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SUMMARY

Netagramming offers a new perspective on information systems. Its aim

is to achieve conceptual control at a level that would reduce the software
problem that slows the growth of computation. Such a level of control would

also serve well in the analysis of military and political intelligence, and in

other areas where highly abstract methods of thought serve practical ends.

Contemporary methods of programming include at least two levels of

abstraction. One is the standard level of instructions, subroutines, and so
on, conceptually very closely related to the fetch-execute cycle. The higher

level is exemplified by a few systems such as LISP and FORTH, which provide the

user with a concept of functions. These systems include executives which de-
fine the more abstract level in relation to the lower.

Metagramming concerns itself with the executive. A universal format

for executives constitutes a model for the relation between a more concrete and
a more abstract system. This is the metarelation.

The evolution of human culture can be interpreted as a sequence of

stages, each with new metarelations establishing control over the fundamental

processes of the prior stage. All of the previous stages are represented in

the contemporary population; computer software, military command systems, and
other practical affairs must meet the condition that persons with varying

levels of cognitive power have to operate their several components. Hence
the problem of software design is the use of metasystems to construct worlds
(databases, computing languages) adapted to the various levels of users. The

present lack of intermediate grades, between the universal and the specific
(between FORTRAN and word processors, say) forces many persons to operate in
worlds that suit them badly, reducing their productivity and inducing error.

Metastructures are needed in intelligence because several levels of

abstraction are involved in a political or military system, because analysis

entails a complex interplay between presuppositions and conclusions, and

because international relations is an intricate mixture of mutual trust and

mutual deceit.

The initial implementation of metagramming systems requires neither

a large expense nor a long period of development. Even the initial systems

should have practical value. If this proves to be the case, then benefits

should increase with time.
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PREFACE

For some readers, the Appendix may provide the most convenient entry
to the report. It contains, in particular, an explanation of the necessity for
dealing with a wide range of matters in the process of coming to grips with the
software problem.

Several persons have contributed to the development of the metagramming
concept. William L. Benzon, in addition to writing the Appendix, worked on
the evolutionary sequences; the idea of ranks comes from his earlier writings,
but is somewhat extended here. The sequence from tools to machines is his.
The crucial idea of a functional form with four slots is due to Richard
Fritzson. Michael S. Howard supplied specifications of requirements for im-
plementation. John W. Carr III reviewed work in progress in several helpful
sessions. David S. Wise supplied a clear understanding of current work in ap-
plicative programming.
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INTRODUCTION

Military intelligence and computer software deserve the attention of
every citizen. From May 1 through October 31, 1980, Metagram examined these
topics, separately and jointly, from a new perspective. Each topic is subtle.
Each has great practical importance to the citizen and the state. Each poses
problems that have proved difficult to formulate, let alone solve. Metagram
concludes that familiar perspectives conceal from the observer formulations
that can be both elegant and effective.

To adopt a new perspective is no easy matter.

To bring the reader to a perspective from which new modes of computa-
tion and of intelligence analysis can be recognized is the chief aim of this
report. Enough must be said about present conditions to supply a reason for
drastic change. A brief account of some revolutionary changes in systems of

thought may enhance the plausibility of the proposition that perspectives can
change. An outline of the modes of interaction with computers as it may be if
metagramming is generally adopted provides at least a hint of the value that
the new perspective could have. And a technical sketch of a fundamentally new
method of information processing gives some substance to the argument.

The generalist, rather than the specialist, is the reader for whom the
report is written. The specialist who does not see his own specialization
with the ironic eye of the generalist is fettered by the very schemes that
enable him to work effectively. The fetters of the software specialist create
the software problem that we face today. Metagram offers its methodology as
a natural successor to programming and to analysis as the art is known in the
discipline of intelligence. The specialist who is ready to discard the fet-
ters and look at the computer in a new way can find help here.

THE SOFTWARE PROBLEM

The condition of the software craft today is not good enough. High
cost, tardiness, error, and inflexibility are problems known to everyone who
has anything to do with computers. These problems arise in every sector: In
military operations, in all of government, in industry, commerce, science,
and education. Software problems retard development of systems, stunt the
growth of the market, and induce operational failure and dissatisfaction
wherever the computer is used. Even the distribution of computers for per-
sonal use is affected. These facts are too well known to require citation of
specific reports, which have been numerous in administrative, technical, and
popular media. The software problem is, and is widely known to be, grave.

No solution commensurate with the problem has been suggested. Some
have proposed or attempted techniques of planning that exacerbate the problem
of tardiness; techniques of documentation that introduce new loci for error;
techniques of translation from new languages into the very languages which,



when introduced, were supposed to be readable and writeable but now haveI no

virtues to justify them as targets for program translation. To hyperbolaze a

cliche, the corpse is mummified with Band-Aids, but still lies stinking Inside
all of the contemporary proposals.

Moreover, the software problem bars a crucial path. The computer is

the most advanced tool ever built, and at the same time offers greater promise
of further enhancement than any other. It is a toy. It is a tool of produc-
tion, management, and planning. It is an aid to understanding, and with bet-
ter understanding we expect to solve enough of our problems to survive and

perhaps even to make the world more secure and satisfying. It is an aid to
understanding, but the irony--no doubt the inevitable irony--is that we do not
understand the computer. And that is the software problem.

For twenty years, understanding of the substance of the computer--how

to make larger, faster, cheaper machines--has grown, while understanding of
the computer's function has grown only very slowly. Great benefits have been

lost, despite great efforts to sieze them; talent and support have not solved
the problem. Surely nothing easier than enlargement of our perspective on the
whole affair will ever solve it.

THE INTELLIGENCE PROBLEM

Metagram has had access only to the most public kind of information

about the intelligence community and its activities--what anyone can learn by
browsing in a major library. To the outsider, it seems likely that the work
of intelligence must be susceptible of improvement. The situation is, and not

by coincidence, like that in software. Problems of cost, timeliness, accu-
racy, and flexibility must exist. Some small evidence to this effect is easy

to find, but the value of the evidence is uncertain. What is more certain is

a comparison.

The computer is a tool for understanding; and understanding is the
function of intelligence. The making of software is a task of conceptualiza-

tion, and because it is a conceptualization of understanding, it is a task of

a very high order. The analysis of intelligence is also a task of conceptuali-
zation, and because it is a conceptualization of the mode of thought and opera-
tion of an opponent it is a task of comparably high order. That is to say, the

programmer must rationalize the way WE think, so that the computer can serve

us; the analyst must rationalize the way THEY think, so that their acts can

evoke effective response from our side.

The level of thought required for intelligence analysis, like that re-
quired for computer programming, is at the very limit of our culture's ability

to formulate and manipulate concepts. To bring into the arena of practical

everyday affairs methods of thought that lie at the culture's furthest limits

is a great risk. But we could not eliminate the computer from practical af-

fairs on account of the risk; the cost that we would surely have to pay would

be too great. And for similar reason we could not reject the most advanced

methods of thought from the practical affairs of military intelligence because

we would certainly pay a high cost in eliminating the risk.
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Once the programmer delivers a rationalization--a program--the computer
does much useful work; the difficulty in making the rationalization is what we
know as the software problem. Once the analyst delivers a rationalization--a
scenario or other estimate of THEIR policy--methods now widely familiar give
many useful results (war gaming and the exploration of complex mathematical
models are examples); the difficulty that surely inheres in the formulation of
scenarios can appropriately be called the intelligence problem. Given the
perspective of the best thought in our culture, computers are useful and pro-
gramming is hard. Given the analogy between computation and intelligence,
that same perspective would make gaming useful and analysis hard.

What is at stake in analysis of military and political situations is
important. In gross terms, a nation that arms in a peaceful world is insane,
but a nation that abandons its arms in a hostile world is equally so. Between
these insane extremes spreads a vast range of adjustments of amount, of kind,
and of placement. Slightly too much, slightly too little, or not quite in the
necessary location need not be an insane error, but can have serious conse-
quences nevertheless. In a large conflict, better judgment can contribute to
victory in a way that better armaments cannot.

The judgment of the adult is better than the judgment of the child,
because the adult has a perspective that the child cannot adopt. The judgment
of a person with adequate training in modern systems of thought--scientific,
for example--is better than the judgment of a person who cannot adopt such a
perspective; we rely on the judgment of physicians for that reason. The
thesis of this report is that a new perspective is becoming accessible.

METAGRAMMING

The assertion that metagramming offers a new perspective on computa-
tion is a way of claiming for it a new degree of conceptual power. This kind
of claim cannot be proved, but it can be clarified and illustrated.

In plain language, a system with greater conceptual power can think or
talk about what a system with less power can only do. The more powerful sys-
tem can thus describe, or in some limited sense understand, the conceptually
weaker system. It has concepts of, names for, patterns of concepts that occur
in the simpler system. For almost everyone, the more powerful system is also
more convenient to use, since it can relieve the user of responsibility for
detail. The bare computer is an "idiot machine", but programming and meta-

gramming can use concepts of higher degree.

Even the bare computer is more powerful than the data it processes.
The crucial concept is the conditional jump. This remarkable operation can
recognize a pattern in ti-e data and change the flow of execution through the
program accordingly. The conditional jump adapts the program to the changing

stream of data.

A very few advanced systems of programming are more powerful than the
computer. Typical languages (FORTRAN, PASCAL, etc.) are convenient, but their

organization is of the same general kind as that of the elementary computer.

4. ' !



LISP, growing machines (FORTH), and functional programming are different.
Functions are concepts for patterns of machine operation; instead of condi-
tional Jumps, the functional or applicative programmer uses conditions on the
application of functions. To link the more powerful scheme back into the com-
puter, which must make its conditional Jumps even when running Lisp or Forth,
a translator is required. It may be quite small, but it must use a sophisti-
cated trick: It calls itself recursively to manage a nest of functions. The
power of functional programming shows up in the compactness and clarity of the
code and the productivity of the writer.

The next grade of power comes with adoption of the executive as the
basic unit of computational structure. With multiple executives, piled one on
top of the other, systems more and more remote from the basic computer can be
made to run. If a function is a concept for a pattern of machine operation,
then at the next level one has concepts for patterns of functions; call them
models. The next level again has concepts for patterns of models. And so on.
Clearly, if the system can maintain its own internal coherence, a user who
merely orders the application of a model to a problem will be more productive
than one who has to specify all of the functions involved.

Metagramming is the art of making and assembling executives. But the
making of an executive is a major task; very few executives have been invented
in the history of computation. Toward simplifying the task, Metagram offers
a schematic form and a basic mode of operation. To make a new executive, one
fills in the form.

What metagramming offers to most users of the computer is not the full
power of a highly abstract system, but the convenience that can be provided by
designers who have that power available to them. FORTH is powerful; but the
user of a text editor written in FORTH need not even know that the editor is
good because the power of the system encouraged someone to design a it so. A
metagramming facility should encourage designers to create new systems for dif-
ferent classes of users, variously offering ease of use for special purposes or

great capacity for broad purposes.

4



SOFTWARE PROBLEMS

Even the purchaser of a home computer can presently have access to
many languages and data bases; the computer can be plugged in to a telephone
line, and suppliers can be reached by dialing. Commercial, educational, and
governmental users have access to a much larger variety of sources. Yet the
diversity is not so pleasing, since each source imposes burdens of memory and
skill on the user; no one can afford to learn the vocabulary and grammar of
every programming or database access language. Some illustrations follow.
They are mostly from a system that may have been improved by this time;
Metagram does not have current information. No particular criticism of the
authors is intended. Many systems of comparable difficulty are in use; it is
the condition of the whole field that needs attention.

REDUNDANCY AND INTRICACY

To sign on, according to a users' guide, requires several steps. The
words in parentheses are names of special keys; 'H' is the human user; 'M' is
the machine.

H (RESET)
M 0715 A QRS READY Q00015
H (ALT MODE) (CTRL, SVC)
H T115
M T 115
H (ALT MODE) (CTRL, SMK)M M*

H 3,ABC,115
H INTG
H SMITH,A22,3456

Note that prompts are rare; this signon is followed by a request, and nothing
comes back from the machine until the request is finished. Then, and only
then, the user may learn that the machine has encountered an error.

The special keys are, perhaps, only a hardware problem. 'SVC' means
service, and 'SMK' means send a message from the keyboard. Hardware of this
level imposes a burden on the user; a better level is certainly available now.

The machine's first line is not especially objectionable. '0715 A' is
the time; "QRS' is the system, which should identify itself. 'Q00015' is the
present user count, which permits an estimate of response time; but the number
is in octal, not decimal.

The next interchange is regrettable. The 'T' is a request for connec-
tion with a subsystem, and '115' identifies the terminal in use; the manual
explicitly forbids any blank between; then the system echoes the line with the
forbidden blank. Does the system not know what terminal is connected?

5
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r'-e prompt '0' acknowledges that a message is to be received from the

user. The next line consists of priority '3', agency addressed 'QRS', and
again the terminal identification '115'.

Without further prompt, the user enters 'INTG', meaning that the mes-
sage is a file interrogation. On the next line, name 'SMITH', organization
'A22', and telephone number '3456'.

All this is not to be explained to a novice in a page or two, and in a
situation where each potential user has access to many systems most users mist
be novices most of the time. A microcomputer terminal with a little memory
and a cathode-ray tube display could simplify matters substantially. In a
suitable language, a short and simple program could retain the protocols for
signing on to various subsystems; store the terminal's own identification;
keep a list of local users, with name, organization, telephone number, etc.;
and store displays offering courses of action to the user ('menus') to which
the user could reply with very few keystrokes. The burden on the novice or
infrequent user could be almost eliminated.

CONFUSION OF LEVELS

The iser should be able to get what he wants without knowing a thing
about storage media and storage formats. The differences among tape, disc,
and high speed memory; the widths of fields; ASCII or EBCDIC; and all such aua-
lities of information systems are fascinating but irrelevant to the concerns
of the personnel department, the intelligence analyst, and others with practi-
cal concerns. Nevertheless such considerations frequently intrude in the pro-
cess of program design. If the user is not to know, the system must handle
the details.

An example arises in a language that has been used for intelligence
materials; Metagram does not assert that this language is in current use. The
point is again not to impute incompetence or inadequacy, but to make clear
the standards that prevail in computation.

QRS files ... come in two varieties: single-format files and

multi-format files. The latter are of recent origin to meet the
demand for files with larger and more flexible records. Most files
are, however, single-format files. As the name implies, all records
from a given [sirgle-format] file have the same fields, arranged in
the same format, containing similar data. The only difference among
records is the data recorded in it. In QRS the maximum character
length of each record is 495, and the maximum number of fields

allowed is 60.

Multi-format files allow for larger records to be built, and give
increased flexibility within a file. [Users Guide, page II-1]

A multi-format personnel file might contain, for each employee, "relatively
permanent" characteristics in one record, with data on spouse in a second
record, on job assignment in a third record, on education in a fourth, and so

6
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on: but the illustration in the Users Guide stops here. A "group" of records

describes an employee; and each record in the group has a different format.

The user of QRS must know about multi-format files.

From the standpoint of the user the difference in making a query in

the two kinds of files is

for a single-format file: specify file, field, field content;

for a multi-format file: specify file, format name, field,
field content. (Page I-3)

So, if the personnel file had a single record for each employee, with a field

for language skill, the user could specify

Personnel (file) Language (field) French (content)

and find all Francophone employees. But, assuming a multi-format personnel
file, the user must instead specify

Personnel (file) Education (format) Language (field) French (content)

To realize the severity of the problems that arise, the reader should think of
a large corporation with a central office and many divisions or subsidiaries.
Each subsidiary has its own personnel file and can decide for itself whether

to use one or several records for each of its employees. The user is in the

central office: A junior member of the president's staff, assigned to find a

French-speaking secretary who can accompany a sales team to Paris. How much
time will the staffer spend learning about the file structures? And how much

learning about the personnel? The staffer goes from task to task, consulting

different files from day to day. The time spent studying file structures can

be serious.

The INFO verb provides QRS users with information about any file
currently available via the QRS language. This information is

descriptive in nature; that is, it would normally consist of record
length, the field names, sort fields, etc. ... A request of this
type will yield output for each format in the file; thus, if the
file is multi-formatted.. .this could be a lengthy print-out. (Page

X-3)

But the user can ask what formats a file contains, and then ask for informa-
tion about selected formats.

The QRS system will give the naive user an unexpected result from

the query stated above. The Users Guide explains "Group Search" (pages IV-13

through IV-15). The human employee is represented in a multi-format file by

a Group of records. Among the relatively permanent characteristics of an

employee are name and address (page IV-13); but language skill is recorded in

the education format. Social Security Number is the only datum common to

all the records in the employee's group. So the naive user receives a list

of Social Security Numbers of employees who speak French--because the naive

7
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user writes the same verb for extraction of appropriate employees from single
and multi-format files.

