
A1A1l 383 MARTIN MARIETTA CORP DENVER CO FIG 9/2

IT ~M,CROCODE DOCUMENTATION STANDARDS. (U)
OCT Al J W MATHEWS F30602-79-C-0247

UNCLRSSIFIED MRC8l-59 RADC-TR-81-262 'NL

II*IEEEEEEEEEEEE
I flIIIIfIfllfllflfflfflf

EEEEEEEEEEEEEE

I'll'Hil8 _________ 2I 5
1112 2

M h ItI I I , A I f .

RADC-TR-41-262
~F1inal Technical Report

r October 191

MICROCODE DOCUMENTATION 7
< STANDARDS

Martin Marietta Corporation DTIC
EL-F-T
FEB 0 31982

J.W. Mathews, Jr.

APP VED, FOR PU IC RELEASE; 0STRIEUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

__ Griffiss Air Force Base, New York 13441

82002 050

j

7

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-262 has been reviewed and is approved for publication.

APPROVED:

JAMES L. PREVITE
Project Engineer

APPROVED:

JOHN M. MARCINIAK, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMM4ANDER

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(ISCA) Griffiss AFB NY 13441. This will assist .us in
maintaining a current m--ling list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wim Date Entered)
REPORT DOCUMENTA.TION PAGE READ INSTRUCTIONS
REPORT__ DOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

1. REPORT NUMBER J2 GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

RADC-TR-81-262 _
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final Technical Report
MICROCODE DOCUMENTATION STANDARDS) Sep 79 - I Apr 81

6. PERFORMING O'4G. REPORT NUMBER

MRC-81-589
7 AUT)4OR(a) S. CONTRACT OR GRANT NUMIER(s)

J.W. Mathews, Jr. 730602-79-C-0247

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Martin Marietta Corporation 4 740F
PO Box 179 5260501
Denver CO 80201 _5260501

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (ISCA) October 1981

Griffiss AFB NY 13441 1. NUMBER OF PAGES

72
I4 MONITORING AGENCY NAME & ADORESS(If different from Controillng Office) 1S. SECURITY CLASS. (of thA report)

JNCLASSIFIED
Same IS.. DECLASSI FICATION, DOWNGRADING

/A SCHEDULE

16. DISTRIBUTION STATEMENT (of thls Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: James L. Previte (ISCA)

19, KEY WORDS (Continue on rotero sdo it nececary end identify by block number)

Microcode
Microprogram ing

Microcode Standards
Firmware Eng ineering

*.ocuenttion StandnrdA
ABSRAC (Continue on rsversae side It necessary and identify by block number)

Microcode is defined as those instructions residing in either read only or

writeable memory that have a one-to-one correspondence to basic operations
of hardware elements such as ALU's, multiplexers, selectors, registers,
etc.

Although the software development process is well understood and appropriale
documentation standards exist to monitor the entire life cycle for softwar
microcode development to date has no such general understanding, nor has a

FORM

DD I jA" 1473 EDITION OF I NOV 6S IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

,.

UNCLASSIFIED
uCCURITy CLASSIFCATION OF THIS PAGa(mhim Dad na omd)

Microcode Documentation Standard yet been established with which to

appropriately monitor the microcode life cycle.

This report examines the problems associated with the development of

microcode and the attendant problem with establishing a general standard

for its development. An approach to the development and documentation of
microcode is proposed.

UNCLASSIFIED

SCURiTY CLASSIFICATION OF V1- PAGE'Wbhen Do.e En fete)

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1
1.1 HISTORY 2
1.2 UNDERSTANDING MiCROCODE. 2
1.3 MICROCODE TYPES 3
2.0 THE SURVEY 10
2.1 PUBLISHED LITERATURE 11
2.2 CORPORATE SURVEY 14
2.2.1 CORPORATE SURVEY TABULATION 14
2.2.1.1 USERS OF MICROCODED DEVICES 15
2.2.1.2 DEVELOPERS OF MICROCODED DEVICES 15
2.3 STUDY RESULTS 18
2.3.1 PROBLEM AREAS 18
2.3.2 MICROCODE DEVELOPMENT TOOLS 19
2.3.2.1 DESIGN TOOLS AND TECHNIQUES 19
2.3.2.2 CODING TOOLS AND TECHNIQUES 29
2.3.2.3 CHECKOUT AND DEBUGGING AIDS 30
2.3.2.4 MICROPROGRAM VERIFICATION AND TEST 33
3.0 MICROCODE DEVELOPMENT 34
3.1 THE MICROCODE DEVELOPMENT 34
3.1.1 THE ANALYSIS PHASE 35
3.1.1.1 THE MICROCODE DEVELOPMENT PLAN 35
3.1.1.2 THE REQUIREMENTS DOCUMENT 38
3.1.2 MICROCODE DESIGN SPECIFICATIONS 46
3.1.2.1 PRELIMINARY MICROCODE DESIGN 46
3.1.2.2 DETAILED MICROCODE DESIGN 46
3.1.3 CODING STANDARDS 51
3.1.4 MICROCODE TEST DOCUMENTATION 52
3.1.4.1 TEST PLANS AND SPECIFICATIONS 52
3.1.4.2 TEST PROCEDURES)6
3.1.4.3 TEST REPORTS 59
3.1.5 OPERATIONS AND MAINTENANCE 60
3.1.5.1 MANUALS 60
3.1.5.2 TRAINING 62
4.0 CONCLUSION 63

REFERENCES 64

Acession For

NTIS flRA&I
DTIC TAN

Dtstrih : ,

I've

A -vn- -

4..t
sp

1.0 INTRODUCTION

This report is submitted to the Rome Air Development Center (RADC) at
Griffiss Air Force Base, New York, to support requirements set forth in
Contract F30602-79-C-0247. This report addresses the Contract Data
Requirements List (CDRL) Number A002 of the contract to which this effort
supported; i.e., study of Microcode Documentation Techniques.

Although the software development process is well understood and
appropriate documentation standards exist to monitor the entire life
cycle for software, microcode development to date has no such general
understanding, nor has a Microcode Documentation Standard yet been
established with which to appropriately monitor the microcode life
cycle. This report explains the problems associated with the development
of microcode and the attendant problem with establishing a general
standard for its development. An approach to the development and
documentation of microcode is proposed.

Microcode is defined as those instructions residing in either Read-Only
or Writeable Memory that have a one-to-one correspondence to basic
operations of hardware elements such as ALU's, multiplexers, selectors,
registers, etc. This definition does not include the programming or
instruction codes for a microprocessor. The "micro" portion of
microprocessor simply implies that the processor is extremely small
(usually on a single chip) and does not mean that the processor is
"microprogrammed". Microprogramming and machine language programming are
similar in many ways. Both consist of instructions which control the
machine processes and serve to solve a particular problem or perform a
particular function.

Microprogramming has, however, a number of traits which distinguish it
from normal machine language programming.

a. Microcode controls hardware resources at a logically
primitive level. For example, microcode might control the input
or output of a shifter, an ALU, a status register, a register
file, etc. A machine language instruction characteristically
handles user defined data and may result in the execution of
many microinstructions.

b. Microinstructions may, depending on the machine
architecture, control many operations in parallel. These
operations are known as micro-operations. Machine language
instructions are almost exclusively sequential in nature.

c. Microinstructions are usually stored in an extremely fast
memory. High speed memory is expensive and therefore, limited
in its use. Machine language instructions usually reside in
slower memory or in bulk memory such as disk or magnetic tape.

. i'. '-.. . :, - . :. - . . . -. :.. -. . h

d. Microinstruction storage (control store) memory tends to be
of a wider word size than its machine language main memory
counterpart. Typical 16 bit microprogrammed processors, for
example, may have from 21 to 56 bit control store word widths.

1.1 HISTORY

Microprogramming as an approach to digital control was first introduced
in the 1950's by Professor Maurice V. Wilkes of Cambridge University
Mathematical Laboratory. The concept was seldom used until International
Business Machines (IBM) introduced their System 360 in the mid 1960's.
Wilkes' approach was described in a 1951 paper [1]. His purpose was to
propose a method for systematic, less complex control of a "calculating
machine".

Early computers contained a control element which generated control

signals to route and synchrcnize data between registers, buses and
logical devices such as an ALU. Wilkes' microprogrammed approach allowed
the control signals to be retained in a control memory rather than
developed by a complicated control element.

At the time Wilkes proposed his "new technique", vacuum tubes and relays
formed the switching and logic devices. Memory which would have stored
Wilkes' "micro-operations" would have added significant delays to the
already slow (by today's standards) logic to produce yet slower machines.

It was the availability of significantly faster memories that enabled
microprogramming to become a viable alternative to the pure logic
approach. When IBM introduced their 360 series in 1964, they
microprogrammed all but the fastest and most complex machines. One of
the main reasons for these mainframes to be microprogrammed was to
provide emulation of previous IBM processors, thus allowing customers to
retain and use their existing software. Software "compatability" has
continued to be a significant driving force in processor design today.

The initial vehicle for microprogram storage was Read only Memory (ROM).
The instructions in the ROM were called microinstructions and the ROM
storage was called control store. With the advent of high speed random
access read/write memory, the concept of "writeable" control store was
developed. Processors which were black boxes, executing only
manufacturer defined instructions, now could be made to execute peculiar
user defined instructions or routines.

1.2 UNDERSTANDING MICROCODE

Initially, microcode was used only to simplify or generalize the
implementation of machine language computer instruction sets. With the
advent of bit slice chips and microprogrammable architecture in smaller
and smaller high performance packages, microprogrammed devices have
become the norm where hard-wired logic systems were once the standard.

2

The goal of this study is to aid in the development of specifications and

guidelines to ensure that microcode delivered to the Air Force is of good

quality, understandable and maintainable.

For microcode, maintenance includes finding and correcting errors as well

as possibly modifying or enhancing the microcoded device's capabilities.
In some cases, microcode also lends itself to perform built-in test

functions so that hardware errors may be diagnosed. None of this is

possible, however, unless the hardware technician can be given

documentation adequate to understand the hardware/microcode system to be

maintained.

There are both advantages and disadvantages when comparing

microprogrammed logic with hardwired logic.

a. Microprogrammed logic tends to be less expensive than

hardwired logic in terms of its development or implementation

costs. This, of course, assumes that both approaches are viable

alternatives to the design problem.

b. Microprogrammed logic is more flexible than hardwired

logic. In terms of microprogrammed computers, new instructions
as well as entire algorithms can be added usually without

modification (ROM chips excepted). For devices other than
CPU's, new or modified capabilities can usually be added by

changing the microcode and installing new ROM chips.

c. Microprogrammed logic is usually simpler to modify, either to

correct an existing error or to change or enhance an existing

function.

d. Microprogrammed logic is usually slower than the equivalent

hardwired logic. Fortunately, not all design problems require

hardwlred "state-of-the-art" speed. Where speed is a concern,

a modified microcoded design can sometimes enhance the overall

speed to meet device or system requirements.

In order to better understand the varying requirements for design

procedures, development tchniques and documentation, it is necessary to

review the differing mi, code formats and their use within machines or

devices.

1.3 MICROCODE TYPES

Microcode instruction types are usually characterized as either vertical

or horizontal. In present day machines, microinstructions are typically

combinations of both, known as diagonal or hybrid instructions.

I13
......

Vertical microinstructions are very much like normal machine language

instructions in that they typically have an operation code and two or
three arguments or operands. Word size is relatively narrow (12 to 24
bits) in comparison to a horizontally structured microcode instruction

(60 to 80 bits). Hypothetical vertical and horizontal microinstruction
formats are shown in Figures I and 2 respectively. Other characteristics
of vertical microinstructions include:

a. Most, if not all, bit combinations are defined.

b. Execution time per instruction is usually longer because
several clock cycles may be needed to complete one instruction
cycle.

c. Fields are usually decoded, i.e., 4 bits select one of 16
possibilities rather than each bit representing one of four

independent options.

The organization of the control store containing microinstructions can be

an additional influence on the complexity of development and
documentation of microcode. The following examples illustrate only two

of the many possible organizations.

Instruction n
n+l

n + 2

Example 1. n + 3 q-.Single Control

n +4 .Store Word

m

m+1

Example I shows the simplest of organizations. It is one

microinstruction per control store word. The microinstruction may be
either vertical, horizontal or a diagonal combination.

4

0 0 0 0 S S DID I D DI I I I I I I

11 2 '0 12 S3 S4 1 23 ,1 23 4 5 1617I8 9 10j
OP CODES

SOURCE REGISTER IMMEDIATE VALUE OR ADDRESS
FOR REGISTER FOR TESTS OR JMPs, etc.
TRANSFERS; TEST
TYPE FOR TESTS

DESTINATION REGISTER
FOR REGISTER TRANSFERS;

DATA AND ADDRESS EXTENSION
FOR IMMEDIATE OR JMP AND
TEST INSTRUCTIONS.

