6: Block Diagram representation of Predictors
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3. ARIMA PAGE REPLACEMENT ALGORITHM

Using either the open loop exponential predictor or the closed

loop equation derived above, one can design a page replacement

algorithm. We will call such an algorithm "ARIMA page replacement

algorithm". In the following, we describe the algorithm based on the

exponential pradictor. The closed loop version can, similarly, be

designed. The algorithm is as follows.

1. Associated with each page i is a hardware register 7i (called

2-register). Also associated is a bit zi (called z-bit).

2. Whenever a page is referenced ite associated z-bit is set.

3. Every T interval (where T is the ratio of costs as described

before), all Z-registers are updated using the following (FORTRAN

like) statement :

21 = (1-b)*zi + b*zi

and all z-bits are cleared.

4. When a new page is loaded in the memory the zi bit is cleared ard

2 is initialized to 0.

5. At the time of pawe replacement, which could bc every T interval,

or more appropriately at page fault, a quantity called £i is

calculated as follows

i (1-)z + *i

Based on z a decision is made regaring the page to be rrplnced.
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There are many possible ways of making this decision. Some

examples of such decision rules are described below

a. The page with least ii is replaced.

b. All pages with ii < k, where k is some suitable cut off point

(say 0.5) are replaced.

c. The first page encountered with ii < k is replaced.

d. Among the pages with z < k, the page to be replaced is

selected using LIFO, FIFO, or LRU algorithms.

Of course, one may also use a combination of two or more rules,

for example, in the case b above, if there is no page with ii < k, then

use the rule a, or try varying k depending upon the page fault frequency

and so on.

The main overhead involved in this algorithm is the update of Z

registers every T interval. This overhead is not excessive considering

that it involves only one multiplication, one addition, and a

complementation. A simple hardware circuitry could be used to do this

task as shown in Figure 3.7. At the time of replacement the same

circuitry could be used for prediction by replacing b by c.

The question that we have ignored so far is what value of

parameters b and c should be used in the ARIMA algorithm. Ideally, one

would like to estimate these parameters separately for each page. The

estimation technique should be an adaptive one so that bi and ci are

updated along with zI every T-interval. Alternately one could use some

suitable fixed value. This latter procedure has much less overhead and

I.!
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is more practical. However, in this case, program behavior monitoring

should be done from time to time to detect drastic variations in user

program behavior. The main consideration in choosing these values is

that they should be representative of user program behavior, and also

they must be easy to represent. For example, for the pages we analyzed,

we found that the average values of b and c were 0.856, and 0.567

respectively. Therefore, b=7/8, and c=1/2 seem appropriate, considering

that we are going to use binary arithmetic.
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_.8 SPECIAL CASES OF THE ARIMA ALGORI-_U

In this section we show that working set, roference frequency, and

few other algorithms are special cases of the ARIMA algorithm. tnother

special case is an extended working set, wherein the window size is

dynamically adjusted to match the pror-ram loca. ty size. Recall from

the last section that the exponential predictor Cor the ARIMA(I,1,1)

model is given by

i(t) = (1-c)z(t-1) + cz(t-2)

Z(t-2) = (1-b)z(t-2) + bz(t-3)

We shall refer to these two equations as prediction equation, and update

equation respectlveiy. ine iour special cases of the tRI.-A aiorithm

occur when the parameters b and c take their extreme values 0 and 1.

These cases are now described.

Case I i.--O : In this case, the prediction equation becomes

i(t) = z(t-1)

i.e., the pages that were referenced in the last T interval are the oncs

that are likely to be referenced in the next T interval. All other

pages can be replaced. This is exactly what YQtrjn &I policy also

says. For this special case of the ARIMA pane replacement algorithm

described above, the 2-registers are no longer necessary, and the pnces

with z-bit on constitute the working set. Also notice that c~b-qrO

implies that the model equation for this case is

(1-B)z(t) = e(t)

i.e., an ARIMA(0,1,0) model. In this case the process z(t) is an

,l
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"Integrated white noise" or Wiener process. Thus working set is optimal

for programs whose page reference processes constitute a Wiener process.

Since using WS is equivalent to using a white noise model for the

first difference process y(t), the percentage improvements listed in

Table 3.3 are also percentage paging cost improvements achievable by

various ARIMA models.

Case II Lt : For this case the update equation takes the following

form :

2(t-2) = 2(t-3) = I (say)

i.e., the mean is time invariant, the prediction equation therefore

reduces to an AR(1) predictor :

i(t) = (1-c)z(t-1)+ct

This is Arnold's Wiener Filter model [Arn75]. Notice that this is

applicable only if the mean is time invariant, i.e., if the z(t) process

is stationary.

Case Ill lzl b= : For this special case, like case II above, the

update equation implies a time invariant mean and the predictor equation

becomes

i(t)=

i.e., the pages are expected to be referenced with fixed frequency (mean

value) and the page with least z is the candidate for replacement. This

is the Refenrece F neD.c polDicy of pa.ge replacement. This model is

also known as Indennti  R e (IRM). For this case the

model equation becomes
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(1-B)z(t) = (1-B)e(t) since a=b-c=O

or, z(t) = e(t)+z

This is an ARIMA(O,O,O) or white noise model. Thus the reference

frequency model is appropriate only if the page references constitute

white noise*.

Case IV J : In this case, the predictor and the update equations

become similar.

i(t) = (1-b)z(t-1) + bz(t-2)

2(t-2) = (1-b)z(t-2) + bZ(t-3)

These equations can be rewritten as follows:

i(t) r z(t-1)

2(t-1) = (1-b)z{t-1) + b2(t-l)

This is an extension of the independent reference model. Here the

reference frequency is assumed to be time varying and is computed

adaptively using an exponential weighted average. This policy could,

therefore, be called "Adaptive Independent Reference Model" (AIRM).

This is optimal when a=c-b=O and the process model is PRIMA(0,1,1):

(I-B)z(t) = (1-bB)e(t)

i.e., z(t) is the integration of a first order (colored or correlated)

noise. It could, therefore, be called "Colored Wiener Process".

# This same conclusion was reached by Aho, Denning, nd Ullman (ADU711.
They call it Ao policy and show that the policy is optiml wlen the
probability of' reference of' a parle depends neither on timr
(staticnarity) tior on previous progrram behavior (no-nutocorrelation).

- - - - .---

1- , OMAN
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We conclude this section on special cases of the ARIMA(I,1,1)

model by depicting all the four cases discussed above on a single

diagram as shown in Figure 3.8. The ARIMA model operates in the

triangular region O<c<b<1. It is obvious from this diagram that the

ARIMA(1,1,1) is a general model and that Working set, Arnold's Wiener

Filter, Independent Reference Model, and Adaptive Independent Reference

Model are all its boundary cases.

kI
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Independent Reference
C ~Model1/A"R P1A (O,,O

1.0

o <

WJorking set/ARi!,A I .0)__________

0 1.0 b

Figure 3.8: Special cases of ARINAA (1,1,1) Algorithm

* 7
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3.9 LIMIA-ON- OF THE FORMU LMICN

In the lat. section it was shown that the working set policy is a

special case of the ARIMA policy. Therefore, a question that naturally

arises is whether there is any relation between the ARIMA and another

popular page replacement algorithm LRU, and whether the LRU is also a

special case of Lhe ARIMA. The answer is probably "no". This is

because of the limitations of the zero-one stochastic formulation that

we started with. It uses only a subset of the available past

informatlon.

de.per insight into the information structure can be obtained by

considering the information used by various algorithms. VMIN - the

optimal variable space algorithm uses the complete page reference

string. WS requires knowledge of set of pages referenced in the last T

interval. It does not require the order in which the pages are

referenced or the number of times they are referenced. A general ARIMA

model would use all the sets of pages referenced in successive T

interval. Finally, LRU uses the set of last referenced m pages along

with their order of reference. The Venn diagram of information used by

these algorithms is shown in Figure 3.9. The broken line in this figure

separates the past from the future. There are two inferences to be

drawn from this figure

.1

4
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WIN

Figure 3.9: information used by various page replacement
olgorithms.
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1. The information used by the WS is a subset of that used by the

ARIMA. This explains why ARIMA policies can always be specialized to WS

set policies with proper window sizes.

2. There is much information, ( like the frequency of reference of a

page in an interval, the order of reference of various pages, and

cross-correlation between different page processes ), that is not used

in the zero-one stochastic process formulation used to derive the ARIMA

policy. If we could somehow develop a formulation which uses the

complete past information, then both the WS and the LRU will be special

cases of the generalized model. The conclusions drawn would then be

universal in scope.
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1.10 COqLUSICNc

The page reference behavior modeled ao a zero-one binary

stochastic process exhibits a non-stationary behavior. An ARIMA(1,1,1)

model was shown to be appropriate for the process. This model is then

used to design a memory managenent policy.

The main results achieved in this chapter can be stated as

follows:

1. We have shown that the cost of imperfect prcdictior is

proportional to the square of the difference between the

predicted and tic actual value.