The trained user of QRS uses the verb EXTI (extract inclusive) for
single-format files and EXTIG (extract inclusive group) for multi-format files.

One qualification on the use of EXTIG is that it is unnecessary and
wasteful if the information needed is entirely within one format. If name and
address are in the first format of the personnel file, then EXTI is suitable
for an extraction by address to prepare, say, a mailing of invitations to the
annual picnic. (On the other hand, if information about spouse is needed,
then EXTIG must be used after all, since Spouse is the theme of the third

format.)

QRS has boolean connectors AND and OR. If the sales team is going to
both Paris and Berlin, the query from the president's office might be

EXTIG Personnel (file) Education (format) Language (field)
French AND German (content)

The response is a list of employees with skill in both foreign languages.
Now, if company policy is to send only male employees abroad with sales teams,
the search must be restricted by sex. But sex is certainly a permanent trait
and would appear in the first of the multiple formats (the file is hypothe-
tical, and the Users Guide does not mention this trait). The request must be

EXTIG Personnel (file)
Basic (format) Sex (field) Male (content)
AND/REC
Education (format) Language (field) French (content)

(The conjunction of German would be admissible.) The difference between AND
and AND/REC belongs to the level of file design; conceptually, both are simple
conjunctions of terms.

In fact, the QRS request would be entered more compactly. The lines
beneath the example indicate its syntactic organization; they are not part of
the request.

EXTIG/PER;FORM(AA) AND SEX(MALE) AND/REC FORM(DD) AND LANG(FRNCH)

----------------------------------------------------------------------------------

Each AND connects a pair of terms, one specifying format and one specifying
field(content): the underscoring shows the scope of each. The AND/REC con-
nects the two composite terms. The semicolon connects filename with specifi-
cation. The shilling or slash connects verb with object. The spacing, which
seems arbitrary and counterintuitive, is necessary to the system.

8



The difference between field and format has undergone a metmorphosis.

In the file, FORM is itself a field; so the Education format is identified by
content DD in field FORM. The user must write a conjunction between FORI(DD)

and LANG(FRNCH) as if these terms were on the same level; and indeed they are
on the same level in the file, although conceptually they are incomparable.

The information that the user must take into account in choosing EXTI

or EXTIG, in choosing AND or AND/REC, in deciding to include FORM, and in
specifying fields is all available to the system. A microcomputer as the
user's terminal could solicit file structure from the INFO file. It would
be able to take, say, FRNCH and determine that the field must be LANG. The
microcomputer could determine, from the content of INFO, that SEX and LANG are

fields in different formats, and select AND/REC as the conjunction. It could

even remember that the employee's name is often wanted and ask the user whe-
ther to extract by group, obtaining the name field, or to conserve system time
and lose the name.

WIDER PROBLEMS

As the foregoing examples suggest, the syntax and vocabulary of a lan-
guage for computation is all too often adapted to the structure of the ma-
chine. The implementation, rather than the application, determines the struc-
ture of the language. Punctuation and spacing are designed to simplify the
program that interprets input, however unnatural the design may be for the

user. The logical structure that the user must concoct intermixes relation-
ships from the user's domain with relationships from the implementation, such
as the format of records.

Programming deals largely with repetitive tasks. The serious user has
to construct a program that controls repetition, although database languages

generally manage this aspect of the work automatically. Even such obvious
purposes as "Shift each character on the line to upper case" or "Add up the
earnings of all the employees in the file" turn out to require thoughtful ana-
lysis; programmers must acquire considerable skill if they are to manage the

repetitiveness of computation accurately, and even skilled programmers make

errors.

The systems that experts use give them greater freedom of action than

the systems used here for exemplification. But the experts' systems also tend

to demand even greater attention to detail. The broadest statement of the
problem that hinders the work of almost every computer user is that the systems

and languages of present-day computation are too closely bound to the level of

the machine itself--to its primitive representation of data and to its modes

of operation.
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ABSTRACTION AND METASYSTEMS

Proverbs, poems, and puns often indicate the form of ideas that we
cannot convey in words. Explaining a proverb is a difficult task; children
fail entirely, and adults often feel that the explanation loses the point,
just as the explanation of a joke loses the humor. The point of a good pro-
verb is abstract, and abstraction itself is one of the ideas that we can indi-
cate but, as yet, not convey adequately in direct exposition. Metagramming is
an idea about abstractions and their manipulation.

REDUCTION OF INNUMERABLE DETAIL

Abstraction, like generalization, simplifies thought. Whereas genera-

lization eliminates detail, abstraction organizes detail into a pattern. The
statistician who calculates the average of a collection of data is making a
generalization; the one who announces that the data come from a normal distri-
bution is making an abstraction, that is, seeing a pattern in the material.
Elimix-ating details of distortion from many views of a horse, one can capture
the generalization that it is the same horse; organizing those details, one
can capture the abstraction of a gallop--the horse, seen in many consecutive
views, is galloping. The human nervous system can form perceptual abstrac-
tions: Any normal person can see both gallop and horse. Other kinds of ab-
straction require more than growth of the nervous system in an ordinary per-
ceptual environment; they are provided by culture.

At a very different level, an isolated case presented to a computer
for processing is like one view of the horse, and by generalization a file of
such cases can be reduced to a common pattern: They are all payroll entries,
or database records in a given format. Many simple computations can be under-
stood very well in this way. When a program consists of ten or a hundred
thousand lines of code, generalization ceases to provide understanding. The
horse is galloping, and only an abstractive method can make the process com-
prehensible.

Sheer magnitude seems to be involved. Eliminate details from what is
seen to make a generalization; give a name to the generalization and give
names to the details. If the details are few, a syntactic construction of the
names of the details (say as adjectives) and the name of the pattern (as noun)
makes an understandable utterance (a noun phrase). But if the details are
numerous, naming them makes the utterance incomprehensible. Abstraction of a
pattern from the numerous details reduces the expression to simplicity again.
Thus a person who could neither read nor write a suitable computer program can
speak effectively of the payroll program and its place in the management of the
company's affairs. A person without knowledge of integral calculus can use
the concept of area successfully.

Magnitude of detail suggest a formal explanation of abstraction as any

function with a sufficiently large set'of arguments, or, idealizing, with an
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infinite argument set. The integral calculus is perhaps the earliest example

of mathematical success with abstraction; integrating is summing indefinitely

many terms, each indefinitely small. By integration, one passes from the line

to the more abstract plane, from speed to the more abstract distance; before
the calculus was invented, attempts to compare speed and distance across le-
vels of abstraction yielded only paradox. At present, attempts to understand

perception without recognizing that it covers several levels of abstraction
lead to paradox. The gallop one sees is a perceptual function with a very

large number of arguments, all of the distortions of the horse and the changes

of distortion from moment to moment.

CONTROL AND METACONTROL

A familiar ordering of branches of science illustrates the concept of

abstraction. Physics is more concrete than chemistry, according to this ar-
rangement; chemistry more co-.rete than biology, biology more concrete than
psychology; and psychology more concrete than sociology. In traditional work,
eachof these branches dealt at bottom with vast composites of the units iden-
tified by its more concrete neighbor. The smallest biological unit was com-
posed of a host of chemical units, and similarly at every level. The phenome-

na of biology emerged from those of chemistry; a biological event could be
characterized as a pattern formed of a very large number of chemical events,
properly distributed in time and space. Biologists without knowledge of bio-

chemical detail could and do successfully write about biological ideas.

Yet it could be argued that this view of the sciences is sophisti-
cated. In a more naive view, each of the sciences stands as an independent

system of abstractions from the same basis of primary observations. Biology

developed without reference to chemistry; the hope of establishing a relation-
ship between life processes and chemical processes arose after both sciences
had formed. By that time, each had its laws; the problem was, therefore,
whether the units of biology could be characterized in chemical terms, and
whether biological laws could be explained by reference to the chemical cha-

racterization of biological units and to chemical laws. Until recently, prog-
ress was slow. The simple geometrical conception of the double helix and
further ideas about the interaction of physical particles as determiners of
the folding of massive chemical structures are largely responsible far the ra-

pid progress of recent years. Since folding is a physical, not a chemical,
concept, it seems fair to say that direct reduction of biology to chemistry

failed. Rather, biology is to be understood by using chemical and physical

concepts jointly.

The origin of metagramming is a study of cognition, the process of
thought (ref below), which led to a fourfold complex. The first component is
a stack of perceptual levels organized to govern behavior as in the cybernetic

theory of Powers (ref below): each level abstracts from the one below--the

Ref: Hays, David G. Cognitive Structures. HRAF Press, New Haven, 19PI.

Powers, William T. Behavior: The Control of Perceptlion. Aldine

Publishing Co., Chicago, 1973.

11

% *1



horse is perceived at a lower level than the gallop. The second component is
another hierarchy, orthogonal to the first; its base is the entire perceptual
stack, and its effect is to organize the choices at different levels of per-
ception to ensure their mutual compatibility and joint effectiveness. The
third component is a structure of spatial and temporal relationships over the
first and second. The fourth component organizes purposes, beliefs, and other
modalities of thought; its base consists of the entire threefold complex be-
neath it. Within any one component, a higher or more abstract level works on
the single level beneath it; but a component of higher degree works on the en-
tire complex of components of lower degrees, and can therefore contain ab-
stractions of system relationships on the broadest scale.

A familiar and striking correlate of the sequence from physical
through social systems is the increase in self-control; and within social sys-
tems a further progression occurs. Physical systems tend to a uniformity that
has been called heat death. Chemical systems tend to equilibrium. Biological
systems metabolize and reproduce. Psychological systems seek food and mates,
and tend to build secure nests. Social systems educate their young and set up
diverse organizations to maintain their characteristic structures. What we
take to be more abstract entities and attributes are more actively defended
than concrete entities and attributes. Or, to take a different point of view,
natural evolutionary processes can occur only insofar as massive organization
yields new and vastly greater capacity for maintaining internal coherence.

Cognition is as natural as physiology; medically, cognition is just
the physiology of the brain. Human cognition, with four degrees of hierarchi-
cal organization, is vastly more powerful than that of any other animal--it
has created and maintained civilization. If the foregoing speculations about
both cognition and molecular biology survive thorough testing, then one may
suppose that capacity for self-regulation depends on the existence of degrees
of control that have access to all prior levels and degrees. This phenomenon
is distinct from generalization (elimination of detail) and abstraction (for-
mation of a pattern in homogeneous detail); where a pattern embraces details
of mixed levels of abstraction, the pattern is meta to the details. This new
usage of 'meta' is at least compatible with the usage in such terms as 'meta-
logic' and 'metalanguage', and at best is the explication not previously for-
mulated.

Subject to some simple and obvious criterion, generalization may be
unique. Thus, to take a trivial example, nothing serves the purpose of guess-
ing as well as the statistical mean of a distribution--given an obvious mea-
sure of the importance of error in guessing. But abstraction seems not to be
unique under any simple or obvious criteria. The uniqueness of the horse's
gallop in perception shows only that the nervous system has evolved over a
long time in response to criteria that are not obvious and not necessarily
simple. The gallop is the unique perceptually valid abstraction, but making
a computer recognize it has been hard work. The physician, trained to recog-
nize diseases --which are abstract entities--from a combination of direct ob-
servation of the patient, consideration of the case's history, and study of
laboratory findings, may list several alternatives for differential diagnosis:
Each alternative disease is an abstraction that fits available knowledge, and
only response to treatment may suffice to identify the valid abstraction. Nor
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is the encompassing abstraction of disease unique. The Christian Scientist
has a different abstraction, and so does the psychosomaticist.

The recent success of molecular biology, with its physical and chemi-
cal basis, suggests that the nonobvious criteria needed to fix abstractions
come from deeper levels. The claim that a distribution is normal is more
strongly evidenced by exhibiting the process that generates the data than by
the data themselves. If a horse is galloping, it should be moving rapidly

across its background. Metastructure brings information from deeper levels to
bear on the choice of abstractions at higher levels, promoting the security of
internal regulation.

The study of abstraction therefore gives way to the study of abstrac-
tive systems. Such a system has three or more degrees. Each degree has units
that correspond to patterns in the previous system. A pattern in the third or

any further degree accords with relational structures of all prior degrees.
The relational structure of particle physics consists of the forces between
pairs of particles; biological patterns must accord with them.

COMPUTATION

Computation is not a science or a family of sciences, but it can have
a structure of abstractive levels comparable to that of science. Artificial
evolution can supply externally the maintenance that natural evolution must
supply internally; but the cost is high. One virtue of a high level of ab-
straction in dealing with computers is the escape from attention to detail;
but unless the abstraction serves at the same time to provide greater capacity
for self-maintenance, the complex software must inevitably cost too much. In
short, a metastructure is necessary if computers are to maintain themselves.

The lowest level of abstraction in contemporary practice is that of

the chip, which provides registers and elementary operations including some
primitive means of control. Further levels would then have data structures,
composite operations, and sophisticated means of control. As biology needs
both chemistry and physics in its basis, so a third level of computation would
seem to need both the first-level chip and the second-level basic software in
its basis. And a fourth level might need all three prior levels, as psycholo-
gy may prove to need physics as well as chemistry and biology.

The chip creates three classes: Values, addresses, and operators; the

operators calculate new values from old, move values between registers and ex-
ternal addresses, and control their own sequence. An address or an operator
can be taken as a value; address arithmetic enables the programmer to work on
strings, matrices, and other arrays of values. Logical operations on opera-
tors make sense, at least on some chips. But some values, provided by the
user, are not to be taken as either addresses or operators. Operations on va-

lues that will subsequently be used as addresses or operators belong to the
domain of control, and are conceptually distinct from operations on users' va-

lues. The chip deals in assignment, which is a relation between value and

address.
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As a second level, we can take the method of applicative prograing:
Control the application of functions to arguments. Concretely, the flux of
values at addresses must go on; but abstractly, computation is the nested
evaluation of functions. Like some of the operators on the chip, a function
takes values as arguments and yields new values as results. The structure of
a computation is the linkage that makes the value of one function argument to
another. Control is segregated; this more abstract view is considerably easi-
er to understand than calculation on the chip. The elimination of addresses
has an enormous effect in reducing detail for the programmer.

A two-level computing system operates under the governance of a third
component, meta to the chip and the language of functions, a compiler or in-
terpreter which sees to concrete realization. Abstraction brings with it
some possibilities of self maintenance. A function can be characterized by
the number and types of its arguments, and by the type of its value: The in-
teger addition function takes two integers as arguments and gives one integer
as value. Coherence has new meanings in a two-level system.

For a third level, we propose the name of adjustive programming. This
mode can be stated in the formula: Adjust the purposes of the system to ex-
ternal conditions. The computing system has its own purposes; the control
structure is not external but internal. The processes of the system are given,
but the internal control structure dictates that they be executed according to
the content of transactions with the environment. The user is not in control,
but truly in interaction with the system. Pu,7poses must be realized by com-
plex or simple functions, and functions in turn by operations on the chip.

The metastructure of a thre-..*level system has an element like an
interpreter or compiler to realize functions in the chip; a second element of
similar kind to realize purposes as orga izations of functions; and a third
element to interlock the first twn. qip, functions, and purposes are of the
same degree, and the interpretive component with its three elements is one
degree higher. A component that supervises these two degrees jointly is then
of higher degree still. Dealing with concepts of the system as a whole, the
last component is uniquely capable of, for example, economizing operation in
the chip in the realization of a given purpose.
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CULTURAL EVOLUTION

The thousands of distinct cultures that have been studied during the
last hundred years differ among themselves with respect to social and politi-
cal organization, means of producing and distributing food and other material
goods, and systems of belief about nature. These differences correlate among
themselves statistically, convincing many anthropologists that culture has
evolved. A way of putting the matter is that control over complexity grows.
The present section describes cultural evolution as a sequence of cognitive
jumps, each occuring as a new level of thought arises.

One might conclude that the sequence is not ended, and that another
jump could take place even now.

FOUR STAGES

Some 250,000 years ago, but the dating is uncertain, a species lived
on a plain in Africa; it had developed a manual-visual correlation, superior
to any that had ever existed before, which supported instrumental activities
of a high order. The species was using tools which directly extended the abi-
lities of its facile hands. It had also developed a vocal-auditory correla-
tion of superior quality, which facilitated social activities of equally high
order. The species became social hunters and gatherers. After a long period,
a biological change produced a correlation between the manual-visual and vocal-
auditory correlations, and the new correlation supported speech. The culmina-
tion may have occurred 50,000 years ago; this whole paragraph is speculative.