OP CODES: ADD, ADD IMMEDIATE, XOR, XOR IMMEDIATE, SUB,

SUB IMMEDIATE, AND, AND IMMEDIATE, OR, OR IMMEDIATE,
LOAD IMMEDIATE, MOVE, DECODE, etc.

REGISTERS: GENERAL REGISTERS: R0,RI,...,R7;

INTERFACE REGISTERS: MEMORY ADDR. REGISTER (MAR),
OPERAND ADDR. REGISTER (OAR).

SPECIAL REGISTERS: STATUS, INTERRUPT, etc.

Note - There is a definite similarity to "normal" computer

instructions. Each field is decoded to select a unique value.

Figure 1 - A Hypothetical Vertical Microinstruction Format.

, -- L '__ .', • .. 5

REGISTER BUS 1 MEMORY DATA REGISTER

31
REGISTER BUS 2 MEMORY ADDRESS REGISTER

REGISTER BUS 3 INSTRUCTION ADDR. REGISTER

INTERNAL
BUS

EXTERNAL-

REGISTER SELECT REISTER
AD DRESS

SELECT
SELECT

SELECT

ALU

OPERATION

Note - Most fields are not decoded thus
allowing multiple

functions and data paths.
It is possible to

select

combinations that are not useful.

Figure 2 - A Hypothetical Horizontal
Microinstruction Forat.

[6

S

E
S

Example 2.

(Part 1) (Part 2)

Single Instructions Multiple Instructions

Per Control Store Word Per Control Store Word

Example 2 shows a more complicated organization in which there are two

parts to the control store. The first part is a single microinstruction
per control store word. The second contains multiple instructions per
word, called nanoinstructions. The nanoinstructions execute the
microinstructions in the same fashion that microinstructions execute
computer machine language instructions: A single instruction is fetched
from the "Part 1" control store. It is then decoded and executed by the
nanoinstructions in the "Part 2" control store. Multiple
a.noinstructions can be fetched in a single access. An architecture

similar to that of example 2 has been used in a machine which emulates
other machines.

As was previously stated, today's machines are usually not purely

horizontal or purely vertical but a combination of both or diagonal. It
is wasteful to allow single bits for each possible function if they
represent, in fact, mutually exclusive operations. An ALU, for example,
can usually only perform one operation (add, subtract, etc.) at one time,
so it can shorten the microcode instruction word width if mutually
exclusive operations or resources are encoded into fields. Such encoding
does not make a microinstruction less "horizontal." In the interest of
economy, it is also possible to encode "almost" exclusive resources. The
rationale is that the need to control these resources simultaneously is
almost nonexistent, therefore speed and/or absolute flexibility can be

slightly comprised. The diagonal microinstruction has thus been
justified.

Another method of shortening the control word is to allow one of the

fields within the microinstruction to define the encoding of the other
fields in the microinstruction. Thus, under different field definitions,
a microinstruction might have the following hypothetical formats.

7

S o.

Definition

fielp

10 st nat1on 01se
2nd Source Register

estination Register
Source Register

Operation Code

1 i Ii__ __

t Address
Operation Code

Example 3.

t Status Enable
Internal Register

I External Register
Operation Code

Status Bits
Test Codes

This encoding can significantly shorten the required width of the control

store, although extra time and interpretation logic are necessary to

execute the instructions. The understanding of the microcode as well as

the development of the microcode for such a device can be formidable.

In addition to microinstruction formAt and control store organization as

factors in microcode complexity, timing within the instruction execution

is a significant factor. In a group of microinstructions, each perform

the fetch and execute sequence associated with the machine language

instructions of a computer. Timing can be considered in two areas:

intra-instruction and interinstruction timing.

84* .

Interinstruction timing may take two forms: serial and overlapped. The
serial form is simply end-to-end fetch and execute phases of each
microinstruction in sequence.

. Fn Fn+l Fn+2 Fn+3Exml I I I I
4. En En+l En+2 En+3

time ---

In the above diagram, Fn represents the instruction fetch portion of the
nth microinstruction while En represents the execution portion.

The overlapped form of timing performs portions of successive
instructions In parallel.

Fn

En

,Fn+ 1

En+l

Example
5. iFn+2

Fn+3

En+3

time -- w

The above diagram shows completely overlapped fetch and execute portions
of successive instructions. Although this technique is obviously faster
than the serial method, it adds a level of hardware complexity and
microcode complexity as well. Consider for example, the execution of a
"JUMP" or a "SKIP" microinstruction during period n. If the next control
store address (CSA) is calculated during En then En+l must be delayed one
fetch cycle or at least one or more minor clock cycles.

An alternative approach is to calculate the next CSA during the fetch
cycle. This puts an added burden on the intra-instruction timing of the
execute cycle to insure that testable conditions for conditional skips or
jumps are available and are valid during the parallel fetch cycle. In

9

7 ,- .~
4

overlapped instructions then, intra-instruction timing may be critical.
Microcoded designs are not limited to two overlapped instructions;
multiple overlapped instruction designs have been implemented.

Examples of items or events which may affect or be affected by
intra-instruction timing are:

a. Perform skip test;
b. Generate next CSA;
c. Initiate interrupts;
d. Generate Control Word;
e. Initiate Fetch;

f. Load control word register;
g. Load CSA register;
h. Set or reset special conditions;
i. Perform micro stack operations;

j. Decrement micro loop register;
k. Select source bus data;
1. Execute ALU/Shift operations;
m. Generate dynamic condition codes;
n. Select destination bus;
o. Store destination data;

p. Update condition codes;
q. Initiate execute mode.

These examples were taken from an actual microcoded processor designed to

emulate other processors. The list is by no means complete, however, it
serves to indicate a level of complexity that may be reflected in the
microcode required to efficiently control such a processor.

For many years the vast majority of microcoded devices were large and
medium scale computers. With the advent of bit slice architectures in
which bit slice devices can be combined to form a spectrum from the
simplest to the most complex of systems, microprogrammed devices,
controllers, recognition devices and high speed devices which can take
the place of computers.

In the typical 16 bit minicomputer for example, registers, databases
the ALU, etc., are designed to facilitate control and efficiency in
dealing with 16 bits of data. Bit slice processors perform similar
functions for 2 to 4 bits. These processors may be combined to implement
wider registers, ALU's, etc. If the end result is to be a computer, the
bit slice devices may be combined with memory, sequencers, decoders,
interrupt arbitrators, display drivers, etc.

2.0 THE SURVEY

In an effort to research the differing aspects of microcode generation,
the study examined the problem from three viewpoints:

10

a. Search existing published literature.

b. Interview users and developers of microcoded devices.

c. Perform a more detailed analysis of our own microcode and

software development.

It was felt that published literature might reveal new or future
developments through research or university studies whereas interviews
with users would reveal the actual techniques in use today.

2.1 PUBLISHED LITERATURE

The search for pertinent published literature began with the use of

library search services. The "DIALOG" Information Retrieval Service
(Lockheed Information System) was accessed and the following files were
searched:

a. COMPREHENSIVE DISSERTATION ABSTRACTS. (File 35) This file

is a guide to American dissertations by subject, title and
author at accredited institutions. Some Canadian and overseas

papers are also included. There are approximately 650,000
entries.

b. CONFERENCE PAPERS INDEX. (File 77) Subject areas contained
in this file include life sciences, chemistry, physical
sciences, geosciences and engineering. This file is a source of
information on reports of research and development from papers
presented at conferences and meetings. There are more than
700,000 entries.

c. INSPEC. (File 12 or File 13) This file forms a database

for material contained in journals in the fields of physics,
electrotechnology, computers and control. There are actually
two files where File 12 contains data from 1969 through 1977 and
File 13 contains data from 1978 to the present. File 13 was

utilized for this study. Both files have a total of over

1,000,000 entries.

d. SMITHSONIAN SCIENCE INFORMATION EXCHANGE CURRENT RESEARCH.
(File 65) This file is a database of government and privately

funded scientific research projects that are it. progress or were
initiated and completed during the last two years. There
are approximately 300,000 entries.

e. NATIONAL TECHNICAL INFORMATION SERVICE: NTIS. (File 6)

This database contains listings of government sponsored

research, development and engineering plus analysis. There are

over 750,000 entries.

II

,-

f. MAGAZINE INDEX. (File 47) This database contains over

300,000 entries from more than 370 popular magazines with varied

subjects including science and technology.

Each of the above files may be accessed by the use of keywords. For

example an access keyword of "MICROCODE?" would allow any file entries
dealing with microcode or microcoding to be listed. Keywords were

grouped into three sets:

Set 1) MICROCOD?
MICROPROGRAM?
MICROINSTRUCTION?
MICROOPERATION?

Set 2) DEVELOPMENT?
DOCUMENT?

STANDARD?
CODING
TESTING

Set 3) TOOL?

AID?

COMPILER?
COMPILING PROGRAM?
TECHNIQUE?
METHODOLOG?

In order to trim the total number of publications, the elements of each

set were "ORed" together then set 1 was "ANDed" with Set 2 and Set 3.
Thus, any subject concerning MICROCODE or MICROCODING or

MICROINSTRUCTIONS, etc. and DEVELOPMENT or DOCUMENTS or DOCUMENTATION,

etc. would be extracted. The files with these attributes produced the

following number of possibly useful articles and papers:

File

Keyword - 35 27 13 65 6 47

Set 1 and Set 2 1 5 174 16 65 0

Set 1 and Set 3 2 13 179 18 64 5

An additional search was implemented using the NASA RECON (Remote

Console) database. The file searched included International Aerospace
Abstracts, NASA Tech Briefs, as well as other files. The subjects

selected were:

12

*.

a. MICROPROG RAMMING;
b. DEVELOPMENT;

c. DOCUMENTATION;
d. STANDARDS;

e. STANDARDIZATION;

f. TOOLS;

g. METHODOLOGY;
h. COMPILERS.

?'ubjects 2 through 8 were then "ORed" together and "ANDed" with subject 1

to form the keyword scan. Thus, subjects having to do with
MICROPROGRAMMING DEVELOPMENT or MICROPROGRAMMING DOCUMENTATION, etc.

would be listed. The search resulted in the tabulation of 28 possible
pertinent documents. Another search utilized the resources of the

Defense Technical Information Center (DTIC) under the Department of
Defense. Primary or first level search terms included:

a. MICROCODE (and its derivatives);
b. MICROCOMPUTERS;
c. MICROPROCESSORS.

Secondary or second level search terms included:

a. ASSEMBLY LANGUAGES;
b. AUTOMATIC PROGRAMMING;

c. COMPILERS;
d. COMPUTER PROGRAM DOCUMENTATION;

e. COMPUTER PROGRAM RELIABILITY;
f. COMPUTER PROGRAM VERIFICATION;
g. COMPUTER PROGRAMMING;
h. COMPUTER PROGRAMS;
i. COMPUTER SEQUENCES;
j. DEBUGGING (Computers);
k. EXECUTIVE ROUTINES;

I. FIELDS (COMPUTER PROGRAMS);
m. FORTRAN;
n. GOAL PROGRAMMING;

o. HIGH LEVEL LANGUAGES;
p. MACHINE CODING;
q. MICROPROGRAMMING;
r. MICROCODE (and its derivatives);
s. NON CONVEX PROGRAMMING;
t. PROGRAMMING LANGUAGES;
u. SIMULATION LANGUAGES.

This search resulted in the listing of approximately 1,100 possible

pertinent documents.

13-i I

In addition to automated searches, the past five years of "Reader's

Guides" were examined and local area technical libraries were visited to
find appropriate relevant material.

In order to further reduce the number of publications to a reasonable

quantity, abstracts of the articles listed by the automated searches were
examined. Classified and foreign language publications were eliminated,

as well as those with doubtful technical content. Even with this
exclusion process, the automated searches, ReadertGuide references and
library visits yielded more than 100 articles and publications which were

examined during the course of this study.

2.2 CORPORATE SURVEY

In order to survey the tools, techniques, and procedures as utilized by

industry today, a series of tasks were performed.

a. Select a candidate list of corporations which were possible

users or developers of microcode or microcoded devices.

b. Try to locate a cognizant person or persons within that

organization.

c. Develop a set of relevant but comprehensive questions,

d. Design a convenient, easy to fill out questionnaire
utilizing those questions.

The questionnaire was circulated to the cognizant personnel at selected

corporations. The result of this effort is tabulated in Section 2.2.1
below.

2.2.1 CORPORATE SURVEY TABULATION

There were approximately 200 questionnaires sent out to corporations

which used or produced microcoded devices. The response cannot be
considered successful from the standpoint of the numbers of respondents.

Approximately 20 returned the questionnaires with positive responses
(that they were users or producers). A somewhat greater number
(approximately 30) responded negatively and the remainder chose not to

respond in any fashion. The results can be considered successful
however, in that there were some clear cut trends by those that responded
positively. These responses are cataloged briefly in the following

paragraphs. It should be noted that not all respondents answered all
questions.