2. Using empirical results, we have shown that the ARIMA(1,1,1)

model is an appropriate model for page reference processes.

3. We have designed a new page replacement algorithm called ARI'MA

page replacement algorithm. The algoritnm is shown easy to

implement.

4. We have shown that many conventional algorithms like korking

Set, Reference frequency, and Arnold's Wiener Filter algorithm

are merely boundary cases of the ARIMA ilgorithm. Also we have

described conditions udder which these boundary cases re

optimal. In particular we, thus, have a control theoretic

derivation of the WS policy.

ga, w &'i lL
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In the analysis presented in this chapter, approximaticns were

introduced due to Gaussian assumption. We, therefore, expect that the

development of identification methods for discrete binary processes will

lead to better understanding and management of program memory behavior.
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4,J INTRODUCTION

In this chapter we present a new approach for analysis of binary

processes. A process z(t) is called binary if the variable z(.) can

tak only two values 0 and 1*. A classic example of a binary stochastic

process is the so called "Semi-random Telegraph Signal", which consists

of a sequence of independent identically distributed binary random

variables.

In computer science, binary process are a common occurrence. For

example, as was shown in the last chapter, the reference pattern of a

particular page constitutes a binary stochastic process which can be

used to design new memory management policies. Similarly, in database

management, record reference patterns constitute binary processes which

can be used to detect changes in reference patterns and to determine

optimum points for database reorganization. In ,-..er neLwerks,

packet arrivals at a node can be modpled by a zero-one process. Several

similar examples can be constructed in the areas of weather prediction,

signal detection, medical diagnosis, and info ation theory.

-----------------------------------------------------------------------

In fact, z(.) can take any two values say a and b. The analysis

presented here can still be used by transforming It to another process

b-a " Notice that the process y(t) is a zero-one process.

•b I
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In spite of the fact that binary processes are so common, it is

surprising that no direct technique for identification and prediction of

such processes has been described in the published literature. The two

known methods for analyzing such processes are both indirect [CoL66].

In the first method, one analyzes the intervals between successive

z(t)=l pulses. These interval can be assumed to be Gaussian, and the

analysis carried out as usual. Alternatively, one can count the number

of z(t)=1 pulses over suitable intervals of equal length and model the

resulting "count" process as a Gaussian process. It is obvious that

both these approaches for "modeling" of the process are not suitable for

the prediction of z(t) given its history upto time t.

In this chapter, we present a direct approach to rodeling,

estimation, and prediction of binary processes. The apprcach i;

analogous to that for Gauss n processes. Like the Wiener filter for a

Gaussian process (see Figure 4.1), we design a system (a oclean system)

whose output is the predicted value i(t) , and the input is the past

history of the process. Our model is mere reneral than the Wiener

filter in the following respects:

1. The measure of goodness of the prcictor is not limited to a fixed

criterion, e.g., least-squares in the case of Wiener filter. Our

methcd applies to any given critericn: linear or non-linear.

2. We do not impose the lincarity ccndition on the system. Our method

gives the optimal non-linear predictor for the process. Further, if

the optimil predictor is not unique, our method gives all the

predictors.

....
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Post History Future

O .Linear System Z)

a. Wiener Predictor for Goussion Processes

Post History Future

Z O,) ,. ,-, Booeon System z.. .

b. Booleon Predictor for 8inary and k-ory Processes

Figure 4.1: Analogy between Wizner predictor and

Boolean Predictor
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3. Our model is not restricted to stationary processes alone; it Is

applicable to some non-stationary processes also.

An additional feature of our model is that it gives zero-one

estimates of a zero-one process. Since z(t) is binary it is not

meaningful to have fractional estimates of z(t). For example, it is

meaningless to say 1(t) = 0.73 (though it is meaningful to say that the

probability of z(t) = 1 is 0.73 ).

The only restriction in our model, which does not appear in the

Wiener filter, is that the process is assumed to be Markov of a given

order n. A process is called Markov if the probability distribution of

z(t) given all the past history of the process depends only on a ffnite

past. In particular, z(t) is Markov of order n if

P[z(t)jz(1),z(2),...,z(t-1)] = Pfz(t)lz(t-n),z(t-n+1),...,z(t-1)]

Here P[.] denotes the probability of an event.

In this chapter we develop a general probabilistic model relatin,

z(t) to its past values. Based on this model, an expression is derived

for the likelihood function, and hence, for the maximum likelihood

estimates (MLE) of the model parameters. We show how the model is used

for optimum prediction and derive a formula for the totnl cost due to

prediction errors. Then we extend all results to the more general case

of k-ary processes. In this case, the process takes intei.er values from

0 through k-1. Finally, we show how the model can be used for paie

replacement.

b.
* .~.1 ~ - - *-
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In the analysis presented in this paper we make frequent use of

the properties of pseudo-Boolean functions. The essential elements of

the theory of such functions are, therefore, briefly reviewed in the

next section (adopted from [HaR68]). The material in the other sections

of this paper is original and, as far as is known to the author, has not

appeared anywhere in the published literature.
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4.2 BOOLEAN FUCTION3 - FUNQAENTALS

The definition of Boolean functions varies widely among authorj.

In an attempt to generalize the concepts, even the pioneers of this

theory, Rudeanu and Hammer, have changed the definition over tire (e.7.,

in (HaR68], end (ud741). In this thesis, we adopt the following

definiticn from [HaR68].

4.2.1 Definition : By a "Boolean function" f(xl,x 2,...,xn) of n

variables we mean a mapping
f:{O,11n->,,O,1]

i.e., a zero-one valued function of zero-one valued variables.

An example of a Boolean function is f(x1,x2 ) = x1 + x2 - ?xIy 2 .

The usual way to express a 2oolean function is by u ing the Boolean

operations (e.g., conjunction, disjunction, and negation). For rxaalpc,

the above function is usually written as

f(X1x 2 ) = x1x2 v x1i2

where ":" is the disjunction (inclusive OH) operator, bar indicates

negation, and conjunction is denoted by juxtaposition. The

transformation between the two representations is a result of' the

following equivalences:

I-x vx G[0,1]

x1 v x2  X1 + x2 - xlx 2  x, eo,

J 

t
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A notation which is commonly used in the literature on Boolean

f'unct ions is the following

X0ZIt 1= X

Where x0 is "x sup 2ero" (not x raised to the power zero). To avoid

confusion, we will use (xi to denote the 
ith power of a binary variable

x. Continuing with the notation, if X = x1,x 2, ....XnJ is a set of' n

binary variables and 1 '2 ... .in is the n digit binary representAtion of'

i, Oe. i _1~, then

i Sin

qi(X) = i=xilx212 .. xni

is called the ith fundamental product. For example, for n=3

q5 = xlx 2 x 3 1=XJ 2x3 and qo =X 1 X 2 x 3 =t1 R2R3

An important property of' fundpmental products is that 
Oqi(X)=l if

and only if X~i. Thus, the fundamental products are "mutually

exclusive", i.e.,

to i

kqi i~j

There are many ways of' representing a Boolean function. A few

example~s are given below:

I- xI- x2 + 2x~x2  (polynomial form)

1' XX (Disjunctive Form)

(x 1 V X2)(Rl v R2) (Conjunctive Form)

I~xJ~x2(Reed-Muller form)

1' + IR2 +OX 1R2 KI (Sum of' Products form)



Boolean Models Fage 4-r,
Boolean Functions

In our analysis, we use the sum of products form. Using 3h~nnon's

decomposition theorem, any Boolean function can be expressed in this

form as follows:

M() 2n-1
Z_ fiqi(X)
i=O

where, fi = f(XIX=i), i.e., f(X) when x1j=i, x2:i2 , ... , Xnin.

The concept of Booleen functions can be generalized to other

functions - not necessarily zero-one valued. Such functions are called

"pseudo-Boolean functions".

4.2.2 Definition : Let R be the field of real numbers; by 3

pseudo-Boolean function f we mean a mapping

f:1O,1} n --> R

i.e., a real valued function of bin3ry variables.

An example of pseudo-Foolean functions is the followirg function

f(x1'x2 ) = 0.5(xl)
3 + 3xl - 2(x7) 2

In fact, all functions (including Boolean functions) of binary variables

are pseudo-Boolean functions. Therefore, the adjective "pseudo-Boolc-n"

may be droppcd whenever it is clear from the context.

Again using Shannon's decompo.-ition theorem, ony function of

binary varlablos can be reduced to a "sum of products form":
n_

f(X) =.jfiqi(X)
i=O

For example,

f(X 1 'x 2 ) = - 0"5(xi) 3 + 3x 1x2 - 2(x2)2

For this function F : 1, f 1 -1, f2 0.;, ind f. : I., hence,
f 2 i

1'
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f(X 1,x2) = xRl2 + (-l)Rlx 2 +t O.5xli2 + 1.5xlx2

Similarly, x 2eX1 o O1R2 + 1i~x2 + Ox1i2 + exlx 2

Notice that when expressed in the sum of products form, every

function of binary variables becomes linear in each variable (i.e., each

variable appears only as its first power), although the function itself

is non-linear (due to the presence of product terms).

