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2. Using identification techniques and empirical data, identify
a suitable model structure for the process* and estimate
typical values of model parameters.

3. Based on the model, formulate a prediction strategy for the
stochastic process, and hence a resource management policy.

The policy so obtained is dynamic in the sense that it varies the alloca-
tion of the system resource to a user job depending upon the recent past
behavior of the job. It, thus, provides the run time optimization not
possible with the queueing theory approach. Also, notice that the
individuality of the job is fully exploited. The key step in the

approach is the formulation of the stochastic process model in such a way
that the allocation problem reduces to a prediction problem. We exemplify
this approach by formulating control-theoretic policies for CPU schedluing
and page replacement. Policies for allocation of other shared resources
(e.g., disks) can be, similarly, formulated.

*The term process is used here exclusively in the control-theoretic
sense of stochastic process. To avoid confusion, the term task is
used to denote computer processes e.g., we say "ready tasks" instead
of "ready processes."
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SYNORSIS

This thesis proposes the application of control theory to the
dynamic optimization of computer systems performance. Until now,
queueing theory has been extensively used in the evaluation and modelirg
of computer systems. It is a good design and static analysis tool.
However, it provides little run time guidance. For dynamic (run time)
optimization we need to exploit modern control theoretic techniques such
as state space models, stochastic filtering and estimation, time series
analysis, etc. In this thesis, a general control theoretic approach is
proposed for the formulation of operating systems resource management
policies. The approach is exemplified by formulating policies for CPU

and memory management .

The prcblem of CPU management is that of deciding which task from
among a set of ready tasks should be run next. The main protlem
encountered in the practical implementation of theoretically optimal
algorithms is that the service-time requirements of tasks are unknowr.
The prcposed scluticn is to model the CPU demand as a stochastic
process, and to predict the future demands of a.job from its past
behavior. Several analytical resulils concerning the effect of
prediction errors are derived. An empirical study of program behavior
is made to find a suitable predictor. Several different models arc
compared. Finally, it is shown that a zeroth order autoregressive
moving averare model is the most appropriate one. Based on this
observation an adaptive scheduling alrorithm called "SPRPT" (Shortest

Predicted Remaining Processing Time) is proposed.
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The problem of memcry management is alsc formulated as the prcoblem
of vpredicting future page references from past program behavior. Using
a zero-one stochastic process model for page references, it is shown
that the process is non-staticnary. Empirical analysis is presented to
show that the page reference pattern can be satisfactorily modeled by an
autoregressive integrated moving average model of order 1,1,1. A two
stage exponential predictor is derived for the model. Based on this
predictor a new algorithm called "ARIMA Page Replacement Algorithm" is
proposed. This algorithm is shown to be easy to implement. It is shown
that many conventional page replacement algorithms, including Working
Set, are merely boundary cases of the ARIMA algorithm. The conditicns
under which these conventional algorithms a2re optimal are described.
The limitations of the formulation and possible directions for future

extensions are also discussed.

The ARIMA model does not take into account the fact that a binary
process takes only two values, 0 or 1. This discrepancy is removed by
developing Boolean models for such processes. It is shown that if a
binary process 1is Markov of a finite known order, it can be modeled as
the output of a Boolean (switching) system driven by a set of binary
white noises. Modeling, estimation, and prediction of the process using
the Boolean model is described. A method is developed for optimal
non-linear prediction under any given non-linear cost criterion. All
the results are then generalized to k-ary processes, i.e., processes
which take integer values between 0 and k-1. Finally, the applicaticn

of the model to the problem of memory management is described.
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Control-theoretic view

Conventionally an operating system is defined as the set of
computer program modules which control the allocation and use of
equipment resources such as the central processing unit (CPU), main
memory, secondary storage, I1/0 devices and files (MaD74]. These
programs resolve conflicts, attempt to optimize performance, and
interface between the user program and computer resources (hardware and

system software).

1.1 CONTROL-THEORETIC VIEW OF AN OPERATING SYSTEM

For a control theorist, an operating system is a set of
controllers which exercise control over the allocation of some system
resource. The goal of each controller is to optimize system performance

while operating within the constraints of resocurce availability.

Figure 1.1 shows some of the components of an operating system.
The Controllers are represented by circles, The "load controller”
contrcls the number of jobs allowed to log in. The job controller (job
scheduler, or high level dispatcher; controls the transfer of jobs from
the "submitted" queue to the "ready" queue. This decision is based upon
the availability of resources 1like memory, magtapes, etc. The CPU
controller (task dispatcher, or low level scheduler) controls the
allocation of the CPU. It selects a task from the set of ready tasks
and allows it to run. The paging controller (page replacement
algorithm, or memory management algorithm) controls the transfer of

pages from virtual memory (disk or drum) to primary memory, and so on.
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Control-theoretic view

The control components of an operating system are not much
different from those of other systems, except probably, in that they are
non-mechanical. Obviously, there is much that can be gained from
control theory in the design and modeling of these components.
Unfortunately, very little control theory has been used for this purpose
so far. Compared with the highly developed theory of.control systems,

most control algorithms used in operating systems today are "primitive".

1.2 QUEUEING-THEQRETIC VIEW OF AN OPERATING SYSTEM

g

Most models of computer systems used today are queueing-thecretic.
From a queueing-theoretic viewpoint, each controller of the operating
system is a server. Thus, an operating system is a queueing network.
One very popular queueing model, called "Central Server Model", is shown
in Figure 1.2. 1In this figure, circles represent servers and rectangles
indicate the locaticn of queues. Such queueing models have been used to
explain many phenomena occuring in computer systems ([Buz71). Typical
questions that have been answered using this approazh are the
following :
1. What is the average throughput?
2. What is the average utilization of the CPU, I/0 devices etc.
3. What is the average response time?
4. What is the bottleneck in the system (would a higher speed disk do
better)?

5. What is the optimal degree of multiprogramming?
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Queueing-theoretic view
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Figure 1.2 ¢ A queueing-thcoretic view of an operating system
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Queueing-theoretic view
A vast amount of literature has been published to answer these and
similar questions wunder a variety of assumptions, restrictions and
generalizations. For chronolcgical surveys and bibliographies see
[McK69, Mun75, Kle76, LiC77]. Some of the issues investigated are the
following :
1. Service Discipline: M/M/1, G/M/Y, M/G/1, FCFS, or priocrity
service, e.g., see [Shu76].
2. Types of jobs: one or many classes [BCM75].
3. Devices included: Terminals only ([Sch67), terminals and I/0
devices [Buz71].
4, State dependent or stationary probabilities [Che75]
5. Exact or approximate solutions [GaST3, Gel75, CHW75]

€. Part by part (hierarchical) solutions or whole soluticn [BCE75].

In spite of the wide applications of queueing theory, there are

some inherent limitations to its usefulness.

1.3 LIMITATIONS OF QUEUEING THEQRY

Queueing theory represents only average statisties. It tries to
represent a number of jobs by the average characteristics of the class.
The "individuality” of a job is ignored. In this sense, it is a static
analysis. It cannot satisfactorily represent tim: varyiiz phenomena or
dynamics, Therefore, it is good only as a design time tool. It cannot
be used al operation time, for which we need adaptive techniques that

can adapt to the individual characteristics and time-varying behavior cof
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Limitations of queueing theory

Jobs, To give a concrete example, a queueing model is ideal for telling
whether the disk is the bottleneck in the system or whether a faster CPU
will increase efficiency (both design time questions). However, once we
have acquired the proper disk and CPU, it does not tell us which job
from a given a set of jobs should be given the CPU or the disk next.
This is a dynamic decisicn problem, which can only be solved by the

application of techniques frcm decision and control theory.

Queueing theory is good for modeling a computer system and, to a
certain extent, its subsystems. However, when we come down to the level
of a program, it cannct model its behavior (because there are no queues

to be modeled). Given all the known information abcut a program, it

cannot tell what the program behavior 1is 1likely to be in the near
future. This is a prediction problem. Again, control thecry must be

used for this purpose.

Queueing theory cannot model the interaction between the space and
time demands of a program. Since the theory cannot model either the
space demand behavior of a program or its time demand behavior, it
certainly 1is inadequate for modeling the inieraction between the two.
Bad memory management may cause frequent page faulls and may degrade the
performance of an otherwise good scheduling policy. Still, the memory
and the CPU allocation policies of mcst operatine systems to date are
more or less independent. This is due to a lack of clear undcrstanding
of the interaction between them. With the application of contrcl theory

we hope to remedy this situation, because, riven control-theoretic
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models of two systems, their joint model can be obtained by modeling the

cross-correlation between the two.

1.4 ADDITIONAL EXPECTATIONS FROM CONTRQL THEORY

There are many concepts 1like stability, controllability, and
parameter sensitivity, that are well estatlished in control theory but
have not been used in computer systems modeling. We hope that the
control-theoretic approach will eventually lead to a better
understanding of trese concepts as applied to computer systems. For
example, take the =~oncept of stability. Instability in computer systems
occurs in the forwm of excessive overhead caused by frequent switching of
CPU between 3iobs, or by frequent oscillation of pages between main and
secondary memory. Instability in The control-theoretic approach is
especially suitable for stability studies, e.g., for determining the
effect of sudden demand variations, or the effect of measurement delays.

There are well established technique:s for this purpose.

Controllability studies of computer systems could similarly help
us to determine whether it is possitle to reach the optimum performance
state. Parameter sensitivity is already a big issue even in current
queueing models. One of the major studies that investigated the
applicability of queueing models to a real interactive system was
conducted by Moore at the University of Michigan [Moo71]. One
conclusion of the study was thal queueing models are very sensitive to

parameter valucs which vary considerably with time and load varistions.
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Again, control theory with 1{ts well established techniques for

sensitivity analysis provides better hope.

1.5 SURVEY OF APPLICATIONS OF CONTROL THEORY

Wilkes was probably the first to strongly advocate the
exploitation of control theory for computer systems modeling. In his
paper [Wil73], he stated:

"We are not yet in a position, and perhaps never will

be, to write down equations of mcticn for computer systems.

However this does not exclude the design of a control

system. Indeed, it 1is Jjust in circumstances where the

dynamical equation are not fully understcod or when the

system must operate in an environment that can vary over a

wide range that ccntrol engineering comes into its own."

The paper presents many arrsuments for applying ccntrol theory. We do

not intend to duplicate those arguments here. To illustrate his ideas,

Wilkes proposed a general model of paging systems,

Adaptive policies for many components of operating systems have
been proposed. Dynamic tuning of allocation policies to improve
throughput in multiprocramming systems has been suggested by Wulf
(Wul69]. An adaptive implementaticn of a load controller is described
in [Wi171]). Blevins and Ramamoorthy have investirated the feasibility
of a dynamically adaptive operating system [BlR76). Two different
techniques for adaptive control of the degree of multiprogramming have

been described in [DKL76].
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The need for a contreocl-theoretic approach was also stressed by
Arnold and Gagliardi [ArG74]). They proposed a state space formulaticn
using resource utilization 2as the state variables. A dynamic
programming approach to memory management and scheduling problems is
described in [Lew74, Lew76}. A survey of some early applications of
statistical techniques to computer systems analysis can be found in

[AashT72]).

The work most closely related to this thesis is that of Arncld
{Arn75, Arn78]. Using correlation properties of the memory demand
behavior of programs, he has investigated the applicability of the

Wiener filter theory to the design ¢f a memory management policy.

1.6 PRINCIPAL CONTRIBUTIONS AND ORGANIZATION OF THE THESI

In this thesis we propose the following general control-theoretic
approach to the formulation of resource management pclicies for
operating systems.

1. In order to develop a resource management policy, modei the
correspending program behavior as a stochastic process.

2. Using identification techniques and empirical data, identify a
suitable model structure for the process* and estimate typical
values of model parameters.

T S G e L P D P D . G En D D R R - W D - R e S e SR W B B D e e e W W

* The term progess is used here exclusively in the control-theoretic
sense of stochastic process. To avcid confusicn, the term tark is used

to dcnote computer processes e.g.,, ve say "ready tasks" instead of
"ready processes™,
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Contributions and organization

3. Based on the model, formulate a prediction strategy for the

stochastic process, and hence a resource management policy.

The policy s0 obtained is dynamic in the sense that it varies the
allocation of the system resource to a user job depending upon the
recent past behavior of the job. It, thus, provides the run time
optimization not possible with the queueing theory approach. Also,
notice that the individuality of the job is fully exploited. The key
step in the approach is the formulation of the stochastic process model
in such a way that the allocation problem reduces to a prediction
problem. We exemplify this approach by formulating control-theoretic
policies for CPU scheduling and page replacement. Policies for
allocation of other shared resources (e.g., disks) can be, similarly,

formulated.

Formulation of the CPU scheduling policy is described in
Chapter I1. The time taken by successive ccmpute bursts of a program is
modeled as a stochastic process. It is shown that the main precblem is
that of predicting the future demands of a job from its past behavior.
A few analytical results are derived concerning the increase in the mean
weighted flow time due {c prediction error. Correlaticn techniques
(also called time series analysis techniques) are wused to identify a
suitable model structure for the stochastic process. Empirical data on
the CPU demand behavior of users of an actual time sharing system is

used for this purpose. Details of the procedure used for modeling and

parameter estimation from the data are included. In particular, it is
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shown that the CPU demand process is a stationary stochastic process
having very 1little autccorrelation. The efficiency of severai
autoregressive moving average (ARMA) models 13 compared. The final
conclusion is that the gains are very small and that a =zeroth crder
non-zero mean white noise { ARMA((0,0) ) model is appropriate for the
rocesys. Based on this conclusicn, several different predicion schemes
are proposed. An adaptive scheduling algorithm called "Shortest

Predicted Remaining Processing Time" (SPRPT) is proposed.

In Chapter III, the problem of page replacement is fcrmulated as 2
prediction problem. Using a stochastic process model of memory denurd
behavior, suggested by Arnold [Arn75), an expressicn is derived for the
cost of prediction error. The identification analysis shows that the
process  is non-stationary. The non-slationarity is, however,
homr~;:neous in the sense that the first differcnces of the prccess zre
stationary. An autoregressive integrated movinz average model of order
1,1, ( ARIMA(1,1,1) } is shown to be an appropriate mcdel fer the
process. A two step expcnential predicter is derived for the model.
Based on this predictcer, a new page replacement algorithm called the
WARIMA" algorithm is proposed. Even though the crigin of the algcrilhn
lies in complex control-theoretic ideas, its final implementation 1ix
very simple. Moreover, il turns out that many conventional pacge
replacement algorithms like the working set aleorithm [Den6€], Arnold's
Wiener filter algorithm [Arn75), and the independent reference mcdel
{ADUT1] are special cases of the ARIMA algorithm. The control-theoretic

derivation of the conditions under which these algorithms are optimai f»
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presented.

Chapter IV is devoted to developing new teckhniques for analysis of
binary processes 1like the memory demand process. The ARIMA model does
not take into account the fact that a2 binary process takes only two
values, 0 or 1. In this chapter, an attempt is made to remove this
discrepancy. It is shown that if a binary process is Markov of a finite
known order, it can be modeled as the output of a Boolean (switching)
system driven by a set of binary white noises. Modeling, estimation,
and prediction of the process using the Boolean model is described. A
method is developed for optimal non-linear prediction under any given
linear or non-linear cost criterion, A1l the results are then
generalized to k-ary processes, i.e., processes which take integer
values between 0 and k-1. The mcdel is shown to be applicable to a
class of non-staticnary processes alsc. Finally, the application of the

model to the problem of memory management is described.

In this thesis we make extensive use of control-theoretic terms
and concepts., However, since a majority of the readers of the thesis
are likely to be computer scientists, a tutorial approach is followed in
deriving the control-theoretic results. Whenever possible, simple and
intuitive explanations of the inferences based on control theory are
provided. A brief explanation of ARIMA models, which are used
extensively in this thesis, is given in Appendix A, Further details of
control-theoretic concepts can be obtained from [Nel73, BoJ70, #st70,

BrH69].




CHAPTER II

A CONTROL THEQORETIC APPROACH
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2,1 PROBLEM STATEMENT

The problem of CPU management is that of deciding which task from
among a set of ready tasks be given the CPU next. 1In the literature
this problem is also referred to as low level scheduling, short term
scheduling, o¢r process dispatching. There has been a considerable
amount of work on designing scheduling strategies ‘!or optimizing
different cost criteria, sinéle or multiprocessor strategies,and for
different precedence constraints among the jobs [Cof76]. A common
underlying assumpticn in all these researches is that the CPU time
required by each job is known. For example, the simplest scheduling
problem is that of scheduling n independent tasks with known CPU time
requirements of t,, ty,...,t, respectively on a single processor in such
a way as to minimize average finish time for all users. If the jobs
were scheduled in lexicographic order (i.e., 1,2,...n), the average

finish time would be
1
R =-£_- _
n 1:1(n i)ty

A very well known soclution to this problem is due to
Smith [Smi56]. This solution 1is called "SPT" or Shortest Processing
Time rule 1i.e., the jobs are given the CPU in the order of
non-decreasing CPU demand. For those not familiar with this fact the
following example should prove convincing.
Example : Consider scheduling two jobs J1 and J, with each requiring
only one cycle of computation followed by output. The time required for

CPU and 1/0 are shown in Fipure 2.1 . The scheduling decision is8 to
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4 1/0
J) 10 cPU
15 1/0
Jo 6 CPU
. . . 17+
A. Job J; is scheduled first. Averoge Response time = 5 =24
1/0 |
J J
cPU ' C
time O 10 16 17 31
; a . . . 21423
8. Job Jp is scheduled first. Average Response time = > ° 22
1/0
cPU Je U
time O 6 16 21 23

Figure 2.1: Optimgl scheduling of two jobs
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decide which of the jobs gets the CPU first. Obvicusly there are only
two options: J, first, or J, first. The calculation of the average
response times to the wusers in the two cases are also shown in the
figure. It is clear that scheduling the shorter job first gives a lower

average response time,

In the case of Line printer scheduling, the service time
requirements can be predicted reasonably accurately from the size of the
file to be printed or by counting the number of linefeeds and formfeeds
if necessary. However, in the case of the CPU, there is no known method
of predicting the future CPU time requirements of the jcb. This makes

SPT and all similar scheduling strategies unimplementable.

In the absence of knowledge of program behavior, the operating
system designer is left tc use his own ad hoc prediction strategy. One
such strategy is to assume that all the tasks are going to take the sane
{(a fixed quantum of) time., The tasks are, therefore, given the CPU in a
round robin fashion for the fixed quantum of time, and if a task has not
completed by the end of the quantum, it is put back on the run queue.
It is obviocus that full-information strategies like SPT perfcrm betler
than no-information strategies like the fixed-quantum round rcbin., This
peint is illustrated in‘Figure 2.2 where it is shown that if job J1
happens to be the first in the queue the response time is 25; otherwise,

it is 24.5. In both caser it is more than the SPT response time.
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A. Round robin with J; first, Averoge Response time = 23;27=25
10
CcPU Jy Jo Jp dp Jydos s Uy o 0y Jo () ) )
time O 12 16 23 27
B. Round robin with J, first. Average Response time = -2—2’—:;%@ =24%
1/0 -
CPU o Jy o Jy o dy o Jy oy o (I g dy
time O n 16 23 26

Figure 2.2: Round robin scheduling with unit quontum time
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Up till now we have assumed that all the tasks arrive
simultaneously and are ready for processing at the same time.
Obviously, this is not the case in a real computer system, where, tasks
arrive intermittently. The optimal scheduling strategy is still
basically the same. At each point in time one makes the best selection
from among those Jjobs available, considering only the recmaining
processing time of the job that is currently being executed. This
generalization of SPT is called the Shortest Remaining Processing Time
(SRPT) rule [Smi78]. This minimizes the mean flow time if there is no
extra cost involved in resuming a preempted job. Other results for the
case of simultaneous arrival are similarly applicable. Note, 1in !

particular, that it is not necessary to have 2ny advance informaticn

about job arrivals.
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2,2 CONTROL THEQRETIC FORMULATION

Consider a program 1in a uniprogramming situation. Figure 2.3
shows the typical time behavior of the program®*. The program oscillates
between CPU and 1/0 devices (Disk, Teletype, Card reader, Magnetic tape
etc.). Most program have three phases. During the first phase they do
very little computation, spending most of the time collecting parameter
values from the user. The program then enters a computation phase
consisting generally of one or more locps. Finally, the program outputs
the results. The computation phase constitutes a major portion of the
life of the program. The cyclic nature of this phase (due to locps)
makes the p;ogram behavior scmewhat predictable. While in a loop, the
program repeatedly references the same set of pages, and makes similar
CPU and 1I/0 demands. Under the name of "Principle of Locality", this
behavior has been successfully exploited for memory management. The
working set stratery of memory management is partly based on this
principle. This strategy states that the set of pages referenced during
the last time interval T are more likely to be referenced in the near

future than other pages.

The CPU management equivalent of the WS strategy is to say that
the 1length of the last CPU burst is the likely length of the next CPU
burst. This strategy has been used in many operating systems, though

there are many different forms of its implcmentations. One

D Y OP G AR e Y D R TP R D W G P S O P S e PR S WP Y S D T R S R SO e P S G Gn D e e R = W W

* The same is applicable to a program in a multiprogramming si uation
provided the time scale represents "virtual time".
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|
| , ».
input Phase : Computation Phgse : Output Phose

' L
wamimt iimiph
PU
PO 22) |

— e e e N
— . o G—— —

Figure 2.3: CPU ond 1/0 demands of o typical program
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implementaticn method is to put a job taking a lot of CPU time on a 1low
priority queue so that the next time it will get the CPU only afer those
jobs which have taken less CPU time this cycle. Unfortunately, this
principle, although commonly wused, has never been theoretically

explained.

