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ABSTRACT

The microstructure and hardness of simulated welds in HY-130
cast plate, wrought plate and weld filler metal are investigated.
The dependence of these quantities on the austenitizing temperature
and the tempering provided by subsequent weid passes is also
investigated. The use of a tempering parameter, as developed by
Hollomon and Jaffe, allows comparison of different tempering times
and temperatures. It was found that in the rapid heating cycle of
simulated welding that the AC! and AC3 temperatures are approximately
as much as 150 to 170F higher than the corresponding temperatures
of the equilibrium phase diagram for this 0.1% C-5.0% Ni steel.
Results indicate that cast plate tends to resist tempering more
than either the rolled plate or weld metal, Additionally, structures
formed at lower austenitizing temperatures temper more readily.
Although all three conditions tempered, the cast plate retained a
steep hardness and microstructural gradient through the HAZ and

consequently is probably more susceptible to a metallurgical notch

effect,
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I. INTRODUCTION

HY-130 is a low carbon, high yield strength (130 ksi) alloy
steel with a tempered martensitic structure in the as-delivered
condition. It is characterized by its combination of good strength
and fracture toughness. The HY-130 steel weldment system evolved
from a statistical study conducted by the U,S., Steel Corporation
and sponsored by the U.S. Navy. A weldment system is defined as
the base metal, weld filler metal, and the weld heat affected zone

(HAZ). HY=130 is intended to be a successor to HY-80, the steel

presently used by the U.S. Navy for submarine and deep submergence
vehicle pressure hulls. The incentive to utilize HY-130 versus
HY-80 is the increased strength to weight ratio. 1

HY-130 is currently available in either cast or wrought product

forms. Although suppliers and manufacturing processes for wrought
plate have been identified and certified, this is not the case for
cast plate, Cast plate has been manufactured by the ESCO Corporation
using the argon-oxygen decarburization (AOD) process. Test plates
provided to the U.S, Navy have passed mechanical testing, but some !
have failed the explosion bulge test (EBT). This test is designed

to evaluate the toughness of large plates in the as-welded condition.

The fracture fnitiation in these EBT failures has been in the weld

HAZ, The effect of welding on the microstructure (and ultimately :

on the mechanical properties) is extremely complicated in nature,
and not throughly understood. Each weld pass results in a welding

thermal cyr'e, with * =2 temperature at any given location dependent

R .




upon the distance from the weld bead and the welding parameters. In "
multi-pass welding, the HAZ may undergo complex heat treatment having |
experienced repeated thermal cycles. Any pass, however, can “erase"
the effects of all previous weld passes if it austenitizes that region.
Welding of HY-130 steel, with its high hardenability, tends to pro-
duce martensitic structures. Any tempering that occurs due to subse~
quent passes will reduce the hardness of the as-welded condition,
and consequently improve toughness.
Brucker [Ref. 1] reported that the failure of the cast plates in
the EBT was not due to an inherent weakness of the plate or manufactur-
ing process, but rather due to the particular welding sequence used.
The plates that passed the EBT were welded using a temper bead sequence !
on both sides. Figure 1 illustrates a temper bead sequence on the
top surface, and a straight bead sequence on the bottom. Brucker pro-
posed that a subsequent weld bead tempers previous beads. In both
techniques, the last pass is untempered, but in the temper bead sequence
it occurs in the weld metal. Since the weld metal generally has lower
carbon content than the base plate, an untempered region will not be
as hard as the untempered base metal. Thus, in the temper bead sequence
the change in hardness in the base metal HAZ is not as steep as in the
straight bead sequence. Brucker further hypothesized that a metal-
lurgical notch (a region where a steep strength gradient exists) was
created by the straight bead sequence, and that it became the fracture
initiation point,
Since the failure of the plate is being ultimately attributed to

insufficient tempering, an attempt was made to correlate the amount

10




of tempering from subsequent weld passes to a tempering parameter, P.