LUI
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4 DEVELOPMENT OF THE BOOLEAN M EL

Let Zji denote the set of i observations immediately preceding

z(), i.e., {z(j-i), z(J-i+1), ... , z(j-)}. Thus

Ztti = (z(1),z(2),...z(t-1)) denotes the complete past history of the

process. Let Pt = P[z(t)=1:z(1),z(2),...,z(t-1)] denote the probability

of z(t):1 given the past history of the process. The simplest binary

process is the so-called "Binary Wh i" (BWN) or Bernoulli

Process. It is defined as the sequence of independent identically

distributed binary random variables. The semi-random telegraph signal

described previously is a BWN. Also if we associate a time index to

successive Bernoulli trials, they will constitute . BWN. A P'BN crn also

be obtained by filtering and clipping a Gaussian white noise. A BWN

with parameter p will be denoted by BWN(p)

For a Markov process of order n, pt depends only on the past n

values Ztn:fz(t-n),z(t.n+1),...,z(t1)1. We can represent the most

general non-linear dependence of Pt on Ztn by saying that pt = hZtn),

where h is some non-linear function of Z such that O(< h (I. In the

sum of products form, we have

Pt = P~z(t)=11'tn - ( iiZn 4.11

i=O

where h = h(Ztn!Ztn=i)

= Value of h(Ztn) when z(t-n),... z(t-1) take vplt'es

oorrespondir.7 to the binary expansion of i.

and ql(Ztn) ith fundamental proJuct. of zt-n),...,z(t-1)

tn)

- ) ~ i .' ".. . . . . _ . .. . ... . , :u -:: a- t, .i3'_.+... .t ',::J - . .E e . . - - - -, "
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The equation for z(t) corresponding to this equation is

z(t) 2t I(*tqiZn 4.2)

where, ei(t) -BWN(hi).

By taking expectations of' both sides of equation (4.2) , it can be

shown to be equivalent to equation (*4.1). Notice that Zt. denotes the

"state" of the process. The process can be in any one of 2n states

corresponding to Z tni i=O,1,... 2 n-1* The distribution of the future
value z(t) in state i is Bernoulli with parameter h.

For example, the Boolean model of a second order Markov process is

+ e 3(t )z(t-2)z(t-1)
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4.4 LIKELIHOOD FUNCTIONt !AD PAAMETER JQNTIAiTo.

The proposed model (equation 4.1 or 4.2) has 2n  parameters

hohl,..,h2 n-1 . In this section we develop a likelihood function for

the observations, and find the expression for maximum likelihood

estimates of these parameters. To develop the result in the form of

Theorem 4.4.2, we need the following lemma.

4.4.1 Lemma [Function Lemmi] : Let f be a mapping f :R->R,

i.e., a real valued function of a real variable, and let

2 -1
P -E hiqi(X)

i=O

Then, f(p) 2=Then f~p = Z_ f(hi)qi(X)

i=O

Proof : Let p = h(X)

so that f(p) = f(h(X))

Since the right hand side of the above equation is a pseudo-Boolean

functioa, it can be written in a sum of products form:

f~h(X =c
f~h(X)) f(h(X:X~i))qi(X)

i:0

= fhi)qi(X)~i=O

[Q.E.P.]

__________________________________________________ b



Boolean Models Page 4-14
Parameter Estimation

Some examples of the use of the Function Lemma are given below.

p2 = _ hi 2qi(X)
i:O

= 1hi-qi(X)

i=O

1(1o ~g-p) = _ log(1-hi) qi(X)
i=O

4.4.2 Theorem (Estimation Theoreml : The maximum likelihood estimate of

hi based on N observations {z(1), z(2), ..., z(N)1 is given by

mlh------------- 0 ,i..2 n -
1

mio + mil

where miO = # of times the sequence Ztn=i is followed by z(t):O

and m i = # of times the sequence Ztn=i is followed by z(t)=:

Proof: Let H = {ho,hl, ... h2n_1 be the set of parameters.

Let, Pt P[z(t)=:1Zt,H] = hqi(Zt)

i=O

t - 1-Pt = PEz(t)=O!Ztn,H]

The above two equations for Pt and 5t can be combined as follows:

P[z(t)!Z tn,H] = P[z(t)=l:Ztn,H)z(t)Pcz(t):OlZtn,H) (t)

= p t ZMti(t)

Therefore,

Ptz(N),z(N-1),...,z(1):z(-n+l),z(-n+?),...,z(O),HI

= P[z(a)Iz(N-1),...,z(1),Z n,HIP[z(N_1)z(n_2),...,z(1),Z 1nH)...

.P[z( 1) nH ]

- *~*.

~i.
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T Plz(t):Ztn,H]

t=1

The above equation gives the likelihood that the N observations eare

from a model with parameter H = [ho,hl .h 2 n_,1 . Notice that we as6 l;me

the initial conditions z(-n+1),...,z(O) to be given (or to be assvT' ,

equal to zero). Only the parameters are to be estimated. The

likelihood function is

L(H) = 4 Zt)i(t)

ti=!1Pt (tp t)

taking the log- of the above equation ve cet the lol likelihood function

I(H) logL(H)}

N
r (z(t)1oE Pt + i(t) cy pt
t=1

Now using the Function Lemma,

N N 2 -
z(t)log Pt = ~t) (log h.)q (ztn )

t=l t=1 i:O

i:O t=1
~ 2n-l_

In 11 mlog( hi)

i:O

where m

t:1

# of times Ztn~i is followed by z(t):l

The last equality Is a result of the obervaticn that z(t)qi(7tn )

if and only if z(t):1, and 7tn:i. Siniarly,

i ~.- .-. i--. ---
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t=1 =O

Therefore, the log likelihood function is given by

1(H Im1 iog h i + m 10 log(1-h i)1
i=O

The maximum likelihood estimate of h.i is obtained by setting the first

derivative of the log likelihood function equal to zero, i.e.,

;h h. 1-h.

i mil

or h ------
1 ~io + Mii

[Q.EMDli
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4 MEASURES OF GOODNESS

In the case of Gaussian random variables it is common to define

the "best estimate" in the least-squares sense (LSE), i.e., 2 is the

best estimate of z if E[(z-2) 2] is minimum. In the case of binary

variables, the role is played by what we propose to call the "Least XOR

Estimate" (LXE), and the "Least Cost Estimate" (LCE).

3 Least XOR Estimate : Since both z and 2 can take only two values,

there are only 4 cases to be considered as shown below. Here e is used

to denote the error variable.

z 2 Error e

0 0 No 0

0 1 Yes 1

1 0 Yes 1

1 1 No 0

It is easy to see from the above table that e zoi (exclusive-or

of z and 2). The minimum number of error cases will be obtained if

E[zei) is minimum. The estimate i which minimizes E[ze.2 is the least

XOR estimate (also the least error estimate). it is easy to verify that

LXE is equivalent to LSE for binary variables, i.e., (7_i)2 = z% .

3.2 Least Cost Estimate : In formulating LXE, it wis assuned that both

kinds of error z=l,=O and z=O,2=1 are equally costly. In the sifnal

processing area, these two errors are called "ns' sicnl" and ",faIeC

S S



Boolean Models Page 4-18
Measures of Goodness

alarm" respectively. The cost of these two types of errors is generally

different. For example, in the case of weather prediction, the cost of

predicting a storm and not actually getting one is quite different from

that of getting an unpredicted storm. Similarly, in the case of memory

management, the cost of a page fault (miss signal) is not always the

same as the cost of keeping an unused page for some time (false alarm).

In such cases, therefore, we propose a generalized concept to be

called the "least cost estimate" or LCE. In this case, the cost

function C(z,i) is a given, not necesarily linear, function of z anl £.

Now by Shannon's decomposition theorem, we can express C as follows

C(z,i) =Co + cI + C2 z + c3z

Where c0 = C(O,O), c = C(O,1), c2 = C(I,0), c3 = C(1,1).

Here c2 and e are the costs of a miss signal and a false alarm

respectively. Without loss of generality, we can assume that a0=c3=0"

This is because

C(z,i) = (c0 + c3z} + {(c1-co)iI + (c2-c3)zZ }

The part within the first set of braces is independent of 1, and hence

the problem is equivalent to one with cost of miss signal c2 _c3, cost of

false alarm elcO, and zero cost for correct prediction.

* 
| +
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4.6 LREDCLTO

We now return to our original problem of finding the Boolean

function g, such that the estimate i(t) = g(Ztn) minimizes a given cost

function. The prediction method that we are going to describe is based

on the two theorems below.

4.6.1 Theorem (Prediction Theorem : Given the model relating z(t) to

Ztn

2n1z(t) = r

= L- ei(t)qi(Ztn)
i=O

the estimate i(t) which minimizes the expected value of cost funct ion

C(z(t),i(t)) for N observations is given by

(t) 2n -1
E &iqi(Ztn)

iO

where ei, i=O,l,...,2 n -1 are zero-one valued variables chos n as

follows

/ 1, if hi > r

<
< 0, if hi < r

d, if hi : r

cI

where r -------
cl 1 C2

and d represents a "don't cire" condition, i.e., either 0 or 1 would do

equally well.