One aim of the research reported here was to check the validity of
this "Next Equal to Last" (NEL) principle, and, if it was found invalid,
to find a strategy for the best prediction of the future CPU demand of a
program from its past behavior. We mcdel the CPU demands of a jcb as a
stochastic process. The kth CPU burst is modeled as a random variable
z(k). One way of representing a stochastic process is to model it as
the output of a control system driven by white noise (see Figure 2.4).
Thus, as seen by the CPU scheduler, the program is like a control system
which generates successive CPU demands. A general time series model for
such a process is given by the following equation:

z(t) = £(z(1),2(2),...,2(t-1),e(1},e(2),...,e(t))
Where z(1) represents t'N CPU burst and e(t) is the tth randcm shock. A
linearized and time invariant fcrm of the above equation is the well
known ARMA(p,q) model (see Appendix & for details on ARMA models)
2(t) = w+a1z(t-1)+....+apz(t-p)+e(t)-b1e(t-1)-...-bqe(t-q)

We choose this formulation to model the CPU demand behavior of
programs, because there are well established techniques to find such
models from empirical data, Once a suitable ARMA mcdel is found, it is

easy to convert it to other models (e.g., state space model), if

necessary.
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Noise e(t ) ————>] Linear System b L CPU
Demands z(t)

Figure 2.4: CPU demands modeled as o stochastic process
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2.3 EFFECT OF PREDICTIQN ERRQRS

In order to study the effect of prediction errors, we need to
choose a performance wmeasure. Consider the problem cof scheduling n
independent tasks with CPU time requirements of 11,t2,...,tn
respectively on a single processor. A schedule consists of specifying
the sequence in which the tasks should be given to the processor. There
are many different performance measures for comparing different
schedules. The measure most commonly used for single processor

scheduling is "Mean Weighted Finish Time" (MWFT). It is defined as

follows:

Where f; js the finishing time of ith task and w; is the weight or

deferral cost of the task. It was shown by Smith [SmiS56] that this cost
criterion 1is minimized by arranging the tasks in the order of
non-decreasing ratio t./y; . If all the tasks have equal deferral costs,
i.e., i "1 =1, then the cost ¢ is called average (finishing time or
average response time. It follows from the above that the average
response time is minimized by sequencing the tasks in the order of

non-decreasing t,. This rule is commonly known as "Shortest Processing

Time" (SPT) rule.

It has been shown that SPT also minimizes the following cost

criteria {CMM67]:

1. Mean power of finishing time

Sl

P

izt
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2. Mean waiting time - 2& (fy-ty)
3. Mean power of waiting time.
4, Mean lateness (time beyond deadline).

5. Méan tardiness if all jobs are tardy.

6. Mean number of tasks waiting

However, SPT does not optimize the follewing cost criteria (all of which
are functions of due dates):

1. Maximum lateness

2. Maximum tardiness

3. Mean tardiness

4. Number of tardy jobs.

Fortunately, due dates are rarely, if ever, specified for CPU scheduling
and hence the above criteria are of no practical interest. For a
computer user the most important criterion is a 1low response time¥,
Since a Job conuists of several CPU-1/C cycles (or CPU-I/0 tasks), the
response time is the sum of the finishing time of these tasks of the
Job. An increase in the finishing time of a task directly contributes

to an increase in the response time.

% Some researchers believe that it is the consistency of response time
rather than minimality that is of concern to a user [HoP72). Ffeor
example, if a program takes 1 minute on one day, it is quite Dbothersome
to the user if {t takes 5 minutes on another day. Bowever, the proper
control point for this criterion is load control (control ¢f the number
of wusers allcwed to leg in or the nurnber of batch jobs allowed to run
simultaneously). Therefore, we do not consider this eriterion,
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In the following, we derive a few analytical results corcerning
the increase in mean weighted finishing time (MWFT) of tasks due to
prediction errors. We first consider a very general case where the time
requirements of all jobs are to be predicted. Then we consider ancther
case, where only one job is considered for prediction, the compute time
requirements of other Jobs 1is assumed to be known. The results are
presented as Theorems 2.3.1 and 2.3.2 below. The proofs of theorems are

given in Appendix B.

2.3.1 Theorem [Non-deterministic Case] : Consider a set of n tasks T

O
T1, ««vy Tp_y with compute time requirements of ta, ty, ..., t _ 4
respectively, where all the times are unknown and are predicted as fo'
f,, ceey fn_1 etc. The predictor is such that the predicted time £, is

a random variable with distribution Fi(fi)° The increase in the mean

finishing time (MFT) due to prediction error is given by
1 =1
oL (i-D) 4y
i=0

where I = Predicted position of T
®
(gt
= | 3:
=1 0L Fy(t)] £it)dt
]
/ 3=0
0 J#i
2.3.2 THEOREM [Deterministic Case] : Given a set of n tasks

T0sTyseeesToy  With  compute time requirements of tg,ty,...,tp_y
respectively, where ty,.eostyoy are known exactly and tg is predicted as

tp, then the increase in mean weighted finishing time (MWFT) due to

prediction error is given by:

I
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2 1
© =2 ] llwoty - weto)!
kel

tk
Where I={k : )
k

/
;. (E(‘o/wo, tp/vp) 1€ tocty
\(tp/wg, to/wg) if tpdtg

Informally, I is the set of indices cof tasks iying between the predicted

and the real position of T,y is the interval between tg/wg and tp/wg.

2.3.2.1 corollary : The increase in mean finishing time (wkgx vk) due

to ty predicted as tp is given by :

1
¢ = ; Z Hk—tol
kel

where T = {k : tocty <ty or t <ty <o)

P

One implication of this corollary is that cnly those tasks that
lie 1in between the predicted and actual positicn cf the task contribute
to the increase in MFT. Thus if the ccmpute time of various tasks are
arranged in 1increasing order and plotted as shown in the Figure 2.5,
then the increase in MFT is represented by the hatched area. In the
special case, when these compute times are linearly increasing, the
increase in MFT is proportionzl to square of the prediction error. This
fact is stated by the following corollary whose proof is given in

Appendix B.

2:3.2.2 corcllary : If t kT, k=1,2,...,n-1 then the increase in MFT

due to to predicted as tp {s given approximately by:

1

= 2
C T ey,
snrltotp)

L . . YR AR NS W YA VMR, Ta N e T T Yy as Al b e

mn
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Increagse in MFT due to

predicling ty as tp
-1
Time P
Required| tp-———=-——-=-—--~-- A
ty ‘\
Lo AN : '

T

Tosk number k

TN

C ont

Figure 2.5 Increase in MFT due to prediction error
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It is seen from above thecrems that the error in predicticn of
computer time of a job affects the relative placement of all other jcbs

in a very complicated fashion. For example, it 1is possible that the

time t, ..,t;_1 are far away from one another so that the predicted
value T, even though away from ty may not result in any change in the
order and hence the net effect on MFT may be zero. On the other hand,
it is also possible that the times to"‘°'tn-1 are very near to each
other so0 that a slight prediction errcor may result in a substantial
change in the schedule and hence in the MFT. Therefore, except in some
very special cases, e.g., in corollary 2.3.2.2, it is not possible to
express the cost of misprediction as a funetion of predicion errcr
alone. That is, there is no one simple "f" such that c:f(to,tp)
represents the 1loss funection. We, therefore, choose to use thne
conventional least square criterion to predict the compute time. 1In

other words, we seek to predict in such a way that the average value of

square difference between the predicted and the actual value is minimum.
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2.4 DATA COLLECTION

This section describes the experiment to collect data on CPU
demands of actual programs. The experiment was conducted on a real user
environment in our Aiken Computation Laboratory. The laboratory has a
DECsystem-10 computer with TOPS-10 operating system. The system is

mainly a research facility for use by graduate students.

The TOPS-10 operating system maintains a number of queues among
which the jobs are distributed. For example, there is a queue for jobs
waiting to be run, a queue for jcbs waiting for dise 1/0, a queue for
Jobs waiting for TTY 1/0 etc. Thus, the easiest way to get the data we
require is to watch the queue history of the program i.e., to note the

queue the job is in and to repeat the observation at every clock tick®.

Table 2.1 gives major details of the experiment. It consisted of
19 different runs spread over a month., Each run consisted of randomly
selecting a user and watching his queue history for a periocd of about U5
minutes. Along with the queue hiswory which was observed every clock
tick, many other parameters like program name, memory used, etc. were

also recorded every second.

The data was later translated to produce the CPU demand processes
of individual vprograms. This produced 550 CPU demand processes

consisting of the length of successive CPU bursts (total CPU wusage

- D e P - Y = e Tn D e P Y S e D L G A e e R P S S e e s P SR G R R e W S e e e

# In all subsequent discussions, the unit of time will be a clock tick
called "jiffy” 1in DiC terminclopgy. A jiffy is the cycle pericd of the
line power supply i.e., 1/60th of a second.
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TABLE 2.1 : DATA COLLECTION EXPEZRIMENT

Duration of the experiment 1 month
Number of runs 19
Duration of each run 45 minutes
Number of programs observed 550
Bumber of programs with 80 or more bursts 33

Number of program histories analyzed 33
Number of user histories obtained 19
Number of user histories analyzed 8

between successive 1I/0 requests). However, most c¢f these profran
processes were too short i.e., consisted of only a small number of
observations (number of CPU bursts). Only 33 processes had 80 or more

observations. These were chosen for ccrrelation analysis.

We also obtained 19 user processes - cne for each run. These
consist of 1lengths of successive CPU demands of the user rcgardless of
the program being run. Cf these user processcs, alternate (actuzlly
only 8) processes were selected for analysis. The list of the processes
selected for analysis is shown in Table 2.2 . The processes are named
PXXXXX.YNN" where XXXXX is either "USER" fcr user processes or the
program name, Y is the user identification (letters A, B, C,...) and NN
is the serial number of the program in 2 particular run. Thus MAIN.R5S

stands for the 55th program run by uscr R. "MAIN" is the name of the
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program, Table 2.2 also gives the ttype of the program, number of
observations in the process, its mean value, standard deviation $,, and
P-VALUE. The term P-VALUE will be explained later under the Chi-square

test.

The develcpmental nature of the environment is obvious from the
table. Notice that 14 (42%) of the programs are editing (SOS and TECO),
7 (21%) are FORTRAN programs, and 4 (12%) are EL1 programs. FORTRAN and
EL1 are the main languages used at our lzboratory. Most users follow a
cycle of editing (TECO), compiling (FORTR), and running the program, and
then reediting etc. This is typical of research and develcpment
environments. 1In a production envircnment in an industry, less amount
of editing and more application program execution is expected. However,
as we shall see later, the CPU demand behavior of editing programs and
application programs are not very different except that the mean value
of CPU burst in an editing program tends to be much lower than that in
an application program. Therefore, it is plausible that the results

obtained here also hold in a production environment.
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. Table 2.2 : List of CPU Demand Processes Analyzed
S. No. Process N z s, P-VALUE Prozram
Name Chi-xsq Type

1. COMP2.G63 158 24.8 85.0 0.000 FORTRAN Proeram

2. ECL.B1 81 11.2 18.9 0.24% EL1 Prcgram

3. ECL.B2 260 4.7 379.9 0.006 ELY Program

4§, ECL.S? hug 49.0 308.9 0.997 ELt Program

5. ECL.S2 270 77.6 528.5 0.999 EL1 Proesranm

6. FORTR.P2Y 1R £.Y4 7.8 0,178 FORTRAN cocmpiler

7. FORTHK.P30 234 6.3 7.6 0.412 FORTRAN compiler

8. FORTR.PB 349 6.2 6.7 0.000 FORTRAN compiler

9. FORTR.Q17 253 5.2 6.1 0.001 FORTRAN comviler

10. FRCDO.C1 141 606.7 1298.¢Q J.047 FORTRAN Prorram

1. FRCDO.C11 158 184.2 578.8 0.003 FORTRAN Pro~ram

12. M786S,U1 504 1.5 5.7 0.000 FORTRAN Proeram

13. MAIN,.G10 204 8.4 7.4 0.000 FORTRAN Prozramx

1., MAIN.QYQ 98 8.2 5.9 0.000 FORTRAN Promram

15. MAIN.RSS 129 .4 3.4 0.23C FCORTRAN Prozram !
16. P.A19 222 9.2 23.4 0.000 FORTRAN Prozran ;
1. PLP.G18 140 1.1 0.7 0.088 Peripheral 1/C :
18. PIP.GUS 8i 1.0 0.8 0.000 Pericheral I/C

1g. PIP.G6O 225 0.9 0.3 0.000 Peripheral I/C
20, SOS.A21 42z 1.¢ 2.7 0.000 Text Editor ;
21. S0s.A22 85 2.0 2.7 0.646 Text Editor |
22. SO0S.A23 103 1.5 1.3 0.3TH Text Editor f
23. S0S. 486 110 2.8 3.1 0.606 Text Editor :
24, TECO.BS 90 3.7 6.6 0.916 Text Editor .
25. TECO.F1 92 2.7 4.6 0.540 Text Editor )
26. TECO.F20 199 5.7 6.3 ¢.018 Text Editor
27.  TECO.G3T 116 28.0  i22.2  0.272  Text Editor !
28, TEC0.G38 221 17.2 64.8 0. 140 Text Editor
29. TECO,G5% 114 4.3 4.5 0.000 Text Editor

30. TECO.H? 168 2.2 2.8 0,001 Text Editer
31, TECO0.JS5 9a 6.4 6.4 0.774 Text Editor :
32. TECO.P1 138 4.6 12.8 ¢.4979 Text Editor ;
33. TECO,P13 BY §.3 5.5 0.568 Text Editcr

34, USER.B 587 37.0 257.7 0.000

35. USER.D 259 52.0 329.2 1.000

36. USER.F 680 %.5 17.5 1.000

37. USER.H 413 6.5 39.9 1.000

33. USER.L 372 .2 7.8 0.000

39. USER.N 471 30.2 187.% 0.999 .

4o. USER.P 1629 7.1 17.5 0.000

41, USER.T 262 25.1 112.0 0,554
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2.5 DATA ANALYSIS

The aim of data analysis is to find one suitable model structure
for CPU demand behavior of programs. The two main steps of data
analysis are model identification and parameter estimation. The first
step consists of studying the first and the second order statistics of
the data in order to identify a class of models suitable for the
process. In the second step, these models are fitted to each process to
find the maximum achievable gain. Finally, these different models are
compared to give one general mcdel for all CPU demand processes. A
large part of the data analysis reported here was done on a time serics
analysis package TS developed by Professor Vandalae of Harvard Business

School.

Statistical techniques are very often misused and results
misinterpreted. It is easy to dr}w misleading conclusions unless the
statistical procedures are fully understood and used properly. for
example, we have noticed that in most of the computer science
literature, correlation techniques are used without significance tests,
parameters estimated without their confidence intervals, and so cn. We,
therefore, decided to explain the methodology alcng with the results,
In the following we have tried to describe the reasoning behind each
inference that we draw. The description is, however, brief due to space
limitations and references are provided for further details whenever

necessary.
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2.5.1 Model Identificalion:

Model identification consists of studying the characteristic

behavior of the first and the second order statistics of the data. The

goal of this step is to identify a model structure or a class of mcdels
suitable for the data. Notice that this does not include finding an
exact model equation; that is part of the next step on parameter
estimation. The statisties wused for model identification in this
analysis are data oplots, autocorrelations, partial autocorrelations,
inverse autocorrelations, and Chi square test. The inferences drawn

from these statistics are now described.

2.5.1.1 Data Plot :
The very first step in any identification procedure must be tc plet the
data and tec study its general time behavior. The plots of CPU demands
of scme of the programs analyzed are shown in Figure 2.6 . These are
typical of all the programs analyzed. Very often a program has just ore
or two large CPU bursts which if plotted would obscure the details at
lower values. Therefore, the Y-axis scales have been so chosen that at
least 95% of the data are shown in thc graph. Very large valuz are
shown cut off at the largest plottable value. Notice the following
characleristic behavior of these graphu:

A. No Trend : A trend (monotonous increase or decrcase) in the data is
an indication of non-stationarity, though its absence does not ccnfirm
stationarity. For a stationary series, the mean of the data does not

depend upon time; il is constant. Therrforc, such a series takes trips
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away from the mean, but it returns repeatedly during its history.
Fortunately, ncne of the CPU demand processes show a trend. Thus we can
hope for stationarity. A more conclusive test of stationarity via the

autocorrelation function will be described in the next section.

B. Violent Variaticns : Notice that the series does not stay at any

one level even for short intervals, This indicates that a WS-type
prediction scheme (Z(t+1)=z(t), i.e., the current CPU burst size is a
good estimate of the next one) is probably not very valid. We may have

to use some more sophisticated scheme.

2.5.1.2 Autocorrelation Function :

As the nzme implies, the autocorrelation function is a measure of the
correlation between the present and the past observations. It is
therefore, also a measure of the predictability of future frcm the past.
Mathematically, the autocorrelation function is the normalized
autocovariance function. The latter is defined as follows:
Cov(k) = E[(z2(1)-2)(z(t+k)~2)]

By dividing the autocovariance function by the variance (Cov(0)) w: get
the autocorrelation function C(k):

C{k) = Cov(k)/Cov(0)

Obviously, to be of any value, a stecchastic process should have
finite memory, 1i.e., the present observation must be correlated only
with those in the finite past. In other words, the autocorrelaticn
function should die down to zero at very large lars, Such processes are

called stationary because after a while they achieve "equilibrium" and
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their behavior dces not depend upon initial conditions (leng past).

Autoccrrelation functions (ACF) of some of the CPU demand
processes are shown in Figure 2.7 . These are typical of all the
programs analyzed. The dashed 1lines indicate the 95% confidence
interval of the ACF for the given sample. The expression given 2bove
for C(k) is valid only for infinite sample sizes. For finite sample
sizes the calculated values are only an approximation to the theoretical
ACF. Thus if r(k) denotes the standard deviation c¢f C(k), then a
calculated value for thecretically zero autocorrelation (C(k)=0) may lie
anywhere between 0+1.98r(k) with 95% probability. In simple words, any
value between the dotted 1lines can be effectively assumed to be zero
with 95% confidence. The variance r(k) can be calculated by Bartlett's
formula [Bar#6]. In computer science literature, this significance test

is almost always omitted, resulting in misleading conclusions.

The characteristic features of the ACF and the inference that we

can draw are now described.

A, The ACF dies down to 2zero very quickly. This indicates that the CPU

e

demand process is stalionary. If the ACF had not died down quickly, we

would have had to analyze the ACF of the first and higher differences of

the process.

B. The ACF is non-zero only for 1 or 2 1lags. We can, theretore,

restriet our consideration to MA models of order less than 2.
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It is very important to remember that the sample autoccorrelaticns
are only estimates of the actual autocorrelations for the process which
generated the data at hand. Therefore, the analyst must be on the 1lcok
out for general characteristics which are recognizable in the sample
correlogram and not automatically attach significance to every detail.
For example, there is a 5% probability that a theoretically zerc
correlation will show up as significant (above the dashed 1lines).
Therefore, one or two significant correlations at large lags in some of
the cases shown should not alarm us.

L. The ACF is positive. A positive correlaticn between successive

values indicates that a large CPU demand in one cycle implies a large
demand in the next cycle. Therefore, a program that tock a long CPU
time during last cycle can be expected to be CPU bound at least for the
next cyele and put on a lower priority queue,

D. The value of ACF is rather small. The ACF at lower lag values even

—— e e —— —— i

though non-zero and positive is really very small (of the order of 0.1).
This partially dulls the hope expressed in the last inference. The
correlation being sﬁall, the gain in the predictability of the future
from the past will be small. In control thecretic terms, we are,

perhaps, headed for a zeroth order model.

2.2,1,3 Partial Aulocorrclation Funclien :
The PACF is the dual of the ACF. Like the ACF gives an 1idea of the
order of the MA models, PACF gives an idea of the order of AR models,

If the process is modeled by an AR mcdel of order p:

2(t) = w + a4z(t-1) + a5z(t-2) + ... + apz(t-p) + e(t)
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Then theOccefficient 3, of the last AR term z(t-p) is defined as the

value of PACF at lag p. Naturally, if the real process generating the
data had an AR mcdel of order n, then we wculd expect PACF to be zero at
all 1lags greater than n. Thus the cut-off point of the PACF gives the

order of AR model.

The PACFs of some of the CPU demand processes are shown 1in
Figure 2.8 . The dashed lines indicate the $5% confidence interval for
the PACF for given sample sizes. It was shown by Quenouille {Quelg]
that the approximate standard error of the PACF is n-0.5, The
characteristic attributes of these PACFs and their implications are ncw {
described.

A. The PACF dies down to zero very quickly. In fact in most cases the

PACF is significant (2bove the dashed lines) only for lags 1 or 2. This
means that we do not have to becther about very high order AR models to
model these processes. A& first or seccnd order model will do.

B. The PACF is positive at low lags. Notice that the PACF for czlmost

all processes 1is positive at lag 1. Only in 1 or 2 cases is P&CF(1)
negative. The positive value implies that a CPU bursts gives a positive
contribution to the estimate of the next burst., It therefcre confirms
our péevious conclusion that a large CPU burst 1is more likely tc be

follcwed by another large burst.

