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CH.APTER I

INTRODUCTION

Since the introduction of computing systems three decades ago,

software development has grown increasingly in importance and complex-

ity. Today the expense incurred by users in producing and maintaining

programs exceeds ten billion dollars (Phister, 1976) and constitutes a

large fraction of some corporate budgets (Dorn, 1978). Joint revenues

of independent software suppliers exceeds one billion dollars, while

revenues of computer manufacturers is approximately twice that (Inter-

national Data Corporation, 1978). The increases in software-related

eipense far outstrip the growth in hardware costs. While the labor-

intensive nature of software production has contributed to its increas-

ing cost, competitive pressure and increased manufacturing automation

have reduced the cost of hardware elements. It is for this and other

reasons that Boehm (1973) predicted that software costs will constitute

90 percent of total system costs by 1985.

As user needs become satisfied, software systems are designed

to increasingly demanding specifications. This rapid growth in the

number and complexity of desired systems demands equivalent increases

in the number of qualified software specialists. More importantly,

it dictates a maturity in software development methodology. The current

state of "software engineering" does not exhibit this degree of matur-

ity, nor does any significant proportion of software workers employ IT

1
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those tools and techniques which most influence the quality of software

systems.

The Software Problem

Researchers and practitioners in the information sciences refer

to the "software problem" to indicate the special characteristics of

software as an artifact, and the ways in which those characteristics

affect its production. Wegner (1978) enumerated the special proper-

ties of software that distinguish the process of its manufacture from

that of other engineering projects:

Large software products generally support a greater

variety of functions than conventionally engineered

goods.

* There is an enormous variety of correct implementations

for a large software system, from which one must be
"selected."

" A large software system must be constructed so as to

mitigate the cost and difficulty of its inevitable

modification.

" Software development milestones are difficult to estab-

lish, hence project progress is hard to assess.

Since software partly resides in the realm of ideas, the com-

plexity of its implementation is seldom as obvious as that of physical

artifacts. Moreover, there is some evidence that large software sys-

tems exhibit properties substantially different fram small software

systemsp not just differences in scale (Boehm, McClean, & Urfrig,

1975). Because of this, prototyping of software systems does not

generate as much useful information as a physical model which may be

L...



developed preceding the construction of physical goods.

Society's appreciation of the software problem has been con-

stantly diluted by exposure to advances in the total computing system.

That is, increasing complexity in large software systems has been

partially masked by the apparent ease with which hardware components

have been expanded in the last two decades. In attempting to utilize

increased capacities for information processing, a natural demand has

been created for that complementary good which controls the execution

of hardware elements. A large percentage of the gains in hardware,

however, have come about with less additional complexity than would

be necessary to increase software system size. Reductions in cost

and increases in hardware have been substantially effected by methods

which are only linearly more complex than older ones. These methods

include miniturization of components, and increases in resource volume

and density without an associated increase in interface complexity.

Conversely, advances and improvements in software have come about pri-

marily through the layering of capability after capability, which, at

each step, gently increases system complexity.

Management of software production has been hindered by the

fact that the software development process generates inherently less

visible evidence of progress than other development projects. Walker

(1978) attributed this to the fact that the primary activity in soft-

ware development is that of communication, and that without filtering

mechanisms a substantial amount of noise is injected in the messages

which become components of a software system. Visibility of user

. . . . . ..,. . . .i
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needs is also often obscured. Users normally increase their expecta-

tion when they are able to state their needs more explicitly in terms

of current system service. These needs may not be closely examined;

because of its intangibility, however, software is expected to be suf-

ficiently malleable to accommodate them. Hence, maintenance is not

always subjected to the same degree of feasibility analysis as would

accompany a modification request of a physical good.

Modern Development Methods

It is the current view of researchers in software engineering

that aspects of the "software problem" can be minimized through the

use of disciplined methods of specification, design, and coding, set

within a management framework that permits the planning, measurement,

and control of development activities. The most important factor

influencing development and maintenance research has been the redis-

covery of the life-cycle metaphor applicable to software systems

(Wegner, 1978; Zeklowitz, 1978). The life-cycle approach to software

development recognizes the various stages through which the software

system can be viewed as progressing. With each phase of a software

system's life is associated a set of costs and benefits incurred in

its development, use, and maintenance.

Early software development efforts focused on the reduction of

development costs and duration. Experience in the last decade with

systems that partially or completely failed to meet specifications and

budgetary constraints forced an expansion of this myopic view. A

series of regimens has been proposed that promote the traceability of
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requirements through the succession of representations of the system,

while increasing one's ability to understand a software system's struc-

ture and function. These modern methodologies include variants of

structured programming (Dahl, Dijkstra, & Hoare, 1972), structured

design (Stevens, Myers, & Constantine, 1974), and structured analysis

(Ross & Schoman, 1977). Enlightened project management can exploit

these methodologies while instituting measurement and validation

techniques such as peer review and formal testing, as well as the

normal management reporting methods.

Software development can be viewed as a process that translates

specifications into a working system through a series of transforma-

tions that provide intermediate representations. In making opera-

tional the system components that satisfy the general set of func-

tional, economic, and performance constraints, a succession of deci-

sions has to be budgeted among development team participants.

Validation is necessary to assess the effects of those deci-

sions before the system becomes too costly to restructure. Prior to

the development of a system code this validation normally takes the

form of reviews in which users, developers, and project managers

cooperate to determine conformance to the project's plans and goals.

The most expensive and time-consuming form of validation, testing,

currently and in the past, has occurred after the design has been

translated into programming language. Alberts (1976) has estimated

that up to 50 percent of development cost is incurred durihg the test-

ing of software system elements, whereas up to 90 percent of life-cycle

I



6
costs involve maintenance to correct errors and rewrite system codes to

meet new requirements.

The Role of Validation

Validation Research Areas

Areas for research in system validation may be categorized in

a variety of ways, including: by development phase addressed, manual

methods vs. automated tools, or the degree to which the results of

other disciplines are employed. Another useful dichotomy is suggested

by the alternative views of software as a static document versus soft-

ware as a dynamic system. Hence the validation of system code can take!

two general forms:

* System verification which attempts to prove the correct-

ness of the implementation by formal methods, and

* System testing, which involves the application of test

data sets that exercise a software system in a manner

representative of future and current use.

One important area in testing research is software reliability

theory, in which models are proposed that serve to approximate or pre-

dict the frequency and composition of faults that may occur during sys-

Item operation. Because testing is costly, reliability theory gives

one a means of maximizing expected utility by indicating the level of

testing necessary to trade off optimally the cost of further quality

assurance measures with the cost of improper system execution. The

tradeoffs differ from system to system and depend, for example, upon

!whether a system's errors will result in financial discomfort or loss

of human life. An excellent overview of software reliability theory

:!is given by Schick and Wolverton (1978).

, -- ' . .. ...... I 
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Early Validation

'Early validation" refers to software development practices

that attempt to enhance the fidelity of translation from problem

statement to software system design. Proponents of early validation

are justified in believing that software system reliability must be

maintained through the phases of system construction that precede the

programming stage.

Static analysis methods involve the examination of documents

representing various aspects of the system. Analysis of requirements

statements, formal specifications, and design documents is normally

static because these representations are seldom machine readable and

almost never executable.

The importance of requirements analysis has become a major

theme in the literature of software engineering for large systems

(Bell & Thayer, 1976; Ross, 1977a). Requirements enumerate the needs

of the system's client(s) by communicating a desire for function within

scme performance context. Analysis of requirements implies checking

for the desired properties such as consistency, completeness, lack of

biguity, and feasibility.

Formal automated systems for describing and analyzing require-

ment sets are under development. Systems currently exist which auto-

mate many of the informal checks for properties desirable in specifica-

tions. The ISDOS system (Teichroew & Hershey, 1977) and RVS (Davis &

Vick, 1977), for example, check to ensure the uniformity of- data defi-

iition and use and consistency of views of module interface, while

roviding reports facilitating manual validation of system descriptions.
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A variety of language forms and media are available for design

representation (Rossj"1977b; Caine & Kent, 1975; Stay, 1976). Like

requirements analyses, the validation of design documentation is

normally informal and restricted to review and discussion among the

development team. Such reviews include the tracing of requirements

to design, analysis of control logic, critical comparisons of algo-

rithms, and other analyses to verify consistency, necessity, suffi-

ciency, and correctness. Automated analysis techniques are currently

limited to tools that check interface consistency or simulate struc-

tured models of system execution (Ramamoorthy & Ho, 1975).

Validation by Symbolic
Verif ication

Program cerification refers to the use of mathematical proof

echniques to validate program correctness. A program proof requires

a goal proposition that indicates the relationships that should hold

between program variables at the conclusion of the program's execution.

This goal proposition is normally termed an output asserticn; assump-

tions regarding system states prior to execution (e.g., implied rela-

tionships between subroutine parameters) are reflected by input asser-

t ion.s.

A program is (totally) correct if it terminates for all valid

input, in a state for which the output assertion holds. A proof of

total correctness must treat program statements as theorems that relate

statement preconditions to postconditions. A case-by-case analysis is

usually necessary to treat the proof subsequences resulting from deci-

sion points in the program. These notions are equally important in

4'I
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top-down verification (constructive proof validating output assertion

through a series of implications originating at the input assertion)

and bottom-up verification (showing that the output assertion is true

for an input domain, part of which conforms to input assertions).

On the validation continuum between program verification and

test case application, reside the techniques associated with symbolic

evaluation. Symbolic execution of a program can be performed in the

same way as actual execution: the state of program progress is re-

corded by the values of variables and current instruction. The differ-

ence in symbolic and actual execution is the form of value assigned to

variables and the evaluation of conditions dictating the execution

path. The symbolic evaluation of a path is carried out by evaluating

the sequence of, say, assignment statements occurring in the path.

Each assignment statement provides a new value for the target variable

(left-hand side) through substitution of the current symbolic values

for each variable in the source expression (right-hand side).

The branching conditions that control the selection of execu-

tion paths (say, if an IF or DO-WHILE) can be symbolically evaluated

to form symbolic predicates. The sequence of symbolic predicates as-

sociated with a path can be generated by assuming a truth value for

each decision point during program execution. This symbolic system of

predicates for a path can be used to assist the tester in constructing

test data. If the system of predicates for a path is unsolvable, then

the path is infeasible; otherwise the solution describes the subset of

the input domain (uninitialized variables and system parameters) that

invokes execution of that path.
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Validation of System Testing

Testing involves the application of sets of data in a con-

trolled environment to assess the reliability of a software system and

identify errors, if any, in the system representation that may be cor-

rected. Testing goals usually include the determination of whether

the system meets functional and performance specifications associated

with user requirements. Requirements-oriented goals are not normally

considered a sufficient set of criteria for system testing, for they

are seldom sufficiently detailed to indicate the test data that prove

conformance. Test criteria of a larger scope are also necessary to

insure that the system behaves correctly under conditions not antici-

pated by system users.

Researchers in testing theory have attempted to identify the

characteristics of testing criteria that could identify test data whose

application could insure system reliability to the same degree pro-

vided by formal proofs of correctness (Goodenough & Gerhart, 1975).

These system validation criteria normally arise from one of two

sources$:

s A set of specifications that detail conditions for success

as dictated by the requirements document.

• Criteria composed by analyzing program structure to dis-

cover conditions that lead to successful program execution.

Data generators exist to produce test data subject to each of these

two approaches (Stucki, 1977).

Consider a test data set, S, generated to affirm conformance

to specifications, and test data set P, generated by analyzing program

ii
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structure. A mechanism for exploiting these two forms of test data

generation may analyze the union of the two data sets, S and P, to

reduce their number by eliminating redundant data while providing

useful information about test data inconsistency and the manner in

which each of the two test data sets was incomplete.

A related problem occurs when testing for regression errors.

Regression errors are those errors introduced into the system during

system modification. Brooks (1972) provides evidence that a substan-

tial percentage of maintenance activities introduce errors that did

not previously exist. In.retesting the system after maintenance, it

is theoretically sufficient to apply a limited set of test data:

those test data that reaffirm the correctness of the modified compo-

nents and those system elements affected by the modified elements.

The Role of Errors in Software Research

Computer-related studies may be loosely dichotomized into

those subdisciplines dealing with function and those concerned with

fidelity and form. In the former class can be included the application

areas (operations research, management information systems), the algo-

rithmic areas (numerical analysis, time and space efficiency analysis),

and the special systems areas (operating systems, data base management)

Fields of study in the second category include those disciplines that

recognize and contend with the difficulty of producing automata that

conform to any desired function; in short, they share a view of soft-

ware that recognizes the error as a primitive component of the develop-

ment process. Because the difficulties of proper design and imple-

S -. V -
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mentation are apparently application-independent, each approach to

these difficulties exhibits a characteristic generality even though

each differs widely in method. The following taxonomy is proposed to

describe these approaches:

Error Control: the application of numerical analysis to

bound the inaccuracy of finite machines.

Error Prevention Methodologies: development procedures

like structured analysis, design, and programming that

prescribe means with which to facilitate the translation

of problem statement to coded solution.

Error Prevention Tools: programming language and support

system refinements that reduce the complexity of imple-

mentat ion.

* Error Detection Methodologies: systematized debugging

procedures like desk-checking and structured walkthroughs

that increase the likelihood of finding misconstructions.

* Error Detection Tools: software tools like cross-

referencers, static analyzers, and dumps that point

out syntactic and procedural anomalies.

* Fault-Tolerance: the study and design of hardware or

software systems that recover from failure with minimum

damage.

* Proof-of-Correctness: the study and design of methods

for constructively assessing the conformance of a proce-

dure to its specifications.

* Failure-Inducing Methods: test data selection ethodologies

like path-based and specification-driven approaches in which

sets of program inputs are chosen to "provoke" errors to

evidence themselves.



Failure Behavior Modeling: the branch of Software Relia-

bility Theory in which the phenomenon of program failure

is viewed as stochastic and conforming, in the aggregate,

to specified distributions.

All of these approaches are associated with fields of study and vigor-

ously coexist as complementary solutions to problems of anticipating,

recognizing, explaining, predicting, and correcting for program mal-

function.

A Comparison of Software Reliability Theory

and Modern Testing Theory

The areas of research lis'.d in the previous section have, in

general, evolved from a common 1-se of thought. Each of the disci-

plines associated with these ap r .bes iaas benefited from concepts

and advances offered by anotner. However, the areas of Modern Testing

Theory (Failure-Induced Mthoz) , and Software Reliability Theory

(Failure Behavior Modeling) appear as disjoint a pair as any two

research areas in this collection.

It can be surmised that the differences evident between these

approaches have their roots in the training and motivations of the

relatively disparate research groups that publish in each area.

Modern testing theorists and practitioners have invariably received

training in the computer sciences, view programs as manifestations

with mathematical structure, and consider the most effective and

efficient means of "flushing out" what errors remain. By comparison,

the majority of Software Reliability Theorists have a background in

statistics, view programs as stochastic event generators, and concern

-



themselves with modeling the sources of nondeterminism and probability

distributions that describe their behavior. Table 1 exhibits a synop-

sis of the methodological and philosophical differences separating

these disciplines.

An Overview of this Research

In this study we report the results of an experiment conducted

to determine the many influences which affect the process of software

testing. To motivate aspects of testing methodology chosen for experi-

mental analysis, a review of the literature in Testing Theory and

Software Reliability The6ry is given in Chapters II and III. The ma-

terial in Chapter II outlines the testing tools and approaches that

have been proposed, employed, and studied by researchers and practi-

tioners engaged in software validation. Chapter III reviews the most

important models proposed to describe the failure behavior of software

systems under test. Chapters IV and V describe an experiment designed

to investigate the claims and assumptions made in the literature. In

the final chapter we will report the significance of our findings and

suggest how they should affect the future choice of research avenues

in the field of software validation research.

- -. '!
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Table 1

A Comparison of Modern Testing and
Software Reliability Disciplines

Modern Testing Software Reliability

Theory Theory

Principal Finding errors Estimating
activity error content

View of Deterministic Probabilistic
errors

Eventual Assurance of Proper reliability
aim error elimination assessment

Published In relatively small In relatively large
successes software systems software systems

Typical disciplines Computer science Statistics
of investigators

Typical publication Theory and practice Models of softwareof test data Mode ofasortopics selection failure behavior

Principal publica-Prinile b -Software Engineering Literature
tion vehicle



CHAPTER II

THEORY TESTING AND PRACTICE

Introduction

A progiam P may, in theory, be proved correct in one of two

ways: by formal verification or exhaustive testing. P effectively

computes a function f by correctly mapping elements of f's input

donain D into the proper element of f's output range. Formal verifi-

cation normally involves a case analysis of the program P to prove

symbolically that the collection of partial functions composing f is

aithfully represented in the structure of the program. Altnough

research proceeds vigorously on program verification, there is little

hope that large or ccmplex programs will admit of proof in the near

.uture (Huang, 1975).

Exhaustive testing is also out of the question for all but

trivial programs, because even one 32-bit integer input requires the

application of 232 test cases (and inspection of results) to prove

program correctness. One obvious simplification in the test procedure

follows from the consideration of program structure.

Program execution is a matter of successive instructional in-

terpretation (as mirrored by a path through a program flowchart). A

substantial reduction in the size of the test data set is expected by

applying one test data set for each unique flow through the program.

16
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Figure 1 shows a sample flowchart associated with a program P, com-

posed of functional instructions Sl,...,S 6 and decision points D1 , D2,

and D3. The input domain I of this program may be partitioned into

subsets Ii,I2,.-,In where every input data point in Ij leads to the

same execution sequence of the functional instructions SilSi2,..;

that is, I is partitioned into subdomains, where each member of a sub-

domain leads to the same path through the flowchart.

A more compact form of representation is useful for demonstrat-

ing path analysis. The control graph (Figure 2) represents a program's

uninterrupted sequence of functional statements (termed segments) as

nodes, -and alternatives for execution flow as arcs. The control graph

arcs can be labeled by the conditions that must be satisfied for an

arc to be selected, as the ci and Li represent the true-valued and

false-valued outcomes of the decision corresponding to D. in the flow-1

chart.

Testing involves the selection of a subset T of the input

domain, the application of each data point t in T to the program and

the determination that the program output P(t) is an acceptable result,

i.e., that P(t) is an effective computation of f(t). In a seminal

paper, Goodenough and Gerhart (1975) attempted to define the conditions

under which testing is the practical equivalent of a formal correctness

roof. Howden (1976) elucidated these results in the following way:

onsider a test strategy H, associated with a test criterion CH . H is

a procedure for selecting a subset T of a program's input domain so

,that the t e T individually or collectively satisfy the test criterion

SH'

- . -- , , ,-- . . ..... ,.4.. .
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Figure 1. A program flowchart



191

C1
C2

73 S2

S3

C 2 2

5C

C3  '

Figure 2. A program control graph
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T* is a reliable test set if the successful execution of every

t C T implies the correctness of P. Because no strategy exists that

can generate T* for an arbitrary program (this is undecidable), work

proceeds on identifying particular classes of programs and program

errors for which some test criterion is reliable (Howden, 1976;

Gerhart & Yelowitz, 1976). Howden (1976) identified two general

classes of program error by indicating the reliability of path-testing

in disccvery of each error class. A path-testing strategy is a proce-

dure for selecting one data point from each subset D. of the input3

domain, that is, the application of one test case for each unique path

through the program. Such a strategy is reliable for discovering

computation errors, in which a subject program P has an

identical structure to the correct program P* (same paths,

same partitions Dn) but always yields a differing result

for some path;

* domain and subcase errors in which both a correct program

P have the same collection of paths, b)ut a differing par-

titioning of the input domain associated with the paths,

and a differing selection of paths, which yields differ-

ing results (Howden, 1976).

The results from the theory of testing have little practical applica-

bility, but do provide bounds on the kinds of errors that can be dis-

covered (at all) by testing criteria less comprehensive than path

testing. Like the problem classes proposed by computability theorists,

modern testing theorists have attempted to prove the inherent diffi-

culty of various kinds of errors.
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Testing Approaches and Results

Structural Testing

The identification of paths is an integral part of every formal

testing procedure. Prior to the realization that formal testing was

worth its cost, programers constructed test data sets in hopes of

discovering errors, thus ensuring proper program execution for those

data deemed representative of real system use. The obvious opportunity

for misjudgment and resulting proliferation of errors "in the field"

has led many organizations to formalize testing by creating test data

that might affirm conformance to the explicit functional and perform-

ance requirements of the system under test. In a study of six large

programs, Howden (1978a) found that functional testing uncovered more

errors than test criteria based solely upon program structure.

Functional testing is effective but can fail to detect many

errors that may be detected by more methodological approaches

(Ramamoorthy & Ho, 1975). Structural testing provides a complementary

method of program validation by approaching the problem by analysis of

the program. Path testing is often impossible because the number of

paths through a program can be very large. In fact, if a cycle with

no bound on iteration exists within a program, the number of paths may

be unbounded. There are three common test criteria that attempt to

exercise relevant aspects of a program without resorting to full path

testing: segment testing, branch testing, and selective path testing.

Each testing approach attempts to identify a set of program paths whose

successful execution will increase the confidence in program correct-

ness.

- . 1- -. -- - --.-..
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Segment testing involves the construction of test cases to

ensure that every Etatement in the program is executed at least once.

If a program statement is seriously misspecified, segment testing may

identify a program error irrespective of the execution path in which

the erroneous statement is included. Segment testing derives its name

from the concept of a segaent: a series of program instructions with

a consecutive execution sequence. A reduced control graph for a pro-

gram normally contains vertices associated with program segments. The

first statement in a segment is the object of one or more branching

instructions (designated by arcs). The last statement either leads

directly to a decisional statement or is a decisional statement (de-

pending upon the desire to implicitly or explicitly represent branching

statements in the control graph).

Figures 3 and 4 show an abstract program and control graph in

which vertices have been employed to represent segments of sequential

instructions. The paths (a,b,d,e,f,j) and (a,b,g,i,f,j) in graph G

provide a covering of the vertices of the control graph G and so

ensure the execution of every segment. An alternative testing strategy

involves the application of test data to exercise every decision branch

in a program, hence every edge in the control graph. The minimal

number of test cases required to ensure edge covering serves as an

upper bound on the number for vertex covering, for if every interseg-

ment branch is taken, every segment must be invoked. The path set

((a,b,d,e,f,j),(a,b,ge,f,j),(a,b,g, i,f,J),(a,b,d,e,f,b,g,i,f,J)) is

one edge covering for G.

------------ i
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Figure 3. Program f low cheat

-



24

a

SEGMENTS NODES

1,2 a

3,4 b

5 dd

6 e

7,8 f

9,10,11 9

12 e

13

Figure 4.* Reduced control graph G
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Reported results withi segment and branch testing effectiveness

have varied, depending upon the sophistication of testing procedures

that were replaced by these formal methods. In one aerospace applica-

tion, branch testing purportedly eliminated 90 percent of program

faults (Brown, 1975). In another study of development costs for a

command and control system, Alberts (1976) concluded that automated

tools employing branch testing caught 60-100 percent of all program

errors two to five months earlier than they would otherwise have been

detected. Very few results have been published indicating the effec-

tiveness of vertex covering. Fisber (1977) employed segment testing

(vertex-covering) as a retest criterion to select test cases to reapply

fter program modification. In a small study comparing a vertex-

covering test data set to an expanded edge-covering set, Brown and

Lipow (1975) found the latter much more representative of a variety

of assumptions regarding input data distributions. Segment testing

is, however, nearly always superior to intuition. For example, one

study of typical testing practice in a large software organization

revealed that on the average only one-third of all program statements

were being exercised by existing test data sets (Stucki, 1978).

Bounds on the Test Set Cardinality

It would seem that in some situations the tradeoffs between the

cost of testing and desired program reliability would lead one to opt

for a vertex covering approach. One factor in the choice of edge over

vertex covering test criteria is the additional resource required by

Ithe latter, depending upon the relative sizes of their minimal test

GI
ie'
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sets. A bound on the minimal size of a test set that provides edge

covering was inferred by McCabe (1976) in an article describing the

relationships between control graph structure and complexity. Because

of the importance of this article in describing the graph relationships

that hold for programs, a synopsis of the results follows.

A strongly connected (directed) graph is one in which any

vertex can be reached from any other by some path through the graph.

If an edge from the exit vertex (last program statement) to the entry

vertex (first program statement) is added to a control graph G as in

Figure 5, then G is strongly connected and a cycle (path from a vertex

to itself) exists from every node. A definition from graph theory

(Harary, 1972) specified that the cyclomatic number of a connected

graph, V(G) equals e - n + 1 here e is the number of edges and n is

the number of nodes. A resulting theorem (Berge, 1973) proved that

V(G) is equal to the maximum number of linearly independent circuits

in G. A set of linearly independent circuits of a graph can be com-

bined to form any path in a graph, and contains no circuit that can be

composed of any combination of the others. For any graph, there exist

many such sets of linearly independent circuits.

As an example, consider the augmented control graph Figure 5

IIw ith six vertices and nine (program) edges. When augmented with edge

10, the result specifies that there exist 10 - 6 + 1 = 5 linearly

independent circuits. Every path from a to f, when augmented with

edge 10, forms a circuit. By definition, each path can be represented

as a combination of any set of five linearly independent circuits,
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Independent Circuits
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Figure 5. Control graph G with cycles
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which form a basis for all circuits. Because the union of the edges

composing the five linearly independent circuits exhausts the graph

edge set, a maximum of five paths need to be used to cover the graph

edges, even if each of the five paths employs a different linear inde-

pendent circuit in its path description. Paige (1975) independently

derived this bound on the maximum number of paths necessary to provide

edge covering.

The cyclomatic number V(G) is only an upper bound on the mini-

mum number of paths necessary to test every program branch. If one

path can be composed of all V(G) independent cycles, then only one

test data point is necessary from edge covering.

Other Structural Tests

Researchers and practitioners generally employ branch testing

as a minimum measure of coverage (Brown & Lipow, 1975; Osterwell &

Fosdick, 1976; Miller, 1976). It is often the case, however, that a

larger set of test data is employed to exercise critical or interesting

paths or to exercise particular segments under a variety of conditions

to assess a program's reliability. For example, one test coverage

criterion in Mills (1971) and Ramamoorthy, Kim, and Chen (1975) is

called structured testing and has been shown to compare favorably to

other test data selection criteria (Howden, 1978). As an approximation

to full path-testing, structured testing dictates that all paths be

tested that require fewer than an arbitrary number of iterations of

any cycle. Variations in this strategy are often employed in cases

where applying this criterion would leave part of a module untested

ii



29

because of complicated interdependencies between an outer loop index

and inner loop bounds.

Another popular testing strategy requires test data that reside

at boundary points at the input values. Other special values may be

submitted to ensure that

* related data have distinct values

certain arithmetic expressions involve zero-valued

arguments

* nonnumeric inputs are submitted for each of the significant

values that they may assume.

Test Data Selection

The problem of test data selection for structural testing is by

no means solved upon the identification of the program paths to be

tested. In fact, the problem of generating test data to execute any

specified statement in a program is formally unsolvable. If a means

can be found to ascertain a finite bound on program cycles (arbitrary

bounds on loops), then a more reasonable problem results. The test

data selection problem can be viewed as the identification of a data

point x that invokes the execution of the path p(x) consisting of a

finite number of functional statements sequenced by implicit (next-

statement) and explicit (IF-THEN-ELSE, DO-WHILE) control structures.

A path is represented in a control grapa by a sequence of

ledges. Recall that these edges may be labeled with conditions that

serve as branch selectors when more than one edge emanates from a

vertex. These conditions parallel the conditions found in corresponding

program statements as the IF-THEN-ELSE, DO-WHILE, and CASE statement.
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The input domain I associated with path p can be defined by the con-

junction of these conditions. This conjunction represents a collection

iof predicates for which at least one desired test data point must

serve as a solution. In general, finding this point is also an un-

decidable problem, even if the conditions are merely inequalities.

Moreover, the conjoining of conditions into a path predicate is non-

trivial, as it requires considering the effects Pf changes in the

redicate arguments (free variables) made by assignment and other types

f statements within segments.

The problem of path selection (by segment-covering, branch-

covering, or other method) cannot in most instances be divorced from

the determination of input data generating a path. This is due to the

fact that abstract path selection based upon covering ignores the con-

ditions .hat must hold for a path to be exercised. Many programs have

a large number of infeasible paths whose path predicates evaluate to

alse. Howden (1978b) believed the presence of infeasible paths to be

the most serious problem in path selection. Moranda (1978), in ran-

Idomly exercising a numerical algorithm, found far fewer paths than

rwould be expected if each path were feasible and equiprobable. Many

!of the designers of test generation systems ignore the possibility of

linfeasible paths, preferring to iterate between path selection and

infeasibility determination until a covering is found (Miller, 1974N.

Pgmany articles on test data generation merely ignore the problem

i(Hoffman, 1976; Miller & Melton, 1975).

Path infeasibility determination is a natural consequence of

path predicate determination in test data generators. Test data

-T --. ~-. -
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generators can be roughly categorized by

* the degree to which they aid in path selection, and

* the degree to which they aid in path predicate evaluation.

RSVP, one of the earliest such systems, produced a branch-covering on

FORTRAN programs and partially evaluated the path predicate by folding

constant expressions and dropping obviously redundant path constraints

(Miller & Melton, 1975). The resulting series of inequalities (vir-

tually all FORTRAN predicates involve comparisons of numerical data)

is printed out for the user to solve. PET, a Program Evaluation Tool

developed by Stucki (1977), instruments a FORTRAN program with probes

that indicate segment and branch usage. A testing system at TRW Sys-

tems, Inc., aids in path selection and attempts to evaluate path predi-

cates composed of equalities by algebraic methods (Hoffman, 1972).

Hence it appears that the computing camunity is a number of years

away from developing systems that generate sets of nonredundant test

data that cover all feasible paths.

Symbolic Execution

ATTEST, a system codeveloped by Clarke (1978) exhibits the

most sophisticated approach to path selection and feasibility

determination. A user may select from a set of testing criteria,

including segment-covering, branch-covering, structured testing, and

full path selection. ATTEST employs a linear programming algorithm

to determine the minimum and maximum values for each loop in the path.

The traversal of the control graph that searches for paths is heuris-

tically driven and integrated with a "solver" routine that attempts to

-I
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evaluate path predicates as they are composed. The solver employs

linear programmLng methods on linear predicates and heuristic methods

for more complex conditions.

In operation ATrEST closely resembles many aspects of a

symbolic execution system. A symbolic execution system is usually

initiated at the root (first executable statement) of a program. A

set of input variables of indeterminate value is identified (these are

subroutine parameters, COM4ON variables, and the subjects cf input

statements). Every other program variable value is maintained as a

function of the input variables. Hence every decision point's condi-

tion can be reexpressed in terms of input variables. During an inter-

active session with a symbolic execution system, a user is asked to

specify which branch to take at each decision point. Each decisicn

branch adds one more decision condition to a set that, when conjoined,

specifies the path predicate, hence the input conditions that generate

a path to the particular state at which the symbolic execution is

stopped.

i EFFIGY, a symbolic execution system developed by King

(1976), the user may save state information so that he may back up to

an earlier decision point t. take a different path of execution. Siz-i-

lar systems are under development elsewhere (Howden, 1977; Bayer,

Elspas, & Levitt, 1975).

Data Flow Analysis

Although it falls outside the definition of test:L'ig, data flc .

analysis is a powerful validation method often integratd within zy.-
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tolic execution systems. Data flow analyses inv-lve the determination

of when program variables are referenced and defined within an execu-

tion sequence. Data flow analysis can be performed during path enum-

eration or symbolic execution by determining, for each analyzed execu-

tion sequence, whether variables are used prior to their definition

(assignment) or assigned a value and then not used. The identificatio.

of these and other data flow anomalies is the function of data flow

;analysis systems. Both the DAVE and ATTEST systems referenced above

incorporate data flow analyses as an option during path generation.

Software Error Classes

A number of researchers have attempted to categorize program

error types. The most extensive study of this kind vas conducted by

'TRW Systems, Inc. (Thayer, Lipow, & Nelson, 1976), and included an

analysis of error reports collected during the development of four

large software systems. A great number of automated analysis tools

was brought to bear on the systems' source code and on the error-

reccrding documentation generated during the course of systems develop-

ment. A very extensive list of error classes and subclasses resulted,

including

* Computational errors, resulting from

--the improper coding of formulae used in problem solving

(e.g., quadratic roots equation)

--bookkeeping (e.g., array index or record number calculation)

* Logic errors, in which

--missing, excess, or erroneous conditions were discovered

--functional sequencing was incorrect for some case

--an algoritnr. realized a f-;ction other than what war desired

I,



--physical characteristics of the problem were misunderstood
(e.g., memory requirements, time duration, device inter-
face)

* Input/output errors

--improper format or timing of output

--excessive or insufficient results display

* Data handling errors

--data structures undefined or unintialized

--improper data types used for an operation

--attempts to access data outside of legitimate
address space or data structure bounds

• Interface errors, in which global, shared, or passed data

were incompatible or improperly referenced from routine

to routine, routine to database, or system to external

environment

* Standards violations, in which nonconformance of program

text to coding standards was discovered or incmcplete

documentation was provided.