4'

-~ I
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Proof : Let the desired estimate be

(t) (Ztn )

where g(Ztn) is a Boolean function of Ztn. Again, using the

Decomposition Theorem, we have

2 n -1
(%) T = / iqi(Ztn)

i=O

where e is a zero-one valued variable given by ei g(ZtnZtn=i)-

Since z(t) = ei(t)qi(Ztn)

i=0

the exclusion property of the fundamental products enables us to write

the cost function as follows:

C(z(t),i(t)) = Cl()( )  C z~t t

- 1 2( t +j c +c 2  ejt)7qj(2 n-1 2 n-1
= I _ i(t) iqi(Ztn) + c2 /._et)q(t )

i=O i=O

=T1{e1 i~t)el+e2ei(t) i~qm( Ztn)

i=O

Taking expectation, we have
2n-1

i :O

S C(hi, i)E[qi(Ztn)]

i=0

Thus we have decomposed the expected cost into 2n small components each

of which can be independently optimized. Consider the ith component

C(hi,6i):

C(hi,e I )  clhig i + c2hi i : c2 hi + i{c - (c + c2)hil

I + C2)hi
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The last expression is linear in e- it is minimum if each ei is chosen

as stated in the theorem.

[Q.E.D.]

Notice the similarity in expressions for z(t) and i(t). The

expression for (t) can be obtained from that for z(t) by replocing

ei(t) by el. In fact, ei is the best estimate of the binary white noise

ej(t) if the cost function is C(ei(t),6i).

4.6.2 Theorem [Total Cost Theoreml : The total cost of' imperfect

prediction for N observations by using the Prediction Theorem is

TC = 2 :

I min(c2mil, c-miO )

i=O
N

Proof TC
J=1

(c12 (J) + e2z(i)l(j))
j=1

NoN
to 1 z L (J) L. iOqi(Zjr)iJ= z j = i=0

g ei r (j)qif'Zjn)

i:O j=1

i:O :

L= Cimi0

J=1 t=o

Hence, TC C _.e~mO+egml
.i:O

II
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- min(cii, c2mil)
i :0

The last equality follows from the observation that 91 is a binary

variable, hence the sum c1gimi + ci I either cjmj0 or c2mjj. The

prediction theorem chooses e. in such a way that the coefficient of the

larger term is zero.

[Q.E.D.]
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4 TABULAR METHOD OF BINARY PRO E S PREDICTIO

This method is a result of combining the three theorems described

before, viz., the Estimation Theorem, the Prediction Theorem, and the

Total Cost Theorem. The method consists of the following steps t

1. Summarize the observed data in terms of frequency of occurrence of

various fundamental product terms. The summary is arranged in a

tabular form as shown in Table 4.1 . The table has 2n_1 rows and 5

columns. The columns are named Z, M, H, , and TC respectively.

2. The Z column consists of n subcolumns corresponding to n variables

z(t-n),z(t-n+1),...,z(t-1). The ith row in this column Is simply

3. The H column consists of 2 subcolumns corresponding to z(t)=O, and

z(t)=1 respectively. The entry in the ith row of the first

subcolumn is mio, i.e., the number of observations with z(t)=O ?nd

Ztn=i. Similarly, the entry in the second subcolumn is the number,

of observations with z(t)=l and Ztni"

4. The entries in the hi column are obtained from those in the M

column as follows

mil
mho + mil

entry In the z(t)=1 subeolumn

sum of entries In the z(t):1 and z(t):O subcolumns

5. The entries in the column are either 0, 1, or d according as h

is Icss than, vreater than, cr equal to the ratio r cl1(e I 4 e2 ).

"ip
- -- ---- -. -~ - .~. I9
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If in a particular row, both miO, and mil are zero, the & entry in

that row is d.

6. The entries in the TC column are calculated according to the Total

Cost Theorem, i.e., the ith entry is min(c2mii clmi0)"

7. Synthesize the Boolean function represented by the column. This

is the optimum predictor. In sum of product form the function isn 1

simply t iqi(Ztn)"

i:0
8. The goodness of fit is given by the total cost calculated by

summing up the TC column.

We now illustrate the method with an example.

4.7.1 Example : The data consists of 144 observations on a 4th order

binary process. The actual observations have not been included here,

instead, the frequency of occurrence of the various combinations is

presented in Table 4.2. The cost of a false alarm is twice that of a
2 2

miss signal, i.e., c1=2 and c2:1. The ratio r 2+i = i. The hi column

is constructed as usual. The entries in the column are I or 0

according as the entries in the hi column are greater or less than 2/3.

Two of the hi's are exactly equal to 2/3. Hence, the A entries in these

rows are "don't care" entries marked as d, and d2  respectively. The

predictor corresponding to d1d2 =O0 is

f(t ) =Z(t-)Z(t-3)Z(t-L)z(t-1) + z(t-4)z(t-3)z(t-?)z(t-1)

+ z(t-4)2(t-3)2(t-2)z(t-1) + z(t-4)z(t-3)z(t-2)Z(t-1)

+ z(t-4)z(t-3)z(t-2)z(t-1) + z(t-Z)z(t-3)z(t-2)z(t-1)

+ z(t-4)z(t-3)z(t-2)z(t-1)

* .*.~. *.*-1
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1 - z(t-1) - z(t-?) - z(t-4) + z(t-1)z(t-3) + 2z(t-1)z(t-4)

+ z(t-2)z(t-4) + 2z(t-3)z(t-4) - z(t-1)z(t-2)z(t-4)

- 3z(t-1)z(t-3)z(t-4) - 2z(t-2)z(t-3)z(t-4)

+ 3z(t-1)z(t-2)z(t-3)z(t-4)

Similar equations can be written for 3 other equally good predictors

corresponding to dld 2 :01 ' 10, 11. All these predictors give the same

total cost of 50.

i
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TABLE 4.1 Tabular Arrangement for Boolean Model

# of obsv. with

o~-n ... 0~-2 0~-)Z t = ~ ~ l hig ~

o 0 1 M1 i .

o0 . 1 0 M 20 M21 ..

o0 * 1 1 1130 'p3 l

1 . 2n-l,O t2 2n_~,l
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TAFLE 4.2 Fr~'quency Distribution for Data of' Example 4.7.1

0 0 0 0 1 9 0.90 1 2

0 0 0 1 8 2 0.20 0 2

o 0 1 0 3 8 0.73 1 6

0 0 1 1 7 1 0.13 01

0 1 0 0 3 2 0.110 0 2

0 1 0 1 9 7 0.144 0 7

0 1 1 0 2 14 0.67 d 4

0 1 1 1 6 0 0.00 0 0

1 0 0 0 5 3 0.38 0 3

1 0 0 1 1 2. C.89 1

1 0 1 0 2 9 0.82 1 14

1 0 1 1 0 7 1.00 1 0

1 1 0 0 2 8 0.80 1 14

1 1 0 1 7 5 0.42 0

1 1 1 0 1 2 0.67 d 2  2

1 1 1 1 3 9 0.75 1 6

Total Cost 50

- .f. U -------------- *-.-----Mika-----
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4.8 GENEHALIZATIQN TO K-ARY VARIABLES

In this section we generalize the analysis done so far to the case

where the process may take k values 0,1,...,k-1. To do this

generalization, we use the concept of Boolean functions extended for

k-ary variables. This concept is due to Rosenberg (HaR68, p. 301].

Let Bk = {0,I,...,k-1j. A Boolean function is now defined as a

mapping f : (Bk) n->Bk and a pseudo-Bcolean function as f : (Bk )n->R.

For any xGBcbc- , we define the so called "Lagrangean Development" xi (x sup

i) as :

k
xl=x(x-l) ... (x-i+1)(x-i-1) ... (x-k+l)

mapping Bk into B2 . For example, when k=3:

x =(x-1)(x-2) x -x(x-2) 2 x(x-1)

Notice that

(1 if x=i

\0 otherwise

Let i,i2,...,in be the k-ary expansion of i, and X =xi,x2 ,...xn)

then Xi = qi(X) = x1 il x2i2 ... xnin

= ith Fundamental product

Any pseudo-Boolean function has a Lagrangean development (sum of

products form) :

f(xl,...,Xn) = .f(i)X L.._ fiqt(X)
i=o i=O

NOW"4
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Again,

/ 1 if X=iqi(x) = <',

k 0 otherwise

Therefore, the fundamental products are mutually disjoint, i.e.,

/0 iij
qi(x)qj(X) = ,

kqi(X) i:j

So, the Function Lemma holds, i.e., if f is a real valued function of a

real variable, and

if p =
L_ hiqi (X)
i:O

then f(p) = f(hi)qi(X)
i=O

4.8.1 Fodel : The relationship between z(t) and Ztn in its most general

form is given by

z(t) = k .:l
L. ei(t)qi(Ztn)
i:O

where el(t) is a k. -ay whitLQ- I;i (sequence of independent identically

distributed random variables) with P[ei(t):u]=hiu. Hence,

Put = P[z(t)=uIZtn] = hiuqi (Ztn), u=0,1,...,k-1
i=0

There is an additional constraint, however, that

u Put I

.is constraint ip' ries that

' I
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t hju : = , , . , n- 1

U=O

With this model, all the results of the binary case, viz.,

Estimation theorem, Measures of goodness, Prediction theorem, and Total

Cost theorem, can be generalized to the k-ary case. These

generalizations are stated below. The proofs of the theorems, being

similar to the binary case, are given in Appendix C.