14

2.2.1.1 USERS OF MICROCODED DEVICES Yes No

a. Those that had failures of the devices 11 1

b. Those that:
1. Discarded the failed devices 9 0

2. Returned them to manufacturer 4 5
3. Tried to repair devices 2 6

Repair Successful? 2 0
Documentation Adequate? 2 0

c. Modified or enhanced a microcoded device? 3 8

Documentation Adequate? 2 3

2.2.1.2 DEVELOPERS OF MICROCODE DEVICES

The results of the Section of the questiornaire relating to

developers of microcoded devices is shown below.

As in the user poll, not all questions were answered. It should

also be noted that questions relating to willingness to discuss
problem areas or data representation have been omitted.

Yes No

a. Was a planning phase executed? 18 0
If so, was documentation produced? 17 1

Was there a predefined standard? 4 13

Were software or hardware tools or

aides used? 6 11

b. Was a requirements phase executed? 16 0

If so, was documentation produced? 15 2

Was there a predefined standard? 8 9
Were software or hardware tools or
aides used? 4 11

c. Was a hardware design phase executed? 18 0

If so, was documentation produced? 18 0

Was there a predefined standard? 13 5

Were software or hardware tools or

aides used? 14 4

d. Was a microcode design phase executed? 18 0

If so, was documentation produced? 18 0

Was there a predefined standard? 9 9

Were software or hardware tools or

aides used? 14 4

15

.. ,.,o.

Yes No

e. Was a microcode and checkout phase
executed? 17 0
If so, was documentation produced? 15 2
Was there a predefined standard? 9 6
Were software or hardware tools or
aides used? 14 2

f. Was a simulation of the microcode
performed? 10 6
If so, was documentation produced? 6 8
Was th -re a predefined standard? 5 5

Vre software or hardware tools or
aides used? 10 3

g. Was there a translation to PROM/
' VM, etc. format? 17 1

id jo, was documentation produced? 14 4

Was there a predefined standard? 8 6
Were software or hardware tools or
aides used? 14 1

h. Was functional testing performed? 17 0
If so, was documentation produced? 8 8
Was there a predefined standard? 6 2
Were software or hardware tools or
aides used? 14 2

i. Was functional testing performed? 14 3
If so, was documentation produced? 8 6
Was there a predefined standard? 7 1

Were software or hardware tools or
aides used? 10 4

j. Was system text and validation
performed? 17 1
If so, was documentation produced? 11 4
Was there a predefined standard? 10 1
Were software or hardware tools or
aides used? 13 1

k. Was an installation and
maintenance phase executed? 13 3
If so, was documentation produced? 12 0

Was there a predefined standard? 10 2
Were software or hardware tools or

aides used? 9 4

16

,I

• • I " - -.... - i. '--" -k.. " 1

Yes No

1. Was a training phase executed? 11 5
If so, was documentation produced? 9 2
Was there a predefined standard? 8 1
Were software or hardware tools or
aides used? 8 3

m. Were requirements separated into
microcode and hardware requirements? 10 8

n. Was an assembler used in code

and checkout? 15 3

p. Any higher order language tools? 7 10

q. Did documentation for users or
maintenence personnel cover:
Critical timing information? 11 6
Sequencing information? 15 2
Operation information? 15 1
Instruction and/or data representations? 16 1
External interface information? 16 1
Internal interface information? 15 1
Mode information? 11 5

r. Separate documentation for microcode? 15 2

s. Does your company intend to develop aids
for developing microcode and/or docu-
mentation? 14 3

t. Maintenance personnel expected or required
to have detailed architectural or timing
knowledge? 5 10

u. Do your customers give the option of
modifying microcode? 4 12

v. Effort made to optimize microcode (time
or space)? 16 1

w. Product have selfcheck or fault
recovery features in microcode? 10 5

No effort will be made to analyze responses to each specific question.
General survey results together with information gathered from subsequent
interviews, and literature searches will be presented in following
sections.

S i17

I.
'. i l

2.3 STUDY RESULTS

Examination of the questionnaire tabulations indicates that most
developers of microcoded devices do indeed go through the development
phases of planning, requirements, hardware design, microcode designs,
code and checkout, functional test, and system test and evaluation.
Subsequent interviews with these developers revealed that none actually
went through all phases in a distinct, sequential fashion. Comparison of
the individual responses indicated that microcode development fit more
easily into five phases. These five phases are Analysis, Design, Code
and Checkout, Test and Integration, and Operations and Maintenance.
These five phases are described in detail in Section 3.0 of this report.

One unexpected finding of the study involved the subject of "predefined
standards". Although a number of respondents stated that predefined
standards were followed, for certain phases of the microcode development
process, further interviews revealed that none were "company-wide"
standards specifically addressing microcode. Standards (if any) tended
to be project unique and informal. Some developed their microcode using
software standards.

Another finding pertinent to this project was that in the majority of
cases, separate documentation was produced for microcode. Further
investigation revealed that this did not necessarily mean that separate
"stand alone" documentation was produced for microcode but that a
separate section in either a hardware document or a software document (or
both) may have been established. It was admitted that for some project
where a microcoded device was utilized in place of hardwired logic (i.e.
a sequencer) it was hidden in the other hardware documentation. This was
done so that the microcoded device wouldn't have to be documented to
software standards.

2.3.1 PROBLEM AREAS

In discussing the problems encountered in the microcode development
process with producers and developers of microcode, it became obvious
that, except for difficulties such as parts availability or access to
development tools, the problems tend to fall into four categories.

a. Incorrect, misunderstood, incomplete, or changing requirements
to be satisfied by the microcode or the microcoded device.

b. Incorrect, misunderstood, or incomplete specifications of the
hardware features and characteristics of the microprogrammable
device or its interfacing components.

c. Confusion relating to the microcode instruction set itself.
This was usually due to a complex instruction format and/or an
overlapped execution sequence with complex timing considerations.

18

. ii

d. Difficulty with respect to microcode check out and component or
system integration. Microcode is inherently more difficult to
check out and debug since most microcoded devices do not provide
convenient operator interface capabilities. In some instances,
logic analyzers or other hardware devices are the only means of
monitoring microcode execution.

The problems described in items a, b, and c above can be minimized
through proper planning procedures, and documentation. The problem cited
in item d can be alleviated through the use of design tools such as
software simulators in conjunction with debug and trace routines.
Documentation and development tools are described in greater detail in
the following sections.

2.3.2 MICROCODE DEVELOPMENT TOOLS

Survey results indicate that software tools to aid in the planning and

requirements allocation (analysis phase) portions of software development
are compatible with the microcode development process. Where the

compatibility of tools begins to break down is in the design, code and
checkout phases of development.

2.3.2.1 DESIGN TOOLS AND TECHNIQUES

Although there is research being done in the area of automated
microprogramming design, the majority of producers use a manual top-down
structured design approach originated for software. Functional breakdown
to levels of greater and greater detail appears to be the most popular
approach. As the detail designs approach their final stages,
differences appear in the design representations.

One of the most effective means of representing a microcode design is

through the use of visual diagrams. There are many types of diagrams,
however the two most commonly used categories of diagrams are the flow
(see Figure 3) and the microprogram diagram or "microblock" (see Figures
4a and 4b).

7
19

at -- !--

me,._

PROCESS OR

TASK "A"

PROCESS OR

TASK "B"

(a) Sequential: Process (b) Do While: While C is true,
A followed by process B. do process A.

YES IF NO

PROCESS OR PROCESS OR

TASK "A" TASK "B":

(c) Conditional: If C is true, do
process A, else do process B.

Figure 3 - Typical Microprogram Flow Chart Structures

20

b

I';

Microinstruction Format Control Store
Label Flag Address

tFunctional Description
From of Microinstruction by

Microoperation. (Usually To Next
Previous One Operation Per Line) - Micro-
Microinstructions V icro-

Instruc-

-tions

Coordinates
on Diagram

Figure 4a - Microinstruction Block Produced
under "MIKADO" (61

CSA
Code Addr

Construct

ALU Function Functional
From Storage/Destination Description To Next

Previous Status Select by Micro- Micro-Operation

Microinstructions (etc.) Instruc-

-- 9-w tions

Branching Sequence
Coord - Coord
Comment

Figure 4b - Microinstruction Block Similar
to that Used to Describe tie System/360
Model 30.

21

The notation used in flow charts ranged from very simple to the very
difficult in which the reader would require a thorough understanding of
both the device characteristics and the symbolic representations for
registers, buses, etc. Figure 5a is an example of a relatively
simple flow chart. Even though device specific notation was used this
type of flow chart can be made much more understandable if comments and
microstore address information is added to the diagram (see Figure 5b).
The flow chart shown in Figure 5b is not convenient for more horizontally
organized instruction sets in which multiple activities or functions may
be concurrent. In these cases, users have tended to use a flow chart box
or microblock. An example of a rather complicated microblock for a
device with diagonal 56 bit micro instructions is shown in Figure 6. It
is obvious that familiarity with the device and the microcode format is a
necessity if one is to use that particular diagram. These boxes are
sequentially strung together to form a "flow chart".

Another example of a flow chart box for a two part instruction
(microinstruction and nanoinstruction) is shown in Figures 7a and 7b.
Here, all the parallel data transfers are shown in a single sub-block,

while control functions and labels are shown in separate attached
blocks. The user still must be familiar with the symbolic representation
for registers, buses and functions.

These boxes have an advantage in that they can be generated fairly easily
on a line printer. This then leads to the possibility of utilizing a
terminal with limited graphics capability to aid in the semi-automated
generation of functional diagrams. A number of micro,;ode developers
state that gaining this capability was one of their future projects. A
translation from this format to assembly language inrkt is n(-'
difficult task.

22

MAR .M 0

READ

-m0 4- m +1

MDR YESMA V4- M +

NNO

F i g u r e~~~ 5 - A M i r c d Fl Wh R T Eo

"Moe lok"Fucton

23
* M~

} Allow interrupts for one
I US I microcycle.

Copy+l M

into Memory Address Register.

I Copy+2

I READ Read main memory into Memory Data Register.

Copy+34

1 1 - M0 + Update User Source Pointer.

Coy 4 I 1

MDR YES .Data into MDR yet?REDXfer I et

'NO Move User Destination
MAR - M1 Pointer into MAR

Xfer+l

WRITE . Write data into memory
I at destination address.

Xfer+2 i.

r I Update User Destiuation

M - M+1 Pointer.

Xfer+3 4

Decrement the number
M 2-1 of words count.

Xfer+4/

M -END If done, Exit!

Figure 5b - A Microcode Flow Chart of a

"Move Block" Function. (Information Added)

24

F/B = Foreground/Background Register File Select
AD = Autodecrement

DW = Doubleword Shift
S4 = Shift by 4
SCE = Shift Count Enable

CONTROL STORE D4 = Direct IR 4-bit Field
ADDRESS ZE = Zero Extend

INT = Interrupt

ALU REGISTER REGISTER
OPERATION ON X BUS ON Y BUS

SHIFT/EXECUTE
MODEREAD/WRITE [[E-EX I ST lING -CONDiI'TONS\ \

FULL OR HALF
CYCLE MEMORY OP. sOtfC X AV FUNCTION SOURC I No SKIP S% ' N I ' .r, SPECIAL CONDITION

SELECT #1

SPECIAL CONDITION
WRITE X BUS...- Oltmy i SELECT #2
TO Y BUS MCOC

MICRO zs DET Z 6 USER STATUS UPDATE
Z BUS -I S/D - Static/Dyn

IMT STACK ADD MODE[ry1/ z L CD

INTERRUPT AIfSS -ADDRESSDATA_ SKIP CONDITION
ENABLE ___ E C

MICRO STATUS UPDATE
(Zero, Pos, Neg, Oddy

REGISTER COMMENT
ADDRESS I/E = Internal/External

VALUE T/F = True/False

STACK TYPE OF S/D = Static/Dynamic
STAC TYP OF Z = Zero

MICRO STATUS UPDATE OPERATION ADDRESS L = Link

(Carry, Overflow, Link) Code= TBD

Figure 6 - An Example of a Complicated Control Block

25

Oil"

I
ACCESS
LABEL

NEXT MICRO

NANOWORD ADDRESS
FUNCTIONS

FUC--ALU FUNCTION

REGISTER
POINTER
NANOWORD

MICROWORD LABEL
LABEL

Figure 7a - General Format of a Flow Chart Box [4]

INSTRUCT ION
READ

AU.&DB4AOB, AU TRIN DIRECT

(DBIN)-AB -oRXH DB BRANCH

EB..DB IN X NO-OP
+2-OAU

SP- k,,, STACK
POINTER

0O#LI O#ml

Figure 7b - Example of a Flow Chart Box [4]

26

k .I-
...