Because these "errors" were recorded under all conditions of

improper system performance or representation, some of the designated

errors, in fact, describe "failures," including failures to meet re-

quirements and failures resulting from operator error. The sources of

these errors were attributed to development phases (requirements,

design, coding, maintenance) depending upon the time when error-

roducing decisions were first made (Thayer et al., 1976). The fre-

uency of the major error categories for three of the four projects is

hown in Table 2. The category "Other" was used to group errors result-

ing from improper system analysis or design.
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Table 2

Empirical Frequencies of Major Error Categories

Percentage Percentage
Number of of Code of Total

Error Category Errors Based Errors Errors

Computational 552 12 9
Logic 1,333 29 20

Input/output 911 20 14

Data handling 887 19 14

Interface 932 20 14

Total code based 4,615 100 71

Standards 391 6

Other 1,470 23

Total 6,476 100

Note. From Software reliability study by Thayer, Lipow, &
Nelson. Redondo Beach, Calif.: TRW, March 1976, p.

Rubey, Dana, and Biche (1975) analyzed a collection of data

obtained from a variety of (undisclosed) medium--scale assembly language

development efforts. In developing an empirically-based estimating

formula for validation cost, the authors reviewed the type and fre-

quencies of errors discovered during the validation phase. The error

classes defined by these researchers coincide approximately with those

employed in the TRW study as shown in Table 3.

I
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Table 3

Empirical Frequencies of Major Error Categories

Percentage Percentage
Number of of Code of Total

Error Category Errors Based Errors Errors

Computational 113 30 9

Wrong operation (69)
Poor scaling
Other (22)

Data access 120 32 10

Logic/sequencing 139 37 12

Wrong condition (28)
Sequencing (98)
Other (13)

Total code based 372 100 31

Specification 485 40

Standards violation 118 10

Documentation 96 8

Total 1,202 100

Note. From Quantitative aspects of software validation by Rubey,
Dana, & Biche, = Transactions on Software Engineering, June 1975,
S-1(2),

One significant finding of this study was the apparent usefulness of

static. analysis (e.g., data flow analyses, cross reference checks,

code review). The application of static analysis techniques resulted

in the discovery of about half of the errors found, and these errors

were discovered early in the validation effort at less cost than

execution-based testing. Alberts (1976) cited a similar efficacy for

static analysis, reporting that 46 percent of logic and coding errors

were detectable by manual inspection and formal static methods.

-. S --,," ' - " - ' . . .-- , "
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In a recent paper, Fujii (1977) outlined the validation activi-

Ities performable in each phase of system development. Her classifica-

tion of implementation errors includes logical/branching, data access-

ing, and sequencing, defined in a manner very similar to the studies

mentioned above. Fujii's analysis refers tc medium to large programs

with high reliability requirements developed under contract to the

Department of Defense.

Very few data have been published on error frequencies in small

software. Because small projects seldom have the budgetary luxury of

gathering development statistics, one can only infer from intuition

and other researchers' comments that the error composition for small

software is most heavily concentrated in physical design and implemen-

tation flaws, with a higher frequency of computational, logic, and

sequencing errors. Over a period of years, Howden (1978) studied the

efficacy of various testing procedures on small programs written in

higher-level languages. Each of the following testing approaches was

employed and the number of errors discovered was tallied for each:

Number of Errors

Testing Approach Discovered

Path testing 18

Branch covering 6

Structured testing 12
Special values testing 17
Interface testing 2

Anomaly detection 4

Specification-based testing 7

Total errors 28

. . . . . . .. . ....
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The relative effectiveness of path-based and special values (boundary

points) techniques and lesser efficacy of formal specification, inter-

face, and anomaly-detection approaches supports the contention that

errors in requirements and interface definition are less prevalent in

the small software development domain. The high proportion of "simple"

implementation errors in small systems may justify optimism that small

projects may be more mechanically tested at a reduced cost. Computa-

tion errors can typically be found by segment-covering approaches,

because any path incorporating such an error may lead to failure.

Logic errors are amenable to discovery through branch and special

values testing, whereas sequencing errors may often be found by struc-

tured and other limited path testing. Each of the testing approaches

can be facilitated by automated tools providing program instrumenta-

tion, test data selection, and failure detection (Ramamoorthy & Ho,

1975).

Although testing serves to purge programs of errors, it also

operationalizes the assessment of reliability. Error discovery has

always been a phenomenon greeted with mixed emotions by developers.

Although the reliability of the code has undoubtedly been enhanced by

error removal, one's confidence in program correctness may also suffer,

depending upon the timing, frequency, and circumstances associated with

the failure.

Failure circumstances are primarily dichotomized into the

differences between testing and operational environments. Failures

are provoked in testing, the object of a formal search for unfaithful

translation of specifications. Failures in operations are avoided as

'ii
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much as possible, however, and any model of fault occurrence must dis-

tinguish between these program execution environments.

The difference between testing and development environments is

often approached by considering the representativeness of the test data

set applied to a software package. Littlewood (1979) stated that reli-

ability models have not yet fully dealt with the question of represen-

tativeness. Thayer et al. (1976) attempted to address directly test

representativeness by modifying a data-domain reliability estimator

by an hypothesized operational profile. Brown and Lipow (1975) pro-

posed the use of the X2 statistic to measure the conformance of struc-

tural test sets with an assumed input distribution, and showed how

additional test data points can help converge the testing and opera-

tional input profile. Testing theorists appear to ignore the issue

altogether, apparently feeling that guarantees of testing thoroughness

preclude the need to consider the distribution of program use (Howden,

1978; Ramamoorthy & Ho, 1975).

The differences in approaches hixte upon the theorist's prefer-

ence for prediction and fear of failure. Testing costs are directly

related to testing duration; testing duration is, in turn, dependent

upon the growth of confidence in a program and can be enhanced by

predictors of residual error count, time-to-next-failure, and failure

rate. In a sense, testing proceeds until the cost of running without

failure becomes prohibitive.

The situation in thL operational environment is exactly oppo-

site. Whereas the deferral of error correction to the operational

phase may lead to increased debugging costs, it is the cost of failure

:1
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that motivates formal testing. Littlewood (1979) proposed that we are

currently in the second stage of reliability model development, the

fourth of which will explicitly include operational failure costs in

the lifecycle costs that affect development decisions. He, as well

as other researchers, appreciates the problems of failure cost predic-

tion. Unlike errors, whose cost of removal depends upon their subtlety

and complexity, the cost of failure depends greatly upon the circum-

stances of program use. In real development environments the possibil-

ity of costly failures is considered and often motivates the systematic

testing of infrequently used program functions. Viewed in this context,

thorough nonrepresentative testing becomes a reasonable approach to

risk aversion, even though the resulting reliability estimators may

poorly predict testing duration and/or operational failure rate.

Testing Cost and Efficacy

The Testing Problem

Software developers are frequently faced with the problem of

determining how much testing should be performed on a software good.

One may attempt to end up with the same cost distribution per develop-

;ment phase as that recomended in the literature (Zelkowitz, 1978;

Boehm, 1973), but these percentages vary a great deal and are usually

applicable only to large, well-organized development teams working on

large, critical systems. Most developers still determine a testing

budget by informal estimation based upon experience with similar sys-

tems. As testing tools and strategies become more abundant, test

planning becomes more complex, for the cost and efficacy of alternative

approaches must be considered.

" • I !
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A variety of phase-dependent techniques has been discussed in

previous sections. Although early validation of requirements and

design is an important and worthwhile activity, this section focuses

on the decision making in the code-testing phase. Code testing is a

development step that no software developer can ignore, and so an

analysis of the alternatives available in this phase is expected to

have the most general applicability.

Code testing guidelines are particularly useful to the develop-

ers of small- to medium-scale software goods. The requirements for

small software are usually well-defined and the moderate budgets allo-

cated for these projects often preclude the use of formalisms in organ-

ization and representation that admit of modern validation techniques.

Testing strategies and techniques, on the other hand, are better

understood, generally more intuitive, and span a wide range of sophis-

tication that permits the developer to choose a degree of formality

suitable to the importance of the system and its reliability require-

ments.

Testing costs can be categorized by cons' ering the steps

iinvolved in code validation. The transition from design to program

!code results from decisions including choice of programming language,

algorithms and data structures, and target machine. Program valida-

;tion procedures commence with examination of the coded program as

represented in a human (coding sheet) or machine-readable form (cards,

disk file). Syntactic validation is necessarily performed by a

translator (compiler, interpreter) invoked to reduce the program

text to an executable form. A translator reports on Syntactic correct-

S - - ~
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iness by determining the program's conformance to the grammar associated
I

ith the programming language. Although sophisticated translators can

perform many types of static analyses to assess semantic correctness,

it is assumed here that separate tools are required to perform data

flow analysis, reachability analysis, and other static validation pro-

cedures.

Sampling Strategies

When a program is free of syntactic errors, it remains to be

tested for operational conformance to its desired function. Testing

involves the application of data and this application involves the

selection of representative inputs. This choice may be termed a

sampling strategy because it requires the selection of one or more

data points from the (generally) large set of possible program inputs.

In the discussion in previous sections, the set of possible data inputs

has been designated by the set D. Each element of D is a collection

of inputs that forces a program P to proceed from an initial state to

one or more states that signify completion. A sequence of program

actions from initiation to termination is considered an execution or

run and serves as the basis of analysis for correctness.

In some programs or systems this unit of execution may be dif-

ficult to assess: real-time code may continuously monitor and react to

environmental stimuli; query systems may interact continuously with a

variety of users; operating systems may continuously provide system

services while controlling access to system resources. In nearly all

cases, however, a run or complete execution can be defined. Program
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terminations serve as obvious boundaries for simple programs, whereas

runs in continuous systems may be defined as execution sequences be-

tween transaction submittals or service requests.

Discovering a relevant definition for program inputs may also

prove elusive. One may, however, simply consider the time-ordered data

values submitted to a program during a run and designate each sequence

of input data values d = (d1 ,d,...) as an element of the input domain,

D. In simple systems the ordering of the d k's is unimportant, where,

for example, each dk represents a separate value and the entire set is

submitted simultaneously at program start. A program may, however,

acquire inputs during the course of execution and sequences of dk's

may be highly interdependent.

The cardinality of D is dependent upon the data types of the

d k's and the relationships among them. In simple programs each con-

stituent dk of an input data point d may be a separate variable of a

coamon data type (say, integer or character). The cardinality of D,

then, is at most the product of the cardinalities of each associated

data type, where data type indicates a set of permissible variable

values. This maximum cardinality is often bounded by interrelation-

ships among program inputs. For example, in matrix multiplication

the input matrices must be conformable (L by M and M by N) to be

proper inputs.

Other bounds may be placed upon individual input values as

well as permissible combinations. A programming language may provide

only general data types (for example, integer) when an input value is

specified to reside in a restricted range (say, gross income in a ta:

'I
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computation routine). One must recognize the collection of constraints

on input values as this collection is important in determnining the

permissible execution paths through the program.

To reiterate, a sampling strategy requires the selection of

sample points for application to a program P to attempt computation

of the program function f. Informal sampling strategies abound, in-

'cluding pseudorandom, functional, descending-criticality, and most-

!obvious-first. A testing procedure is considered pseudorandom if the

'selection of test data is performed in a manner in which no methodology

is apparent, and for which it appears that input sets are selected from

iD with equal probabilities. True random sampling may be performed,

of course, by employing a mechanism to choose from D nondeterministi-

ica!!y with the resulting sample 9 distributed according to the mechan-

ism's selection function.

Functional testing results from the application of test sets to

determine the conformance of the program to its specifications. When

:the specifications imply some easily recognizable classes of desired

1program behavior, functional sampling attempts to confirm the correct-

ness of the program functions associated with the desired behavior. A

,partitioning of the input domain is usually suggested by the set of

,desired functions (say, different transaction types in a bank's teller

isystem) and functional testing requires a selection of data points

within each partition. The selection within partitions may be per-

formed by any other sampling technique.

Sampling in order of decreasing criticality refers to trie

informal notion of tcztinr those program functions whose failurc

" .°S|
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'would preclude further testing, or which, if found incorrect, could

prove costly. As an example of the former case, a frequently used sub-

routine may be validated first to allow a confident assessment of error

types in other program parts that employ that routine (this is the moti-

"vation for bottcm-up testing). The latter case refers to a test order-

ing in which a preference function is imposed upon the kinds of errors

allowable in the program. One may assess the need for extensive testing

of life support software for a space capsule, but comit fewer resources

to testing less critical functions (e.g., caloric intake monitoring). T

Closely associated with sampling by decreasing criticality is

the modeling of sampling by removal of the most obvious errors first.

1In practice, a large number of errors is discovered in initial testing

hases, with error discovery decreasing as time goes on. This phenome-

on results because some error types are more obvious than others: for

example, those involving a single statement rather than combinations

jof segments. Sets of related errors made uniformly throughout the

program (e.g., improper declarations or subroutine calls) also tend to

,be discovered early and, depending upon the error discovery model, may

be counted as a large number of single errors. Time-domain models

that employ a decreasing hazard function can account for this phenome-

Pon (see Chapter III).

* Formal sampling strategies require a stratification of the data

Iomain. Structural testing involves a stratification with partitioning

'induced by the structure of the program. Structural testing is com-

posed of three stpF structure determination, partitioning, and test

data selection. Structure determination involves the analysis of

- A. I
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possible program execution paths and is normally performed by con-

structing a graph that indicates program segments and precedence rela-

tionships among them. Partitioning involves the recognition of dis-

Joint subsets of D, each of which is associated with some aspect of

program structure. Segment covering is one such sampling criterion

in which the desired test data set must exercise every program state-

ment. Branch covering requires that a set of data invoke the transfer

between every connected segment pair. Structured testing requires the

execution of every basic path.

The usual outcome of partitioning is a specification of the

set of paths that satisfy a covering criterion. With each path is

associated a path predicate characterizing the property of the domain

subset whose members force the path's execution. To operationalize

these partitionings, one or more data points must be defined for each

subset. As discussed above, this determination may be nontrivial,

requiring the solution of the path predicate in terms of the input

variables.

Sampling Cost and Effectiveness

The costs and benefits of test data selection arise in two

general ways: sampling cost and sampling efficacy. Sampling cost

relates to the time, effort, and money expended in constructing a test

data set conforming to specified testing criteria. For random, pseudo-

randaum, or functional testing this cost may be minimal because thesc

methods are relatively intuitive. Moreover, inexpensive test tools

exist to aid in these simple forms of test data construction (Reefer &

Mam
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Trattner, 1977). The cost of sampling subject to structural testing

constraints is greater because it involves

* the construction of a program graph

the selection of paths providing the desired test coverage

• the determination of path feasibility by definition of data

points forcing each path's execution.

The cost of graph construction if basically linear in the

number of statements, although manual construction requires a slightly

higher order of effort for large and cumbersome graphs (Aho & Ullmann,

1975). Path selection time is also proportional to the number of seg-

ments or branches for their respective coverings, and often is Iedi-

ately obvious in manual analysis of small graphs (Gabow, Maheshwari, &

Osterweil, 1976). Basic path selection is also linear in the number

of branches, although more difficult to perform manually (Paige, 1975).

More complex criteria may require execution time that is a polynomial

function of the segments or branches. Full path testing is generally

impractical for all but the smallest of programs.

Feasibility analysis and data point selection are formally un-

solvable, but some current systems do perform this function for path

predicates of special forms. Path predicate composition is linear in

the number of statements on the path. Path predicate solution depends

upon the efficacy of the routine employed for feasibility analysis and

depends upon (at least) the number and type of path conditions (con-

straints).

Sampling effectiveness is related to the "speed" with which a

sampling technique discovers errors. The application of different test

- I -4-'
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points is clearly more efficient than that of simple random test

points, because duplication is precluded in the former. In a number

of studies, Howden (1976, 1978) compared the observed relative effica-

cies of various test criteria (segment covering, branch covering,

structured testing, full path testing) but failed to give any measure

of the variability of each criterion's error discovery.

The efficacy of a particular data set selection approach should

be reflected in the reliability model employed in assessing program

correctness. More effective sampling strategies should increase the

detection rate in t1me-dmain models as reflected in the hazard func-

tion. Data-domain models should show faster reliability growth and/or

faster reliability estimate convergence.

Cost of Test Data Application

and Fault Detection

Associated with each test data point or set are the costs of

its application and results-assessment. A test run may be a simple

rocedure in which initial data are input interactively or a cmplicated

procedure in which test drivers are required to simulate environmental

inputs. In either case, it is probably reasonable to assume that each

test case incurs a fixed cost of application, although this cost may

vary greatly from system to system.

To be tested, a data point must invoke program execution, which

requires computing resources. Many programs require computing re-

sources (CPU time, memory) in quantities related to the values of

input values. The time and space efficiency orders of tested programs

dictate this resource use and hence impose a cost of test execution

ii
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dependent upon the values of test data input. Test data values (d 's)

that affect data structure size (e.g., matrix order) or loop bounds

(e.g., convergence tolerance) can vastly affect the cost of test data

application. In practice, running times appear to be the more costly

variable. Running time (elapsed or CpU) is directly related to the

length of the execution path associated with each data point.

Fault detection involves the examination of test results to

confirm correctness. The assessment of output correctness requires an

independent evaluation of the program's function on the test input by

what is termed a test oracle. Fault detection is easily performed for

simple programs whose function is in some sense invertible (say, a

square root routine), and can be performed inexpensively by a human

oracle. Output from large complex systems is generally much more

difficult to assess and often requires a simulation or execution of

another similar program for output validation. It is probably reason-

able to assme, however, that the cost of a test oracle is linear in

the number of test data points. Where correctness can be determined

only by comparison with a similar system the cost of detection may

resemble that of test execution, but in many cases correctness of an

output can be determined at a cost independent of the program time and

space necessary for its computation.

Cost of Error Detection

and Correction

Once a test input is found to cause premature program termina-

tion or generation of improper output, a search proceeds for the

cause(s) of the fault. These causes are normally termed errors and

- a 2
......_A ._ _' _. ± . ... . . . . ... ........ . .. .. _ , :,,=. . . ... . " -,, , . . . ..... .. .r -. ... . .., I -. . .. . . . ... ,-.



50

their detection normally requires code review to determine the failure

source(s). Error detection is still the most artful of programming

practices, depending upon deep knowledge of the program, vagaries of

the programming language employed, and other subtleties. It is prob-

ably less than realistic to assume that error detection costs are

uniform over all program inputs. In the same way that prevalent fail-

ures occur early in testing, obvious errors are generally found first.

In fact, part of the appeal of decreasing hazard function time-domain

models is the way in which this phenomenon can be represented.

Error correction involves the rectification of program defi-

ciencies by changing the text to reflect properly the functional speci-

fications. Error discovery is closely associated with error correction

and it is usually possible to integrate these costs as one function.

Textual changes are normally followed by retranslation of the source

to object program. Retranslation costs are usually polynomial in the

number of statements and, in most cases, linear. Retranslation costs

and turnaround times are often sufficiently great, however, that col-

lections of test inputs are often batched so that a number of correc-

tions can be made between test submittals.

The Cost of Errors in

the operational Phase

The costs associated with program errors that persist into the

operational phase can be dichotomized into two general categories: the

cost of failure and the cost of maintenance. The cost of failure is

the prime determinant of reliability requirements and can include

h1
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opportunity losses, organizational disruption, and other

effects of system service suspension

* financial loss through improper accounting, over- or under-

utilization of resources, improper purchases or sales, or

other real loss

* Jeopardizing of human life.

The consequences of program failure to the developer-user are the

direct kinds enumerated above. The software supplier may incur many

indirect costs when a product is found to be unreliable, including

* loss of sales as a result of product reputation for

unreliability

* litigation and settlement costs incurred as the result of

program misperformance.

Both users-developers and software suppliers generally incur

the cost of maintenance. The developer may or may not have the respon-

sibility to maintain customer versions of a product, but must acknowl-

edge errors reported by users and correct them if continued sales of

the product are desired. As an approximation to reality, one may

assume that all of these costs can be integrated into a simple function

of the number of failures. Each failure incurs a fixed cost represent-

Ing the damage caused by the misperformance, and a maintenance cost

corresponding to some multiple of the error detection and correction

costs of testing. These costs are usually a function of the number of

remaining errors, ne, but not necessarily linear in ne (for time-domain

podels other than exponential).

- . - ~ - - - - ,t - -
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No one has yet proposed a model which would dictate the type

and duration of testing depending upon the costs of sampling, applica-

tion, error detection/correction and program failure outlined above.

Most researchers would agree with Littlewood (1979) that it is prema-

ture to attempt such a model before the computing community has

reached a consensus on the proper mix of tools and approaches for dif-

ferent software development situations. In the sections above, the

cost order of magnitude for each testing for each testing activity and

result has been inferred. In this study experimental results will be

reported in hopes of laying the groundwork for an economic model of

testing. We believe that such an economic model is within the construc-

tion capabilities of the Software Reliability community and we offer

this study as a step toward its resolution.

1-!
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CHAPTR III

SOFTWARE RELIABMhITY THEORY AND PRACTICE

Introduction

Software reliability has been a topic of much study and many

publications during the current decade. Software reliability relates

to the ability of a software system to perform as expected and is often

associated with the degree to which embedded errors can cause system

failure or misperformance. In a recent paper, Schick and Wolverton

(1978) reviewed competing models proposed to relate system reliability

to program errors and failure distributions. These approaches are

generally based upon differing models of the probability distributions

underlying fault occurrence and error frequencies as functions of sys-

tem structure and use.

All software reliability models recognize a relationship be-

tween the existence of embedded errors and the time-distributed fail-

ures that occur when such errors are "discovered" during program execu-

tion. Schick and Wolverton dichotomized modern approaches to software

reliability assessment as either time-domain or data-domain models.

Time-domain models emphasize the failure distribution by hypothesizing

error discovery as a function of some measure of time. Differing mea-

sures of time include the execution duration of the program (CPU time),

real (calendar) time intervals, and the number of separate applications

of input to the program.

53
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Data-domain models define program reliability statistically in

terms of errors per textual unit. The emphasis in data domain modeling

is the assessment of error content as a proportion of the program's

statements, object instructions, or executable paths.

Time-Domain Models

Mathematical Preliminaries

All of the most referenced time-domain models define reliabil-

ity R(t) as the probability of fault-less program execution over time

t, hence

R(t) = 1 - F(t)

t
where F(t) = f f(x)dx

0

and f(t) defines the interarrival density (limit of the probability

at the first error is discovered at time t hence). Following Schick

and Wolverton (1978), define

z(t) = f~)= F~t) = - )

os the instantaneous error rate. It is also termed a hazard function.

Solving the differential equation

z(t)=-
R(ti

t-of z(x)dx.

rields 
R(T) = e

A variety of proposed models can be analyzed on the basis of

he terms developed above. The assumption of constant error discovery

• _U
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rate (z(t)=a) leads to a standard exponential distribution

f(t)= ae -at R(t) = et t > O; a > O.

Assumptions of increasing or decreasing error rate (modeling error

correction) can be expressed by

z(t) =aptf _I  t > 0; a'13 > 0

yielding a two-parameter Weibull distribution for the error inter-

arrival density

f(t) - apt -le" t  t > 0; a,13 > 0

and reliability function

R(t)- t>0; p>o.

Early Models of Finite
Error Content

If error discovery rate is proportional to the number of re-

maining embedded errors, then a more representative model of time-

varying reliability may be proposed. Assuming that the likelihood of

detection of each of the ne errors is independent, then the error dis-

covery rate for the ith error may be written as the constant function

zi(t) = ai = '(ne - (i - ))

where q is the instantaneous discovery rate for one error. Jelinski

and Moranda (1973) proposed this model designating

f (ti) aie

. ... if" llr -' ' " 1
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as the interarriva time density function for time intervals

tI, t2 , ''', tne between successive error discoveries.

Schick and Wolverton (1972) ventured the assumption that the

longer the time period from the last error discovery, the greater the

likelihood of discovery. A formalization of this notion is the error

rate function written as

z (t) = 9(n - (i - l))t

where q) is the original instantaneous discovery rate, t is the time

since the last error discovery, and ne and i ere defined as above.

The associated interarrival density and reliability functions are

tt

fi~l) zlti~- z (i )] ti-
t2fi ~ -[n -t ()zi i - i )

Ri(ti) = e 2

Both the Schick-Wolverton (1972) and Jelinski-Moranda (1973)

models may be generalized realistically to admit the possibility that

more than one error is found during testing intervals. Thayer et al.

(1976) proposed extensions, as

Jelinski-Moranda: zi(ti) = (ne - n

Schick-Wolverton: z (ti) 9(ne - n )t

where ni represents the cumulative number of errors found prior to the

th 0.
i testing interval and n0 .

I. _ __ _ __ _ _ _ __ _ _ _
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As stated by Schick and Wolverton (1978), "the reliability

analyst should expect his time-domain model to be a predictor for both

the number of errors remaining and the mean time for the next error to

occur" (p. 2). The time-domain models cited above can be employed in

these regards a~ter some testing has taken place, if estimators can be

used in place of unknown parameters. Thayer et al. (1976) derived or

cited maximum likelihood estimators (MLEs) for the a's and ne above,

as well as developing asymptotic variances and correlation coefficients

for these parameters. The general procedure for determining the MLEs

involves the simultaneous solution of two equations in Q and n (or c

and n e). Approximate confidence regions for the parameters may then

be constructed using the asymptotic variances.

Goel's Model

In a recent paper, Goel (1978) proposed a time-domain model in

which failure interarrival times were considered the result of a non-

homogeneous Poisson process (NHPP). Goel hypothesized a continuous

function n(t) giving the cumulative number of software failures occur-

ring by time t expended during validation. Because each failure is

assumed to be the result of a unique error, and because each error is

jassumed to be corrected subsequent to failure, n(t) is a nondecreasing

function bounded by ne, the total number of errors in the program. By

assuming that the number of errors detected in the interval (t,t + S)

is proportional to the number of undetected errors, Goel deduced that

n(t) = ne(I - e -C t )

with C the constant of proportionality.

II
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Goel (1978) imposed the Poisson postulates upon the random

variable n(t), as

* (o) = 0

* each tj, t2 , --- is statistically independent,

where t. T; 'e( =

* Pr (2 or more events in (t,t + h)) o(h)

• Pr (exactly one event in (t,t + h)) = (t)h + o(h)

to derive a Poisson distribution for n(t), as

f (t)(k) = Pr( (t) = k) = m(t) k e
m (t )

t
for m(t) = J .(s) ds

The mass function fn(t)(k) has mean m(t), which Goel chose to equate to

the assumed deterministic function n(t) as:

m(t) = ne(1 - e - gt )

To summarize the assumptions given above, the time distribution

of failures, n(t), is assumed to be a member of the family of functions

Ln(t;neq)). In the absence of knowledge regarding the values for Men

and A, a Poisson prior distribution for n(t) is given as fn(t)(k) with

mean

m(t) = OJ A(s) ds = n e(1 - e-(P )

e

ii
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k -ne

r .e
PrU(c ) = k) e Id

a Poisson distribution for the number of failures over a debugging

interval of indefinite length.

Letting F(t) indicate the number of errors remaining at time t,

one obtains mean and variance

E[n(t)I] = E[( c) - . (t) ] = n et
and Var[(t) ] nn e -

= + n e(1 e - " t )  2ne(1 - e-

Moreover, if y is the number of errors found by time s, then the condi-

tional distribution of n(s), given this information, is

Pr(I(s) = kir(s) = y) = r(n(-o) y + k)

n (y+k) e - e
e
(y + k!)

with mean El[(s)In(s)=y] = ne - y

The reliability of the program over time t, starting at this time s, is

given by

cp-s e-(s+t)-n [e- e

R(t) = e e

As a result of choosing a nonhomogeneous Poisson process to

escribe n(t), Goel (1978) was able to derive maximum likelihood esti-

mators for parameters n and (P. Given a sample of observed validation~e

times and associated cumulative error counts, T = (yI~tl),(y2,t2,'''

(Yk,tk)), these estimators can be calculated. The independence cf

.5
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(ti)'s rmits the joint mass functions, Pr(n(t1 )=y ,n(t)=y,...,

n(tk)=Yk ) to be computed as the product of the mar~rnal distributions

Pr(n(ti)=Yi;n e ,), yielding likelihocc function L(. e,) witn giobr-

maximum L*(ne,$;T) occurring where

Se tk Yk

k (4Yi i-I ) (t i-
-- _y 1  .e - t e

and nte =

e - e

JGoel provided numerical solutions for two sets of data that provide a

reasonable fit to the empirical failure times. By invoking asymptotic

normalily for the maximum likelihood estimators, Goel computed a co-

variance matrix for (ne,$) and provided a time-varying estimate and

confidence band f:r the actual number of errors, n(.O), and the number

of remaining errors, i(t). The actual error predictor £(t) appears

quite good (as it appearsxon the reported plots), whereas the remaining

error-predictor, i(t), providez, a reasonable fit to the empirical

results for all but large values of-\t. This underestimation of H(t)

for large t would tend to justify Littlewood and Verrall's (1973) claim

that exponential models of failure interarrival times are deficient

near the end of the validation process.

A Bayesian Approach

A number of investigators have proposed reliability models in

which the distributions of interest (failure interarrival, reliability,

etc.) are updated to reflect the information gained during program

%*
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testing (Littlewood & Verrall, 1973; Goel & Okunoto, 1978). In a

recent work, Littlewood (1979) argued that a proper measure of program

reliability is performance-orinted, and that the distribution of future

failures calls for a subjectivist's view of this nondeterministic

henomenon.

Littlewood (1979) offered a model in which the source of uncer-

tainty regarding failures is dichotomized between the nondeterminism of

program inputs and the probability that an input leads to failure.

-eLittlewood hypothesized an input set D and regarded the subset D that

leads to program failure as random, because different software develop-

nent efforts lead to different partitionings of D into correct and

failure-producing input subsets, 1e and V.

As a program is debugged De changes, as denoted by the sequence

Ve J,'2 
e  e

corresponding to the failure-producing input sets associated with each

program version. Associated with each D e is a failure rate, Xj, which

serves as a parameter in the time-to-next-failure distribution

-x t
f(tj1xj) = j e J

ittlewood (1979) offered the gamma distribution as an appropriate fam-

ly for modeling uncertainty regarding

cx-C-

=j j - I e-B~
fr(Z) : r(cO)

V - .4
_ -A



The mixing of these two distributions yields 
a member of the Pareto

family of distributions:

f(tJ a1,.) = oJ f(t I) " f(cxt,%) d

[tJ 
+

The parameter 0 serves as a "growth function" of reliability

over discrete time measured by j, and Littlewood (1979), unlike other

researchers, suggested that this reliability growth is linear neither

in time nor in the number of discovered errors. Rather, he suggested

hat most serious errors are detected early. This phenomenon can be

modeled in the following way. Consider the program with N initial

bugs, subjected to testing in which error correction (bug removal)

occurs with certainty. Assuming that the independent failure rate v.

of each bug is identically distributed with mean v, then the failure

rate between successive error discoveries is given by

J = v +v + .. v N

Letting

J = J t

enote the cumulative time to the j failure, then one may express the

conditional pdf of each undiscovered bug's error rate, vij as

L . . .. . . . .. . ...I
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f(vjbug undiscovered in internal (O,i))

Pr(bug not eliminated in time interval (O,Aj.l)IV) f(V)

ofPr(bu not eliminated in time interval (O,j-l) Iv)f(v)dv

f(v) e

of(v) e(-V&i- ) dv

If a single error's failure rate is modeled as distributed

according to

l (vq)" e- Vfr( V; (P ) PV(--1e
rrp)

then the conditional distribution f(VIbug undiscovered in [0,&_ 1 )

becomes

f +

and the distribution of "A becomes

fr((N- J + i),P + A_)

with mean

(N - j + 1)p

J-1

serving as the hazard function z(A). Given the foregoing assumptions,

Littlewood (1979) concluded with the unconditional failure interarrival

distribution

if
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cc
f~t;,) f f(tj;j f0'j;9,6,_l ) d .

+ +

0I- j + i)) '. +T (_

The first model presented above with

f (tj ',P)= f f(tj. j ) [ ftjlaB j ) dXj = [ I

is termed the Littlewood-Verrall (L/V) modelas it was first presented

by these researchers in an early joint paper (1973). Littlewood (1979)

applied this model to a set of failure interarrival time data first

presented and analyzed by Musa (1975). The author assumed a linear

reliability growth function,

Pj = ao + a1

and obtained the maximum likelihood estimators a., a,, and Q over the

first few observations tl, t2 , - tk and employed f(t =a +

ja.j) to derive predictions of future failure rate, mean time to

Ifailure, and reliability. Littlewood (1979) obtained an excellent fit

of predicted to actual times t . t using this model.
kn

JA Model Based upon

Order Statistics

There is every reason to believe that the order in which

errors are found ic nondeterministic; current software reliability

theory ruodniz, f uiformly model The failure phenomenon aF
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successive events, each with a related problem distribution. At face

value, it would seem an unjustified research decision to ignore the

probability of underlying events (errors "waiting" in parallel time to

be discovered) and jump directly to models of the distributions of

ordered events. That no one questions this common research practice

(see Goel, 1978: Schick & Wolverton, 1978; Littlewood, 1979) is under-

standable, for the assumptions of decreasing failure rate and negative

exponential interarrival times is in conformance with assumptions of

* equal failure rates for each constituent error and

* negative exponential failure time distributions

for each error.