4.8.2 Estimation Theorem : The maximum likelihood estimates of h.

based on N observations (z(1),z(2),...,z(N)} are given by

miu

TZ m iu
u=O

where m.u = # of times Ztn-i is followed by z(t)=u.

.8. Measures of Goodness : In the case of k-ary variables the least

cost estimate 1(t) is obtained by minimizing a general cost function

C(z,£). The function can be expressed in the sum of products form as

follows :

C(z,f) = t uV u~v/uv z

u=O v=O

where Cuv = c(u,v) = cost of misprediction when z=u and i=v. It is

often easier to specify C as a k by k matrix whose (u+I,v+I)th element

is Cuv. A special case of the least cost estimate occurs when

C(z,2) I t.- zji£J
2 J=0

L _
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It is easy to verify that in this case,

(0 if u:v

uv = <:
kI otherwise

i.e., all errors cost the same. Thus, by minimizing this cost function,

one obtains the least number of errors. The estimate obtained could be

called "Least XOR Estimate", because of the form of the cost function.

In general, LXE is not the same as LSE except in the binary case.

4.8.4 Prediction Theorem: Given the model equation

z(t) = T el(t)qi(Ztn)

i=O

The estimate (t) which minimizes the expected value of the cost

function C(z(t),i(t)) is given by

-T_) = iqi(Ztn )

i=O

where , n - 1 are k-ary variables chosen as follows

e arg mnt cuvhiu
u=O

arg minT
v -- Cuvmiu
u=O

4.8.4.1 Corollary : The least XOR estimate (cuv=l, uiv) is given by

arF max miv

4.8.5 Total Cost Theorem : Given a set of N observations on z(t), the

total cost of imper.fect prediction by usir.. the Prediction Theor,m is

TC .Z Wt miu:!uv

i=O u=O

1k------- - .
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4.8.5.1 Corollary : The total cost in the case of LXE is given by

TC = N - T mQx miv

i=o

4.8.6 Tabul.ar Method : The method is very similar to that for the

binary case. The only addition is an MC column, which is obtained by

post-multiplying the M column by the C Matrix. We illustrate the

procedure with an example.

4.8.6.1 Example : Consider the problem of predicting a ternary process

z(t) of 2nd order. A total of 137 observed values of the process are

available. The data, summarized in tabular form, ar shown in Table L.3.

The cost function is

C(z(t),(t)) = Iz(t) i(t)I

Therefore, the cost matrix is

0 1 21I I
I I

C= 1 0 1
I I

2 1 0

The calculations are shown in the table. The MC column is obtained by

post-multiplying the M column by the C matrix. Notice from the table

that in the last row, two MC entries are equal. Therefore, the

corresponding a entry is do1, which stands for "don't care as long as it

is 0 or 1". The optimum regression function corresponding to d0 1=0 is

i(t) : zO(t-2)zO(t-1) + zO(t-2)z1 (t-1) + zO(t-?)z 2 (t-1)

+ 2z1(t-2)zO(t-1) + 2z'(t-2)z1(t-1) + 2z1(t-2)z2 (t-1)

zO(t-2) + z1(t-2)

- (z(t-2)) 2 + z(t-2) + 1

24 2!
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An equivalent, rather simple, expression fcr the above 2(t) is

i(t) = 1 +3 z(t-2) where +3 denotes "addition modulo 3".

A second predictor, corresponding to d0 1=1, can, similarly, be

written. The total cost in either case is 101.

Ak-
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TABLE 4.3 : Boolean Predictor for Data of Example 4.8.6.1

z(t-2) z(t-1) mio miI  m12  hio hi1  h12  MCo MC1 MC2 6i TCi

0 0 8 3 6 0.47 0.18 0.35 15 14 19 1 14

0 1 5 6 7 0.28 0.33 0.39 20 12 16 1 12

0 2 2 5 6 0.15 0.38 0.46 17 8 9 1 8

1 0 5 1 7 0.38 0.08 0.54 15 12 11 2 11

1 1 9 1 11 0.43 0.05 0.52 23 20 19 2 19

1 2 3 4 8 0.20 0.27 0.53 20 11 10 2 10

2 0 7 2 2 0.64 0.18 0.18 6 9 16 0 6

2 1 9 4 5 0.50 0.22 0.28 14 14 22 do1 "4

2 2 6 3 2 0.55 0.27 0.18 7 8 15 0 7

101

II
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4.9 ON MODEL ORDER DETERMINTION

In "ie theory that we have developed so far we have assumed that

the model order n is known. In practice, this may not always be troe.

In the case of Gaussian processes there are many criteria and tests

(e.g., see [Aka74]), that allow us to determine an optimal model order

from empirical data. The corresponding results fcr Boolean models are

yet to be developed. Some rudimentary ideas on this problem are

presented in this section.

It should be obvious that the prediction error (or the total cost

of predicticn) monotonically decreases as the model ordcr is increased.

A quantitative formruo, for the increase in error is given by the

following theorem.

4.9.1 Theorem : The increase in cost in going from a (n+1)st order

model to nth order model is given by:

2n-1
TC(n)-TC(n+I) [ min[ c2 (mil+mil), c1(mio+mi',)1

i=O
- min(c 2mil, clmiO) - min(c 2mi,1, clmir,) ]

where the m-values are for the (n+1)st order model, and i'=2n+i.

Proof : Let m' denote the m-values for thp nth order model. For

example,

m1 0 of times Ztn = i is followed by z(t)=1

# of times z(t-n-1)=O, Ztni is followed by z(t)=1

+ 0 of times z(t-n-1):1, Ztn=i is followcd by z(t):1

, . - -. ..L:



Boolean Models Page 4-36
Model Order Determination

of times Ztn+1 = i is followed by z(t)z1

+ # of times Ztn 1 = 2ni is followed by z(t)=1

=mil + mill

Similarly, m'lo = mio+mi,o

,n-l
Now TC(n) = -min(c2m'il, cm'iO)

i=O

and TC(n ) _min(c2mil, clmj0 )
i=O

= CZ [min(c 2mil, clmio) + min(c 2mill, clmiio))
i=O

Notice that in the last equation the upper limit of the summation is

2n-I instead of 2 n+l-1. The difference of the above two equations gives

the theorem as stated.

[Q.E.D.)

There are two implications of this theorem. Firstly, each

summation term is of the form "the minimum of sums minus the sum of

minima". Hence, each term is non-negative. This proves the statement

that the cost monotonically goes down. The second implication, which

becomes obvious from the proof, is that the m-values for the nth order

model can be obtained from those of the (n+l)st order model by summing

up values that are 2n apart. Thus, once the data has been summarized in

a tabular form for high enough n, all lower order models can be easily

calculated. An example is shown in Table 4.4. Here m2 1 for the 2nd

order model is obtained by adding m21 and m6 1 (6 = 2+2n, n=2) of the rd

order model and so on. Thus, starting from a large n, one can calculate

V.
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the total cost TC(n) for that and all lower order models. A plot of

TC(n) vs n will look similar to that shown in Figure 4.2a.

In choosing the model order, a conpromise must be made between the

amount of computation required for the model and the improvement

obtainable by the model. The complexity of the model is exponential,

i.e., o(2n). Hence, the net utility of an nth order model is TC(n)-V2n,

where a is some normalizing constant. The optimal order is obviously

the one that maximizes this utility (see Figure 4.2). Another fact that

should be pointed out in this regard is that as the model order

increases, the number of parameters to be estimated increases and,

hence, the precision (or confidence) cf parameter values may go down.

As at present, we do not have formulae for parameter confidence.
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Cost Computational Net
(Error) Complexity Utility

I Optimal order

n n n

Figure 4.2:- Determination of model order n.
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Table 4.4 : Calculation of the Total Cost TC(n) for Lower Order Modcls
01 = 2, 02 1 1, TCi  = m.n(clmi(, c2mil)

n=3 n=2 n:1 n:0

i mio mi, TC, i mio mil TCi  i mio il TCi  i mio mjl TCi

0 8 12 12 0 12 22 22 0 19 45 38 0 60 84 84

1 9 10 10 1 25 22 22 1 41 39 39 TC(0) =4

2 5 6 6 2 7 23 14 TC(1) 77

3 7 8 8 3 16 17 17

4 4 10 8 TC(2) = 75

5 16 12 12

6 2 17 4

7 9 9 9

TC(3) = 69

-- - - - - - - -- - - - - - - -,-- --- - -- - - - - - - -- - - - - - - -
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A stochastic process is called stationary if its probabilistic

behavior is independent of the time origin. In our Boolean model we

assumed P[z(t),Ztn] = h(Ztn) to be independent of time. For a

stationary process this is obviously a valid assumption. For a general

non-stationary process the model should be

Pztltn ] = hk't,Ztn) = L..hi(t)qi(Ztn)
i=0

i.e., the model parameters are functions of time. We do not know how to

estimate these time varying parameters. Nor do we have any tests for

stationarity (similar to the ACF going to zero for continuous

processes). However, what we do know is that the time-independent

Boolean model applies also to the so called "Homogeneous non-stationary"

processes. A non-stationary process is called homogeneous if its dth

difference is stationary for some d. Recall that in the case of

continuous processes ARIMA rather than ARMA models are used to model

such homogeneous processes. The following theorem proves the above

statement.