One other popular means of describing a microcode design is through the
use of a language called "PDL" (Program Design Language). Its advantage

in the design phase is that stepwise refinement of functional levels is
conveniently accomplished without having to "re-draw" a flow chart. The
language uses structured coding constructs such as DO WHILE, CASE, and
IF THEN - ELSE. Although the microcoder is very rarely given the luxury
of enough executing time or control store to utilize fully structured
code, a PDL can be a useful tool to insure a good functional design. Two
other design aids should be introduced in this section. The first is a
timing diagram. Many of the problems defined during the study stemmed
from the lack of sufficient timing information. In some cases severe
rework of the detailed design had to be done because either
interinstruction or intra-instruction timing was not well defined. Data
signals which might be used or tested by microcode should be displayed on
a timing diagram. An example is shown in Figure 8. The diagram should
reflect worst case signal availability and should be expressed with

microprogram related labels such as "Overflow Status Available" rather
than "OSCLK". Much of this information may not be used until code is
actually written although it may influence design.

The second design aid is a microcode simulator. A simulator is typically
used during the checkout and debug stages of microcode development. If
it produces an accurate simulation of microcode execution, it can also be

used during design to provide insight into device anomalies that might
seriously affect hardware design as well as microcode design.

27

--- - 4

MICROCYCLE (Nanoseconds)

0 50... ". 100 1...........150............ 200

Execute Instr n Execute Instr n+l
Fetch Instr. n+l Fetch Instr. n+2

Microinstruction i

Phases 100 100

System Clock

Instruction in 120 I
Instr. Addr. Reg. (IAR) I

Instruction 2 1

Decode
Source Field Decode' 5

& Fetch
Test

Condition Codes - --A
of Prior Instr

50 1 35 1

Determine Next CSA

Start Fetch Next Instr 85_____.____
8 0, _ 4 5 l

X Bus Data Avail 8M 1

Y Bus Data Avail

ALU Function 110 30SFrom
From

Dataon Bus140 JALU [Shifter '

"25 35

140
25 35

Shift Function f - 25

Carry Status 154 4

Available

Overflow Status 160 40

Available

Save Status 19I0 F, F1
Indicators

Note: This timing chart is for hypothetical overlapped microinstructions

in which the execute phase of instruction n overlaps the fetch

phase of instruction n + 1.

Figure 8 - Worst Case Timing for

Microinstruction Events

28

- -

2.3.2.2 CODING TOOLS AND TECHNIQUES

Although much research is being done in the area of Higher Level
Languages (HLLs) or Higher Order Languages (HOLs), optimization
techniques, transportable languages and other vehicles for aiding the
microprogrammer's task , an assembler is
the most utilized means of directly translating source code into
executable binary information.

The typical microassembler has many of the same features as Software
assemblers:

a. Labels to define locations.

b. Provisions for symbolically defining variables.

c. Provisions for inserting or appending comments.

d. Numberbase (Radix) specification.

e. And others.

If the microinstruction has a diagonal or horizontal format, individual
microoperations are normally defined mnemonically. A good assembler can
check for conflicting microoperations and label them as errors.

There are self documenting assemblers in use today. These assemblers
generate machine dependent comments that describe a particular
microinstruction. Two such assemblers are described by Laws 15] and
Firth [2]. The comments describe the effects microcode has upon the
hardware, and am not intended to replace the programmer's comments
relating to program flow. Firth states that the commenting assembler
produces a very large listing and runs slowly, however, it is used mainly
to compile microcode to be released to manufacturing and field service
personnel. Early reports indicate that even though the MV/8000 microcode
is much more complex than previous Data General microcode, training times
are not proportionally longer.

One software development technique which could have application in the
microprogramming field is a program representation called "GREENPRINT"
[7]. This approach combines a diagrammatic representation of a program
with its (the program's) source listing on the same page.

This technique could be manually implemented, and could add significantly

to the understanding of microcode.

Some hints passed on by microcode developers:

a. Assembly listings should be clean and uncluttered.

29

U -.. -.: r,.. . - -
-

-, W

b. A simple microinstruction should be contained on one line for
clarity.

c. Have uniformly formatted fields, free form source is not as
easily understood.

One additional technique which is helpful in the coding of complicated
horizontal instructions, is the utilization of the Data Dependency
Graph. This graph portrays each microoperation as a unique node. The
arcs connecting the nodes indicate which microoperations are directly
data dependent on other microoperations. Any node is data dependent on
its immediate predecessors and is data independent of nodes for which it
is neither a predecessor or a successor.

An interesting approach toward a machine independent microprogramming
language is described in a paper by Patterson, Lew and Tuck [3]. The
paper describes a low level language called YALLL (Yet Another Low Level
Language).

This approach was to develop a low level language as an intermediate step

in HLL to microcode production.

" . : Rather than to try to bridge the gap
from HLL to microarchitecture in one step, we
have designed a low level language that is
capable of producing microcode for different
machines. Hopefully, it should be easy for
compilers to generate low level language code and
easy for optimizers to translate this low level
language code into efficient microcode."

YALLL was used to produce microcode for 2 different micro-architectures

(The Digital Equipment Corp VAX 11/780 and the Hewlett Packard HP 300).
Although YALLL was not able to produce code equivalent to hand optimized
code, the results were good. The main point to be made, however, is that
programs developed using the YALLL approach are easier to read and write

than those developed using typical microassemblers.

2.3.2.3 CHECKOUT AND DEBUGGING AIDS

Due to the inherent difficulty in checking out and debugging microcode on
devices that in many cases have little or no operator interface
capabilities, the simulator has proven to be one of the most important
tools in the microcode development process. A simulator duplicates the
function of microinstruction as they would be executed on the real
machine. It usually has facilities for user interaction with the
microprogram that is being simulated. An additional benefit is provided
when new hardware is being developed. Both microcode and hardware

30

development can proceed in parallel, thus saving valuable time. When the
simulator is written in a register-transfer language (or another hardware
oriented language) it can also be used to uncover hardware design errors.

In a paper on the simulation of microprogrammed LSI circuits, Nielson [81
states:

"Through simulation, all elements (even those

internal to an LSI chip) can be made visible on a
cycle-by-cycle basis. This capability is
advantageous in detecting potential hidden design
defects. For example, routine A may
inadvertently alter a register during its
execution. The effects of this error may not
affect operations until sometime later in the
execution of the microprogram. Such problems are
easily traced in a simulation, but are very
difficult to trace by other means."

Firth [2], in his paper on the tools used in development of the MV/8000
microcode states:

'Simulation played a significant role in the
development of the MV/8000 microcode. The most
significant factor being the early availability
of microcode and diagnostics with a high
confidence factor. But also of great importance
is the estimate that the simulation effort saved
3 months in the development cycle of the MV/8000
. . . while some bugs in the microcode and
diagnostics did appear, actual experience showed
that they accounted for less than 10% of all
errors encountered in the lab".

A simulator should have some, if not all, of the following features:

a. Breakpoints - The user can set one or more breakpoints in the
executable microcode so registers, stacks and other simulated
hardware elements may be examined.

b. Data Modification - The user can (after encountering a
breakpoint or data trap) examine and/or modify any of the
hardware elements which contain data.

c. Trace - The user may specify that particular registers, buses or
hardware elements be monitored and displayed for each
microinstruction.

31

jf

d. Time Keeping - Execution time of the simulated microcode is kept
and displayed during Traces.

e. Data Traps - Data traps provide a capability similar to
breakpoints. The simulator can monitor user designated
registers or buses and cease simulation upon detection of
specified data values.

2.3.2.4 MICROPROGRAM VERIFICATION AND TEST

Verification is the process of proving that a microprogram is error
free while test is the process of uncovering errors in that microcode.
These errors can be mistaken in the code itself, a conceptual error
in the design or an error with respect to fulfilling the original
requirements.

Verification, using proofs of correctness, has been described in a
paper by Joyner, Carter and Leeman (9). Although much research has
and is being done in the area of verification, it is not used by
microcode developers.

Test, according to the survey, is in no way standardized. It tends to
be propct oriented, due to the various hardware configurations that
may be used or developed from project to project. As described in
section 2.3.2.3, there is an inherent difficulty in checking out and
debugging microcode. These same difficulties make thorough testing
awkward at best. Testing may be performed using a simulator such
as described in the previous section. This technique is suspect,
however, since it assumes that the simulation is a perfect respresenta-
tion of the hardware. If possible the microcoded device (including
the microcode) should be designed with testing in mind.

Testing should be well planned, documented and executed. Software
techniques may be utilized with respect to values, ranges, bit
patterns and other data sensitive testing. Timing and synchronization
or coordination tests between hardware and/or microcoded devices must
utilize measurement equipment or logic analyzers. It is wise to use
personnel who have not been involved in the microcode development to
perform formal testing.

32

4 S

3.0 MICROCODE DEVELOPMENT

Early implementations of software were literally bottoms up in that

requirements were ill defined, often verbal and poorly communicated to
the programmer. Integration and testing very often brought software

packages together for the first time and in some cases software and
hardware were also brought together for the first time. It became

apparent that doing detailed design and/or coding without a carefully
thought top level design usually resulted in a poor product.
Integration of software and hardware under these circumstances invariably
produced unwelcome surprises with necessary patches or recoding of some

areas.

The modern top-down approach starts from a top level requirements

definition and proceeds "downward" to functionally distinct program and
data modules. Through systematic refinements it produces more and more

detail within the design which can be reviewed and analyzed at each step
with respect to the functional requirements, completeness, etc. All of

this design review is prior to the coding effort. The entire process, if

performed correctly, can actually force requirements to be well formed in

the sense of clarity and completeness. The advantages of the top-down
approach are equally valid for microcode development.

3.1 THE MICROCODE DEVELOPMENT PROCESS

In previous sections of this report an effort was made to illustrate the
wide variance between microcode architectures and their complexities.
When these variances are coupled with the range of microprogramming

effort (is it 50 instructions or 2000?), it becomes obvious that a
rigidly enforced development process as described here may not produce

the most cost effective result. For example, a system which utilizes
only one microcoded device such as a sequencer with only 100 vertical

micro-instructions should not require the same level of documentation as
a simple control device with 500 to 1000 horizontal instructions. Each

phase in the development process should be performed with documentation
commensurate with the microcode effort. Documentation necessary for
operations and maintenance, however, should be finely and thoroughly

detailed for simple as well as complex microcoded devices.

The development process documentation described in the following sections

assumes that a large scale microprogramming effort is being undertaken.
Proposed document section headings are preceded by an asterisk (*) so as

not to confuse them with the section headings of this report.

One of the tasks of this project was to review existing military
documentation starndards for applicability to the microcode development

process. There is an intentional simllarity between the proposed
documentation and some portions of military standards where the microcode

and software development processes are in agreement.

33

doo I I~fim

It is felt that where both microcode and software are being developed for
a single device or system, a single set of controlling documents could

suffice for both. The development process consists of a number of well
defined phases or steps. These steps are:

a. Analysis - Planning and the development of functional
requirements.

b. Design - Transform requirements into a design approach.

c. Code and Checkout - Coding and debugging to implement the
design approach.

d. Test and Integration - Components integrated and formally

tested against requirements.

e. Operations and Maintenance - Hidden errors are corrected and

new capabilities or requirements may be implemented.

A more thorough description of these steps follows:

3.1.1 THE ANALYSIS PHASE

The analysis phase starts with the formulation of a Microcode Development

Plan (MDP) or Computer Microcode Development Plan (CMDP) in the case of a
microcoded computer. A recommended format for such a plan follows. At a

minimum the plan should address each item with a statement as to why such
an item is not applicable to the development effort for which the plan is
being formulated.

3.1.1.1 THE MICROCODE DEVELOPMENT PLAN

*1.0 INTRODUCTION

Indicate the scope of the development effort, the purpose,

application, and authority for the project. Give an overview of
management philosophy and methodology.

*2.0 APPLICABLE DOCUMENTS

List the documents that this plan is responsive to or that will be

utilized in implementing the provisionsof this plan.

*3.0 ORGANIZATION AND RESPONSIBILITIES

The MDP shall provide a delineation of the contractor's organization
structures, authorities, responsibilities, interfaces, skill

requirements and lines of communication necessary to manage and

execute the scheduled activities to assure proper task completion.

34

-~ - - -- i'

The MDP shall include the relationship assumed between the contractor
and independent or redundant verification and validation groups, if
they exist, other contractors, subcontractors, the procuring agency,
the support agency and the user agency. The MDP shall also include
identification of skill requirements and key managers and
employees by name.

*4.0 DEVELOPMENT PHASE PLAN

The MDP shall describe the development phases required to achieve the
objectives of the microcode development effort. Identification of
the necessary development steps such as planning, requirements,
design, code and checkout, qualification test, systems test and
integration, and operations and maintenance for each Microcode
Program Configuration Item (MPCI) and their relationship to the
contractor's Work Breakdown Structure (WBS) shall be included. Tasks
associated with support functions (such as documentation,
configuration management, management reviews, quality assurance
etc.) and their relationship to other contractual tasks shall be
described.