2.5,1.4 Chi Square Test of Randopncssg

One way of viewing the process of modeling a time series is as an

attempt to find a transformatien that reduces the observed data to
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randcem noise. The first question, therefore, is whether the data itself
is a random noise. Theoretically, the autocorrelation of random noise
will be zero at all lags. In practice, it will have small non-zero
values. Bartlett's formula for the standard error of the ACF provides
some guidance to test the smallness. A better quantitative test of
randomness is due to Box and Pierce [BoP70]. They have suggested a
‘statistic that offers a test of the smallness of a whole set of sample

autocorrelations for lags 1 through k. This is the Q statistic given by

Q=N g; c(§)2

Q is approximately Chi-square distributed with k degrees of freedom.
Using the Q statistic cne can calculate the probability that the given
sample came from a white noise process. This probability is 1listed in
the Table 2.2 under P-VALUE, Notice that 22 of the 33 processes
analyzed have non-zero P-VALUE, 16 have P-VALUE greater than 10%, and 8
have P-VALUE greater than 50%. Of the 8 user processes analyzed 4 have
a P-VALUE of 1, i.e., they are almost surely random noises. The high
randomress of the user processes is a resull of their being mixtures of

several program traces, many of which have no relation to one another.

2.5.1,5 Inverse Autocorrelatjon Function :
The inverse autosorrelations of a time series are defined to be the
autrcorrelations associated with the inverse of the spectral density of
the series, 1i.e.,

IACF =z Inv. Fourier Transform [ecececcceccacmacrcccccaa" ]

Fourier Transform(ACF)
The IACFs were first prcposed by Cleveland [Cle72]). He claims that they
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are useful in identifying non-zero coefficients in an ARMA model.
However, their utility in model identification is still a point of
debate among  statisticians [Par72)]. We -calculated the inverse
aulocorrelation functions for all of our CPU demand data processes.
However, in most cases these functions did not give much additicnal
information., Only in some (2 or 3) czses, where the processes behaved
abnormally (a 1low order ARMA model was not adequate), did we gain some

insight into modeling these particular cases.

In order to illustrate the use of IACF, let us consider cne such
case : the CPU demand behavior of prozram FRCDO.C11 . Its ACF and PACF
were insignificant everywhere except at lags 5, 6, and 14. Cbviously, a
low order ARMA model would not work for this prccess. As we wiil see in
the next section of wodel fitting, that an AR(2) model resulted in conly
1.6% improvement over a zeroth order model. The inverse zuilccorrelation
for this process (assuning orders of 1 through 8 feor the AR part of the
model) are shown in Table 2.3 . Notice that all columns except £ and §
are zero. Clevcland suzgests that this indicates an apprepriate model
would have a 6th order AR part with only Sth and 6th ccefficients
non-zero and all other coefficient zero, i.e., a model cf the follewing
type @

2(1) = W + agz(1-5) + agz(t-5) + e(t)
Obviously, these high order models are of no interest to us

because of their applicabilitly only in rare cases, and 2lso because of

the rather small pain even in these cases,
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Table 2.3 : Inverse Autocorrelations of FRCDO.C11

L R el R e e T R e e e

m ri(1) ri(2) ri(3) ric4) ri(5) ri(6) ri(7) ri(8)

1 -0.076

2 ~0.091 0.100

3 -0.074 0.087 0.080

§ -0.072 0.090 0.077 0.014

5 -0.078 0.066 0.046 0.038 -0.162

6 -0.01% 0.062 0.026 0.001 -0.135 -0.189

7 -0.018 0.056 0.027 0.003 -0.132 -0.190 0.016

8 -0.019 0.095 0.052 -0.003 -0.140 -0.205 0.026 -0.107

- > e e 4 Y T e = D n P e e O S TR e e P e W e

ri(n) = nth jpverse autocorrelation

m = Order of the AR model used for calculating ri.
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2,5.2 Parameter Estimation :

In order tc find one general model for all CPU demand processes we

fitted several mcdels to each process, and found the best parameter

estimates and hence the maximum improvement available. The

details of
the model fitting procedure 2nd the results coblained are the topic of

this section.

The net conclusion of the identification step discussed in the
last section are the following :

1. The CPU demand process is a stationary process.

2. The order of the ARMA model required tc model the process is

rather small - of the crder of 1 or 2.

We, therefore, limited our search for the best mcdel to the

class

of ARMA(p,q) models with psg € 2. This class includes the followinz six

models,
S. No, P.g Model Type Medel egquition

1. 00 White Noise z(t)=wse(t)
2. 01 MA(Y) z(t)=w+e(l)-b1e(1-1)
3. 02 MA(2) z(t)=w+e(t)-b1e(t-1)-b2e(t-2)
y, 10 AR(1) z(t)=w+a1z(t_1)+e(t)
5. 11 ARMA(1,1) z(t)=w+a,z(t-134e(t)-bye(t-1)
6. 20 AR(2)

Z(l)=w+81z(t-1)+922(t-2)+e(t)
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Let us consider the general case of fitting an ARMA(p,q) model to

a process, The model is

z(t)'a1z(t-1)-...-apz(t-p) = wee(t)-bre(t-1)-...~bge(t-q)

The parameter estimation problem is to find the "best" estimate of
the parameters 6 :{w, 24,...43p, by,...,bq}, and the variance sg of
e(t). Here the best is defined in the sense of maximum likelihood (ML).
The likelihood function is the probability p(z:Q,sg) that a given set of
parameter values would have given rise to the observed data. If the
noise e(t) 1is assumed to be normal then it can be shown that the ML
estimates are obtained by maximizing the sum-of-square function ([Nel?72,
p9i]:

N
SSR(®) = ¥ eZ(0)
t=1

Once MLE of @ has been obtained, MLE of sg is just

g2 _ SSR(0)
e

TN

-~

The superscript denotes ML estimatz, We 1{llustrate the estimation

procedure with a sample case.

A Sample Case : Figure 2.9 presents the output from the program ESTIMA
for the case of fitting an ARMA(1,1) model to ECL.S2 process. The first
portion of the output describes the problem, i.e., number of
observations, order of differencing, initial guess values for parameters
etc. Then the iterations towards ML estimate begin. The Gauss-Newton
method 1is wused to find the optimal. We now describe the importance of

each of the results shown in Figure 2.9 .
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CPU DEMAND BEHAVIOR OF ECL (S-2)

NOBS = 270
INITIAL VALUES

AR{ 1) 0.1000E+00
MA( 1) -0.1000E+00
CONST 0.7500E+02
MODEL WITH D = 0 DS =0 S = 0
MEAN =  81.67 SD = 628.9 (NOBS = 270)
INIT SSR =  0.7540E+08
ITER SSR ESTIMATES
1 2 3
1 0.7473E+08 13.905E-02 -7.193E-02 78.0
2 O0.7472E+08 -1.T716E-02 -0.122 82.9
3 O0.7T471E+0D8 -7.407E-02 -0,180 87.7
4 0.7471E+08 -5.205E-02 -0.157 85.9
5 O0.7H71E+08 -6.595E-02 -0.171 87.0
REL. CHAKGE IN SSR <=  0.1000&E-05
FINAL SSR = 0.T7471E+08
5 ITERATIONS
CPU DEMAND BEHAVIOR OF ECL (S-2)
PARAMETER ESTIMATES
i EST SE EST/SE 954 CONF LIMITS
AR( 1) -0.066 0.569 -0.116 -1.181 1.049
MA( 1) -0.171 0.562 -C.304 -1.273 0.9322
CONST 87.001 59.532 1,461 29,632 203.68Y4
EST.RES.SD =  5.2899E+02

EST.RES.SD(WITH BACK FORECAST) = 5.2899E+02

3

0.011

QR
R 0.004

SCR
. = 267

S
DJ
F
= 1.474 (2,267 DF) P-VALUE

R
A
D.
F

"
o
2%
7V
-a

o

CORKRELATION MATRIX
AR(C 1) MAC 1)
MAC 1) 0.994

CON( 3) -0.780 -0.776

Page 2-33

(CONTINUED...)
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CPU DEMAND BEHAVIOR OF ECL (S-2)

AUTOCORRELATIONS OF RESIDUALS

LAGS ROW SE
1 -8 .06 -0.00 -0.0% -0,02 0.04 -0.02 -0.01 -0.01 -0.01
9-16 .06 -0.02 -0.01 -0.01 -0.01 -0.01 -0.0% -0.02 -0.01

CHI-SQUARE TEST P-VALUE
Q( 8) = .679 6 D.F. 0.995
Q(16) = 1.06 14 D.F. 1.000

CROSS CORRELATIONS OF RESIDUALS AND THE SERIES
ZERO LAG = 0.69

LAGS E(T),Z2(T+K)
t -8 0.10 -0.01 -0.02 0.03 -0.01 -0,0%1 -0,01 -0.01
9-16 -0.02 -0.01 -0.01 -0.01 ~-0.01 -0.01 -0.02 -0.02
CHI-SQUARE TEST P-VALUE
Q( 8) = 3.59 6 D.F., 0.732
Q(16) = 4.03 14 D.F., 0.995
t
LAGS E(T+K),Z2(T)
1 -8 -0.00 -0.01 -0.02 0.03 -0.02 -0.01 ~0.01 -0.02
9-16 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02
CHI-SQUARE TEST P-VALUE
Q( 8) = .6u9 6 D.F. 0.996
Q(16) = 1.10 14 D.F, 1,000

Figure 2.9 : Output of the Parameter Estimation Program
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A. Stopping Criterion: Regardless of the optimization techaique used

one has to decide when to stop iteration. Varicus stopping criteria and
Justificaticns for their use have been discussed by lMuralidharan and
Jain ([MuJ75]. The ESTIMA program stops whenever any of the following
criteria are satisfied:

1. Relative change in SSR is less than 10-6,

2. Absolute change in S3R is less than 10-6,

3. The step size is less than 16-6.

4, Number of iteration reaches a limit of 30 (a bad likelihood

function).

In almost all cases of CPU demand modeling, the optimization

program stcpped on the first criterion.

B. Confidence Interval : It is important to remember that MLE of the
parameters are, after all, random variables since they are functions cf
the data. 1t can be shcwn [Bcd70, p226] that MLE in large samples are
Joint normally distributed with mean vzlue equal to the truc parameter
values and variance covariance matrix given by :
v(8) = 252 -1
e
where the (1,j)th element of the matrix Q is given by
Q o’
ij = STt 1,321,200 4P4Q=1
Taking the square rool of the diasonal elcments of the estimated

variance-covariance matrix, we get tre estimated standard deviation cof

the parameter estimates or the standard error denoted 58(51). A G657
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confidence interval for 91 is given by éii1°96'sg(éi)'

C. Utility of the Model : We test the utility of the mcdel in terms cf
R2

and F-test. R2 is the fraction of the variarce explained by ‘he

model. It is calculated by the following formula :
R2 - 1 . varfe(t)]

Pupnguy Lt

n
-
L]

- - - - - A -—

This criterion for measuring the wutility of a model does not
penalize the model for its use of parameters. Generally the addition of
any parameter to a model may be expected to reduce SSR and sg since the
additional parameter offers one additional degree of freedom along which
to reduce them. Consequenily, to penalize a mecdel fer its use of
parameter or degrees of freedom, one may compute estimates of §§ by
dividing SSR by N-k i.e., the net remaining degrees of freedon. This

corrected measure of improvement is called Adjusted R?

17(N-k) J_ e?(t)

2 mcccccmcccm——m———e
Ry =1 -
V(N=1) T~ (2(1)-2)2
N-1 k-1
e ooip2 kel
N-k® T Nk

A negative or very low value of Rgdj indicates that the model is really

not worth the trouble.
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The utility of a model can also be assessed by the F-test. This
test ccmpares two hypotheses
H1 : ©6:8

HO : @=0

It can be shown that the likelihood ratio F given by

p o P(z/H1) RZ/K

i3 F-distributed with k and N-k degrees of Freedom {BoJ70 p266]. The
probability that a F-distributed variable has the calculated F value is
given in the output as P-VALUE. A large P-VALUE implies that the
parameter values are significantly different from zero. Fcr example,
the ARMA(1,1) model fcr ECL.S2 n2s 2 P-VALUE cof €.231. This low value

indicates futility of the ARMA model for this process.

D. Back Forecasting : The values of e(t) in the expression for SSR are

calculated as follows

e(t) = z(t) - f: agz(t-i) + §Z1bie(t-i) -w
i=1 =

It is immediately appai :nt that there is a problem here because we have
no value for eo,...,e_Q+1 and z(0),...,z(-p). One solution is to assure
e(1) through e(q) as zero and start using the above equation frem t=g+1.
An alternative soluticn to this starting value problem 1is a back
forecasting procedure sugrested by Box and Jenkins [BoJd70, p2i2]. The

ESTIMA output gives the standard deviaticn of the residuais with and

without the back forecastine,
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E. Correlation Matrix : Also given 1in the ESTIMA output 1is the

estimated correlation matrix of the parameter estimates. The
correlation between two parameters is obtained by taking their estimated
covariance form the variance-ccovariance matrix described before and
dividing it by the product of their standard errors. In this example,
the correlation between a, and by is estimated to be 0.994. This high
correlation indicates that one of the two parameters is highly dependent
on the other and therefore one cof them can be omitted from the model and

the model order reduced without seriously affecting the performance.

F. Diagnostic Checks on the Residuals : There are two kinds of tests

that can be applied to residuals to test the adequacy of a model. These
are the whiteness test and the cross-correlation test. If the model 1is
adequate, we would expect to find that the residuals &(t) have the
property of randcm noise - in particular, that they are not serially
correlated. Autoccrrelation, if evident in the residuals, may help to
suggest the direction in which the model should be modified, To test
whiteness, we use the Q-statistic discussed before. In the example
shown, the Q-statistic is 1.06 which corresponds to a probability
(P-value) of 1.000. This high p-value confirms the uncorrelatedness of

residuals.

The cross-correlation test is based on the ccrrelztion between the
residuals and the process. An important property of the theoretical
disturbances is that they are correlated with the present and future

values of 2, but not with the past values, i.e.,
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Covlz(t-k),e(t)] = 0 k>0

Cov[z(t+k),e(t)) £ 0 k20

As an additional check on the model, corresponding sample
cross-correlations between residuals and the process are displayed in

ESTIMA output.

|

W
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2.5.3 Choosing a General Model:

The results of parameter estimation for § different models of 41

different CPU demand processes analyzed are listed in Tables 2.4 through

2.8 . In these tables, w, a4, ap, by, and by, if present, are model
parameters; Se 1is the standard deviation of the residuals. R?, Rgdj-
P-value for F-test, and P-value for Chi-square test are as explained

previously in sections 2.5.2.C and 2.5.1.4 .

Our next task is to choose the mcdel which best represents CPU
demand behavior of programs. There are many ways of defining the
"best", For example, one criterion that we first explored was the
following :

For each process find the best model (the one giving the

highest B2, or RZ,:), and choose the model that is best for a

majority of the processes.

We rejected this criterion on the grounds that it does not reflect
the fact that for programs with large variances even a small R?2 is good,
whereas for programs with low variances even a large R2 is not much use.
Thus the net reduction in SSR rather than RZ should be the criterion for
selection. We, therefore, decided to use the following criterion :

For each type of model, find the total (sum of) reducticn in

SSR achieved by the medel for all programs, and choose the

model that gives the highest reduction.
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Table 2.4 : Parameter Estimaticn for ARMA(1,1) Model

2(L) = W + a,z(t-1) + e(t) - bie(t-1)

Page 2-U6

e T e e AP R YW A S R e Y D M A e Y D A AR e R A @R 0 B A AR e e Y S

Prccess
Name

. - - - - - R T D D D e W S D AR W T SR W Y e G e e

ECL.B1
ECL.R?
ECL.S1
ECL.32
FORTR.P21
FORTR.P30
FORTR.P8
FORTR.Q17
FRCDO.C1
FRCDO.C11
M786S.U1
MAIN.Q10
MAIN.Q39
MAIN.R5S
P.AY9
PIP.G18
PI1P.GU45
PIP.G60
S0S.A21
S0S.A22
S0S.A23
S0S.A6
TECO.E8
TECO.F1
TECO.¥20
TECO.G37
TEC0.G38
TECO.G55
TECO.HY
TEC0.J5
TECO.P1
TECO.P13
USER.B
USER,D
USER.F
USER.H
USER.L
USER.N
USER.P
USER.T

0.53
0.0k
-0.02

0.03

0.26

0.u41
-0.04

6.16

0.24

0.82

1.74

2.u47

0.69

0.56

0.82

4.45

2.57

9.12
45,22

0.82

7.01

1.44
23.87

1.64
12.11

—
' wm N N WLy
- W NO M
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* o o o o o o o e o

n
. .
DLW NV AW INONONOO 2 210 WON NN TWINEN 2O 2w

N —
= - [eaYaV]
e e o e & o o o s e

A
w

0.201
0.001
0.003
0.009
0.006
0.048
0.022

0.0303
0.079
0.007
0.002
0,002
0.003
J.002
0.047
0.0

0.000
0.007
0.06GC
0.000
0.214
0.094
0.0%3
0.000
0.000
0.000
0.479
0.002
€.009
0.092

n ~ALN
D ey

0.000

5 0.031

0.000
0.0090
0.0Co
0.067
0.476
.20
0.258
0.348
0.003
0.763
0.124
0.0°0
0.070
0.044
0.2u0
0.325
0.000
C. 8064
Q.743
0.548

0.195
0.222
0.020
0.059
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Table 2.5 : Parameter Estimation for AR(1) Model

z(t) = w + a,z(1-1) + e(t)

Page 2-47
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Process
Name

R2

P-VALUE P-VALUE
Chi-sq

COMP2.G63
ECL.B1
ECL.B2
ECL.S1
ECL.S2
FORTR. P21
FORTR.P30
FORTR.P8
FORTR.Q17
FRCDO.C1
FRCDO.C11
M786S.U1
MAIN.Q10
MAIN.Q19
MAIN.RS5
P.A19
PIP.G18
PIP.G4S
PIP.G60
S0S.A21
S0S.A22
S0S.423
S0S.A6
TECO.B8
TECO.F1
TECO.F20
TEC0.G37
TEC0.G38
TECO.G55
TECO.H1
TECO.J5
TECO.P1
TECO.P13
USER.B
USER.D
USER.F
USER.H
USER.L
USER.N
USER.P
USER.T

-—a
N
-3
e ¢ o o o
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Table 2.6 : Parameter Estimation for MA(1) Model

z(t) = w + e(t) - bje(t-1)

Process w b, s R adj PB-VALUE P-VALUE
Name F-test Chi-sq

G S e s G - . W e S G = S - AR D - G e e e -

COMP2.G€3  24.76 -0.31 9.7 0.127 0,321 0,000 0.000

ECL.B1 11.13 <0.32 18,0 0.112 0.701 0.002 0.92%
ECL.R2 74.70 -0.14 275.6 0.026 0.023 0,009 0.270
ECL.S1 49,00 0.01 3209.3 0.000 0.002 0.891 0.995
ECL.S2 77.55 -0.11 526.5 0.011t 0.C08 0.080 0.000

FORTR.P21 5.49 -0.05 7.9 0.002 0.007 0.605 0.283
FORTR.P30 6.36 -0.04 7.7 0.002 0.007 0,522 0.u498
FORTR.P8 6.21 -0.09 6.8 0,009 0.006 0,079 0.002
FORTR.Q17 5.26 -0,11 6.1 0.017 0,013 0.039 0.012
FRCDO.C1 610.29 0.40 1253.3 0.075 0.06€ 0.001 0.070
FRCLO.C11 184,04 -0.09 578.6 0.007 0.001 0.291 0.001
M7865.U1 1.58 -0.38 5.4 0,127 0.125 0.C00 0.00C
MAIN.Q10 8.39 -0,34 6.9 0.124 0.120 0.000 0.000 {
MAIN.Q19 B.17 -G.26 5.7 0.102 0.093 0.001 0.000
MAIN.R55 3.42 -0.14 3.4 0.02h 0,017 0.078  0.532
P.AY9 9.19 0,17 23.1 0.039 0.035 0.003 0.000
PIP.G18 1.19 0,17 0.7 0€.031 0.024 0.036 0.392
PIP.GU5 1.03 -0.43 0.8 0.213 0.204% 0.000 0.054
PIP,.G60 0.95 -0.30 0.4 0.098 0.094 0.600 0.000
S0S.82° 1.96 -0.02 2.7 0,000 0,002 0.665 0.000
S0S.A22 2.04 -0,17 2.7 0.029 0.017 0.122 0.959
S0S.A23 1.53 0.04 1.4 0,00t 0.0C9 0,741 0.372
S0S.A6 2.83 -0.05 3.1 0.003 0.006 0.542 0.665
TECO.B8 3.7t 0.09 6.6 0,011 0,000 0,316 0.940
TECO.F1 2.7% 0.10 b,7 0.007 O0.004 0.4U43 0.633
TECG.F20 5.76 -0.12 6.3 0.017 0.012 0.067 0.178
TEC0.G37 28.04 -0.01 122.7 0.C0C 0.009 0.897 0.303
TECO.G38 17.26 -0.02 65.0 0.00C 0.004 0.761 0.148
TECO.G55 4,35 -0.24 4.2 0.077 0.059 0.003 0©.21C
TECO.H1 2.24 -0.21 2.6 0.059 0.053 0.002 0.262
TECO.J5 6.41 -0.24 6.3 €.059 0,048 0.021 n.80%
TECO.P1 4,69 -0.14 12.8 0.021 0.0%4 0.091 0.000
TECO.P13 4,34 -0.12 5.6 0.018 0.006 0.22° 0.011
USER.E 36,93 -0.16 252.5 0,024 0.032 0.000 0,000
USER.D 52.25 -0.04 229.7 0.00% 0.07°3 0.587 0.000
USER.F 5.59 -0.01 17.5 0,000 0.001 0,783 0.000
USER.H 6.53 -0.05 39.9 0,002 0,000 0.274  0.000
USER.L 4.28 -0.03% 7.% 0,001 0.001 0.473 0.001
USER.N 30.22 -0.08 187.2 0.006 0.00h 0.089 0,000
USER.P 7.10 =0.15 17.3 0.027 0.027 0.000 0.00)
USER.T 25.11 -0,10 t11.€ 0,013 0.099 C.069 0,75k

- D - - AP B A S G RS R e e O = o G e e e e PO N e S R - e e
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Parameter Estimation for AR(2) Model

W+ 3,z(1-1) + axz(t-2) + e(t)

Page 2-49

- - - - - o e S - - - e - - - - .