Theorem : If the dth difference of a k-ary process z(t) follows an nth

order time-independent Boolean equation then the process Itself follows

a (d+n)th order time-independent equation.

Proof : Consider the Ist difference process y(t)

y() z(t) - z(t-1)
So that t y(J) z(t)-z(O)

J21
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Hence, P~z(t):Z tn.l ]  P~z(t)lz(t-n-1), z(t-n),...,z(t-)]
P z O +t Nn -. t 2

- ~ P (O ±ycjn:Z(O)+V 4-yjz(O)+) Jy(j)
j=1 j=1 j=1

J=1

" prv(tH 7Z(rlt fL
= P~~t~l(O)+ y(j}, y(t-n), y(t-n+l), ..., y~t-!)j

J=1

" Pfy(t):y(t-n), y(t-n+l), ..., y(t-1)]

" Independent of time if y(t) is nth order

Thus we see that if the first difference y(t) has r~th order

time-independent Boolean model, then z(t) has (n+l1)st order

time-independent model. By taking successive difference, the theorem

for dth difference follows.

[Q.E.D.]

The implication of this theorem is that we can use the thecry

developed so far for our page refergnce process whose Ist difference was

shown to be stationary in the last chapter.

4a--
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4.11 PAGE REPLACEMENT USING THE BOLgAN MODL

There are two ways of using the Boolean model for page

replacement. The first is simply to use the model to predict z(t) from

the knowledge of z(t-1), ..., z(t-n). In this case, one must choose as

the modeling interval T = R/U, the ratio of replacement and usage costs.

As was shown in the last chapter, the cost criterion in this case 4s

least-squares. This method is straightforward and we do not develop it

any further here.

An alternative method arises from the fact that with the Boolean

model we are not restricted to the least-squares cost criterion. Hence,

we can design a page replacement policy without nny restriction on T.

In this section we develop such a policy. The policy is a realizable

version of a theoretically optimal, but unrealizable, policy called VMIN

[PrF76]. In order to see the optimality of VMIN, consider a particular

page. Without loss of generality, we can assume that the modelin7

interval T is unity. Supposing we know the complete page reference

process (past as well as future), let s be the length of time for which

the page is not referenced following t, i.e., z(t), z(t+1),..., z(t+s-1)

are all zero and z(t+s) is 1.

Let d(t) Decision to remove the page at time t.

( 1 ) page is removed
= <i

0 => page is kept in the main memory

The cost of the decision d(t) over the interval (t, t+s) is

C = Rd(t) + sUd(t) = sU + (R-sU)d(t)

I,
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Since the cost is linear in d(t), the optimal decision is d(t):1 iff

R-sU < 0, i.e., d(t)=1 iff s > -

U.

Thus the optimal policy is to keep the page if it is going to be

referenced in the next R/U interval. This is the VMIN policy. However,

this is unrealizable because it uses both past and future information.

A realizable version that uses only past information can be derived as

follows.

Since the future is unknown, the "forward recurrence time" s is a

random variable and the expected cost E[C] = Rd(t) + Ud(t)E~s is to be

minimized. The optimal decision based on the past information is,

therefore, to choose d(t)=1 iff E[s] is greater thin R/U. The

distribution of s, and hence its expected value can be derived from the

Boolean model of the process as described by the following two theorems.

4.11.1 Theorem* : The "reverse cumulative distribution" (1-tumulativc

distribution) of s is given by

riu Pfs>ulZtn=i]

- '=' h2Ji

• In this chapter we use the convention that whonever 4 appcars in a

subscript, the expression upto i is evaluated modulo 2n . Pnythir

following i is vimply another subscript. Thus riu is "i sub i comma u"I

whereas, h3 i is "h sub (3 times i modulo 2 n)",. For examp]", for n=2,

i=3, h3i:h9 =hl "
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Proof _.. P s>O:Ztnil

= P[z(t)=OlZtnil

hi

r iu = Pls>u!Ztn=i]

" P[z(t+u):O, z(t+u-1)O, ... , z(t)=O:Ztn~i]

" P[z(t+u)=OIZtn=i,z(t)=O,...,z(tu1)zO]

P[z(t-u-1)=O,...,z(t)=OIZ tn=i]

" P[z(t+u)=Olzu+t,n=2i]r,uI

=h ri ,u-1
2 Ui

The above equation gives a recursive expression for riu" By applying

the recursion for successively decreasing value of u, and using the

initial condition rio we get the theorem as stated.

(Q.E.D.]

4~.11.1.1 Corollary :p iu =PIS=u!Ztn~i) h ui ::

Proof: Piu *riul - riu h WE h~

4.11.2 Theorem Let si = E(s!Ztn=i). Then, si  is given by the

following recursive equation:

Si  = hi(1+s2i) i=0,I,...,2 n - 1

00

and S 0 :
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Proof s i  Els5Ztn:i)

- u uPiuu=O

u(ri,u-1 - riu)
u=O

(ro-ril) + 2(ril-ri2 ) + 3(ri2-ri3 ) +

rio + rjl + ri2 +

?I i + ri52i + 5i02i041 + ...

hi (1 + 2i + f2if4i + )

= !. (1 + s)2i

By substituting i=O, in the above equation we get

s 0 %0 (1+sO)

ho
or s

Alternatively, one can derive an expression for s fro r

LuP[s=u:Ztn=O]. The result is the same as above.
u:O [Q.E.D.]

Using theorem 4.11.2 one can get an expression for all sit

i=0,1,2,...,2n-I in terms of hi. However, one must follow a particular

order. After calculating si for i=v, calculate si  for i=v/2 and

2n-1 +v/2. For example, for n=2 the following expressions are obtained.

ho moo
SO = -- - ---

h0  m0 1

12 m20 m oo+in0 182  -------) -------) = -
2 f 2( + s4 5 ( 1 + ' h 0 = m 2 0 + m 2 1 m 0 1
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h2 mlO m20(moo+m0l )

1 = R1(1+s2) = 1 (1 --- ( ------------)
h0  10+M l m 1(m20+m2 1)

h2 m30 m2 0(m00 +m01 )
3 = 3(1+s 6 ) = 3(1+s2) +3--- -) ( --- -)h0 m30+m31 1+o(m 20+m2 1)

Thus, using the<estimated value of the forward recurrence time for

the current state, one can decide whether to replace a page or not.

This version of the "VMIN" algorithm, although realizable, is too

expensive to implement in practice. This is because for an nth order

model 2
n+1 registers are required to hold m-values. This number is

prohibitively large. Even for n=2, eight registers are required for

each page. To manage a page of 1048 words, using eight registers is not

economical. Therefore, at the present time we do not discuss

implementation aspects of the algorithms developed in this chapter.

However, with rapidly advancing memory technology it is quite possible

that pages of future will be much bigger and eight registers per page

would then not be an expensive proposition. If that happens, it might

be interesting to do empirical analysis of page reference process 3nd

develop a Boolean model of it.

~~,I
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.6Z CqOLUSION

In this chapie" we have proposed a direct approach to modelin,

estimation, and prediction of a k-ary process. The process is modeled

as the output of a Boolean system driven by a set of k-ary white noises.

The model makes use of the special properties of pseudo-Boolan

functions in sum of products form. An expression for the likelihood

function has been developed. Using this expression a formula for

calculating the maximum likelihood estimate of the model parameters has

been derived. A method of finding the optimal non-linear predictor h:s

been developed. The method makes use of the :ample frequency

distributions of' the fundamental products.

Two different ways of' designing a memory management policies bsscd

on the Boolean model have been presented. The algorithms, althnu-h

physicaly realizable, are not economical enough for practical

implementation at the current state of technology. However, the

research reported here is valuable from the control-theoretic point of

view for applic3tion to other systems.

In the case of Gaussian variables, the Joint probability

distribution of n variables is completely specified by specifyin, thr

mean and covnriance matrix. Therefore, while analyzing Gaussinn

processes, we summarize the data in terms of the autccorrelnticn

function. In the case of binary varinbles, we find that autoeorrelitic-n

has no importance. Instead, tho rolc is played by nth orcir ,rcmr-nt, -
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the expected values of fundamental product terms. Thus, whereas the

sufficient statistic' of a sample of n Gaussian variables has n(n + 1)/2

terms (n means, n(n-1)/2 variances), that of n binary variables has 2n-1

(kn-1 in the k-ary case) terms.