Hollomon and Jaffe [Ref. 2] pioneered the work in this area, They

developed the following relationship:

P=T(c + log t) eqn |
where P = tempering parameter

T = tempering temperature (absolute)

¢ = constant dependant upon the steel

t = tempering time

Further work by Grange and Baughman [Ref. 3] found that a value
for the constant, ¢, of 18 (for time in hours) correlated well for a
wide range of carbon (.2 to .85%) and alloy (total alloy content less
than 5%) steels. Additionally, they reported that the exact value
of the constant was not critical as values in the range 16 to 20
served almost equally as well,

Equation I applies to tempering at a constant temperature.
Hollomon and Jaffe (Ref, 2), however, also proposed a method for
determining the tempering parameter when the temperature during
tempering varies, as in welding. This equation follows:

P = Tlog (at10¢ + 10°5/T) eqn 11
where at = time spent at tempering temperature
PS = value of the tempering parameter at
the start of tempering
with other quantities as previously defined

In the case where the initial parameter, Pg, value is zero, it

can be seen that aquation [l approaches equation I, because the

second term becomes negligible with respect to the first. 3y analyz-

ing the work from a weld instrumented with thermocouples wnich was

1




performed by Brucker (Ref, 1), Sorek [Ref. 4] reported the tempering

parameter for the temper bead sequence. Since the last pass of the

straight bead sequence receives no tempering, its tempering parameter
value is zero, The purpose of this study, then, is four-fold:

1. To determine the effect of austenitizing temperature during
rapid heating on the HAZ microstructure,

2, to determine the effect of tempering on the severity of the
metallurgical notch observed by Brucker,

3. to determine the validity of using a tempering parametier in
simulating and analyzing an as-welded structure, and,

4, to develop a laboratory procedure to simulate the micro-
structures present at the various locations in the weld HAZ.

The fourth point is considered important as correlations between
properties and microstructures of the HAZ are very difficult to
establish due to the steep microstructural gradient that exists in
the HAZ, By producing synthetic HAZ structures in bulk specimens,

this microstructure/property correlation is made possible.

12
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II. MATERIAL AND PROCEDURE

Table I provides the required chemical composition of the cast and
rolled plate and weld metal according to MIL-S-140s. The actual com-
position of the cast and rolled material used in this work is listed

in Table II. Mo chemical analysis of the as-deposited weld metal was

available., However, since it was procured for shipyard work under
the specified MIL standard, it is highly probable that the actual
composition is extremely close to the specified values. The material
used in the experimental work was provided by the Mare Island Naval
Shipyard (MINS). The rolled plate (Plate 050310, U.S. Steel Heat
5P4184) and weld metal are the same as that used in Brucker's instru-
mented weld studies, The cast material is from Plate 6, ESCO Heat
No. 36615; this plate passed the EBT,

A test matrix was designed to simulate various locations within
a HAZ and various weld bead sequencing techniques. Table IIl provides
the austenitizing temperatures and the experimental tempering temper-
atures, and times, and their resulting tempering parameter, P, Six
groups of seven specimens from each material were heated to six
different austenitizing temperatures. The austenitizing temperatures
were chosen to span the intercritical temperatures of HY-130. The
value of the tempering parameter ranges from zero to a value equal
to that for the normal heat treatment cycle for HY-130. The specimens
left in the as-quenched condition make up the temper group with a

tempering parameter value of zero, Each of the other six groups

received the different temper treatments listed in Table [II. This
13




study uses a value of 14,44 (time in seconds) for the constant, c,
which is equivalent to the constant used by Grange and Baughman
(18 for time in hours), and temperature in degrees Kelvin.

Test specimens were cut from the base plate or weld metal as
1/2-inch by 1/2-inch by 3-inch blanks. Figure 2 provides a schema-
tic showing the location where the weld metal and wrought plate blanks
were cut from the welded plate. B8lanks from the cast plate were cut
with no specified orientation. These blanks then were cut into 1/2-
inch cubes. This specimen cross-section was selected as it is large
enough to produce mechanical test specimens required by future studies.
Every specimen was austenitized individually through the use of a
5 KW induction heater. Various other methods of heating the samples
were tried (e.g., salt bath and furnace), but were unacceptable because
the peak austenitizing temperature was not obtained quickly enough.