Between 5,000 and 10,000 years ago, some bands of hunting and gather-
ing people began to manipulate plants and animals in a new way. Some of these
bands developed techniques of fertilization with manure and irrigation with
dammed and channeled streams. Within a few thousand years, they began to keep
visually recognizable records of inventories, and then of events; they had
made a new correlation between the manual-visual and vocal-auditory channels,
and it supported writing. There is no reason to suppose that this new corre-
lation came as the result of a biological change. Some say that the invention
of writing fulfilled a new need, as if humanity were and always had been omni-
potent, able to meet its needs on all occasions. A more plausible view is
that the management of plant and animal life created a new environment, one
not comprehensible with earlier methods of thought, and that reflection on the
new kinds of events led to a new, more abstract system of thought in which
these new events could be understood. Late in this period, engines came into
use; their framework of orientation was distinct from that of the user--
devices to lift water or to break down city gates. The culmination of the
invention of writing came with the appearance of philosophy, an extensive and
socially recognized analysis of thought itself. (If the appearance of speech
had a comparable effect, there is of course no record of it, but when did con-
sciousness first appear?)
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oetween 400 and 800 years ago, some small states began to conduct com-
merce, manipulating the ownership and location of things in a new way. The
situation had, apparently, two novel qualities. This was probably the earli-
est occasion when any sizable sociopolitical unit could not say, "We make what
we need to support life." And it was probably the earliest occasion when in-
herently worthless tokens, written letters of credit or the like, were used on
a large scale. Within a few hundred years, a new system of calculation ap-
peared in Europe: The eastern place-notation for number writing, with the ac-
companying algorithms for addition, subtraction, multiplication, and division
replaced the method of counters on boards. The introduction of calculation
had its culmination in the appearance of science. Machines with internal
timing, notably clocks, were invented.

Between 150 and 200 years ago, selfpowered machinery appeared in Eu-
rope, changing the forms of things (shapes, colors, combinations) in unheard
of ways. Among the most dramatic of the new machines was the locomotive,
which violated a rule that had stood since its formulation in ancient Greece:
What moves of its own accord is alive. Again invention yielded an environment
that coujld not be comprehended with older methods of thought, and again new
methods of thought arose: Logic and mathematics developed rapidly. The se-
quence of external supports for cognition--speech, writing, calculation-- and
the sequence of external supports for manipulation--tool, engine, machine --
come together with the invention of the computer, a machine which contains its
own organ of control. The culmination of this innovation is a new system of
thought, different from the science of earlier centuries.

Thus history reports four inventions: Social hunting, agriculture,
commerce, and machinery. And history reports that the last two, certainly,
delivered phenomena that upset systems of thought; the speculation that each
of the four was intellectually upsetting seems justified. And history reports
four systems of external symbolization: Speech, writing, calculation, and
computation. Each followed one of the upsetting inventions. The last three
had remarkable culminations: Philosophy, science, and contemporary thought.
And if consciousness was the culmination of the first, that is most remarkable
of all.

The time intervals are hard to measure with precision, but surely the
great decreases are unmistakable. From hundreds of thousands of years down to
hundreds of years is an enormous reduction. One might expect the next major
change to take place within decades after the appearance of the computer, and
therefore to be in progress now. Metagramming may be part of such a change.

LEVELS OF THOUGHT

One may speculate that the four levels of culture associated with
speech, writing, calculation, and computation are characterized by systems of
thought of increasing power. The highest rank of cognition at each cultural
level is meta to the preceding system.

A person in the most primitive kind of culture lives by lore. Lore
is effective but, lacking systematic organization, it is inflexible.
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With the appearance of a metasystem, the person's thought is at the
level of technology. The typical support of the technologist is the table, or
list of facts. This is the level of writing, of agriculture.

The system of thought characteristic of the third level is scientific.
The typical support of the scientist is the law; from it, the scientist can
generate tables, whereas the notion of reducing a table to a law goes beyond
the conceptual framework of technology. This is the level of calculation and
commerce.

With another metasystem, the level of thought goes beyond the scien-
tific; at this stage, one can consider different ways of reducing tables of
facts to general laws, and one comes to realize, as Karl Popper did, that a
law obtained by an arbitrary method of reduction cannot be construed as mne-
ioctably true--a different method of data reduction would give a different
law, and a different law would constitute a different reality. Such is the
system of thought with which we live; it gives US great power, but since it
does not give us a unique reality it cannot give us security.

It may be that with passage to another level of thought, security
comes back. It cannot be identical with the old security. The scientist of,
say, 1850 stood secure in the knowledge that a table of observed facts could
be reduced to a law in one way, and, since he knew exactly one way to make the
reduction, in only one way. His security resided in his own ignorance. But we
know that data reduction can be accomplished in many ways, leading to diffe-
rent realities. What we require is a rule of choice among manners of reduc-
tion, one that is more attractive than any particular reality.
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DEVELOPMENT OF PROGRAMMING METHODS

Metagram's obvious but difficult proposal is to make the computer
help more in software development. The advance lies not in this obvious sug-
gestion, but in a shift of perspective. Automatic programming is at present
considered a topic for research, and not a particularly hopeful topic. A new
application calls for a new program, and writing a computer program is a crea-
tive task. The familiar and horrifying image of monkeys typing until Hamlet
appears by accident; the nasty image of shaking the pieces of a jigsaw puzzle
in a large box until, at random, they fall together into their own solution;
these and other hopeless notions come to mind when one suggests handing over
a creative task to a machine. But they come to mind only for as long as one
sticks to a familiar perspective. From a new point of view those images dis-
appear, as paradoxes have disappeared in the past. As before, the creative
task turns out to have routine aspects that a machine can perform. A histori-
cal sequence may help to make clear not only what the new perspective is but
also why the old perspective has held the art static for so long.

LISTS OF INSTRUCTIONS

Superficially, primitive computer programs consist of "long lists of
instructions"--language that BUSINESS WEEK employed in 1980 to characterize
the contemporary scene. In a deeper analysis, the first genuine computer pro-
gram was more than that; even a primitive kind of program must jump. As a
text, the program is a list of instructions. As a computation, the program is
manifest in a sequence of executions. But as a program, the program has loops
and branches. A loop in a program text may execute over and over again; the
loop ends with an instruction which is a conditional jump back to the begin-
ning of the repetitive part. If the jump is not conditional, the loop exe-
cutes again and again forever; with a conditional jump, execution repeats un-
til the condition is satisfied--until the approximation is good enough, or
until the input data are exhausted, for example. A branch is a part of a pro-
gram text that executes only when a specified condition arises.

Programming with loops and branches is inherent in the fetch-execute
cycle that defines computation. The mode of operation of the standard compu-
ter is fixed by this standard scheme:

Execute the current instruction. (This instruction is stored
in a special register connected permanently to the built-in
operations of the computer.)

If the current instruction is a (conditional) jump, then reset
the instruction counter (if the condition is satisfied):
otherwise, advance the instruction counter one step. (The
instruction counter is another special register that always
contains a pointer into machine memory. The reset value is
stored with the jump instruction.)
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Fetch the next instruction. (The content of the memory
location specified by the instruction counter becomes the
current instruction.)

Repeat.

It is hardly an exaggeration to say that every computer is executing this loop
whenever power is supplied. The invention of the fetch-execute cycle made it
possible t3 work through indefinitely large files of data with small programs;
the cycle binds the temporal sequence of execution to the spatial store of
instructions in an absolutely novel way.

What a computer achieves by executing instructions is systematic
change in the contents of storage cells. Taking the contents to represent
numbers, words of a text, or other kinds of data, the instructions calculate
arithmetic or other functions and store the results. In formal terms, one
takes the storage cell as a variable and assigns a value to it. Unlike mathe-
matical variables, however, the storage cells of the computer have numeric ad-
dresses. At the fundamental level, the orderly selection of storage cells de-
pends o.i address arithmetic. To add up numbers stored in consecutive cells,
the machine alternately adds contents and increments the storage address. To
keep track of data in storage, the address of one cell must often be stored as
the content of another. The numeric indexing of storage is a major invention,
helping to fix the perspective of the computing art.

So the art of programming begin-- ith a clear and definite concept of
the program, derived from the fetch-exeuute cycle and numeric addressing: A
list of instructions to be executed in order, resulting in value assignments,
with now and again a jump forward or backward in the list, all organized
around the arithmetic of storage addresses.

MACROS AND SUBROUTINES

The next grade of programming recognizes that portions of the code,
fragments of the list of instructions, occur again and again. Two methods
come into use, saving the programmer the necessity of writing out the same
fragment again and again. One method is the macro, one the subroutine. With
either method, the text as written cannot be submitted to the bare computer
for execution; instead, another program called an assembler must work on it.
In the original text the programmer writes the name of a macro or subroutine
as often as necessary; the full text appears just once somewhere. A macro
assembler replaces the name with the full text in every occurrence, yielding a
longer text for the complete program. As extended, the text is ready for
execution by the computer directly. With subroutines, on the other hand, the
text that the programmer writes is not lengthened (or not much) by the
assembler. The name of a subroutine is accompanied each time it appears in
the program text by a word that changes the mode of operation of the machine;
the word is usually CALL. To execute a subroutine call, the machine inter-
rupts its flow of work, executes the instructions in the text of the subrou-
tine, and finally returns to the point of interruption. The method of sub-
rogtine calling keeps the program smaller, and is much more widely used.
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Ordinarily, a macro or subroutine needs arguments--numbers, say, on
which to operate--and ordinarily but not always a macro or subroutine yields a
result and must end with an assignment. The arguments are the contents of
certain storage cells, and the assignment is also to a cell, known to the
computer by their numeric addresses. Since addresses are less easy to
remember than names, assemblers perform a translation for the programmer: The
original program text can contain names for variables. Various syntactic
forms are provided to put together the name of a macro or subroutine and the
names of its arguments and, possibly, the variable to which its result is
assigned.

Named variables are convenient, but programmers often treat collec-
tions of data and would find the naming of each individual datum quite incon-
venient. Address arithmetic reappears in subscripts; thus X(3) may be the
third member of a collection X. And variables appear in subscripts: X(I) is
found by taking the value of I as index into the collection X.

Programming with conditional jumps is hard enough to warrant invention
of other devices. One is a looping formula, such as

for i := 3 step 1 until 10 do [task] loop

To assemble or, more properly, to compile this formula, the system reserves a
storage cell for the dummy variable i. The initial value 3, the increment 1,
and the final value 10 are also kept for use during computation. The code is
a loop; part of the code carries out the task, and part increments the dummy
variable, making a conditional jump back to the beginning of the loop until
the final value is reached or passed. The dummy variable can appear in the
task program, perhaps as subscript; to form a sum, one might write

for i := 3 step 1 until 10 do Sum := Sum + X(i) loop

At each step the value of i serves to choose a storage cell relative to the
origin specified by X; the content of that new cell is added to the content
of the cell known as Sum, and the partial total stored there again.

When the system compiles a looping formula, it initializes the dummy
variable; that is, it provides code in advance of the loop that stores the
initial value (3, in the illustration) in the cell reserved for the dummy.
But the programmer must write explicitly other initializations; in the exam-
ple, Sum must be set to 0 immediately before each execution of the loop.

Operations on programs were foreseen from the beginning. A computer
has only one kind of storage, in the sense that data and programs can be kept
interchangeably anywhere. An operation can be carried out on the name of a
person or, equally well, on the name of an operation. Arithmetic can be done
on income data, or on addresses of storage cells. Operations on macros could
adapt them, as they are copied into different parts of a program, to suit
their various contexts. In practice, automatic adaptation of macros is unu-
sual, and the more widely used subroutine cannot be adapted. The methods that
have been used by most programmers strictly separate operations on programs
from those on data: First assemblyi then execution of the assembled code. As
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the art of computation advanced, the habit of segregating and restricting ope-
rations on programs came to be almost universal.

FUNCTIONS AND THREADED CODE

A strictly functional mode of programming eliminates all reference to

time and place of computation. Neither the sequence of execution nor the
place in storage where arguments and results are kept appears in the program
text, even through names of variables to be translated into addresses. A
function has a value; the syntax of a functional language must let the pro-
granuner show how the value of one function becomes the argument of another.
The ordinary algebraic notation with parentheses can serve:

Print ( Square ( Average ( Input Input ) ) )

Here eacn word names a function. Perhaps Input is a function that obtains a
value from an operator at a keyboard; Average and Square perform arithmetic;
and Print shows the result on a screen.

The example contains no variables, no assignments, and no indication

of sequence; by contrast, the same program written in a system of lower grade
might read as follows:

A = Input
B = Input
A = Average ( A, B
A = Square ( A
Print ( A )

Here is a list of instructions, and all but the last are assignments. After A

is used for the average and then for the square, it no longer contains input;
if the programmer forgets this fact, and consults A subsequently, error will

result. The functional version no longer has the input, possibly to the

programmer's regret; but it avoids the illusion of having it.

Functions are defined in two ways. A primitive function is defined by
a list of machine instructions; when the function is needed, the machine

executes the instructions by way of the fetch-execute cycle. A nonprimitive

function is defined by a syntactic combination of other functions, primitive

or not; when it is needed, the functions in the definition must be executed in
the proper order and with the proper arguments. Since a definition can con-

tain nonprimitive functions, the execution is recursive; the expansion of a

definition may have to begin in the middle of the expansion of a larger one.

A function dictionary can be stored in the form of threaded code.

With this structure, a simple executive can link the level of functions with
the level of machine operation. To keep the executive simple, however, two

prerequisites must be met: The sequence of operation within a definition must

be normalized, and the names of functions must be reduced to numeric addresses.
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No function can be computed until its arguments are available. In the
example above, the translation into a lower-grade language shows the necessary
order. Many current compilers make such translations on program texts; cur-
rent threaded-code languages require the programmer to write parenthesis-free
text:

Input Input Average Square Print

Executing this code from left to right is possible, since the arguments of
each function are available when wanted. A functional system reserves space
for the intermediate results (in a stack), so the programmer needs no vari-
ables.

If the definitions of functions are stored in the dictionary as
strings or other syntactic combinations of words, the executive must search
for their definitions in turn. But when a definition goes into the dictionary
it goes to a specific location in machine storage, one with a numeric address.
If this address represents the defined function thereafter, search during exe-
cution is avoided.

The executive of a threaded-code system does this:

For each word in a definition,

If the word has a primitive definition, apply the
fetch-execute cycle; otherwise, apply the executive.

This simple definition is comparable in importance to the fetch-execute cycle;
it raises the conceptual level of computational structure from iteration to
recursion, with the concomitant benefits in clarity and simplicity. Like
other recursive processes, this executive requires a stack. Given a defini-
tion of highest order to process, the executive must go through it word by
word; it needs a pointer to keep track of its place in the definition. When
the executive encounters a word with nonprimitive definition, it must retain
its present pointer and create a new one to move through the embedded compo-
site. A stack keeps all of the pointers in order from current through highest
order. At the end of a definition, the current pointer disappears and the next
takes its place. When the stack is empty, the outermost definition is done.

Around 1970, John W. Carr III and students at the University of
Pennsylvania created a system that they called "the growing machine" (refs
below): Charles Moore later developed and marketed FORTH, and versions are now
available from several companies. The invention of the threaded-code dic-
tionary of functions came earlier than the vogue of structured programming;
yet it achieves directly and fundamentally what the structured programming
idea imposes superficially. And the growing machine provides economy both in

Ref: Bair, Robert Paul. The Use of Multiple Associative Memories in
Programming the Growing Machine. MA Thesis, U. Pennsylvania, 1968.
Albertson, Mark D., and John W. Carr III. GROMAC-71: An Interpretive
System for Development of Special Purpose Languages.
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the size of the program and in speed of operation. Informal reports suggest
a substantial saving of the programmer's time.

The machine grows as the user adds new definitions to the dictionary.
To add a definition is relatively easy for the user, and the system that makes

it easy is relatively simple. Working in this mode, users tend to write many
short definitions rather than a few long programs. A "long list of instruc-
tions" has a complex syntactic structure; to understand a long program is a
difficult task for a human being. A large dictionary of functions has at
every point a simple syntactic structure; the burden on the user is to remem-
ber the vocabulary.

The chess master seems to know a large vocabulary of board patterns,
as the work of Herbert A. Simon and associates has revealed. Medical students
learn thousands of terms. Many sophisticated arts employ large vocabularies.
(Ref below: Expertise involves "large numbers of patterns".) Programming
stands in sharp contrast by its insistence on syntactic complexity. The con-

cept of the growing machine may facilitate the growth of expertise in this art.

A NEW PERSPECTIVE

Functions are more abstract than the instructions of a fetch-execute
computer. To make functional programming work, someone had to invent a way of
implementing the abstraction in machine code. McCarthy's LISP and Carr's
growing machine are outstanding implementations. The next problem that arises
is the design and implementation of systems more abstract than functions.

Higher-level abstractions are the missing element in natural-language

programming. The way we think is the product of a long biological and cul-
tural evolution, marked by upward steps in abstractive capacity. Natural
languages reflect and embody methods of thought; heretofore, natural-language
programming has adopted vocabulary and grammar, but only for concepts of the
most concrete levels--the levels of fetch-execute and of functions.