In short, previous investigators have been able to ignore the order in

which failures occur by modeling the associated errors as homogeneous

Poisson processes. If, however, either of the assumptions above is

invalid, no reasonable model of failure times can be considered without

consideration of the failure behavior of each individual error.

The assumption that underlying errors are not identically dis-

tributed allows one to state simpler bases for a failure model:

* If errors are assigned arbitrary error rates Xi, .**. ),

and hypothesized to fail under Poisson assumptions in

parallel time, then no general or common models of or-

dered failure time distributions are possible.

• Unless some relationship is assumed among the probability

distributions of underlying errors, no inference can be

made about unobserved errors.

• It is counter-intuitive and not in keeping with most pro-

grammers' experiences that all errors are equally "hard,"

or randomly pursued.

I
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A model is proposed that is based only upon these simpler

assumptions of error independence and individuality. The specific

assumptions are:

Each error that is inadvertently introduced into a program

can be assigned a "difficulty rating" ?i; this difficulty

rating reflects the combination of its inherent subtleness

or (conversely) ease of discovery, and the relative skill

or predisposition of the tester in pursuit of this kind

of error.

These difficulty ratings can be considered random variables,

identically distributed as f-( A, reflecting the imperfect

program development skills of every software practitioner.

Software failures (either improper program termination or

production of incorrect results) are induced by the submis-

sion of test data and identified by code and results review;

this procedure can be modeled as a sampling procedure, and

the time ti to discovery of an arbitrary error, E., is a

random variable; each unordered failure time is subject

to the same family of distributions f-(t;xi), which differ

only in the value of their sole parameter X

The resulting distribution of the failure time for the ith

error is a mixture of the form

f (x) = f-(x) - ff(x;i) f(7, )d?,
t t

an identical distribution for each error, with cumulative

distribution function Ft(t).

Because the most useful indexing of failures is by their

order of occurrence, the random variable of interest is

N() the ith order statistic "drawn" frcm a population of

n program errors, with distribution

f'- (x) = (n)f -(x) F-(x) i- l F, ) -
f (i)

~,
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as prescribed by results from the theory or order statistics

(David, 1970).

The remainder of this section shows how these results are used in the

development of a new time-domain model.

One may assume that a programmer makes n errors, [,E 2 ,..-, n

over the course of software development and that these are identifiable

and correctable within the body of the program. With each error E. is

associated a difficulty index 'i that serves to represent the degree of

effort, insight, and luck necessary to provoke and/or find this error.

Because these errors are unintentional, one may assume that their in-

troduction is stochastic and, further, that the continuum of "hard" to

"easy" errors is reflected in the probability distribution for A, of

which each Ai is a particular one. One may, for example, assume that

the set of (AX,-,'",nJ constitutes a sample from a gamma distributed

"difficulty index generator" where

CPXi1 -1 e-OA

It is normal to assume that debugging activity is nonspecific--that is,

that each error is the object of a simultaneous search for all errors
(Musa, 1975). If this is the case, then each failure time Ii (time to

evidencing of the ith error) is equivalently distributed and most

Ilikely parameterized by its difficulty index Xi. If Xi is interpreted

!as an arrival rate, and the Poisson postulates assumed for t,, then the

negative exponential distribution describes the conditional distribu-

tion of ti on )Y
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f (t-?Xitif(t ij?~.) = e

Each t. is an instance of a randan process that generates failurea

times; this process has an unconditional distribution of

f(t) = f(tlIk)f(?k)dX

which for the prior assumed distribution is a ga-ma mixture of expo-

nentials of the form

00 CO X _X t CB ( P - 1) -Q ? -
f(tlc' ) f f(tl)r f ( A)d, = e-\t o ' e Adr@o

o f oJ r()

= 3) j )e d= "( )

(t a)p+l

which will be denoted as fGE(tc, ).

As a program is debugged, the portion of unscrutinized code

and the subset of untested input domain shrink. Hence it may be more

reasonable to assume that the instantaneous "failure rate" over time is

z(t) = xt

as is assumed in the Schick-Wolverton (1972) model. Then the distribu-

tion of failure times should follow a Rayleigh distribution:

f(t)%) - (Xt)e - xt t / z . Xte - t 2 / 2

The resulting unconditional distribution of t is a gamma mixture of

•. .,, . . . . . . . . -- , . . ,-,- ( Jfjj, :,,.. .. . . ,. .,....,: . . - h .,,""' *°
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Rayleigh distributed random variables of the form:

f (t la,1 =j" Xte-Xt 2 /2.a.X P-1 e -ddA tQPB
0 ~~r(o) (2a1+

hich will be termed fGR(t aP).

The arrival times of errors may be indexed in order of their

occurrence, as

t (1) ' t(2) -  6 "'' (n)"

Because each of the underlying failure times t1 , t2 , "., tn is iden-

±.cally distributed, one may draw on the results of the theory of order

statistics. Immediately useful results include:

f( (x;n) = i(n)FZ(x) il 3  - F2x )]n-i f(x)
( i(x ,

t(l), "',t(n)  (1'* xn

n! k n-k
(T-) J' f (x(j))(l - F<x(k))

here f and F- are the density and cumulative distribution functions

for the underlying distribution, respectively.

If each error committed in program development is equally "dif-

ficult," and Xi = X for all i, then each failure time ti is identically

distributed as

t

f t .'- it

! .1
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and

( t(k) (X() " x ( k ) )

n! [e - x ( k ) ]n-

(n-k)' i

S(a)e-nxl (n-l)?,e--)Ax)-()]..

[ (n-k+l)X -(n-k+l) (x(k)-x(k-1)) ].

This is the same result as is obtained by assuming that each interar-

rival time t - t between failures is negative exponentially

Mi) (i-i)

distributed with arrival rate (n-i+l)X, as doe by Musa (1975). Be-

cause of the assumption that errors are of varying degrees of diffi-

culty, one obtains

**l)' (k) (k*, "" C ) = (n-k)! li~k (x(i)+ 0)

(n-k)

(-k)+! C(n-k)

(n-k)! (x(k)+ a)(n-k)

(n-k): (x(k)+ a)P(n-k) 11 (x()+ a)O+l

I
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for the Gamma-Exponential model, and for the Gamma-Rayleigh model:

(X '. x(j) Thi--kT'' t(k ) x() ''X1) iik (x2 (I + (a)P+I

2

which cannot be simplified because F t(x) has no closed form for arbi-

trary x.

A diagram depicting the proposed model is given in Figure 6.

Errors E 1 through E8 are introduced unknowingly into a program at the

time of its development. Associated with each error E is a difficulty

index X that serves as the parameter of the distribution for ti the

time until Ei is discovered. Just as the introduction of errors into

the program is a random process, so is the difficulty of each error so

introduced. Hence the parameter \i is also modeled as a random vari-

able. The mixture of these distributions serves as the underlying

distribution for the order statistics t () Each t(j) is the observa-

tion available for statistical analysis.

Data Domain Models

Assumptions and Terminology

One nay loosely describe data domain modeling as an approach

in which the form of testing is as important as, or more important

than, the duration. Data domain approaches consider explicitly the

input domain of the software and how it can be partitioned into rele-

vant classes better to assess system reliability. Nelson (1973) and

t ,"
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others have proposed partitioning the input domain D into classes Di,

for which every member of Di executes the same program statements in

the same order. Furthermore, D can be dichotomized into sets Dc , for

which every element yields a correct computation, and D e , for which
c e

every element leads to an improper program output. Let D. and D. be

similarly defined as the correct and incorrect subsets of each path

partition D . Nelson (1973) defined a program's reliability R as

IDI IDI

where JAI denotes the cardinality of set A. In the absence of the

knowledge of the precise distribution of the inputs, R can be inter-

preted as the probability that the program will execute correctly on

any given run.

A simple reliability estimator can be derived by successive

executions of a program. Lipow (Thayer et al., 1976) has shown that

a sample of n inputs yielding n errors yields an unbiased estimatore

of R as

A
n

n

when inputs are randomly chosen from D and Pr(d e D) << Lfor all d.

The data domain approach can be better characterized by con-

sidering how each input dictates the computation of the program's func-

tion f. As outlined in previous sections, a program can be represented

las a collection of segments each of which computes a partial function

fi" An input data point d forces the evaluation of' the function



74

f il(f ( f (d))...)

by dictating the sequence of segments that will be executed. Whereas

a time-domain approach treats only the frequency and duration of pro-

gram computation, data domain models consider the relationship of input

data class to program output.

The Mathematical Theory
of Software Reliability

Nelson extended the data domain reliability models to a suffi-

ciently general body of formalism so that the results are termed the

mathematical theory of software reliability (MTSR) (Thayer et al.,

1976). Consider again a program that computes the function f: D - 0

by mapping input data to output results. The input set D of cardinality

N is partitioned into a fault-producing input subset De and the set of

data inputs, DC, which faithfully produce the outputs desired; their

ardinalities are expressed as Ne and NC , respectively. The difference

between P and a correct program P* is the manner in which f differs

from the desired function f* when applied to members of I)e .

The MVSB attempts to formalize these notions in the following

way. Assume that during operational use the program will be employed

in a manner defined by the distribution of inputs. Assuming a finite

input data space D, a mass function may be defined; each point d C D

is assumed to be chosen with probability P This set of Pi's is

termed the operational profile. Letting the characteristic variable y

indicate the membership of d in DC(yj=0) or in De(yj =1), then

Si Si
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q= Sjl N PJYJ

denotes the probability that an operational run of P will result in

execution failure. Conversely, system reliability may be defined as

R=l-q

or the probability of correct execution in the operational environment.

A discrete analogue to the time-domain reliability function is

Rk = (1 - q)

which represents the probability of k successive correct runs.

The reliability function may be further investigated by con-

sidering test data distributions other than the operational profile

(P ). Let

P = P c e
iP p . + Pipi=J:dj fi 3 2.

where P c  P e
,j :d D iI

denote the probabilities associated with drawing an arbitrary (), a

fault-producing (pie), or a "correct" (pc) data input point from

partition D . A sample of n data test points are to be applied with

n i of the n corresponding to the i t h partition D . Assuming that a

lpredetermined sample size n i of test points from partition Di are to be

4-I
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drawn, the outcome of the whole sample (i.e., test ensemble) may be

th
Idenoted by tei), the number of test points in the i class leading

Ito execution failure of the n. applied. Hence any sequence of n.
a 3.

1points sampled from D. has an associated point probability of

ei cni-ei

(Pie) (P C.
Pini

Because the sampling distribution (P need not reflect the

operational profile (P.), any reliability estimate derived will not

necessarily be representative. A reliability estimate may be developed

by calculating the ratio of program faults to successful executions.

The resulting estimate will be

A e,
R = 1 -i _ .i "

iET nien

the probability-weighted sum of failure ratios for each partition.

T is an index set of those i's for which n i j 0. 9 is evidently a

biased estimator of R, as

Pi ie] p

icT

Ihas bias equaling the sum of the error probabilities for those parti-

tions unsampled. Because Var n i P

iC - UT i TeIii
UT1

1.*hsba qaigte u fteerrpoailte o hs at,
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V [R= Var(e1 ) ~e cVar[A] = E 2 =P P Pi

ijTC fT nn

and the mean square error is given by

2

E[(i- R)'] = Var(i] = (4T Pe)

A minimum variance estimator R* may be developed by appropriate choice

of ni's. Thayer et al. (1976) showed that the minimum variance estima-

tor R* results when

" C e
n p " Pi

k kc Pke

with minimum variance

var(R*) = 
piePic

Thayer et al. (1976) developed a number of confidence limit

formulations used to express the likelihood that the true reliability

resides within a specified interval (RL,% ). An approximate confidence

interval

nay be constructed about reliability estimator R, with variance

IJ
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estimated as V, assuming asymptotic normality of R. A positive bias

in R may lead one to employ a smaller a than would otherwise have been

used.

Often one is interested only in the lower confidence limit

This can be computed with a one-sided t formulation as above, or by

exact methods formulated by Neyman (1937). Defining the software's

operational reliability as Ri = Pic/P, the software's operational

reliability may be expressed as weighted average

R = Rip = pc
i i i

Assuming a sample of n. data sets is drawn from each Di, and e. lead
1 3.

to execution error an "exact" lower limit j(a) can be given:

k(a) = n (1 - a)l/n n i i / n

where n = n1 + n2 + - + n as defined above.

Estimators of Program Error Content

A variety of other approaches has been suggested for estimating

the number of errors remaining in a software package.

The simplest of these approaches is the handbook approach in

which error proportion statistics are maintained by program type and

testing phase. Moranda (1975), for example, cited the factor two

errors per hundred object instructions as a universal error proportion-

ality. Walston and Felix (1976) reported on the development statistics

aggregated over 60 programming projects of varying sizes. Letting n'

eI _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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denote the number of errors per thousand source lines purges during

validation, and n" denote the number of errors per thousand sourcee

lines purged during the maintenance phase, these researche-s reported

the 25 percent, 50 percent, and 75 percent quartiles for n' and n" as
e e

(.8, 3.1, 8.0) and (.2, 1.4, 2.9), respectively. These and other find-

ings appear to invalidate any assumption of a universal error content

proportionality.

Other estimators involving a little more program-specific in-

formation include Halstead's (1977) error equation. The error equation

is derived from assumptions regarding human information processing

capability and relates to other derivations that Halstead collectively

terms software science. Halstead's error content estimate B, is given

by

B V/3000

where V denotes program volume given by

V = N logan

for a program of N syntactic elements, n of which are unique. A number

of studies have validated B as a reasonable estimator of error content

(Funami & Halstead, 1975; Cornell & Halstead; Love & Bowman, 1976).

Mills (1970) proposed another error content estimation technique

that has been further analyzed by Basin (1973). Assume that of N syn-

tactic units composing a program, n are erroneous for same reason. Ane

estimate of ne can be derived either by seeding n new errors and al-

lowing a tester to discover errors nd of the n e + ns present, or by

7 |
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comparing the errors detected by two independent testers. Assming

that the error samples are the result of simple random draws, an esti-

mator can be derived from a maximum likelihood estimator based upon

the hypergeometric distribution. The estimator is biased with both

the bias and estimator variance as a function of n . Further details

are given in Basin (1973).

I

____iii______,,.._____.____________.-__-_.._,_



CHAPT'ER IV

EERfMENTAL DESIGN AND PROCEDURES

Experimental Objectives

An experiment was designed to collect the data necessary to

satisfy two experimental objectives. The basic objective of the expe-

riment was the discovery of relationships between the quality of test-

ing and each of the sources of testing variability that affect it.

This was accomplished by an experimental design in which the testing

performances of subjects were observed under varying "conditions" of

alternative program types, testing approaches, and subject characteris-

tics. It was a second objective of the experiment to acquire experi-

mental observations to infer whether sources of variability in individ-

ual characteristics, program types, and testing methods affect the

forms of distributions related to reliability and its growth over time.

Sources of Experimental Variability

Because few testing experiments have been conducted for publi-

cation, there existed an opportunity to collect new kinds of informa-

tion frnm small debugging exercises that could better explain the rela-

tionships between program complexity, the arrival behavior of program

failures (manifestation of errors), and the controlled (code review,

test data selection) and stochastic (error discovery, error correction)

durations of debugging activities. Because of the high cost and short

81
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duration of the proposed experiment, it was necessary to consider 
at

length the dependence between the observationa~l variable chosen and

the mechanical considerations necessary to insure that these data were

collected accurately. The experimental activities of the testing sub-

jects had to be representative of "real" software testing, and yet be

sufficiently structured that subjects could participate in data record-

ing without undue annoyance.

The experiment was designed around three "objects" varied to

allow inferences to be made regarding the nature of testing. (See

Figure 7.) The experimental objects include:

• The Tester-subjects: a group of 22 professional programmers

chosen to represent a universe of conventional software de-

velopers of small- to medium-scale software.

* The Experimental Programs: a set of four s=all (60-300

lines) programs chosen to represent a universe of conven-

tional applications over several problem domains.

* The Testing Methods: two approaches--"white-box" and "black-

box"--chosen to represent one testing approach for each of

two extreme points of view.

Te details regarding these experimental factors are given below.

Experimental Subjects and

Individual Differences

In his analysis of a large verification experiment, Betzel

(1975) found that computing experience/education and self-confidence

were significantly related to better testing performance, with the

"best" of 39 subjects performing two to three times as productively as

the "worst." In deference to Hetzel's findings, it was assumed that
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Figure 7. A pictorial overview of the experiment
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the differences in individuals that affect testing performance could

be estimated by obtaining values for personal attributes.

Each of 22 experimental subjects was interviewed through a

questionnaire to obtain biographical data that might have a bearing

on subject performance. The data requested from each subject included:

• Subject Name

* Subject Age

* Subject Sex

• General Educational Background and Degrees Earned

* Educational Background in Computer-Related Studies

* Educational Programming Experience

* Educational Background in Programming Theory and Practice

Professional Background in the Information Sciences

• Professional Programing Experience

* Composition of Programming Experience by Programing Language

* Composition of Programming Experience by System Environment
(batch/interactive)

* Subject Estimation of Proficiency in Areas Useful to

Programmers

• Subject Indication of Familiarity with Theory and Practice
Regarding Each Experimental Program

Subjects were asked to include in their educational background any

high school or college coursework, as well as training schools,

company-sponsored educational programs, and extended professional

seminars. Professional experience included full- and part-time employ-

ment as well as independent development of skills. A self-assessment

of proficiency was asked of each user in categories ranging from aca-

demic fields of study to computing skills; responses were chosen from

a five-point ordinal scale.



In estimating his proficiency in the theory and implementation

of each of the four problem classes represented by the experimental

programs, a subject could choose among five ordered levels of familiar-

ity with the problem. Copies of the questionnaires used are included

in Appendix A.

Experimental Programs and
Their Characteristics

It is a natural and common belief among computing practitioners

and researchers that some programs are more difficult to program and

debug than others. Thayer et al. (1976) and others indicated that the

propensity to err in programming is related to the "size" of the task

being attempted and the number of paths of execution possible within

an implementation (i.e., program performing the task). One may denote

"size" as computational content, the degree of arithmetic and symbolic

processing represented by a program. Logical complexity is the usual

nomenclature used to denote the degree to which a program departs

from simple, sequential, unconditional execution.

It was hypothesized that the degree of computational content

and logical complexity associated with a program would materially af-

fect the performance of experimental subjects attempting to find pro-

gram errors. Hence an integral part of the experimental design was

the choice of four programs, representing each combination of high and

low degrees of computational content and logical complexity. The logi-

cal complexity of a program was measured by McCabe's (1976) complexity

measure and by TRW Systems' complexity metric (Thayer et al., 1976).

The degree of a program's computational content was assEssed by a
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method inspired by Halstead's (1977) metrics, which are defined in

terms of the number of program operators and operands. The formulae

for these metrics and calculations for each experimental program are

presented in Appendix B.

So that this investigator would have a feeling for the range

and sensitivity of the metrics, these measures of logical complexity

and computational content were computed for a sample of programs chosen

frcm an available program library. In this way, upper and lower bounds

were defined for low and high settings, respectively, of each metric.

Details are given in Appendix B.

All other decisions regarding the form and substance of the

experimental programs were made in favor of simplicity and representa-

tiveness. For reasons of convenience, accessibility, and ease of

experimental administration, the Keck Management Science Center of the

University of Southern California School of Business was chosen as the

experimental site. The Center's resident time-shared minicomputer sys-

tem (Hewlett-Packard 2000 Access System) was selected as the experi-

mental computing resource. All programs were written employing a small

subset of the BASIC language that most resembles other BASIC implemen-

tations as well as semantically similar statements in COBOL, FORTRAN,

FL/I, and ALGOL.

The precise choice of programs to be used in the experiment

was a time-consuming, iterative procedure. To ensure that the results

of this research would be generalizable to a large population of pro-

gram types, a large set of diverse programming problems was considered,

from which four programs were chosen for use in the experiment. Each

i,'r
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program candidate, in turn, was formally specified and coded in BASIC.

The metrics were computed for each successively coded program. If a

program produced unambiguously high- or low-valued measures for each

metric, it was included as a candiate for one of the four experimental

programs.

The experimental programs chosen were deemed as mutually di-

verse as possible. They are described below and in Appendix C.

* ITAX: a 123-statement program that computes state and

federal income tax in conformity to a set of prescribed

rules for income and deduction admissibility. ITAX is

low in both computational content and logical complexity.

* OPTM: a 70-statement program that solves for the local

optima of a fifth-degree polynomial. OPTM is high in

computational content and low in logical complexity.

* SCNR: a 260-statement program that determines and includes

the symbols of a fictitious programming language. SCNR is

low in computational content and high in logical complexity.

* LNPR: a 205-statement program that solves linear program-

ming problems by either primal or dual simplex algorithms.

LNFR is high in both computational content and logical

complexity.

Test Data Types

Of the test data generation methods discussed in Chapter I,

two were chosen to determine whether any differences in debugging per-

formance could be attributed to differences in the "program stimuli"

(program output on failure) generated by alternative test set methodol-

ogies.
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"White-box" test data were generated by following the proce-

dures outlined by Meyers in The Art of Software Testing (1979). A

program control graph was constructed and input data points were de-

vised to ensure that all of the major program execution paths were

taken. A "black-box" test data set was also constructed in conformance

with Meyers: test data points were included that verified conformance

to explicit rules of program behavior indicated by the program's

specification. Specific components of each test data set generation

category (black-box and white-box) are listed below. Descriptions of

each testing approach were given in Chapter I.

White-Box Black-Box

Path-testing Specification-based testing

Branch-covering Special values testing

Structural testing Functional testing

description of the steps taken to develop white-box and black-box

test data sets is detailed in Appendix D.

Program Errors

In attempting to discover the factors affecting program debug-

ging, this and all prior experiments (Rubey et al., 1975; Howden,

1978; Hetzel, 1975) found it necessary to use real programs containing

"1naturally occurring" errors. In an ideal experiment each subject

would develop a program from a common specification and be observeu

during his or her pursuit of errors. However, the cost involved in

conducting even a moderate-sized experiment of this kind wc"Id Ut

I . . . - S I -- m -m
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prohibitive unless the resulting programs were of some commercial use.

It is precisely this high cost of experimentation that motivated Boehm

(1973) to implore the computing community to record data on programming

projects so that the results of comparable development activities could

be analyzed in a post-facto "experiment."

To insure a comparability of stimuli to each experimental sub-

ject, it was necessary that each debugging participant face not only

bhe sae programs, but the same population of unidentified errors.

fter selecting the set of experimental programs, this investigator

aebugged each program and subjected each program to a collection of

white-box, black-box, and ad hoc test data sets. Each error found was

umbered and categorized as computational, logic/sequencing, or data

iandling.

These error categories were described in Chapter Il; a listing

of the specific errors found is given in Appendix E.

Experimental Design

Design Objectives

Each decision concerning the experiment was influenced by one

of two research motivations. The primary influence on the structure

Df the experiment was the necessity that analysis be able to disambigu-

ate the effects of various factors on observed performance. For this

eason a fractional factorial experimental design dictated the assign-

nnt of programs and test data to subjects. Although the effects of

individual differences could not be controlled, it was hoped that the

5ifferences among the performances of subjects under similar conditions

iI
~ ~.z2
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could be partially explained by the (measured) differences in back-

ground and personality. Some possible influences were controlled:

subjects faced identical programs on identical days of the week for

the same duration using an identical system.

The assignment of subjects to levels of experimental variabil-

ity is shown in Table 4. The table shows, for each subject, the group

of which each subject was a member, the order in which the subject was

required to debug the programs, and the type of test data sets pro-

vided for each experimental program. Debugging order is indicated by

a permutation of the experimental programs' initials (I[TAX, L[NR],

O[(TM], S[CNR]), and test data type is designated as black-box (BB) or

white-box (WB). The experiment produced 88 outcames, resulting from 1

replications of the 2 x 2 x 2 fractional factorial design.

The second general research motivation was the desire to pro-

vide better answers to questions about important activities in software

development and to test some of the assumptions prevalent among soft-

ware researchers and practitioners. Some of these questions were:

* Do individual differences matter--age, sex, education, or

experience with similar problems or similar programming

environments?

* Do the test data make a difference in the rate or nature of

errors found, or become important merely when verifying pro-

gram correctness?

* Are some programs inherently more difficult to comprehend?

Are those differences quantifiable?

* Are some types of errors more difficult to detect? Is de-

bugging a random sampling of remaining errors?
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Table 4

Asignlment of Factor Settings to Subjects

Test type by
subject/proqram

ITAX LNPR OPTH SCN1 Proqram

LoW High Lo High Logical cmplexty

Low Nigh B igh Low Computational content 1
Subject Group Debugging One Three Two Three Time allowed

number number order hour hours hours hours

1 1 LOIS U as us we

2 1 OLSI 33 an wa us

3 1 IZL as Ia IR No

4 1 LIO 35 as US WI

5 1 aOsl U us "a

6 1 C.IS as s "sa we

7 2 SM NO u as s

I 2 MO u us as ma

2 as asn 3 n us

10 2 LOS 23 3U "a Us

11 2 aso0 M MD 5 Ia

12 2 .So uS w a s

13 2 SILO us us 35 35

14 2 ISIO us us as as

15 2 3.,O us us a

16 3 ZOLS 3 I us us

17 3 30MI 1s us a5 s

1 3 O3I 3 33 Wo us

19 3 OSL w a an

20 3 SIOL una us mu as

21 3 LO as as us us

22 3 011. H us 33 33

L-- 7 OS w va s T -2
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The experiment was designed so that at least some of these questions

could be formulated in terms of statistical tests. It was hoped that

for the remaining questions, the results of this study would at least

provide the basis for an informed opinion.

Notation for Factors

and Observations

The experiment was designed to determine which personal and

environmental factors affect the detection and correction of program

errors. The recognition of erroneous program statements was considered

a significant event, and data collection forms were designed for re-

cording the specific errors found and the times of their discovery.

A variety of influences was expected to affect error discovery

times:

* The programs in which the errors were found

* The test data set types that subjects were permitted to use

* The backgrounds and personality traits of the subject.

The program characteristics that were expected to influence performance

were identified as the degree of logical complexity and coimputational

content. Each experimental program was chosen because it represented

one of four combinations of two factors at two levels. Moreover, for

each program, each subject was instructed to use one of two test data

sets--white-box or black-box. Hence each observation of a detected

error occurred in the context of one of eight experimental states.

ach subject was given a different ordering in which to debug the

lexperimental programs, in hopes of controlling any learning or degrada-

tion effect upon performance. Two basic types of performance measures

..... ...
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were determined for each experimental quantum involving a subject and

a program: the number and kinds of errors found and the time distri-

bution of these events.

Let Ejklm denote the number of errors found by subject m, where

0 implies that the errors were found in a program

of low logical complexity (ITAX or OPTM)

1 implies that the errors were found in a program

of high logical complexity (SCNR or LNPR){ 0 implies that the errors were found in a program

of low computational content (ITAX or SCNR)

1 implies that the errors were found in a program

of high computational content (OPTM or LNPR)

0 implies white-box test data were employed

1 implies black-box test data were employed

Furthermore, denote error counts mnemonically, as:

I Eo (ITAX, white-box),

m OQOm

Ib - Eoolm (ITAX, black-box),

pmW EOO m (OPTM, white-box),

b
P M E Ollm (OPTM, black-box),

Sm m ElOOm (SCNR, white-box),

S m Elom (SCNR, black-box),

L m EIIOm (LNPR, white-box),

L -= EII1M (LNPR, black-box).lllin

.!
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For analyzing error-detection times and interarrival intervals, let

it klm denote the time to the discovery of error number i for subject

m, where J, k, and I indicate factor settings as described above. The

superscript indexes the errors in an arbitrary order. Let t(') denotejklm
ththe time to the i error detected and represent an order statistic.

The number of errors known to be present in each program is fixed and

denoted as:

N = NI E the number of errors known to be present

in ITAX,

NOI = N * the number of errors known to be present

in OPrM,

Rio = NS  the number of errors known to be present

in SCNR,

and N11 = N L the number of errors known to be present

in LNPR.

All random variables will be denoted by the use of tildes;

hence, where x may denote an obse-vation prior to sampling, x repre-

sents the sample outcome. Sums of indexed variables will be denoted

by the replacement of the index of summation by an asterisk. Hence,

x 7- xjk*m . Jkm

and x Xk~m X jklm•
OgJgl 0gi

;Means will be denoted similarly with the addition of a bar. Hence,

-A.



I
II

95

Oj*ln 2

x
and x * n .

Experimental Procedures

Experimental subjects were recruited from industrial and aca-

demic environments in the Los Angeles area. To be considered as a

prospective experimental subject, each candidate was interviewed to

determine if he would be representative of the population of program-

ming professionals. The criteria for subject selection were that:

* The subject had been employed in a programming capacity

for at least 12 months in the previous five years.

* The subject was currently employed in a computer-related

field that required at least occasional programming.

* The subject had had at least a minimal exposure to the

BASIC programming language, and substantial experience

with a common procedural language (e.g., FORTRAN, COBOL,

or ALGOL).

* The subject had had some experience with interactive,

terminal-oriented programming systems.

Twenty-two subjects were engaged for the experiment and assigne

one of three dates for participation in the experiment. Each subject

was given a packet containing:

An introductory letter outlining the purpose and scope

of the experiment.

A questionnaire to determine educational, biographical,

* and professional backgrounds.
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* A set of four specifications describing the purpose, inputs,

outputs, and procedural approach for each of the experimen-

tal programs ITAX, LNPR, OPTM, and SCNR.

* Activity logs and program modification logs upon which to

record progress during the debugging of each program.

* An experimental timetable and map to the experimental site.

* A copy of the rules for Keck Center and the procedures neces-

sary for interacting with the Hewlett-Packard 2000 system.

* A synopsis of the Hewlett-Packard system coamands and the

BASIC language statements supported.

Copies of these documents can be found in Appendices A, C, and F.

The set of subjects was split into three approximately equal

groups; each group met on a different Sunday, during which the comput-

ing center was closed to all others. Each session was identical in

format, starting at 8 a.m. and finishing at B:30 p.m. with scheduled

breaks for orientation end meals.

During the orientation session the subjects received a review

of useful system coamands and anomalies of Hewlett-Packard BASIC that

had unavoidably been introduced within the experimental programs. All

subjects were instructed on the use of the data collection forms and

given the time durations allowed for each experimental program. Each

subject was told:

* the system account number and password specifically

assigned to him or her,

the order in which the experimental programs were to

be debugged, and

for each program, whether white-box or black-box test

data were to be employed.

i ,
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In each subject's program library were the programs and data files

necessary to conduct the experiment. These included:

The four completely debugged experimental programs named

ITAX LNPR, OPTM, and SCNR; subjects were able to run

these programs, but were prevented by the system from

listing them.

The four undebugged experimental programs named ITAXOO,

INRO0, Maw, and SCNROO; these programs were constructed

by reinserting the original errors within ITAX, LNPR, OTM,

and SCNR; subjects were permitted to modify, run, or list

these versions.

* Eight sets of test data sets--a "white-box" and "black-box"

set--for each of the four programs.

Subjects were asked to keep track of the time spent on each

program and required to record on activity logs the start and stop

times of each debugging activity. Activities included:

Code Review/Error Detection: any activity in which errors

are being sought by reading the program listing and compar-

ing it to program specifications.

• Error Correction: any significant time duration needed to

formulate tne "fix" required to eliminate an identifiable

program error.

* Terminal Work: any clerical activity involving use of the

computing system--making program changes, retrieving and

saving program versions, obtaining fresh program listings.

* Test Data Set Development: developing test data to exer-

cise the experimental programs; subjects were not permitted

to develop their own test data unless they had debugged a

program well enough that it ran, without error, all pre-

scribed white-box or black-box test sets.
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Break: any nontrivial mental or physical departure from

one of the above activities.

Upon detecting an error, a subject was requested to post the

statement number(s) affecting the error, the time of discovery, the

corrective action, and any comments that may have been of interest to

this investigator. This investigator and a proctor made periodic

checks on the progress of each subject and reviewed the data collection

sheets to insure that activity was being properly documented. This

investigator was available during each session to explain perceived

ambiguities in the specifications, aid those who had forgotten system

commands and procedures, and otherwise minimize the time that subjects

needed to spend in nondebugging activities.

AI

Lkil; __ ____
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CHAPTER V

DATA ANALYSIS

Basic Results and Descriptive Statistics

The 22 subjects constituted a diverse set of software profes-

sionals. Ten subjects worked full time for a cumpany whose product

was not cmputer-related, and 7 subjects were regularly employed to

produce software systems for resale. The remaining 5 subjects were

academicians currently teaching computer studies, and who had had sig-

nificant prograing experience. Ages of the subjects ranged from 19

to 53- Median age was 28 and mean age was approximately 31. There

were 5 female subjects of the 22. A histogram of the subjects' ages

is shown below in Figure 8.

x
x
x x x

X XXXXX XX XX X XX X X X X

8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

Figure 8. Distribution of subjects' ages
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Educational attainment was measured by five increasingly

specific variables:

Highest degree earned, an ordinally scaled variable with

permissible values (0) none, (1) high school, (2) bache-

lor's, (3) master's, (4) all-but-dissertation, or (5)

doctorate.