In trying to duplicate the thermal cycle of welding, a method of
heating that achieved peak temperature in a few seconds was required.
This was obtained in all but the highest austenitizing temperature
with the induction heater. The peak temperature was obtained in a
maximum of about forty seconds in any event., Figures 3, 4, and 5
show typical curves for the 2000, 1400, and 1340 °F austenitizing
cycles respectively, The decrease in the heating rate in the 2000
°F cycle is clearly evident. Upon achieving the peak temperature,
power to the induction heater was shut off, and the test sample was

forced cooled in a jet of air provided by a small blower. Cooling

the specimen in the jet of air closely approximated the cooling
rate displayed by the instrumented weld. Chromel-alumel thermo-

couples were welded to the surface of each test cube to monitar the




temperature during the entire process. It is felt that the temper-
ature could be determined within ¥ 10 °F during the austenitizing
process. A chart recorder was used so that a permanent record of
the austenitizing process could be maintained.

After all the samples were austenitized, they were separated
into groups and tempered according to the schedule presented in
Table III. Side-by-side furnaces were used, one set at a much
higher temperature than the tempering temperature. The test cubes
were placed in the furnace set at the higher temperature. This
created a greater temperature differential and allowed the temper-
ing temperature to be reached much more quickly. During this process,
the temperature of the specimens was monitored by a digital readout
pyrometer., As the tempering temperature was approached, the temper
group was moved from the hotter furnace to the tempering furnace
and held for the specified time. Tempering was stopped by a water
quench,

At the conclusion of the tempering sequence, Rockwell C hardness
readings were taken on the face of the cubes where the thermo-
couple was attached. At least ten hardness readings were taken for
each specimen, After throwing out the high and low values, the
mean and standard deviation were calculated, I[f the standard
deviation was greater than one point Rockwell C, an additional ten
readings were taken, with the same computational technique utilized
to obtain a hardness value., Then standard metallographic tech-
niques were employed with a 2% nital etch to prepare the specimens

for optical microscopy. All microscopy was performed on central,
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external surfaces of the cubes after removing oxidation and decar-
burization. Additionally, two specimens austenitized to 1400 °F
were optically examined in the central region of the cube to

determine if a temperature gradient existed during the induction

heating.




ITI. RESULTS AND DISCUSSION

Optical microscopy of the sectioned specimens austenitized at
1400 °F revea®od no microstructural gradient. This implies that
a nearly uniform temperature existed during the austenitizing pro-
cess. Figure 6 exhibits the microstructure at the center of the
specimen, No microstructural changes through the thickness were
observed, and the microstructure is similar to the surface micro-
structure shown in Figure 10,

Surface optical microscopy performed on the other specimens
revealed that they did not austenitize at the equilibrium Al tem-
perature reported by Zannis [Ref. 5] for HY-130, Examination of
Figures 7 through 12 shows this to be the case. Figure 7 is the
microstructure of the as-received material. There is no significant
change in the microstructure until an austenitizing temperature of
1400 °F is reached, as shown in Figure 10. This analysis is based
on the relative amount of the differing types of martensite (i.e.,
the tempered martensite of the as-received material and the marten-
site formed upon cooling from the austenitizing temperatures). The
newly formed martensite corresponds to the lighter shaded area of
the photographs while the tempered martensite of the as-received
material appears darker,

The microstructure of the specimens austenitized to the same
temperature display similar structures at 1400x, whether from weld,
cast, or wrought origin., At lower magnification, however, the
structures appear strikingly different. The rolled plate exhibits

17
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banding caused by localized segregation. The weld metal specimens {
show the HAZ's of different weld beads, and thus different thermal

histories are represented in each specimen, In the micrographs

for the 1500 °F group (Figure 11), the structure is almost entirely

new martensite, and in Figure 12 (austenitizing temperature of

2000 °F), the microstructure is composed entirely of the newly-

formed martensite. From this microstructural observation, it

appears that the equilibrium phase diagram Al and A3 temperatures

are shifted upward by approximately 150 °F in rapid heating. This

effect is shown schematically in Figures 13 and 14, The circles

on Figure 13 represent the different austenitizing temperatures of
text matrix,

As noted above, a change in the heating rate occurred in speci-

mens austenitized at 2000 °F. The same effect also was noticed in
the samples austenitized at 1500 and 1400 °F. This could be caused
by either of two reasons: the Curie temperature for HY-130 could
have been exceeded with resulting change in magnetic properties
causing a decrease in the heating rate; or, alternatively, this
could be an indication of reaching the ACl with the attendant phase
change consuming energy previously spent in heating the specimen.
This change occurs at approximately 1370 °F, A similar inflection
point in the heating curve was noted in attempts to austenitize
specimens in a resistance heated furnace. This occurred at approx-