Higher-level abstractions are also the missing element in automatic

programming. Human creativity requires random search, but under the control

of highly abstract criteria of consistency, coherence, and validity. Artifi-
cial intelligence uses concepts at the functional level; with higher abstrac-
tions, greater effectiveness could be expected.

Higher-level abstractions serve further to regulate or control con-
crete systems. The computer is our best example of a mechanical device con-
ceived only when the systems of thought of the culture reached a very high

level. It is to be expected that better methods for all computer users, in-
cluding the most naive, can be provided within a framework specified by high
abstractions.

Ref: Larkin, Jill; McDermott, John; Simon, Dorothea P., and Simon, Herbert A.
Expert and Novice Performance in Solving Physics Problems. SCIENCE 20A:

11?5-1142, 20 June 10O.
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Finally, higher abstractions supply the natural mode for fusion pf
matters of incompatible types. Functions and data structures are incompatible
in this sense; a higher abstraction can fuse them. Computation and the user's

operations are incompatible; the programer's task is to make them fit. The
fit is apparent only with abstractions higher than those implemented thus far;
the programmer acquires these higher abstractions through apprenticeship.

One obvious approach to the problem of abstraction is to take each
step separately. The threaded-code executive implements functions in hardware.
Imagine another level of abstraction and write its executive as a scheme of
functions. Imagine other levels, and for each make the implementation using
the most abstract system available.

Another, equally obvious approach is to design a universal executive.
With it, any imaginable level of abstraction could be added to an existing
system by inserting details. Abstraction promotes diversity; a universal
executive would facilitate the examination of the many imaginable alternatives.
This approach seems to be the one found in nature: Human cognition might best
be described as a universal executive for systems of abstraction, and human
culture history as an exploration of possible systems. This approach is
adopted in metagramming.

A universal executive must make a three-way distinction among values,
structure, and mode. These three levels of information correspond fairly well
with data, indexing, and control. A value might be a number or a textual
character; a structure might be a matrix or list; and a mode might be actual
or potential. In computation, all executives have to do with actualization of
potentials; metagramming adopts an explicit treatment of mode as its highest
method of control.

Every executive must provide for the calculation of functions, giving
each function its argument and keeping track of the result it returns. The
basic functional form in metagramming has four slots for these purposes:

Information is a slot for the argument
Function is a slot for the calculation on an element
Registration is a slot for the result
Application is a slot for the mode of combination of
current and previous results

In each slot, provision must be made for the levels of value, structure, and
mode.

On the value level, the Information passes to the Function as argu-

ment; the resulting value and the Registration pass to the Application as a
pair of arguments; and the result goes back to Registration to end a cycle.

On the structure level, an indexing process occurs in each slot during

each cycle. If the fillei of the Information slot is a collection of values,
then indexing moves through the collection over a sequence of cycles. Or the
Registration slot may be planned so that after many cycles it will contain a
collection of values; the indexing process builds the collection.
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On the mode level, if a slot is filled only potentially then it must
be actualized before the indexing process takes place. What is stored outside
the fast memory of a computer is potential in a certain sense and is actual-
ized by an input process. Recursive computation can be said to involve poten-
tial terms; the recursive calling actualizes them. An incompletely defined
function is potential; automatic programming would actualize it.

The metagramming executive is universal in the sense that each slot
can be filled, on the levels of structure and mode, with either primitive or
nonprimitive functions. (In the ordinary threaded-code executive, machine
instructions fix structure and mode.) A nonprimitive function is specified by
filling the slots of the functional form; such an object can have a name, and
the name can fill a slot in another form. The aim is to give the designer
direct access to every level and aspect of computation, with the expectation
of stimulating work at higher and higher levels of abstraction.

The executive is no more universal than the fetch-execute machine in
the sense of absolute power; the fetch-execute cycle can accomplish any
feasible computation. Absolute power and effective power are not the same,
h owever; effectively, computation is the work of persons and machines jointly.
Metagramming may provide enough points of control to let the designer set up
an effective system for each of many different applications.
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APPLICATIVE THEORY OF COMPUTATION

Information-processing machines are not all alike from the point of
view of the user. The universality of the Turing machine, which is built into
every commercial stored-program computer, guarantees that every machine can do
every computation; what one can do, all can do. But universality does not
guarantee ease of use. The Turing machine itself makes the proof of universa-
lity easy, but makes any computation hard. From the user's point of view,
Turing's design is awful, its universal power unusable. Commercial machines
are not more universal than Turing's, but they are easier to use. In fact,
they are so easy to use that millions of them are in actual use today; but not
so convenient as to prevent the growth of a software problem. But metagram-
ming requires that machines become users of other machines, and a machine that
a machine can use must be very, very easy to use.

A pivotal element in the development of metagramming is an ordered
series of machines, each much easier to use than its predecessor. The series
extends one step beyond the contemporary machine, and that extra step brings
the art to a kind of machine that even a machine can use. If the series can
be carried one step further, the next kind of machine should be easier still;
but the next step is not obvious, and one cannot forecast its discovery.

The series of successively easier-to-use machines is defined by the
number of kinds of slots the machine requires.

ONE-SLOT MACHINES

The typewriter is an information machine, albeit a simple one. Its
simplicity is helpful in the introduction of notation and of the idea of slot.
A typewriter has a keyboard and a set of type bars. When the user strikes a
key, the corresponding typebar strikes the paper, leaving a mark. The only
information resides in the user's choice of a key. Thus

Typewriter ( Information )

The name of the machine is followed by a pair of parentheses. Inside the
parentheses stands the name of the one and only slot. The word Information
holds a place which can be filled in one or more ways. But what the machine
does with the filler of the slot is always the same: It prints the corre-
sponding mark on paper.

A typewriter with an external switch marked LOCAL-REMOTE gives the
user two ways of filling the slot:

Typewriter ( LOCAL )
Typewriter ( REMOTE )

In the LOCAL position, the switch binds the typewriter to its own, physically
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attached keyboard. In the REMOTE position, the switch binds the typewriter to
some other keyboard or to a computer. The switch is a machine that operates
on the basic machine.

Another way to think of the machine is as a physical device, which the
typewriter certainly is; only consider the printing part to be separate from
the keyboard part. The printer has a socket, labeled Information. The user
plugs the keyboard into the socket. The expression "Typewriter (Information)"
is a functional form; the word "Information" names only the slot. With the
slot filled, say by "LOCAL", the expression becomes a function.

The typewriter is easy to use for its simple purpose. Other one-slot
machines have theoretical and practical interest, but an inventory and discus-
sion is not necessary here. And a one-slot machine to serve the purposes of
the general-purpose computer would be so hard to use, or even to explain, as
to hold up the main line of exposition. It would be a Turing machine.

TWO-SLOT MACHINES

The adding machine has a memory as well as a keyboard. Machine users
and builders have the term "register", which supplies a name for the second
slot:

Addingmachine ( Information Registration )

Again, the name of the machine is outside the parentheses and the words inside
are place holders. In the typical mechanical adding machine, the slots are
filled at the factory:

Addingmachine ( KEYBOARD WINDOW

The user presses keys to enter new information, and the new sum appears in a

window.

And, again, what the machine does with each slot is always the same.
The adding machine forms the sum of the Information number and the Registra-
tion number; since addition is symmetrical, it treats the two slots alike up
to this point. But the machine pots the sum into Registration, not into In-
formation; and this distinguishes the two slots: Registration is the slot
into which the machine puts its results.

The practical adding machine has, besides the numbers on the KEYBOARD,

another external control; with a lever or a button, the user can force Os into
every position in the WINDOW. This is an initialization, and like binding it
is an operation performed on uhe basic machine. Binding converts a functional

form into a function by putting the names of objects into slots; initializa-

tion fixes the values of the objects: WINDOW is an object, and 0 is a value.

27

IWO$



THREE-SLOT MACHINES

The contemporary computer is probably best described as a machine with
three slots; more precisely, with three kinds of slots:

Computer ( Function Information Registration )

Having an Information slot, the computer can accept input. Having a
Registration slot, the computer can retain the results of past computations.
And having a Function slot, the computer can do some informatic work on the
input before combining the new information with the old. Giving the slots the
names familiar in contemporary computation, Registration is like the Accumu-
lator, Function is like the Instruction Register, and Information is like the
cell where an argument is placed for a program to use.

Binding (like the typewriter's REMOTE-LOCAL switch) and initialization

(like the adding machine's reset to 0 total) must be performed inside the
computer. The contemporary computer operates millions or billions of times
faster than human fingers; it would be folly to wait for the human operator to
set the accumulator to 0, bind the several slots, and start the computer every
time. Of course, it would be possible. The operator could type

ADD ( SIN X-ARRAY ACCUMULATOR )

and so start a machine that would construct the sum of the sines of all the
numbers in the array X, leaving the total in the accumulator. A pocket-size
macrtine is used in roughly this fashion. But a machine designed in this way
wastes most of its time waiting for the typist.

Instead, the computer binds and initializes itself, according to in-
structions in a program; and, of course, some of its programs instruct it to
load and execute new programs.

However, binding and initialization are not well differentiated in the
contemporary machine, and quite a few special tricks are used in the absence
of a general scheme of principles. One trick, familiar to everyone, is the
automatic advance of the program counter. The user must see to it that a
"program" is stored sequentially in machine memory. The program counter then
moves line by line through the program, fetching a new filler for Function and
a new filler for Information from each line and executing the specified Func.-
tion on the specified Information. The name for this trick is "Fetch-Execute
Cycle", and it is used everywhere. Another trick, also used in all computers,
is called "Conditional Transfer". Some filler of the Function slot causes the
corresponding Information to be used for rebinding (or for re-initialization;
it is hard to tell one from the other in a computer) and thus to effect a
"Jump".

The computer is a complex machine. It manages to combine great power
with relative simplicity of use by managing, with its three-slot form, to con-
trol its own binding and initialization, that is, control of is own operation.
But its three-slot form is not adequate for conceptual distinction among bind-

ing, initialization, and computation of functions. Another slot is needed.
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FOUR-SLOT MACHINES

A machine with four slots is a new kind of informatic device. It do-
serves a new name; it is not a computer. Instead, Hetagram proposes to call
it a Controller

Controller ( Application Function Information Registration ,

It has the three slots of the Computer, and a fourth named for the style of
programming identified in the current literature as appplicative. David S.
Wise describes "Applicative Programming" as "A style of programming that con-
trols the application of functions to arguments".

What a Controller does is this: Put into Registration the value ob-
tained by executing the Application with two arguments, the first of which is
the prior value of Registration and the second of which is the value obtained
by executing the Function with the value of Information as argument. More
compactly,

R <-- A ( R, F ( I ) )

where the arrow is an assignment and A, F, I, and R are (values from) the four
slots.

Summation is an elementary example. Define

Sigma = Controller ( Add Identity X Sum

So the Controller stores as a new Sum what it gets by adding the value of X
(the Identity function does not change it) to the prior Sum. Repeated, this

operation would construct the sum of a collection of Xs: below, the method of
repetition appears.

Some other examples: To sum the squares, change Identity to Square.
To make a list of the squares, change Sum to List and change Add to Attach:

ListSquare = Controller ( Attach Square X List )

What happens is

List <-- Attach ( List, Square ( X

the prior list grows longer with the attachment of another square to it.

Like the computer, the controller must bind and initialize itself.

With elaborated versions of the four kinds of slots, introduced further on,
clarity of distinction will be achieved.
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TYPES OF CONTROLLERS

A more compact notation is convenient:

G (AFIR )

where

G is a Controller with four slots
A is an Application
F is a Function
I is an Information
R is a Registration

Another type of Controller is

T ( A F1 II F2 12 R )

with six slots: Two each of the Function and the Information types. Nit ou'y

does T have six slots, but also it has the data flow

R <-- A ( R, FI(Il), F2(I2) )

The first Information slot supplies an argument to the first Function slot,
and the second to the second.

As a rather elegant example of T, define TRUTH by

T ( MATCH INTERPRETATION STATEMENT PERCEPTION SITUATION BELIEF

Tarski put it that "'Snow is white' is true if and only if snow is white."
The TRUTH machine gives

BELIEF <-- MATCH ( BELIEF, INTERPRETATION(STATEMENT), PERCEPTION(SITUATION'

In other words, a truth value BELIEF results from testing the correspondence
MATCH between understanding (by INTERPRETATION of what is said, a STATEMENT)
with the comparable understanding (by PERCEPTION of what is available to the
senses, a SITUATION). But the TRUTH definition also takes into account prior
BELIEF.

Another example of T is the validation of programming languages; and
it is very like the first. Define VALIDATE by

T ( MATCH P-ANALYSIS PROGRAM A-ANALYSIS FORMULA VALIDITY

or, in data flow,

VALIDITY <-- MATCH ( VALIDITY, P-ANALYSIS(PROGRAM), A-ANALYSIS(FORMULA)

Take an algebraic expression FORMULA and apply algebraic methods to it by
A-ANALYSIS. Take an expression, a PROGRAM in Basic for example, and applv
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programming methods to it by P-ANALYSIS. MATCH the results, subject to the

prior value of VALIDITY.

The examples in the present section are no more than indicators that
the functional forms, that is to say the lists of slots, called G, T, and so

on are good enough to give the right outlines for familiar problems. With a
simpler form than T, be it noted, one could check the validity of a program;
but only by giving priority to either the program or the algebraic formulation
of the same problem. And taking the point of view of either program or formu-
la makes the task of comparison more difficult.

G is a Controller with four slots. T is a Controller with six slots.
Thirdly, a machine with eight slots is the metagramming Controller

M ( A F1 II F2 12 F3 13 R )

Each of the three Information slots supplies an argument to the filler of the

corresponding Function slot. The data flow is

R <-- A ( R, FI(1), F2(12), F3(13) )

In a trivial example, take F1 as Identity, F2 as Square, and F3 as Cube; take
each of I, 12, and 13 as Integer; take R as Table, and A as Attach. Then one

step extends the Table by adding an integer, its square, and its cube. Even
this example has the interest of showing that the slots can be interlocked; by
putting Integer in several slots at once, the example makes the table come out
as it should. This interlocking, or diagonalization, is needed in crucial
places hereafter.
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CONTROL: INDEXING AND DECISION

Computation is more than calculation because it chooses what calcula-
tion to do. This is the problem of control in a broad reading of the term,
but with metagramming it is convenient and helpful to make distinctions within
the broad category. Three levels emerge: Calculation, indexing, and dsci-
sion; they operate on values, structures, and modes (pp. 24-25. At the firsc
two levels, metagramming provides a convenient way of organizing familiar
work. At the decision level, new convenience becomes significant.

INDEXING IN STRUCTURES

In algebraic terminology, one extends a calculation from a single da-
tum to a collection. Summation, for example, must take its addends one by one
until is has formed the sum of them all; it needs extension through the col-
lection of addends. This is a small example; but the functional form G has
several slots, and another computation may require the Application, the Func-
tion, and the Information all to be collections. These collections may be or-
ganized as data structures.

In an extension, three kinds of information are necessary; Current
value, a pointer to the following value, and a specification of the kind of
organization or structure. To cite some examples of kinds of structure,

CONSTANT A single number, unchanging
SUCCESSOR A number, increasing by 1
VECTOR A sequence of numbers
MATRIX A double sequence of numbers
LIST Entries stored arbitrarily, linked by pointers
TREE Entries stored arbitrarily, with lists of pointers
FOREST A list of trees

The necessary information can be represented in an expanded version of G:

G ( AO FO 10 RO Values
Al Fl II RI Pointerr
Al' Fl' II' RI' ) Structure types

Each of the four kinds of slots is expanded into a tripie. A single calcila-
tion uses the values; extension needs pointers and strictire types.

The 0-level form GO ( AO FO 10 RO ) is the functional form of a single
operation; a simple machine. The composite G, with slots of both levels, Is
the form of an extended function.

A structure type such as LIST or TREE corresponds by intent with a
manner of extension; hence it can serve as the name of' a primitive operation
in the metagramming system. Suppose, for example, that the filler of tVe In-
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formation slot in G is a list; the filler of II' is LIST. When LIST is exe-
cuted, it uses I1 as a memory pointer to a pair of cells, and moves their con-
tent into TO and Ii.

Each slot has a structure type, and indexing is synchronized in the
four slots. Consider POWERSIGMA, which sums the i-th powers of the entries
in its sequence of arguments: It adds the first term, the square of the se-
cond, the cube of the third, and so on. For illustration, make the arguments
the consecutive integers provided by SUCCESSOR.

POWERSIGMA = G ( ADD IDENT 1 0
- Pointer - -
CONST LIST SUCC VARIABLE

The values shown on the first line are the initial values, prior to any calcu-
lation. The dashes on the second line appear because CONST (constant) and
SUCC (successor) need no pointers. The word Pointer represents a memory ad-
dress; the function is a list of functions, executed in turn.