* Full-time years of schooling, which could include train-

ing courses.

* Courses in cmputer-related subjects, measured in "stan-

dard units"; a quarter-unit was assigned 2 standard units

and a semester-unit was assigned 3 standard units.

• Courses requiring a significant degree of programLing,
measured in standard units.

• Courses in programming theory and practice, measured in

standard units.

The subject set represented the full spectrum of educational background

Subjects' years of schooling ranged from 9 to 26 years, and all degree

levels were represented. The diversity of training in computer studies

was similarly wide; three of the subjects had virtually no formal train-!

ing in the field, vhile three had over 30-semester units of computer

studies. Educational background in programming theory and practice was

particularly dichotomous, with 7 subjects having taken no ccurses,

whereas 11 subjects had taken at least 4 courses. Histograms of sub-

jects' educational background are shown in Figure 9.

The first histogram indicates the number of subjects within

teach of the degree attainment categories (next to each 'N" signifying

a subject, is the number of years of schooling obtained by that sub-

ject). The three remaining frequency distributions show where each
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Figure 9. Sample distributions of subjects' educational background
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of the 22 subjects reside on educational scales measured by the number

of standard units (I semester unit) taken in different subject cate-

gories.

In Figure 10, the sample distribution of subjects' professional

experience is displayed. Any endeavor in the computing field was in-

cluded as general experience-programming, systems analysis, project

management, or teaching. Consistent with the wide disparity among

subject ages, the range of general professional experience was simi-

arly broad--from less than 10 man-months t3 over 160. The median was

approximately 55 ma-months, indicating a mild skewing to the right.

Professional experience in programming was significantly more skewed,

with the bulk of the subjects having worked less than 40 man-months

in programming activities. The left-shifted median of approximately

20 man-months reflects the tendency of subjects to shift to analysis

d management roles with experience, and as the non-programming

experience of the academicians in the sample.

X
X XXI

X XXX XXX I X XX X X X X
0 10 20 30 40 50 60 70 do W0 1C, 110 M. 0 10 1:10 !,; 170

Man-m~s of professional exeriene-pner.

X xXX
xx XX x~ xx:X

t.n-ewnahs of ;roftsslca.1 experie ce-prog -m.- --

Figure 10. Sample distributions of subjects' professional experience
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An attempt was made when selecting subjects to insure that each

subject had programmed in an envJronment similar to that of the experi- I

ment. Overall subject familiarity with interactive systems was high,

and most subjects indicated that their current programing was per-

formed on such systems. The vast majority of subjects, however, had

programed very little in BASIC, although all subjects had substantial

experience in similar procedural languages.

Unfamiliarity with BASIC had no apparent effect on the sub-

jects. There were virtually no questions regarding the language during

the experiment, and no evidence of its misuse upon analysis of the

subjects' work. Sample distributions concerning environmental factors

are given in Figure 1.

x K
X 2 X
X X X X
X XXX X X X 2

o 10 20 30 40 50 60 7o 6o 90 o

Percnt o educatioal experience In SMI

X
X
X
X

X
X X
XX X x

X X X X X X X X X X X

o 0 20 30 40 50 60 70 ao 90 100

Percent of prafessiam *3cYsrienc* in MBWZ

' X
' X

X
X

X X
X X X X X

X X X X X X X X X X

Force. of experience with l tertetie $Yait ms

Figure U1. Sm~le distributions of environmental variables
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The final question on the experimental questionnaire asked the

subjects to assess their knowledge and proficiency in 12 areas. This

question was motivated by Hetzel's findings in a related study (1975)

that confidence (as measured through self-assessment) correlated well

with testing performance. Hetzel asked a relatively homogeneous

group to rate themselves with reEpect to the other experimental sub-

jects. In this study, the subjects were (non-specifically) asked to

rate themselves. It was assumed that this nonspecificity would induce

the subjects to rate themselves against their perception of the generall

knowledge and proficiency levels of the population of computing profes-

sionals.

The group of subjects responded, as a whole, with a reasonably

high self-assessment. The most likel) response for every category but

one (operations research) was AVERAGE or RONG, and the response medi-

ans were closer to STRONG. Questions regarding subject proficiency in

programming tasks and knowledge of data processing principles were

responded to with the highest self-assessment. Other programming-

related skills were generally responded to with positive self-

assessment as was proficiency in mathematics. The two application

areas (probability/statistics and operations research) resulted in the

lowest self-assessment responses.

Table 5 shows a breakdown of responses by proficiency category.,

A measure was constructed by a linear weighting of each response on a

1scale of 1 to 5, resulting in a weighted self-assesement score for each

subject; a similar measure of overall omplc self-essessment was also

calculated for each category. The resulting distribution of category

I.
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Table 5

Breakdown of Self-Assessment Ratings by Category

Ratings
Category

Score1. 2 3 4 5

Data processing 0 1 7 1 2 77
Computer science 2 1 8 9 1 69
Systems analysis 0 2 8 10 1 73
Systems design 1 4 5 11 0 68
Program design 0 0 5 13 3 82
Program writing 0 1 7 9 4 79
Program debugging 0 1 8 7 5 79
Operations research 4 6 5 4 2 57
Probability/statistics 4 4 7 5 1 58
Mathematics 0 3 9 6 3 72
File handling 0 2 9 8 2 73
Algorithms 1 4 8 5 3 68

Rating 12 29 86 98 27Freqluency

x x x
XX XX XX X X X

54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

(a) Distribution of category scores

XX XX XX XX XX P

t4 26 '28 30 32 '3. 36 3 40 42 44 . 46 48 50 52 54 57'

(b) Distribution of subjects' weighted self-assessment scores

Figure 12. An analysis of self-assessment

S!
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scores is shown in Figure 12(a). The sample distribution of subject

self-assessment scores is shown in Figure 12(b). The subjects showed

little variability in their overall self-assessment, as is demonstrated

by the clustering of most subject scores in the interval from 35 to 45

on a scale from 12 (all very weak responses) to 60 (all very strong

esponses). The vast differences in the experience levels and educa-

tional backgrounds of the subjects makes this relative uniformity in

self-assessment somewhat surprising. It is conjectured that optimism

and confidence may have as much influence on a subject's self-

assessment as does the actual proficiency level developed by the sub-

ect. In the academic areas (mathema+ics, computer science,

probability/statistics, operations research, and algorithms), it is

conjectured that education makes one aware of ore's ignorance of the

rea at a rate approximating one's mastery of the topic. In support

of this conjecture, it was found that some subjects with little formal

training ranked themselves equal to subjects with graduate work in an

area.

After the subjects had studied the program specifications each

was asked to specify his or her degree of familiarity with the princi-

ples underlying the application dealt with by each program (theory),

Lnd to indicate the extent of experience with programing similar ap-

)lications (practice). A Eummary of the responses is given in Table 6.

ubjects generally expressed a greater familiarity ith the theory than

writh the techniques of implementing these programs. As to be expected,

iubjects were most familiar with the theory and practice of programs

. hr .;. 
ill
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similar to ITAX, an income tax calculator. OPTM, the most specialized

of the problems received the most negative responses, indicating lack

of exposure to the problem. SCNR and LNPR dichotomized the subject

sample somewhat. Those with computer science backgrounds or work ex-

rience in certain system programming areas were certain to have seen

ipplications like SCNR, whereas all others most likely would not have.

rhe theory behind INR (a linear programming code) had most likely been

exposed to those with a business school educational background. This

roved to be so, judging from many subjects' expressed familiarity with

he theory. Most of these same individuals, however, would not gener-

ly be engaged in scientific programming work, hence the very low

evels of experience in programming applications similar to LAPR.

Table 6

Breakdown of Familiarity Ratings

Not
Not Very Very

Familiar Familiar Familiar Familiar

ITAX-Theory 1 3 2 12 4

ITAX-Practice 4 4 4 7 3

LNPR-Theory 3 4 7 6 2

LNPR-Practice 9 7 4 0 7

OPTM-Theory 4 8 4 6 0

OPTM-Practice 11 7 0 3 1

SCNR-Theory 4 3 4 7 4

SCNR-Practice 8 5 2 4 3

Totals 44 41 27 45 18

.~~ . .

-.
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A synopsis of the questionnaire responses is given in Table 7.

Information regarding type, measurement scale, unit of measure, and

descriptive statistics is given for each variable represented by or

calculated from responses. Since each variable is at least ordinally

scaled, the response or response category associated with the lowest

and highest values is given under SAMPLE RANGE. Measures of central

tendencies have been computed where appropriate. Means have been com-

uted for some ordinally scaled variables under the assumption of equal

intervals. Two variability measures have been calculated: sample

iverage deviation and sample standard deviation. Where these measures

Lave been calculated for ordinally scaled data, the assumption of equal

Itervals has been applied.

The Composition of Program Errors

In the normal course of developing each of the experimental

rograms, errors were inadvertently introduced into the code. These

rrors were found, recorded and categorized during the debugging of the

rograms by this investigator. Three major classes of errors were iden-

lified:

* COMPbUATIONAL. An error in which a value is improperly cal-

culated due to an incorrect sequence of operations; these

errors are the result of a missing computation, an improper

expression, or a failure to recognize a machine limitation.

LOGICAL. An error in identifying the distinct subfunctions

of a program or expressing the control mechanisms used to

choose among subfunctions; these errors are the result of

A.
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improper branching or statement sequencing, an improper

Boolean expression, altogether missing logic or redundant

code.

DATA HANDLING. An error in the selection or initialization

of locations; these errors are the result of improper vari-

able initialization, the 1,se of the wrong variable name, or

an error in the expression of a subscript or substring

designation.

rhe enumeration of each error in all four experimental programs, as well:

is a more detailed explanation of error types and subclasses is given ini

kppendix E.

Each program error was assigned an error type (CcUUMIONAL,

OGICAL, DTA HANDLING), and a subclass. Each error and its type/

subclass designation is listed in Tables 8 through 1. In each table

Ls shown the frequency of discovery by subjects for each known error.

It is apparent that these errors were nontrivial since not one of the

2 errors was found by all 22 experimental subjects. There appears to

a dichotomy in the difficulties associated with finding errors in

STAX, LNPR, and OPTM. For these three programs, errors were found by

ost of the subjects, or few of them. The discovery frequencie.; for

rrors within SCNR exhibit better continuity, and appear somewhat like

a discrete version of the negative exponential distribution.

Each "X" in Figure 13 represents a program error, and is shown

pver the scale value corresponding to the nmber of subjects who found

it. This figure indicates the approximate distribution of error diffi-

culties, as measured by the percentage of the &aubject sample who

.-- .
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Table 8

Errors Found: ITAX

Error Number Number Found Error Type Error Subclass

1.1 6 Computational Missing computation

1.2 7 Computational Missing computation

2 5 Dta handling Var. by wrong name

3 16 Logical Wrong Boolean exp.

4 15 Computational Improper expression

5 14 Computational Improper expression

6 12 Computational Improper expression

7 5 Data handling Improper it.

8 12 Logic Wrong Boolean exp.

9 5 Data handling Var. by wrong name

o . "V
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Table 9

Errors Found: LNPR

Error Number Number Found Error Type Error Subclass

1 12 Computational Improper expression

2 31 Logical Wrong Boolean exp.

3 1 Data handling Subscript/substring

)4. 5 Logical Wrong branch/seq.

5 8 Data hamdlin Subscript/substring

6 16 Logical Wrong Boolean exp.

7 1 Data handling Improper init.

8 4 Data handling Improper init.

9.1 2 Computational Missing computation

9.2 2 Computational Missing computation

10 2 Computational Missing computation

1 4 Computational Improper expression

12 2 Logical Wrong branch/seq.

13 5 Logical Wrong Boolean exp.

14.1 2 Logical Wrong branch/seq.

14.2 2 Logical Wrong branch/seq.
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Table 10

Errors Found: OPTM

Error Number Number Found Error Type Error Subclass

1 18 Computational Improper exp.

2 21 Computational Improper exp.

3 21 Computational Improper exp.

3 2 Computational Improper exp.

6 13 Logical Wrong branch/seq.

7 6 Computational Machine lir.

8 13 Logical Wrong branch/seq.

1

- J -.__'i ". .. ...... .. , , ,, 
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Table 11

Errors Found: SCNR

Error Number Number Found Error Type Error Subclass

1 0 Logical Missing logic

2.1 1 Logical Missing logic

2.2 1 Logical Missing logic

2.3 0 Logical Missing logic

2.4 0 Logical Missing logic

3 1 Data handling Improper init.

4 3 Data handling Improper init.

5 3 Computational Improper exp.

6.1 9 Logical Missing logic

6.2 2 Logical Missing logic

7 7 Logical Wrong branch/seq.

8 2 Data handling Subscript/substring

9 3 Data handling Var. by wrong name

10 5 Computational Missing computation

11 19 Data handling Improper init.

12 6 Data handling Improper init.

13 8 Data handling Improper init.

14 0 Computational Improper exp.

15 1 Computational Missing computation

16 2 Logical Missing logic

17 0 Computational Missing computation

18 3 Data handling Improper init.

19 4 Data handling Improper init.

20 2 Data handling Improper init.

21 5 Data handling Improper init.

22 4 Data handling Improper init.

23 6 Logical Redundant

24 3 Logical Redundant

25 2 Logical Redundant



x X
x xx x x x x

rx&

x

x x x x
x xx x x x x x x

0 1. 2 ; i56 0 ;1 22 13 114 15 16 7 1 9 20 2

x x
K x x x x

o 2~ I 67 91 223 A1 15 16 17 18 19 20 21

x x x

x x x x
x x x xxx x

6 12 ~145 6 7 8910 ;1 12 13 14 5 16 17 1A 19 20 21

Figure 13. Frequency distribution of errors by program

glib



116

discovered an error. If all errors were equally difficult, one would

expect to see a symmetric histogram. The variability of subject skills

may account for the spread of discovery frequencies for SCNR; the range

of discovery counts is much too large for the remaining programs, how-

ever, to support the contention of similar error difficulties.

It is reasonable to expect error class frequencies to be re-

lated to the kinds of programs in which the errors are found. It would

also seem possible that the discovery of particular classes of errors

ght be related to program characteristics. For the purpose of ana-

lyzing these possible relationships, all of the information regarding

error discoveries has been sumarized in Table 12. The irterior table

entries give the number of times that each error was found across all

-2 subjects (numerator), and the nimber of errors represented by that

entry (denominator). Totals are provided across error types, error

ubclasses, and programs, as well as the ratios resulting from the

division of frequency of discove.- by frequency of occurrence.

In reviewing the ratios for ITAX (10.5, 14.0, 5.0), LNPR (2.0,

6.14, 3.5), 01PM (13.6, 13.0, -), and SCNR (3.17, 2.75, 5.0), there is

ao reason to suspect a relationship between the composition of error

iscovery ratios and program types. Program types do appear to strongly

.ffect overall discovery ratios, considering the low discovery ratios

For the logically complex LNPR (4.81) and SCNR (3.60). Across all pro-

grams, discovery ratios are highest for computational and logical errors

7.25 and 6.5, respectively), and lower for data handling errors. Cor-

respondingly, the error population of 0PTM the program with the highest
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discovery ratio, is composed mainly of computational errors, while the

error population of SCNR, the program with the lowest discovery ratio,

contains a higher percentage of data handling errors than any other

program. The error subclasses with the highest discovery ratios, Im-

proper Expression (11.0) and Wrong Boolean Expression (10.67) corres-

pond to the kinds of errors which would most visibly disagree with the

program specifications. The lowest discovery ratio, Missing Logic, is

associated with the least visible of all errors since it applies to

situations in which a conditional transfer is missing. Perhaps, second

in their lack of visibility are errors represented by the Missing Com-

putation category; this subclass also has the second smallest discovery

ratio.

Chi-Square Analysis of Error Frequencies

One question of interest in this research is whether errors can

reasonablybe modeled as equal in difficulty. Errors of equal difficult

should have an equal opportunity to be "sampled" (by the debugging pro-

grammer) by being discovered. The distribution of successive error

interarrival times could then reasonably be modeled as negative expo-

mential, as is assumed by various Software Reliability Theorists (see

hapter IV).

A hypothesis of equal difficulties corresponds to a hypothesis

:f equal error discovery frequencies. This latter hypothesis can be

ested by a X2 test. Each error is assumed to have an equal chance of

thxing included in the ni errors detected by the i programmer. Hence,

t is expected that each of the K errors will be discovered

I.
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e= 7 n/K=N/K
li922 i

times, where N is the total number of errors found by all subjects.

Let f denote the frequency of discovery for the jth error. Then the

X2 statistic

e) 2

l~j~k e

is approximately X2 distributed with k-1 degrees of freedom. Since

ach error discovery is not a random sample, the chi-square test condi-

tions are not fully met. Since, however each f is bounded by 0 and 22
J

(the number of programmers), not 0 and NK, this test is conservative

ince extreme values of f are less likely, as are large 1 2 values.

The results of this analysis are shown in Table 13. The hy-

pothesis of equally likely occurrences is rejected for each of the four

rograms at a significant level of = .05. Furthermore, the X2 values

for LNPR, 0PM, and SCNR are decidely improbable with probabilities of

occurrence of less than .01 for the stated hypothesis. A second test

ias performed for SCNB after removing the frequency accounting for 19

discoveries (a possible outlier); as can be seen in the table, the re-

maining frequencies still differ significantly from the hypothesized

frequency distribution.

Tables 8, 9, 10, 11, and 12 and Figure 13 emphasized the dis-

povery frequency of errors in an attempt to ascertain which errors

appear more difficult to detect. The order in which errors are found

is nearly as important in determining error difficulty, if one defines

"- .. ,.J! " , ,".., . .ii
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total time used that was counted toward error discovery was the minutes

of code review and error correction time spent prior to error discov-

eries. Any time spent by the subject using the computer terminal, con-

structing test data or "on break" was not accumulated in these totals.

One distributional analysis of error discovery times was con-

ducted on the reduced set of data systematically extracted from the

discovery times recorded by each of the 22 sets. For each experimental

program, subject error discovery times were studied and any error with

less than two discoveries among all 22 subjects was dropped. Similarly,

any subject who had found less than two errors was dropped from the

group under analysis. The resulting matrix of discovery times generally

included 60-80% of the known errors and from 10 to 16 of the original

subjects.

Tables 14, 15, 16, and 17 show the reduced data sets used for

the analysis of error discovery times. The columns indicate errors

that had a sufficient number of errors to warrant inclusion. Each row

lof the table corresponds to a subject, and excludes those subjects who

ifound less than two of the errors analyzed. The few errors found by

the excluded subjects tended to be those found most ofte., by the remain-

ing subjects. Hence, the remaining set of subjects is assumed to be

representative, if not of subject proficiency, at least of error diffi-

culty composition. The excluded errors had been discoverel at most

once; dropping these errors from the estimation procedure was expected

to introduce very little error in the results.

There were a number of reasons motivating this decision to

reduce the analysis set. The philosophical justification for excluding

'I
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"easy" errors as those generally found early and "difficult" errors as

those generally found later. It is more difficult to work with error

discovery orders since many individuals failed to detect some errors

altogether. One means of overcoming this difficulty, for each indi-

vidual, is assigning ranks to errors in the order that that individual

discovered them. The errors that went undetected are then a'l assigned

the average of the remaining ranks.

Table 13

Chi-Square Analysis of Error Discovery Frequencies

Number of Critical Value
Programmer Errors X2 Statistic =.05 Sig. cz=.01 Sig.

ITAX 10 18.98 16.92 4 21.67

LNPR 16 66.17 26.30 * 32.00 *

OFTM 7 23.96 12.59 . 16.81 .

SCNR 29 119.03 41.34 . 48.28 *

SCNR 28 57.67 4o.1 i. 46.96 *

Development of Discovery Times

During the course of the experiment, the data regarding the

activities of each subject were recorded. Every minute of the subjects'

debugging session was accounted for and significant events were "time-

stamped." These events included the start and stop times of each test-

ing activity, as well as the times for error discovery and correction.

Hence it was possible to compute the ordered error discovery times for

leach subject on a time scale which excluded irrelevant activities, and

;which was comparable for all subjects. For designated errors, the

.!
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Table 14

Error Discovery Times in Minutes (ITAX)

Error Number

1.1/1.2 2 3 4 5/6 7 8 9

-- -- 23 35 -- -- -

16 - 45 26 30 50 --.

15 15 55 25 35 - 55 -

-- - 14 - 20 28 - --

- - 28 30 52 46 -- -

37 15 35 -- - - 45 -

-- -- 25 50 55 - 45 -

- - 10 28 55 - 15 -

- 11 18 38 - 49 21 42

- -- 40 -- 25 - 50 --

- 17 - 33 50 - 20 30

30 -1- -- L- 5 1

Table 15

Error Discovery Times in Minutes (LNPR)

Error Number

1 2 4 5/6 8 9.1 9.2 11 13

97 77 102 -- 118 176 -- -- 107

-- 25 57 45 -- - -- 63

96 168 193 42 .. . . 148 --

150 - -- 130 --.. . . ..

14o -- - 120 - . . .. ..

-- 110 - 65 .. . . .. ..

130 TO -- 40 - - --

4o 184 200 78 - - 120 159 200

75 50 85 25 95 110 220 165 70

120 83 -- 15 -- - -- -- --

103 17 - 58 .. 1 1 136 --
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Table 16

Error Discovery Times in Minutes (OPIM)

Error Number

1 2 3 6 7 8

10 16 15 36 - 45

28 38 33 .-- --

7 1 9 16 - 39
20 24 22 25 60 30

5 13 6 47 - 21

14 17 23 - - -
- 31 21 86 126 -

- 20 10 50 - -

55 60 60 - - -

26 38 34 75 100 --

30 25 36 - -- 34

37 42 38 81 -- 82

25 30 30 -- 110 85

- 25 - - - 75

20 43 20 38 25 --

12 90 19 - - 30

['NA , .1.4!
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low-performance subjects was that these subjects were not representa-

tive of the population of skilled professionals to which these results

might be generalized. The practical reasons for subject exclusion was

that many of the estimations and search routines exhibited undue sensi-

tivity to a subject's lack of data. The exclusion of errors with only

one observation was somewhat more justifiable, as this exclusion did

not affect the number of known errors. The cost in terms of estimation

accuracy of excluding a single observation was assumed to be small.

Moreover, the inclusion of single points proved to make some of the

estimation algorithms unusable for all other errors.

Rank Analysis of Ordered Discovery Times

The first analysis performed on the set of discovery times in-

cluded a rank analysis to determine if there existed any uniformity in

the order in which subjects discovered errors. The discovery times for

each subject were ordered and assigned increasing ranks. Ties were

handled by the mid-rank method (i.e., if the mth through (m + J) dis-

covery times were identical, all were assigned the rank (2m + J)/2).

or any subject, if exactly k errors were found, each of the n-k undis-

covered errors were assigned the mid-rank (k + 1 + n)/2. Ranks were

assigned for all 22 subjects and included all known errors.

An inspection of the ranks from subject to subject informally

confirmed the hypothesis that errors were of unequal difficulty. While

some errors were nearly always found early by all subjects, other errors

were found by no subjects. If all errors were equally likely to be

hound in a given time, each permutation of discovery orders would bc
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equally likely. Such a hypothesis of equally likely permutations can

be tested by computing Kendall's coefficient of concordance. This

statistic (7) ranges from 0 to 1 and is a ratio involving the sums of

ranks across all subjects among whom discordance is hypothesized. The

formula for this statistic is given by

S 1 2 - 3M2n(n + 1)2

W =

3l4j~r m 2 (n2 - 1)T

m = the number of rankers

n = the number of ranked objects

where S =I R E sum of ranks for error J,

d (T= m t -8 (T I t

where tI is the number of ties and J is sumned over all sets of ties.

rhe hypothesis that is tested is one of no association among the m

rankings, and the value m(n-l)W is approximately chi-square distributed

with n-i degrees of freedom (Gibbons, 1976).

Twelve hypothesis tests were conducted. For each of the four

programs a group W-test was conducted. Then each of the group was spli'!

nto two groups, on the basis of whether white-box or black-box test

ata were employed.

IIOne would expect the differences in test data (white-box orI

black-box) to modify the order in which errors were found. If the sub-

Pects' error pursuit is strongly conditioned by stimuli generated by
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the program, and all errors are equally likely to be provoked by a

given set of test data, then different test data sets should influence

error discovery order differently. To investigate the effects of test

data type on error discovery order a Kendall's rank correlation measure

was computedusing the pairs of rank sums for each test data group.

The formula for this measure is:

= SV n)u, ]((n) v]

where the sum~tion is over all sets of tied ranks for each of the

groups ad n is the number of ranked objects (Gibbons, 1976).

Tables 18 through 21 contain the results of this analysis.

For each group (White-box ad Black-box) a product-moment correlation

hs been computed to compare with the i-statistic. The coefficients

of concordance show a very strong similarity of rankings among subjects

rwithin each group, for LNPR, OPTM, ad SCNE (significant at a = .O01)

ada weaker concordance for ITAX (a = .i). This suggests that the

low-ccmplexity, low-computation ITAX may contain errors of more similar

difficulty, thus leading the subjects to generate greater numbers of

~discovery permutations. Concordance among the total group is high for

~.lprograms, which would lead one to anticipate reasonably high cor-

relations between group rank sum. Such is the case with the highest

correlation found for the low logical-complexity ITAX and OTM. This

12

ul4

2 v r2

.... er the sumto is ove ..... set of.......... tied ranks for eac of th
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Table 18

Analysis of Discovery Time Banks (ITAX)

Error Number 1 1.2 2 3 4 5 6 7 8 9

Mean rank
(white-box) 5.77 6.05 5.77 3.64 4.73 5.00 5.77 7.68 4.14 6.45

Ranks 6i 5 8 1 2 3 4 9 61 10

Mean rank
(black-box) 6.09 5.36 6.41 3.55 3.77 4.59 5.45 6.45 6.09 6.73

Ranks 6 8 6 1 3 4 6 10 2 9

Notes. Kendall's tau statistic = .586

Significant for a = .05

Product-moment correlation = .704

Coefficient of concordance (white-box) = .190
X2 = 18.85 with 10 df

Coefficient of concordance (black-box) = .188
x2 = 18.70 with 1O df

Mean rankI

(total) 5.93 5.95 6.09 3.59 4.25 4.bO 5.61 7.07 5.11 6.59

Ranks 6 7 8 1 2 3 5 10 4 9

Notes. Coefficient of concordance (total) .161
X2 =32.00 with lO df
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Table 20

Analysis of Discovery Time Ranks (OPTM)

Error number 1 2 4 5 6 7 8

l~i Mean rank
(ite-box) 1.95 3.00 2.41 6.36 6.73 4.95 5.59 5.00

Rank 1 3 2 7 8 4 6 5

Mean rank

(black-box) 2.14 2.77 2.18 6.55 6.55 4.77 6.00 5.05

RamkS 1 3 2 71 71 4 6 5

otes. Kendall's tau statistic - .933

Significant for a = .01

Product-moment correlation = .992

Coefficient of concordance (white-box) = .640
X2 = 49,33 with 10 df

Coefficient of concordance (black-box) = 668
X2  51-50 with 10 df

Mean rank
(total) 2.05 2.89 2.30 6.45 6.64 4.86 5.80 5.02

Ranks 1 3 2 7 8 4 6 5

Notes. Coefficient of concordance (total) = .652
2 = 10o.45 with 1o df

.!

-. . . . .



131

cu 0%0-

W~C 4%..4y

P44

co op VL cu 6
P4 .40

k ra

KILA



1~2

I 4%

mdI. 00- -, - - * '0-

p a

S
.4 ~ -4 ' w

.4 3 a -4 -
ii a

a ~ w 3.

a 0 N

- I"
'0 -40

-4 -4 SB

*0

.4 * -4

.4 * * a
ft .4 .4

St a
0 0 ca

p
'~ .~. v~ ~ * C
-4 -4 -4

-4
'0 -

0 a
.4

05

* A
-4 9 -4

- - - - - 0

0
a.gI

'a
.4 -

4 .4 0

1 ifl
__ ~ i ~ a

- -----. 4 4 ------



q.. &.*5 .5- C ~
5 ~ -4-4

£ ~
-4 

.4"~ .~ -~ 0% 'S0'

-4 U U -K K

~. ~ 
U'

* M -4

-
11%

-
'0 -

-4-
U!11'4 33 

I- C
0I 

-
-408 - £41

4141 
C-

0% *. I.' U. 
'0%0 -4

-4 -4 
-4

U

8A 
S

- U 
Kw 

-40' '0

-4

C'J 

-

-4 ~ 
4" 

~

0

-- -- - 01 ~'.4 -4
S 

USS~ 
U01 * C ~ 

14%
sr% - '0 

--4 

U

* S.0.' 
0-4 Cu o~ sI-4 ~!4~ 
U

4.I 
U* Ii iii

:~ j Id.

4.

.5

I-,



1341

is to be expected for two reasons: First in low complexity programs

the number of execution paths is limited and test data will tend to

have less of an influence over the stimuli generated by program execu-

tion. Second, the number of total errors was small and a much greater

percentage of them were found by most subjects. Hence, a massive

assignment of mid-ranks for undiscovered errors was not necessary (as

it was for SCNR and LNPR), with its concomitant effect of "watering

down" rank discrimination.

Simple Correlations

Simple product-moment correlations were computed between all

combinations of questionnaire and performance variables (Table 22)

as these were needed for a later multiple regression. As will be seen

in later sections, many of these variables are subtlely interrelated

and simple correlations are insufficient as information for proper

interpretation. However, a few observations regarding the strongest

relationships will be made. The educational background group were in

general positively correlated with all performance measures. The

experience category appears to be of mixed value in predicting debug-

ging performance. Of the self-assessment categories, proficiency in

the technical areas of computer science principles and algorithms were

significantly related to performance, and, to a lesser degree, mathe-

matics and system design. Nearly all variables measuring subject

familiarity with the experimental programs were positively correlated

with performance. Moreover, familiarity with SCNR (the program which

most exemplifies applied computer science) was remarkably effective

in predicting overall subject success in the experiment.
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Table 22

Simpl. Correlations of Questioin='re Variables vith Performne. easures

Number of Errors Found

uestionaie Siaple Standardized

Variables flri U(P 0 SC?3 Total Total

E Age -.290 +.102 -. 031 -.123 -.104 -.119

D Years Schoo24e -.196 +.436 +.326 +.053 +.195 +.-15

C Riest Dege -.070 +.399 +.428 +.22 +.i0 +.3

A Caquter-Reate4 -.104 -.008 +.280 -.103 -.03T +.02
T Course VWk

0 C e Wkqi.1 .076 +.068 +.225 +.109 ..088 +.132N Coeu I01

A 7beory & Pra.ctice -. 125 +.061 +.049 .060 +.029 4.015
L Course Vork

Rjperlence -.185 +.183 -.147 -.095 -.051 -.08

p Eperienc -. 121 +.242 -. 352 -.104 -.048 -. 116
Proami_

-tsPrncIlesai -. 133 +.084 -. 234 -. 201 -.092 -. 133

S Cqter Science .2 .5 025 4O *.9435! pricp, ls ..12 +.158 +.015 *.1w +.,09 *-, 5

L

7 System Dm17"15 %.075 +.234 +.207 -. 20 *.077 +.134

A wast, Design 4..10 +.8 +.060 +.130 +.252 +.238

s Prgram D0,a +.316 4.17O -. 366 +.097 +.137 +.075

Progrm riting +.145 +.266 -. 436 +.222 +.181 +.o67

s Program Debu" +.169 +.333 -. 3W +.260 +.240 +.229

8 Oerstions, Imomrch *.l -.265 4.044 -. 042 -. 087 -. 053

2 Probablity/ +.0.35 -. 023 .. 55 -. 193 -.073 -.009

N Utatlstlcs
T itbmtics 4.235 +.161 4.224 +.078 +.199 +.242

File hA11n -.006 +.130 -.088 -.OTT -. o05 -. o14

Algorit-ms +.421& +.257 +.280 +.294 +.403 +.435

7 TrZAX-1eory +.334 +.297 .000 4.103 *.253 +.254
A II-Practice 4.295 +.316 +.088 +.297 +.362 +.345

I 1JII-feonr -. 097 +.064 +.347 -. ,0w -. 098 +.oo4

L ~ 13-Practice +.120 +.234 +.38 -. 005 *.18O +.254

A Fm-Teoy +.24 +.316 +.307 -.069 *.198 +.276

0P1+-Practice +.436 +.398 .290 +.154 .90 +.443

T SCM-Thsor- 4.182 +.417 +.237 .625 4.562 +.506

T Sl-Practice 4.375 4.507 +.1434 +.595 *.663 *.662



Multiple Regression Analysis

A series of linear stepwise multiple regression analyses were

performed using the performance variables (e.g., number of errors

found) as dependent variables and the individual questionnaire data as

independent variables. The intent of this analysis was not to arrive

at some useful formula for predicting an arbitrary programmer's debug-

ging performance. The small sample size (22) and large number of inde-

pendent variables (17) employed requires a skeptical attitude toward

the reliability of these regression results as some form of screening

device for choosing potentially good debuggers. It was hoped, though,

that the regression results would confirm some general notions devel-

oped by the investigator after many hours of studying the experimental

results.