We have partly resolved the question of "representation". In the

case of Gaussian processes, the representation theorem [Ast7O] states

that every stationary stochastic process with rational spectral density

can be represented as the output of a linear system driven by white

noise. In this chapter, we have shown that any stationary finite order

Markov process can be represented as the output of a Boolean system

driven by a set of k-ary noises.

The Boolean approach to the analysis of k-ary process parallels to

that conventionally used for Gaussian processes. However, as this is

the first time that this approach has been taken, many issues remain to

be resolved. In particular, the problem of order determination needs

further research. Nevertheless, some of the results obtained are more

general than those known for Gaussian processes. For example, our model

gives the optimal non-linear predictor for any given linear or

non-linear cost function, whereas most of the literature on Gaussian

processes deals with the optimal linear predictor for the least-squares

cost function.

------------------------------------------------
* The sufficient statistic is the minimal set of statistical summaries
that contains all the useful information in the sample data.

9'k
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5,1 SUMMARY OF RESULT

Most resource management problems are basically prediction

problems. Therefore, we advocate the use of modern stochastic control

theory to formulate operating systems resource management policies. In

this thesis, we have proposed a general approach to the prediction of

resource demands of a program based on its past behavior.

We exemplified the approach by applying it to the problems of CPU

management and memory management. One interesting outcome of the

research reported here is that our control-theoretic approach also

provides an explanation for many previously described policies that are

based on completely non-control-theoretic principles.

In the case of CPU management, it was shown that the successive

CPU demands of a program constitute a stationary white noise process.

Therefore, the best predictor for the future demand is the current mean

value. Several different schemes for adaptively predicting the demand

were proposed. An adaptive scheduling algorithm called SPRPT was

described. It turns out that Dijkstra's "T.H.E." operating system uses

a scheme similar to one of the proposed ones. Thus, we also hsve a

control-theoretic derivation and explanation of T.H.E.'s CPU manaaement

policy.

In the case of memory management, we started with a very simple

stochastic process model and still obtained significnt results. Wr

showed that the cost of memory minagcment is proportional to the square

*1
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of the prediction error. Empir'ical anplyjis showed that the process is

non-stationary and that an ARIMA(1,1,1) model is appropriate. A new

page replacement algorithm callpd "ARIMA" was, therefore, proposed. The

algorithm is not only easy to implement, it also unifies many other

algorithms previously cited in the literature. In particular, Working

Set and the independent Reference Models were shown to be boundary cases

of the algorithm proposed in this thesis.

The memory management process is a binary process. The absence of

suitable techniques for prediction of such processes led us to devElop

new techniques for modeling, estimation and prediction of binary

processes. We later extended these techniques to k-nry procrsses also.

Our approach was to model these processes as the output cf a Poolan

system. This "Boolean approach" allowed us to find the optima)

non-linear predictor for the process under any eivcn non -linear cost

function. The model was shown to be applicable to a subclass of

non-stationary processes also. However, vhen applied to the memory

management problem, the resulting alvorithm, thou-h optimal, is rather

expensive to implement for currently us'd p3ge si.zes. Nevertheless, the

research reported here is important from the control-theoretic viewpoint

for aiplication to other systems.

if
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5.2 DIRECTIONS FOR FUTURE RESEARCH

There are many avenues along which the research reported in this

thesis can be extended. The first possibility is to investigate the

problem of joint management of CPU and memory. In this thesis, CPU and

memory demands have been modeled as independent processes. Strictly

speaking this is not true; the CPU demand is affected by the memory

policy. For example, a bad memory policy may result in frequent page

faults causing tasks to be descheduled prematurely.

As far as the analysis of binary or k-ary processes is concerned,

there are many issues that need to be resolved. In particulpr, the

problem of order determination needs further research. Tests for

stationarity and models for non-stationary k-ary processes should be

developed. The possibility of using less expensive, though suboptimal,

predictors should be investigated. This is particularly desirable for

application to memory management.

Tne control-theoretic approach can be extended to the management

of other resources, e.g., disks. The disk scheduling policy can be

optimized if the disk demand behavior of programs is predicted in

advance.

The approach can also be used for the modeling of other systems.

For example, in a database, the record access patterns can be modeled as

a stochastic process and its prediction uscd to determine the optimal

organization and, hence, the reor~anizaticn points of the database. In
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the case of computer networks, the arrival patterns of packets at a node

can be modeled as a binary stochastic process. The forecpst of future

packet arrivals can then be used for flow control or to avoid congestion

in the network.

The essence of our philosophy in this thesis is that

control-theorists have made good use of computers to develop better and

faster modeling, estimation and prediction techniques. It is now time

for computer scientists to use these techniques to develop better and

faster computer systems.



APPENDIX A: A PRIMER ON ARIMA MODELS

A stochastic process is a sequence of random variables, say, z(1),

z(2),...,z(t),.... The simplest stochastic process is white noise

e(t). It has the property that any two elements e(t) and e(t+k) of the

process are not correlated. The process in which only consecutive

elements, i.e., z(t) and z(t+1), t=1,2,... are correlated is

represented by a moving average model of order I ( MA(1) ):

z(t) = w + e(t) - ble(t_1)

Here the expression "e(t) - ble(t-1)" represents a moving average of the

white noise process c(t), and w is a constant used to balance the mean

on the two sides of the equation. A moving average process of order q

(MA(q) ) is similarly represented by

z(t) = w + e(t) - ble(t_1) - b2e(t-2) . ... -bqe(t-q)

On the other hand the process represented by

z(t) - alz(t-1) - a2 z(t-l) - -.. -apz(t-p) = w + e(t)

is called an autoregressive process of order p ( AR(p) ). The name

clearly indicates that the process z(t) depends (regresses) on its p

past values. A process which has both AR and MA parts is called an

"ARMA" process. The ARMA(p,q) model is given by the following equation:

z(t)-alz(t-1)-...-apz(t-p) = v,e(t)-ble(t-1)-...-bqe(t-q)

For a process z(t) its dth difference is defined as follows:

Dz(t) = z(t) - z(t-l)

D2z(t) = Dz(t) - Dz(t-1)

Ddz(t) Dd-lz(t) - Dd-lz(t.1)
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Now if y(t) = Ddz(t) is the dth difference process of z(t), then z(t) is

called the dth integrated process of y(t). Thus if y(t) is shown to be

an ARMA(p,q) process, z(t) is said to be an autorcressive integrated

moving average process of order p,d,q, i.e., ARIMA(p,d,q). Using the

backward shift operator B, Bz(t) = z(t-1), the ARIMA(p,d,q) model can be

written as

(1-alB_..._apBP)(1-B)dz(t) = w + (l-biB.....bqBq)e(t)

Further details on ARIMA models are viven in [BoJ7O).

I.- '. . . . . . .
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APPENDIXa

PROOFS OF CPU SCHEDULING THEOREMS

B.1 Proof of Theorem 2.3.1: Let us assume that the tasks To, ..- , Tn1

have been so numbered that

to < tI < ... < tn I

This assumption of numbering does not cause any loss of

generality. If the tasks are not in the required order, we sort them in

the required order. Let k' denote index of the k task in the sorted

sequence, then, to,,tj,,...,tn1, form the required ordered sequence.

The rest of the proof can now be carried our with non-primed subscripts.

Also notice that we assume an increasing sequence rather than

non-decreasing one. Thus we are excluding the possibility of two tkIs

being equal. This is only to keep the proof simple. If equality is

allowed, the optimal sequence is no longer unique. However, the MFT is

same for all optimal sequences, and hence the final cost expression

remains the same.