To recapitulate: The execution of Al', Fl', and II' sets current va-
lues AO, FO, and 10. The execution of FO and then AO, with 1O and RO avail-
able as arguments, yields a new value. To complete a step in the extension,
execution of RI' registers this value; VARIABLE makes a replacement, ATTACH
lengthens a list, and so on.

DECISION BY MODE

Real computation extends basic operations through finite structures;
the computation must cease when it exhausts the data. This is one problem of
control. Another is that a criterion for success may be part of the specifi-
cation of the task; a square root computation ends when the square of the ap-
proximate root is close enough to the original number. But the more subtle
problems of control are of a different kind.

To this point, bindings of functional forms have been presented as if
the fillers existed in explicit form: Files ready for the I slot, functions
fully defined and ready for the F slot, and so on. Giving up the assumption
of readiness entails adoption of a more powerful control method, but frees the
designer of the work involved in validating the assumption. If the metagram
system can cope with inexplicit fillers, the programmer does not have to ensure
explicitness. Extension was a 1-level operation; coping with inexplicit fil-
lers is a 2-level operation, ard covers the simpler problems of control.

For another level of operation, the functional form must be expanded:

G ( AO FO 1O RO Values
AO' FO' O' RO' Value types
Al Fl Il Ri Pointers
Al' Fl' Il' Ri' Structure types
A2 F2 12 R2 Categories
A2' F2' 12' 2' ) Control types
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come value types are 2-byte integer, 4-byte integer, and character. Catego-

ries include primitive function, homogeneous structure, and others. Among
control types are Actual and Invokable.

In general, the operation of a filler at 0-level or 1-level yields a
status indication as an argument to the corresponding filler at 2-level. For
a simple illustration, take the I vector to represent an explicit list. 12'
is Actual, so execution of II' is appropriate. But 1l' is LIST, and uses the
pointer Il to pull the next entry into 10. If Ii ie NIL, then no next entry
exists; the failure of Il' is reported to the control filler in 12', which
terminates the operation of G; whatever stands in R is the end result of the
computation.

Or take the problem of approximation. Take the value 10 to be a nzn-
ber for which the square root is required. The value RO is an approximation.
The category F2 is identity; all operation in this slot is therefore skipped.
The application AO is a function of two arguments (supplied by I and R) with
results on two levels: A new approximation, and a signal that the approxima-
tion is or is not good enough. On receiving the "good enough" signal, A2'
terminates the operation of G after the final approximation has been stored
in RO.

Specification of a function to adapt it to its context of use shows
more clearly the power of metagramming. Let the value slot FO contain some
identifier of a table of procedures, each with condition of use. The control
type F2' is, say, Unspecified. The conditions of use are the value types of
arguments; the procedure for Unspecified function replaces FO with F(IO'). In
other words, it uses the value type 10' to select in the table of procedures.
The replacement affects the whole column:

FO replace the identifier of the table of procedures with the
identifier of a specific procedure

Fl, Fl' replace this characterization of a structure containing
tables with a similar characterization of the structure
of a specific procedure

F2 insert Primitive, Invokable, etc.
F2' replace Unspecified with Specified

Once the function is specified, it remains so throughout an invocation of G.

A function can be specified with respect to the value type Df its
argument and also with respect to the value type that it delivers; the square
of a one-byte integer is, in general, a two-byte integer. Certain identities
necessarily obtain in the functional form.

10' is the type of 10 and also of the argument of FO.
FO' is the type of the value calculated by FO and also of

the second argument of AO.
RO' is the type of RO, of the first argument of AO, and al5u

of the value calculated by AO.
AO' is identical with RO'.
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If F is Unspecified, FO' may nevertheless be given by a prior specification of
A; if this condition obtains, then the specification of F can be determined by
both 10' and FO'. Likewise, if A is unspecified, AO', FO', and RO' can joint-
ly serve as specifiers of the required application.

The main control structure of a powerful system must allow the slots
of a form such as G to be filled with identifiers of similar forms. Certainly
A and F must be so filled; but so can other slots. Processes of 2-level deal
with this nesting.

Suppose a functional form has been filled, and F2' contains Invokable;
a prototype for the embedded function exists, but linkage must be created.
Invocation in metagramming begins by transcribing the prototype. The FO slot
contains an identifier of the prototype: invocation substitutes an identifier
of the transcription. Since the argument of FO in the invoking form is 10,
that valie must be copied into the transcription of the invoked form. The
value type 10' of the invoking form becomes the structure type TI' of the
invoked form, since it might be LIST or TREE: The invoking form may be pro-
cessing a structure which is a list of trees, a tree of lists, and so on.

The invoked function can be used repeatedly if the information struc-
ture is homogeneous--that is, if the value type I0' does not change; on each
use IC and II must be copied from the invoking into the invoked form, but II'
and I0' remain unchanged in the invoked form. In this fashion the invoking
function can process a list of numbers, using the invoked function to approxi-
mate the square root of each. However, if the information structure is hete-
rogeneous (I0' varies in the invoking form), more work is necessary. Invoca-
tion must then be followed by specification; the invoked F may be Unspecified.
Indeed, only an unspecified function could survive a change in the value type
of its argument, and at the cost of respecification. On using an invoked
function, tests are required: Is the Information of the invoking form hetero-
geneous? If so, does the value type I0' in the invoking function match the
structure type II' in the invoked form? If not, reinvoke; take the identifi-
cation of the unspecified, invokable function from the invoking slot and pro-
ceed as for the original invocation. To get these tests made, the control
type of an invoked function must be different from that of a primitive.

The information source that is to fill the I slot need not be in the
most accessible kind of storage when a function is invoked. Suppose that the
value 10 of an invoking function is an identifier of an external source; the
value type I0' is, say, External. For the invoking function the control type
12' is Actual--the identifier is in the slot--but for the invoked function 12'
must be different: Library-access or the like. During invocation, the system
can examine the filler of I0' and, in the External case, fill the slots of the
invoked form accordingly. Execution of the invoked form includes a stage in
which the external information is found and made accessible; the system may
consult a directory, issue a message to an operator, verify the label of a disc
or tape, and so on. Naturally, such processes occur in current work, but they
are often guided by an operating system and described in a language other than
the programming language. The 2-level processes of metagramming encompass at
least some of the activities of an operating system.
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nECURSION

If a word appears in its own definition, tne definition is recursive.
In some systems of programming, and certainly in metagramming, recursive pro-
cedurea are tolerated. A standard example is tne factorial function, 1! = 1,
2! = 2 x 1, 3! = 3 x 2 x 1, .... , or

n! = if n = 0 tnen 1
else n x (n-l)!

But tnis definition can be recast as a tail recursion, making the work itera
tive:

Factorial = G ( Product Identity Pred-n Unity

Tne application Product goes with tne multiplicative nat-ire of tre factorla
The registration Unity is initially 1, and nolds succesZive prodicts. The
information Pred--n is a structure that gives n as first value and tnereafter
values reduced by 1 each time until tne value would be 0 and it returns NIL.
Once tnis function is invoked, it simply runs to c(rmpletion, 'eaving tne fac
torial of n in registration; no recursion takes place. Note tinat if n is ori-
ginally 0, tnen no calculation occurs: since 12' gets a failure return from
11' immediately, execution halts, leaving tne initial valje 1 as result.
Since the initial value in registration is necessary for tne multiplicative
process, tne matnematicians' convention tnat 0! = 1 seems deeply motivated.

Tne problem of semantic interpretation is anotner standard example of
recursion, and not tail recursion. The information structure that it uses is
the syntactic structure of a text, e.g. of a sentence; take tnis to be a de--
pendency tree, witn lexical labels at the nodes. For example, tne dependency
tree for "John ate a good breakfast" is

( ate ( John, breakfast ( a, good

Sucn a tree can nave any depth, and any number of dependents at a node. The
meanings of all tne dependents must be calculated before tne meaning of the
governor can be determined, just as the values of arguments must be known
prior to execution of a function. The list of partial tasks can grow witnoj-
limit.

Semantic interpretation can be performed by a binding of G. with a new
kind of filler in the registration slot:

SemInt = G ( Compose Diet D-tree Dependents

wnere D-tree is the dependency tree
Diet is a dictionary-lookup function, replacing tne lexical label
at any node with a semantic cnaracterlzation

Compose inserts a list of meanings of dependents intu the meaning
of a governor

Dependents both keeps track of partial res.ilts and makes recursive
calls
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To illustrate, let the D-tree be ( ate ( John, lunch ) ). It is an actual
list, and indexing gives the value "ate". Dictionary lookup finds the seman-
tic characterization of this lexical item. Next, the registration slot be-
comes active at the control level. If the meanings of "John" and "breakfast"
were registered, then Compose could insert them into the meaning of "ate"; but
those meanings are not registered. The control type R2' effects the recursion
by taking the name of a partially bound form--SemInt--from RO, completing the
binding with the next element of the information structure, and invoking.
This is a recursive call; the information structure passed is ( John, lunch ).
If "lunch" had a dependent, another recursive call would follow, but the re-
cursion halts on null information. At the end of the recursion, the meanings
of the dependents of "ate" are in registration, Compose can do its work, and
the interpretation is complete.

This illustration reveals the method by which iterative and recursive
computations are distinguished: If the content of R is real, the computation
is iterative; if not, then recursive. The illustration reveals more besides:
Metagramming works by writing specifications for what does, can, or may exist;
and by forcing enough computation to deliver results whenever possible. The
specification can describe a mathematical function, an element in a database,
or a program.

IMPLEMENTATION AND ELABORATION

A very small fragment of metagramming has been implemented. The me-
thod chosen resembled that of threaded code: In a compact segment of machine
st:>rage, pointers to definitions were stored. In fact, a threaded-code execu-
tive was used to run through these pointers. But the content of the storage
area was modified during execution, as the foregoing discussion of G clearly
requires. This method is close to standard practice, and can be used for fur-
ther experiments and development.

The elaboration of the G form as a universal executive depends on ease
of writing new indexing and control functions to fill 1-level and 2-level
slots. Nothing prevents the use of bound G forms for this purpose; and with
that technique, new kinds of structures can be considered for the information
slot; for example, an interactive input language has a structure, and its in-
terpreter can be inserted in II'.

The G form, with four slots containing 0-level, 1-level, and 2-level
fillers is itself an information structure; hence it is an object on which
metagramming can work in a broad way. Because this form is invariant, or
need exist only in a controlled diversity of types, operations on it should
be more easily defined than operations on other kinds of program structures.
These operations belong to domains of automatic and adaptive programming that
have yet to be t plored.
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A PERSPECTIVE ON THE ART OF COMPUTATION

Metagramming is the art of creating information systems in which cer-
tain forms of expression become meaningful. This is in contrast with program-
ming, which is the art of restating problems in a fixed form of expression.
For practical application, the significant forms of expression are the laf,-
guages of operatives, supervisors, and managers in business: of technicians,
engineers, and scientists; and of officers of government, including military
tacticians and strategists. These concise languages are appropriate for in-
teraction with the computer; a machine that accepts only a basic, generalized
language seems stupid to the user and therefore irritates, even if its tho-
roughness, speed, and other peculiar powers make it indispensable.

The technical languages of specialists take for granted different
worlds, each with its own things, events, and logic; since what is taken for
granted can be left unsaid, these languages provide exceedingly compact forms
,f expression. The information system that accepts a concse langjage as a
programming language must contain a world model, including the logic that
verifies internal consistency.

Certain world models are relatively simple. Basic accountancy deals
with journals and ledgers; its principles of organization are the calendar and
the chart of accounts, and its logic is the additivity of money. Present-
value calculations, depreciation, etc., introduce multiplicative logic. Ano-
ther simple world model is used in graphic arts--the simplest version suf-
ficing for design of reports and forms. This is a world of sheets of paper,
lines and columns of type, character heights and widths, and so on. BJt this
world also contains text, with an independent structure of chapters, para-
graphs, and sentences---or invoices with addressees, lists of entries, totals,
etc. The logic of the graphic arts is the mapping it' text into space on the
page.

Other world models are, of course, enormously complex. Modern science
is attempting the development of a coherent model encompassing every kind of
observation. In the long run, metagramming could become a tool for science.
It is not necessary, for the present, to consider highly complex world models.
Many applications with simple structure need attention.

The world model of the specialist in computation has a inique role in
metagramming. This is a world of internal and external storage, of machine
operations, of input and output devices; and also a world of programs, files,
and other information structures and processes. For metagramming to create
an information system, it must use this model. A language of interaction with
computers is meaningful only if it has an effective interpretat,,n in the com-
putational world model.

The creation of information systems giving meaning to new forms of ex-
pression is not new. It is, in fact, a phenomenon that has occurred many
times in the history of human culture, on both large and small scales. And
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the phenomenon occurs in the education of every child. The possibility of
such creation is implicit in human cognition and language; the term *meta-
lingual', which applies to language about language, takes for granted just
such creativity. In computing, work in artificial intelligence has produced
a few world models, using methods invented on the spot.

The following paragraphs describe a structure of worlds that could be
built. If this structure is created with the necessary skill and knowledge of
the users who must occupy it, the software problem can be eliminated.

The initial system--Metagram O--is simple; the method of threaded code
demonstrates that there is no need to construct a rich, powerful precursor if
the system itself can grow. The information structure of this system charac-
terizes a primitive language. The processes realized by binding its func-
tional forms construct and register the next system. (From the beginning,
Carr and his associates thought of the growing machine as a tool for making
new languages.) Like compiled code, the contents of registration is ready
to execute.

Metagram 1 can give its operator good mnemonics for primitive opera-
tions, a decent syntax, methods of testing all or part of a new program, and
reasonably good display facilities. Now, it is inherent in metagramming that
the Metagram 1 operator can be isolated absolutely from Metagram 0; but such
isolation is not obligatory. The system-wide capacities of Metagram 0 can be
replicated in a Metagram 1 system, with the convenience that this level gives.
The operator at this level is the designer of one or more Metagram 2 systems,
each realized by building it in a registration slot.

From Metagram 0 through Metagram 6, the worlds constructed become more
specialized, more diverse, with data structures and procedures that take on
the particular characteristics of, say, an industry and then a single company,
or of a technical specialty and then of a single technical department. Each
system is composed of just what is needed, rather in the way an operating sys-
tem is sometimes generated to suit a unique installation. Hence the typical
system can be relatively simple, small, and fast.

One might expect a very large number of different systems at level 6,
and therefore feel that metagramming loses the value of standardization. Two
factors mitigate the loss. On the one hand, the main organizing principles
of the system can and should become standard; the notion of a universal execu-
tive is in this direction, and many elements and features should be used
widely. On the other hand, diversification of systems should correspond well
with lines of responsibility. If the goal of standardization is that certain
competent persons should be able to read and modify any code in use anywhere,
the goal is unrealistic; to understand code, one must know the application as
well as the system, and no one can know every field. From the perspective of
metagramming, what is wanted is the application specialist for whom the right
computing system is transparent.

And this plan shares with threaded code the advantage that only a small
part of the structure need be modified by experts to suit different machines;
from that kernel, the adaptation of the remainder is automatic.
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INFORMATION AND ANALYSIS

The intelligence requirement of a major government is comparable in
scope to the intellectual purposes of mankind: To know and understand the
world in which we live. The priorities of a government are often different
from those of science or scholarship, and intelligence customarily delivers an
appraisal of a case whereas science customarily delivers laws or ;nivc-:sal
theories; but these are not absolute differences. Making full allowance i r
the differences, one can still apply the history, sociology, and philosophy
of science to intelligence and begin to see that this enormous and eclectic
field can have a disciplinary structure.

Three issues stand out in the open literature.

1. Volume of information.
2. Incompatibility among sectors.
3. Interdependence of presuppositions and conc) usi)ns.

These issues arise both in general intellectual work and in governmental in-
telligence. From the perspective of metagramming. they are not problems to be
solved so as to make intelligence analysis (or scientific research) easy, but
terms of reference for the organization of work that is difficult and will re-
main so permanently. If these are not problems that will be solved, then in--
telligence analysis (like general intellectual work) needs a perspective broad
enough to encompass them. The new perspective is one that can look at and
deal with abstractions.

VOLUMINOUS INFORMATION

"The extent of the informational processps of the Department of Defense
is staggering," wrote Frederick B. Thompson early 'n the 1960s (ref below).
He made numerical estimates, claiming only that the "logarithms are of the
right order of magnitude": 100 billion billion "Considerations within area of
responsibility" for DoD, with "Average time between significant contextual
changes" 1 microsecond. Surely after twenty years these figures have grown
even more staggering. The Government of the United States has still more to
consider. The computing capacity of the Government is an indicator of the
volume of information over which control is attempted.

Thompson depicted the command hierarchy as facilitating control over
this great quantity of information. Those at higher ranks have "to leave cer-
tain of these details to subordinates and to deal with higher-level abstrac-
tions..." Conversely, those at lower ranks accept definitions .)f the context.