P-VAL
F-test

Table 2.7
z(t)
Process w
Name
COMP2.G63 12.71
ECL.B1 8.00
ECL.B2 g _y2
ECL.S1 49,94
ECL.S2 71.08
FORTR.P21 4 .62
FORTR.P30 5.46
FORTR.P8 5.09
FORTR.Q17 3.51
FRCDO.C1 888.04
FRCDO.C11 187.83
M786S.U1 1.19
MAIN.Q10 3.69
MAIN.Q1Q 3.32
MAIN.R55 2.43
P.A19 5.35
P1P.G18 0.81
PIP.GUs -0.03
P1P.G60 0.30
S0S.A21 1.62
S0S.A22 1.58
S0S.A23 1.72
S0S.Ab6 2.62
TECO.B8 3. 47
TECO.F1 2.92
TECO.F20 4.30
TECQO.G37 27.51
TEC0.G38 16.21
TECO0.G55 2.20
TECO.H1 1.36
TEC0.J5 4,08
TECO.P1 4,08
TECO.P13 3.25
USER.B 23.51
USER.D 50.35
USER.F 5.49
USER.H 6.22
USER.L 3.69
USER.N 27.53
USER.P 5.28
USER.T 19,67

o &

—h
wm N
N ~
Ll L) . * . - [l . » -

-
o N

NV EJTWOEOAW AN NOOOOoONHWUMITONM—~N a2 OO0V =
.
DO OOUWNNN=NWTON -2 1IN WOANWEWONhREOONO IO

0.120
0.667
0.C00
0.Ct12
0.014
0.012
0.017
0.065
0.084
0.016
0.124
0.220
0.220
0.048
0.106
0.056
0.52-
0.232
0.023
0.034
0.009
0.004
0.041
0.007
0.036
0.000
0.002
0.157
0.100
0.059
0.021
0.035
0.080
0.001
0.000
0.003
0.012
0.00%
0.041
0.026

0.004
0.004
0.003
0.012
0.058
0.071
0.004
0.121
0.213
0.203
0.033
0.098
0.042
0.514
0.225
0.019
0.011
0.011
0.015
0.019
0.016
0.02

0.018
0.007
0.142
0.089
0.038
0.006
0.011
0.077
0.007
0.003
0.002
0.006
0.002
0.040
0.018

0.000
0.862
0.944
0.%49
0.116
0.2022
0.000
0.033
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Table 2.8 : Parameter Fstimation for MA(Z2) Model

z(t)

W+ e(t) - be(t-1) - boe(t-2)

;rocess w b, b, s R® Rgdj P-VAL P-VAL
ame

COMP2.G63  24.75 -0.39 -0.21 77.8 0.175 0.165 0.000 0.051

ECL.B1 11.09 -0.38 -0.10 18.0 0.121 0.099 0.00€ 0.891
ECL.B2 74,57 -0.12 -0.17 370.8 0.055 ¢.CL7 0.031 0,834
ECL.S1 49,00 0.0t 0.01 309.6 0.000 0.004 0,961 0.991
ECL.S2 77.56 -0.11 0.01 527.4 0.012 0.004 0.213 0.000

FORTA, P21 5.48 -0.01 -0.07
FORTR,.P30 6.36 -0.03 -0.08
FORTR, P8 6.20 -0.08 -0.06
FORTR.Q17 5.25 -0.12 -0.15
FRCDO.C1 615.91 0.31 0.21 122

0.063 0.010 0.640 0,198
0.009 G.000 0.350 0.682
0.014 0,008 0.090 0.005
0.049 0.041 C.C02 0.1T
0.121 0.108 0.000 0.429

7.9

7.7

6.8

6.0

6.4
FRCDO,C11 184,48 -0.07 0.09 578.4 0.0%8 0.002 9.230 ©.001
M786S.U1 1.58 -0.38 0.00 5.4 0.127 0.123 0.000 0.000 1
MAIN.Q10 8.38 -0.31 -0.19 6.8 0.163 0.155 0.000 0.003
MAIN.Q19 8.13 -0.30 -0.22 5.5 0.170 0.153 0.0C0 0.000
MAIN.RSS 3.81 ~0.18 -0,16 3.4 0,047 0.032 0.047 0.702
P.A1Q 9.16 ~0.13 -0.23 22.5 0.087 €¢.079 D5.G00 0.0C00
PIP.G18 1.20 ~0.18 -0.18 0.7 0.057 C.0LR 0,018 0.3298
PIP.GY45 1.03 ~0.44 -0.56 0.7 0.416 0.401 6.000 <£.904
PIP.G60 0.95 ~0.35 -0.27 0.4 0.162 C.15% ¢.000 0.000
S0S.A21 1.96 0.01 -0.153 2.7 0.012 0.0t4 0.018 0.000
S0S.A22 2.04 0,16 -0.02 2.7 0.029 0.005 0.295 0,941
S0S.A23 1.53 0.05 0.10 1.4 0.0'1 0.00% 0.581 0,434
S0S.A6 2.83 -0.06 -0.01 3.1 0.003 0.0'% 0.830 0.592
TECO.B8 3.70 0.12 -0.16 6.6 0.040 0.018 0,172 0.992
TECO.F1 2.71 0.08 -0.01 4,7 0.007 0.016 0.744 0.565
TECO.F20 5.76 ~0.11 -0.09 6.3 0.028 0.018 0.054 0.276
TECO.G37 28.63 -0.01 -0.01 123.,2 0.000 0.018 0.990 0.243
TECD.G38 17.25 0.00 -0.04  65.1 0.002 0.008 0.847 0.110
TECO.G5S k.33 -0.23 -0.27 4,2 0,137 0.322 0.0CO0 0.819
TECO.H1 2.24 0,24 -0.20 2.7 0.03% 0.054 0.000 0.743
TECO0.J5 6.41 -0.25 -0,03 6.3 0.060 0.038 C.068 0.7587
TECO.P1 h.69 -0.15 -0.01 12.8 0.021 0.025 0.2u40 0.000
TECO.P13 bh,32 -0.15 -0.16 5.5 0.041 0.017 0.185 0.9G1
USEK.B 36.95 -0.15 -0.16 249.9 0.062 0.0{0 0.000 0.095
USER.D £2.27 -0.04 0,00 *30.3 0.001 C.CO7 0.862 0.000
USER.F 5.59 «0.01 -0.01 17.6 0,000 0.003 0.947 0.000
USER.H 6.53 -0.05 0.00 40.0 0.023 0.002 0.548 0.070
USER.L 4,28 -0,01 -0.11 7.8 0,012 0.007 N.110  0.001
USER.N 30.21 -0.08 -0.02 187.3 0.006 0.002 0.224 0.002
USER.P 7.10 =0,16 ~0,09 17.2 0,.03¢ 0.035 0,007 0.000
USER.T 25.07 -0,12 =0,11 111,0 0.026 0.019 0.032 0.%4

S T T L A e
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Table 2.9 : Comparison of Different Models

Model Net HKeduction in Total SSR
Program User
Processes Processes

ARMA(1,1) 6.3% 3.9%

AR(1) 2.6% 2.3%

MA(1) 4.0% 1.7%

AR(2) 5.2% 3.8¢

MA(2) 6.6% 3.0%

The total reduction in SSR for varicus model types are listed in
Table 2.9 . The reductions have been expressed as a fracticn of total
SSR for Oth order mcdel ( z(t) = Z+e(t) ). We see that for program
processes the maximum reduction achievable is only 6.6% if we choose the
MA(2) model. The gain is only 3.9% in case of USER processes. The rext
question is whether with this little reduction it is worth while having

a two parameter model. 1In our judsmeni®*, it is too much work for too

# The analysis presented in this section is more of a gualitative nature
than quantitative,. Hence, personal preferences and biases of the
analysts may well affect the final conclusion. However, it 1is the
approach rather than the result that we deem more important. It is
quite possible for some analyst to disagree with our ccnelusions.
However, they can still follew our approach and come up with a
scheduling algorithm based on control theoretic arguments.
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little gain and the zeroth order model is good enough. Our conclusion
is also backed up by many of the observaticns made during the

' identificat lon step, viz., violent variations in the process, small

values of ACF and PACF, non-zerc probabilities in chi-square tests etc.
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2.6 SCHEDULING ALGORITHM BASED ON THE ZEROTH ORDER MODEL

The net conclusion of the analysis so far is that the CPU demand
behavior of programs 1is best represented by the following Oth order
model :

z(t) = Z+e(t)
Since, e{(t) is uncorrelated zero mean noise, it cannot be predicted, and
the best estimate of the future CPU demand is its mean value, i.e.,

2(t) = =z
where 2 = % iz(k)

k=1

The problem in using the above formula is that 2 can be calculated only
after all values of z(t), t=1,2,...,N are known. What we need now is an
adaptive technique to calculate 2 and update it each time a new
observation 1is obtained. Some of the possible adaptive methods are

discussed below.

1. Current Average : Average of all values observed up to t-1.

z ! E
t =707 2 z(k) t>1
t-1 k=1
1-2_ 1
T ID7%-1 4 D72(t-)
z (1-a _-1-

t)Zi-1 + arz(t-1)  where ap=73

Here, 2( denotes the current estimate of the mean.
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2. Exponentially Wcighted Ayerage® :

Zy = (1-a)Zy_q + az(t-1)

This is a specialization of case 1 above with 3, taken to be a constant

rather than a variable.

3. Average of the last n vyalues : n=constant

21 : 7& z(t-k)

n .3

Notice that the special case n=z1 corresponds to the NEL (Next Equal To

Last) strategy.

Regardless of which formula is used fcr prediction, the scheduling J J
algorithm basically remains the same. We call it SPRPT (Shortest
Predicted Remaining Processing Time) 2legorithm. It can be stated as
fcllows:

Each time a job leaves CPU for I1/0, the CPU time taken by the

Job is noted and the current estimate of mean value is
updated. This gives the estimate of the next CPU demand of
this Jjob. Scheduling 1is done at suitable intervals (e.s.,
cleck 1hterrupts, or whenever a job changes state ete.), and

the job with the shortest predicted remaining time is selected

% A recent survey of current operating systems revealed that Dijkstra's
T.H.E, operating gysten uses a scheduline alporithm based on
exponentially weighted average of previous CPU  demands [MeWTh].
However, the algorithm was based on the simple srzument that I/0 bound
program should be given preferential CPU allocation, and that a program
should not be classified as CPU bound simply because it took larae CPU
time during the lest burst, The exponential weirhlted average was
thought to be a better indicator of CPU boundedness,
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for CPU allocation,

Notice that the SPRPT algcrithm does not require any extra book
keeping other than what is already done by the operaing system. Most
operating systems record CPU time used by programs for accountinz and

billing purposes.
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2.7 CONCLUSICN

A control theoretic formulation cf the CPU management problem has
been presented. The problem has been formulated as one c¢f predicting
the future CPU demand of a job based on its previous demands. several
analytical expressions for the effect of prediction errcrs on the mean
finishing time of tasks have bcen derived. The results of an experiment
to study the behavior of actual prcgram h2ve been reported. The
empirical study shows that the CPU demands of program follow &a white
noise model. The best least-squares predicter for the next CPU burst
is, therefore, the current mean. Three different schemes feor adaptive
prediction have been prcposed. £n adaptive scheduling alecritha called

SPRPT has been proposed.




CHAPTER III

A CONTROL THEQRETIC APPROACH

10

MEMORY MANAGEMENT : {




Memory Management Page 3-2
Prcblem Statcment

3.1 PROBLEM STATEMENT

Memory management is the technique whereby an operating system
creates an illusion of virtually unlimited memory even thouzh the actual
physical memory is 1limited. Thus, 2 user program having memory
requirement larger than the available physical main memory can be run on
the system. This is accomplished by dividing the wuser program into
several equal size (say 1K Words) pieces called pages. The whole
program is storad on a secondary memory (drum or disk) and only a few
pages are loaded in the primary (core) memory. The program is then
allowed to run. Obviously, the program will be interrupted when it
tries to refercnce a page that 1is net in the primary memory. This

situaticn is called "page fault",

Cn a page fault, the demanded pare is brought in (o the ccre,
Space for the inccming page is obtained by removing either a pace of
this same program or a page of some other prozram residing in the core.
In the [first case, total core memory available to each program resains
fixed, and in the second case, it veries with time. The former schenme
is known as fixeé partitioning a2nd the latter as variable or dynanic
partiticning. 1In either case, when 2 new page is brousht 1in, an old
page must be removed from the ~ore. The paze to be removed is
determined by usire a paee replacemcnt algorithm, Thus, the cohief

problem in memory manargement is that of page replacement.
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Intuitively, the best page to remove is the one that will never be

needed again or, at least, not for a long time. In fact, it has been

proved that for fixed memory partitioning, the best page to remove is
the one that will not be referenced for the longest interval of time.
This policy called 'MIN' is optimal in the sense that it minimizes the
total number of page faults [Bel66). However, this requires advance
knowledge of the future page references (a prediction problem!).’ A
realizable approximaticn to MIN is the Least Recently Used (LRU) policy
which assumes that the page that has not been referenced for the longest

interval in the past 1is the one that will not be referenced for the

longest interval in future, and is the candidate for replacement.

In case of variable memory partitioning, it has been shown that
MIN and 1its LRU approximations are not optimal. The optimal pace
replacement policy in this case (called VMIN algorithm) is to remove all
those pages that will not be referenced during the next T time interval
(t, t+T), where T = R/U is the ratio of the cost of bringing a new page
in the main memory from secondary memory to the cost of keeping a page
in the main memory for unit time [PrF76]. Again, this 1is only of
theoretical interest, because it requires knowledge of the future pare

reference string.

A realizable approximaticn to VMIN policy is the Working Set (WS)
Policy [Den6d8]. According to this policy, the pages most likely to be
referenced in the next T interval (t, t+T) are those which have been

referenced during 1last T interval (t-T, t). All cther pares can
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therefore be removed. The interval T is called the window size. i

Both LRU and WS try to predict the future reference pattern from
the past behavior of the program. Efficient operation of these
algorithms is dependent upon the degree of locaiity of reference in
programs. In statistical terms, the principle cf locality states that

there is a high correlation between the immediate future and the recent

past behavior of a program.
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3.2 CONTROL THEORETIC FORMULATION

It is obvious from the previous discussion that the problem of
page replacement i3 a prediction problem. If we can somehow model the
page reference string as a stochastic process, we can use modern control
theoretic prediction algorithms such as Wiener filter, or Kalman filter

etc. to predict future page reference string.

There are many ways to model the reference string as a stochastic
process., Ideally the model should be such that it incorporates all the
informaticn contained in the page reference string. However, such a
model becomes very complex and difficult to analyze. We, therefore,
choose to begin with a rather simple stochastic process model suzeested
by Arnold {Arn75]. More complexity may be introduced in the future
work, The implications of this simplification, and limitations of the
conclusion drawn from this model are discussed in the last section of
this chapter. It turns out that even this simplified model gives us
much useful 1insight in to the problem. The stochastic process is,

therefore, described next.

The page reference pattern of 2 given (say ithy page of a prosram
can be modeled as a zero-one process ag follows :
1 if the page is referenced in the

kth interval ( (k-1)T <t < kT ) !
z(k) = ¢

{
!
|
\

0 otherwise
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A sample trajectory of the process is shown in Figure 3.1, The
problem of page replacement is that of predicting z(k) given trajectcry
up to time (k-1)T, i.e., finding the best estimate Z(k) of z(k) from
measurements up to time (k-1)T. This problem is well known in control
theory. There, much work has been done on the prediction of stochastic

processes.
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2(t)

Page 3-7

1T 2T 3T 47 5T 61t 771 t

Figure 3.1 References fo o page modelled as a binary stochastic process

Y
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3.3 COST EXPRESSION

In this section we derive an expression for the cost of imperfect
prediction. In memory management with fixed memery partitioning,
generally the objective is to minimize the chances of page faults. In
the case of variable partitioning, however, page faulls alone do not
provide an adequate criterion. This is because it is always possible to
reduce page faults for one particular prceram by giving it more memory.
This, however, penalizes other programs which must operate with less
memory. Thus, an additional objective is to keep memory usage also to 2
minimum. This second ccst is often referred to as space time preduct.
The total cost is, therefore, calculated as follows.

Let R = Cost of a page fault
= Cost of bringing a new page in to memcry

and U = Cost of memory usage

Cost of withholding one page of memory from other

users for unit time

Let Z(k) denote the predicted value of z(k) from information available
at time (k-1)T. Due to imperfect knowledge of the future, z{(k) and z(k)
are not the same. A price has to be paid for errors in predictiocn, 1f
both 2z and £ can take only 0, ' values, then there are onlv 4 cases to

be considered as shown in Table 3.1.

Thus the alditicnal cost due to imperfect prediction of z is miven
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TABLE 3.1 : Costs of memory management

Decision Additional

z 2 Based on 2 Cost Remark

0 0 Remove 0

0 1 Keep uT The page is not referenced
but siill kept.

1 0 Remove R A page fault occurs.

1 1 Keep 0 The page is referenced and

it is in the memory.

-

Our aim should be choose Z such that the expected cost E[C] is minimum.
E[C] = E[RzZ + UTZ%)]
If we choose our decision interval T such that T=R/U or R=UT, we have

E[C]

E[ R(zZ + 23)]

E{ R(z-%)2)

R E[(2-2)2)]

R times the mean square predicticn error
Note that the second equality above holds only if both 2z and 2% are

zero-one valued variables, not othervise.

A classic solution to the least square prediction prodlem is due
to Wiener(Pap65, p. 408]. 1t consists of designing a linear system
(Wiener filter) with impulse response h(u) such that the output of the
gystem 1is the estimate 2(t) when input is z(k), 0 < k < t-1 (see i

Figure 3.2).

B

8(1) = Jh(uwz(t-u)
u=1

The impulse response h(u) can be obtained by solving the Wiener-Hopf
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Linear System

Past o Predicted A
z ('-HW" with impulse response [ 1 (t)
votions h(u)

Figure 3.2: Wiener filter predicter. h{u) is given by
sotution to Wiener-Hopf equotion,
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equation :

C(k) = i(k_u)h(u) k:o, ‘, 2’ e
u=1

where C(k) = autocorrelation function of 2(t). The memory management
problem can, therefore, be solved by measuring C(k) and solving the

Wiener-Hopf equation.

Strictly speaking the Wiener filter technique is not applicable to
binary processes. For example, the output of the predictor will not be
necessarily 0 or 1. It may take any value. The analysis is, therefore,
approximate. The reason for the choice of this method for initial
analysis is that there is no as convenient a way of modeling binary
processes* as for continuous processes. In fact, the techniques for
modeling, estimation, and prediction of continuous processes are so well
developed that it 1is nc 1longer necessary 1o solve the Wiener-Hopf
equation in order to find the optimal predictor. Simply, by locking at
the shape of the autocorrelation function, it is possible to guess the
model of the system that could have generated the process ([BoJ70 *%
Nel73]. For example, an exponentially decaying autccorrelaticn function
implies an AR(1) model, i.e., the impulse respcnse h{u) (the solution of
the Wiener-Hopf equation) 1is zero every where except at u=1. These
"Time Series Analysis Techniques" provide very convenient means for

modeling empirical data.

* We have decveloped some techniques for modeling binary processes.
These techniques and their applicaticns to page reference process are
described in the next chapter. 1In this chapter we report the reosults
using conventional techniques.
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3.4 NON-STATIONARITY OF THE PAGE REFERENCHE PROCESS

Arnoid [Arn75] has reported the results cf autocorrelation
measurements on 3 number of programs., His conclusion is that in most
cases the autocorrelation function has the following form :

C(k) = p + (1~p)gk with p > 0 and q=constant
Arnold reports in his paper that one of the main findings of his
measurements 1s the fact that the autocorrelation functicn does not o

to zero, i.e., the constant p#£0.

An important implicaticn of this cbservaticn 1is that the page
reference process is a non-stationary stochastic process. In fact, 2
commenly used test for stationarity is tc verify that the
autocorrelation functicn C(k) dies dewn to zero =2t large lags [RodT0].
A simple explanation is that if the correlation between z(k) and z{0) is
zero for large k, the effect of the initial conditions will not be felt
after large enough k, and the process will eventually reach a state cof

fstatistical equilibrium™ called staticnarity.