*5.0 TEST PLAN

The MDP shall provide a presentation of the integration and tes-
philosophy and approach for Microcode Program Components iPC; dnd
MPCIs, how the philosophy is applied in the design and scheduling,
and how the approach leads to the Preliminary and Formal
Qualification Tests. The MDP shall provide a definition of the
interfaces and responsibilities (such as training, if required) among
test groups and other project participants. It shall also identify
resource and validation activities. The MDP shall also provide
procedures for the coordination and support of MPCIs and other
computer resources during formal system testing, including necessary
training and transfer of data.

*6.0 CONFIGURATION MANAGEMENT PLAN

The MDP shall provide the special aspects of computer microcode

configuration management not addressed in the overall Configuration
Management Plan. It shall include the organizational placement,

change, deviation, waiver authorization and control, internal
engineering change board, configuration identification, microcode
program library control, the control or changes to any
non-deliverable microcode programs, the handling of interface control
between the hardware and the microcode of the system, maintenance of
independent master tapes or disks, control of development versions of
the MPC and MPCIs, handling of source and binary microcode, control
over test environments, and relationships to Quality Assurance
functions.

35

1

S.. i.

*7.0 QUALITY ASSURANCE PLAN

The MDP shall describe the procedures and organization that will be
used to satisfy all the microcode QA requirements. This shall
include managing responsibilities, reviews and audits, controls,
discrepancy reporting and corrective action, and test assurance to
assure completeness, validity, traceability to requirements,

testability and compliance.

*8.0 DOCUMENTATION

The MDP shall provide a description of the contractor documentation
practices (as they apply to microcode) and a description of the
procedures which will be used to keep the informal documentation

current. For each project the customer's Contract Data Requirement
List (CDRL) should be carefully examined for documentation that will

supersede normally stated documentation requirements.

*9.0 TRAINING AND DEPLOYMENT

The MDP shall identify the recommended training, support philosophy,

and the resource requirements for use after the full-scale
engineering development phase. This section of the MDP shall
summarize or specifically reference the plan for the transfer of
computer resources, including support software or microcode tools to

the appropriate customer or agency.

*10.0 REVIEWS AND REPORTING

The MDP shall identify the reviews and reporting that occur during
the microcode life cycle.

*11.0 DEVELOPMENT RESOURCES

The MDP shall identify the allocation of facilities, laboratories,
computer time, test equipment, and other relevant resources against
the organizational structures, work elements, and schedules. It
shall identify project-peculiar resources required such as special
purpose hardware and computer programs, government furnished items
and special data. Also a list of items which may impact resources
such as high risk development items, special security requirements,
and subcontractor control shall be identified.

*12.0 ENGINEERING STANDARDS

The MDP shall provide a definition or identification of software

engineering practices as they apply to each MPCI and computer
resource support product, and how these practices will be assured.
Examples of engineering practices include standards, input/output

36

standards (when applicable), guidelines for microcode program
subdivisions, coding techniques, programming language and other
disciplines affecting development.

*13.0 REQUIREMENTS AND RISK ASSESSMENT

The MDP shall identify potential problem and high risk areas in terms
of cost, schedule and technological risk.

*14.0 SCHEDULES

The MDP shall show the development schedule, major milestones

required by contractual agreements and significant internal
milestones. Also, critical paths and potential critical paths which
may occur due to unplanned schedule slippage shall be identified. A
recommended life cycle overview with appropriate milestones shall be

furnished.

*15.0 GOVERNMENT FURNISHED EQUIPMENT

The MDP sitall list all equipment, services, facilities and programs
required for the production or test of the software or microcode,

which are to be furnished by the Government. All necessary
conditions should be stated, such as schedule of usage and
training/maintenance support required.

(*Refers to numeric organization within the MDP document).

3.1.1.2 THE REQUIREMENTS DOCUMENT.

Once the MDP has been accepted, the next step in the requirements
definition phase begins, that of formal requirements definition. The
requirements documentation contains the operational, functional and

interface requirements when applicable, and the quality assurance
provisions that are necessary for development and testing of the

operational microcode. A recommended format for such a requirements
document follows. At a minimum, the document should address each item

with a statement as to why such an item is not applicable to the

development effort for which requirements are being established.

The recommended requirements document format and content is:

*SECTION 1.0 SCOPE

*1.1 Identification. This paragraph shall contain the approved

identification, nomenclature, and abbreviation for the microcode.
This section of the CI specification shall begin with the following

opening phrase: "This part of this specification establishes the

requirements for performance, design, test and qualification of a

37

2-4 1T

microcoded program identified as (insert nomenclature and
configuration item number).

*1.2 Functional Summary. This paragraph shall contain a summary of

the purpose of the specification and a brief description of the
overall microcoded program by major functions or tasks. It shall

further identify and summarize the specification content, composition
and intent.

*SECTION 2.0 APPLICABLE DOCUMENTS

This section shall list all customer, subcontractor or other
documents which are applicable to this requirements specification.

*SECTION 3.0 REQUIREMENTS

This section shall contain performance and design requirements for

the MPCI and establish those requirements which normally will be
verified during category I or equivalent test (see section 4 of this

document). This section shall also define the MPCI and specify
design constraints and standards necessary to assure compatibility of

the MPCI with other microcode programs and equipment. Performance
and design requirements to be included herein shall be allocated

from, identical with, or in recognition of, requirements established
by the system/system segment specification. Requirements included in
the system/system segment specification, which are directly related
to requirements specified herein, may be incorporated by reference.
Requirements shall be specified to the level of detail necessary to
establish limits for design. Quantitative requirements shall be
within the three principal subparagraphs included herein. The
introductory paragraph shall include a general description of the
MPCI and its functions within the system/equipment to which it
applies.

*3.1 Microcode Definition. This paragraph shall in subparagraphs

included herein, specify the functional relationship of the MPCI to
other microcode programs, software or hardware.

*3.1.1 Interface Requirements. This paragraph shall specify, either
directly or by reference, requirements imposed on the design of the
MPCI because of its relationship to other microcode, software or
hardware equipment.

Interfaces defined in this section shall include, at a minimum, all

relevant charactristics of the microcoded device, such as memory word
size, control word size, control store characteristics and structure,

timing considerations, interrupt capabilities and any special
hardware features. The device characteristics may be described by

reference to the applicable documentation and descriptions. If a

38

I
. . boI

known compiler is to be used, the programming language shall be
specified as one of the interfaces in subparagraph 3.1.1.2. If the
compiler or assembler is to be constructed as part of the development
of this MPCI, the language characteristics shall be defined under
paragraph 3.2. Detailed Functional Requirements.

*3.1.1.1 Interface Block Diagram. The relationship of the MPCI to
other microcode computer programs, or hardware with which it must
interface shall be graphically portrayed in this paragraph. This
paragraph shall incorporate, in subparagraphs as appropriate, a
functional block diagram or equivalent representation of the
interface requirements of the MPCI. The graphic pgrt.:ayal of the
MPCI shall be accomplished to the level of detail necessary to

identify the functional interfaces and timing coordination between
the MPCI and other identified MPCIs, software programs, and hardware.

*3.1.1.2 Detailed Interface Definition. This paragraph shall
specify, in subparagraphs as appropriate, the functional relationship
of the MPCI to interfacing software or other microcode. This
information shall be given in quantitative terms with tolerances
where applicable to the level of detail necessary to permit design of
the MPCI. Functional interfaces shall specify the input/output
requirements of the MPCI in terms of data rate, data format, etc. In
addition, this paragraph shall specify design requirements imposed
upon other microcode or computer software as a result of the design
of this MPCI.

*3.2 Detailed Functional Requirements. This paragraph shall specify

in subparagraphs defined below, the functional requirements of the
MPCI. Requirements shall be stated in quantitative terms, with
tolerances where applicable. General and descriptive material may be
included in basic paragraph 3.2, which shall incorporate either
directly or by reference, a functional block diagram or equivalent
representation of the MPCI. The graphic portrayal shall be
accomplished to the level of detail necessary to illustrate the
functional operation of the MPCI, the relationships between these
functions and the relationships between the functions and other
identified system/equipment functions. This diagram is not intended
to be restrictive on microcode detail design. Requirements for
separately identified MPCI functions shall be described in subsequent
paragraphs as appropriate. A subparagraph shall be included for each
operational function, plus special functions such as sequencing
control, error detection, I/0 control, diagnostics, etc. The
descriptions of these MPCI functional requirements shall include the
relative sequencing, periodicities, options, and other important
relationships of each as appropriate. Paragraphs 3.2.X and
subparagraphs shall be repeated for each function above.

39

____ ____ ____ ____ _ #4

*3.2.X Function X. The basic paragraph for each function shall
begin with descriptive and introductory material which defines the
function and its relationship to other functions. Then, the
following three subparagraphs shall specify the quantitative
requirements concerning the function.

*3.2.X. ' Inputs. This paragraph shall specify either directly or by
reference to another part of this specification the source(s) and
type(s) of input information associated with a function of the MPCI.
This shall include a description of the information, its source(s)
and, in quantitative terms, accuracy/precision requirements and the
performance required in processing inputs.

*3.2.X.2 Processing. This paragraph shall provide a textual and
mathematical or logical description of each of the processing
requirements of each function. Presentation of the descriptions
under each function shall include:

a. Purpose - This area shall describe the exact intent of the
operation(s). This involves a definition of the specific input
and output parameters and the processing required.

b. Approach - This area shall contain a textual description of
each mathematical or logical operation specified. The
accompanying narrative shall identify accuracies required,
sequence and timing of events, and relevant restrictions or
limitations. Derived equations shall be shown with appropriate
mathematical, logical and control symbols adequately defined.

*3.2.X.3 Outputs. This paragraph shall specify, either directly or
by reference to another part of this specification, the
destination(s) and type(s) of output information associated with a
ftinction of the MPCI as a result of the processing described in
paragraph 3.2.X.2. This shall include a description of the
information; its destination(s); and in quantitative terms,
accuracy/precision requirements and performance required within the
function for outputs where applicable.

3.2.n Special Requirements. This paragraph shall specify, in
appropriate subparagraphs, requirements which affect the design of
the MPCI and are distinguishable from performance requirements of the
prior subparagraphs of paragraph 3.2. These requirements result from
general considerations of MPCI usability. These may include, but are
not limited to, requirements for:

a. The use of microcode programming standards to assure
compatibility among microcode components.

40

b. Microcode organization, such as overall program
segmentation. In addition, for MPCIs which contain or process
classified information, special attention shall be given to the
requirements for protecting classified information.

c. Microcode design resulting from considerations of
modifications to the MPCI during operation (e.g., on-sight
modification requirements and the permissible amount of
operational degradation allowed during installation of
modification (if applicable) may be specified).

d. Special features, to facilitate the testing of the MPCI.
For example, special procedures for the design of Microcode
Program Component (MPC) interfaces to provide traps for trace
lists etc, where appropriate.

e. Expandability (growth potential) to facilitate modifications
and additions to the MPCI.

n* - The next sequential number following the number of the last
function (n = last X + 1).

*3.2.n.1 Human Performance. Human performance/human engineering
requirements for the MPCI shall be specified in this paragraph. As
may be the case with microcode, human performance/human engineering
requirements may not be applicable and should be so stated as
necessary.

*3.3 Data Base Requirements. These paragraphs shall specify, in

descriptive and quantitative terms, any data base requirements which
affect the design of the MPCI.

*SECTION 4.0 QUALITY ASSURANCE PROVISIONS

Requirements for formal verification of the performance of the MPCI
in accordance with the requirements of section 3 of this
specification shall be specified in this paragraph. Formal
verification of performance of the MPCI shall determine acceptance of
the MPCI. This paragraph shall specify formal verification
requirements to a level of detail which:

a. Designates verification requirements and methods in section
4 for performance and design requirements in section 3. The
methods of verification to be specified herein may include
inspection of the MPCI, review of analytical data, demonstration
tests, and review of test data.

41

- t

b. Specifies requirements for verification to the level of
detail necessary to clearly establish the scope and accuracy of
the test method.

c. Permits ready identification of each verification
requirement specified in section 4 with the appropriate
performance/design and requirement paragraph in section 3.

d. Allocates verification requirements to the subparagraphs
included herein.

NOTE: This section shall not incorporate, either directly or by
reference, detail test planning documentation and operating
instructions. Requirements specified herein shall be the basis
for preparation and validation of such documents.

*4.1 Introduction. This paragraph shall establish the requirements

which provide the basis for development of a test plan and test
procedures for the subject program. All test/verification
requirements shall be specified within the subparagraphs included
herein.

*4.1.1 Category I Test. The term "Category I Test" as used herein

is defined to include all testing of the MPCI other than that
accomplished during the formal category II (or equivalent)

system/configuration item test programs. (See paragraph 4.1.5
below.) Category I testing is subdivided into the following broad
types:

a. Microcode test and evaluation - Tests conducted prior to and
in parallel with Preliminary or Formal Qualification Tests.
These tests are oriented primarily to support the design and
development process.

b. Preliminary Qualification Tests - Formal tests oriented
primarily towards verifying portions of the MPCI prior to
integrated testing/Formal Qualification Tests of the complete
MPCI (see paragraph 4.1.3 below). These tests will typically be
conducted at the contractor's design and development facilities.

c. Formal Qualification Tests - Formal tests oriented primarily
towards testing of the integrated MPCI, normally using
operationally configured equipment at the Category II site prior
to the beginning of Category II testing. This testing will
emphasize those aspects of the MPCI performance which were not
verified by preliminary tests. The testing requirements which

cannot be verified during category I Test shall be specified in
paragraph 4.1.5.