Ref: Thompson, Frederick B. Design Fundamentals of Tnf.,rmtlon Systems.
In MILITARY INFORMATION SYSTENF: The Design ofCom-utd.
Systems for Command, editeu by Edward Bennett et a' . In6. -.
46-87.
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of their operations as fixed at higher levels and issued as commands.
Thompson's characterization of abstraction is "grouping otherwise discrimi-
nable aspects as a single object." Tnis is generalization; true abstraction
might instead be phrased as "organizing otherwise unrelated aspects into tne

pattern of a single object or event".

Granting Thompson accuracy even for tne order of magnitude of the
logarithms of his estimates, it is clear that true abstraction is part of tne
informational function of hierarchies of command. Wnere 10 to tne 12tn or
14th power details are involved, only abstraction--not generalization--serves.
In the contemporary military establisnment, two or three levels of abstraction
(somewhat corresponding to the break widely recognized at tne Colonel's rank,
and to the distinction between strategy and tactics) are in use. Abstraction
moves the thinker to a new world; see tne discussion of science, pp 10.-13.
The most senior officers with broadest responsibilities live in a different
world from the most junior officers witn strictly local areas of responsibi--

lity; and a third, intermediate world may exist. The personnel of different
grades appear to repeat, in contemporary life, tne modes of thought of stages

of cultural evolution: Lore is sufficient for the operative with concrete
tasks, engineering is a suitable mode for tne tactical officer, strategic
planning requires cognitive skills of the scientific level, and at the nign-
est levels in the Department of Defense tne necessary abstractions are so nign
that only the most powerful systems of tnougnt available can suffice.

In cultural evolution, increasing depth of nierarcnical organization

is a strong correlate of tne overall level of the society; it is one of Raoul
Naroll's (ref below) indicators of level, along with settlement size and occu-
pational specialties. Assuming tnat tne major stages of cultural evolution are
marked by increase in the number of levels of abstraction available in tne lo.-
cal cognitive system, Tnompson's argument snows now tne command nierarcny
brings all of tne available levels to bear on tne informational problems of
complex action. Hierarchy has in addition tne social advantage of permitting
each commander to know as individuals all immediate subordinate ,, and tne psy-.
chological advantage of making each person directly responsible to a single
superordinate. Tnese advantages are pernaps more generally recognized, but
tne cognitive value of sorting out levels of abstraction is immediately ob-
vious.

Tne informational function of tne nierarcny is not summarization but

translation. The field reports have to be recast in strategic terms to be of

use to the highest levels of command; totals and averages are not enougn. Tne

problem of data volume is not accidental but essential in military and politi-
cal structure. Data reduction in the mode of generalization cannlot serve; the
mode of abstraction must be examined.

Ref: Naroll, Raoul. What Have We Learned from Cross-Cultural Surveys?
AMERICAN ANTHROPOLOGIST 72:1227-1288,1970.
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INTERSECTOR INCOMPATIBILITY

Governmental and, in particular, military organizations are large. In
the hierarchy, some subordination of responsibility is merely territorial: A
large command is divided geographically. But many subordinations are by tech-
nical specialization, as, for example, the Strategic Air Command is given the
technical problem of action at a great distance from its bases. Where each

unit has a computer but interconnection is required, the technical specialties
raise problems of compatibility.

No doubt some of the problems of compatibility between computer sys-

tems arise on account of competition among makers of computers and software or
among users. And no doubt other compatibility problems have arisen because
systems were installed before the significance or even the possibility of in-
terlinkage was recognized; independent designers made independent inventions
to roughly the same ends, leading to differences in crucial detail.

Nevertheless, incompatibility is to be expected as a permanent trait
of a complex with technical specialization. It is proper and necessary that
each specialized command of whatever rank represent in its own compoting sys-
tem the world in which it operates. This world consists of categories of
things and events which are not identical with, and if the technical speciali-
zation is sufficiently sharp and deep not even comparable with, the categories

of things and events in some other world--even if the two worlds occupy the
same region in time and space. The categories of each command are necessarily
reflected in the rubrics of its data and in the processes of its software.

What specialized commands do have in common is their superordinate.
The higher headquarters must deal with all of them. Its terms are more ab-
stract, but part of their responsibility is to translate between its terms and
their own. Thus the only natural way to pass information laterally between
subordinates is via the common superordinate. The volume of data or the need
for timeliness may make this route impracticable; but reference to the more
abstract language of higher headquarters is the natural regulator of lateral
communication even so.

The problem of abstraction thus arises when _nformation passes between
two commands on the same level when they implement (make more concrete) the
abstract requirements of their common superordinate in technically, theoreti-
cally different ways.

PRESUPPOSITIONS AND CONCLUSIONS

One of the standing problems in the philosophy of science is the im-
possibility of establishing any fact, at any level of abstraction, without
making presuppositions of many kinds: Taking much for granted, the scientist
discovers a fact; but taking something else for Aranted, the scientist could
have discovered quite a different fact. The analyst of intelligence, like the
commander in the field, is subject to the same problem. The commander must
accept the context defined by higher headquarters with limited exceptions; but

intelligence, like science, is responsible for its own presuppositions.
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For the scientist or analyst working in what Thomas Kuhn called the
"normal" mode (ref below), the problem is discounted. The presuppositions
constitute a "paradigm". From textbooks and through apprenticeship, the
trainee learns the commonly accepted facts and methods of work. The mature
worker contributes to knowledge by applying the accepted methods and arriving
at a new fact of the kind in the books; the intelligence analyst might deter-
mine the location of one base or weapon in a region already known to contain
others like it.

But there is another mode, which Kuhn called "revolutionary". An
example from science is the shift from geocentric to heliocentric astronomy.
An example from intelligence work is the discovery of Russian missile sites In
Caba. In scientific revolutions, presuppositions change. Since many of the
presuppositions of science concern nature, whereas those of intelligence con-
cern other governments, revolutions are probably more common in the latter.
The issue is, under what circumstances do scientists (or intelligence offi-
cers) alter their presuppositions? And are those circumstances appropriate?
Graham Allison (ref below), relying on a report of the House Intelligence
Committee, writes that "understanding of Iran's internal situation" was made
difficult by assumption of the Shah's stability. Whether we can trust science
(or intelligence) depends in large part on the interplay between presupposi-
tion and conclusion.

Examining the problem of scientific knowledge in the 1930s, Karl
Popper (ref below) concluded that we have no means of arriving at absolute
truth, but that we are more justified in holding to facts (or methods) insofar
as we have tested them. That is, testing eliminates error, even if no humanly
feasible series of tests can establish truth. Different readers of the his-
tory of science do not agree on the significance of failed tests in scientific
revolutions. As philosophy, i.e. as a guide to effective conduct, Popper is
not much challenged. But the fact may well be that sociological, aesthetic,
and other factors influence the outcomes of attempts to revolutionize science.

A partial survey of the literature, including Toulmin and Campbell
(refs below) as well as Popper and Kuhn, does not bring to light much on ab-
straction. The paradigm concept suggests an abstraction, and other hints ap-

pear. It seems worth while to say explicitly that the scientist (or analyst)
must know and use several levels of abstraction jointly. The most abstract
level can be called the thinker's own system of thought, and access to it is

Ref: Kuhn, Thomas S. The Structure of Scientific Revolutions. University
of Chicago Press, 1962.
Allison, Graham. An Intelligence Agenda. New York Times, 21 Dec 1980,
page E-17.

Popper, Karl. Logik der Forschung. Julius Springer, Vienna, 1935.

Translated as The Logic of Scientific Discovery. Basic Books, New York,
1959.
Campbell, Donald T. Evolutionary Epistemology. In THE PHILOSOPHY OF

KARL POPPER, edited by P. A. Schilpp. Open Court Publishing Co.,

LaSalle, Illinois, 1974. Part I, pp. 413-463.
Toulmin, Stephen E. Fores gt and Understandin. Harper and Row,
New York, 1963.
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difficult or, more probably, impossible for the thinker. The most concrete
level is the level of sense data. As Campbell points out, neither of these
levels is easy to alter. If these two levels constitute the entire cognitive
system, the thinker is in a primitive mode corresponding to the lowest level
of human culture. A third level, between the most concrete and the most ab-
stract, puts the thinker at the level of Aristotle: The new level is a recon-
struction of the former system of thought, but appears to the thinker as an
analysis of nature. A system with four levels might be described as having a
sense-data level, an objective level, a subjective level, and a system-Qf-
thought level; this is the level of the Renaissance and the science that de-
veloped between roughly 1500 and 100. In the present century a fifth level
seems clearly to have developed; perhaps such a term as "relational" or "in-
teractional" is appropriate to it.

For the typical scientist described by Popper, Kuhn, Campbell, or
Toulmin (among others), the sense data were clearly distinct from the abstract
concepts of objective theory, and the objective theory was clearly distinct
from the subjective observer and theorizer, who could make mistakes in seeing
and recording the data. The separation between objective and subjective
levels was probably necessary to the formulation of a heliocentric theory of
the universe; as long as objective and subjective models remained confounded,
the idea of a moving earth and a (relatively) stationary sun could not be
formulated. A certain relationship between sense data and objective model was
recognized: Salva apparitionis, 'saving the appearances', was the phrase, and
it meant that the model must account for the data. But the relationship be-
tween the subjective and objective levels was not understood in any depth; in-
deed, it is the aim of Popper and others in this century to understand that
very relationship and so to fill in the new relational or interactional level

of abstraction.

This model of cognitive evolution suggests a new view of revolutions
in science. The instigator is a person who has begun to think with one level
of abstraction beyond those of contemporaries, has begun in fact to operate on
a reconstruction of what for others is the system of thought itself. No sys-
tem of thought has ;ever been perfect, and small operations on any system of
thought can surely make apparent difficulties and imperfections. This anyone
who could begin to separate subjective and objective models would have been in
a position to express doubts and concerns that others had felt without having
the means of expression. Such a person would also have new capacity to mani-
pulate the objective model--to consider the earth moving around the sun, for
example. And the combination would be effective in a way that both Popper and
Kuhn miss.

The significant point is that every level of abstraction is bound on
both sides. The dictum of 'salva apparitionis' concerns but one side: The
objective model is bound to the data. But every model is also bound to the
more abstract side as well, for the sake of logical integrity if nothing else.
Before the Renaissance, the single intermediate level of abstraction would
have been bound to sense data and to the system )f thought of the European
thinker. Upon the emergence of another level, the model of the universe Is
still bound to the sense data on one side, but to an explicit system of obser-
vation and calculation on the other--and it is this latter that is bound to
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the system of thought. The elegance of the universe--geocentric, with orbits
composed of perfect circles--gives way to elegance of methods in observing and
calculating. And elegance can be understood as pleasing to the system of
thought, both before and after the revolution.

The twentieth century has a new level of thought. Methods of observa-
tion and calculation are no longer directly answerable to unconscious stan-
dards; elegance is now the appropriate criterion for concepts in the philo-
sophy of science, which imposes its explicit tests on method. But these new
tests are only beginning to emerge, and their nature is as yet uncertain. To
anticipate their nature, a final evolutionary sequence seems helpful: What is
the conservation principle that regulates thought at each stage? The user of
lore conserves effectiveness; the growth of lore is pragmatic. Aristotle's
principle seems to be the conservation of category, in the sense that each
kind of entity is capable of certain kinds of action. The next stage clarifies
the subject-object distinction and begins experimentation; the principle of
conservation of susceptibility, that each natural kind responds to operations
in its own manner, seems to guide scientific thought. The present stage deals
with systems of logic Pi well as with systems of observation; it makes recur-
sive analyses of nature, over indefinitely many orders of magnitude of time,
space, and numerosity of elements. A principle of consistency through levels
seems to be what we use: Conservation of structure-function relationships.

Allison (ref p. 43) asks "How can the intelligence community's analytic
competence be substantially enhanced?" His answer is to "deepen the expertise"
of analysts and to enlarge the community. A more significant answer is to
solidify and apply the systems of thought that are growing up in contemporary
critiques of science. A new perspective on computer software, such as that
implied in metagramming, and a new perspective on intelligence analysis could
combine to produce systems at a new level of competence.
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Appendix

COMPUTATION AND STRATEGIC INTELLIGENCE

Notes on Sherman Kent, Double Contingency, Gibsonian
Psychology, and Metagramming

William L. Benzon

SUMMARY

The theoretical expansiveness of metagramming paradoxically serves the
purpose of reducing the problem of writing software to one which can reliably
be solved.

The goal of the intelligence analyst is to detect and analyze sub-
stantive problems against a background of descriptive, reportorial, and
speculative-evaluative knowledge; these forms of knowledge are stratified,
with higher strata being meta to lower strata.

The analyst needs a metagramming system with the capacity to check the
prima facie plausibility of causal paths involving double contingency calcula-
tion; this checking conserves the integrity of structure-function correspon-
dence in a recursive analysis of causal paths.

Gibsonian psychology frees is from Cartesian solipcism and doubt and
provides a criterion for ascertaining the reality of our perceptions: If new
information becomes available when the object is inspected, then it is real;
otherwise it is a figment of someone's imagi:nation. Invariance detection is
the medium of perceptual interchange with the environment and conservation
principles are invariance principles.

Just as the search space in which chess is played is meta to the one
generated by the rules of chess, so the space in which computers can reliably
be metagrammed is meta to the one in which computers have heretofore been
designed and built. The higher level space is related to the lower through
representation functions which work well with complex irregular objects.

Metagramming works by inducing an ecological closure over an otherwise

unbounded search space. An account of the application domain (e.g. strategic
intelligence) is crucial to formulating the closure.

INTRODUCTION

The purpose of the present section is to juxtapose a few relatively

informal discussions of intelligence, psychology, and metagramming in a way
which is more suggestive than conclusive. The selection of suggestiveness
rather than conclusiveness as the rhetorical aim of this report is quite deli-
berate and grows from the peculiar difficulties involved in explaining just
what metagramming is and what it. has to offer the intelligence analyst. Con-
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clusiveness in this domain demands technical detail; and technical detail is
intelligible only if one understands what the detail is for and why it must be
that way and not another. Without that understanding the technical detail
degrades into a pile of twigs, leaves, and branches unrelated by the more
inclusive concept of the forest. This report is meant to suggest the forest
by means of a few conceptual strokes in much the same way that the Chinese
landscape painter suggests worlds of mountains and forests with a few quick
strokes of his brush.

The difficulty is that metagramming is a new, and therefore strange,
beast. It i not an extension of programming techniques; but an alternative
to current pi.ilosophies of programming, of organizing computers to meet human
informatic needs. From the programmer's point of view the problem addressed
under this contract, that of providing a common access language for databases
in a network, is a complex but nonetheless limited one; one that certainly
doesn't justify excursions into cultural evolution and perceptual psychology.
From the metagrammer's point of view these matters must be considered if the
problem is to be reduced to manageable proportions. That is, what the pro-
grammer sees as illegitimate and pie-in-the-sky theorizing is, for the meta-
grammer, a necessary prerequisite to specifying a solvable problem--which is
rather different from a problem we can hack away on until something happens.
The metagrammer sees the programmer's strictly focused practicality as leading
to an unending stream of mutually incompatible local solutions to local prob-
lems which will never add up to a global solution, as an unordered pile of
twigs and leaves which will never be a forest no matter how big the pile be-
comes. In contrast the rather freewheeling theoretical creativity that has
been the major activity under this contract is the only route to a practical
solution of the problem of accessing databases--and by 'practical' I merely
mean a solution th-t works.

Thus when some hypothetical programmer accuses some hypothetical
metagrammer of making a mountain out of a molehill, that metagrammer replies,
"Yes, but I have done so, not by piling on more and more dirt, not by collect-
ing many molehills in one place so that their mass approaches a mountain's,
but by adopting the perspective of the ant so that I could gain intimate know-
ledge of the structure and functions of the molehill." The purpose of these
notes is to suggest what comes to view when one adopts the ant's perspecti.'e.

In the first section following, I consider Sherman Kent's STRATEGIC
INTELLIGENCE FOR AMERICAN WORLD POLICY (ref below) and conclude that the goal
of the intelligence analyst is to identify and analyze substantive problems
against a background of alternative scenarios. In the second section I consi-
der an analogy between the detective's situation and the intelligence ana-
lyst's and conclude that the analyst must make double contingency calcula-
tions. Gibsonian perceptual psychology moves into prominence in the third
section and leads to an ecological interpretation of metagramming. The fourth
section views metagramming as a technique for transforming a search through an
unbounded space into a search through a bounded space. And a concluding sec-
tion rounds things off.

Ref: Kent, Sherman. Strategic Intelligence for American World Policy.
Princeton University Press, 1966.
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SHERMAN KENT ON STRATEGIC INTELLIGENCE

Sherman Kent's STRATEGIC INTELLIGENCE FOR AMERICAN WORLD POLICY was
first published in 1949. While much has appeared in the open literature on
intelligence which supplements Kent's discussion, nothing has been broad, deep,
and subtle enough to replace it. It is thus a suitable point of departure for
these notes, where I am most interested in his discussion of intelligence as a
form of knowledge and the methodological problem of identifying and analyzing
the substantive problem.