imately 1360 °F. Thus, the inflection in the heating curve probably

is caused by the phase change that occurs above the Al temperature.
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Figures 3, 4, and 5 give further proof of the failure of the

specimens heated to 1340 °F, or lower, to be austenitized. The change

in slope of the 2000 and 1400 °F curves on cooling occurs due to the
exothermic transformation to martensite; this happens at approximately
720 °F. This characteristic is not displayed by the 1340 °F curve of
Figure 5.

Tables V, VI, and VII present the hardness of the various temper
groups, along with their standard deviations. This data also is pre-
sented graphically in Figures 15 through 21. One immediate observa-
tion is that the cast plate is, in general, harder than the corresponding
rolled plate or weld metal. The reason for this is that the cast plate
has a slightly higher carbon content (i.e., 0.12% as compared to 0.09%
for the rolled plate). Hence, one must take care to ensure that compo- t
sition variations, as well as processing variations of product forms
are considered when ascribing differences in material properties.

It also is interesting to note that the hardness data scatter is
much greater for the weld metal than either the cast or wrought plate.
This can be explained by the fact that the weld metal used in this
study was cut from a multi-pass weld. No attempt was made to limit
the 1/2-inch by 1/2-inch by 3-inch blanks to a single bead. Therefore,
each weld metal specimen contained zones of different thermal histories.
This variation in heat treatment shows up in the generally larger

standard deviations for the weld metal hardness readings.

Figures 22, 23, and 24 show a comparison of the two temper groups

that have the same tempering parameter value as that of the last four

passes of the instrumented weld., Referring to Table III, one can see

the difference between the two tempering schemes used to produce

19




equivalent values of the tempering parameter. The superimposed plots

of these two distinct temper groups show good agreement (especially
when one considers the scatter bands of the data). The two temper
groups that received tempering equivalent to a parameter value of
13,000 did not show as much agreement. It is believed that in the
higher temperature group, the time allowed was too short to be sure
that this temperature was achieved throughout the specimens,

One further point about the tempering parameter should be dis-
cussed, Grange and ¥aughman [Ref, 3] reported a value for the steel
constant valid te¥ a range of steels. HY-130 is slightly outside
this range. It is felt, however, that since they also reported that
the value of the constant was not too critical, provided it fell
within the range of 16 to 20, the use of a constant equivalent to
theirs is justified.

A1l of the curves of hardness versus austenitizing temperature
have the same general shape. As is to be expected, the specimens
that were austenitized at the highest temperature, implying a com-
plete transformation to the new martensite, were relatively hard.
However, the hardness stays fairly constant until the rapid heating
ACl1 temperature is reached. This can be explained with the help of
Figure 25,

This Figure shows the size of the Rockwell C indentor in rela-
tion to the microstructure austenitized at 1500 °F. 1[It is clearly
evident that the indentor is averaging the hardness of the newly-
formed martensite, and the original tempered martensite present in

this particular microstructure, According to the lever rule princi-

ple, the first austenite to be formed (as the temperature exceeds

20




the AC1) contains a higher carbon content than the bulk carbon con-
tent, Therefore, the resulting martensite should be harder. As the
austenitizing temperature increases, the amount of austenite increases;
but, as the austenitizing temperature increases, the carbon content of
the austenite decreases until the AC3 is reached, and the austenite
will contain nominally 0.1% carbon., The hardness of the resulting

new martensite should decrease as the austenitizing temperature
increases between the AC1 and AC3. Thus, the indentor is, in actual-
ity, measuring an average hardness of the as-received tempered
martensite and the newly-formed martensite. Consequently, despite

the fact that as the austenitizing temperature increases, the rela-
tive amount of new, untempered martensite also increases, the hard-
ness remains constant, At 1200 and 1270 °F, the temperature is not
high enough, nor held long enough, to have any significant effect

on the hardness of the original tempered martensite, Around 1340 °F,
the hardness drops to a minimum due to overtempering of the as-received
martensite without the formation of any new martensite.