42

If

, I'

NOTE: Requirements for verification included in the

system/system segment specification, which are directly related
to requirements specified herein, may be incorporated herein by
reference to avoid redundant establishment of the requirements.

*4.1.2 Microcode Test And Evaluatimj.This paragraph shall contain

the following:

Microcode test and evaluation which satisfies one or both of the

criteria listed below shall be included herein. (Routine tests
accomplished in support of design and development, which do not
satisfy one or both of these criteria, shall not be specified herein.)

a. They are intended to be the only source of data to qualify

specific requirements in section 3.

b. They must be accomplished as part of an integrated test

program involving other systems/equipment/computer programs
(e.g. verification of requirements in paragraph 3.1.1).

*4.1.3 Preliminary Qualification Tests. This program shall specify

only those preliminary qualification test requirements which are
oriented toward verifying proper performance of portions of the MPCI
prior to integrated testing of the complete MPCI. Testing
accomplished in support of design and development shall not be
specified herein. Requirements for preliminary qualifications
specified herein shall reference requirements in section 3.

*4.1.4 Formal Qualification Tests. This paragraph shall specify

requirements for Formal Qualification Tests of the integrated MPCI to
demonstrate and/or verify that the requirements established in

section 3 have been satisfied. This paragraph shall, in the
subparagraphs as appropriate, specify the requirements and method of
verification for the requirements specified in section 3, with the
following exceptions:

a. The requirement in section 3 has been identified, and

verification that it has been satisfied by one of the tests
included in paragraphs 4.1.2 and 4.1.3.

b. The requirement in section 3 is peculiar to Category II type
system testing and will be identified in paragraph 4.1.5.

Verification of the requirements may be accomplished by
inspection, demonstration, test, and review of test data, or

combinations of these. This paragraph shall contain a subparagraph
for each of the principal methods of verification, and shall specify
therein the requirements of section 3 to be verified by the method.

43

*4.1.5 Ca:agory 1I System Test Programs. This paragraph shall
identify requirements specified in section 3 which cannot be verified
until Category II esting (or equivalent) and must be listed as a
Category I ITst requirement.

*4.2 Test Requirements. This paragraph shall specify the

requirements for each type of testing. The requirements shall
include test formulas, algorithms, techniques and acceptable
tolerance limits, as applicable.

*SECTION 5.0 NOTES

This section shall include information which is stated here for
administrative convenience only, and is not a part of the
specification for the MPCI in the contractual sense (i.e., it shall
not include requirements which constrain design, development, and
qualification of the MPCI and require compliance by the contractor.
The text may be preceded with the statement "Administrative
Information Only - Not Contractually Binding." This section of the
specification shall include information of particular importance to
the procuring activity in using this particular specification as a
contractual instrument for acquisition of the MPCI either initially
or for follow-on procurement.

Background information or rationale which will be of assistance in
understanding the specification itself or using the MPCI it
specified, may be included herein (e.g., technical data ordering
instructions).

*SECTION 10.0 APPENDIX I.

This section of the specification shall contain requirements which
are contractually a part of the specification but which, for
convenience in specification maintenance, are incorporated herein
(e.g., requirements of a temporary nature or for limited
effectivity). Appendixes may be bound as separate documents for
convenience in handling (e.g., when only a few parameters of the
program are classified, an appendix cont ning only the classified
material may be established). Where parameters are placed in an
appendix, the paragraph of section 10 shall be referenced in the main
body of the program specification in the place where the parameter
would normally have been specified. Typical data that may be
included in .,crocode development specification appendixes include:

a. Mathematical, logical, or control derivations;
b. Alternate method;
c. Summary of equations;
d. Definition of terms.

(*Refers to organization of Requirements Specification only).

44

* , A. .

3.1.2 MICROCODE DESIGN SPECIFICATIONS

3.1.2.1 PRELIMINARY MICROCODE DESIGN

After the system allocated baseline design has been established in the
MDP, a preliminary microcode design is developed and may be documented in

a draft version of a MPCI design specification. The draft version of the

specification will contain the assignment of each of the microcode

requirements to a specific functional microcode module and the functional
interface for each module. Design estimates of program storage and

processing time requirements are presented along with program functional

diagrams.

3.1.2.2 DETAILED MICROCODE DESIGN

After approval of the preliminary microcode design, a detailed microcode

design is developed. The detailed microcode design may be initially
documented by detailed program flow charts or the equivalent. These

detailed design charts are then integrated into the draft version of the
MPCI design specification, to provide a "code-to" version of the

specification. The baseline version of the specification should contain
all of the information necessary to proceed with program coding and

checkout.

During the microcode code phase, the detailed microcode design is

implemented. This design may be documented by updating the MPCI design
specification to include the design implementation which has been built
into the operational microcode. The program listing can either be added

as an appendix to the updated MPCI design specification, or included in a
separate program package. The documentation produced during this phase
presents a complete description of the "as-buiit" microcode. The

recommended format and content for an MPCI design specification is
provided:

*SECTION 1.0 SCOPE

This section shall contain the following lead phrase, "This

specification establishes the requirements for complete

identification (insert configuration item number and nomenclature)."

*SECTION 2.0 APPLICABLE DOCUMENTS

List those documents (specifications, standards, bulletins, manuals,

etc.) which are applicable to paragraphs within other sections of the

specification. Within the body of the specification, reference to

these documents shall be to their basic document number and to the

title, specifically identified requirements, or other definitive

designation.

45

*SECTION 3.0 REQUIREMENTS (TECHNICAL DESCRIPTION)

This section shall specify the detailed configuration of the MPCI.
It shall contain a complete technical description of the MPCI
structure and functions, the data base, and the individual microcode
program components (MPCs). The rules established for assigning
symbolic names and register usage conventions to components within
the CI shall be delineated. General and descriptive material may be
included in the basic section 3 lead paragraph.

*3.1 Functional Allocation Description. This paragraph shall
contain a description of the overall structure and functions of the
MPCI. This description shall include the allocation of functions (as
delineated in the requirements specifications) to the MPCs that
comprise the MPCI. If the MPCs are grouped into functional entities
(packages) for separate stages of development and checkout, this
grouping shall be delineated.

*3.2 Functional Description. The individual microcode program

components (MPCs) shall be described in separate paragraphs as
required. This description shall be given at a level of detail that
will define the design and configuration of the MPC sufficiently to
allow for MPC modification and adaption in the operation phase. Each
MPC shall be described in words flow charts (or equivalent), and a
listing of the instructions used. The basic paragraph 3.2 shall
contain the following lead phrase,"This paragraph contains the
detailed technical descriptions of the microprogram components
identified in paragraph 3.1 of this specification. The instruction
listing contained in paragraph 3.2.1.6 specify the exact
configuration of the (name of MPCI)." The following subparagraphs
shall be repeated for each MPC:

*3.2.N Microcode Component N. The basic paragraph shall identify
the MPC by including, as a minimum, the title, tag (symbolic code),
and MPC identification number. It shall also include a brief
abstract of the tasks of the MPC, the language in which it is
written, and its major functional interfaces. The component shall be
described in detail in subparagraphs.

*3.2.N.l MPC No. N Description. This subparagraph shall describe in
words, figures, equations, and references to the flow charts (or
equivalent) of subparagraphs 3.2.N.2, the operations and design of
the MPC. This paragraph shall contain, as appropriate, a description
of the program logic and data flow; equations to be solved;
algorithms used to solve these equations; timing and accuracy
characteristics; and any special conditions for operation of the
MPC. The description shall be sufficiently detailed to facilitate
understanding of, and modification to, the listing given in
subparagraph 3.2.N.6. Equation derivations and numerical analysis
shall not be included herein, but may be included in section 6
(Notes).

46

I *1

I
° ,

i.

*3.2.N.2 MPC No. N Flow Chart. This subparagraph shall graphically

portray the operations performed by the MPC. This shall be done by a
(series of) flow chart(s) (or equivalent) which depict the processing
described in subparagraph 3.2.N.1, including the sequence of
operations and decision points, in the MPC. The highest-level chart
shall depict on a single sheet the overall information flow of the

MPC and shall reference the charts in paragraph 3.4 that identify the
MPC. In general, the lowest-level chart identifies all decision

points in the MPC and references higher level charts as appropriate.
All charts shall use descriptive symbology and shall reference the

program listing of the MPC by use of statement labels or tags.

*3.2.N.3 MPC No. N Interfaces. This subparagraph shall describe

the relationship of the MPC to other MPCs, to that part of the data
base external to the MPC and where applicable to other MPCIs. At a
minimum, this subparagraph shall include, either directly or by
reference to other paragraphs of the part II specification, the

following:

a. The set-use matrix, table, item, buffer definitive

information and input/output format information.

b. Unique to MPC interfaces that, because of their nature,

composition, use or meaning, require an individual definition.

*3.2.N.4 MPC No. N Data Organization. This subparagraph shall
contain or refer to a portion of subparagraph 3.2.N.6, if
appropriate; contain a list and description of all data items and

tables which are unique to and included within the MPC; and describe
the areas of memory available for temporary storage. This list shall
include all internally defined symbols and constants and their
equivalents and meaning.

*3.2.N.5 MPC No. N Limitations. This subparagraph shall summarize

any known or anticipated limitations of the MPC. A listing of all
restrictions and constraints which apply to the MPC shall be
provided, including timing requirements, limitations of algorithms
and formulas used, limits of input and output data, associated error
correction sensing, and the error checks programmed into the routines.

*3.3 Storage Allocation. The relationship of the MPCI storage

requirements to the total computer equipment storage capability shall
be graphically portrayed in subparagraphs as appropriate, either

directly or by reference, a schematic diagram or equivaleit
representation. This graphic portrayal of the MPCI storage shall be
accomplished to the level of detail necessary to identify such
requirements as data base, microprogram,

microprogram operation, and spare storage allocations. In
addition, the timing, sequencing requirements, and equipment

47

I

i | .

constraints used in determining the allocation shall be described.

If allocations cannot be specified precisely or portrayed graphically

in a manner meaningful for program design, the algorithms used to
allocate storage shall be included.

*3.4 Microcode Program Functional Flow Diagram. This paragraph and

subsequent subparagraphs shall show the general system

flow of both data and control. The main paragraph 3.4 shall
graphically portray the operations performed by the MPCI by a (series

of) chart (s) which depictq the processing being performed, the

sequence of operations, and decision points. A top-level chart shall

be used to depict in a single figure the overall information of the
MPCI. This diagram shall reference lower level charts included in

this paragraph, as appropriate, to provide more detailed

information. The lowest-level charts shall be those which identify

as functional entities the microcode program components described in

section 3.2 above. If the MPCI is designated to operate in more than

one mode, each mode shall be clearly distinguishable in both the text
and diagram(s).

*3.4.1 Program Interrupts. This paragraph shall list all program

interrupts and describe their effect on the design of the control
logic. Each interrupt shall be fully described as to source,

purpose, type, and the required response. The probable rate of

occurrence of interrupts shall also be given, if available. This

description shall be in the functional terminology developed in

paragraph 3.1 of the specification.

*3.4.2 Logic of Subprogram Reference (Component Reference). This

paragraph shall contain a detailed description of the control logic

involved in referencing each MPC. Timing and sequencing of operation

of the MPCs relative to each other shall be discussed. If the

sequencing is dynamically controlled during the MPCIs operations,

this description shall include the method for sequence control and

the logic and input conditions of that method. Such factors as

timing variations, priority assignments, plus such internal

operations as data transfer in and out of memory, sensing of discrete

input signals, and the timing relationships between interrupt

operations within the MPCI shall be included.

*3.4.3 Special Control Features. This paragraph shall describe all

the special control features that affect the design of the control

logic but are not part of the normal operational functions (e.g.,

system loop tests for routine maintenance).

*SECTION 4.0 QUALITY ASSURANCE

This section shall reference the test plans and procedures that were

used for the qualification of the MPCI during category I testing. In

48

addition, this section shall also reference and/or specify those
tests which apply to duplication of MPCIs.

*4.1 Test Plan/procedure Cross Reference Index. In this

subparagraph, the relationship of the functions to their test plan
and test procedure documentation shall be referenced by cross
indexing. This subparagraph shall also reference any special test
tools or capabilities (e.g., tapes, ROMS, PROMS etc.) which are
covered in this specification.

*SECTION 5.0 PREPARATION FOR DELIVERY

This section shall specify, in subparagraphs as appropriate, the

requirements for packaging, marking, and otherwise preparing the MPCI
for shipment and storage (if applicable).