To begin, it is obvious that anything which is himanly knowable is of
potential value to the intelligence analyst. As a practical matter, most of
that informition will not be needed, but there is no a priori way of determin-
ing what is essential and what is not. Thus the job of organizing information
for the analyst is basically one of imposing a partial ordering on all of hu-
man knowledge such that the knowledge most relevant is at the top of the or-
dering. In fact, we need a nested set of partial orderings. The most global
ordering determines what information will be held in computer databanks and
what will be excluded. The most local ordering is that created when the in-
dividual analyst asks a specific question. Intermediate orderings reflect
intermediate levels of demand, e.g. the typical needs of a group of analysts
over a six-month period.

In Kent's scheme this knowledge is organized at three levels, descrip-
tive, reportorial, speculative-evaluative. The descriptive level is simply an
encyclopedia of basic information. The reportorial function keeps track of
current events; it updates the encyclopedia. At the speculative- evaluative
level the governing question is, to quote Kent (p. 40):

What knowledge should the U.S. have about the future of
other states in order to have the requisite foresight?

Clearly one must use sophisticated inferential skills at the speculative-
evaluative level.

From the metagrammer's point of view these three levels are meta to
one another. Concepts at the speculative-evaluative level are about the
relationship between information in the encyclopedia (descriptive) and current
reportorial information. These relationships are used, on the one hand, as
the basis for inferences about the future. The encyclopedia provides the
background against which the current state of affairs is interpreted and
projected into the future. The modes of interpretation and projection are
internal to the speculative-evaluative function.

On the other hand, speculative-evaluative concepts are used to set
specifications for current reporting and encyclopedia building. For no
encyclopedia can ever be complete and no team of reporters can keep track of
all current events. Some things will be in the encyclopedia, but much will be
missing. Some streams of current events will be monitored, but most will be
left unwatched. The requisite selectivity will be determined according to the
informatic needs at the speculative-evaluative level (which include, by the
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way, a need to be open to unexpected events) and then realized in processes at
the reportorial and descriptive levels.

Moving the analysis down a step we see that proper performance of the

reportorial function requires concepts about the descriptive level. For the
encyclopedia is organized according to some scheme, which consists of concepts
about the information in the encyclopedia. To add information to the encyclo-
pedia one must know the scheme by which it is organized; hence the conceptual
scheme of the reportorial function must be meta to the languages in which the
encyclopedia is written.

A metagrammed realization of this organization would grow from the

bottom up. But all levels must be present from the beginning. And there is
no reason to expect that processes at the lowest level would ever become so
routine that no human intervention at that level would be necessary. Rather
there is a gradual shift in which the greatest concentration of man-machine

interaction shifts from the descriptive to the reportorial and then to the
speculative-evaluative level.

The other aspect of Kent's account which is most crucial to our under-

standing the intellectual structure of strategic intelligence is his formula-
tion of the analytic proc-ss. It has seven stages:

1. A substantive problem is detected.
2. A problem description is created.

3. Data are collected according to
specifications set in 2.

4. Data are evaluated.
5. Data are analyzed to discover their latent meaning.
6. More data are collected according to specifications

set by hypotheses generated in 5.
7. When all hypotheses but one are probably falsified,

the one remaining is presented to the consumer.

Notice that we have two data collection steps, 3 and 6. This type of looping
back suggests that we're dealing with a process best analyzed in terms of a
metalanguage operating on an object language where the metalanguage is either
conducting a recursive search through the object domain or is setting servo-
mechanical reference levels for the object domain comparators (as in William
T. Powers, BEHAVIOR: THE CONTROL OF PERCEPTION; ref page 11).

The recursive search interpretation seems germane to designing a meta-

gramming system for the analyst in which the system could search the data base
in fairly routine ways to establish the relative credibility of certain rou-
tine and well understood explanatory patterns. Such a system would, of neces-
sity, be a relatively mature system, for it would take time to build up a use-

ful library of explanatory patterns.

The servomechanical interpretation seems more applicable to the acti-

vities of individual analysts and to the whole intelligence community. Data
are being gathered at all times; hypotheses are being generated at all times;
and finished analyses are being presented to consumers at all times. The in-
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dividual analyst must consider the data he has at hand; relate them to the hy-
potheses he can generate; and consider the needs of his client--and all are
ongoing activities. The consumer's purposes regulate the range of hypotheses
which are most salient; and the range of hypotheses regulates the retrieval of
information from the encyclopedia and the monitoring of current affairs. Des-
criptive. reportorial, and speculative activity are going on at all times and
in close mutual regulation; a linear characterization of such a process, such

as Kent's seven steps, fails to capture its essence.

This brings us to the critical problem for the analyst, the detection
and analysis of a substantive problem. Of all the pieces of information which
pass before him, of all the pieces of information which could pass before him
if he needed them, which of them specify an unfolding pattern of events which
will have a significant effect on national security? Certain sorts of things
are obvioisly important--large troop movements, massive crop failures, the
discovery of large deposits of scarce minerals--but other patterns don't have
such obvious signs. How do you detect them?

Sherman Kent gives the following answer (p. 160):

The only answer lies in picking a man who already knows a good
deal about the substantive area in which he is supposed to ask
questions, and who has an inquiring mind; and then see to it
that he has ready access to every scrap of new incoming
evidence on it, access to everyone who knows about it, and
freedom from other burdensome duties. But if you go below the
surface and ask, how does one come to ask oneself good questions,
you start down one of the main roadways of epistemology. It is

not my intention to do so.

The answer is a wise one. But it is not very comforting in a world where

genuinely wise men and women are few and far between.

But if we understood something about the nature of the problem these
wise men face, perhaps we could come to understand enough about their methods
of solving such problems to be able to give them a computer aid which would
extend their analytic range. A similar aid would also extend the range of
their less gifted and experienced colleagues.

I think we can go a step beyond Sherman Kent by placing the detection
problem in a more tractable form:

THE DETECTION PROBLEM: The goal of the intelligence analyst
is to detect and analyze substantive problems against a
background of alternative scenarios.

The trick is to realize that while alternative scenarios are in part con-
structed from the results of the analyst's work--they are produced at the
speculative-evaluative level--they are also part of the background he needs to
do his work. Scenarios are background because they tell the analyst what to
look for, i.e. those events which will tell just which scenario is actually
being realized. Without this guidance the analyst faces a mass of information
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without any way of determining what is worthy of his attention. Yet formula-
ting alternative scenarios requires the results of the analyst's work--one
wants, insofar as possible, to base scenarios on the current affairs rather
than on one's imaginings about those affairs.

The next section concerns conservation principles which guide the
formulation of hypotheses and scenarios, while the section after that consi-
ders the problem of distinguishing between the real and the imaginary in the
context of Gibsonian psychology.

INTELLIGENCE AS DETECTION

Let us begin by considering the way in which the intelligence ana-
lyst's job resembles and differs from the detective's job. Both must sift
through an indefinitely large set of objects and events to find just those
sets which yield coherent causal patterns. However, the detective generally
doesn't begin his work until a case presents itself to him; his job is to
solve the case. But the intelligence analyst must detect emerging patterns
early enough so that the operational branches of the government can prevent
them from becoming 'cases'. Further, the intelligence analyst must routinely
make double contingency calculations while the detective has to do so only
rarely. This latter difference will turn out to be deeper than the former.

We can start with the detective and his case. A case is any irregula-
rity, any rupture, in the fabric of social existence. A child disappears, a
cigar store is robbed, the corporation's books don't balance out, these are
all obvious disruptions in the fabric of social interchange. In each case the
detective's job is to find the causes and use that knowledge to repair the
torn fabric.

To do his job the detective searches for clues and elaborates a theory
of the case. But objects and events don't obviously proclaim themselves as
clues. The most obvious clue is the crime itself. Beyond this, whether some-
thing counts as a clue or not often depends on the current theory of the case.
If one thinks the child has run away, then neighbors' reports of yelling and
screaming between parents and child count as clues to the child's motivation.
If one suspects a sex crime, then reports of a stranger in the neighborhood
are more important. Objects and events thus count as clues to the extent that
they fit some current theory of the case. But any theory of the case depends
on the clues which suggest it. We thus have the same suggestive circularity
we found in Kent's seven-step analytic sequence. Clues exist at the level of
data while theories of the case exist at the level of analysis and hypothesis
formation.

In actual practice certain things are obviously clues--this is known
from past experience. And these clues, plus general knowledge of crimes and
criminals, can be used to suggest several theories. Each theory in turn
suggests its own set of clues. The ensemble of current theories collectively
imposes a partial ordering on objects and events which have clue value. The
detective proceeds by searching for clues in order of clue value and revising
his ensemble of hypotheses (and thus his ordering of events and objects
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according to clue value) by what he finds. The process of solving the case
thus proceeds in a space bounded by the detective's repertoire of theories and
the objects and events those theories specify as clues.

Now let's consider the analyst. Perhaps more often than not, he does
not have a specific case, an obvious rupture of the social fabric, before him.
And even when he is offered that luxury, he can't consider the rupture in
question (e.g. the assassination of a diplomat) to be the end point of the
causal pattern he mist reconstruct. Rather, that rupture is only a clue to
some pattern whose purpose can only be guessed at and whose terminal point
could wll be months or years in the future.

This difference, however, is purely quantitative--the analyst faces
larger causal patterns and so may have to consider a larger ensemble of hypo-
theses each of which ranges over a larger number of clues. There is also a
qualitative difference. To figure out what significance a piece of informa-
tion has for him, not only must the analyst figure out what significance it
has for other nations, but he must do so with a process which allows for dou-
ble contingency: The significance it has for them depends on the significance
they think it has for him, which in turn depends on the significance he thinks
it has for them, etc.

This is double contingency calculation, discussed by Talcott Parsons
in THE SOCIAL SYSTEM (ref below). The threatening regress is obvious enough.
Such calculations are difficult, exhausting, and never conclusive. Hence much
of social life is lived according to roles which specify routine interaction
patterns, thus eliminating double contingency calculations. But the routine
depends on trust; where trust is absent, double contingency calculations are
as inevitable as bluffing in poker (which involves double contingency). It
follows from this that the patterns the analyst is looking for are those cre-
ated by double contingency calculations, for those are the most threatening
patterns, the ones most likely to result in unconstrained violence. The de-
tective deals in known ruptures of the social fabric; the analyst must detect
those patterns which mean the absence of any social fabric, the absence of
trust.

This is a more subtle point than that embodied in the obvious enough
principle that one pays more attention to the activities of groups which can't
be trusted than to the activities of trustworthy groups. For the attribution
of trust and distrust is not external to the social process; it is part of the
process. Just as the attribution of clue value to objects and events depend
on the theory of the case, so the attribution of trust value depends on that
very pattern of interchange which will be modified by that attribution. And
the analyst is part of that interchange. If he reads his evidence with a dis-
tristing eye he can see threat everywhere. And the trusting eye can as easily
see a social fabric where there is, in fact, only naked distrust.

Part of the solution of this problem is to be found in conservation
principles, with which tiis section concludes. Another part requires a foun-

Ref: Parsons, Talcott. The Social System. The Free Press, Glencoe, IL.
1951.
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dation in Gibsonian psychology--which will be taken up in the next section of
this report.

Conservation rules (see page 45) constrain the creation of patterns.
For neither the detective nor the analyst suffers from the lack of patterns

applicable to the data available. On the contrary, finding patterns is easy.
But finding plausible patterns is difficult. (The difference between these
two has found its way into popular culture as the Rube Goldberg device.)
Conservation rules constrain the search for patterns to those which may
fruitfully be submitted to Gibsonian reality testing (see next section). The
conservation principle appropriate to the detective's task is Karl Popper's

falsification criterion. The intelligence analyst needs the more powerful
principle of the "conservation of the function-structure relationship in a
recursive analysis of natural phenomena".

Popperian falsification enters Kent's account of the analyst's metho-

dology at the seventh step. The logic is familiar. Generate alternative and
mutually inconsistent hypotheses to explain some phenomenon. Then generate a
series of tests which will discriminate among the hypotheses. If the outcome
predicted by a particular hypothesis fails to match the experimentally deter-
mined outcome, then that hypothesis is falsified. The falsity of predicted
outcome is inherited by the hypothesis which generated the prediction; falsi-
ty is thus conserved.

This seems adequate for most of the detective's needs, but it will not

do for the intelligence analyst. For the evidentiary value of much of his
data depends on whether or not it was intended to deceive him. If the data
are veridical then they can be used to falsify hypotheses. But if they are
part of a deception, then they loose much of their value. Determining whether
or not one is being deceived is often difficult. And believing that one is
the object of deceptions and hoaxes has ,he seductive attraction of bringing
order and coherence into otherwise incoherent p 'terns of events. Hence be-
lief in malign conspiracies is easily engendered and dislodged only with dif-.

ficulty. What conservation principle can help the analyst to protect his per-

ceptions against illusory deceptions and conspiracies?

As indicated above, I believe that conservation of the function-
structure relationship is needed. But the principle is new and its explica-
tion in the context of such a difficult example is difficult. Hence what I

have to say on this matter is likely to be unfortunately and unintentionally

vague.

Let us begin with a more accessible example, that of neural models.
Here we want to insure that computational functions are distributed among sys-
tems and subsystems in the same way in the nervous system and in the model.
The functional forms of the model must correspond to the functional architec-
ture of the nervous system in a straightforward way. This correspondence can

be assessed at every level from the most macroscopic characterization of func-
tional regions down to the operation of the individual neuron. The correspon-
dence is subject to Popperian falsification at each level; but there must also

be correspondence across levels. It is this cross level correspondence which

is conserved recursively.
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To get back to the analyst's problem, let's consider a specific exam-
pie which is a bit closer to the sort of analytic problem he faces. It has
recently been argued, by a man in his book, the names of which escape me, that
the moon landings are a hoax; they never really happened. It is easy enough
to give this idea superficial plausibility--after all, few of us have any di-
rect evidence on the matter and the indirect evidence we have, written ac-
counts, photographs, motion pictures, etc., can be faked. But we feel intui-
tively that the extension of these sorts of causal chains would soon become
hopelessly and implausibly extended and convoluted. That intuition is conser-
ving the function-structure relationship through intersecting intentional and
causal paths. A systematic and consistent doubting of the moon landings would
require a doubt that extends so far beyond the space program that there would
be no reliable evidence on which to base any conclusion on anything. The
world might indeed be in such bad shape; but if it is, then it seems unlikely

that any course of action can be argued for. Otherwise it seems best to rule
such hypotheses out of court simply because they can't be investigated in any
coherent way. The intelligence analyst needs help in determining which doubts
would undermine the coherence of most of what he knows and which ones form a
coherent pattern.

A mature metagramming system could help the analyst by applying the

appropriate conservation principle in routine cases. The analyst might indi-
cate a pattern which he believes to be plausible and the computer could check
the consistency of this pattern with other patterns currently held to be va-
lid. The results of this check could then be used to order the information in
the system according to its relevance to the analyst's current problem.

In the absence of a mature metagramming system a careful formulation
of conservation principles can help the analyst to notice those patterns which
should be incorporated into the growing stock of functions available to the
metagramming system. The idea is to so order the analyst's knowledge that
that which is routine can be moved into the machine with minimal difficulty.
In an immature system much of the conservation checking will be done by the
analyst. But as the system matures it has its library of analyst-regulated
conservation checks to serve as examples and it can, under the analyst's gui-
dance, extend those examples to routine situations and so increase its library
still further. After a while it may be ready to internalize principles for
extending accepted examples to new cases. At this point it will be doing rou-
tine searches on its own. When a search turns out not to be routine, to be
irregular, the machine will call on the analyst for help. And perhaps this
irregularity will turn out to be an important one, a substantive problem.

Thus some of the analyst's wisdom may have become imparted to the
machine. Or at least the machine has learned to organize information so that
it can present the analyst with an environment in which he can readily apply
his wisdom. But we need more. Conservation principles restrict search, but
they aren't foolproof. As Heinrich Zollinger (ref below) has recently charac-
terized at least one point of difference between Karl Popper and Thomas Kuhn,
at least some soientific theories are abandoned without having been falsified.

Ref: Zollinger, Heinrich. Lokcl or Psyoyl of Scientific Discovery?

CHEMISTRY IN BRITAIN 16:257-259, 1980.
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A reading of J. J. Gibson suggests that those theories might have been given
up because they failed to reveal anything new. Thus a plausible theory must
not only be conservative, but it must also generate new perceptions.