There are unlimited number of ways in which a process can  be
non-stationary. However, mest of the real world non-stationary
processes exhibil a "homogenecus" ncn-stationary behavior such that scme
suitable difference of the process is stationary. For example, if tre
process exhibits homogeneity in the sense that apart from local level
( i.e., local mean ), cne part of the series behaves much like any cther

part, then the first difference of the process may be found tc¢ be
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stationary.

To model such non-stationary processes, therefore, one studies the
autocorrelation function of 1st, 2nd, 3rd, ... differences until a
stationary process is obtained. Thus, to mcdel z(1) we should study the
autocorrelaticn functions of

Dz(t) = z(t) - z(t-1)

D2z(t)

Dz(t) - Dz(t-1)

pdz(t)

pd-1z(t) - Dd-1z(t-1)

ti1l a stationary process Ddz(t) is found.

The non-stationarity of page reference process 2(t) can be
explained as follows. Even though the program behavior may be
stationary in one loczality, the frequency of reference to a particular
page varies as the program prcegresses from one locality to the next.
Thus, the process z(t) may behave 1like a set of 1loccally stationary
processes, 1i.e., like 2a homogeneous non-sta’ ionary process whose mean
value varies. If this is so, the first difference of 2z(t) must be
stationary. At this point this is just a hypothesis. The
identification results presented in the next section confirm this

hypothesis,
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3.5 ARIMA MODEL Of PAGE REFERENCE BEHAVIOR

This secticn describes the results of modeling the 1st and higher
differences of the page reference process. The data for analysis was
supplied by Arnold. It consisted of a reference string trace of the

MUDDLE compiler. About 5 different pages were chosen for analysis.

The autocorrelation functions of some of the pages studied is
shown 1in Figure 3.3. The broken 1lines indicate the 95% confidence
interval of the ACF for the given sample, It is obvious frcm this
figure that the process is non-stationary and further differencing is
necessary. The first difference process y(t) is defined as

y(t) = zl.)=-z(t=-1)
In almest all cases studied the first differences turned out to be
stationary. Sample autocorrelation (ACF) and partial autccorrelation
(PACF) functions are shown in Figure 2.4, The ccmmon characteristics of
these functions and the inferences that we can draw from these are now

described.

A.

!-—3
Ing
D

ACF cuts off at lzrge lags, This implies that the 1st
differences are stationary and no further differencing is necessary.
Thus the appropriate model for the page reference process z(t) would be

an ARIMA(p,1,9) model (Putc-Regressive Intezrated Movine Averarce model

of order p,1,q) for some suitable p, and q.
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Figure 3.3 : The Autcccrrelation functicn of page reference processes
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B. The mean of the difference process is almost zerg, This means that

o i

the constant term in the ARMA model for y(t) could be taken as zero.
This property of y(t) is least surprising because a 1little arithmetic
shows that this must be so.

y(t) = z(t)-z(t-1)

N-1

Hence, mean of y(t) 'l'iy(t)
t=2

1

- ﬁ:;g_!.;h(t)-z(t-ﬂl

z(N)-2(1)

=0 or +-1-
~N-1

£0

C. Both ACF and PACF are larcest at lag 1, after which they die cut

slowly. Of course, there are a few jumps at other lags¥% and the fall is
not smooth, The main point is that C(1) and @(1) are not insignificant
as was the case for CPU demand processes. Therefore, suitable low order

model for y(t) is ARMA(1,1) model. To see this clearly, consider the

% Some pages show periocdic peaks in the ACF even at large 1lags. This
happens for the pages that are in a big (with respect to interval T)
program loop. If the total time of the loop is kT (say), the page is
referenced every k intervals. Thus z(t) and z(t+k) are highly
correlated, and so are z(t) and z{(t+jk), j=2,3,... This will cause
peaks in ACF at lags jk, 3=1,2,3,... In conventional time series
analysis this behavior is called "seasonal". Though it is nct very
difficult to model this behavior, we will not consider this here in
order to keep the analysis sinmple,
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ARMA model :
y(t) - ay(t-1) = e(t) - be(t-1) '
The ACF and PACF of this process for different relative values of

parameters a and b are shown in Figure 3.5. The exact expressions are

as follows :

c(0) = 1 @(0) = 1

e 8(1) = a-b
1-2ab+b2

C(k+1) = aC(k) k>0 B(x+1) = b@(k) k>0

The comparison of Figure 3.4 with Figure 3.5 shows that 2

ARMA(1,1) model with b>»a>0 could be used for y(t).

D. The ACF 2s well PACF are negative at lag 1. This cbservation along
with the expressions for C(1) and 8(1) given above further confirm the
constraint guessed above, i.e., bda. Tne fact that the successive
values of y(t) will always be negatively correlated can easily be seen
as follows:

y(t)=1 => z(t)=1 => y(t+1)=0 or =1

y(t)==1 2> z(1)=0 => y(t+1)=0 or 1
Thus a positive value of y(1) implics that that the next value will be

zero or negative and vice versa.

The parameter values obtained for the cases analyzed are listed in
Table 3.2. Notice that a and b do satisfy the censtraints (b>a>0)
conjectured above. In addition we notice that b is almost always nearer

to 1 and a is nearer Lo 0, Alxo listed in the table is thé'felntive
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Figure 3.5: Autocorrelation and portial autocorrelation functions Cy ond
for ARMA (1,1) Model

y(1) - ay(t-1) = e(t)-be(t-1)
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TABLE 2,2 : Parameter values for the ARIMA(1,1,1) model

(1-aB)(1-B)z(1) = (1-bB)e(t)

Page # 2 b R2
44 0.654 0.961 14.1%
79 0.446 0.856 17.3%

172 0.345 0.822 20.6%
206 0.0 '0.858 41,49
226 0.0 0.783 38.2%

D G D e P ™ = D . D P E En S D B G G PO D R P D S G e e e S e R R SR - e W W A S =

reducticn in the variance (R2) achieved by the model. Notice that tre
model does provide significant gain in prediction efficiency over a

zeroth order model.

The fact that ARMA(1,1) is the zppropriate low order model for
y(t) 1is further confirmed by comparing it with other low order models
like AR(1), MA(1), or AR(2). The relative efficiency of these models is
listed in Table 3.3. Notice that in all cases analyzed, the ARMA(1,1)

model turns out to be the most efficient.

Since y(t) is the first difference process of z(t), z(t) is said
to be the first "integrated" process of y(t). Thus an Auto Regressive
Moving Average (ARMA) model of order 1,1 for y(t) implies an Auto

Regressive Integrated Moving Average (ARIMA) model of order 1,1,1 for

z(t). The model equation for y(t) is
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TABLE 3.3 : Comparison of ARMA models of 1st difference process

List of R2 (% reduction in variance) for different models of y(t)

- o> - . . - - -

172
206

226

(1-aB)y(t) = (1-bB)e(t)
where B is the backward shift operator (By(t) = y(t-1)).
z(t)-z(1-1) = (1-B)z(t)
the model equation for z(t) is given by the following equation :

(1-aB)(1-B)z(t) = (1-bB)e(t)

z(t) - z(t-1)

- - . - . - - = D P S WS Ve - G ey W A e S T S S

- . D = T o - e G G D e €D W 4 D R YD R YR D G WS A W G T -

16.9%
29.0%
29.5¢%

e Y L T TR P PR PR P P L e Y L Y

Further since,
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3.6 PAGE REFERENCE PREDICTION USING THE ARIMA(1,1,1) MODEL

The net conclusion of the last section is that the page reference
behavior of programs can be appropriately modeled by an ARIMA(1,1,1)
model

(1-aB)(1-B)z(t)=(1-bB)e(t)
where z(t) is the binary page reference process, e(t) is white noise, P
is the backward shift operator, and a, b are model parameters with
b>a>0. Using this model, we can derive equaticns for prediction cof z(t)
based on process observations up to time t-1. In the following, we
derive two such sets of equaticns called "open lcop" and '"clcsed loop"
predictors. An implementation of open loop predictor using twe

exponential weighted averages is alsc discussed.

3.6.1 Open Loop Predictor : The usual way to derive a predictor fer any

ARIMA model 1is to transfoerm it into an equivalent AR model. For our
ARIMA(1,1,1) model, this is done as follows:

e(t) = c-—c-io-lo z(1)

[ 1= (1+2-b)B -(b-a)(1-b)£f;bi“251 2

s

z(1)-(1+a-b)z(t=-1)=(b=-a){ 1-b) pl-2z(t-1)

1

BN

or, z(t)

e(t)+(1+a-h)z(t-1)+(b-a)(1-b)

pi=2z(t-1)

-
1]
N




O
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Since e(t) is white noise and can not be estimated cr predicted
from the previous observations, the best estimate of 2z(t) from

observations up to time t-1 is given by:

2(1) = (1+a-b)z(t-1)+(b-a)(1-b) §i1b1-22(t-1) [3.1]
i=2

This equation is very inconvenient to use because it requires knowledge

of all previous observations. One way to simplify it is to ignore the

higher order terms (terms with small coefficients). In practice, terms

after the S5th lag can be easily ignored without much loss in accuracy.

A more ingenious procedure is to rewrite the equaticn 3.1 as 1
follows:
2(t) = (1-c)z(t-1) + c z(t-2) {3.2])

where c=b-a>0 and 2(t-2) is defined as (1-b) times the summaticn term in

the equation 3.1. It can be recursively calculated as follows:

2(t-2) = (1-b)z(t-2) + b2(t-3) with 2(0)=0 [(3.3]
Notice that both the equations 3.2 and 3.3 represent exponential
weighted averages. However, the weighting coefficients in the two

equations are quite different, because b-c = a £ 0.

3.6.2 Closed Loop Predictor ¢ A somewhat different equation for the

predictor can be derived as follows:

2(1) = —oo BB ___

"
]
o~
~~
S

F's

(l+a-7) - aB
o)+ SSHCEY e
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= L) ¢ cmc el Moo 22
e(t) (1-aB) (1-B) v 2(t-1)
} (1+a-b) -aB
= e(l) + --tiiiﬁ;-E- 2(t-1)
Hence Z(t) = ilt%ﬁﬁﬁfzfg 2(t-1)

or (1-bB)Z(t) = [(1+a-b) - aBlz(t-1)
or 2(t)-bZ(t-1) = (1+a-b)z(t-1) - az(t-2)

or Z(t) = (1+a)z(t-1) - az(t-2) - blz(t=1)-2(t-1)]

(1+a)z(t=-1) - az(t-2) - be(l-1) (3.4]

where e(t) = z(t)-2(t)

Error in prediction at t f

Innovation sequence

The block diagram represeniations of predictors given by equation 2,1
and 3.4 are shown in Figure 3.6. It is cbvious from the diazrams why we

call these predictors open loop and closed loop respectively.
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Page Reference Fredicticn

2(t-1) Open loop 2(1) ~
——er e . s

Predictor }

i

|

]

!

'

2z (t-1) N !

> Ciosed loop 2(1) ,

A |

2“_” Predictor

Deloy I«

Figure 3.6: Block Diagram representation of Predictors
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loop

3.7 ARIMA PAGE REPLACEMENT ALGORITHM

Using either the open loop exponential predictor or the closed

equation derived above, one can design a page replacement

algorithm, We will call such an =zlgorithm "ARIMA page replacement

algorithu™, In the follewing, we describe the aleorithm based on the

exponential predictor. The closed 1loop version can, similarly, be

designed. The algorithm is as follows.

1.

Associated with each page i is a hzrdware register zi (called

Z-register). Alsoc associated is a bit z; (called z-bit).

Whenever a2 page is referenced its associated z-bit is set.

Every T interval (where T is the ratio c¢f costs as describad

before), all =z-registers are updated using the folloving (FORTREN
like) statement

- -b)#* 5

21 = (1 b) zi + b*Zi

ard all z-bits are cleared.

When a new page is loaded in the memory the Z; bit is cleared and

21 is initialized to 0.

At the time of page replacement, which could bc every T interval,
or more appropriately at page fault, a quantity called ii is
calculated as follows :

2 - (1-c)%z; 4+ c*Z

Based on ii’ a decision is made regarding the pare to bc replaced.

- . O e - . L e N . S AR Ut v - - 2
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There are many possible ways of making this decision. Some
examples of such decision rules are described below :
a. The page with least ii is replaced.
b. All pages with 21 < k, where k is some suitable cut off point
(say 0.5) are replaced.
¢. The first page encountered with ii < k is replaced.

d. #Among the pages with Z, ¢ k, the page to be replaced is

selected using LIFO, FIFO, or LRU algorithms.

Of course, one may also use a combination of two or more rules,
for example, in the case b above, if there is no page with 21 < k, then
use the rule a, or iry varying k depcnding upon the page fault frequency

and so on.

The main overhead involved in this algorithm is the update of 2
registers every T interval. This overhead is not excessive considering
that it involves only cne multiplication, one addition, and a
complementation. A simple hardware circuitry cculd be used to do this
task as shown in Figure 3.7. At the time of replacement the same

circuitry could be used for prediction by replacing b by c.

The question that we have ignored so far is what value of
parameters b and c should be used in the ARIMA algorithm. Ideally, cne
would like to estimate these parameters separately for each pace. The
estimation technique should be an adaptive one so that b; and cy are

updated along with 2, every T-interval. Alternately one could use some

suitable fixed value. This latter procedure has much less overhead and
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Figure 3.7: Hordware Implementgtion of ARIMA Algorithm
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is more practical. However, in this case, program behavior monitoring
should be done from time to time to detect drastic variations in user
program behavior. The main consideration in choosing these values is
that they should be representative of user program behavior, and also
they must be easy to represent, For example, for the pages we analyzed,
we found that the average values of b and c were 0.856, and 0.567
respectively. Therefore, b=7/8, and ¢=1/2 seem appropriate, considering

that we are going to use binary arithmetic.
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3.8 SPECIAL CASES OF THE ARIMA ALGORITHM

In this section we show that working set, reference frequency, and
few other algorithms are special cases of the ARIMA algorithm, Another
special case is an extended working set, whereinr the window size is
dynamically adjusted to match the prosram loca. .ty size. Recall from
the last section that the exponential predictor for the ARIMA(1,1,1)
model is given by :

2(t) = (1-c)z(t-1) + cz(t-2)

2(t-2) = (1-b)z(t-2) + bz(1-3)
We shall refer to these two equations as predicticn equation, and update
equatlion respeciively. ine 1ocur special cases of the PAREIMA alucrithm
occur when the parameters b and ¢ take their extreme values 0 and 1.

These cases are now described.

Case I [e=0] : In this case, the prediction equation becomes

2(1) = z(t-1)
i.e., the pages that were referenced in the last T interval are the ones
that are 1likely to Dbe referenced in the next T interval. A1l other
pages can be replaced. This is exactly what Working Set policy also
Says. For this special case of the ARIMA pzre replacement algorithm
described above, the 2-registers are no longer necessary, and the pazes
with 2-bit on constitute the working set. Also notice that czb-az0
implies that the model equation for this case is

(1-B)z(1) = e(1)

i.e., an ARIMA(0,1,0) model. In this case the process z(t) iz an
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"Integrated white noise" or Wiener process. Thus working set is optimal

for programs whose page reference processes constitute a Wiener process.

Since using WS is equivalent to using a white noise model for the
first difference process y(t), the percentage improvements listed in
Table 3.3 are also percentage paging cost improvements achievable by

various ARIMA models.

Case II [b=1] : For this case the update equation takes the following

form :
2(t-2) = Z(t-3) = 2 (say)
i.e., the mean is time invariant, the prediction equation therefore
reduces to an AR(1) predictor :
2(t) = (1-c)z(t-1)+c2

This is Arnold's Wiener Filter model [Arn7S5]. Notice that this is

applicable only if the mean is time invariant, i.e., if the 2z(t) process

is stationary.

Case II1 [c=1, b=1] ¢ For this special case, like case II above, the
update equation implies a time invariant mean and the predictor equaticn
becomes

2(t) = 2
i.e., the pages are expected to be referenced with fixed frequency (mean
value) and the page with least z is the candidate for replacement. This

18 the Reference Freguency policy of paze replacement. This model is

also known as Independent Refercnge Model (IRM)., For this case the

model equation becomes
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(1-B)2(t) = (1-B)e(t) since a=b-c=0

or, z(l) = e(t)+z

This is an ARIMA(0,0,0) or white noise model. Thus the reference
frequency model is appropriate only if the page references constitute

white noise#*,

Case IV [c=zb] : In this case, the predictcr and the update equations

become similar,
2(1) = (1-b)z(t-1) + bz(t-2)
Z(t-2) = (1-b)2z(t-2) + bz(t-3)
These equations can be rewritten as follows:
2(t) = z(t-1)
Z(t-1) = (1-b)z(t-1) « bZ(t-1)
This is an extension of the independent reference model. Here the
reference frequency is assumed to be time varying and is computed
adaptively using an exporential weighted average. This policy could,
therefore, be called "Adaptive Independent Reference Model"™ (AIRM).
This is optimal when a=zc-b=0 and the process model is ARIMA(O,1,3):
(1-B)z(t) = (1-bB)e(t)
i.e., z(t) is the integration of a first order (colored or correlated)

noise. It could, therefore, be called "Colored Wicner Process".

0 5 R 40 e D e e T D > D G e D G P S P S e e S G A R A em R R = -

®* This same conclusion was reached by Aho, Denning, nd Ullman [ADUT71].
They call it Ao policy and show that the policy is optimal when the
probability of reference of a rare depends neither on tims
(staticnarity) nor on previous prorram behavier (no-autocorrelation).
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We conclude this section on special cases of the ARIMA(1,1,1)
model by depicting all the four cases discussed above on a single
diagram as shown 1in Figure 3.8. The ARIMA wmodel operates in the
triangular region 0<c<b<(}. It 1is obvious from this diagram that the
ARIMA(1,1,1) is a general model and that Working set. Arnold's Wiener
Filter, Independent Reference Model, and Adaptive Independent Reference

Model are all its boundary cases,
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In the la:. section it was shown that the working set policy is a
special case of the ARIMA policy. Therefore, a question that naturally
arises is whether there is any relation between the ARIMA and another
popular page replacement algorithm LRU, and whether the LRU is also a
special case of ihe ARIMA. The answer 1is probably "no". This is
because of the limitations of the zero-one stochastic formulation that
we started with. It uses only a subset of the available past

information.

§ deciper insight into the information structure can be obtained by
considering the information used by various algorithms., VMIN - the
optimal variable space algecrithm uses the complete page reference
string. WS requires knowledge of set of pages referenced in the last T
interval. It does not require the order in which the pages are
referenced or the number of times they are referenced. A general ARIMA
model would use all the sets of pages referenced in successive T
interval. - Finally, LRU uses the set of last referenced m pages along
with their order of reference. The Venn diagram of information used by
these algorithms is shown in Figure 3.9. The broken line in this figure
separates the past from the future. There are two inferences to be

drawn from this figure :
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ARIMA

Figure 3.9: Information used by various pcge replacement
. olgorithms.
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1. The information used by the WS is a subset of that wused by the i
ARIMA. This explains why ARIMA policies can always be specialized to WS

set policies with proper window sizes.

2. There is much information, ( like the frequency of reference of a
page in an interval, the order of reference of various pages, and
cross-correlation between different page processes ), that is not wused
in the zero-one stochastic process formulation used to derive the ARIMA
policy. If we could somehow develop a formulation which wuses the
complete past information, then both the WS and the LRU will be special

cases of the generalized model. The conclusicns drawn would then be (

universal in scope.
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3,10 CONCLUSIGH

The page reference behavior mcdeled as a zero-one binary
stochastic process exhibits a non-stationary behavior. An ARIMA(1,1,1)
model was shown to be appropriate for the process. This model 1is then

used to design a memcry management pclicy.

The main results achieved in this chapter can be stated as

follows:

1. We have shown that the cost of imperfect opredicticn is
proportional to the square of the difference between the

predicted and tne actual valune.

2. Using empirical results, we have shown that the ARIMA{?,%,1)

model is an appropriate model for page reference processes.

3. We have designed a new page replacement algorithm c¢zlled ARIMA
page vreplacement algorithm. The algorithm is shown easy to

implement.

4, We have shown that many conventicnal algorithms 1like lkorking
Set, Reference frequenzy, 2nd Arnold's Wiener Filter algorithm
are merely boundary cases of the ARIMA algorithm. Also we have
described conditions wudder wihaich these boundary cases are

optimal. 1In particular we, thus, have a ccntrol theoretic

derivaticn of the WS pclicy.
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In the analysis presented in this chapter, approximaticns were
introduced due to Gaussian assumption. We, therefore, expect that the
development of identification methods for discrete binary processes will

lead to better understanding and management of program memory behavior.
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4,1 INTRODUCTION

In this chapter we present a new approach for analysis of binary
processes, A process z(t) 18 called binary if the variable z(.) can
take cnly two values 0 and 1*, A classic example of a binary stochastic
process 1is the so called "Semi-random Telegraph Signal", which consists
of a sequence of independent 1identically distributed binary random

variables,

In computer science, binary process are a common occurrence. For
example, as was shown in the last chapter, the reference pattern of a
particular page constitutes a binary stochastic process which can be
used to design new memory management policies. Similarly, in database
management , reccrd reference patterns constitute binary processes which
can be wused to detect changes in reference patterns and to determine
optimum points for database reorganization. In rzirnsler nelwdrks,
packet arrivals at a node can be modeled by a zero-one process. Several

similar examples can be constructed in the areas of weather prediction,

signal detection, medical diagnosis, and infoimation theory.