*5.1 Preservation and Packaging. These paragraphs shall describe
the preparation for delivery requirements of the completed MPCI.
Packaging requirements include a description of the product packaging
(ROMS, PROMS, EPROMS, disks, manuals), preservation methods, packing,
etc., involved in preparing the MPCI for shipment and storage.
Special handling requirements or other special considerations shall
be included (e.g., when shipping magnetic storage media, special EMI
requirements shall be delineated.

*5.2 Markings. This subparagraph shall specify in detail the
identification markings to appear on packages that make up the MPCI
to be delivered.

*SECTION 6.0 NOTES

This section of the specification is nnt contractually binding, and
therefore should not be used for contractual requirements. It shall
include administrative or background information (e.g., ordering
instructions for technical data pertaining to the microcode program,
or specific information related to the use of the program in future
assembly and integration testing). It shall not include requirements
which constrain design, development, or qualification of the MPCI.
The text may be preceded with the statement "Administrative
Information Only - Not Contractually Binding." It shall reflect the
technical manuals which can be singularly and peculiarly identified
with the MPCI, and which are necessary to its operation and
maintenance. For each MPC, this paragraph shall include any
pertinent information not included in the above subparagraphs, such
as rejected alternative MPC designs, the rationale behind the design,
reference material in support of the algorithms used, and suggestions
for future modifications to the MPC if changes in requirements should
materialize. It shall also describe, as appropriate, the pertinent
tests which were performed to verify the final implementation of the
MPC, with key test results included or referenced.

49

9....

*SECTION 10.0 APPENDIX I

This section of the specification may contain the MPCI listing and

requirements which are part of sections 3 and 4, but are bound

separately for convenience. Examples are computer-produced listing
set-use tables (variables are defined and instructions which set or
use that variable are listed), multisite adaptation requirements, etc.

(*Refers to organization of the Firmware Program Configuration Item

only).

3.1.3 CODING STANDARDS

The following paragraphs assume that as a minimum a microcode

assembler has been used to generate the binary microcode. If an

assembler is not available and the device has been judged to be very

simple in the sense of length and complexity of microcode and may

therefore be coded directly in binary, octal, or hexadecimal

characters, the programmer should be required to write "Assembly
like" commands. The command language should be documented so that an

assembler could be developed and utilized at a later date.

In order to facilitate the understanding and maintainability of

microcode a number of paragraphs shall be included with each module.

a. Each module shall have a title. The title should be

meaningful with respect to the modules function. A title such
as "PARITY CHECK" is preferable to "CHECK P" or "FUNCTION 1" or
"Fl".

b. Each module shall have comments or statements explaining:

1. The module's functional description (a few sentences
should be sufficient).

2. The module's purpose, use, and processing activities.

Technical details should not be included.

3. Inputs. Any variables, tablesdata and status

registers, stacks or other data input sources shall be
identified as to type, size (bites, bits, fields, etc),
value limits, accuracy or precision requirements, or

timing with respect to frequency of arrival or

availability.

4. Outputs. Variables, tables data and status registers,

etc,,shall be identified and described in the same manner
as inputs.

50

-- .'..

5. Registers used. Registers which have been accessed or
modified shall be identified and their end conditions

(contents) noted. Status register and/or bits shall be
included.

6. Subroutines or Submodules called. If the microcoded
device has "Subroutine Call" capabilities, any calls to

subroutines or submodules shall be listed.

7. Limitations. Any contraints upon the module's

execution shall be described. Critical timing
considerations whether they are imposed by a system
constraint or by other modules shall be noted. Present
minimum, maximum and nominal execution times shall be noted.

8. Modifications. A chronological list of modifications

shall be maintained. Each modification or group of
modifications performed for a revised module shall be
described together with a date and the responsible
individual.

9. Special Comments. If the microcode is subtle or

confusing it may require some special explanation in order
to make the code easier to understand.

c. If there is a pseudo code or other program design language
material for the module, it shall be listed.

d. If there is a logic or flow diagram in graphic form it shall
be included.

e. The microcode listing itself shall be included. If there
are line-by-line comments they shall be presented in an orderly
fashion, columnized and set to the side so as not to impose on

the instruction. If there are not line-by-line comments, the
module shall be broken up into functional groups and comments
attached to each group explaining the groups process. These
comments shall be in addition to any "self documenting"
assembler notations which are usually restricted to hardware
related functions.

3.1.4 MICROCODE TEST DOCUMENTATION

3.1.4.1 TEST PLANS AND SPECIFICATIONS

The MPCI Test Plan is developed from the Quality Assurance section (4.0)
of the MPCI specification and from information contained in the Microcode
Development Plan. The MPCI Test Plan defines the scope of tests required
to ensure that the program meets all applicable technical, operational,

51

- ,
. ...

•
VA..

and performance specifications. It establishes detailed acceptance
criteria for the program and identifies each level of testing. It also
indicates the purpose, relationship to other tests, and system
environment for each level of test. The recommended format and content

for anMPCI Test Plan is provided.

*SECTION 1.0 PURPOSE

This section shall state the purpose of the MPCI Test Plan and shall
identify the MPCI to which it applies by number and approved
nomenclature. The purpose shall be stated in terms of establishing

detailed requirements, criteria, general methods, responsibilities,
and overall planning to confirm, in accordance with section 4 of the

MPCI Requirements Specification, that the MPCI or designated portions
of it, fulfills the requirements of section 3 of the MPCI
Requirements Specification. Reasons for excluding any portions of
the MPCI from this test plan shall be stated.

*SECTION 2.0 REFERENCES

This section shall list all documents upon which the MPCI Test Plan
is based or which relate significantly to the MPCI test effort.
Documents defining the MPCI configuration to which the test plan

applies shall be specifically identified.

*SECTION 3.0 TEST CONCEPTS

This section shall obtain background information required to

substantiate the test philosophy and to provide information to aid in
understanding and evaluating the test plan.

*SECTION 4.0 QUALIFICATION REQUIREMENTS AND CRITERIA

*4.1 This section shall contain detailed qualification requirements

based on section 3 of the MPCI Requirements Specification. For ease
in preparation and use, information required in this section may be

published as appendixes or additional volumes of the test plan, and

shall be referenced in this section.

*4.2 In addition to the detail identification of rformance
requirements, parameters shall be stated in terms df presence or
absence of specified outputs and, wherever applicable, in terms of
tolerance limits for calculated values. Methods of determining
whether microcode program performance corresponds to the parameters
shall be stated for each requirement. Methods may include, for
example, an analysis of recorded data, examination of displays or
hard-copy outputs, or equipment response to operation of the
microcode program.

52
. *,

*4.3 Situations or conditions under which qualification must be
achieved shall be specified in terms of ranges of input data values,
amount of input data of required types, and specific critical values
or occurrences.

*SECTION 5.0 QUALIFICATION OBJECTIVES/TEST PHASE SUMMARY

This section shall identify qualification requirements to be
satisfied by (I) data from microcode programming test and evaluation,
(2) preliminary qualification testing, (3) formal qualification
testing, and (4) system testing. Detailed requirements shall be
identified by references to section 4 above and shall be contrained
in subsections shown below. Depending on the nature of the
requirements, it may appear in more than one of the following
subsections.

*5.1 Requirements to be Satisfied by Microcode Programming Test and

Evaluation Data. This subsection shall list the qualification
requirements to be satisfied by data from microcode programming test
and evaluation and shall identify the data to be supplied for such
qualification.

*5.2 Requirements to be Satisfied by Preliminary Qualification

Testing. This subsection shall list the performance requirements
against which the operation of the microcode program is to be
verified during Preliminary Qualification Testing.

*5.3 Requirements to be Satisfied by Formal Qualification Testing.

This subsection shall list the performance requirements to be
satisfied during Formal Qualification Testing.

*5.4 Requirements to be Satisfied During System Testing. This
subsection shall list the qualification requirements which, by their
nature, cannot be satisfied prior to System testing and which should
be included in the System Test Plan (if applicable).

*SECTION 6.0 MPCI QUALIFICATION TEST IMPLEMENTATION

This section shall contain the plan for implementation of the MPCI
Preliminary and Formal Qualification Test program. Subsection 6.1
shall apply to Preliminary Qualification Tests and subsection 6.2
shall apply to Formal Qualification Tests. Each subsection shall
contain:

*6.N.I Location and Schedule. The location at which the

qualification tests will be conducted shall be specified. The
schedule for the tests shall be established in terms of dates for
particular tests or sets of tests, general periods (weeks or months)
for various tests or phases of testing, or periods relative to
milestones in the overall acquisition schedule.

53

*6.N.2 Limitations and General Comments. General comments and

limitations relative to test implementation and accomplishment of
test objectives shall be included.

*6.N.3 Preparation of Inputs. General methods for preparation of

input data shall be described. This shall include identification of
simulation and/or data generation vehicles to be used. Requirements

for review or validation of input data shall be specified.

*6.N.4 Conduct of the Tests. General procedures for test conduct

and delineation of responsibilities for test direction, operation,
and observation shall be established.

*6.N.5 Analysis of Results. General procedures for analysis of test
results shall be described. This shall include identification of
computer programs to be used for data reduction/analysis.

*6.N.6 Summarization of Equipment and Computer Program

Requirements. Requirements for computer programs, microcode
programs, other than the MPCI being tested, and for equipment such as

logic analyzers, computers, supporting equipment, etc., shall be
summarized. This information will normally correspond to

requirements set forth in paragraph 4.1.1 of the MPCI Requirements
Specification.

*6.N.7 Summarization of Personnel Requirements. Personnel

requirements shall be summarized. This shall include statements
describing responsibilities, authority, and particular knowledge of

skills required. The extent of this summary shall be such that
provisions for supplying personnel will be consistent with a
meaningful, successful qualification effort.

*SECTION 7.0 CONTROL AND REPORTING PROCEDURES

This section shall specify requirements and procedures for
controlling and documenting the MPCI Test Program. These procedures
and requirements shall be specified in subsections as follows:

*7.1 Control of the MPCI Test Program. This subsection shall

contain procedures for revising or updating the MPCI Test Plan as a
result of schedule changes, changes to design requirements and/or
MPCI detail design, revised provisions for supporting the test
program, etc. Interrelation between the MPCI Test Program and

control of the MPCI design requirements and/or configuration shall be
established.

*7.2 Documentation of Test Procedures. This subsection shall

specify requirements and procedures for preparing, reviewing, and if
necessary, revising documentation of specific test procedures.

54

I

*7.3 Documentation of Test Reports. This subsection shall specify
requirements and procedures for preparing and reviewing reports of
individual qualification tests, summaries of the MPCI Test Program
and/or its phases, and other reports which may be required related to

the MPCI Test Program.

3.1.4.2 TEST PROCEDURES

Microcode test procedures are developed from test plans and microcode
specification and design documents. They present detailed
instructions for test setup, execution, and evaluation of test
results. The procedure states in general terms the organization or
structure of the test and any assumptions or constraints imposed on
its usage. It describes the required equipment, manpower, microcode
programs, computer programs, and supporting documentation. If
various modes of operation are possible, the requirements for each are
specified. Equipment required for operation is identified and
revisions or modifications to these equipments are specified as well
as any pretest checkout required to ensure a valid test environment.

The recommended format and content for MPCI Test Procedures document

is providpd:

*SECTION 1.0 CAPTiJN

The test procedure shall have a caption containing:

*1.1 Test Identfication. The individual test shall be uniquely

identified.

*1.2 Contract Item. The MPCI to which the test applies shall be

identified by number and approved nomenclature.

*1.3 Primary Function. The MPCI's primary functions or segments

which are to be tested shall be identified.

*SECTION 2.0 LOCATION AND SCHEDULE

The location and schedule shall be shown for the following test
efforts:

a. Tests;
b. Data reduction/analysis.

55

hk --

*SECTION 3.0 REFERENCES

Reference documents applicable to the test shall be listed. Such

references shall include:

a. MPCI Test Plan;

b. MPCI Specifications for the functions to be tested;

c. Users' manuals for the MPCI (if applicable);

d. Users' manuals for test/support microcode and/or

computer programs and equipment.

*SECTION 4.0 TEST OBJECTIVES

Detailed objectives of the test shall be indicated by brief function

descriptions and references to section 4 of the MPCI Test Plan.

*SECTION 5.0 MANNING AND RESPONSIBILITIES

Requirements and responsibilities shall be shown for console

operators, test directors, technical consultants, data analysts, or

other essential test personnel. Special knowledge or skills required

shall be stated. Requirements which are identical to those stated in

section 6 of the MPCI Test Plan may be specified by reference to the

test plan.

*SECTION 6.0 EQUIPMENT AND COMPUTER PROGRAM REQUIREMENTS

Requirements for microcode programs, other than the MPCI being

tested, and for equipment necessary to support the test shall be

specified. Requirements identical to those stated in section 5 of

the MPCI Test Plan may be specified by reference to the test plan.