A few observations regarding the subject group composition

helps in understanding the results of the regression analysis. The

group was specifically chosen for its diversity, as the variability

in age, education, and experience indicates. One could also identify

subgroups of like subjects: older, more highly educated computing

educators, young currently-active system programmers, and middle-aged

data-processing oriented applications programmers. There were, in

the sample, a selection of extraordinary subjects: a bright sporad-

ically-performing ninth-grade dropout, a very high performing computer

science professor with no formal education in the area save self-study,

and a highly-educated much-experienced subject with an (apparent)

background in systems programming (then education) who performed

!relatively poorly. The point of these observations is that the

iil
- ---.
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"average" group of programmers is quite often similarly diverse and

any analysis of a smll set of such subjects is apt to reflect the

widely-varying personalities of the group as much as the general

associations sought.

The variables used in these regression runs included age,

educational background, experience, and self-evaluation variables

extracted from the questionnaires. A list of the variables used and

some mnemonic abbrevations are shown in Table 23 indicating the results

of a forward-selection stepwise multiple linear regression using these

variables as predictor variables, and the number of errors found by

the program as the dependent variable. Table 24 shows the first six

variables selected by the regression routine for inclusion in the pre-

dictive equation. With each variable Is given the sign of the regres-

sion coefficient associated with each successive predictor variable.

Performance on MTAX was negatively affected by nearly all edu-

cational variables, as well as by familiarity with the theory behind

SCR, normally attained in an academic setting. All other variable

inclusions are inexplicable. ITAX was, however, the simplest of the

programs and most subjects did fairly well, leading one to conclude

that remainin associations (e.g., FPOPTM) may be spurious. Perfor-

mance on LNPR was expected to be strongly dependent upon an under-

standing of the problem, an ability to comprehend prolonged (mathe-

matically) algorithmic specification, and experience with some of the

subproblems within LNPR (e.g., matrix inversion). Experience with

problems like SCR proved more important, as it proved so in perfor-

mance on SCNR and OPTM.

- - - -- - - - -
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Table 23

Mnemonics for Regression Variables

Mnemonic

Abbreviation Variable

AGE Age
FTSCH Years of Schooling

HIBEG Highest Degree
SUCR Computer-Related Course Work

SURP Computer-Required Course Work

SLJTP Theory & Practice Course Work

EXPGEN Experience: General

EXPIG Experience: Programming

DPPRIN Data Processing Principles

CSPR3I Computer Science Principles

SYSARL Systems Analysis

SIMS Systems Design

P( ES Program Design

PGKWH Program Writing

PGMDBG Program Debugging

OPSIES Operations Research

PROBSTAT Probability/Statistics

MATH Mathematics

-FILHAN File Handling

ALG Algorithms

T'IT.A ITAX-eory

FPITAX ITAX-Pract ice

FTLML LPR-Theory

FPLNPR LPR-Prectice

FTOPTM OPTM-Theory

FPOPTM OPTM-Pract ice

FTSCNR SCNR-Theory

FPSCI SCNR-Pract ice

iil
t .
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Like ITAX most individuals found a fair number of errors in

L-PR so that characteristics of the few exceptionally high- and low-
performing subjects undoubtedly had a greater effect on the independent

variables selected. No reasoning is apparent, however, for the par-

ticular choices. Regression results for SC-R are well within expects-

tion. As SCNR was written as a finite state -automaton, educational

exposure to this formal theory was expected to be important, and proved

so with the inclusion of FTSCNR, CSPRIN, and HIEG. Since language

theor-, and, for example, compiler courses, are a rather recent aca-

demic topic, it is not surprising to find negative regression coeffi-

cients for age-related variables such as AC, SUIP, and SWXR.

The last column of Table 25 shows the results from a regression

with a standardized performance measure as the dependent variable.

This variable was computed as the sum of the standardized scores on

ITAX, JZPR, OMl4, and SCNR. The standardized scores were camputed by

subtracting from each subject's number-of-errors-found the mean across

all subjects, then dividing this difference by the sample standard

deviation.

The first variable to enter the regression equation for this

standardized total was the ubiquitous FPSCNR. As stated above, it

appears that those subjects who had had experience programming applica-

tions similar to SCNR performed significantly better than average. Fa-

miliarity with parsing algorithms like SCNE would tend to exemplify a

sophisticated computer-science-oriented individual with system program-

Iming experience, a likely candidate for high performance. Advanced

degree attainment appears as an important variable, even though it is

i'
II
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positively correlated with the adversely influencing age measures.

Further conclusions and speculations regarding the individual factors

affecting debugging performance requires allusion to results obtained

outside the regression analysis, and will be postponed until the next

chapter.

Analysis of Variance

For each program, the number of errors found by a subject was

divided by the length of the debugging sessions (measured in hours),

and the total number of errors known to be in the program. This mean

percentage of errors per hour (MPEH) measure was employed as the cri-

terion variable in an analysis of variance, performed in conformance

with a procedure outlined by Winer (1971). The division by the length

of the debugging session normalized the effect of differing time allot-

ments assigned for each program. The division by the known number of

errors adjusted the dependent variable (MEH) for the fact that each

of the four programs had a different number of resident errors avail-

able for discovery.

The first step in the data analyses is shown in Tebles 26 and

27 which reflects the experimental design. Each subject was randomly

assigned into one of two groups and each group was assigned four of the

eight combinations of program and test data type (see Chapter IV).

This design allows within-subject estimates of main-and second-order

effects to be made.

Following Winer, the comparisons associated with the effects

are computed by calculating the weighted sums of treatment combination

4 S
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Table 26

Sums of MEH for Group I

Subject
No. ITAX-BB LNPR-BB OPTM-WB SCNR-WB Total

1 30 6.25 12.5 2.15 50.9

2 70 145.8 25.0 4.3 113.88
3 40 20.83 25.0 9.68 95.51

4 60 14.58 31.25 9.68 115.51

5 40 lO.42 31.25 5.38 87.05

6 50 2.08 31.25 2.15 85.48

7 10 6.25 25.0 3.23 44.48

8 30 4.17 18.75 3.23 56.15
9 20 2.o8 18.75 0 4o.83

10 80 14.58 37.5 8.6 140.68

ii 30 2.08 25.0 3.23 60.31

Total 460 97.9 281.25 51.63 890.78

Table 27

Sums of NPEH for Group II

Subject
No. IAX-WB LNFR-WB OPTI-BB SCNR-BB Total

12 50 0 18.75 10.75 79.5
13 40 6.25 18.75 4.3 69.3

14 60 6.25 31.25 9.68 107.18

15 10 4.17 31.25 2.15 47.57

16 50 0 t. 1.08 6358

17 30 4.17 37.5 1.08 72.25

18 30 8.33 31.25 7.53 77.11
19 70 8.33 31.25 5.38 114.96

20 40 16.67 31.25 15.05 102.97

21 50 6.25 31.25 2.15 89.65

22 60 2.08 31.25 2.15 95.48

Total 490 62.5 306.25 61.3 920.05

sli



totals, shown in Table 28. These comparisons iLdicate a strong nega-

tive effect of logical complexity and computational content upon error

discovery as was to be expected. The table also indicates a large

positive interaction effect between these factors. This was also to

be anticipated as the MPEH's for LNPR (high LC, high CC) were higher

than those for SCNE (high LC, low CC) for many subjects. The summary

of this analysis of variance is shown in Table 29. The LC and CC main

effects, as well as their interaction, are clearly significant as

F. 9 (1,61) = 7.08.

The surprising and counterintuitive result is the positive

effect of LC-CC interaction. The subjects found, on the average,

more errors within SCNR than within LNPR, but SCNR had almost twice

as many known errors, leading to a saller mean percentage of errors

per hour. SCNE was shown in an earlier section to be composed of more

difficult errors-those with low visibility. Apparently this differ-

ence more than offset the greater number of errors within SCNR. With

larger programs like SCNR and LNPR the effects of successively larger

error discovery times becomes important. Hence the effect of doubling

the number of errors in a program is apparently not reciprocally offset

by a proportional increase in error discoveries. This fact may have

made SCNR more difficult to debug than LPR, even though the latter

had a higher degree of computational content.

A Distributional Model of Discovery Times

It is reasonable to assume that the search for program errors

is indiscriminant, in that, a priori, no error is singled out as the
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object of pursuit prior to its discovery. Hence, one may conclude

that the search for all errors proceeds simultaneously in parallel

time, and that the differences among discovery times is attributable

to the error "obviousness," the programmer's skill in pursuit, and the

effects of randomness. The simplest probability model describing the

likelihood of error discovery is that of the negative exponential dis-

tribution. In adopting it, one assumes that, for an arbitrary error,

the probability of finding an error in the next small time quantum is

identical irrespective of the length of time devoted thus far to the

search.

It was further assumed that the differences between the rela-

tive proficiencies of any two subjects could be approximated as a linear

effect on the subject's rate of error discovery. The relatively good

concordance of error discovery time ranks lends some support to the

hypothesis that a subject's skill in debugging is reasonably indepen-

dent of the particular errors left to discover. In conformance with

this assumption, each subject's proficiency was hypothesized to be

expressible in the form of a discovery rate multiplier P where, for

example, P /k equals the ratio of subject i's discovery rate to

subject J's for an arbitrary error.

A similar assumption was made regarding the relative difficul-

ties of specific errors. Associated with each error j is hypothesized

a difficulty index a , which equals the basic discovery rate for an

error; hence, differences in error difficulty are assumed to be con-

densible into an arrival rate-which is independent of the subject or

length of search. Each subject's inherent debugging skill is

S ~ -. . .
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irepresented as the subject discovery rate Pi" This "skill index" is
I 

i

lassumed to be independent of the particular errors being pursued and:

constant over the debugging interval. Each subject is assumed to be

independent of the particular errors being pursued and constant over

the debugging interval. Each subject is assumed to have spent some

amount of initial time V, (that was measured as debugging activity)

reading the specifications or performing some other activity during

which error discovery was impossible. The associated density function

is given by

f j(ta i ,Pii) = (a j P ) e-(aJi)(t-Pi)

Each error is assumed to be the subject of a search which is indepen-

dent of the search being conducted simultaneously for all other remain-

ing errors. Furthermore, the activities of each subject are assumed

to be independent of all other subjects. Hence, one may assum each

error discovery time t iJ to be an independent random variable, and

express the likelihood of error discoveries and non-discoveries as

) l~iQ4 M[ fi j (tij; J i i 1  jT)] ]  (5.1)

-(aJ pi) (tl-i -(aZ p ) (T-pi
_- n nI "(a P e • " jp) e ji i
l si m [Jr:1i jE -Ri

which may be alternatively expressed as

n ]a (a J e -(aJpi)(tij14i) H J(ajpi)(T-i) . (5.2)*

I or the formulae above an all other discussion of discovery times, the

following notations will apply:

lj

I..
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* N is defined as the number of errors in the program.

M is the number of debugging subjects.

Ni is defined as the number of errors found during debugging

by the i'th subject.

* M. is the number of subjects finding the J'th error.
J

* ti is the time to discovery of error number j, by the i'th

subject, where j is an arbitrary index over program errors.

ti(j) is the time to discovery of the j'th error, by the

i'th subject, and is an order statistic, where ti(o) = 0.

' lj is the time between the discoveries of the j'th and

(j-1)'st error, by the ith programner and ZAj = ti(j) - ti(jl). I

p ii is a location parameter designating the time at which the

i'th subject commenced debugging activity, and p = (p1 ,..

a j is a difficulty index, the discovery rate associated with

the J 'th error, for the "average" subject, and a = (cl . . . ,%N).

Pi is a proficiency index, the discovery rate associated with

the i'th subject for the "average" error, and p = (pl,...,OM).

* j [1,...,M) of cardinality Mj, denotes the index set of
subjects who discovered error number j.

Ii L (1,---,N) of cardinality Ni, denotes the index set of

error numbers found by the ith subject.

• T is the time interval over which debugging was performed.

The first form (5.1) is convenient for deriving the conditions for the

naximum likelihood estimator vectors = ( i,-.. ) and =

p(l,...,y ). The natural logarithm of the likelihood function is given

by

In L(2,p,) I np-(CtjP)(t -Ild )- Z (T-p.[_ E2 I  j.

--
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The likelihood function is an increasing function of i.; hence it is

maximized at

i= min(tl) = tj( 1) ,

the first-order statistic on the set of discovery times for each sub-
ject. Maximum likelihood estimators a and p can be found by classical

ptimization methods. Let

0 nL(-') -d "  a (T -

d Pfl C' tk k

0kP JJEJ.k

ren = iNkZa jt +Z T -a .)

for a s a1 + "" + C. The second form of the likelihood function

(5.2) is more useful for the derivation of the maximum likelihood es-

timators for a. The natural log of this function is given by

n L(apg)n= I [ n(p,)-(ajp)(tj-Vi) (,)(T-)l

d adk Lan Ia k i Pi)] _ ielk i i

Mk
E - Apt - pT+ p

a.k ZE k i ~ ss

/

j.
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P +k P i ik
+ T + Pili

iclfk iqk ss

In the case that all errors are assumed to be of equal difficulty, then:

a j = a for all J, and

N
S 1 t + (N -ni)T- N i7

here estimates the arrival rates for each discovery time distribu-

tion associated with the M subjects.

The main purpose in hypothesizing the existence of an indepen-

dent subject skill index (p) was that it permitted this investigator to

aggregate the discovery times over subjects to obtain more reliable

estimates of distributional parameters. A program was written to maxi-

mize the likelihood function (5.1) by searching over the parameter

space. This program jumped from parameter space point (2,_.)(k) to

point (a,p)(k~l by a means of a steepest ascent algorithm based upon

the Newton-Raphson method. The program converged relatively quickly

land consistently to solutions.

This program -was run with two settings for the location parame-

ter: pi ti( 1 ) (the first discovery time) and #A = ti(l)/2. The

choice of = ti(l) was due to its role as the maximum likelihood es-

timator (ME) for Li. This MLE is always positively biased however,

and a more reasonable estimate of subject starting time was sought.

Under ideal experimental conditions, i could be assumed to be 0, as

ii  .. .....
-"- .. .. ..
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subjects would presumably commence with error pursuit immedlately.

Conversations with some of the subjects, together with coz nts on the

activity logs and unusually large first arrival times, however, made it

evident that some nonspecific preparatory time had been spent by sub-

jects during which the discovery of errors was impossible. It was

arbitrarily assumed that one-half of the time to each subject's first

discovery was uncountable. This assumption is probably in error for

those subjects with short first discovery times, but also has little

effect on the estimators since it can only differ from the true pi by

a mallI amount. Those subjects with long first discovery times may

well have spent longer than one-half of this time reading the specifi-

cations or some other preparatory activity. By not recognizing this,

the errors eventually found will have overstated arrival times and this

will tend to decrease the errors' estimated arrival rates. In any

event, no better solution seemed evident.

Maximum likelihood estimates a and p were determined by the

search program for each of the four experimental programs. Not sur-

prisingly, the discovery indices for errors (a) corresponded well to

the error discovery frequencies. Similarly, the proficiency indices

(4) were in general conformance with the number of errors found by

each subject. For fixed and known M, these estimators are asymptoti-

cally unbiased (as N increases). Because L(a,pp,) is not a concave

Ifunction, it is not justifiable to use the inverse matrix of second

partial derivatives (evaluated at as estimates of the sampling

icovariances among parametric estimators (Bard, 1974). Although these

I



153

estimates, judging from the way that the search program slowly con-

verged to these estimates without wild fluctuations. The MLE's

(a,p) found for the likelihood function L(S,_Pp=(1)I2) are approxima-

tions to one of an infinite set of 1LE vector pairs. Since every term

'in (5.1) involving a is always multiplied by some p,, for any maximum

(C,p) there exists a maximum (ca,p/c), where c is a scalar constant.

One consequence of the nonuniqueness of the ME values _,_

is that they cannot be compared among different experimental programs.

Within any experimental program, however, the ratios of any two subject

proficiencies or error difficulties can be computed without concern

for the value of c. The ratio of the smallest estimator value to each

of the others has been computed for the ME's found for each of the

four experimental programs and is shown in Tables 30 through 33. The

range of difficulty index ratios is smallest for ITAX, the simplest of

the experimental programs. The remaining programs have a much greater

range of difficulty index ratios, indicating the presence of some dis-

tinctly nontrivial errors. Like the difficulty index ratios, profi-

ciency index ratios express a difference in error discovery rates.

IThe proficiency index ratios for ITAX, SCNR, and LNFR indicate a rea-

Isonably small range of subject debugging rates with the median rate

about one-half the rate of the fastest subject's, and twice that of the

islowest. Debugging proficiency for OPTM has a much greater range; the

results indicate that the fastest subject debugs approximately 20

times faster than the slowest. It should also be remembered that a

number of subjects were not included in this analysis for the lack of

a sufficient number of discoveries. Hence, it may well be the case

iA.
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that proficiency ratio ranges of 30 to 1 exist for all four programs.

This surprisingly large range in debugging rates agrees with the 27 to

1 range in debugging performance reported by Sackman, Grant, and

Erickson (1969) in an early study of this kind.

Test for Exponentiali t

The maximum likelihood estimator values found for the model

f- j(tlJjP,,,p ) = (aj p ) e-( Jp i) (t-pi)

were used to transform each t j to a variable with an identical distri-

bution for all subjects and errors. Using = ti(1) /2 and the MLE's

a and ^P found by the search routines, each discovery time was converted

to a standardized variable z j with a unit negative exponential distri-

bution. This was accomplished through a change of variables, with

ti = UiJ +

i Pi

and g(zJ- f(t ij(zij)) d ij "

The resulting distribution of zij is simply e-ZiJ, and all transformed

discovery times are identically distributed, as desired. The frequency

distribution of these standardized discovery times is shown in Figure

14.

It is difficult to determine the fit of these data to a nega-

tive exponential model, as a great number of errors went undiscovered

across the ensemble of subjects. Hence, to the right of the histogram

I.
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scale in the figure reside a number of "eventual" discovery times, the

exact values of which could not have been obtained without extending

the experimental sessionb indefinitely. However, a test for confor-

mance to a negative exponential distribution does exist for censored

samples such as this.

The Gnedenko test is among the most powerful tests of exponen-

tiality for censored samples (Monn, Schaefer, & Singpurwalla, 1974).

The test statistic, Q, is derived by computing

r1

I (si/rl )

Q(r1,r2) =

2 (Si/r)
i=r 1+1

where each Si is a weighted interarrival time of the form

Si= (n - i + 1)(t(i ) - t(il)) (t(0) = 0)

and n is the number of sample points. The terms r1 and r2 indicate an

arbitrary partitioning of the r available arrival times, where n-r data

points are unavailable (censored). Q(rl, r2 ) is approximately F-

distributed with 2r and 2r2 degrees of freedom. Because the

r(=rl+r2 ) ordered arrival times can be split anywhere for calculation

of Q, an equal split (rl=r 2 ) is often employed. When rl=r 2 the ex-

pected value for Q is 1, under the assumption that the arrival times

are identically distributed, negative exponential random variables.

For each set of standardized discovery times, a Q value was

!calculated. With samples of the sizes obtained from the experiment,

any Q value less than 2/3 or greate: than 3/2 indicates a significant

6M".
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departure from exponentiality. As shown in Figure 14 every set of

discovery +imes generated a Q value substantially less than one. This

result is normally accepted as evidence of a decreasing hazard rate

(the instantaneous discovery rate). Even after normalizing each

error's discovery time by its difficulty index, it appears that error

discoveries become decreasingly probable as time goes on. Further

speculations regarding the cause of this phenomenon are given in the

conclusions.

Software Reliability Models

The simplest and most-used model of software failure behavior

is that proposed by Jelinski and Moranda (1973) in which software

failure interarrival times are assumed to conform to a stepwise de-

creasing negative exponential distribution. This was shown in Chapter

II to be equivalent to a model in which all program errors are iden-

ically distributed, negative exponential random variables with common

mean time to failure and arrival rate. The preceding analyses in this

chapter have shown the error arrival rates to be significantly differ-

ent within a program, even after accounting for subject differences.

ris finding is in agreement with Littlewood (1979) who demonstrated

hat the Jelinski-Moranda model underestimated the mean time to failure

n many cases. Littlewood also showed that the Jelinski-Moranda model

kictated a distribution of number of errors remaining (by time t)

which was insufficiently skewed in the right tail when compared to

real data obtained from large programming projects.

II



162

These observations by Littlewood apply equally well to the

discovery times obtained from this experiment. The maximum likelihood

estimates for difficulty indices varied substantially from error to

error. If errors have a similar range of difficulty in all programs,

one would expect the number of errors found by time t distribution to

be significantly more skewed than if all errors were equally difficult.'

Moreover, even when error discovery times were standardized by the

differing difficulty indices, the Gnedenko test indicated (signifi-

cantly) the effect of a decreasing discovery rate over time. This

finding further demonstrated the failings of the Jelinski-Moranda

model for the experimental data obtained in this study.

To demonstrate the inaccuracy of the stepwise decreasing ex-

ponential model, the discovery times for all subjects were aggregated

(for each program) by cumputing discovery rates A as shown in equation

(5.7) in the preceding section. These discovery rates were used to

create standardized discovery-time variables

_A A
zlj- (t ij P-

which normalized for the effect of different subject proficiencies and

starting times. In place of N in (5-7), a maximum likelihood estimate

Nwas used.

The development for these MLE 's is straightforward. Each sub-

ject found n i errors and failed to discover N-ni at a rate 'A ap
i i i

where a is the common error difficulty index and p the assumed subject

proficiency index. Discovery times t j are reduced by pi equalling

,one-half the first discovery time for each subject. Then the likeli-

* E
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hood of any one subject's particular error discoveries (including the

order in which they were found) is given by

n e Xitij (e-iT)N-i

Errors are assumed to be indistinguishable, and so the joint likelihood

function for the ordered sample, including all subjects is given by

N j ' Ni e itj .- iT(N-N)
L = ]I i  nI e e

where n= X. N.
l3i4M 3

The MLE for each subject's discovery rate is derived as

In L =n N! -n(N-n)! + . LNin - ? ti iT(N-Ni

d d___ - - 7 - T(N-Nk )dn d Ak JE a kj

iplying that = 7 + T(NNk)ii~~p )k Eci t kJ + T Nk

jetk

An estimator N for total program errors is determined by calculating

U (nL- T ZX --
dN -

and finding the root N of this equation in N. The estimates N were

computed for each of the four experimental programs. The true values

.1
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for N were available, of course, and equalled the number of known

errors in a program times the number of subjects for whom discovery

times were analyzed. The values for N and N are given in Table 34.

The predicted number of resident errors exceeded the I, -on number

greatly for all programs. The reason for this is that the estimating

routines "made up" for the declining rate of error discovery by pre-

icting that a larger number of errors were being found at a fixed

rate.

Evaluation of the Order Statistic-Based Model

In Chapter III, a software reliability model was introduced,

in which error discoveries (or software failures) were assumed to be

order statistics on an underlying mixture distribution. Under the

assumption of exponential discovery times and ganna-distributed arrival

ates, each error discovery was found to be distributed as

f(t;a, ) = +,(t + )I+

'he Pareto distribution discussed by Littlewood (1978). The ordered

iscovery times obtained from the experiment were used to compute the
A A

maximum likelihood estimates for a, 0, and n for the likelihood func-

tion

I f (1)'''" (k) (1),..,~)-, n

(n-0)7 )A(n-k)  a (Z +

(k) 15ilk

* "; , ...-.
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Table 34

Comparison of True and Estimated
Error Population Size

Program True N W I N

ITAX 96 221

LNPR 99 304

.OFT'k 96 iL84

-SCNR 170 743

- - . - . . . . . .. . . . . . . . . . . . .
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For each experimental program the ordered observation vector. Z(.)6

was composed of all standardized discovery times recorded for all sub-

jects in the reduced discovery time set (see Tables 14 through 17). A

standardized time for the i'th subject and error j was calculated as

Zij = - ;I)

by using the sets of maximum likelihood estimates Pi and pi given in

Tables 29 to 32. It was assumed that this normalization would adjust

for individual subject's starting times and discovery rates, and yield

standardized times for aggregation. The set of times U ijI was then

ordered to produce the order statistic vector Z(*).

A program was written to conduct a Newton-Raphson search over

the parameter space ((5P,,n)) for constant values given by Z(*) and k,

and with the objective function

in L(a,,n) = £n(n!) - An(n-k)' + nP £n(a) + k In(P) -

P(n-k)2n(Z(k) + a) - £ (p+I)(Z(i) + a)

As can be seen from the log-likelihood function, for fixed n, increases

in a could be paired with decreases in 0 and result in similar objective

function values. Unlike the (a. ILE search for equation (5.1), the

reciprocal nature of (aP) pairs resulted in prolonged searches over

the ((a,P,n)) space. This iterative search yielded log-likelihood

values differing by a fraction of a percent for vastly differing LE

triples.

'S ', - ,
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The optimal MLE values found by the search program were uni-
A

formally discouraging. In every case, the MLE n coverged upon a

value slightly greater than k, the number of known error discoveries

as shown in Table 35.

Table 35

Comparison of True and Estimated Error Population Size

True Estimated
Program k nn

lX 48 96 52

UM 47 99 56

OPTM 67 96 77

SCNR 67 170 76

Me search program was re-executed to search over ((cr,)) fixing n at

the true value for each experimental program; the resulting log-

likelihood values differed very little from the optimal values.

This evidence was sufficient to convince us that the Gamma-

Exponential model was ill-suited for describing discovery time behavior.

ike Littlewood (1978) we could have used successive MLE's to determine

if successive ordered discovery times produced uniformly distributed

fractiles when applied to the next-discovery-time distribution. This

*1
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was not done for two reasons. First, the (unconditional) discovery

time distribution was proved non-exponential by the Gnedenko test (in

contradiction to our model), and the ganma distribution for difficulty

indices was primarily chosen for its flexibility and mixing compatibil-

ty with the exponential (as opposed to having chosen it for scme form

of representativeness). Second, the proper estimation of error popula-

tion size seems to us an important property of a software reliability

distributionj and this property should be a necessary property of an

adopted model.

'Il

.* -



CHAPTER VI

FD INfGS, CONCLUSIONS, AND SUGGESTIONS

FOR FUR R RESEARCH

Findings

An exploratory study was conducted to determine what personal,

environment"J) and program-related factors affect the process of dis-

covering errors in computer software. In a controlled setting, a

group of software professionals searched for errors in programs whose

error composition was known, and which had been developed to represent

various degrees of computational content and logical complexity. The

subject group exhibited a wide range of ages, experience, and educa-

tion, whereas less diversity existed among subjects' self-assessment

and prior exposure to the program applications. Subject performance

was measured by the number of errors each found and this performance

measure was positively correlated with both general and computer

science-related education. Other analyses indicated that the most

important factor in performance was the amount of recent progranming

experience held by a subject. Subject performance also differed from

program to program, and an analysis of variance led to the singling

out of logical complexity as the most significant factor, with the

degree of computational content a distant (but significant) second

and test data type exhibiting no significant effect on subject perfor-

mance. A significant negative ijteraction effect between logical

.1*9
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complexity and computational content signified deficiency in the mea-

surement of debugging performance.

An analysis of the errors found by subjects indicated that

logical and data-handling errors were more difficult than computational'

errors, and that the total set of errors represented a wide range of

associated difficulties. There existed a similarly wide range in

subject proficiencies. Maximum likelihood estimates of error diffi-

culties and subject proficiencies were obtained and a test for expo-

nentiality of normalized discovery times indicated a significant

departure from exponentiality, due to the presence of a decreasing

instantaneous discovery rate over time. To this decreasing discovery

rate can be attributed the subsequent overestimation of error popula-

tion size by the Jelinski-Moranda and our proposed software reliability

models.

Problem Background

The program error has served this study as the single subject

of research and experimentation. Yet, ten years ago this study would

have been impossible to conduct properly, because of the crucial lack

of a conceptual framework with which view the programming process.

During the first thirty years of the computer era, the program error

was often viewed as some form of retribution to those who were not

properly trained or sufficiently creative software artists. During

the 1970s, however, the program error has risen in stature. Methodo-

logies have evolved that would help limit its numbers, pursue its

incarnations and estimatc the number of survivors.
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This interest in error prevention, detection, and correction

has evidenced itself in functional computer research areas: Operating

systems must not only allocate resources but also protect the entire

software system from the damage that may result from errors hiding in

one system element; programming languages must now be more than com-

prehensive, powerful, and efficient--they must help express intent

and facilitate proofs of program correctness; hardware must exhibit

fault-tolerance as well as fault detection.

Alongside the growth of these traditional areas of computer

study have evolved disciplines addressing directly the problems of

software "mis-construction." These areas may be loosely aggregated

as the field of validation research and further bifurcated into the

realms of verification and testing. Verification research is largely

a product of the computer science ccmmunity and clearly the more

"optimistic" of the two approaches. The most important goal of veri-

fication research is the development of conceptual and material tools

i with which to prove program correctness before, during, -nd after its

development. The long-range aim of verification research is the de-

velopment of a language with which to express problems and the identi-

fication of correctness-preserving transformations that guarantee the

absence of errors. Until that end is achieved there is the clear need

fo.' methodologies which aid in error discovery.

These methodologies include the area of software testing which

_,eas acceptance as an important research area as well

The questions addressed within testing

"zx-plete test sets and the
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procedures for generating flovchart-covering input data. Of primary

concern is the notion of test criterion reliability: the demonstration!

that a procedure for generating test data will find any errors in a

program.

The most immediate and obvious response by the computing com-

munity to the crisis in software reliability has been through the ex-

pansion and redefinition of the testing phase of software development.

Most of what is now testing was once considered an integral part of

program writing--a part that should not have been necessary, but (some-

how) always was. An enlightened and mature software development com-

munity is now beginning to consider testing in the same positive way

that product assurance is conducted in other manufacturing processes.

The painful experiences of the past have forced software professionals

to develop testing innovations like automated test tools, requirements-

based testing procedures, and independent testing departments.

Between the rigorous expositions of formal testing theorists

and the published recomnendation of testing practitioners lies the

body of literature regarded as Software Engineering. The title of

software engineer indicates an expression of professionalism and

acceptance of responsibility beyond that of the "sensitive software

artist." Like other engineering disciplines, the software engineer

seeks to develop methods and procedures which bring precision into the

construction of software architectures.

The foremost interest among Software Engineers is Reliable

ISoftware. It is the theme of conferences and the topic of journals.

Ma
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Having reliable software as a goal is the admission of the inevit-

ability of systemic imperfection. A Reliable Software product (as

opposed to a correct one) is a system which performs what is expected

of it in a satisfactory manner over a reasonable period of time. The

reliable system is attained by gathering information about its behavior

and correcting deviations in this behavior from that intended. Viewed

in this fashion, the minimization of errors becomes the dual of the

problem of maximizing reliability.

Software Reliability Theorists model the attainment of program

reliability as a process obeying general principles, irrespective of

the software being tested, the testing approach used, or the individ-

uals involved. The search for errors in the time domain is viewed as

a stochastic process with error discovery as the significant random

event. The overriding motivation for this viewpoint is prediction.

If the reliability of a software system is a function of time, then

the determination of that function permits the software engineer to

predict the time necessary to achieve a given level of reliability,

the estimated number of remaining errors, and other indicators of

reliability growth. In the real world of software development, these

predictions must be made anyway, since budgets must be set and manpower

planned. Whether software reliability theory is yet mature enough to

merit the attention of software developers is the subject of debate.

The fact remains, however, that in the absence of models of program

behavior and reliability growth, the software developer is left only

with intuition and speculation.

1
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Experimental Approach

This study was initiated so that a better understanding of

software validation might be gained through the comparison of current

approaches and the analysis of experimental results. It was apparent

from discussions with leading practitioners, and researchers in the

field, that at least two distinct approaches were available to the

researcher seeking to test models of the error discovery process. The

deterministic view is held by most computer scientists and practioners.

The success of a software development project is seen as a function of

the development environment and the nature of the project in question.

This approach to understanding the "software problem" focuses upon the

influence of tools, personnel, and test methods upon the quality of

the software product. The second approach is tied to the stochastic

model of software reliability theorists in which any software good is

viewed as a belonging to a group whose members conform to approximate

model of aggregate behavior. Both of these approaches are important

in the same way that micro- and macroeconomics participate in describ-

ing economic behavior.

An experiment was designed so that data could be collected

and analyzed using both approaches for understanding program errors

and their discovery. From the many variables differentiating software

testing situations. three "objects" were chosen as the most important

for analysis. First, it was decided that the variability among people

may account for many of the differences in software testing success.

A group of 22 subjects was selected to participate in a debugging

if
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experiment in which some relationships might be discovered between

subject background and characteristics, and. aspects of their perfor-

mance. These subjects were professionals in the computing field, and

intentionally chosen to represent a variety of experiential and aca-

demic backgrounds.