% In fact, z(.) can take any two values say a and b. The analysis

presented here can still be used by transforming it to another process

L(t)-a
y(t)--];---_ Notice that the process y(t) is a zero-one process.

-3
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In spite of the fact that binary processes are so common, it 1is
surprising that no direct technique for identification and prediecticn of
such processes has been described in the published literature. The two
known methods for analyzing such processes are both indirect [CoL66].
In the first method, one analyzes the intervals between successive
z{(t)=1 pulses. These interval can be assumed to be Gaussizn, and the
analysis carried out as usual. Alternatively, one can ccunt the number
of 2z(t)=1 pulses over suitable intervals of equal length and model the
resulting "count" process as a Gaussian process. It is obvicus that
both these approaches for "modeling" of the process are not suitable fcr

the predicticn cf z(t) given its histeory upto time t.

In this chapter, we present a direct approach to modeling,
estimation, and predicticn of binary prccesses. The eapprcach is
analogous to that for Gauss n processes. Like the Wiener filier for 2
Gaussian process (see Figure 4.1), we design a system (a Bcclean system)
whose output is the predicted value Z(t) , and the input is the past
history of the process. Our mcdel 1is mere eeneral than the Wiencr
filter in the following respects:

1. The measure of goodness of the precictor is nct limited to a2 fixed
criterion, e.g., least-squares in the caze of Wiener filter. Cur
methcd applies to any given critericn: 1linear cor non-linear.

2. We do not impose the lincarity ccndition cn the system. Our method
gives the optimal non-linear predicter for the process. Further, if
the optimal predictcr 1s not wunique, our method gives 211 1the

predictors.
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Past History . Future
] Linear System >
2(t),...,z(t-1) z(t)

0. Wiener Predictor for Gaussion Processes

o

Past History Future

—— > | -
2(1), . zq-1y| Booteon System Z(1)

b. Boolesn Predictor for Binary oand k-ary Processes

Figure 4.1: Anology between Wizner predictor and
Booleon Predictor
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3. Our model is not restricted to stationary processes alone; it is

applicable to some non-stationary processes also.

An additional feature of our model is that it gives zero-one
estimates of a zero-cne process. Since z(t) is binary it iz not
meaningful to have fractional estimates of z(t). For example, it 1is
meaningless to say Z(t) = 0.73 (though it is meaningful to say that the

probability of z(t) = 1 is 0.73 ).

The only restriction in our model, which dces not appear in the
Wiener filter, is that the process is assumed to be Markov of a given
order n. A process is called Markov if the probability distribution cf
z(t) given all the past history of the process depends only on a finite
past. In particular, z(t) is Markov of order n if

Plz(t)!2z(1),2(2),...,2(1=-1)Y = Plz(t)!z(t-n),z(t-n+1),...,2(t-1)]

Here P[.] denotes the probability of an event.

In this chapter we develop a general prcbabilistic model relatine
z{t) to its past values. Eased on this model, an expression is derived
for the likelihood function, 2and hence, for the maximum 1likelihood
estimates (MLE) of the model parameters. We show how the model is used
for optimum predictiocn and derive a formula for the total cost due to
predicticn errors. Then we extend all results tc the more gecneral case
of k-ary processes. In this case, the process takes integer values frem
0 through k-1, Finally, we show how the model can be used for parfe

replacement .
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In the analysis presented in this paper we make frequent use of
the properties of pseudo-Boolean functions. The essential elements of
the theory of such functions are, therefore, briefly reviewed 1in the
next section (adopted from [HaR68]). The material in the other sections
of this paper is original and, as far as is known to'the author, has not

appeared anywhere in the published literature.
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4.2 BOOLEAN FULCTIONS - FUNDAMENTALS

The definition of Boolean functions varies widely ameng authers.
In an attempt to generalize the concepts, even the pioneers of this
thecry, Rudeanu and Hammer, have changed the definition over time (e.z.,
in (HaR68), and ([Rud74]). In this thesis, we adopt the fcilowinz

definiticn from [HaR6E8].

4.2.1 Definiticn : By a "Boolean function™ f{x

19X2,.24,Xp) ©0F n

variables we mean a mapping

£:{0,1}1->{0,1]

i.e., a zero-one valued function of zero-cne valued variables. K

An example cf a Boolean function is f(x1.x2) = Xy + Xp - 2Xq¥p.
The wusual way tc express a Boolean function is by usinzg the Beoolean
operaticns (e.g., conjunction, disjunction, 2nd negatiocn). For examplc,
the above function is usually written as
f(x1,x2) = XqX5 VvV X9%)p
vhere "v" is the disjunction (inclusive OR) operator, bar indicates

negation, and conjunction is  denoted by  juxtaposition. The

result of the

m

transformation between the twoc representations is
following equivalences:

X = Y-x wx 6{0,1}

Xy VX5 = X9 4+ X =~ X1Xp wxq,x, €{0,1}
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A notation which is commonly used in the 1literature on Boolean
functiong is the following

xX0 =2 x?'=x

where x0 is "x sup zero" (not x raised to the power zero). To avoid
confusion, we will use (x)1 to denote the ith power of a binary variable
x. Continuing with the notation, if X = {x1,x2,...,xn} {s a sel of n

binary variabies and 1.5, ,.4i, is the n digit binary representation of

i, 0¢ 1 £2P-1, then

q(X) = xi = X4 Xy 2 ... X

{s called the ith fundamental product. For example, for n=3

0,0 = %,5,%

1 -
q5 = Xq x20x31 = X1X2XB and qp = X10x2 1X2X3

An important prcperty of fundamental products is that qi(x)=1 if
and only {if X=i, Thus, the fundamental products are "mutually
exclusive”, i.e.,
<(o 143
Gyng =

A CTRRE
There are many ways of representing a Boolean function. A few

examples are given below:

Voo Xy - xp + 229X (Polynomial form)

X%, v X312 (Disjunctive Form)

(x4 v x3)(%y v &) (Conjunctive Form)
Tex,ex, (Reed-Muller form)
%, 4 OKqxp + Ox4Xp + X9X2 (Sum of Products form)
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In our analysis, we usge the sum of products form. Using Shannon's
decomposition theorem, any Roolean function can be expressed in this

form as follows:
2=t
£(x) = z: fiqi(X)
i=C
where, fi o p(XiX=1), i.e., £(X) when xy=iy, xpzip, ..., Xnzip.

The concept of Boolean functions can be generalized to other
functions - not necessarily zero-one valued. Such functions are calleiq

"pseudo-Boolean functions",

4,2.2 Definition : Let R be the field of real numbers; by a3

pseudo-Boolean functicn f we mean a mappinz
£:{0,1}" 5 R

i.e., a real valued function of binary variables.

An example of pseudo-Ecclean functions is the followirg function :
r(x1.X2) = O.S(X1)3 + 3xy o 2(x2)2

In fact, all functions (including Boolean functions) c¢f binary variables

are pseudc-~-BRoolean functions. Theretore, the adjective “pscudo-Booleon*

may be dropped whenever it is clear from the context.

Again using Shannon's decompce=ition theorem, any functicn of

binary variables can be reducecd to a "sun of products form":

n.1

For example,

f(x1,X2) = 1 - 0.5(X1)3 + 3X1X2 - 2(Xp)2

For this function fog= %Wy fy= a1, f

Fs
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r(x1,X2) = 1)’(1)‘(2 +* (-1))-(13(2 + 0.5)(1)-(2 + 1.5)(1)(2

Similarly, Xzexl = 0!1)':2 + 1Xxp + 0x1§2 + eXqXy

Notice that when expressed in the sum of products form, every
function of binary variables becomes linear in each variable (i.e., each

variable appears only as its first power), although the function itself

is non-linear (due to the presence of product terms).
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4,3 DEVELOPMENT OF THE BOQLEAN MQDEL

Let Zji denote the set of 1 observations immediately preceding
z(j), i.e., {z(j-1), z(j-i+1), ceny z(j-1)}). Thus
th_1 = {2(1),2(2),...2(t-1)]} denotes the complete past history of the
process. Let Py = Plz(t)=112(1),2(2),...,2z(1-1)] dencte the prcbability
of z(t)=1 given the past history of the process. The simplest binwry
process 1is the so-called "Binary khite Noise" (PWN) or Bernculli

Process. It is defined as the sequence c¢f independent identically

distributed binary random variables. The semi-random telegraph signal

described previously is a BWN. Also if we associate a time index to
successive Bernouili trials, they will constitute a BwN., A BYH c2n also
be obtained by filtering and clipping a Gaussian white ncise. A BUWN

with parameter p will be denoted by BWN{p)

For a Markcv process of crder n, P, depends only on the past n
values Z _-{z(t-n),z(t-n+1),...,2(t=-1)}. We can represent the most
general non-linear dependence of Py on Zy, by saying that py = hiZ,),
where h is some non-linear function of anr such that 0< h <1. In the

sum of products form, we have

20=1

Puo= Plz()=N7y ) = [ 149;(Z4p) (4.17
i=0

where hy = M2 n1Z4p=t)

Value of h(ztn) when z{(t-n),...,z(t-1) take valves

correspondins to the binary expansion of i.

and Q(2y,) = 1P fundamental prodvet of z(l-n),...,z{l-1)
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The equation for z(t) corresponding to this equation is

2=
z(t) = Zei(l)Qi(Ztn) [4.2]

where, €;(1)~BWN(hy).

By taking expectations of both sides of equation (4.2) , it can be
shown to be equivalent to equation (4.1). Notice that Z,, denotes the
"state" of the process. The process can be in any one of 2N states

corresponding to Zin=1, iz0,1,...20-1. The distribution of the future

value z(t) in state i is Bernoulli with parameter h,.

For example, the Boolean model of a second order Markov process is

z(t) = €o(t)Z{t-2)2(t-1) + e (1)z2(t-2)z(t-1) + ez(t)z(t-Z)i(t-1)

+ e3(t)z(t-2)z(t-1)
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4.4 LIKELIHOOD FUNCTION AND PARAMETER EZSTIMATION

The proposed rodel (equation 4.1 or U4.2) has 20 parameters
hO,h1,...,h2n_1. In this section we develop a likelihood function for
the cbservaticns, and find the expression for maximum 1likelihood 1
estimates c¢f these parameters. To develop the result in the form of

Theorem U4.4,2, we need the following lemma,

4.4.1 Lemma [Function Lemmal : Let f be a mapping f :R->R,

i.e., 2 real valued function of a real variable, and let

o1 |
p = E: hiqj (X)
i=0

2g=1
Then, f(p) = LB f(hi)qj(X)
i=

roof : Let p h(X)

so that f(p) f(h(X))

Since tiie right hand side of the above equation is a pseudo-Boolean
functica, it can be written in a sum of products form:
20-1

2: f(h(X1X=1))qy(X)
i=0

f£(h(X)) =

2n-1
f(hi)qi(X)

i=
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Some examples of the use of the Functicn Lemma are given below.

2 2!
1794
1=0
2h=1
-1 . -
p = Z: hi 1q1(X)
i=0
201
log(1-p) = "3~ log(1-hy) qi(X)
i=0

4.4,2 Theorem [Estimation Theorem] : The maximum likelihood estimate of

hi based on N observations {z(1), z(2), ..., z(N)} is given by

my ¢
hi = ; """" i:0,1,...2n'1
i0 * My
where D0 = # of times the sequence ztn=i is followed by z(t)=0
and o, , = # of times the sequence 2,,.-i is followed by z(t)=!

Proof : Let H = {ho,h1'-..,h2n_1} be the set of parameters.

20=1

Let, P, = Pl2()=1120,H) = ) hyq;(Zy,)
i=0
pt = 1-pt = P[z(t):O{Ztn,H]

The above two equations for P, and Py can be combined as follows:

Pl2(1)12, K] = Plz(t)=1i2,,,m)2(VP(2(V)=01Z,  1)Z(D)

= ptz(t)sti(t)

Therefore,
P[Z(N)’Z(N-1)'o¢o ,2(1”2(-n+1),2(-n+?),...,Z(O).H]

= P[Z(N)=Z(N'1)p~--:2(1).Z1n,H]P[z(N—1):z(n-2),....2(1),Z1n,H]...

e Plz(D)iz, K]
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N
= tTE Pl2(t)iZypn,H)

The above equztion gives the likelihcecd that the N observations cane
from a model with parameter H = {ho,h1,...h2n_1}. Notice that we assume
the initial conditions z(-n+1),...,2(0) to be given (or tc be assumad

equal to zero). Only the parameters are to be estimated, The

likelihood function is

L(H) = T%

z(t)s Z(t)
p
t=1 t

Pt

taking the log of the above equation we met the loz likelihcod function

1(H) = log{L(H)}

M
= Z: (z{t)log py + z(t)lcg Py)
t=1

Now using the Functicn Lemma,

N n-1
N 2
2_ z(t)loz py °~ z(t) 2: (log hi)ay(Zyy)
t=1 t=1 i=0
n_1q N
= %z: 1og(hi)2: z(t)qi(Ztn)
i=0 t=1
2n=1
= 2: Ti4loglhy)
i=0
where m g :tZ: z(1)qy(Zyp)

# of times Z, -i is followed by z(t)=1
The last equality 1s a resull of the observaticn that z(t>qi(7tn) is 1

if and only if z(t)=1, and 21n=i' Similarly,
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3 2!

z(t)lcg Py = L. miolog(hi)

t=1 i=0

Therefore, the log likelihood function is given by
n
-1

1(H) = Zz: {mi1log hy + miolog(I-hi)}

i=0

The maximum likelihood estimate of hi is obtained by setting the first

derivetive cf the log likelihcod function equal to zero, i.e.,

dl my 4 mio
e 20 % mmm e mme-

dh -
i hy by

m
11
or h, = cecccccaa-
B0 * My

[Q.E.D.]
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4,5 MEASURES OF GOOQDNESS

In the case of Gaussian random variables it is common tc define
the "best estimate” in the least-squares sense (LSE), i.e., Z is the
best estimate of z if E[(z-E)Z] is minimum. In the case of binary
variables, the rcle is played by what we propcse to call the "Least XOR

Estimate™ (LXE), and the "Least Cost Estimate" (LCE).

3.1 Least XOR Estimate : Since both z and Z can take only two values,

there are only U4 cases to be ccnsidered as shown below. Here e is used

to denote the error variable. v v
z z Error e
0 0 No 0
0 1 Yes 1
1 0 Yes 1
1 1 No 0

It is easy to see from the above table that e = zeZ (exclusive-or
of z =nd Z). The minimum number of error cases will be obtained if
E[zeZ] is minimum, The estimate 2 which minimizes E[ze%Z] is the least
XOR estimate (also the least error estimate). It is easy to verify that

LXE is equivalent to LSE for binary variables, i.e., (z2-2)2 = ze3.

3.2 Least Cost Estimate : In formulating LXE, it was assuned that boeth

kinds of error 2z1,2=0 and 2=0,%2=1 are equaily costly. In the sirnal

processing area, these two errors are called "m:vs3 sicnal" and "falve
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alarm" respectively. The cost of these two types of errors is generally
different. For example, in the case of weather prediction, the cost of
predicting a storm and not actually getting one is quite different from
that of getting an unpredicted storm. Similarly, in the case of memory
management, the cost of a page fault (miss signal) is not always the

same as the cost of keeping an unused page for some time (false alarm).

In such cases, therefore, we propose a generalized concept to be
called the "least cost estimate" or LCE. In this case, the cost
function C(z,Z) is a given, not necesarily linear, function of z and 2.
Now by Shannon's decomposition theorem, we can express C as follows :

c(z,%) = coz'z' + 0122 + czzé + C32%

Where ¢y = €(0,0), ¢4 = C(0,1), c, = C(1,0), e3 = C(1,1).

Here €, and ¢4 are the costs of a miss signal and a false alarm
respectively. Without 1loss of generality, we can assume that co=c3=o.
This is because

c(z,2) = {coz + cgz) + {(01-00)52 + (c2-03)z§ }

The part within the first set of braces is independent of %2, and hence

the problem is equivalent to one with cost of miss signal ¢

2-¢3, cust cf

false alarm Cy-cy, and zero cost for correct prediction.
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We now return to our original prcblem of finding the Boolean
function g, such that the estimate Z(t) = 2(Z, ) minimizes a given cost
functicn. The predicticn method that we are going to describe is based

on the two theorems belcw.

4.6.1 Theorem [Prediction Thecrem] : Given the model relating z(t) tc¢

Ztn

2%:1

z(t) = L. ei(l)Qi('ltn)

i=0

the estimate z(t) which minimizes the expected value of cost function

C(z(t),2(1)) for N observaticns is eiven by

o=
2 = L tiei(yp)
i=0
where éi, i=0,1,...,2"-1 are zero-one valued variables chosen as
follows :
(b if hy > r
.
€ = <i 0, if hy <r
\ d, ifh =r
°1
where r = emeeea-
C1 + 02

and d represents a "don't care" condition, i.e., either 0 or 1 would do

equally well.
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Proof : Let the desired estimate be
2(1) = =(z,
where g(Z, ) is a Boolean function of Z,,. Again, using the

Decomposition Theorem, we have

5 2c=!
2O =) gia1(Zen)
i=0

where éi is a zero-one valued variable given by &; = g(ZyniZyp=1).

N.1
Since z(t) = 22: ei()qyi(Zyp)

the exclusion property of the fundamental products enables us to write
the cost function as follows:
C(z(1),2(1)) = cqz(t)2(1) + cyz(1)E(Y)

PLEY 23:1
= c1izoéi(t)éiqi(ztn) + CziL_oei(t)éiQi(ztn)

n_1
=ZZ {cléi(t)éi+c26i(t)gi}qm(zln)
i=0

Taking expectation, we have

X oe= _ -
E[C(z(t),2(t))) Y (cyhi8i+cohyE)EM (24 )]
’ i=0

n_1
QZ C(hi,81)Elq3(Zyp)])
i=0

Thus we have decomposed the expected cost into 2P small components each

of which can be independently optimized. Consider the ith component

C(hi,éi) = clhiéi + c2h16i z Cohy + 61{01 - (c1 . CZ)hi}




T
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The last expression is linear in éi- It is minimum if each &; is chcsen

as stated in the theorem.

[Q.E.D.]

Notice the similarity in expressions for z(t) and Z(t). The

expressicn for Z(t) can be obtained from that for z(t) by replacing

€i(t) by &;. 1In fact, & is the best estimste of the binary white noise

€i(1) if the cost function is Clej(t),84).

4,6.2 Theorem [Total Cost Theorem] : The total cost of imperfect

prediction for N observations by using the Prediction Theorem is

=

1

TC = min(comi1y C1mig)

.
7]
o

Proof : c ® L cta(9),2090)

J

z (c12(32(3) + cpz(332(IN

Cade
1]
—

N 2g=1
Now Y Z(NED = P 507V 804 (zg)
3=1 j=1 i=0 - 1

n

N

T N
&) z(395(z4p)
=1

W
"
o

n.1

N
1]

&imyg

[
1"
o

1 t

N -
Similarly, Z: z2(§)z2(§) = th R
=1 1=0

Hence, TC

20=1 }
= EZé(cséimio + cpfimyy)
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: n.1
: = 22: min(cimig, comiq)
i=0

The last equality follows from the observation that éi is a binary

variable, hence the sum c g .m g + coéymyq is either cqmjq or cpmyq. The

prediction theorem chooses € in such a way thal the coefficient of the

larger term is zero.

{Q.E.D.]
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4,7 TABULAR METHOD OF BINARY PROCESS PREDICTION

This method is a result of combining the three theorems described
before, viz., the Estimation Theorem, the Prediction Theorem, and the
Total Cost Theorem., The method consists of the following steps :

1. Summarize the observed data in terms of frequency of occurrence of
various fundamental product terms, The summary is arranged in a
tabular form as shown in Table 4.1 . The table has 2"-1 rcws and 5
columns. The columns are named Z, M, H, &, and TC respectively.

2. The Z column consists of n subcolumns corresponding to n variables
z(t-n),z(t-n+1),...,2(t=1). The ilh row in this column is simply

1

the n diqit binary cxpancion of (-1,

3. The M column consists of 2 subcolumns corresponding to z(t)=0, and

z(t)=1 respectively. The entry in the i'P row of the first

subcolumn is m., i e., the number of observations with z(t)=0 2nd

ztn:i. Similarly, the entry in the second subcolumn is the nunber

of observations with z(t)=1 and Ztn=i'

4. The entries in the h{ column are obtained from those in the M

cclumn as follows

sum of entries in the z(1)=1 and z(1)=0 subcolumns

5. The entries in the & column are either 0, 1, or d accordine as h,

is 1less than, ereater than, cr equal to the ratic r = Cy/(2y 4 c0).
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If in a particular row, both M9, and myq are zero, the & entry in

that row is d.
6. The entries in the TC column are calculated according to the Total

th
Cost Theorem, i.e., the i'D entry is min(c2m11, cqmig).

-

7. Synthesize the Boolean function represented by the € column. This

is the cptimum predictor. In sum of product form the function is

n_4
simply ZZ: 8191 (Z¢p).
i=0

8. The goodﬁess of fit is given by the total cost calculated by

summing up the TC column.
We now illustrate the method with an example.