THE RELEVANCE OF GIBSONIAN PSYCHOLOGY

Beyond its merit as an account of visual perception, the line of rea-
soning followed by J.J. Gibson In THE ECOLOGICAL APPROACH TO VISUAL PERCEPTION
(ref below) suggests an Alexandrian approach to the Gordian knot of Cartesian
solipcism and skepticism which has been with Western thought ever since Des-
cartes wrote his MEDITATIONS. The Cartesian subject is trapped in a world li-
mited to his own tnoughts and perceptions, an asocial world in wnicn nis is
the only mind, a world without validity tests. Gibsonian psychology gives us
a subject who has direct perception of the world, who can share that world
with others by walking the same paths they do (as they walk the paths he
walks), and who can tell whether or not he is dreaming or hallucinating by
moving his eyes and by manipulating the objects of perception. Artificial
intelligence is a Cartesian discipline; metagramming is Gibsonian. The diffe-
rence is of obvious significance to the intelligence analyst.

The Gibsonian perceiver inhabits an ecological niche wnose structure
is a function of the correspondence between the perceiver's nervous system and
the external environment. That correspondence arises through the familiar
evolutionary mechanisms. Detection of invariance is tne medium of perceptual
exchange between organism and environment. Those invariances are functions of
the organism and its niche.

The basic perceptual act is called specification; in the psychological
theory which underlies metagramming we talk of physiognomic perception. And
where Gibson talks of representation we talk of propositional reconstruction
of physiognomies. This notion of reconstruction is almost absent in Gibson,
but it resembles the process of reflective abstraction whicn Jean Piaget has
elaborated in, e.g., BIOLOGY AND KNOWLEDGE (1971).

Humans, and the natural languages they speak and write, perform pny.-

siognomic operations well; this is a matter of semantics, of selection. It
requires a logic of similarity and difference, of opposition and contrast.
Computers, and the languages developed for programming them, perform proposi-
tional operations well and easily; this is a matter of syntax, of grammar.
And the appropriate logics have been created in the wake of investigations by
Boole and Frege, Russell and Whitehead, Tarski and Church. A metagramming
system must deal with propositions and pnysiognomies.

The best way to understand this distinction is to consider some exam-
ples. Looking through a pile of photographs and recognizing tne objects, per-
sons, and events in those photographs is a physiognomic operation. And now
many hundreds of thousands of photographs could you recognize? In contrast,
providing a verbal description of any of the pnotographs, either with the

Ref: Gibson, J. J. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, 1979.
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photograph in front of you or from memory, is a propositional task. Con-

sciously controlling your body while learning some complex muscular task, such
as playing a musical instrument, is a propositional operation; executing the
same action without even thinking about it is physiognomic. Following a box-
ing match is physiognomic; giving a running commentary requires translation
from physiognomic to propositional. Intuitions which guide in the solution of

problems are physiognomic; explicitly formulated procedures are propositional.
Computer code must have a propositional form; but figuring out which hunks of
code are needed for a particular application involves both physiognomic and

propositional modes of thought. Physiognomic operations tend to be holistic,
one might even call them gestalt, and, if not exactly unconscious, then at
least they are preconscious. Propositional operations tend to be atomistic,
with discriminable parts and subparts, sequential, and require conscious
effort.

Further insight can be had by considering the strange friend phenome-

non. You see a friend but notice that something has changed. You examine the
friend closely to find out just what changed. You may succeed in spotting the
shaved mustache or the new haircut or you may fail utterly and have to be told

about the change. Noticing the change in the first place is a matter of phy-
siognomic perception. The attempt to specify the nature of the change takes
place under propositional guidance. That we can often notice the change with-
out being able to explicate it indicates the power and the limitation of phy-
siognomic perception--it picks out change quickly but doesn't specify the
change exactly.

Consider one last illustration, geometry. The straightedge and com-
pass procedures for constructing simple geometrical objects are a proposition-

al reconstruction of the visual physiognomies which specify those objects.
The axioms and theorems of geometry are, in turn, propositional reconstruc-
tions of those drawing procedures.

Now we are ready to take up the topic of invariance, which leads

naturally to the conservation principles of the previous section. When that
has been done we can conclude this section with Gibson's reality criterion.

Objects and events engender different phenomena at the surface between
organism and niche depending on the relationship between the organism and the
objects and events it is perceiving. By taking appropriate account of the
various streams of information simultaneously available to it the organism can

identify objects and events with invariant relationships calculated over in-
formation in various streams. Haptic, kinesthetic, and vestibular information
about body and head position can be used to calculate the angle of regard be-
tween perceiver and objects of perception. Texture and foreground and back-
ground relationship can give information about distance. If the organism can

construct a cognitive map of its environment then it has even more powerful

tools for keeping track of the relationship between it and perceptual objects.

Such devices will calculate identities for objects where the various

appearances it presents to the organism can be seen as projective transforma-
tions of some canonical form. But this is not adequate for understanding the
identities which exist between, e.g., the acorn and the oak, the caterpillar
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and the butterfly, the ugly duckling and the graceful swan. These are identi-
ties which persist through morphological changes. The acorn and the oak are
of the same substance, but they have different forms, different morphologies.
The language which maps different appearances into the same identity must be
meta to the one which maps different appearances onto the same morphology.

More abstract examples of this mechanism would be the identity of coal
and diamond which is established through the concept of carbon, the identity

established between electricity, magnetism, radio waves, and light through the
theory of the eictromagnetic field, the relativistic interconvertibility of
matter and energy. These are also examples of different morphologies being
mapped onto the same identities. But the morphologies are of a higher order
than those considered in the previous paragraph; they come from a higher level
of cultural evolution. Each level of cultural evolution is a propositional
reconstruction of the level before. The propositional construction which sets
the upper limit of a level of thought becomes the object of physiognomic per-
ception to the next higher level, thus setting the lower bound for that upper
level. The physiognomies which form the lower bound to this upper level can
then be mapped onto morphologies and the morphologies mapped onto identities.
The upper level is now well on its way toward the propositional reconstruction
of the lower level. As this propositional reconstruction begins to stabilize
a still higher level can begin to form above it. And so the process of cul-
tural evolution grows upon itself.

The conservation principles which regulate computation at each level
constrain the mapping of morphologies onto identities. The detective and the
intelligence analyst want to know how to map various events, morphologies, on-
to identities established by causal coherence. Karl Popper explicated the
principle appropriate to the detective's problem. David Hays has offered a
principle which might be adequate to the analyst's task.

We are now ready for Gibson's reality criterion. He is concerned with

detecting the difference between real images and imaginings induced by dreams,
drugs, or hallucinations. In Gibson's words (p. 257):

...The most decisive test for reality is whether you can discover
new features and details rof an object] by the act of scrutiny.
Can you obtain new stimulation and extract new information from

it? Is the information inexhaustible? Is there more to be seen?

The imaginary scrutiny of an imaginary entity cannot pass this test.

This criterion needs to be strengthened in a simple way. The object in ques-
tion must have an identity. For if it is organized only at the morphological
level, then further scrutiny of the object may yield the replacement of one
morphology with another and hence of one object with another. Only with an
object constituted as an identity can the appearance of a new morphology be
interpreted as providing more information about one identical object. The ma-
gician plays on this identity criterion by presenting a sequence of morpholo-
gies which is so discontinuous that we are forced to contemplate an object
whose identity seems to shift from moment to moment. That sequence of shifts
is the envelope of a higher level object which the magician creates, the ab-

street concept of illusion.
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This Gibsonian reality criterion can be applied to the objects which

emerge at each level of cultural evolution. As each level is the proposition-
al reconstruction of the one below, so each needs a reality criterion w 4 ch is
ultimately a reconstruction of the one Gibson described. That is real which
is constructed according to the appropriate conservation principle and which
yields new information under scrutiny. A scientific theory which hasn't been

falsified will eventually be abandoned when it doesn't seem to lead to any-
thing new, when the phenomena it uncovers and explains seem more and more to
be just trivial variations on well known themes. And only those lines of
double contingency exploration which yield new information under conservation
of substance-function correspondence should be maintained.

One can imagle a metagramming system which can accommodate Gibson's

reality criterion. I suspect, however, that this sort of judgment is less
likely to submit to routinization than conservation checking. In any case it
will certainly show the same growth sequence, only a little at first with more
later on.

Having discussed conservation, propositional reconstruction of physi-
ognomy, and Gibson's reality criterion, we are now ready for a more abstract
characterization of metagramming, a characterization couched in terms of a
search through an abstract space.

METAGRAMMING AND SEARCH SPACES

Let us treat any cognitive activity as a search through some abstract
space for a solution to the problem in question. We may regard each point in
the space as containing the so'ution to some cognitive problem. We want to
find the point which contains the solution to our problem.

Much work in the emerging field of cognitive science proceeds on Just
such a basis. The search space is generated using fundamentally propositional
techniques. One can imagine that the points in such a search space are equi-
distant from one another. That is. problems and their solutions are uniformly
distributed in propositionally generated search spaces.

However, when we superimpose a map of interesting and useable problem

solutions on the space we find that these solutions tend to cluster in Irregu-
lar regions in the space. The solutions which interest us are not distributed
through the search space in any way which is neatly expressible within the
propositional formalism used to generate the space. There simply Is no rea-
sonable way of using the properties of the space to identify those regions
which are relevant to the problem at hand. The formalism which generated the
space cannot be used to restrict search through it in a meaningful way. A

metalanguage Is needed to express the restriction.

Consider, once again, the problem of identifying photographs. The
propositionally generated search space is one containing all possible visual

objects. Imagine that in one region of the space we have a line which has a
perfect circle at one end and a perfect square at the other. Between these
points we have a continuum of figures somewhere between circle and square. We
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have another line which goes between square and long thin rectangle (so long
and thin that it is just a line); between these end points are rectangles
whose length-width ratio varies between 1 and infinity. Just continue this
procedure with all the simple geometrical figures you can imagine; and then
continue it out until you get to relatively complex figures, like trees, and
birds, and fish.

Now, if your pack of photographs resembles those which float around in
my family, then most of the objects in the search space I've asked you to ima-
gine simply do not exist in those photographs. There are a lot of human faces,
but they all lie within a relatively limited region of the space. There will
also be some dogs; and they too will lie within a limited region of the search
space. But the region between human faces and dog faces will, for the most
part, be completely unrepresented in the photographs. We simply do not have
to be able to recognize any of the vast number of possible visual objects be-
tween dog faces and human faces. But conventional computing techniques for
dealing with this sort of problem, which is one of pattern recognition, start
with the full search space and have you compare the object to be recognized
with each point (object) in the space. As a result much computing time and
space is wasted.

To be fair, it should be said that no attempt is really made to search
the entire space (except in the rather special case _f brute force chess pro-
grams). Rather, the search is restricted to certain regions of the space.
But these regions are identified in terms of the propositional structure of
the space, which is not a very good way of identifying the useful regions of
the space, since those regions will inevitably turn out to be very irregular
under any set of propositional procedures used to generate the space. In a
metagramming system the search space restriction is specified by a meta-
language which is linked to the object language through physiognomic represen-
tation functions, which are good for identifying complex irregular objects.
In the metagramming M form (see pages 30-31) each Function-Information pair
specifies a physiognomic index in a three-dimensional physiognomic search
space. The application function establishes the identity of the object as a
function over the three indexes and the current registration. The new value,
the new identity, is then placed in Registration.

Now let's consider an example, chess. It is well known that a com-
plete propositional strategy is available for playing the game. We know how
to construct a space which contains every possible chess game and we can tell
a player how to pick moves jo that he'll never do worse than a draw. The only
trouble is that explicitly constructing that space is impossible given any
computer that we can imagine constructing.

This search space is generated by the rules of chess, which specify
the moves each piece can make and the conditions which end the game. And the
best strategy can be specified without rising above the space in some meta-
language. But the vast majority of possible chess games are never played--how
many games open with any piece other than a King's or Queen's pawn? Yet all
those games are possible chess games and all have their positions in the

search space for all chess games.
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We know in fact that chess players do not play chess in terms of de-
ductions from the rules of chess--which is how you generate the search space.
They play chess in terms of configurations of pieces on the board--excellent
players seem able to recognize on the order of 50,000 such configurations.
And those board positions cannot be readily generated as deductions from the
rules of chess. One cannot state a compact deductive procedure for generating
all and only those board positions in terms of which experts play chess.
Those positions must be described in a metalanguage. Chess is played in terms
of rules of board position and those rules are not deductions from the r.Ies
of legal piece movement and conventions for ending the game; those rules are
about configurations of pieces describable within the rules of chess.

One plays chess in terms of weak and strong positions, exposed flanks,
pincer movements, attack and retreat, defense and offense. But none of these
terms can be defined deductively from the rules of chess--for example, try to
state what it means for a piece to be under attack using only the rules of
piece movement and capture. There is no way to remain within the rules of
chess and define sequences of moves which will always strengthen one's board
position. The writers of chess books have known this for years and so they
convey chess strategy by extensive use of example. Any position which is like
this one is, more or less, strong; while any position more or less like that
one is weak. The number of examples needed to convey significant knowledge is
quite large; but it is a finite number. And, it is the only way of dealing
with the problem known to work well.

Programming a computer is much like chess. The rules of a given pro-
gramming language can be used to generate all the possible programs writeable
in that language. But most of those possible programs have never been written
and need never be written; they are of no value. And programs are not written
as deductions from the rules of the programming language. The machine won't
accept programs containing syntax errors any more than one's opponent in chess
will accept illegal moves. But that is only a minimal constraint on the code
the programmer can write. And the rules of the language give no guidance in
the problem of figuring out which sequences of code will perform the job at
hand. The rules which tell programmers how to employ programming languages in
solving computational problems are meta to the rules which define those lan-
guages. Some of these rules have been systematized in the principles of
structured programming and applicative programming. But this doesn't yet get
us to metagramming.

For the rules of programming in some language assume that the problem
has been stated in computational form. Producing that statement requires a
translation from a natural language statement of the problem to a statement in
terms of data structures and algorithms. The rules for this translation have-
n't yet been systematized. That systematization is what metagramming is,
rules for the transformation of problems stated In a natural language into a
computational form. The rules involve a relatively small number of relations
which are defined over relatively large sets of objects. Those objects are,
on the one hand, informatic tasks to be performed, and, on the other hand,
computational forms for realizing those tasks. The informatic tasks are in-
terlinked with the computational forms at all levels with the forms providing
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a means for regulating the tasks in the way syntax provides the means for
manipulating semantics.

I want to conclude this section with the following analogy: The con-
ceptual structures by which computers are currently designed have the same re-
lationship to the conceptual structures needed to program them effectively as
the rules of chess have to the rules of board position and strategy by which
the game is played. As a mechanical device the computer has a functional form
generated in the conceptual universe of Turing and von Neumann. The form is
realized in an electromagnetic substance according to the principles of micro-
electronic engineering. But when you turn the machine on it displays behavior
which cannot be adequately characterized in a conceptual universe whose upper
limit is set by the principles used to design the computer. A reliable under-
standing of how to write software must be formulated in a language which is

meta to the one in which the computer was designed. Computer science has been
straining to rise to the task; but so far it has failed, leaving only a hope-
less babble of mutually incoherent programming languages. The reason the
metagrammer ranges from perceptual psychology, through epistemology and cul-
tural evolution, is to construct a conceptual universe which is meta to the
one in which the computer was originally designed. For it is only in this
universe that computer programming can be done as well as humans currently
play chess.

CONCLUSION: METAGRAMMING FOR INTELLIGENCE

We might say that metagramming works by inducing an ecological closure

over an otherwise unbounded search space. The search space is generated by a
propositional object language. The ecological closure is formed by a meta-

language which is linked to the object language through physiognomic specifi-
cation.

In the M form, one of the Function-Information slots contains an
account of the machine for which the metagramming system is generating code.
That account can be used to generate all the possible programs which can be
written for that machine. The problem is to select the program needed for the
job at hand.

The ecological restriction on that domain is specified in the
Function-Information slot devoted to the structure of the discipline, in this
case, intelligence analysis. The third Function-Information slot handles the
physiognomic-propositional conversion necessary to fit the object machine into
its informatic environment; this slot thus embodies an abstract theory of com-
putation which is indifferent to the substrate in which the computation is
carried out, whether it is neural wetware (the structure of the discipline as
it exists in the analyst's mind) or microelectronic hardware and software (the
object machine).

The Application function coordinates the Functions in the three
Function-Information slots so that the contents in Registration converge on
a viable solution.
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Once the initial system has been created much of the subsequent growth
of the system would be regulated by the community of analysts who use it. One
can imagine dialects and even idiolects growing up as individuals and groups
adapt the system to their needs. Perhaps thorough reorganization will be pe-
riodically necessary. But as long as the conservation principles and Gibson's
reality criterion regulate the reorganization the functional integrity of the
system will be maintained. And through that the analyst's grasp on interna-
tional reality will remain deft and firm and thus able reliably to guide the
conduct of national policy.
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