The second source of experimental variability was the set of

programs given to the subjects for debugging. Degree of logical com-

plexity (LC) and computational content (cc) were chosen as the two

program characteristics that might have the greatest effect on one's

ability to find errors. An objective measure of each characteristic

was decided upon and one program was written to represent each of the

f our combinations of factor settings: low LC, low CC (ITAX); low LC,

high CC (OPTK); high LC, low CC (ScNR); high LC, high CC (LIMR). Each

program was thoroughly debugged and each error found was documented,

then categorized. These errors were reinserted into the experimental

programs vhida were then given to the subjects for testing and error

correction.

The third controlled experimental factor was the type of input

data given to each subject for the purpose of generating test results.

One type of test data was generated by "black-box" methods--the devel-

opment of data which checks the conformance of program processing to

the specifications. In addition to these black-box data, each pro-

gram's control graph was determined and, from an anlysis of execution

paths, sets of "white-box" data sets were developed. These two test

generation procedures correspond to the two extremes between which
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resides the proper balanced approach of combining functional testing

with testing based upon program structure.

Conclusions

Although many conclusions can be drawn from the relationships

made apparent during this research, the evidence supporting these con-

clusions was as much the result of ongoing subjective analysis as it

was the explicit testing of preformulated hypotheses. As an explora-

tory study such things, for example, as the relationship between

program complexity and failure time distributions were completely ob-

scure before conducting the experiment and by no means transparent

now. We will attempt to segregate those conclusions drawn from objec-

tive analysis from those whose underpinnings are based more upon

opinion. It is hoped, in this way, that future researchers may con-

centrate their energies in the retest and interpretation of the latter

realm of observations.

The novelty in this study rests in the choice of true repli-

cates for the observations of debugging performance. To our knowledge,

only Howden (1978) and Hetzel (1975) have employed identical programs

as the instrument stimulating observations which can be compared.

owden, however, was the sole subject of his own experiment, employing

rious test criteria (as mechanically as possible) on a series of

programs to judge the efficacy of these criteria. Hetzel's experiment

as most similar to ours, and in fact serves as the model for many of

ithe procedures which we adopted and some which we avoided. Hetzel

pwrote three prograas, reinserted the errors, and had a group of sub-

Aects conduct a tiied scar,-i. for cvdQrdgy of_tbhte errzr . .



177

This evidence could be "conclusive" that is, the discovery of improper

program statements, or "indirect"--the observation of improper output.

oreover, Hetzel's subjects were not permitted to modify the experi-

mental programs, and were timed indiscriminately during all phases of

program debugging. Lastly, Hetzel's subject sample was reasonably

omogeneous--young programmers and graduate students with backgrounds

in the computer sciences.

We endeavored to inject some further precision into this format,

while broadening the range of experimental objects so that the results

could be more generally applied. The added precision resulted from a

conscious, objective search for programs which differed from one anothex

in measurable ways, and the partitioning of debugging activity into the

subactivities of code/results review, error correction, and test data

construction. Many of the subjects complained good naturedly that the

experiment had seemed like going to work, except that it had been a

longer day. This was exactly the result that was desired. The sub-

jects could work at their own pace with few constraints on the manner

ith which they normally found and corrected errors.

The subject set was remarkably diverse in background . The

range of organizations from which the subjects were recruited and the

subject selection criteria were formulated to help ensure a broad

Bample. The older subjects typically had less training in computer

tudies and many had acquired their knowledge and proficiencies on the

ob. The younger subjects tended to have more formal education in

-omputing and a better familiarity with some of the algorithK.lc models

.mployed in SCNR and LNPR.

L2
i'
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The most obvious question of interest regarding the outcomes

is "Who found the most errors and why?" Five of the top seven per-

formers were in their late twenties, all but one had done master's

work in a tech, 3.l field, and all had four or more continual years of

recent programming experience. We conclude that to maintain profi-

ciency in debugging it is necessary to continue its practice. In it-

self, this is not surprising, as atrophy of other technical skills is

a well-known phenomenon. It is surprising however that ceteris parabis!

this aspect was more important than familiarity with the problem, or

formal training in computer studies. Prior training in a technical

area was also predominant among the top performers. It is, however,

difficult to draw conclusions from this, however, as it is impossible

to determine if these academic fields simply have appeal to those with

programing aptitude or engender some reasoning powers in the student

that later evidences itself in programming proficiency.

Subject age, and variables positively correlated with it, fre-

quently entered the regression analysis on performance and nearly

always with a negative coefficient. The simple correlation coefficient

o2 age and number of errors found was highly negative and only three

of the nine subjects over thirty found more than the median number of

errors. Nevertheless, we do not believe age in itself to be an impor-

tant factor in predicting debugging performance. Many of the older

subjects had only moderate recent experience in day-to-day programming,

and had academic training that either excluded computer studies al-

together, or consisted of computer classes of questionable merit in

he distant past.

I
- I --
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The quality of experience also appeared to have an influence

on debugging performance. Those subjects whose normal programming

involved system software were uniformly above the median. Conversely,

subjects whose programming duties revolved around normal data process-

ing (the applications of conventional businesses) found far fewer

errors, and the more conventional were their day-to-day programming

tasks (e.g., programming and maintenance of accounting systems), the

worse was their performance. One reason for this finding may be the

rather esoteric nature of tbree of the experimental programs, LNFR,

SCRN, and OPIM. However, many of the highest performing subjects

expressed no prior familiarity with one or more of the applications.

moreover, the five best performers overall also scored highest on

ITAX, a reasonably conventional application.

Educational background was measured in a variety of ways,

including highest degree attained and number of units earned. In

terms of simple correlations with total performance, it appeared that

cre schooling led to a greater number of errors found. In many of the

regression analyses, however, the only educational variable to enter

with a positive coefficient was highest degree earned. Because many

f the subjects were still going to school, educational attainment

neasures were highly confounded with age and experience measures,

Ss well as with one another. Moreover, the quality of the educational

xperiences measured was decidedly varied within the sample. Aggre-

gated together were part-time and full-time enrollments, Ivy League

lnd training school educations, a mid-sixties art major, and a late-

iseventies computer science graduate. Any further research attempting
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to relate education to programming performance should consider that

even the five educational measures employed in this study were not suf-
1

ficiently discriminating.

Both experience in general and experience in programming

exhibited mildly negative correlations with error discovery, although

neither variable ever entered the regression analysis for any of the

experimental programs or for total performance. Because a moderate

amount of recent experience seemed to be a deciding factor in subject

performance, the young subjects with little experience and older sub-

Jects with much past experience effected insignificant regression

results by the confounding of age and experience. It should be

pointed out, however, that the top five performers each had profes-

sional experience in programming that was vell above the median.

Familiarity with the environmental aspects of the experiment

was measured by asking each subject his/her past experience with the

BASIC language and interactive systems. The response to these ques-

tions appeared to have no bearing on subject performance. This is not

particularly surprising as the BASIC subset and interactive system

chosen were relatively unsophisticated and easy to use. There appar

ently exists no tertiary relationships which relate normal programming

environment of the subject and performance in this experiment. One

reason for this may be that the subject had the opportunity to debug

in a manner with which he/she felt most comfortable. Some subjects

used the computing system in a "batch-like" fashion; studying the

listing for some time while accumulating and recording errors found,

then making corrections en masse to produce E new run and listing.
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Others eaqloyed what one subject termed the "run-and-gun" method only

practicable on interactive systems. This approach entailed frequent

interactions with the computing system by applying program changes as

soon as possible, some exploratory, some corrective. This difference

may reduce to the differences in the subjects' need for stimuli,

attention span, or discipline, and would serve as the basis of an

interesting study of its own.

Prior to the experiment each subject was asked to evaluate

himself/herself in 12 programming-related areas. The subjects were

asked to be as objective as possible and were given no reference with

which to make comparison. From the repeated assurances that were de-

manded by the subject for anonymity, it was felt that these assessments,

were reasonably honest evaluations on the part of the subjects. A

simple sum of ranks was computed for each subject for an analysis that

led to surprising results. The sample range for these total self-

assessment scores was very small, and a simple correlation with total

performance was nearly zero. The top six performers' total self-

assessment scores were sprinkled uniformly throughout the range.

Individual self-assessment categories exhibited slightly

stronger relationships to performance, with "knowledge of computer

science principles" and "knowledge of algorithms" showing significant

positive correlations with error discovery. In the regression analy-

ses, only "knowledge of computer science principles" and "knowledge of

data processing principles" entered the regression equation more than

once, the former with positive coefficie4ts, the latter with negative

coefficients. This appears reasonable as many of the top performers

SiI
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had a more technical background, -whereas many of the poor performers

were engaged in more mundane data processing work.

We find the lack of discriminating power of these self-

assessments to be quite remarkable. When given no reference group with

which to compare themselves, subjects on the whole tended to rate them-

selves uniformly above average. For insight into the reason for these

homogeneous assessments, one need only study one of the self-assessment

categories. In the mathematics category, for example, some subjects

with sound technical backgrounds and some with two years of business

school education rated themselves as average. A similarly mixe-2 set

of individuals rated themselves as strong, including a system program-

mer with a master's degree in mathematics and a systems analyst with a

degree in public administration. One explanation for these results is

that one's standards of excellence increases as one acquired education

and experience. Another explanation may be that an unreferenced self-

assessment, like that in this study, tends to measure self-confidence,

a trait that is not necessarily correlated with education, experience,

or proficiency.

In contrast to the self-assessment categories, questions re-

garding subjects' prior experience with problems similar to the experi- i

mental programs appeared more closely related to performance. Responsei

to these familiarity categories, however, were not necessarily well

correlated with the programs indicated in the questions, with the ex-

ception of SCNR. Instead, these indications of prior exposure to the

theory and applicatIon of each experimental program were, as a group,

,related to all performance measures. It would appear, therefore, that

! i
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questions regarding prior exposure are more discriminating than gener-

alized self-assessment, and decidedly important in all debugging en-

vironments.

Notwithstanding the reasonably small size of the experimental

programs, it is felt that conclusions regarding debugging performance

can be generalized to the components of medium-and large-scale soft-

ware. The camposition of error classes within the experimental programs

was considerably similar to those reported in other studies of medium-

and large-scale software (see Chapter II). Subject success in finding

errors of each class was also in conformance with that commonly pro-

posed in the literature. The most interesting result of this section

of the error analysis was the evidence that error discovery is closely

related to the visibility of program misconstruction. This was no

doubt in part due to the availability of explicit specifications with

which subjects could "pattern-match" the code. Further research along

these lines could, however, provide a sounder basis for explaining why

certain error types are more readily found than others, which may, in

turn, lead to beneficial influences on future language design and test

tools.

An analysis of variance was performed to determine the effects

of logical complexity, computational content, and test data type upon

debugging performance. The overwhelming effect of logical complexity

and moderate effect of computational content upon error discovery wps

Sredictable and readily observable by sttidying the raw data. The sig-

Pificantly negative interaction effect of logical complexity and com-

putational content was the most interesting finding of this analysis,
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for it signified a failure in measurement, or linearity assumptions,

or both.

The reader may recall that logical complexity and computational

content were measured objectively by the application of formulae to

the programs' code (see Appendix B). Possible inaccuracies in these

metrics led us to dichotomize the measure range into high and low

regions, by which each factor setting was determined. The logical com-

plexity metric value for SCNR (14.8) was, however, quite a bit larger

than that for LNPR (10.7), as was the computational content value for

OPTM (84%) was greater than that of LNPR (74%). A more accurate

assessment of these factors' effects may have been obtained by a mul-

tiple regression analysis employing metric values directly and a dummy

variable for test data type, in place of our analysis of variance.

The criterion variable for the analysis of variance was the

mean percentage of errors found per hour (MPEH). The comparability of

MPEH among differing programs is suspect, as it is not clear that di-

viding the number of program errors found by the number of errors

resident and by the debugging duration leads to comparably normalized

imeasures of performance. A better (and more costly) experiment could

be devised wherein the same number of errors would be reinsertpd into

!the experimental programs, and the same length of time would be given

for debugging. Any nonlinear effects of duration and error population

sizes could be mitigated, and linear models of factor effects could be

more confidently applied.

* The most basic result shown to be of overwhelming generality

was the inequality of expected error discovery times. It has alwa,.
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been quite clear that some errors are discovered much later than

others, but never conclusively demonstrated that the order of discovery

times was not the result of a random process. Replicating over debug-

ging session was sufficient to show, by inspection, that certain errors

were clearly more obscure. A chi-square analysis bore out this in-

equality of expected discovery times, as did the vastly differing

maximum likelihood estimator values for error "difficulty indexes."

A more specific finding was evident from the analysis per-

formed upon the ranks assigned, by subject, in order of error discovery.

Not only were certain errors discovered more generally early or later,

but the order of all error discoveries was similar for all subjects.

This conclusion was based upon the rejection of a random configuration

hypothesis by use of Kendall Coefficient of Concordance, and makes it

clear that the equal mean-time-to-failure assumption underlying the

Jelinski-Moranda model is not justified.

A surprising result also reported in the rank analysis was the

high correlations between the two sets of discovery order rank means

associated -with groups using black-box and white-box data. Com-

bined with the fact that the analysis of variance on error discovery

counts showed the groups to be similar, one can only conclude either

that theoretical differences between these approaches are not borne

out in reality, or that the programs were not large enough systems that

the test sets represented radically different input subdomain. We sus-

pect that the answer lies somewhere between.

The greatest benefit of obtaining replications of error dis-

covery time sets for the same programs, was the ability to test

_:I.* - --
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software reliability models defined in terms of known, arbitrarily

indexed errors. In the absence of replicated discovery time ensembles,

it is natural to define failure models in terms of successive inter-

arrival times. For most published failure models, however, this pro-

cedure makes the hidden assumption that any error is equally likely to

occur (which coincidently dispells any concern with order statistics).

To employ the replications of discovery times, it was necessary

to find a means of aggregating the performances of quite dissimilar

subjects. The simplest means of doing so was the hypothesis that each

subject's error discovery rate was proportional to any other subject,

for all errors. Hence, the discovery rate of a particular subject for

a particular error was assumed to be the product of an individual's

proficiency index Pi and the error's inherent arrival rate aJ. The

maximum likelihood estimates for the set of proficiency indices p and

error difficulty indices a were obtained and used to transform all

discovery times for each program to normalized values adjusted for

individual and error differences. Since many errors went undiscovered,

a distributional test (Gnedenko's) for exponentiality was used, which

employed censored samples. Even after adjusting for vastly differing

error difficulty indices, the normalized discovery time sets exhibited

a decreasing rate of discovery.

This result contradicts the assumptions of the Jelinski-Moranda!

and Schick-Wolverton models, the former assuming a constant discovery

irate and the latter hypothesizing an increasing discovery rate for

unnormalized discovery times. If anything, the short debugging dura-

tions allotted and learning effects of the subjects would tend to
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increase the observed discovery rates over time, and yet a statisti-

cally significant dropoff in these rates was indicated by Gnedenko's

test. The only conclusion that can be drawn from this finding is that

the longer an error goes undiscovered, the less is the likelihood of

its discovery in the near future. This unfortunate effect is more

pronounced when the possibility of varying error difficulties is intro-

duced, as the more obscure errors will tend to be found latest in the

debugging task and at a slower rate than earlier, more lucid errors.

There is evidence in the literature to support this conjecture

of decreasing error discovery rates. Schick and Wolverton (1978)

report on a set of error data for which the best distributional fit

was obtained by employing a Weibull distribution vith a decreasing

discovery rate parameter. Littlewood (1978) analyzed a large set of

software failure times and found that the exponential model was not

sufficiently skewed to the right, indicating increasingly greater

overestimation of failure probability as time goes on. Littlewood's

solution vas to keep the assumption of exponential arrival times and

impose the assumption that successive error's failure rates were

random variables distributed by related gamma distributions.

We proposed a software reliability model somewhat related to

that of Littlewood's. Error difficulty indices were assumed to be

gamms distributed and serving as the parameter for exponentially dis-

tributed discovery times (not interarrival times like that assumed by

Littlewood). From our order statistic based model we derived maximum

:likelihood estimates of the number of resident errors, and these were

much larger than the number of known errors. We believe that it is

A-
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the assumption of exponentiality that underlies the failure of our

Imodel in this regard, as well as that of Jelinski-Moranda and Schick-

Wolverton. We further believe that the adequate distributional fits

reported by Littlewood (1978) are the result of the exceedingly flex-

ible model which he employs and we expect to find after further re-

search that his method is as inaccurate in predicting the number of

resident errors as it is unrepresentative of the phenomenon that he

is attempting to model.

We now believe more strongly than before in the strength of

generalized order statistic-based software reliability model. The

conformance of error discovery rank orders across subjects leads us

to conclude that errors ae indeed individuals and that probability

models must be formulated for actual errors and not associated with

the order in which errors are observed (as implicitly assumed with

models which employ interarrival times). The rejection of the assump-

tion of discovery time exponentiality causes the theoretical collapse

of the Littlewood and Jelinski-Moranda models, as exponentiality of

discovery times is a necessary condition for exponentiality of inter-

arrival times. Our model need only be adjusted by finding the proper

distributions for errors' shape parameters (which clearly differ from

error to error), and the discovery or arrival time distribution best

suited to employ these (random) parameters. It is quite possible that

the flexibility in discovery rate afforded by the Weibu14. distribution

mey serve this purpose. Our oun further research will proceed along

these lines, and these arguments are offered to the rest of the soft-

ware reliability coaunity as suggestions for further study.

. .. . - - "$' - l
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In summary, the findings of this study have shown that the

quality of program testing and debugging is substantially affected by

the proficiency of the individual engaged in this activity and charac-

teristics of the software under test.

The most prolific error discoverers were generally well-

educated with technical backgrounds. The range of proficiency was

broad, with the best subject finding errors at 20-30 times the rate

of the worst. Neither the subject's usual programming language nor

his normal computing mode (batch or interactive) had any effect on

performance. Moreover, the subjects' own assessment of their skills

and proficiencies had no bearing on the types or number of errors that

were found. Subjects with recent experience in sophisticated applica-

tions generally performed best on all the experimental programs and

there is every reason to believe that this finding carries over into

professional environments.

The strongly adverse effect that logical complexity was found

to exert on program debugging effectiveness suggests that the applica-

tion of structured programming and use of block-structured lanpages

can help improve software testing activities, in addition to their

other acknowledged benefits (Meyers, 1976).

The type of test data employed in debugging had little effect

on subject performance in this study, although the particular errors

found differed from one test data type to the other. Hence, we sug-

gest that both "black-box" and "white-box" methods be employed in

practice to maximize testing coverage. We are joined in this opinion

by Meyers (1979).



190

One of the most interesting findings of this study was the

decided nonhamogeneity of the error population for each program. A

hierarchy among errors based upon their apparent difficulty, was con-

firmed by subject after subject, as evidenced by the concordance among

the subjects' orderings of error discoveries. On the basis of this

finding, we conclude that the remainder of any debugging effort is

time-consuming not only because there are fewer errors to find, but

also because those errors remaining are inherently more subtle. This

supposition contradicts the assumptions of the Jelinski-4oranda soft-

vwre reliability model which assumes that the software-failure rate

during test is inversely proportional to the number of remaining

errors. In fact, after adjusting error discovery times for differences

in error difficulties we found that the discovery rate still decreased

over time. This conclusion is in accord with the debugging experiences

on the practicing programming community and better explains the pro-

pensity for software projects to conclude the testing activity over

budgt.
We conclude that all but the most trivial programs are coqposed

of errors whose mean-times-to-discovery differ substantially. This

being the case, the time necessary to find the first error, the last

error, or any error between is an order statistic whose distribution

is based upon the underlying distributions of the individual errors.

We believe that our own attempt to fit an order statistic-based model

failed due to the decreasing discovery rate exhibited by the experi-

jmentai data, even after adjusting for varying difficulties. It is

. -Vwft ; .A
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quite possible that the gamma distribution was inappropriate for error

difficulty indices, and it was proven that the exponential distribution

was unrepresentative of discovery times. We suspect that these dis-

tributions can be modelled as a family whose members differ parametri-

cally. The findings of our study convince us that the determination

of the proper underlying distributions for discovery times and their

distributional parameters is possible through experimentation.

L,. ,ii - . - - -lil
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QUESTIONNAIRE INSTRUCTIONS

1. NAME

2. AGE

3. SEX

4. GENERAL EDUCATIONAL BACKGFOUND

List, from earliest educational experience to most recent, the
periods in your life in which you were enrolled in some form of
schooling. Examples are given Nilow for each column of the
table you are requested to fill in.

Educational Examples include High School Undergraduate,
Environment Training School (CDI, etc.5 , Graduate School

Period of Examples include Sept. 1975-June 1978, academic
Enrollment years of 1973 to 1975

Major or Examples include Music, Data Processing,
Emphasis Computer Science, None (if applicable)

Title of Exam les include B.S., MBA, PhD, None

Degree (if applicable)

5- EDUCATIONAL BACKGROUND IN COMPTlER-RELATED STUDIES

List the number of units earned in courses directly related to
studies of computer systems, programming, theory, or applications.

State the number of units in terms of quarter units or semester
units.

Estimate, for each period of enrollment, the percentage of your
course work which required significant amounts of programming
(say, one writing one large program or 5 to 10 smaller ones).

6. EDUCATIONAL BACKGROUND IN PROGRAMMING THEORY AND PRACTICE

List the number of units earned in courses dealing directly
with topics in programming theory and practice.

Examples of such courses include language courses (COBOL, FORTRAN,
BASIC), Algorithms, Data Structures, Programming Principles.

Courses such as Systems Analysis, Numerical Analysis, Computing
Theory or Management Information Systems do not qualify.

Include any courses that you have taught but not formally taken.

7. PROFESSIONAL EXPERIENCE INFORMATION SCIENCES AND DATA PROCESSING

List all distinct experiences that you have had in the data pro-
cessing and computer science field, not required by courses that
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you have taken. These experiences may include jobs, consulting
engagements, contract work, independent development of skills
(such as computing-as-a-hobby), or the donation of your skills.

For each separate experience, state a short description or job
title, the duration of the experience in mn-months, the time
period over which this experience spanned, and the percentage
of these man-months devoted to program writing and debugging.

For a part-time job of, say, 10 hours a week in which j of the
work was system design and i programming over a period from
June 1, 1977-August 1, 1978, an entry in the table would appear as

Job Job Time % of Time
Title Duration Period Programming

Progranmer/Analyst I4/ 3.5n It5Ag0117

8. PROGRAMING LANGUAGE EXPERIENCE

Of all the programming required of you in educational environ-
ments (see question 5), estimate the percentage of the time you
used each of the programming languages listed in the table pro-
vided for this question. Reply by filling in the table under
the colmn titled EDUEATIONAL.

Of the programming required of you during your professional ex-
periences estimate the percentage of the time you used each of
the progrmzming languages listed in the table provided for this
question. Reply by filling in the table under the column titled
PROFESSIONAL.

9. BAT C/If lTMACTIV EMRRENCE
We define a BATCH environment as a program development and test
environment in which

• programs are coded and keyed onto cards

• the programmer compiles and/or runs the program to
obtain a hard copy listing and/or program output

" the program is reviewed and debugged by inspecting
the listing for some length of time

" modifications are made to the program card deck to
reflect Oesired program changes

" the program deck is resubmitted to begin the cycle again

We define an INTERACTIVE environment as a program development and test
environment in which
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. programs are entered into a terminal

- programs are run at the terminal to obtain program results

• results are studied at the terminal

0 the program is listed at the terminal and edited to reflect
desired program changes

0 the cycle is re-begun by running the program

What percentage of your programming experience was acquired in situa-
tions more closely resembling a batch environment, and what percentage
was acquired in situations more closely resembling an interactive en-
vironment?

10. SELF ESTIMATION

How would you estimate your abilities, proficiency, and knowledge

in each of the following areas?

data processing principles

* ccmputer sciences principles

• systems analysis

* program design

* program writing

. program debugging

* operations research

* statistics and probability

* mathematics

* file handling

* algorithms
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QUESTIONLAIRE

1. NkA1:
2. AGE:

3. SEX: Male Female

4. GENERAL EDUCATIONAL BACKGROUND

Educational Period of Major or Title of
Environment Enrollment Emphasis Degree

5. EDUCATIONAL BACKGROUND IN CONPUER-RLATED STUDIES

Educational Period of Semester or Quarter % Requiring
Environment Enrollment Units Units Programming

_____________________________________________________ ____________________________________________________

_ _ _ _ _ I _ _ _

_ __-_ _ I

_ _ _ _ _ _ _ _ _ _ _ _I_ _ _ _

Ii



206
6. EDUCATIONAL BACKGROUND IN PROGRAMING THEORY AND PRACTICE

Educational Period of Semester or Quarter
Environment Enrollment Units Units

7.PRCFESSIONAL EERMNCE IN IN'ORMTION SCIENES ARD DATA PROCESSING

Job Job Time % of Time
Title Duration Period PrOOMaminK
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8. LAGUAGE EXPEIENCE

EDUCATIONAL PROFESSIONAL

ALGOL

Assembler Language

BASIC

COBOL

FORMAN

JOVIAL

PASCAL

PL/I

Total 100% 100%

9. BATCH/INTEACTIVE EXPENCE

Batch Interactive TOTAL

Experience Breakdown 100%
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10. SELF ESTIMATION

DATA PROCESSING PRINCIPLES

COMPUTER SCIENCE PRINCIPLES

SYSTEMS ANALYSIS

SYSTEMS MESIGN

PROGRAM DESIGN

PROGRAM WRITING

PROGRAM DEBUGGING

OPERATIONS RESEARCH

PROBABILITY AND STATISTICS

MATEMATICS

FILE HANDLING

ALGORITHMS

i,'j



209

RAME:

Qugsnommw.1 rr

Pleae devote lie time to read the program speciftcations included in the packet.

I am sue that you will find the experiment much aore enjoyable if you have prepared

by studying these specifications to determine Vhat It Is the program are supposed

to do.

AJter reading and stud1ying the program spectifications, please indicate In the boxes

below, the extent of your familiarity with the "theory behind these applications,

a wl as the ount o prior experience you have had in programing problms of

these kinds.

Nv that you hve read and studied the program specifications for each of the pro-
grams (SCER, WMD, IJWR, and rM~)..

(1) Nov familiar are you vith the "theory" used to solve these problems? Tour
familiarity with the principles underlying these programs ay have cam
from your schoolIng, reading, or research on the job. Please answer below
under TEO.

(2) What Is the extent of your experience In designing, progropning, and/or
debugging programs %hich dealt with problems like those addressed by the
experimental programs? *Your experience may have been acquired In schol1,
am the job, or through recreationl computing. Please answer blow umder
PRACTIM.

TIE OR PRACTICZ

X 4 V d $41 94

.c .ic Il cI ci' I e i

04 .4 0.4 0 . k o

a ! 00

141
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COMPMATIONAL CONTENT

The degree of computational content was measured by an "opera-

tor ratio" motivated by Halstead's approach (1977) to decomposing pro-

grams into indivisible tokens. Each basic construct in a programing

language is categorized as one of two token types: operator or oper-

ands. An operand is any object of an action and includes data varibles

and constants. Operators are program symbols which have zero or more

operands as functional arguments, and effect program execution.

Each indivisible construct in the BASIC language was assigned

membership into the operator or operand class. Some constructs,

though always appearing together, were counted as two or more operators

if one of the cunstructs could appear separately as a.a operator.

String and numeric variables, IMAGE strings and unvarying data for

tables were counted as operands. Operators were dichotomized into two

classes: computational and noncomputational. Computational operators

are those program tokens which take one or more data as operands and

produce a result. Noncomputational operators are all others which

affect the order of program execution (control), provide input or out-

put (I/o), or provide definition (declarative). A list of the specific

operators recognized and a designation of category is given in Table

B.1.

A correction factor suggested by Halstead was applied to opera-

tor and operand counts. Halstead reasons that any ccmmon sub-expres-

sion used repeatedly represents a value to a programmer and is not as

computationally complex as its constituent operators may imply. With

this in mind, the operator and operator counts were reduced by those

tokens associated with common expressions in close textual proximity

to one another.

The "operator ratio" was calculated as the ratio of the number

of computational operators to the total number of operators. It was

assumed that the higher this ratio becomes, the greater is the degree

of "data processing" per program symbol. Operator ratios were calcu-

lated for a dozen programs from the Hcwlett Packard Contributed Library,
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Table 3.1.

operator Classes for BASIC

Numer of
Constru~t Type Operators ELple

Dimnsion soncomputatioa.2 I ...

LOOP Eonoputationa. I. FMR ... a ... To..

Input Nucouttional. 1 RM .. ..

output NEom;Putatja.2 I. e teci1n list

2 rivrqession lict

2 ..

Coauitiona-trmn~.r SNacomutatione. I1 ir.. Rf..

Ucccitional-tran~fer sonomuttioa I aOTv .

Copte4OT Nc~cQUtat1 al 1 aaO ... ( .

Subroutine-cal Nmcmutationa1 2 00503 ..

Subrout1.n.-retura sanamutatina1 RUM

Arivbwtic-opermtor computational +,-,I,*

Grouping operators comutatioal.2 (..)

Indexing operators Comptational . E .

Assignmnt operator Computatoa.. 2

Rel~tiona2. operator Computatonal2 . < U>
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chosen to represent a variety of assumed degrees of computation. The
operator ratios computed for this sample ranged from 55% to 85% with

st in the 65% to 75% interval.
On this basis programs with ratios of 65% or less were desig-

ated as having low computational content and those with 75% or more

were designated as having high computational content.

The four programs eventually employed as the experimental pro-

grams were Judged as the best experimental instruments on the basis of

their operator ratios, as well as other factors. The operator ratios

for these programs are displayed in Table B.2.

Table B.2

Operator Ratios for the Experimntal Programs

Number of Number of
Computational Noncamputational

Program Operators Operators Total Ratio Designation

TAX 166 83 249 67% LOW

LNPR 3M2 12 434 74% HIGH

OEM 162 30 192 84%

SCNR 254 158 412 62% LOw

A- can be seen from Table B.2, IM and OPTM had higher ratios than

the presumed ideals for membership in their respective classes, while
N and SCNR had lower than ideal ratios.

This phenomenon occurred repeatedly during the selection of the

xperimental programs and can be attributed to the effect of program

ength on the ratios. During the comparison of Library programs and

evelopment of programs as experimental candidates, it became evident

hat higher operator ratios became more difficult to find as programs

pf greater and greater length were observed. On this basis, the re-

1sulting experimental programs were deemed sufficient as representative

-- '



of their respective computational content classes, even though differ-

ing slightly within like classes.

LOGICAL COMPLEXITY

Two measures were employed in the assessment of logical com-

plexity for experimental program candidates. The simpler of these two

s McCabe's complexity measure (1976) corresponding to the cyclomatic

number of a program's control graph or flowchart. In practice, this

can be calculated as e - n + 1, where n equals the number of blocks in

flowchart and e the number of control flow arcs.

A measure developed by TRW (1973) is much more sophisticated

and takes into account direction of program branching as well as the

degree of nesting at the point of conditional transfer. TRW's Logical

Complexity Metric is computed as:

L/S + C. + C2 + B/100

where

L = number of logical statements (GOTO, GOSUB, IF, FOR-rExT)

S = number of executable statements

C1 = measure of loop complexity

C2 = measure of IF statement complexity

B = number of separate paths from any segment to any other.

j and C2 are weighted sums of the number of conditional branches and

loops (respectively) at each level of nesting.

The complexity metric values calculated for each experimental

rogram is given below in Table B.3:

Table B.3

Complexity Metrics for the Experimental Programs

McCabe's Designated
Program Metric Metric Logical Complexity

ITAX 15 1.6 LOW

LNPR 39 10.7 HIGH

O TM 3 0.65 LOW

SCNR 56 14.8 HIGH

*1
* - ,*,-.--~,.
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like the operator ratio, the complexity metrics appeared to be sensi-
tive to program length-longer programs Invariably resulted in greater

metric values. Since, however, logical complexity is normally believed

to increase with the size of the task, this property of the metrics did

not appear inappropriate.

It
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ITAX

Program Overview

The ITAX program computes the federal and state income tax for resi-

dents of a fictitious country.

Program Inputs

Data should be entered beginning on line 9900 in the following order:

9900 DATA Wo, W1 , Ao, R, Yo, Y, Y2 , Go, G.

9910 DATA Co, CI, C2 , C3 , C4 , C5 , Do, D1 , ]
9920 DATA D3, D4 , To, TI, T2 , T3 , A,, E

Program Output s

The program outputs a table showing

* Income Sources

* Income Offsets
* Net Taxable Income

* Income tax
* Withholding

* Tax due

An example follows:

State Federal

Income Sources = 23178 = 22920 =

Income Offsets = 5937 = 5835 =
Net Taxable = 17233 = 17085 =
Income Tax 345 = 1709 =

Withholding 1500 = 4OO0 =
Tax Due -1155 = -2291 =

217
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Program Processing

Taxes are payable on an amount equal to the total of sources minus the

total of offsets. Total sources is equal to the sum of

(state and federal) 1. Alimony received

(federal only) 2. State refund

(state and federal) 3. Saliary and wages

(state and federal) 4. Any excess of dividends received
over $100.

(state and federal) 5. Any excess of gambling winnings
over losses.

(state and federal) 6. One-half of the excess of long-term
capital gains over losses and carryover.

(state and federal) 7. One-half of the excess of short-term
capital gains over losses and carryover.