4.7.1 Example : The data consists of 144 observations on a U4th order

binary process. The actual observations have not been included here,
instead, the frequency of occurrence of the various combinations is

presented in Table 4.2. The cost of a false alarm is twice that of a

; 2 2
miss signal, i.e., ¢,22 and ey=1. The ratio r = 331 ° 3 The hy column

is constructed as usual, The entries in the & column are 1 or ©
according as the entries in the h, column are greater or less than 2/3.
Two of the hi's are exactly equal to 2/3. Fence, the & entries in these
rows are "don't care" entries marked as d1 and d2 respectively. The
predictor corresponding to d1d2=00 is
2(1) = z(t-4)z(t-3)z(t-c)2(t-1) + z(t-U4)2(t-3)z2(t-2)2(1-1)

+ z(1-U)z(t-3)2(t-2)2(t-1) + z(t-8)2(t-3)2(1-2)z(t-1)

+ z(t-8)2(1-3)z(t-2)2(t-1) + z(t-8)z2(t-3)2(t-2)z2(t-1)

+ z(t-U)2(t-3)z(t-2)z(t-1)

abiedendi
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= 1 - 2(t-1) = 2(1-3) = z(t-U) + 2(t-1)2(t-3) + 2z(t-1)z(t-4)
+ z(1-2)z(t-4) + 2z(t-3)z(t-4) - z(t-1)z(t-2)z(t-4)
= 3z(t-1)z(t-3)z(t-4) - 2z(t-2)z(t-3)z2(t-4)

+ 3z2(t-1)z(t-2)z(t-3)z(t-4)

Similar equations can be written for 3 other equally good predictors

corresponding to di4,:01, 10, 11. All these predictors give the same

total cost of 50. 8
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TABLE 4,1 : Tabular Arrangement for Boolean

# of obsv. with

z(t-n) ... 2(t-2) z(t-1) z(t)=0 z(t)=1 hy
0 ... O 0 LY mo 1 ;_T9l_-
00+Mo1

0 eee 0 1 Mye ' my4 ..

0 ... 0 B0 Moy ...

0 oee 1 1 m3o m3 e

Page U-26
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AELE U4,2 : Frequency Distribution for Data of Example 4.7.1 .

- ——

z(t-4) z{1-3) z(1-2) z(1-1) M0 By 4 hy & min(2m,q, myq) {
0 0 0 0 1 9 0.90 1 2
0 0 0 1 8 2 0.20 O 2
0 0 1 0 3 8 0.73 1 )
0 0 1 1 7 4 0.13 0 1
0 1 0 0] 3 2 0.40 0 2
0 1 0 1 9 7 0.u44 0 7
0 1 1 0 2 Noo0.67 4, "
0 1 1 1 6 0 0.00 0 0
| 1 0 0 0 5 3 0.38 0 3 1
1 0 0 1 1 2 0.89 1 2
1 0 1 0 2 9 0.82 1 4
1 (] 1 1 c 1 1.00 1 4]
| 1 1 0 0 2 8 0.80 1 L
1 1 0 1 7 5 0.42 0 5
1 1 1 0 1 2 0.67 4, 2
1 1 1 1 3 9 0.7 1 6

- - -

Total Cost = 50
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4,8 GENERALIZATION TO K-ARY VARIABLES

In this section we generalize the analysis done so far to the case
where the process may take k values 0,1,...,k-1. To do this
generalization, we use the concept of Boolean functions extended for

k-ary variables. This concept is due to Rosenberg [HaR68, p. 301].

Let Bk = {0,1,...,k=1}. A Boolean functicn is now defined as a
mapping f : (Bk)’L>Bk and a pseudo-Bcolean function as f : (Bk)n->ﬂ-

For any x€Bc-bc- | e define the so called "Lagrangzean Development® x' (X sup

i) as : 1
k

xi o X(x=1)...(x=141)(x-1-1)...(x-k+1)

1(i-1).. 1(=1) .o (iaks)
mapping B, into B,. For example, when k=3:

1 1
x° = 5(x-1)(x-2) x! = -x(x-2) x2 = 5x(x-1)
Notice that
{1 if x=i
xi = <l
\0 otherwise
Let 11,12,...,in be the k-ary expansion of i, and X = {x4,x2,...%Xq}
i i i
then X1 = qu(x) = x, "M%, 2 ..L x,'0

ith Fundamental product

Any pseudo-Boolean function has a Lagrangean development (sum of

products form) :

n_14 RS:1
L. £394(X)
j;o 1

£ { .

XgpeoesXn) = 7 £(1)X
i=0
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Again,

( 1 if X=i
qi(x) = <|
\ 0 otherwise

Therefcre, the fundamental products are mutualiy disjoint, i.e.,
{0 143

9 (X)a500 =
\ai (X)  izj

So, the Function Lemma holds, i.e., if f is a real valued function of a

real variable, and

k=1

if P =) byag(0)
i=0
-1

then f(p) = k}: £(h{)az (%)
i=0

§,8.1 Model : The relationship between z(t) and Ztn in its most general

form is given by

n.1

2(1) = et (e ()

1=
where €,(t) i{s a k=gry white neise (sequence of independent ideniically

distributed random variables) with P[ei(g)gu]=hiu. ence,

n
-1
put = P[Z(t):U}Ztn] = l}-_—;hiuqi(ztn)’ u=0,%,...,k=-1

There is an additional constraint, however, that
%;1
L.p =1
uz=0 ut

ais constraint implies that
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=1
thiu =1 120,1,...,k"=1

u=0

With this model, all the results of the binary case, viz.,
Estimation theorem, Measures of goodness, Prediction theorem, and Total
Cost theorem, can be generalized to the k-ary case. These
generalizations are stated below. The proofs of the theorems, being

similar to the binary case, are given in Appendix C.

4.8.2 Estimation Theorem : The maximum 1likelihood estimates of hiu

based on N observations {z(1),z(2),...,z(N)} are given by

hiy = 3 BE0s Ty eeakeed

where Miy = # of times Z, =i is follcwed by z(t)=u.

4,8.3 Measures of Gocdness : In the case of k-ary variables the least

cost estimate Z(t) is obtained by minimizing a general cost function

C(z,2). The function can be expressed in the sum of products form as

follows :
=1 k=1
C(z,2) = 5; 5: oyyz Y
u=0 v=0
where ¢ = = c(u,v) = cost of misprediction when z=u and Z=v. It is

often easier to specify C as a k by k matrix whose (u+1,v+1)th element

is cuv. A special case of the least cost estimate occurs when

Cz,2) = 1 $=123023
2 j:b
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It i3 easy to verify that in this case,

{0 if u=v

!

)

\1 otherwise

c
uv =

i.e., all errors cost the same. Thus, by minimizing this cost funetion,
one obtains the least number of errors. The estimate obtained could be
called "Least XOR Estimste", because of Lhe form of the cost funstion,

In general, LXE is not the same as LSE except in the binary case.

4.8.4 Prediction Theorem : Given the model equation

n_1
z(1) = ?Z%ei(t)Qi(ztn)

The estimate Z(t) which minimizes the expected value of the cost

function C(z(t),Z(1)) is given by

- ki1
z(1) = 2_ éiQi(Ztn)
i=0

where éi» i=0,1,...,k =1 are k-ary variables chosen as follows :

(42

-1
1 =arg m%nE: cuvhiu 4
u=0

-1

= ar minK“
& v {- CuvMiu

uz0

4,8.4,1 Corollary : The least XOR estimate (cuv:1, ufv) is pgiven by

~
e = =
i = arz max myy

4.8.5 Total Cost Theorem : Given a set of N observations on z(t), the

total cost of imperfect prediction by usiny the Prediction Theorem is

kost et
T = 2: m&“?: Miuuy

i=0 u=0
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4.8.5.1 Corollary : The total cost in the case of LXE is given by

=1

TC =N - mgx miy

n
i=0

4.8.6 Tabular Method : The method is very similar to that for the

binary case,. The only addition is an MC column, which is obtained by
post -multiplying the M column by the C Matrix. We 1illustrate the

procedure with an example.

4,8.6.1 Example : Consider the problem of predicting a ternary process

z(t) of 27 order. A total of 137 observed values of the prccess are
available. The data, summarized in tabular form, ar shown in Table 4.3.
The cost function is

C(z(t),2(t)) = lz(t) - 2(t)!

Therefore, the cost matrix is

n
s
o
|

The calculations are shown in the tatle. The MC column is obtained by
post-multiplying the M column by the C matrix. Notice from the table
that in the 1last row, two MC entries are equal. Therefore, the
corresponding & entry is dyq, which stands for "don't care 2s long as it
is 0 or 1", The optimum regression function corresponding to d01=° is

2(t)

20(1-2)20(t-1) & z0(t-2)21(t-1) + 20(t-2)22(1-1)
+ 221(1-2)20(1=1) + 227 (t=-2)2V(t-1) + 2z1(1-2)22(t-1)

20(1-2) + z1(1-2)

= g(z(t-Z))z + gz(t-z) + 1
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An equivalent, ratner simple, expression fcr the above Z(t) is

2(t) = 1 *+3 z(1-2) where +3 denotes “addition modulo 3".

A second predictor, corresponding to d01=1, can, similarly, be

written. The total cost in either case is 191,

¥

o
k)

ol
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TABLE 4.3 : Boolean Predictor for Data of Example 4.8.6.1

MCo MC1 MC, &;

............ A0 mr miz o by iy by
0 0 8 3 6 0.47 0.18 0.35
0 1 5 6 [ 0.28 0.33 0.39
0 2 2 5 6 0.15 0.38 0.46
1 0 5 1 7 0.38 0.08 0.54
1 1 9 1 11 0.43 0.05 0.52
1 2 3 4 8 0.20 0.27 0.53
2 0 7 2 2 0.64 0.18 0.18
2 1 9 ] 5 0.50 0.22 0.28
2 2 6 3 2 0.55 0.27 0.18

15
20
17
15
23
20

6

1

14
12

8
12
20
1

9

1

19
16

9
1
19
10
16
22

15

1

1

11
19

10
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4.9 ON MODEL ORDER DETERMINATION

In *he theory that we have developed so0 far we hzve assumed that

the model order n is known. 1In practice, this may not always be true,

In the case of Gaussian processes there are many criteria and tests
(e.z., see [AkaT7i]), that allcw us to determine an optimal mcdel order
from empirical data. The corresponding results fcr Boolean wmodels are
yet to be developed. Some rudimentary ideas on this problem are

presented in this section.

It should be obvious that the prediction error (or the total cost

of predicticn) monotcnically decreases as the model ordcr is increased.

A quantitative formula for the increase in error is given by the

following theorem.

4.9.1 Theorem : The increase in cost in going from a (ne1)st c¢rder

model to nth order model is given by:
20=1
TC(n)-TC(n+1) = EZ%[ min{ c2(mi1+mi'1), cq(mjp+miipn)}

- min(CZmi1, cimig) - min(czmi'1, C1mi'0) )

where the m-values are for the (n+1)5! order model, and i'=2N41.

Proof : Let m' denote the m-values for the niP order model. For
example,

1]
m 41

# of times Zy, = { is followed by 2z(t)=1
= # of times z(t-n-1)=0, Zyn=1 is follcwed by z(t)=1

+ # of times z(1-n=1)=1, %, =i is followed by z(t)=!

S R Y




9
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|

= # of times Z, . - i 15 followed by z(t)=1 |

+ # of times Z, . . 2f+i is followed by z(t)=1 ‘

= Wiq e myey

Similarly, m'y, - mig+myi1g

on-1

Now TC(n) = ; omin(c2m'i1s cym' i)

n+1_1
ZO min(comiy, cymiq)

and TC(n+1) =

20=1

= (min(comyy, cymig) + min(eomyrq, cqmieg)]
i=0

Notice that in the last equation the upper limit of the summation is

2".1 instead of 2"+1-1. The difference of the above two equations gives
the theorem as stated.

[Q.E.D.]

There are two implications of this theorem. Firstly, each
summation term is of the form "the minimum of sums minus the sum of
minima®. Hence, each term is non-negative. This proves the statement
that the cost monotonically goes down. The second implication, which
becomes obvious from the proof, is that the m-values for the nth order
model can be obtained from those of the (n+1)St order model by summing
up values that are 2" apart, Thus, once the data has been summarized in
a tabular form for high enough n, all lower order models can be easily

calculated. £An example is shown in Table 4.4, Here Moy for the ond

order model is obtained by adding m,, and mgy (6 = 242", n=2) of the ard

order model and so on, Thus, starting from a large n, one can calculate
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the total cost TC(n) for that and zll lower order models., A plot of

TC(n) vs n will lcck similar to that shown in Figure 4.2a.

In choosing the model order, a compromise must be made between the
amount of computation required for the model and the improvement

obtainable by the model. The complexity of the model 1is exponential,

i.e., 0(2M). Hence, the net utility of an n'P order mcdel is TC(n)-a27,
where a is some normalizing constant. The optimal order is cbviously
the one that maximizes this utility (see Figure 4.2). Another fact that
should be pointed out in this regard is that as the model order
increases, the number of parameters to be cstimated increases and, {
hence, the precision (or confidence) cf parameter values may go down.

As at present, we do not have formulae for parameter confidence.

- . . Y . et g B o . St
Y, e oy S -

4
.




Boolean Models
Model Order Determination

4\ ﬂ\ }
Cos! Computgtional Net
(Error) Complexity Utility
a2"
n . n i
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Table W.,4 : Calculation of the Total Cost TC(n}) for Lower Order Models ]
€y =2, cp = 1, TC; = min(cymyy, comyy)
"""" ns3 me2 met am
Dliomy TC imgomgy TC imomyy 0 fmyg myy TC
0 8 12 12 0 12 22 22 0 19 45 38 0 60 84 Bu
1 9 10 10 125 22 22 1 41 39 39 TC(0) = éi—
2 5 6 6 2 7 23 14 TC(1) = ;;-
| 37 8 8 316 17 17
4 10 8 TC(2) = ;;-
51 12 12 {
6 2 17 4
79 9 9
TC(3) = 69
v
|
o » o 4 A A3 T PR AP e - W
.
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4,10 ON STATIONARITY

A stochastic process 1s called stationary if its probabilistic
behavior is independent of the time origin. In our Booclean model we
assumed P[2(1)iZ, 1 = n(2z,,) to be independent of time. For a
stationary prcocess this is obviously a valid assumption. For a general

non-stationary process the model should be
og=1
' . A\

P[Z(t)'ztn] = hit,Z4q) = iL_bhi(t)Qi(Ztn)

i.e., the model parameters are functions of time. We do not know how to
estimate these time varying parameters. Nor do we have any tests for
stationarity (similar to the ACF going to =zero for cont inucus
processes). However, what we do know i3 that the time-independent
Boolean mocdel applies also to the so called "Homogeneous non-stationary"
processes, A non-stationary process is called homczeneous if its gth
difference is stationary for some d. Recall that in the case of
continucus processes ARIMA rather than ARMA models are used to model
such homogeneous processes. The following theorem proves the above

statement.

Theorem : If the dth gifference of a k-ary process z(t) follows an nth
order time-independent Boolean equation then the process itself follows

a (d+n)'D order time-independent equation.

Proof : Consider the 13! difference process y(i)

—~——

y(t) = z2(t) - z(t-1)

So that 2& y(3) = z(t)-2(0)
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Hence, P{2()i1Z, . 1] = Pp[z(t)iz(t-n-1), z(t-n),...,z(t-1)]

twn-1 t«n-2
P[Z(0)+2£ y()iz(0)+ /_y(§), 2(0)+ y(3) ..,
J=1 J=1 3=1

=1

1 tyn-1
PLY(D12(0)+ 10 5y vhiam), y(tonet), .ny y(U-1)]

Ply(t)ly(t-n), y(t-n+1), ..., y(t=-1)]

Independent of time if y(t) is nth order

]

Thus we see that if the first difference y(t) has nth  order
time-independent Boolean  model, then z(t) has (n+1)SY order
time-independent model. By taking successive difference, the theoren {
for dM difference follows.

[Q.&.D.]

The implication of this theorem is that we can use the thecry

develcoped sn far for cur page referance prccess whese 15 gifference was

shown to be staticnary in the last chapter.
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4.11 PAGE REPLACEMENT USING THE BOOLEAN MQDEL

There are two ways of using the Booclean model for page
replacement . The first is simply to use the model to predict z(t) from
the knowledge of z(t-1), ..., z(t-n). 1In this case, one must choose =zs
the modeling interval T = R/U, the ratio cf replacement and usage ccsts.
As was shown in the last chapter, the cost criterion in this case s

least -squares, This method is straightforward and we do not develcp it

any further here.

An alternative methcd arises from the fact that with the Boolean
model we are not restricted to the least-squares cost critericn. FRence,
we can design a page replacement pclicy without 2ny restriction on T.
In this sectiocn we develop such a pclicy. The policy is a realizable
version of a theoretically optimal, but unrealizable, policy called VMIN
[PrF76]. In order to see the optimality of VMIN, consider a particular

page. Without loss of generality, we can assume that the modeling

interval T is unity,. Supposing we know the complete page reference
process (past as well as future), let s be the length of time for which
the page is not referenced following t, i.e., z(t), z(t+1),..., 2z(t4s=-1)

are all zero and z(t+s) is 1.

Let d(t) = Decision to remove the page at time t.
( 1 => page is removed
= <
[]
\ 0 => page is kept in the main memory

The cost of the decision d(t) over the interval (t, t+s) is

C = Rd(t) + =Ud(t) = sU + (R-xU)d(t)
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Since the cost is linear in d(t), the optimal decision is d(t)=1 iff

R-30 < 0, i.e., d(t)=1 iff s > g.

Thus the optimal policy is to keer the page if it is going to be
referenced in the next R/U interval. This is the VMIN policy. However,
this is unrealizzble because it uses both past and future information.
A realizable version that uses only past information can be derived as

follows.

Since the future is unknown, the "forward recurrence time" s is a
random variable and the expected cost E[C] = Rd(t) « Ud(1)E[s] is tc be
minimized. The optimal decision based on the past informaticn is,
therefore, to choose d(t)=1 iff E[s] is ereater than R/U. The
distribution of s, and hence its expected value can be derived from the

Boolean model of the process as described by the follcwing two theorems.

4.11.1 Theorem*® : The "reverse cumulative distribution" (1-zcumulative

distribution) of s is given by

r

iu P[s>u:Zm=i]

= \ =
520 hody

* In this chapter we use the convention that whencver i appcars in 2
subseript, the expressicn upto i 1is evaluated modulo 2N, pAnvthing
following { is vimply another subseript. Thus Py is "r sub 1 comma u",

whereas, 531 {s "h sub (3 times i moaulo 2M)*. For example, for rn=2,

i=3l h31=h9:h1.
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Proof : r

i0 P(s>012yp=1]

P[Z(l):O:Ztn=1]

=h1

u P[S)U:Ztn:i]

P(z(t+u)=0, z(t+u-1)=0, ..., z(1)=01Z, -4

P[Z(t*u)=ogztn:i,z(t)=0,...,z(t-u-1)=0]

P[z(t-u-1)=0,...,2(1):0:Ztn=i]

-0 u
P[z(t+u)-0.zu+t’n=2 i]ri,u-1

:hzuiri'u_1
The above equation gives a recursive expression for Fiu. By applying

the recursion for successively decreasing value of u, and using the

initial condition ryy we get the theorem as stated.

(Q.E.D.]
=1
4,11.1.1 Corollary : Piu = Pls=zulZypn=1) = hzui E HZJi
-1 .‘:‘L =1
Proof : Pyy = ry yy-riy = ﬁﬁzdi LR VS LT ‘h.ﬁzji
j=0 j=0 J=0
[Q.E.D.]

4.11.2 Theorem : Let 8§ = E[siZy=1). Then, sy is given by the

following recursive equation:

8y = ﬁi(1+821) 1=0,1,...,2"=1
Bo
and 3 = ﬁ-

0
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Proof : 8y = E[s8iZ¢pn=1) ]

f upiu

u=0 i

2? u(ri,u-1 = riu)
0

us=

R

Pi0-ri1) + 2(rji-ryp) + 3(ripo-ri3) + ...

rio + Pi1 + Piz + e

ni + ﬁiEZi + ﬁiHZiﬁui + s

hi ( 1 + ﬁ2i + ﬁZiﬁNi 4+ s )

=0 (1+s )
N 2i
By substituting 1=0, in the above equation we get {
So = ﬁo (14‘50)
ho
or L] I
0 -
By
Alternatively, one can derive an expression for S from

{_ uP[szulZy,=0]. The result is the same as above.
u=0
[Q.E.D.]