The minimum MFT with known tY's is

MFT0 = n (n-i)ti

i=O

Now, if due to predicion error, it h task T is placed in kith position

. M.W 
-
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then

MFTP 5l(i-ki)ti
i:~O

So that the expected increase in MFT is

C E[MFT p]_lHIFTo

L (i-I)t i  where : E(ki]
i=O

It only remaine to find an expression for E[k 1 ] "

OD

Since, E~ki] =I E~ki:ti=u]fi(u)du

We need only show that

E[kifti=uJ Fju)

=~ 0

The easiest way to show this for any n and i is by the methcd cf

induction. This is obviously true for n=1. Assuming that it is tr,-:e

for n, we now show that it is true for n+1. For a set of n tasks, Ict

P[kiv:vti u]=Pvn. Now if a (n+1)st task Tn is added, the task Ti will

change position, at most, by 1. Therefore,

pv,n+1 2 Pvn P[tn>u] + Pv-l,n Pltn. uU

M Pvn{1-Fn(u)} - Pv-l,n Fn(U)

The boundary conditions are

Po,n+1 = POn[1-Fn(u)] and Pn,n+1 = Pn-l,n Fn(u)

Therefore, the expected position of Ti amonr n+1 tasks is

:1
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E[kilti=u,n+l tasks] = vPvn+l
v=O

" npn,n l + VPvnpl-F(u)] + vPv.l,n Fn(u)
v~ 1

= nn-l,n Fn(u) + [1-Fn(u)]L - vPvn + Fn(U)_LvPv.1 ,n

v=l v=1

" [1-Fn(u)]E[ki:fi=u,n tasks] + Fn(u)fl+E[kifi~u,n tasks))

" Fn(u) + E[ki:ti=u,n tasks]

- Fj(u)
=0o.E.D1

B.2 Prcof of Theorem 2.1.2: Again, as in theorem 2.3.1 we assume that
tk

the tasks T1 ,...,Tn I have been so numbered that -- form an increasing

sequence, i.e.,

t1 t2 tn-1

Let the predicted value tp be such that the optimal positinn of

task T0 according to SPT is after task i, i.e.,

ti tp ti+ 1

wi WoW i+1

whereas the real value t o is such that the optimal position of the task

To would t- J, i.e.,
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t j to tj+1

w w0 wj*1

Hence XnFT with To after task Ti is given by:

MWFTP I of
n n( wofp + Lwkfk)

k:1

where fk finishing time of task k with To after Ti
k

S t m , 1<k<.i
m=<

k
to+ t tm, i+l< k< n-1

M=1

and fp =to+ m tm
m=1

Notice that we use t (and not tp) in the above :xFrcs-iH for fk Tfi>

is because the prediction error results only in :nisplaccment of the

task. When executed it still takes only to.

Similarly, MWFT with TO after task Tj is given by:

MWFT0 = (wofo+ /W f'k)

k:1

where f'k finishing time of task Tk with T after T.

{ tim, 1<kj

i n

to j+1<k<n-1

mit 11
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and fo = to+ - tm
m=1

The increase in MWFT due to prediction error is given by

c MWFT pMWFT°

=[wo(fp-fo ) + kWk(fk-f'k))
k= I

Now there are two possible cases: i>j or J>i.

Case I : i>j The predicted position is higher than the real position.

In this case,

/ 0 1e1ij

f k- f k <: -to j+1< ki

!0 i+l<k<n-I

and f -f tk
p- 0 / tk

k=j+1

Therefore,

0I : [wo  t -o k +O
n i Wo tk+ 0 .+ toWk 0

k=j+l k=j+l

nk:J+1

n k + -owk
k=j+1 k=j+l

: (Wotk-toWk)

n kzj+I

kel

where I=[J+1,i]

5: i@ 1
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Case II J>i The predicted pctsiion is lciS

In this case,

/0 1<k~i

fk-k i+lkj

0 J+l<k<n-1

and f - k+t k

Therefore,

e n *[ -Wo tk + to Wk

kzi+1 k=i+1

214
nL- (-wot k+t owk)n t=i+1

n L. Wotk-toWk:

ke1

where I=[i+1,j]

The two cases can now be combined together by redefininT I Ps

follows:

C _! 'wotk toWk!

tk
where I {k :k

wii Ij
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( , p W ) i p>t o
0 0

and J = <
tp to

)if to>t
o 0 

(Q.E.D.]

B Proof of Corollary 23.2.1: The corollary follows straghtforwardly

from theorem 2.3.2 by substituting Wo=wp:1 " (It can also be obtained

from theorem 2.3.1 by substituting impulse functions for probability

density functions of ti).

[Q.E.D]

B.4 Proof of Corollary 2.3.2.2 : Substituting Wo=wk=1 in the

expression for cI in the ibove proof we aet

el = 1
1 t (tk-to)

1n1 )[ tk -to(t-J)]

k=j+l

n L[ tkT -to(i-j)]
k=j+1

1 i(i+1) J(J+1)
n T( 2 -- - to(i-J)]

I[(12+i-j2-j)T 2 
- 2to(ilj)T ]2nT
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Since iT < tp < (i.1)T, tp (1+i1)T

Similarly, t 1
0 E(J+ )T

Therefore,

(t p-to)2 B [(i-J)T]2

= (12+j2-2ij)T2

= (12+i-j 2-j+2j 2-i+j-2ij)T 2

= (12+i-j2-j)T2 - 2(j+1

= 2nTce

i.e.,

I 2

Similarly for c

[O.E.D.A
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PROOFS OF THEOREMS 2N K-AROS

Proof of Estimation Theorem : The proof is essentially similar to the

binary case except that now we have to maximize the likelihood function

under kn constraints:
k-i

L. hiu = ,1,...,k 
-

u=O

Let ptu P[z(t)=u:Ztn,H] = hiuqi(Ztn) u=0,1,...,k-1

i=O

The above k equations can be combined into one as follows

Pfz(t),ZtnH] = P(z(t)=OZtnHJ ' Prz(t):UZtnH )

... Pfz(t)=k-liZ tniz k-I(t)

jptu zU(t)
u=O

where zU(t) is the uth Lagrangean function of z(t).

The likelihood function for N observations is given by

L(H) = P(z(N),z(N-1),...,z(1):z(-n+1),...,z(O),H]

P[z(N)lz(N-1),...,z(1),Z lnHIp~z(N_1)z(t,_2),...,z(1),Zn,H] ...

•..P(z(1),Zln,H]

H Plz(t)fZtn,H)
t:1

C,..
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-ii iPtu
tW U=O

Again as in the case of binary processes, we assume that the initial

conditions z(-n+I),. .. ,z(O) are given (or are assumed equal to zero),

and only the parameters are to be estimated. The log likelihood

function is

1(IH) logtL(H))

t tI i zut)logp tu
t:I U=O

Now, using the Function Lemma we have,

logP~ p 1I og(hiu) qi(Ztn)
i=O

H~ence,

- z uo(t~) , o~i U ) q (Ztn)

Wi O :O

nt
The lastg~ equlit ts acut of tefcn htte)aniyz tq(

ittn

of'~~~~~ times Z n s olwd yzt
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is 1 if and only if z(t)zu, and Ztn=i" The maximum likelihood estimates

of the parameters are obtained by maximizing 1(H) under the constraints

hiu I i=0,1,...,kn- 1

uZO

We use the method of Lagrange multipliers for constrained maximization.

The modified objective function is

11(H) =k
Miulog(hiu) + wi{ - / hiu }

i=0 uOO i=0 u=O

+ k I miulg(hiu)-Wihiu

i=O i=O u:O

Here wi are Lagarange multipliers. The necessary conditions for

maximization are

dl' miu

dhiu h - wi 0 , i=O,l,...,k
n - I'  u=O,1,...,k-1

iU iu

and hiu 1 t=0,1,...,k n -1

u=O
miu

The first equation above implies that hiu _w. The second equation
i!

implies that

L u =i or wi miu
iU=O u=-O

Therefore, the desired MLE of the parameters is

miuh iu Z I i=O,1,t ,kn ' 1 , uC0,1, .,k-1

uZO (Q.E.D. ]

- --. .
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Proof of Predictioq Theorem : Let the desired estimate be

2(t) = g(Ztn )

where g is a Poolean function of Ztn. Again,

using the Lagrangean development of g we have,

kn=1(t) 1 g_ iq i(Ztn
)

i=0

where ei is a k-ary variable given by e = g(Ztn!Ztni).

Applying the Function Lemma to the model and the predictor equation we

have

zU(t) = e()qi(Ztn)

i=0

v(t) = qi(Ztn)

i=O

and, therefore,

C(z(t)42(t)) = Cuv V(t)zU(t)

v=O u=O

n I 't f t~ vu,6e(t)qi(Z.n

i=O v=O u=O

or E[C(7(t),i(t))] = k._cuvhu

1=0 v=O u=O

= E[qi(Z td ) - -cuvhiu

i=O v=O u=0

The cost function is linear in . Obviously, should be so choson

' a

-...-
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that the 91 that has the smallest coefficient is one (all other ev's

will then automatically become zero), i.e.,

ei arg min cuvhiu

u=O

NOW, if hiu is determined according to the Estimation Theorem, then hiu

is proportional to miu. Hence, the above formula for i is equivalent

to that stated in the theorem.

[Q.E.D.]

Proof of Corollary 4.8.4.1 : In this case, cuv 1 iff uv. Hence,

k-I

E cuvmiu = -Miv + tmiu
u=O u=O

Hence, the v that maximizes miv also minimizes the left hand side of the

above equation and hence the cost function.

[Q.E.D.]

Proof of Total Cost Th rem

TC = C(z(t),z(t))
t=1

- L~ L u(t)v(t)
_ uvZ

t=1 v=O u:O

S . Cuv zu  i  Zt n )

t:1 i=O v:O u:O

i=O v=O u=O

V°-'.
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= ) TCi
i=O

where IC. vtCuv i iu
v=O u=O

=-- i L- Cuvmiu
V=O usO

min c M%, t- uviu
u=O

The last equality is valid because e. is chosen according to thE

Prediction Theorem.

Hence, TC =Zlmintcuvmiu

L .F-:.D.

Prof orollary 4.8.5.1 This corollary follows straightfzrwardly

from the total cost theorem by substituting c U= iff uiv.

[QA...]
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