*SECTION 7.0 TEST OPERATING PROCEDURES

Procedures for operating the microcode program to be tested shall be

specified in this section. Normally such specification shall be by

reference and exception to documentation listed in section 3 above.

Procedures will be specified to:

*7.1 Initiate the Program or Device Operation. Procedures shall be

specified to read the program into the device (if applicable),

establish the required mode of operation, initially set any required

parameters, provide for required inputs, and outputs, and begin

operation of the program or device. Listings of input material to

accomplish the above shall be provided as an appendix.

56

.... . ,.. l, ,,, ; ' . l • -

*7.2 Maintain the Program or Device Operation. Procedures shall be

specified to maintain operation of the program or device whenever
operator intervention is required as, for example, to maintain input
data flow.

*7.3 Terminate and Restart the Program or Device Operation.

Procedures shall be specified for normal and unscheduled termination
of program or device operation, as well as restarting operation so as
to ensure that necessary output data shall be obtained and made
available for required evaluation.

*SECTION 8.0 DETAILED TEST DESCRIPTION

*8.1 This section shall describe in detail the test outputs, events,

and expected results. Test objectives satisfied or partially
satisfied by each expected result shall be identified by reference to

section 4 of the MPCI Test Plan.

Test events shall be described in the order in which they are planned
to occur with dependency of any one event on another so indicated.
If more than one operating or monitoring position is involved in the
test, the sequence of events for each position shall be indicated.
Interdependence of operating positions with respect to specific
events shall be described.

*8.2 Listings of inputs and/or listings produced in the preparation

of test inputs shall be included in an appendix.

*SECTION 9.0 DATA REDUCTION AND ANALYSIS

This sectdonshall contain the requirements and procedures for
reduction and analysis of test data. The information shall be
contained in subsections as follows:

*9.1 Recording and Reduction Requirements. Data which must be

recorded during the test by the program, manually, and/or by
instrumentation shall be specified. In addition, requirements for
format and content of the data resulting from the reduction/analysis
process shall be specified. Requirements for data recording and
reduction shall be specified in a manner and detail such that the
resulting information will clearly show whether the test objectives
have been met.

*9.2 Data Reduction/Analysis Procedures.

This subsection shall contain the procedures to be employed in
reducing and analyzing data resulting from the test. Normally, the
procedures shall be specified by references and exception to
documentation listed in section 2 above.

57

3.1.4.3 TEST REPORTS

MPCI test results are accumulated throughout the various levels of
microcode qualification testing. On completion of the qualification
test, the results are integrated into a Microcode Test Report document.
The recommended format and content foran MPCI Test Report is provided:

*SECTION 1.0 MICROCODE PROGRAM CONFIGURATION ITEM IDENTIFICATION

The MPCI to which the test applies shall be identified by number and

approved nomenclature.

*SECTION 2.0 TEST IDENTIFICATION

The identification of the individual qualification test as shown on
the test procedure shall be shown on the test report.

*SECTION 3.0 PRIMARY FUNCTION

The MPCI's primary functions or segments to which the test applies
shall be identified.

*SECTION 40 TEST PLAN AND PROCEDURES REFERENCE

The MPCI Test Plan and the MPCI Test Procedures for the test shall be
referenced.

*SECTION 5.0 TEST RESULTS

The results of the test shall be stated as follows:

*5.1 Identification of those planned objectives for which actual

test results were identical, with the expected results as specified
in the test procedures, or for which variation between actual and
expected results was within specified tolerances. In the latter
case, actual test results shall be shown.

*5.2 Identification of those planned objectives for which actual
test results differed from expected results beyond specified limits.
In this case, actual test results shall be shown.

*5.3 Identification of any planned test objectives for which actual

results were not obtained. Reason for not fulfilling such objectives
shall be stated.

*SECTION 6.0 RECOMMENDATION

Recommendations for subsequent action shall be stated, based on the
test results. Such recommendations may include:

58

*6.1 Revising the MPCI in order to meet specifically identified

requirements which were not fulfilled.

*6.2 Revising the MPCI Requirements Specification in cases where the

test results disclose ambiguity or conflicting requirements.

*6.3 Conducting additional tests to fulfill objectives for which

results were not as expected.

6.4 Qualifying those functions for which test objectives have been
fulfilled.

3.1.5 OPERATIONS AND MAINTENANCE

3.1.5.1 MANUALS

The Microcode User's or Operator's Manual provides the user with
information that is required for the operational use of the microcoded
device. The recommended format and content for User's Manual is provided:

*SECTION 1.0 SCOPE

This section shall consist of the following paragraphs:

1.1 Identification. This section shall include the configuration
item index number of the system or device and the equipment to which
this manual is applicable. It shall provide a statement of intended
use and include:

a. Control and Implementation - List manual control
implementation data and how changes may be effected.

b. Equipment and Program Description - Designate the minimal
device and peripheral equipment required to initiate system
operation. Any revisions or modifications to that equipment
shall be noted. Equipment characteristics and capabilities and
program functions, capabilities, and organization will be
described.

*1.2 System Materials. This section shall describe required

magnetic/paper tapes, card decks and listings (if applicable). These
items shall be identified by appropriate nomenclature and
configuration item number. Also, supporting documents consisting of
specifications, procedures, handbooks and manuals required for system
operation shall be listed.

*SECTION 2.0 APPLICABLE DOCUMENTS

59

*SECTION 3.0 SYSTEM OPERATION

*3.1 Power On/Off. This section shall explain the step-by-step

procedures required to power-on and power-off the equipment tor
operational and standby mode.

*3.2 System Initiation. This section shall include instructions for

preparation and set-up prior to system operation. It shall include:
equipment set-up, procedures and steps required in equipment
pre-operation. Explain any physical preparation such as loading,
initial switch settings, etc.

*3.3 General Information. Describe procedures necessary to

BOOTSTRAP the system and load programs. Explain common commands for
system initiation (e.g. program interrupt/recovery and system priority

organization).

3.4 Operating Procedure. This section shall describe system RESTART
after system INITIATION. In the event that more than one mode of
operation is available, instructions for selection of each mode will

be provided. Sufficient details of all options shall be listed and
instructions for recovery from error traps/halts shall be provided.

*3.5 Input/Output. Describe INPUT/OUTPUT media and explain detailed
procedures required for each. List operator procedures for

interactive message/replies (if applicable). Describe data
insertion/modification procedures (if applicable).

*3.6 Monitor Procedures. This section shall describe the

requirements for monitoring the microcode program while in
operation. Trouble and malfunction indications shall be delineated,
with corresponding corrective actions. Evaluation techniques for

fault isolation shall be described to the maximum extent
practicable. Conditions which require shutdown or aborting, and

specific abort procedures shall be described. The operation shall be
well defined.

*3.7 Auxiliary/Off-Line Routines. Explain detailed procedures

required to operate all special routines of the device or system.

*3.8 Recovery Procedures. Explain procedures to follow for each

trouble occurrence or program error. Give detailed instructions to

obtain system dumps (if applicable). Describe steps to be taken by

the operator to restart system operation after an abort or
interruption of operation. Procedures for recording information

concerning malfunction shall be included. Back-up operational

procedures shall be described. Equipment available in back-up mode

shall be described.

60

*3.9 Special Operational Proeedures. Describe all special

procedures related to system ALARMS, equipment failure, nonstandard

operational requirements, or unique program/!.'stim management
procedures.

*3.10 Program/System Control. Describe how the system will be

maintained. Include procedures for enhancements, corrections,
control store readouts, program patches, program change messages, and
on-site support.

*3.11 Program Inventory. This paragraph shall provide an inventory

of various system deviceor programs.

*SECTION 4.0 DIAGNOSTIC REQUIREMENTS

*4.1 Diagnostic Data Description. This section shall contain all
system data diagnostics. Each descriptor shall be listed and status
values/meanings shall be described in detail.

*4.2 Diagnostic Program Description. This section shall describe

each diagnostic program. It shall contain descriptions of functional
tests and definitions of results. This section shall include
diagnostic program schedules (if applicable) and describe system
configuration during diagnostic program operation.

*4.3 External Diagnostic Progam. This section shall list external
non-system diagnostic programs which are used to test system

operation. A complete list of functions tested data output and
meaning will be provided.

*4.4 Special Instructions. This section shall include special

instructions needed to operate diagnostic system programs.

It is understood that much of what is described in the recommended

content may not be applicable to a specific microcoded device. If
the microcoded device is part of a larger system such as a computer
system, the portions of this manual unique to microcode should be
integrated into the System or Software User's Manual.

3.1.5.2 TRAINING

Training for operation and maintenance of microcoded devices proved to be
difficult with respect to establishing a standard for either training
procedures or for documentation. None of the microcode developers
interviewed, trained their field personnel to diagnose or modify
microcode. They instead utilized their hardware training courses (if

any) to allow the detection and replacement of "least replaceable
units." They relied on "in-house" experts to do microcode maintenance.
These personnel utilized the development documentation to understand the
microcode.

61

Ai

4.0 CONCLUSION

Although the survey indicates a general trend toward the production of
reliable, good quality microcode there are no industry standards.
Procedures and documentation vary from project to project and if
standards are applied, they are usually adapted from software standards.
A proposed standard has been presented. In order to validate the
standard and to cover unfo~een difficulties, additional studies might be
undertaken. These studies are:

a. A study to analyze what portions of the documentation standards
proposed in this report could be combined or possibly eliminated
for projects with very simple microcoding efforts. Obviously,
an easily understood, vertically formatted microinstruction set
using 50 to 100 instructions to perform its function can be
considered simple. Is there a means by which complexity can be
measured so as to specify what level of standardization is
necessary for a specific task?

b. Studies to monitor contracts for which microcode is being
developed. The use of standards, design and implementation
tools (and techniques), and test methods could be analyzed to
try to quantify such factors as reliability, maintainability, and
development costs for projects which use or don't use these
approaches.

c. A study to determine the advisability of using a PDL to portray
a design "instead of" or "in addition to" a functional flow
diagram.

d. A study to determine if common vocabulary and symbols could be
developed for microassemblers. Understanding a microcoded
device would then be a matter of understanding its peculiarities
rather than its microcode representation.

e. A continuing study to provide periodic monitoring of Higher
Level Language development and Verification techniques as they
apply to microcode. These two areas are evolving and when
mature enough, should become a permanent part of the microcode
development process. Standards will, at that time, need to
reflect their impact.

62

REFERENCES

1. M.V. Wilkes,"The Best Way to Design an Automatic Calculating
Machine", Report of the Manchester University Computer Inaugural
Conference, July 1951, pp. 16-18.

2. N.R. Firth, "The Role of Software Tools in the Development of the
Eclipse MV/8000 Microcode", Proc. of 13th Microprogramming Workshop,
1980.

3. D.A. Patterson, K. Lew, R. Tuck, "Towards an Efficient, Machine-
Independent Language for Microprogramming", Proceedings: MICRO 12
(November 1979), pp. 22-35.

4. J. Nash, M. Spak, "Hardware and Software Tools for the Development of
a Micro-Programmed Microprocessor", Proceedings: MICRO 12 (November
1979) pp. 73-83.

5. B.A. Laws, Jr., "Microbe: A Self Commenting Microassembler",

Proceedings: 10th Annual Workshop on Microprogramming, pp. 61-65.

6. W. Rottmann, "MIKADO - A System for Computer Aided Microprogram

Designs", Preprints, 7th Annual Workshop on Microprogramming, pp.
195-202.

7. L.A. Belady, C.D. Evangelisti, L.R. Power, "GREENPRINT: A Graphic
Representation of Structural Programs", IBM Systems Journal, Vol. 19,
No. 4, 1980, pp. 542-553.

8. R.D. Nielson, "Functional Simulation of Microprogrammed LSI
Circuits", Proceedings: IEEE 1978 National Aerospace and Electronics
Conference (NAICON), pp. 588-593.

9. W.H. Joyner, Jr., W.C. Carter, G.B. Leeman, Jr., "Automated Proofs of

Microprogram Correctness", Proceedings: 9th Annual Workshop on
Microprogramming, pp. 51-55.

63

ago. -

MISSION
Of

Rom Air Development Center
RAtVC ptanA and execut 4 'e6eeAch, devetopment, teA-t and
setected acqui~ition p/togta6 in 6uppo~'t o4 Command, Contot

* Corninaton6 and Int.e~igence (C3 1) activities. TechnicaJ
and enginee'ting 4uppo'tt within a'Leaz o6 technicat competence
Z6 p'touvded .to ESP P/tog/tam O66ie, (PO.6) and othe't ESV
etemenL6. The p'uncipat technZcat mi,6,6on oAea6 ate
communcatio0kV, etetomagnetic guidance and contjt, 6uA-

'ttjance o6 g/tund and ae,'o.pace. object6, Thtetience data
cottection and handtiing, in~o,%mation sy~tem technotogy,
iono.6phe,'tc p/topaqatZon, 6otid ztate .6ience6, mi.ctowave
phy~c6 and etecttonc ktabi".t, maintaiabitity and
compatibtt.