(state and federal) 8. Interest earned

Total offsets is equal to the sum of

(state and federal) 1. The lesser of $3000 and the excess of
long-term losses and carryover over
long-term gains.

(state and federal) 2. The excess of a + b + c over 3% of
earned income

a. the lesser of hospitalization cost
$2000

b. the excess of drugs and medicine
expense over J% of earned income

c. j of medical insurance cost

(state and federal) 3. Casualty Loss

(state and federal) 4. The lesser of charitable deductions
and 25% of earned income

(state and federal) 5. Real and Personal Tax

(federal only) 6. State Income tax paid

(federal only) 7. State gas tax

(state only) 8. Federal gas tax

(state and federal) 9. Alimony paid

(state and federal) 10. Employee Business expense

1'0
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The rates of tax on taxable income are given below as well as the

definitions of program variables:

Taxes Payable/Refundable

Federal Po

State P1

Withholding

Federal Wo

State W,

Alimony Received Ao

State Refund Received R

Earned Income

Salary and Wages Yo

Dividends YL

Interest Earned Y2

Gambling

Winnings Go

Losses G,

Capital Transactions

Long Term

Gains Co
Losses C3
Carryover C2

Short Term
Gains Cs
Losses C4
Carryover C5

Deductions

Health

Drugs and Medicine Do

Hospitalization D,

Health Insurance D2

Casualty Loss D3

Charitable D4
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Taxes

Real and Personal To

State Income T1

State Gas T2

Federal Gas T3

Alimony Paid Al

Employee Business Expense E

Federal and state tax are computed on a progressive scale. Higher

brackets of marginal income are taxed at higher rates. The table

below shows the marginal rate at which income earned in that bracket

is taxed:

Federal State
Income Marginal Marginal

Rate Rate

FIRST
$20,000 1%%

NEXT0% %$10,000

$1000

ANY AMOUNT 50% 1
oVR $50,0oo 1

.!



20 fVIM XCS*33 21
40 FOR Is)! TO 5
60 POP Jul To 3
80 READ XCIsJ]
100 NEXT J
120 NEXT I
140 DATA 20000.19.0a
160 DATA 35000.**29.0'
IS0 DATA a5000.,..39.07
200 DATA SO0000.49.12
220 DATA 55000.9.51.I'R
240 READ w0,.1.AO*Dfl.YI Y2,6G1 ,lCOsC1 C2.C3'C",C5
260 READ D0%Ql9flZU39O4sT0,T1%T2913*Al*E
280 O0O
300 ole0
320 50.0
340 51.0
360 SOAO*YO
360 S1.tAO+YO
400 SIfsSliP
420 IF V14100 THEN 480
440 SOftSO+yI-l00
ob0 SI.tSl+YI-I00
460 IF GJAPG0 THEN 540
500 SOUSO*60-61
520 51.51+60-61
S40 IF CO<CIIC2 THEN 600
560 SO=SO+1C0-C1-C2W/2
S00 SIwSl4(CO-C1-C2)12
,600 IF C3>C*lCS THEN 660
020 SOuSO+4C3-C4-C5S.#2
4640 Sl.SI+(C3-C*-C5).42
660 REM COM'PUTE OFFSETS
680 IF CI+C2ZCO THEN 620
700 IF Cl4C2-C03000 THEN 760
720 GOwOsoC14c2-CO
740 OlwOl+CI+C2-co
760 GOTO 620
760 0=0043000
000 01.01+3000
*20 IF 01*000O THEN 680
040 0*01
460 GOTO 900
6o0 002000
1900 IF 00(.005*(YO*YI+Y2W THEN 940
420 oao+D0-QO05'(Y0*Y1+y2)
940 0*0+02/2
'960 IF 0(.03*CYQ*V1,V2) THEN 1020
960 O~uOO0Q.O3*IYO4Y14V2)
1000 Ol.Ol+o-*o3'1'vO4YI+%Y2
1020 01.01+03
1040 00.00+03
1060 IF D4>*25*fYOi'f14Y21 Tt4EN 1140
1000 01.01+04
1100 0064000
1120 GOTO ItO
1140 01601+*25*IV0*Y14Y2)
1160 GOuO04.25*(YO4Yl4Y2)
1180 01=01+10
1200 DO.O0TO
1220 01.0)1
1240 O1801+12
1260 00.00+13
1280 00101I+T3
1300 00=0O*73
1320 01301+01

1340 FigureA C.i. Experimental programi ITA.X

. .z- - - ....... .... ... .......
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1360 01=01+E
1380 00O0 E
1400 Uo0So-oo
2120 UI-SI-01
1i40 P1.0
1460 FOP I-I TO 5
1480 IF U0>XE1,1J THEN 150

1500 PI-PI+IUO-XC Iqlj3INxIta
se0 GOya l*0

1540 PIPIXCII I*XclI,23
1560 GOTO 1620
1580 NEXT I
1600 PIwPltIU0-X[5,%I))*%XES3
t620 PonO
1640 P030
1660 FOR Ins TU 5
3600 IF Ut)XCIli THEN 1740
1700 PVOPO4IUI-XEI*13)*XEI33
5720 60T0 1800
1740 POwPO4XII3*XCIv3]
1760 NEXT I
T0 P0uP0IIUI-XCSEI1)*XE5,3

5600 PRINT " STATE FEDERAL*
1820 PRINT 33333333333333333333UU333U233U3333333S3*S"
1640 PRINT 0 INCOME SOURCESs";
1860 PRINT USING 18801S1
1880 IMAGE *.DOOOODDOD
1900 PRINT a w"3
1920 VRINT USING 1880ISO
1940 PRINT-

"  a"
1960 PRINT * INCUME OFFSETSm"I
9%60 PRINT USING 1880101
2000 PRINT "" w";
2020 PRINT USING 1880100
2040 PRI4T = 1"
2060 PRINT NET TAXABLE W";

2080 PRINT USING 18801Ut
2t00 PRINT " on;
2120 PRINT USING 18801Uo
2140 PRINT " a"
2160 PRINT 0 INCOME TAX et&

2180 PRINT USING 1880PO
2200 PRINT 0 w";
2220 PRINT USING 1880;01
2240 PRINT " 8"
2260 PRINT W WITHHOLDING o"I

2260 PRINT USING 1880;wI
2300 PRINT w a"l
2320 PRINT USING IROw0
2340 PRINT " 3"

2360 POsoO-oI
2360 PIwPi-w0
2400 PRINT W TAX DUE as
2420 PRINT USING 188010

*40 PRINT "

2460 PPINT USING 1815010
2460 PRINT " a'

Figure C.1.--,Continue



.223

Program Overview

N provides solutions to linear programing problems by use of the

simplex solution technique. Linear programming problems are optimiza-

tion problems in which a linear objective function of the form

+Cx2 + " + cnx

is maximized or minimized subject to a set of constraints of the form

a + a x2 + "'" +ax b,

'2' 22x2 + 2nn b2

alxl + amx2 +..+ azxj= >

x 3  0 for all J

LNFR provides the optimal values for the decision variables

x *, x for maximizing the value of Z.

Program Inputs

Inputs to LNPR include the number of decision variables (n); the number

of "less than" constraints (1); the number of equality constraints (e);

the number of "greater than" constraints (g); the coefficients of the

objective function (c1 •,...,c n); the coefficients of each constraint,

row by row (ail,ai2,--,ain); the "right hand sides" (bi).

Data for LNPR should begin at line 9900 in the following order:

i'
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9900 DATA n, i, g, e

9910 DATA c1, c2 , .- , cn

9920 DATA all, a, , a,, b1

9930 DATA a 2 1 , a2 2 , --- , a 2 n, b2

DATA -am , *.. - , bm

Program Outputs

NPR outputs the optimal values of the decision variables

X., •-- . xn; the optimal value for the objective function Z; and the

array containing coefficients and "right hand side" values for all

constraints and objective functions.

The LP problem is solved by either the dual simplex algorithm or the

primal simplex algorithm. In the former case, LNPR prints out

DUAL SIMPLEX ALGORITHM TO 1E USED

In the latter case,

PRIMAL SIMPLEX ALGORITHM TO BE USED

is reported, and the current value of the LP tableau is printed, in

either case.

In the case that any solution is impossible when subject to the input

constraints, LNPR prints out:

PROBLEM INFEASIBLE

In the cast that a solution is permissible with a variable unbounded

value, LNMR prints out:

PROBLEM UNBOUNDED

,NPR outputs, at every iteration of the solution algorithm, the values

of the matrix which contain the data for the linear programing problem.,

This matrix is called the linear programing (LP) tableau and is com-

posed initially of

_____________
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" the values of the coefficients of the constraints,

- the values of the constraint right hand sides

" the values of the coefficients of the objective
function, or their negatives

as shown in Figure C.i.

If the LP problem can be solved, LNPR prints out the values of the

decision variables (X, 2 ,--,xn) which optimize the problem, and

reports the~constraints which are binding (exactly satisfied).

Program Processing

Contained within LWPR are two algorithms which the program can use to

solve the LP problem: the dual simplex method and the primal simplex

method. The dual simplex method is chosen by LWPR whenever all of the
original objective function coefficients (Clc 2 ,--,cn) are nonpositive

and is employed because it generates fewer artificial variables than

the primal algorithm. In all other cases (cj > 0 for same J), the

primal simplex method is used.

Whereas the dual simplex algorithm can only be used on problems with

nonpositive objective function coefficients, the primal algorithm can

only handle constraints with nonnegative right hand sides. Hence, the

first step performed by LNPR is to

• determine if the dual simplex algorithm can be used
(all cj < 0, for all J); if so, all less-than constraints
are left as they were input, and all greater-than con-
straints are converted to less-than constraints by multi-
plying the coefficients (a l,ai2,. ..,ain) and right hand
side (bi) by minus one (-11.

" if the primal simplex algorithm must be used (at least
one, c 1 > 0) then all constraints with negative right
hand sides (bi < 0) are multiplied through by minus
one (-1), turning less-than constraints into greater-
thans, and vice versa.

The last preliminary step is to add slack (Sj), surplus (T ),and

artificial (Rj and R) variables to the consti-aints.

1i

I|
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A matrix A is used to store the coefficients and right hand sides at

any stage of the optimization process. Each step of each simplex

algorithm transforms A until a stopping condition is met. Each trans-

formed constraint and objective fimction is expressed as an equation

and occupies one row of the A matrix.

Inequalities of the form

ailx1 + a2x2 + -.. + asuXn < bi

are transformed into the equations of the form

a,,,+ x2  +  ainxn + i

Equalities of the form

al + a±2x2 + --- + ainx = b,

are transformed into .the equations of the form

ailxl +ai2x 2 + . iainxn + = b.

Inequalities of the form

alxl + 2x2 + "- + x > b,

are transformed into the equations of the form

ailxl + a2x2 + a +ainxn + T R = b.

Each equation above, in addition to the objective function, Z = c.xX +

+.. + n x is represented rw 1v row in A by storing the coefficients

for the variables x 1 , ... , xn; l * " *,-.

IV; R, . Re The final ccl-an of the A matrix is used to store

-'4,
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the right hand sides of the equations. A diagram of A is shown in

Figure C.l.

The primal simplex method for solving a linear programming problem is a

cyclic procedure for choosing n of the variables and assigning (or com-

puting) a value for each so that the problem constraints remain satis-

fied. Those variables so chosen are termed basic variables, and their

values are equal to the current right hand sides of the n constraints

found in the last column of the A matrix.

Each cycle of the simplex method requires 4 steps. First, the current

solution must be tested to see if it is optimal. Second, a new vari-

able must be picked to be basic. Third, a currently-basic variable

must be chosen to be excluded from the set of basic variables. And

fourth, the matrix must be transformed so that the last column reflects

the values of the currently basic variables. The procedure for each

step is:

I. Optimality Test: The current objective function co-
efficients equal, for any non-basic variable, the
marginal. amount by which the objective function will
increase if a variable is picked for inclusion in
the next set of basic variables. If all objective
function coefficients are negative, then the current
solution is optimal. If one or more non-basic vari-
able's coefficient in the objective function is posi-
tive, then ....

II. Choice of Entering Variable: Choose the variable
whose objective function coefficient is most negative,
say the variable whose coefficients are found in the
kth column.

III. Choice of Exiting Variable: If a coefficient, aik,
in column k is positive, then any increase in the
entering variable's value will decrease the value
of the basic variable associated with row i. One
wishes to increase the entering variable's value
to the point where one currently-basic variable's
value is reduced to zero.

For every positive entry aik in column k, compute
the ratio of aik to the right hand side bi. Choose
the smallest ratio, say ark/br, occurring in row r.
Row r is the pivot row. If every entry in column k

,.. - -
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is zero or negative, then the linear programing
problem is unbounded.

IV. Pivoting: For the A matrix to properly reflect the
coefficients and right hand side values in terms of
the new basic variables, it must be transformed by
"pivoting" on ark. Mechanically, this translates
into performing elementary row operations on matrix
A until the values of the coefficients in the kth

row are zero for every row except row R, where ark
equals 1. The elementary row operations that are
applied are:

" every element in the rth row is divided
by ark.

" from every row i in A, except the rth is
subtracted the rth row multiplied by ak .

That is, for every row element aij, compute

aij - aij - arjaik .

Included in this pivoting is evry row in A
except the rth.

The dual simplex method for solving a linear programming problem is

also a cyclic procedure which is the "mirror image" of the primal

simplex method. The "goal" of the dual simplex routine is to transform

the constraint right hand sides (bi's) until all are positive. The

steps involved are:

I. Feasibility Test: If all the right hand sides (bi's)
are positive, an optimal solution has been reached;
otherwise . ..

II. Choice of Exiting Variable: Choose the most negative
right hand side, found in, say, row r. Row r will be
the pivot row.

III. Choice of Entering Variable: For every negative co-
efficient (say, ari) in row r, compute the ratio of
the current objective function coefficient cj to arj.
Compute a ratio for each negative entry in row r, and
choose the smallest ratio, say ck/ark. Column k will
be the pivot column. If all the entries in row r are
positive, the linear programming problem is infeasible.

IV. Pivoting: Pivot on ark as described above in the
primal simplex algorithm.

'---I ~'t #
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20 DIM ACiOt203QC tO,2O2tPCO]9[20),RClOi
40 DIM XE203
60 FOP tat TO 10
S0 FOR Jul TO ZO
10 AEIJ4uO
120 NEXT J
140 NEXT I
160 9030
10 N00
200 READ N*L.GE
220 SuN
240 MUL+E+G
260 FOR 1l1 TO M !
260 FOR Jul TO N+!
300 OQt3,JmO
320 NEXT J
340 NEXT 1
360 LOuN+I
300 EOO
400 6000
420 FOR Jet TO N
440 READ AEMltJ]
460 OC(W*1J]=A(Ml*Jj
480 NEXT J
S00 FOR Jul TO N
520 IF ACM IgJ3)0 THEN 620
540 NEXT J
560 REM *8 DUAL SIMPLEX CAN POSSIBLY BE USED
580 Dal
00 GOTO 660
620 REM 8* 2 PHASE PRIMAL SIMPLEX MUST BE USED
640 000
660 REM
680 REM READ IN LESS THAN CONSTRANTS
700 FOR Et| TO L
720 FOR Jul TO N
740 READ AC19J]
760 OCIqJ3uA1IJ]
780 NEXT J
800 READ PEI]820 0t19N I]=PEI)

040 IF Dl OR RI] 30 0 THEN 980
860 FOR Jul TO N
650 ACIJ~w-ACIvJ7
900 NEXT J
92o RCIJm-RtI)
940 GOSUB 5400
960 GOTO 1000
980 GOSUS 5120
1000 NEXT I
1020 PEN REAO IN GREATER THa: CONSTRAINTS
1040 FOR I=L4E*1 TO L+E+G
1060 FOR Jul TO N
1080 READ ACI*J]
1300 OCIEJ)DACIJ]
1120 NEXT J
1140 READ RI]
1160 OCINII16R(I3
1316 IF 0o OR PEI] >a 0 THEN 13?0

Figure C.3. Experimental program LNPROO

w1
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1200 FOP Jul TO N
1220 ICvJ 3-AClJ3
1240 NEXT J
1260 R[IIu-Q(I)
1280 GOSUB 5120
1300 GOTO 1340
1320 GOSUB 5400
1340 NEXT I
1360 PEM REAO IN FOUALITY CONSTRAINTS
1380 FOR imL*I TO L+E
1400 FOR Jai TO N
120 READ ACI*JJ
1440 Q(|IJISA(IJ3
3460 NEXT J
1460 READ RCI)
1500 0CI*N+13wQL13
1520 IF Dal UP R C13 ) 0 THEN 1620
1S40 FOR Jul TO N
1560 ACI9Jjw-ACIJ3
1S0 NEXT J
1600 CIlIU-RE1
1620 GOSUB 5260
1640 NEXT I
1660 FOR Jai TO N
1700 NCJJwJ
1720 NEXT J
1740 FOP 131 TO N
1760 ACI.S#liuRCIJ
37S0 NEXT I
1oo FOR in1 TO N
1820 IF ACI*S,|3(0 THEN 1880
1640 NEXT I
1660 GOTO 2160
3860 PEM PHASE 1: ACHIEVE PRIMAL FEASIBILITY
1900 PRINT ODUAL SIMPLEX ALGORITHM TO BE USED"
1920 FOR Oi TO 3000
1940 GOSUO 4660
3960 GOSUB 3bbO
1980 IF P9u-I THEN 2100
2000 GOSUR 3920
2020 IF C9u-1 HEN 2100
2040 PRINT "PROLEW INFEASIBLE"
2060 GOSUS 4660
2090 STOP
2100 GOSUB 4220
2120 NEXT 02140 ACM+IS+333-ACM*1,S43)

2160 OEM PHASE III ACHIEVE PRIMAL OPTIMALITY
2180 FOR jai TO S+I
2200 ACMItJ]noAC+IJ3
2220 NEXT J
2240 PRINT "PRIMAL SIMILEX ALGORITHM TO BE USEC"
2260 FOR owl TO 1000
2280 GOSUB 4660
2300 GOSUP 3100
2320 IF C9u-I THEN 248(1
2340 GOSUS 338A
2360 IF RQe-1 THEN 2440
2360 PRINT WODCIFL1M UN OONDED"
2400 G'SU4 A66A

Figure C.3.--Continued
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2420 STOP
2440 GOSUB 4220
2460 NEXT 0
2480 FOR Jul TO N
2500 IF 8C130( THEN 2560
2520 NEXT J
2540 GOTO 2600
2560 PRINT *'PROALEA ItNFEASIe "L
2560 STOP
2600 PRINT "OPTIMAL 0tJECTIVE FUNCTION VALUE IS w;AEV+IS+I
2620 PRINT
2640 PRINT "VALUES OF D)ECISION VADIARLES"
2660 PRINT
2680 PRINT

2700 FOR 1ot TO U
2720 IF 0CI3>N THEN 2740
2740 XBCI 31ACIS I]
2760 PRINT "X"IBCII" a "4A[I9S+11
2780 NEXT 1
2800 FOR Jai TO S-M
2820 IF ABS(NCJ3l)0f THEN 260
2840 XCNCJ133O
2860 PRINT *XwiNCJJ" a 0"
2880 NEXT J
2q00 PRINT
2920 FOR 1l. TO M
2960 FOR Jul TO N
2960 VPV+0[I.J)*X[J
3000 NEXT 4
3020 IF VROC9N413 THEN 3060
3040 PRINT "CONSTRAINT"I"BIN0ING"
3060 NEXT I
3080 STOP
3100 PEN ****Su**u*A*s*s*rS*
3120 PEM * PRIMAL OPTIMALITY TEST: 6
3140 PEM S DETERMINE ENTERING VARIABLE
3160 REM ***S*S******t*t *S****SS******8
3190 C9u-I
3200 Y9g0
3220 FOR J1=1 TO S-m
3240 JmASS(NCJIJ)
3260 VACM+IoJ2
3280 IF V )u Y9 THEN 3340
3300 Y9gV
3320 C9BJ
3340 NEXT JI
3360 RETURN
3380 REM ***,******* **t t
3400 PEM * PRIMAL UNHUUNDEONESS TEST: *
3420 REM * DETERMINE EXITING VAPIAbLE
3440 REM ***4**sess *sst***w**slees**elwcs
3460 P9m-I
3480 YVgn.E*36
3500 FOR ot1 TOm
3520 IF ACiC9] <a 0 Ti.EP. 3120
3540 VRAEI*SI]/ACIC9]
13560 IF VoY9 THEN J120
13590 P9ut
i3600 Y9=V
3620 NEXT I

Figure C.5.--Continued

,° |
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3640 PETUPN
3660 REM $S$$$**tS** $SS* t* e**** A**S$$s W* PS 5*5*

3680 PEM S DUAL EXITING I
3700 REM s TEST PQIMAL FEASIBILITY *

3720 REM **t********* * *5*5*SSsSS****SSS**t
3740 P9n-
3760 Y9x0
3780 FOR lot TO m
3800 V-ALIPS+|J
3820 IF V>Y9 THEN 38Ok

3840 Y9mV
3860 P9w1
3880 NEXT I
3900 RETURN
3920 REM tlttttttttttttl$¢ll

3940 REM * DUAL ENTERING :
3960 REM * TEST FOR PRIMAL FEASIBILITY
3980 REM *$$$$*t*s S**sSSSS$$$$*$$
4000 C98-1
4020 YQ=O
4040 FOR JilI TO S-M
4060 J-AS(NCJII)
4080 IF ACR9*J. >= 0 THEN 4160
4100 VlS(AC[M IJf/A[RI9J31
4120 IF V >a Y9 THEN 4180
4140 c9gJ
4160 Y90V
4180 NEXT J1
4200 RETURN
4220 REM S*SSs****SS*StSSSSSP*4
4240 REM * PIVOT ON A(R99C9) *
4260 REM *55SS***5s*SSS~S
4300 FOP Jul TO S+

4320 &[R9.JUlAC[R9JJA(9,C93
4340 NEXT J
4360 FOP 1.l TO m41
4380 IF 16P9 THEN 4480
4420 FOP Jot TO S+
4440 ACIqJMACIJ3-AgP99J3SA[|1C93
4460 NEXT J
4480 NEXT I
4500 FOP 4ll TO S-M
4520 IF NtJI3UC9 THEN 0560
4540 NEXT JI
4560 REM EXCHANGE INDICES
4560 TON[J11
4600 N(JI)MBEP93
4620 8CP93NT
4640 RETURN4660 REM *.*$*ls..eSS. S**s*S**sSS8i
4660 REM 0 POINT TAHLEAV P

4700 REM S*SSS****8S*S
4720 PRINT " "1
4740 FOR Jot TO S
4760 PRINT "X"SJ;
4780 NEXT J
4800 PRINT
4820 FOR Io TO W41
4840 PRItJT "X"l
4860 IF 100+l THEN 4s2n

Figure C 5.--Continued
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480 PRINT AS4,EII)l
4900 GOTO 494C0
4920 PRINT "' 0 "1
4940 FOP Jol TO S~i
4960 PRINT USING ,98O;AE19J]
4980 IMAGE *,ODODoD.O
5000 NEXT 4
5020 PRINT
S040 NEXT I
5060 PRINT
5080 PRINT
5100 RETURN
5120 REM $* HANDLE LESS T14ANS
5140 LOnLO+1
5160 ACIL0Jul
5180 80=80+1
5200 lBCBO)wLO
5220 S*S+I
5240 RETURN
45260 REM 4* HANDLE EQUALITIES
5280 EO=EOIl
5300 AC19N+G+L+60,E0IO1
5320 60=B0+1
5340 *CSOI=mIN+GIL*60.EOI
5360 S*S+1
5380 RETURN
5400 REM *8 HANIDLE GREATER TMANS
5420 Gow6o*I
5440 AC1,N+L*G-G0*Ilw-1
5460 ACJN4L*G*GO1=1
5480 N~wNO41
5500 t4EN0lwN4L4G-6O+1
5520 90uR0+1
5540 S9C80Ju-LN+L+G+G0)
5560 S+.
5580 RET.URN
5590 END

Figure C. 3.--Continued
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OPTM

Program Overview

The OPTIMA program was written to aid economists who wish to find fifth

degree polynomials to describe some price curves. The economic model

calls for fifth degree polynomials with four local optima as shown in

the figure below:

Figure C.4. Sample of fifth degree polynomial

The user inputs the coefficients ao, a., a2 , a3 , a4, and a, of the

fifth degree polynomial

P(z) = ao + aiz + a2 z2 + a 3 z3 + a 4 z 4 + a5z •

The program displays the roots of the fourth degree derivative polyno-

mial

a3 + 2a 2 z + 3a3 z2 + 4 a4z3 + 5asz 4

land prints them out. If any of the roots are imaginary, the program

istops and prints out the message

INPUT POLYNOMIAL DOES NOT HAVE FOUR LOCAL OPTIMA

. . ... 1. . . i- . . . f-
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Program Inputs

Coefficients of P(z) are input as DATA in line 9900, as

9900 DATA ao, a.,, a.2, a3, a4, a5

Program Outputs

The program computes the four local optima and prints the answer as

LOCAL OPTlIA ARE 3.146 -25.6 39.128 5.543

or prints the message

I1NPUT POLYNOMIAL DOES NO~T HAVE FOUR LOCAL OPTIMA

Program Processing

The roots of a quartic equation

F(z) = bo + b.1 7 + ttpz 2 + b3 z 3 + z

are found by finding a root y* for the resolvent cubic equation

G(y) = y 3 +c 2 y2+ c.y+ cc

where c2

cl (b 3 b, - 4b0 )

cc -b 3 'bo + 42bo - b

eh roots of G(y) are, in turn, found by substituting for y the value

x-C2/3 and solving for the roots of

H(X) =X 3 + djx+do

rwhere d, (3c1 - c-,2)13

do (2C2
3 

- 9 2c.1 + 27co)/27

1,et S = dc2/4 + d.1
3/27. If F(z) has four real roots then S < 0 and a

root x* o~f H(x) is given by
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x* 2V-d 1 3 cos(w/3)

where
-do/2

cos @
-13/27

Otherwise, if S > 0 then a real root exists at the value

Since y* = - c2 /3 then x* - c2 /3 is a root of G(y), the resolvent

cubic equation. Let

R' b3
2/4-b 2 +y*.

if R' is negative, then F(z) has imaginary roots and is not suitable.

et

nd

4b2 b 3 - 8b - b3a

y3b3
2 /4 -le-2b2 + ifRR

D-

r b 3 /kR2 2 2  b2b3S b3Vb24-2b2o + 2V(y*)2 -4b f=

bR ifR>C

E=

/3b. 32/4 - 2b2 - 2V(y*)2 - 4bo if R 0

jrhen the four roots of F(z) are

z* L-/4 +R/2 +D/2, -b3/4-R/2+E/2

Lima' S. .- .
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bo, b1 , b2, b3

CW=~r

COO 1LS C

aW

FOMPUE C5 lwhr fteOI rc
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1 0 R E A D 0 , A l A ? ,A 3 , A 
* A 5

0tllm2*A2/(5*A5f
0 2u3SA3/(S*A5)

o ff3=,SAe/45*A51
0 C2s-t42
0 Clu(83*RI-4*80)
0 C0*H3'28l+*i320-Hl12
0 01.43 ** CI-C2^21/3

100 D0.12*C2^3-9'C2*C 4278C0 )/27
110 Sw.00^2+0103/27
120 IF S40 THEN 180
130 Ant-D0/2+SOR(S)^.3333
140 au(-O0/2-SORIS1)^.3333
150 X.A4B
160 GCJTO 210
170 PRINT "INPUT POLYNOMIAL DOES NO'T HAVE FOUR LOCAL OPTIMA
175 GOTO 10
180 LET T1M-00/(2*SOR(-DI^3/P731
190 LET Tu3*I4159/2-ATN(TI/SCP(I-T102)l
00 LET Xw2*S0R(-VI/d3*COS1T/43)
10 LET Ynx-C2/3
20 Rlu63^2/4-82+Y
30 IF P1(0 THEN 170
40 PUSOR(Rll
50 IF PxO THEN 330
60 IF Y 2<4*80 THEN 170
80 IFLET 2 R Pu*8^1-2(062 7
80 LFET P0OR P63/-2< HEN17
90 LET P2u2*SGP1Y^2-4*40)
00 LET D=SORPl02)
10 LET EwS0RI-P2)
20 GOTO 420
30 PEM
40 LET 01=3*8324-PR2-2*82
50 LET Q2w(4*B2*83-*1-33)/(a*P
60 REM ADJUST FOP NEGATIVE SIAS OF INTERNAL FUNCTION~S
70 OAuQI*02+.O0tg 80 09s01-02+.000I
90 IF 08<0 OR 09<0 THEN 170
S00 LET DaSQRIO8)
10 LET E*SQRI 9)
20 LET Zln-53/4,R/2+0/2
30 LET Z23-43/4+Q/2-O/2

040 LET Z3a-83l4-0/2+E/2
50S LET Z4=-R3/A-R/2-E/2
:60 PRINT "9LOCAL VITIMA APE 'lZlZ2Z31Z'
470 STOP

Figure C.6. Experimental prograz OPTI.Iov
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SCNR

Program Description

This program reads in statements writter in a fictitious programming

language and produces a stream of code pairs corresponding to the sym-

bols which make up the program read in.

The fictitious programming language which is accepted by SCNR is called

EASY. EASY is not a line-oriented language; two or more statements may

be placed on one line or a statement may be continued on as many lines

as necessary. Every statement is ended with a semicolon. There are

ten (10) statement types in EASY:

<rar> := <expression>

DIM < ariable> (<sound> . , <bound>)

PRINT <-xpression>, <. e , .xpression>

FOR <variable> := <variable or constant> TO <variable or constant>

WHILE ( <ondition,-,

IF (<condition>) THEN < tatement>

READ <yariable>, -- , <variable>

END

GOTO <aabel>

pther rules of EASY are

* Comments can be placed "anywhere in an EASY program; a comment
begins with the symbol and continues until the is

found (e.g., " /* THIS IS A COMENT */").

• Every EASY statement ends with a semicolon (e.g., " X X + 1;").

* Constants are of two types

- numeric constants are simple integer numerals or numerals

with decimal fractions (e.g., "32" or "47.8").

- string constants are character strings within single
quotes; there is no way to represent a single quote
within a string constant (e.g., I 'THIS IS A STRING

!4
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" Statement labels may precede a statement and consist of a
proper identifier followed by a colon (e.g., " NEXT: PRlNT A;").

" Proper identifiers are variable names and statement labels;
an identifier must be one to thirty characters in length
begin with one of the characters LA, B, --- , C, #, @, $1
and be entirely composed of the characters (A, B, Z.. ,
#, $,@, 0, .. , 9).

" Blanks are necessary any time a string of characters would
be ambiguous. Specifically, to separate

- a keyword or variable on the left from a numeric
constant on the right (e.g., " PRINT 10; ").

- a keyword from a variable (e.g., "FOR I 1 TO 10 ; ").

Any time one blank is used, more than one blank may be used
without any change in meaning. This is not true, of course,
within comments or string constants.

" Six built-in functions are provided in the EASY language:
ABS, SQR, SGN, SIN, COS, AND ATN each one takes oneargmen (eg.," X := SIN( VO#)+ SIN(Y); ").

Each distinct symbol in the language is assigned a symbol class and a
subclass number. These assignments are

Class Subclass

Symbol Number Number

PRINT 1 1

READ 1 2

DIM 1 3

IF 1 4

THEN 1 5
WHILE 1 6

END 1 7

FOR 1 8

TO 1 9

GOTO 1 10

ABS 2 1

SQR 2 2

SGN 2 3

SIN 2 4

* . , -
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Class Subclass
Symbol Number Number

Cos 2 5

ATN 2 6

+ 3 - 1

3 2
/3 3

**3 5

3 6
< 3 7
>

<:3 9
>= 3 10

NOT 3 11
AMD 3 12

OR 3 13

7 1

7 2

S73
7 4

) 7 5

<,dentifier> 6 N/A

<string constant> 5 N/A

-'umeric constant> 4 N/A

Program Inputs

SCRR reads EASY program statements as BASIC string constants in DATA

statements beginning at line 9900. An example is given below:
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9900 DATA " DIM A(1O0);

9910 DATA " LET X :=X + ;"

9920 DATA " LET A$ := 'STRING' ;

9930 DATA " END;"

Program Outputs

SCNR outputs all of the information necessary to reconstruct the input

statements. Specifically, SCNR outputs a code pair for each program

symbol, a table of identifiers found, and a table of string constants

found. Each code pair consists of two parts: the first part is the

class number; the second part is either the subclass number (for key-

words, operators, functions, and delimiters) or a value (for numeric

constants).

A sample of the output expected for the example program above is:

IDENTIFIER INFORMATION

NMM IDE1'rIFJERS FOUND =4
IIENIIFIER TABLE
1 1
2 4
5 5
6 7
IDE.rTIER STRING

STRING CONSTANI' INFORATION

NLUTM OF STRING CONSTANTS FOUND = 1
STRING CONSTANT TABLE

1 6
CONSTANT STRING
STRING

SCANNER TOKEN CODE PAIRS

1 3
0 1
7 4
4 100
7 5
-' 2
6 2
6 3
3 14

-. y -
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CANNER TOKEN CODE PAIRS (contd.)