Table VIII displays the effect of different tempers. The tabula-
tion of the difference in hardness between temper Group J (minimum
temper) and Group K (instrumented weld temper) is inconclusive due
to the scatter of the data.

For temper Groups J and 0 (maximum temper), two interesting trends
are readily apparent, First it appears that the cast plate resists
tempering more than either the rolled plate or weld metal. This is
evidenced by the smaller change in hardness between the two temper

groups for the cast plate. In other words, for the same tempering

21




conditions, the rolled plate and weld metal will temper more than
the cast plate (as measured by a decrease in the hardness). Second,
that the structures formed by intercritical austenitizing (between
the AC! and AC3) temper more easily than those formed by the higher
austenitizing temperatures,

Similar results were reported for HY-80 by Kellock, Sollars,
and Smith [Ref. 6]. This effect is shown graphically in Figures
26 and 27, The important point to note from these two curves is
that although both the cast and rolled plate undergo tempering,
the hardness gradient for the cast plate is much steeper than that
of the rolled plate after an equal amount of tempering. This implies
that even with the temper bead sequence, the cast plate will be more
susceptible to the metallurgical notch effect.

Again, it is possible that the differences noted between the cast
and rolled plates are due to the composition differences rather than
to the difference in processing. Additional testing of more heats of
HY-130 is required to separate the effects of processing from compo-

sition,

© acasrid 4




IV. CONCLUSIONS

Based upon the experimental observations and results, the
following conclusions are made:

1. The rapid heating phase diagram for HY-130 has Al and A3
temperatures of approximately 1350 °F and 1550 °F respectively.

2, The cast plate was harder, in general, due to its higher
carbon content,

3. The hardness data scatter, as measured by the standard
deviation, is much greater for the weld metal than for either the
wrought or cast plate. This is due to the inhomogeneity of the as-
received material,

4, The use of a tempering parameter is a valid approach to the
simulation of weld HAZ's,

5. The cast plate is more resistant to tempering than the rolled
plate or weld metal,

6. The martensite formed after heating to the lower austenitiz-
ing temperatures tempers more readily than that formed by the higher
austenitizing temperatures. This is believed to be due to the nigher
carbon content of the martensite formed from austenite in the inter-
critical temperature range. This is the primary reason for the
change in the hardness gradient effected by tempering.

7. Although tempering does occur in the cast plate, its nardness
gradient through the HAZ still will be relatively steep in comparison
to the rolled plate. Thus, it is more susceptible to the metallur-
gical notch effect, This may be due to either processing differences

or composition differences,
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V. RECOMMENDATIONS

The following recommendations are made:

1. Before the HAZ behavior of cast and wrought HY-130 can be
compared, more data on the heat-to-heat variations of HAZ properties
needs to be developed,

2. Since the carbon content of the martensite formed from inter-
critical austenite will be higher than the average carbon content, it
is possible that twinned rather than dislocation martensite may form
in this region of the HAZ. This deserves further study.

3. The higher carbon content of the intercritical austenite also
may result in some retained austenite in these regions of the HAZ.
Additional study is needed.

4, The weld simulation treatment process should be used %o
evaluate the toughness and SCC resistance of these complex micro-
structures,

5. Further studies should be conducted to determine a more exact
value of the AC1 and AC3 temperatures for HY-130 under rapid heating

conditions,
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Figure 6. Microstructure at center 9f snecimen

aussanitized at 1400°¢
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Figure 7. Microstructure of as-received material
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Figure 8. As-quenched microstructure of material

austenitized at 1279°%¢
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Figure 9. As-quenched microstructure of material

austenitized at 1340°F
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Figure 10. As-quenched microstructure of material

austenitized at 1400°F
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As-quenched microstructure of material

austenitized at 1500°F
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Figure 12. As-quenched microstructure of material

austenitized at 2000°F
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Darker Regions are the

Untempered As-received Tempered

Martensite Martensite

Austenitized at 1500°F 56

Fiqure 25. Rockwell C indentor
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