Using theorem 4.11.2 one can get an expression for all s, 1

i=0,1,2,...,2%-1 1in terms of hi- However, one must follcw a particular

order., After calculating si for i=zv, calculate 85 for i=v/2 and

2"'1+v/2. For example, for n=2 the followinmg expressicns are obtained.

ho  moo
8g 2 == _ ---
hy = mpy

n mo  Mpo*Mo1

82 = n2(1+5u) = 52(1"30) H ;1' s weesesms coscccc
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oy o ByCleag) = By1ady » oD 200000701
0 Mo+myr To1(m*Toy)
55« Baltesg) = Byliesy) = Bg(1erd) o aodlen 22000002701
Bo' 7 M3gem3y To1(mpgempq)

Thus, using the<estimated value of the forward recurrence time for
the current state, one can decide whether to replace a page or not.
This version of the *®VMIN" algorithm, although realizable, 1is too
expensive to implement in practice. This is because for an nth grder
model 20+ registers are required to hold m-values. This number is
prohibitively large. Even for n=2, eight registers are required for
each page. To manage a page of 1048 words, using eight registers is not
economical, Therefore, at the present time we do not discuss
implementation aspects of the algorithms developed in this chapter.
However, with rapidly advancing memory technology it is quite possible
that pages of future will be much bigger and eight registers per pare
would then not be an expensive proposition. If that happens, it might
be interesting to do empirical analysis of page reference process and

develop a Boclean model of it.
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4,12 CONCLUSION

In this chapter we have proposed a direct approach to modeline,
estimation, and prediction of a k-ary process. The process is modeled
as the output of a Boolean system driven by a set of k-ary white noises,
The model makes wuse of the special properties of pseudo-Boolean
functions in sum of produscts ferm. An expression for the 1likelihood
function has been developed. Using this expression a formula fer
calculating the maximum likelihcod estimate of the model parameters has
been derived, A method of finding the optimal non-linear predictor hzs
been developed. The nmnethod makes use of the fample frequency

distributicns of the fundamental products.

Two different ways of designing a memcory management policies based
on the Eoolean model have been presented. The algorithms, althourh
physicaly realizable, are not econcmiczal enough for practical
implementaticn at the current state of technolegy. However, the
research reporied here is valuable from the contrcl-thecretic pcint of

view for applicalion to other systems.

In the case of Gaussian variables, the Joint probability
distributicn c¢f n variables is ccmpletely cspecified by specifyinz the
mean and ocovariance matrix. Therefcre, while analyzing Gaussinn
processes, we summarize the data in terms of the autcecorrclation
funetion, In the casze of binary varizbles, wec find that autocorrelaticn

has no impcrtance, Instead, the role is played by nth order mements -

[ R &
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the expected values of fundamental product terms. Thus, whereas the
sufficient statistic® of a sample of n Gaussian variables has n(n + 1)/2
terms (n means, n(n-1)/2 variances), that of n binary variables has 2n.1

(kP-1 in the k-ary case) terms.

We have partly resolved the question of "representation"™. 1In the o

case of Gaussian processes, the representation theorem [Ast70] states
that every stationary stochastic process with rational spect;al density
can be represented as the output of a linear system driven by white
noise. In this chapter, we have shown that any staticnary finite order

Markov process can be represented as the output of a Boolean system (

driven by a set of k-ary ncises.

The Boolean approach to the analysis of k-ary process parallels to ;
that conventicnally used for Gaussian processes. However, as this is
the first time that this approach has been taken, many issues remain to ;
be resolved. In particular, the problem of order determination needs
further research. Nevertheless, some of the results cbtained are more
general than those known for Gaussian processes. For example, our model

gives the optimal non-linear predictor for any given linear or

non-linear cost functicn, whereas most of the literature on Gaussian ;
processes deals with the optimal linear predictor for the least-squares

cost function.

® The sufficient statistic is the minimal set of statistical summaries
that contains all the useful informaticn in the sample data.
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5.1 SUMMARY OF RESULTS

Most resource management problems are basically prediction
problems. Therefore, we advocate the use of modern stechastic control
theory to formulate cperating systems resource management policies, In
this thesis, we have proposed a general approach to the prediction of

resource demands of a program based cn its past behavior.,

We exemplified the approach by applying it to the problems of CPU
management and memory management. One interesting outcome of the
research reported here is that our control-theoretic approach also
provides an explanation for many previcusly described policies that are

based on completely non-control-theoretic principles.

In the case of CPU management, it was shown that the successive
CPU demands of a program constitute a stationary white noise process.
Therefore, the best predictor for the future demand is the current mean
value. Several different schemes for adaptively predicting the demand
were proposed. Ln adaptive scheduling algorithm called SPRPT was
described. It turns out that Dijkstra's "T.H.E." coperating system uses
a scheme similar to cne of the proposed ones, Thus, we also have a
control-theoretic derivation and explanaticn of T.H.E.'s CPU management

policy.

In the case of memory management, we started with a very simple
stochastic process model and still obtained signific-nt results. We

showed that the cost of memory manarement is proportional to the square

L
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of the predicticn error. Empirical anzlysis showed that the process is
non-stationary and that an ARIMA{1,1,1) model 1{is appropriate. A new
page recplacement algorithm called "ARIMA" was, therefore, prcpoused. 1he
algorithm is nct only easy to implement, it also wunifies masny other
algorithms previcusly cited in the literature. In particular, Working
Set and the Independent Reference Mcdels were shown tc be boundary cases

of the algorithm proposed in this thesis.

The memory management process is a binary process. The absence of
suitable techniques for predicticn of such processes led us to develop
new techniques for modeling, estimation 2nd prediction of birary
processes., We later extended these techniques te k-ary procosses also,
Our approach was to model these processes as the output ¢f 2 Poolran
system, This "Poolean approach” allowed us toc find the cptimal
non-linear predictor for the process under any given non~linear cost
function. The mecdel was shewn to be appliceble to 2 subelass of
non-stationary processes szlsc. However, vhen applied to the memcry
managemont problem, the resulting aleorithm, thouzh optimal, is rather
expensive to implement for currently us<d page sizes. Neverlheless, the
research repcrted here is important from the cenircl-theorctic viewpoint

fer application to other systems.
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5.2 DIRECTIONS FOR FUTURE RESEARCH

There are many avenues along which the research reported in this

thesis can be extended. The first possibility is to investigate the

‘ problem of joint management of CPU and memory. In this thesis, CPU and
memory demands have been modeled as independent processes. Strictly
speaking this is not true; the CPU demand is affected by the memory
policy. For example, a bad memcry policy may result in frequent page

faults causing tasks to be descheduled prematurely.

As far as the analysis of binary or k-ary processes is concerned,

there are many issues that need to be resolved. In particular, the
problem of order determination needs further research. Tests for
stationarity and models for non-stationary k-ary processes should be
developed. The possibility of using less expensive, though suboptimal,
predictors should be investigated. This is particularly desirable for

application to memory management.

Tne ccentrol-theoretic approach can be extended to the management

of other resources, e.g., disks. The disk scheduling policy can be
optimized if the disk demand behavior of programs 1is predicted 1in

advance.

The apprcach can also be used for the modeling of other asystems.
For example, in a database, the record access patterns can be modeled as
a stochastic process and its prediction used to determine the optimal

organization and, hence, the reorranizaticn points of the database. 1In
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the case of computer netwvorks, the arrival patterns of packets at a node
can be modeled as a binary stochastic process. The forecast of future
| packet arrivals can then be used for flow control or to avoid congestion

in the network.

The essence of our philesophy in this thesis is thzt
control-theorists have made good use of computers to develop better and
faster modeling, estimation and predicticn techniques. It is now time

! for computer scientists to use these techniques to develop better and

faster computer systems.




APPENDIX A: A PRIMER ON ARIMA MODELS

A stochastic process is a sequence of random variables, say, z(1),
2(2)y.e.02(t),eu. The simplest stochestic process 1is white noise
e(t). It has the property that any two elements e(t) and e(t+k) of the
process are not correlated. The process 1in which only consecutive
elements, i.e., z(t) and z(t+1), t=1,2,... are correlated is
represented by a moving average model of order 1 ( MA(1) ):

z(t) = w + e(t) - bie(t-1)

Here the expression "e(t) - b.e(t-1)" represents a moving average of the
white noise process e(t), and w is a constant used to balance the mean
on the two sides of the equation. A moving average process of order q
( MA(q) ) is similarly represented by

2(1) = w + elt) - bye(t-1) - bpe(t-2) - ... -bje(t-q)
On the other hand the process represented by

z(t) ~ a,z(t-1) - arz(t-1) - ... -apz(t-p) =w+ e(t)
i3 called an autoregressive process of order p ( AR(p) ). The name
clearly indicates that the process z(t) depends (regresses) on its p
past values. A process which has both AR and MA parts 1is called an
"ARMA®" process. The ARMA(p,q) model is given by the following equation:

2(1)-3,2(1=1)-...-apz(t-p) = vee(t)-bye(t-1)-...-bge(t-q)

For a process z(t) its dlP difference is defined as follows:

Dz(t) = z(t) - z(t-1)
D2z(t) = Dz(t) - Dz(t-1)
pdz(t) . pd=tz(1) - pd=1z(t-1)
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Now if y(t) = Ddz(t) is the d'b difference process of z(t), then z(t) is
called the dtN integrated process of y(t). Thus if y(t) is shown to be
an ARMA(p,q) process, z(t) is said to be an autorcgressive integrated
moving average process of order p,d,q, i.e., ARIMA(p,d,q). Using the
backward shift operator B, Bz(t) = z(t-1), the ARIMA(p,d,q) model can be
written as

(1-a4p....-apBP) (1-B)92(1) = w + (1-byp.., .pgpdle(t)

Further details on ARIMA models are given in [BoJ70).
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APPENDIX B

PROOFS OF CPU SCHEDULING THEQREMS

B.1 Proof of Thecrem 2.3.1: Let us assume that the tasks To' eeer Tpoq

have been so numbered that

Lo <ty < <ty

This assumption of numbering does not cause any loss of
generality. If the tasks are not in the required order, we sort them in
the required order. Let k' denote index of the k task in the sorted
sequence, then,

to-,t1',,..,tn_1. form the required ordered sequence.

The rest of the proof can now be carried cur with non-primed subscripts.

Also notice that we assume an increasing sequence rather than =2
non-decreasing one. Thus we are excluding the possibility of two tk's
being equal. This is only to keep the prcof simple. If equality is
allowed, the optimal sequence is no longer unique. However, the MFT is

same for all optimal sequences, and hence the final cost expression

remains the same.
The minimum MFT with known ti's is

MFT, .

S 1

-1
t (n-i)ty
i=0

Now, if due to predicion error, ilh task Ti is placed in kith position
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then

MFT
p =

[ I Y

-1
%: (i—ki)ti
i=0

So that the expected increase in MFT is

c

E[MFTp]-HFTO

q;1
L (i-1)ty where 1 = E[k;]
i=0

It only remains to find an expression for E[ki].

@®
/
Since, E[k13 - {

E{ki!tizulfi(u)du

We need only show that

=1

B 164m0) = 9 py(a)

Jj=0
J£1
The easiest way to show this fer any n and i is by the methed of
induction. This 1is obviously true for n=1. Assuming that it is true
for n, we now show that it is true for n+1. For a set of n tasks, let
P[ki=v:ti=u]=pvn. Now if a (n+1)3! task T, is added, the task T will
change position, at most, by 1. Therefore,

Py,net = Pyn PITpdu) + py_q o PLERCU)

= pvn{1’Fn(U)} + Pv_1’n Fn(U) vz0,',...,n-1

The boundary conditions are

po,n+1 = popl 1-Fp(u)] and Pn,n+1 = Pn-1,n ¥, (u)

Therefore, the expected position of Ti amon® n+1 tasks is
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E[kigti=u,n+1 tasks] = 2& VPvn+1
vs

=1
= npn,n+1 + 3: vpvn[1-F(U)] + VPv.1,n Fp(u)

v=1
i} g:1 g;l
= PPy 1,n Fplu) + [1-Fn(u)]L__1 VPyn + Fn(u)z_fpv_1,n
v= v=

(1-Fp(u)IE[K, 1€ =u,n tasks) + Fp(u){1+E[k;!€i=u,n tasks]}

Fn(u) + E[kiifizu,n tasks)

2& Fj(u)

18 [0.E.D]

B.2 Prcof of Thecrem 2.3,2: Again, as in theorem 2.3.1 we assume that

3%
the tasks T1,...,Tn_1 have been =0 numbered that -~ form an increasing
k
sequence, i.e.,
Y1t tno
IAREE Gtk RN Gyt
Wy S W, v

Let the predicted value lp be such that the optimal positirn of

task T according to SPT is after task i, i.e.,

t

i tp tiss
i e
wi Yo ¥ia1

whereas the real value t ' iy sych that the optimal position of the task

T, would t+ 3, i.e.,
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Hence MWFT with T  after task Ty is given by:

=1

MWFT
F p = éLiwxfk)

1
= ;( wafp +

where fk = finishing time of task k with T, after Ty

X
dotn,  1<kei
m=1

——

=<

p———

K
to+ 2: tgs 1+1< k< n-1
m=1

and fp = to+ Zi to
m=1

Notice that

is because the prediction -error
task. When executed it still takes only tc-
Similerly, MWFT with T  after task T; is given by:
MWFT = =1
o = plugfo+ £ wiel'y)
k=1
where f' - finishing time of task T, with T, after T,.

/1:

(Lt 1<k
:m=1
= <
:
! k
[}
\to+ Z; sy J+1€kEn-1
ms

we use t . (and not tp) in the above cxpression far £y,

Page B-U

Tris

results only in misplzaccment of the

WINPT W B ady N
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and fO = tO+ Zi tm

m
The increase in MWFT due to prediction error is given by :

c = MWFTP_MWFTO

1 =1
= ;[Wo(fp-fo) + ;Wk(fk‘f'k)]

Now there are two possible cases: 1i>j or j>i.

Case 1 : 1i>J The predicted position is higher than the real

In this case,

(0 1<Kk
!
fk-f'k = <= “tg  Jeigked
]
\ 0 i+1<k<n-1
and fp-fo - Lty

Therefore,

; -
cI = ;(Wo t tk + 0 + L_-towk + 0]

k=j+1 k=j+1
1
L Zt tg + Zi -toWk ]
k= j+1 k=3+1

N
; (wotk-towk)
k=j+1

1
b= IR

\—
L twotp=towei
kel °

where I={j+1,1i]

Page B-5

position,
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— Case II : j>1 The predicted position is less

In this case,

[0 1<kgd
]
(]
fi-ty = <i to  1+1K<)
\ 0 J+1<k<n-1
a ‘;
nd fp_fo = - ﬁ Ly }
k=141 j
Therefore, !
|
°11 1[ i te + t i 1 }
II = pl -vo k*lo Wi !
n k=11 k=1+1 :
21 Y
®n . L (mwotpstowy) :
k=i+1 .
i
= A . i
n L. iwolk~toWk: |
kel

where I=([i+1,]j]

The two cases can now be combired tcgether by redefining I as

follows:
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to tp

(==, 7) 1f tpdt,
o} [o}

and J = <

t to

(57, o) if todt
wol wo P

pommem N e

[Q.E.D.]

B.3 Proof of Corollary 2.3.2.1: The corollary follows straghtforwardly
from theorem 2.3.2 by substituting "0=Vp=1~ (It can also be obtained
from theorem 2.3.1 by substituting impulse functions for probability

density functions of f,),

(Q.E.D]

B.U4 Proof of Corocllary 2.3.2.2 : Substituting W =wp=1 in the

expression for ¢; in the above proof we get

1
°1 = 3 t (tg=to)
k=j+1

1
= ;[ 2& tg -to(i-3)]

k=j+1
. .
! im “toli-3]
k= j+1
2 1ope 2D agen)
T AU TCmgmm o SSERT) - (1))

1
5ol (1%+1-32-0012 - 2t (5_5)7)
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1
Since iT < tp < (11T, ty = (i+§)T

1
Similarly, to z (J+§)T
Therefore,
(thmt)2 = [(1-3)T12
= (1243221 4)12
= (1241-32-54232-143-2i§)T2
- X 1
= (12452329012 - 2032y 1(5-9)1
= ZHTCI
iceog

Cp T mem 2
I Zp1(tp=to)

Similarly for ¢ "

{C.C.D.]
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APRENDIX C

Proof of Estimation Theorem : The proof is essentially similar to the

binary case except that now we have to maximize the likelihood function

under kP constraints:

hiy = 1 i=0,1,...,k"-1

n.1
Let Pry = Plz(t)=ulZyp,H] = kE: hiyai(Z¢n) u=0,1,...,k=-1
i=0

The above k equations can be combined into one as follows :

0 1
PL2(1)1Z, ,H] = P(z(1)=0iZ, 112 (O Plz(t)=1iz, )% ) ... |

k=1¢t)
=1 z
oo Plz(t)=k 1|Ztn,H]
-1
.5 2
u=0 tu
where zY(t) is the uth Lagrangean function of z(t).
The likelihood function for N observations is given by

L(H) = P(z(N),z(N-1)},...,2(1)!z(-n+1),...,2(0) ,H]

Plz(N)12(N-1),...,2(1),Z,  HIP[z(N-1)!2(¥-2),...,2(1),Zyp,H]...
...P[z(1):z1n'H]

XA

= HI P(z(t)!Zyqn,H]
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Aok=d o jugyy

Again as in the case of binary processes, we assume that the initial
conditicns z(-n+1),...,2(0) are given (or are assumed equal to zero),
and only the parameters are to be estimated. The _.cg likelihocd

function is

1{H) = log{L(H)}

-1
i t 2Y(t)log Piu

t=1 u=0

Now, using the Function Lemma we have,

n

=1
logp, = %2: log(hy,) a3(Z¢y)
i=0
Hence,
N - 1
1(H) = '3: 2" (t) k‘_ log(hy, ) a4(Zy,)
t=1 u=0 1=0
n
= k}: S: log(hy,) i% 22 (t)q, (@)
n_, §i1
= mi loalhyy,)
120 u=0
where, m = }% 2 (1)q (Ztn)
t=1

# of times Zt =i is follcwed by z(t)=u

The last equality is a result of the fact that the quantity z' (t)c (z

tn

-
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is 1 if and only if 2(t)=u, and Z, -i. The maximum likelihood estimates

of the parameters are obtained by maximizing 1(H) under the constraints

=1
lthiu = 1 120,1,...,k"1
u=0

We use the method of Lagrange multipliers for constrained maximization.

The modified objective function is

17 | n.1

=1 k K:J

1'(H) = kz: 5:.miu1°g(hiu) + z: wi{l = /_hyy!
i=0 u=0 i=0 u=0

Wy o+ L. & mjyloglhyy)-vwihyy
i=0 u=0

i=

o

Here "1 are Lagarange multipliers. The necessary conditions for

maximization are

dl’ Miy n
e 2 v T - W =0 i=0,1,...,k -1, u=0,1,...,k=-1
dhsy hiu . ' ’
¥ n
and ) py, = 120,1,...,k -1
u=0
. . Dy
The first equation above implies that hiu = ---, The second equaticn
W
i

implies that
’ 1 K:J K:j
w, Lmiu=1 orw =/ my
i u=0 u=0

Therefore, the desired MLE of the parameters is

tu = T3 i=0,1....,k"'1- uz0,1,...,k=1

u=° [Q.EQD.]

e
x . . -
AP T T e

T

L L rags i A AR
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Page C-4
Proof of Prediction Theorem : Let the desired estimate be
Z(1) = g(Zm)
where g is a Poolean function of Ztn- Again,
using the Lagrangean development of g we have,
i=0
where €y is a k-ary variable given by & = g8(ZyniZyn=1).
Applying the Function Lemma to the model and the predictor equation we
have
n.1
u =\
22 = ) ef(Vay(zp)
=0
2 = ) elay(zyn)
i=0

and, therefore,

C(2(1),2(1)) = ES_—_ L2V (DY)
v=0 u=0

gﬁ-

5 L cuydef(1)a5(2¢n)

5:1 -1

L— cuveihiuafql(ztn)]
i 0 v=0 u=

or E[C(2(1),2(t))] =

n_q
=1 =1
= l(Zs[qi(zt )] fa‘{ i—_c h
120 nTye0 tump UV U
The cost function is linear in &

7!. Cbviously, 61 should

be 80 chosen

¥

raant R et Ea S8 Nl 5
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that the éz that has the smallest coefficient is one (all other é{vs

will then automatically become zero), i.e.,
8 5=
i = arg m‘i,n cuvbiu
uz=0

Now, if h, i3 determined according to the Estimation Theorem, then hyy

1s proportional to m;,. Hence, the above formula for & is equivalent

to that stated in the thecrem.

; [Q.E.D.]

Proof of Corollary 4.8.4.1 : 1In this case, ¢ - 1 {ff ufv. Hence,

uv =
k=1 -1

Z CuyMiu = ~Miy + Emiu

u=0 u=0 f

Hence, the v that maximizes m,, also minimizes the left hand side of the

above equation and hence the cost function.

{Q.E.D.]

Proof of Total Cost Theorem :

| C = ic(z(t),i(t))
t=

-1 k-1
= ZU_‘ 't z‘cuvz“(t)i"(t)
t=1 v=0 u=0

i k:‘.—j E1 %1(:“‘,2“(()6‘1’01(21“)

t=1 1=0 v=0 u=0

n.1
-1 k=1
kZ E: tcuvé‘i’miu '
u=0

1=0 v=0
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K1

) TCy
is

0
PN
£
Cyv€iTiuy

v=0 u=0

’Si’ v
€i L= CyvPiu

v=0 u=0

¥ |
min X :
v cuvmlu :

u=0

where 1C.
i

The last equality is valid because éi is chosen according tc the

Prediction Theorem.
; T s .
ence, IC = 1=0m%"u=ocuvmiu
{C.E.D.]

Proof of Coreollapry 4.8.5.1 : This corollary follcws strzight ferwardly

from the tctal cost theorem by substituting ¢ =1 iff u#v.

[Q.E.D.]
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