3 14
4 1
7 2
6 2
6 4
3 14
5 1
7 2
1 7
7 2

SCNR prints out an error message and stops if any of the following

limitations are violated:

" the total number of identifiers must not exceed 20.

" the total number of string constants must not exceed 10.

• the combined length of all string constants must not exceed 255.

" the combined length of all identifiers must not exceed 255.

" the total number of symbols must not exceed 100.

Program Processing

SCR is implemented as a finite state automaton- in which the program

progresses from state to state until it reaches an action to take.

There are nine states corresponding to distinct "situations" in the

decoding of a symbol:

1. initial state

2. currently decoding integer or real numeric constant

3- currently decoding real numeric constant

4. currently decoding keyword or identifier
5. currently decoding identifier

6. currently decoding * or **

7. currently decoding ) or{ <

8. currently decoding : or

9. currently decoding / or /*

here are 14 character types into which the character set is grouped.

Phey are
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1. a letter (A, B, "'" , Z)

2. a digit (0, 1, ... , 9)

3. a National character I#, @, $)

4. a period

5. an asterisk

6. an equal sign

7. an inequality sign

8. a colon

9. a plus or minus sign

10. a slash (/)

1. a delimiter (, ; ())

12. a quotation mark ')

13. a blank

14. a fictitious end-of-program symbol fi-)

SCNR progresses from state to state in decoding the input. A state

table contains, for every combination of current state (row) and next

character type (column), the next state to assume or action to take.

There are eight actions:

ACTION DESCRIFTION

1 A keyword or identifier has been found; determine which
one; if keyword, produce pair;

2 A quotation mark has been found; read incoming charac-
ters until another quotation mark is found; store
string constant in string table and produce code pair.

3 An operator has been found; determine which one;
produce code pair.

4 A numeric constant has been found; determine which one,
and produce code pair.

5 End of program; output code pairs and tables.

6 An identifier has been found; if "NOT", "AND", or "OR"
proceed to action 53, else ensure identifier is stored
in identifier table and produce code pair.

7 A delimiter has been found; determine which one; produce
code pair.

8 A comment-begin (/*) has been found; read and ignore all
characters until comment-end is found (*/).
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SCHR has been implemented by modularizing the program parts into

routines. One routine exists for each of the eight actions. Four

additional routines are

GETLINE - gets the next line by reading the next DATA state-
ment; prints out the line together with a line number and
removes all but one leading blank.

GETCHAR - returns the next significant character and its type;
returns only the first in a string of blanks; when processing
a constant string returns only the character without resetting
character type; returns a type of 14 if end of program is
detected.

INIT - initializes all the tables used in the program as well
as status variables. These include

- Search tables K, F, 0, D, I, and Q used to search for
keywords, functions, operators, delimiters, identifiers,
and string constants, respectively. These search tables
are used in conjunction with search strings K$, F$, 0$,
D$, I$, and Q$, where

X(Il) and X(1,2)
contain the first and last character position of the
entry in X$. I and Q are updated during processing
whereas K, F, 0, and D are static in terms of current
active size.

- Search string BS, containing the legal character set;
the B vector is used for determining a character type;
if character X resides at position I in BS and B(J - 1)
< 1 - B(J), then X is in class J.

- The state table S described above; action entries are
stored as negative integers and next-state numbers as
positive integers.

Status Variables

Q7 = 1 implies processing a string constant,
0 otherwise

F7 = 1 implies at least one blank has preceded current
char,

0 otherwise

I
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10 DIM AS(303
20 GOSUO 23Q0
30 LET AS=""
40 GOSUR 2030
50 FOR Z8al TO 10000
60 LET L-1
?0 FOP Z7a1 TO 100000.
80 LET CS=SCLsC]
90 LwC5
100 IF CS >= I THEN 130
110 GOTO -C5 OF 180,410,680,800.|010,13609156O,1660
120 GOTO 160
130 IF CSs" " THEN 150
133 IF LENtAS)<30 THEN 140
134 Eu6
135 GOSUB 3070
140 LET ASELENIAS)+1BCS
150 GOSUB 2030
160 NEXT ZY
170 REM ****************s
180 REM * KEYWORO OR VARIABLE *
190 REM ***********s******
200 FOP XsI TO X9
210 IF ASOKSCKCX*13KX*2]] TO-EN 240
220 NEXT X
230 GOTO 2802*0 c9UCQ l248 C9uC9+1

250 CCC9013u1
260 CCC9.2J.X
270 GOTO 1790
280 FOR Xul TO F9
290 IF AS=FSF[XC13*FCX9231 T1-EN 320
300 NEXT X
310 GOTO 360
320 IF C9<C6 THEN 328
322 Ez6
324 GOSUB 3070
328 C9sC9+1
330 C[C99132
340 CCC992)=X
350 GOTO 1790
360 IF ASw"AND" THEN 680
370 IF ASs"DR" THEN bB0
380 IF ASm"NOT" THEN 680
390 GOTO 1360
40 REM *****.*..sa ..

410 REM * PROCESS STRING CONSTANT.
420 REM TURN ON QUOTE MODE
440 REM *****#****e**,s*asea*
*S0 O90O9+1
460 IF 09 <w 10 THEN 490
470 Ew2
480 GOSUB 3070
490 IF 09Ol THEN 520
S00 OCI,l3wt
510 GOTO 530
520 O9Q13=0(09-1,23+t
530 FOP O8=(09,1 TU 100

Figure C.8. Experimental program SCNROO

ii
• I -
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540 GOSUS 2030
550 IF CS=11*" THEN bonlf
555 IF C#14 THEN 5c,0
556 E=8
558 GOSUP 3070
560 QS[083.CS
570 NEXT 08
560 EB3
590 GOSUB 3070
600 GE0q923=P- -
640 CquC9*1
650 CCC9%13zS
660 CCC9,23uo9
670 GOTO 1790
675 Rem *****03***
680 REM * PROCESS OPEQATIJQ
690 REM ***S.*****
700 FOR Xa1 TO 09
710 IF AswnscOCxgjUC*2J3 TO-EN 730
720 NEXT X
730 IF INYT(C5)=C5 THEN 760
740 ASCLEN(A$I+I]=Cs
750 GOSUB 2030
760 IF C9<C6 THEN 768
762 E06
764 GOSUR 3070
766 C9-C9+1
770 CCC9913
780 CCC92Jax
790 GOTO 1790
800 OEM SS***s*Sa.assa
010 REM * PROCESS NUMERIC CONSTANT
620 REM S**s*sa esssas
630 DIM NSI 03
6840 NS=00I2345678964
650 V=0
060 P7=LEPJ(AS)
670 FOR Xal TO LENt AS)
660 IF ASCXvX3i#'9." THEN 910
690 LET P7=X
900 GOTO 950
910 FOR .1.0 TO 9
920 IF NSCJtlJ1]ZASEXxl TH~EN 94o
930 NEXT .j
940 Vuv*10+J
950 NEXT X
960 LET VzV/tI0^(LEN(A5)-P7+1II
965 IF C9<C6 THEN 970
966 Cub
967 GOSUP 3070
970 C9*CQ*I
960 CCC99lJ.4
990 CCC9923=v
100GTO19

1020 REM *
1030 REM * PP'ItJT OUT SCANNEP TALALFS 0

1060 REm *
1050 REM aaasssseas*as~~S
1055 V~r1jT LIN(P?

Figure C.8.-Continued
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1060 ppRiNT ooIDENTIFIER tNFCr-t"AT1,3N-
1070 PO INT "a*UEUcmsU 2es83333352
1080 PRINjT 61NUMEEP OF IDENTIFIERS FOUND ";1
1090 PAINT "IDENTIFIED TAPLE"#
t100 FOR Xal TO 19
1110 PAINT ICE.1],ICX#23
1120 NEXT X
1130 POINT *0!DENTIFIEW STRING"
1140 FOW X.1 TO LEt.(I'l) STEP 60
iI50 PRINT l5CXsX+5i9]
1160 NEXT X
1170 Pp I rT
1180 PQRINT 1"STO1NG, CONSTANT I NFCRPAT I til
1190 PAINT losa3UU wasummu zssum333al
1200 PRINT ffN1Jm6ER OF SIRING CONSTANTS FOUN) a 9';Q9
1210 PRINT "STRING CfC'NSTANY 7AFHLE6%
1220 FOR Xul TO 09
1230 PRINT QCX,3JUCX92)
1240 NEXT X
1250 PRINT "CONSTANT STRING"
1260 FOR Xu1 TO LEN(OS) STEP 60
1270 PRINT GS[XtX+593
1280 NEXT X
1290 POINT
1300 POINT "SCANNER TOKEN CODE PAIRS"
1310 PRINT "amuams soas smn ==us"
1320 FOR XuI TO C9
1330 PRINT CEX9139C(X,?]
1340 NEXT X
1350 STOP
1360 QUAS*st****,*.*
1370 REM * PROCESS IDENTIFIFQ S
1300 REM ***i***'*#*

1390 FOR XaI TO IV~
1400 IF ^SstE1CKIIftA,23j THEN 1530
14t0 NEXT Z
1420 l9u19*1
14J7 GOTO 1440
1430 IF 19<20 THEN 1439
1431 EnS
1432 GOTO 3070
1439 qc19qIjwIc19-1 ,2?1
1440 1[1992331[ 19*1J34LENfAS1-
14 0 IF 1119.21 <a 255 1',EN 1480
1460 EU4
1470 GOSUR 3370
1480 lit IC19.1 jjzsi
1488 151CE19*111WAS
l698S C9wC9+1
1500 C(C.9,13s
1510 CCC9923=I9
1520 RETURN
1530 C9uC9+1
1539 CCX,11=6
1540 CC(X 92 23x
1550 GOTO 1790
.560 PEM **ss...,.S*
157G REM 10 OEL1P4ETE? PPiWCESSING
1580 RE ***S*****tU**
158*2 IF INTIC522(4 ,i THE'l :!;u#

'Ficurec-C8.-COntinued
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1586 ASELENIAS1.-]zCS
1587 GnSu8 2030
1590 FOR Xal TO 09
1f00 IF ASMUV[U[A913,O(X,213 THEN 1620
110 NEXT x
1620 IF C9<Cb THEN 162A
1622 Eb
1624 60SUR 3070
lb28 C9Cn4+1
1630 CrC9, 1=7
1b40 CCC9s2JUE
1650 6nTO 1790
1660 REM S***s**sa*~SS***S*
IbTo REM * COMMENT PROCFSSING *
1680 REM S****$$s***$Sts*$e**
1690 DIM ZSc1l
1700 GOSUB 2030
1710 FOR xal TO 10000
1720 ZSzCS
1730 GosUe 2030
1740 IF ZS#"*" THEN 1770
1750 IF ZS="/" THEN 1760
1770 NEXT X
1780 GOSUB 2030
1790 AS=""
1795 NEXT ZS
1800 RMt******$*s
1810 REMW END OF MAJOR LOAP*

1830 PEP*********S

1840 REM S *
1850 REM $ GET THE NEXT LINE *
1e6o REM s
1870 REM *ss*s * *s ****st5****$
1880 DIM XS[1OO3,Y tIO0J

1890 IF TVP(0)43 THEN 1920
1900 Y9u-1
1910 RETURN
1920 XSuYS
1930 REAr ys
1940 X9xq~l
1950 PRINT TARt2)ix9;TAS(5)IY$
1960 LET Y6*LEN4(YS)
1970 FOP Y9=Y8 TO I
1980 IF YSC1.2JV" " THEN 2010
1990 Y$Y5[21
2000 NEXT Y9
2010 RETURN
2020 RETURN
20.30 REM *e**e.asat*s**s*S
2040 REM *
2050 REM * GET TmE NEXT CHARACTFR
2060 REM * IN CS AND RETPN
2070 REM * C4AR TYDE IN C *
2080 REM *
2090 PEM *$S***s**.a.****s** tt*t********$
2100 Dim C$CiJ
2110 FnR F6=1 TO 1000
2120 GUSiJ$ 2224)
2130 IF 070 TmEfj .215o

Figure C.8.--Continucd

l J|
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2140 RETURN
2150 IF CS." " THEN 21A0
2160 F7*0
2170 RETURN
2180 IF F7#0 THEFj 2210
2190 F7*1
2200 QETURN
2210 NEXT F6
2220 IF PI<Y9 THEN 2280
2230 GOSUR 1830
2240 IF Y9 >= 0 THEN 2270
2250 Cs13
22b0 RETUPI'
2270 LET PisO
2280 LET PIP)4+
2290 LET C wYS%0lP,03
2300 FOP l11 TO 54
2310 IF S5CIsI3wCS THEN 2350
2320 NEXT 1
2330 EuI
2340 GOSUS 3070
2350 FOR CaI TO 13
2360 IF I (u B[C] THEN 2380
2370 NEXT C
2380 RETURN
2390 REM *****S***S******4*,*********.**.*S**************
2400 REM * ,
2410 REM * INITIALIZE SEARCH TABLES AND STRINGS *
2420 REM * *
2430 PEM *;*ss=a**st*ss ** s*s*.tsl.t **.*s *;sss
2440 DIM K[15.2JFE10C,23,0[20,2J.Dt1O,2J e(20]
2450 DIM KS(100t1FS1003,OSC1003,DSC1002,B$1SE00]
2460 F7w0
2470 070
2480 PIO
2500 LET K9=1O
2510 FOR Jul TO 2
2511 FOP 1l. TO K9
2512 READ KEIJ3
2513 NEXT I
2514 NEXT J
2520 DATA 1,6*1013,15919.2492793n,32
2530 DATA 5,9,12,14,1,2392.9,29,31,36
2540 READ KS
2550 DATA "PRINTPEADDMTIFTHLN&HILEENrF(OPTD(O TO"
2560 LET F9=6
2570 Ffl Jul TO 2
2571 FOP lot TO F9
2572 READ F(I.J]
2573 NEXT I
2574 NEXT J
2580 DATA l4979109l131b
2590 DATA 3*6t99129159tq
2600 READ FS
2610 DATA *"ABSSQRSGpjSIpCcSATf,"*
2620 LET 09u13
2630 FOP Jul TO 2
2631 FOR lt TU 09
2632 READ O(9J)
2633 NEXT I

Figure C.8.-Continued
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*03 34k 9 07 :

2600 O"A" 01
2670 DAT & .,SO ... . ..... 01-oo."
a06 LET 0965
2b9 aO Jet3 TO a

*093 PJ)Nt D0

2694 NEXT J

R7q N0T a 3
2700 0*7* 0:;,,.

2740 READ O
2710 CA TA -AHCOEV604 IJLMODPRSTUVOXYZO23567S9@.S.au433.-/;.( )*
a2700 39*13

a2770 A E0fcq

2790 :E: : INjTIALIZENSEAAC0-'
29GO E a STNS AN4 D

2:30 03" 0(j0.2J.IL20.23240 nU asC2535)1
2::: LET 09:0

870 0SU::
2860 5u

2900 RZe S INITIA:LI OEVCO AND

2910 :E... AND STATE. TLE

930 ag. *.e. ... .. a ... QAA a.. a.. .ee
2935 LE T Cbe200

2940 LILT C9;0
a2910 m4T aEAC SCq.14)
2970 DATA 43434,, 44,,.,
2960 DATA A344-,44- .- 4A44

30900 DATA SSS-.0- 0.,.-'~
01 DATA

302 ATA 3 J3 3 3 3*Je33,
3

-3~e~.

3030 0TA7* -7777 .3 ,7,-7,7,-7-7.-7-7,-7
30;0 CA TA _ 3 _3 3 _ 3 . -3 J 303 _3 9_SJS9_3 1_3..3

30P0 GUS 530
3060 RETURNI
3070: M
30:0 OEM 0 ERROR DIAG14USTIC GENERATOR
3100 ..............

3120 PRINT -EQQDS I7I
310GOTO f F3691030I2034*2O30

337 0 GTo 100

Figure C.8.-Continued
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3180 PRI1NT "OTDIAL N>UMSEW OF SIPING CUNSTAgJTS IU1"
3190 GOTO 1010
3200 PRiNjT "TnTAL LENGTI- OiF ALL STR~tiG CONSTAtJIS > 25%"
3210 GOTI) 1010
3220 PRINT "TOTAL LfrNGTH OF ALL IDENTIFIEW-S > 255"1
3230 6070 1010
3240 PRI14T "TOTAL NUMBER OF IDENTIFIERS > 00"
3250 GnTo 1010
3260 PRINT "TOTAL NU11*8E OF SYMbjOLS > 200"'
3270 6070 1010
3300 PRINiT *lPRJC.RAL E4rS *lTi-4 OPEN Com#AErJT OR OLIOTF"1
3310 GOTO 1010

Figure C .B.--Continued
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White-box and black-box test data sets were constructed for each of the

four experimental programs. A black-box test data set was developed by1

considering what different processes were identified by a program

specification; data were then created to cause one class of program

output to occur. Within a black box data sei was also included data

combinations to test the assumptions and restrictions cited in the

specification.

The specific development process for each program's black-box data

sets is outlined below:

" ITAX - The input data for two fictitious individuals with

complementary and vastly different income and deduction

items were used to construct two test data sets.

" LNFR - Six characteristics of linear programing problems

were identified: direction of constraint (in)equality,

unboundedness, constraint redundancy, infeasibility,

negative right hand sides, and negative objective function

coefficients. Six combinations of these attributes were

grouped and a linear programming problem was constructed

corresponding to each of these combinations.

• O RM - Five test data sets were constructed from problems

chosen from a text on the theory of equations.

" SCNR - A sample program was developed which used at least

one member of each symbol class. Within the program, state-

ments were included to determine if strings and comments

were properly handled. The program was otherwise written

to be representative of a "normal" program.

The goal of black-box data construction was to develop test sets repre-

sentative of typical problems, but sufficiently diverse so as to verify

the functions and restrictions set down in the specifications. The

goal of white-box data construction is the development of a minimal

set of test cases which covers the program graph as completely as pos-

sible. It is nearly always infeasible to force the execution of every

256
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path sequence, but often possible at least to cover every program

branch and important combinations.

The procedure for white-box data set construction was similar for

each of the experimental programs. A program flowchart was developed

and test data sets calculated to ensure that every program branch was

taken. Then, a review of the program code was performed to determine

paths of execution which were related through the use of the same

variable(s). Data sets which forced execution of important branch

pairs were then added. The resulting test sets for ITAX and OPTM ap-

peared little different; because of the low logical complexity both

black- and white-box data provided reasonable flowgraph coverage.

Black- and white-box test sets for LNPR also appeared somewhat similar

since the program processes identified in the black-box procedure were

fairly transparently evident in the program logic. The black- and

white-box test sets for SCNR appear vastly different; while the black

box set represents a comprehensively diverse "typical" program, the

white-box set represents a string of symbols designed to force the

finite state automaton through its permissible states.

- - !
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The errors made within each of the four experimental programs were

assigned one of three main types: computational, logical, or data

handling. Each of these three categories were, in turn, decomposed

into subclasses of error types to which every program error was

assigned:

• COWWATIONAL

- Missing Computation: One or more statements necessary
for proper computation were forgotten.

- Improper Expression: The computation of a value did not
match the specifications.

- Machine Limitation: An expression, though ostensibly
matching the specifications, did not take into account
some machine or language limitation which invalidated it.

" LOGICAL

- Branch/Sequence: Statements which should follow one
another during execution did not as a result of improper
branching destination or statement permutation.

- Wrong Boolean Expression: An IF condition was improperly
expressed.

- Missing Logic: A situation which required special handling
was overlooked.

- Redundancy: A statement or statement group was improperly

repeated.

• DATA HANDLING

- Improper Initialization: A variable was initialized im-properly through assignment or READ/DrAA statements.

- Wrong Variable Name: The obvious use of the wrong vari-
able name was performed.

- Subscript/Substring: An improper array index value or sub-
string bound was employed.

The description of errors and designation into error types is given

in Tables E.1 through E.4. The breakdown of error type counts by

experimental program is shown in Table E.5. Since computational

errors are found in expressions and logical errors more pevalent in

complex code, it is not surprising that OPTM (high computational con-

,ent, low logical complexity) and SCNR (low computational content,

high logical complexity) exhibit complementary error patterns, while

_ 259
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Table E.I

Error Description: OPTM

Error Statement Error Error Error
Number Numbers Description Types Subclass

1 80 B3 s.b. -B3 Comp Imp Exp

2 1i0 80/2 s.b. SO 3/4 Camp Imp Exp

3 90 3**Cl s.b. 3*0C Camp Imp Exp

4 200 /3* s.b. /3)* Camp Imp Exp

6 280/290 s.b. permuted Logic Wng Br/Seq

7 130/140 s.b. ABS(X) .333*SGN(X) Ccmp Mach Lir

8 470 s.b. GOTO 10 Logic Wng Br/Seq

Note. For this table and the three tables to follow, the
following abbreviations are being used:

Comp Computational Wng B Exp Wrong Branch/

Wng Op Wrong Operand Expression

Msg Comp Missing Computation Msg Lgc Missing Logic

Imp Exp Improper Expression Rdndnt Redundant g

Mach Lim Machine Limitation D/H Data Handling
Logic Logical Imp Init Improper Initializatio

Wng Br/Seq Wrong Branch/ VBWN Variable by Wrong Name

Sequencing Sub/Sub Subscript/Substring

s.b. should be
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Table E.2

Error Description: LNPR

Error Statement Error Error Error
Number Numbers Description Types Subclass

1 360 N+ s.b. N Comp Imp Exp

2 llSO AND s.b. OR Logic Wng B Exp

517o s.b. NO=-NO+l; N(NO)=J D/H Sub/Sub
1700 _ _ _ _ _ _ _ _ _ _ _ _ _

4 1980 THEN 2100 s.b. THEN 2140 Logic Wng Br/Seq

5 2480 1 s.b. M D/H Sub/Sub

6 2500 s.b.- and A(JS+I)?O... Logic Wng B Exp

7 2940 Forgot V=O D/H Imp Init

8 4020 0 s.b. 1.E + 38 D/H Imp Init

9.1 A(R9,C9) s.b. out of loop Comp Msg Cmp43o
9.2 4 A(IC9) s.b. out of loop Comp Msg Cmp

10 4520 II(J1) s.b. ABS(n(Jl)) Comp Msg Crp

11 4560 1 s.b. Z Comp Imp Exp

12 2150 Forgot GO TO 2600 Logic Wng Br/Seq

13 2020 = s.b. # Logic Wng B Exp

14.1 3560 5120 s.b. 3620 Logic Wng Br/Seq

14.2 5520 3120 s.b. 3620 Logic Wng Br/Seq

--.------.--.----
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Table E. 3

Error Description: ITAX

Error Statement Error Error Error

Number Numbers Description Types Subclass

1.1 585 Missing SO = SO + Y2 Camp Msg Cmp

1.2 585 Missing Si = Si + Y2 Comp Msg Cmp

2 4W0 Sl s.b. So D/ VBWN

3 600 > s.b. < Logic Wng B Exp

4 026o/ s.b. removed Comp Imp Exp

10/
5/6 1480 Tax computed Comp Imp Exp

1660/ Incorrectly
________ 1680 _ ____

7 1620 Redundant D/H Imp Init

8 680 ? s.b. ? Logic Wng B Exp

9 1240 01 s.b. O0 D/H VAN
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Table E. 4

Error Description: SCNR

Error Statement Error Error
Number Number(s) Type Class

1 130-134 Identifier length test Logic Msg Lgc

2.1 240-244 Excess code pairs test Logic Msg Lgc

2.2 635-37 Excess code pairs test Logic Msg Lgc

2.3 1490-1494 Excess code pairs test Logic Msg Lgc

2.4 1530-34 Excess code pairs test Logic Msg Lgc

3 4.30 Forgot Q7=1 D/H Imp Imit
4 61o-3o Forgot Q7-0 f/E Imp Imit

5 960 +P7)) s.b. -P7 4 1)) Comp Imp Iait

6.1 1425 First identifier check Logic Msg Lgc

6.2 1480 First identifier check Logic 14sg Lgec
7 1520 Return s.b. Goto 1790 Logic Wng Br/Seq

8 1539-1540 C(X s.b. C(C9 D/H Sub/Sub
9 1750 Z$ s.b. C$ D/H VEWN

10 1970 Forgot step-i Camp %sg Cmp

11 2490 Forgot X9-0 D/H Imp Izt

.12 2750 )'" s.b. )'" D/H Imp Iit
1.3 2780 53, s1, 55 s.b. 52, 53, 54 D/H Imp mzit

14 3120 1- + 5 s.b. P1 + 7 Cop Imp Exp

15 557 Missing Q-Q9-. Cop Msg CMp

16 1735-1737 End of symbol test Logi,: Ms6 Lg.

17 1905 Forgot Pl-Y8 Cop Msg Cmp

18 530 i to 100 s.b. I to 255 D/H Imp init
19 2530 36 s.b. 35 fl/H Imp Init

20 2590 19 s.b. 18 D/H Imp Init

21 2640-2650 18/21,22/23 s.b. 18/20,21/22 D/H Imp nit

2- 2250 C=13 s.b. c.14 D/H Imp Init

23 200 Return Logic Rd.adnt

24 1488 C9C9+1 unnecessary Lcgic Rdndnt
25 248 C9-C9+1 unnecessar Logic Idtdnt

26 1415 17= 1 D/H Imp Ibit

27 1427 s.b. deleted Logic Wz Br/Sea

Lj, .
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Table E. 5

Breakdown of Error Type by Program

ITAX LNPR OPTM SCNR

Computational: Total 4 5 5 5

Missing Comp 2 3 0 3

Imp Exp 2 2 4 2

Machine Limitation 0 0 1 0

Logical: Total 2 7 2 12

Branching/Sequencing 0 4 2 1

Wrong Booleon Expression 2 3 0 0

Missing Logic 0 0 0 8

Redundant Code 0 0 0 3

Data Handling: Total 3 4 0 12

Improper Initialization 1 2 0 10

Variable by Wrong Name 2 0 0 1

Subscript/Substring 0 2 0 1

ii ~ 'I



265

ITAX and LNPR have more balanced error counts. The propensity to

coimmit data handling errors appears slightly stronger in programns of

high logical complexity.
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CONTENTS OF THE EXPE IMENTAL PACKETS
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PARTIC IPANT

ACCOUNT NUMBER

PASSWORD

Dear Participant:

I wish to thank you for volunteering to participate in this pro-

gramming experiment. Your help in this research is not only invaluable

to me in my pursuit of a PhD, but more importantly, may help us, the

computing community, to better understand the factors affecting soft-

ware development.

The purpose of this experiment is to collect data concerning the

behavior of individuals engaged in program debugging. You will find,

enclosed in this packet, specifications for four (4) programs. These

programs have been carefully chosen and written to represent many types

of software that is developed today. They include

. SCNR - a program which reads in statements in a fictitious
programming language, and converts each distinct
language symbol into a code.

• OPTM - a program which solves for the roots of a fourth
degree polynomial.

. LNPR - a linear programming program which employs the
primal and dual simplex algorithms to solve
linear optimization problems.

0 ITAX - a program which computes the income tax for an
individual.

It is expected that you will not be familiar with all of these applica-

tions. In fact, you may not be acquainted with any of these problems,

but your efforts are just as important as those participants who have

thad greater experience with these applications.

All of the eXper .rntal programs (SC'!'2, OPTM, LNPR, ITAX) have

errors in them. These errors o- "bugs" have not been artifically

'inserted; they occurred during the normal course of program develop-

ment. IT IS YOUR TALK TO FIND THEY.. The number and types of bugs

267
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that you find, as well as the activities which lead to their discovery,

is the primary information that you will provide for this research.

We realize that everyone has his/her own method of program testing

and debugging. However, because the data collected must be comparable

from all participants, we ask that your debugging activities be con-

ducted in a pre-set way. During the orientation you will be told the

order in which you should select programs for debugging, and the amount

of time that you have for each of the four programs. It is important

that you

• debug the four programs one at a time,

• in the order that you are instructed to,

. for exactly the amount of time allotted to you -

no more, no less.

During the course of the experiment you will always be engaged in

one of five (5) activities:

(1) Test Data Development: for those of you who have not been
given data to use, you must take time out to construct data
to test an experimental program; when you begin and when you
end this activity, write the time on your ACTIVITY LOG, in-
cluded in this packet.

(2) Terminal Work: every time you want to run the latest version
of an experimental program, you must log on one of the desig-
nated terminals, make whatever changes to the program or data
that you have decided upon and run the program; the designated
terminals will all be hardcopy devices, so please write your
name, participant number, and the time on the terminal paper
before logging on; when you begin and when you end this activ-
ity, write the time of your ACTIVITY LOG, included in this
packet.

(3) Code Review/Error Detection: after leaving the terminal, pick
up whatever listings you have asked for from the lineprinter
and proceed to debug the program, by considering the listing
and results of the program run; when you begin and when you
end this activity, write the time on your ACTIVITY LOG,
included in thiE packet.

(4) Error Correction: once you think that you have found an error,
terminate the Code IEview/Error Detection activity, and begin
considering what program changes are necessary to correct the
error you have found. Log all intended changes on the PROGRAM
MODIFICATION LOG included in this packet. You may switch from
"looking for errors" to correcting them many times in one sit-

'I
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siting; each switch requires posting a start time and stop
time on your ACTIVITY LOG.

The experiment is to be conducted Sunday, January 27, in Bridge

Hall 208, on the USC campus. Directions are included in this packet.

Orientation will begin promptly at 8:00 A.M. Your early arrival will

be enthusiastically appreciated. We expect the experiment to last

approximately twelve hours with breaks for resting and meals. Thank

you again for your help.
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EXPERIMENTAL TIMETABLE

8:00 A.M. - 9:00 A.M. Experimental orientation,
distribution of materials

9:00 A.M. - 12:30 P.M. Experimental Session I

12:30 P.M. - 1:00 P.M. Lunch break

1:00 P.M. - 4:30 P.M. Experimental Session II

4:30 P.M. - 5:00 P.M. Dinner break

5:00 P.M. - 8:00 P.M. Experimental Session III

8:00 P.M. - 8:30 P.M. Collection of experimental
materials

I - p- .. .
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TERMINAL RULES

(1) You can only LIST, RUN, GET, or EDIT the last version of the
program that has been assigned to you.

(2) You are not permitted to PURGE any program or file.

(3) You arm not permitted to make any program changer, that were not

listed on your program modification log when you sat down at
the terminal1.

(4) You must rename any modified program to the next higher version
(e.g., LNPR04 becomes LNPR05), and SAVE before leaving the
terminal.

-I I
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ACTrirMT LOG

Subject:

Date:

'I ~~Progra~m_____

M E- 1 U Ti Tim Coments Program Version

____________________________________

__________ ________I_ __ _ _ _ _ __ _ _ _



PROGRAM MODIFICATION LOG27

Subject:________

Date:_________

Program:____

VERSION
________ _______ ___D3_Y__________ TIME 13IM MODIFM~
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view is that the distribution of error discoveries conforms to probabilistic
models of reliability growth.

An experiment was conducted in which twenty-two subjects were given a fixed
amount of time to find and correct errors in each of four programs. The pro-
grams were designed so that each represented one of four combinations of two
levels each of logical complexity and conputational content. These programs
were thoroughly debugged by the author and a classification of the types and
frequencies of errors was recorded. All errors not related to program design
were then reinserted.

For each experimental program, a set of specification-based "black-box" data
and a set of program structure-based "white-box" data were developed. Each
subject was instructed to use four of these eight input data sets in confor-
mance with the experimental design.

During the course of the experiment, each subject partially debugged the
four experimental programs in preassigned order. Subjects recorded the dur-
ation of each debugging activity and the times at which program errors were
calculated, measured by the number of errors found, as well as the distri-
bution and orderings of error discovery times.

The subject group exhibited a wide range of ages, experience and education.
Analyses indicated that a reasonable amount of recent programming experience
was more important than any other determinant of debugging performance.

An analysis of the errors discovered by the subject group indicated that
logical and data-handling errors were less frequently found than computational
errors. Moreover, the visibility with which a program error disagreed with
the program specifications was directly related to its errors discovery fre-
quency. The wide range of error discovery frequencies confirms that some
errors were inherently more difficult than others. This conjecture was also
supported by a Chi-square analysis of discovery frequencies, and the indepen-
dence between error and difficulty and subjects was confirmed by a test of
rank concordance among subjects.

An analysis of variance using logical complexity level, computational content
and test data type as factors showed only the first two factors as having a
significant effect on error discovery. A significantly negative interaction
effect of these factors pointed out the inadequacy of the program-character-
istic metrics employed.

Maximum likelihood estimates of subjects' proficiencies and errors inherent
arrival rates were calculated to test whether or not discovery times were
exponentially distributed. Discovery times as a set exhibited a significantly
decreasing discovery rate over time, in contradiction to the assumptions of
the Helinski-Moranda and Schick-Wolverton software reliability models. A
distributional model was developed and tested in which error discovery times
are modeled as order statistics on an underlying Pareto distribution. While
all three models overestimated the actual number of errors in each experimental
program, only the proposed model can readily accommodate the assumption of
non-constant discovery rates for individual errors.
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