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CHAPTER I
' \\¥ INTRODUCTION

Since the introduction of computing systems three decades ago,
software development has grown increasingly in importance and complex-
ity. Today the expense incurred by users in producing and meintaining
programs exceeds ten billion dollars (Phister, 1976) and constitutes a
large fraction of some corporate budgets (Dorn, 1978). Joint revenues
of independent software Euppliers exceeds one billion dollars, while
revenues of camputer manufacturers is approximately twice that (Inter-
national Date Corporation, 1978). The increases in software-relasted
expense far outstrip the growth in hardware costs. While the labor-
intensive nature of software production has contributed to its increas-
ing cost, competitive pressure and increased manufacturing automation
have reduced the cost of hardware elements. It is for this end other
reasons that Boehm (1973) predicted that software costs will constitute
90 percent of total system costs by 1685.

As user needs become satisfied, software systems are designed
to increasingly demanding specifications. This rapid growth in the
number and complexity of desired systems demands equivalent increases
in the number of qualified software specialists. More importantly,
it dictates & maturity in software development methodology. The current
state of "software engineering” does not exhibit this degree of matur-

ity, nor does any significant proportion of software workers employ __
1
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those tools and techniques which most influence the quality of software

systems.

1N

Researchers and practitioners in the information sciences refer

The Software Problem

to the "software problem" to indicate the special characteristics of
software as an artifact, and the ways in which those characteristics
affect its production. Wegner (1978) enumerated the special proper-
ties of software that distinguish the process of its manufacture from
that of other engineering projects:

« Large software products generally support a greater
variety of functions than conventionally engineered
goods.

» There is an enormous variety of correct implementations
for a large software system, from which one must be
"selected."

¢ A large software system must be constructed so as to

mitigate the cost and difficulty of its inevitable
modification.

. Software development milestones are difficult to estab-
lish, hence project progress is hard to assess.

Since software partly resides in the realm of ideas, the com-
plexity of its implementation is seldom as obvious as that of physical
artifacts. Moreover, there is some evidence that large software sys-
tems exhibit properties substantially different fram small software
systems, not Just differences in scale (Boehm, McClean, & Urfrig,
1975). Because of this, prototyping of software systems does not

generate as much useful information as & physical model which may be
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developed preceding the construction of physical goods.

Society's appreciation of the software problem has been con-

: stantly diluted by exposure to advances in the total computing system.
: That is, increasing complexity in large software systems has been
partially masked by the apparent ease with which hardware camponents
have been expanded in the last two decades. In sttempting to utilize

increased capscities for information processing, & natural demand has

been created for that camplementary good which controls the execution

of hardware elements. A large percentage of the gains in hardware,

e R it et RA

however, have come abc?u‘t with less additional complexity than would
be necessary to increase software system size. Reductions in cost

i and increases in hardware have been substantially effected by methods
£ vhich are only linearly more complex than older ones. These methods

; include miniturization of components, and. increases in resource volume
} and density without an associated increase in interface camplexity.

Conversely, advances and improvements in software have came ebout pri-

i ’ . marily through the layering of capability after capability, which, at
each step, gently increases system complexity.

Management of software production has been hindered by the
fact that the software development process generates inherently less
visible evidence of progress than other development projects. Walker
(1978) attributed this to the fact that the primary activity in soft-
wvare development is that of communication, and that without filtering
mechanisms & substantial amount of noise is injected in the messages

wvhich became components of & software system. Visibility of user




needs 1s also often obscured. Users normally increase their expecta-
tion when they are able to state their needs more explicitly in terms
of current system service. These needs may not be closely examined;
because of its intangibility, however, software is expected to be suf-
ficiently malleable to accommodate them. Hence, maintenance is not
always subjected to the same degree of feasibility analysis as would

accampany a modification request of a physical good.

Modern Development Methods

It is the current view of researchers in software engineering
that aspects of the "software problem” can be minimized through the
use of disciplined methods of specification, design, and coding, set
within a management framework that permits the planning, measurement,
and control of development activities. The most important factor
influencing development and maintenance research has been the redis-
covery of the life-cycle metaphor applicable to software systems
(Wegner, 1978; Zeklowitz, 1978). The life-cycle approach to software
development recognizes the various stages through which the software
system can be viewed as progressing. With each phase of a software
system's life is associated a set of costs and benefits incurred in
its development, use, and maintenance.

Early software development efforts focused on the reduction of
development costs and duration. Experience in the last decade with
systems that pertially or completely failed to meet specifications and
budgetary constraints forced an expansicn of this myopic view. A

series of regimens has been proposed that promcte the traceability of




requirements through the succession of representations of the system,
while increasing one's ability to understand a software system's struc-
ture and function. These modern methodologies include variants of
structured programming (Dahl, Dijkstra, & Hoare, 1972), structured
design (Steven:, Myers, & Constantine, 1974), and structured analysis
(Ross & Schoman, 1977). Enlightened project management can exploit
these methodologies while instituting measurement and validation
techniques such as peer review and formal testing, as well as the
normel management reporting methods.

Software development can be viewed as 8 process that translates
specifications into a working system through & series of transforma-
tions that provide intermediste representations. In making opera-
tional the system components that satisfy the general set of func-
tional, econamic, and performance constraints, e succession of deci-
sions has to be budgeted among development team participants.

Validation is necessary to assess the effects of those deci-
slons before the system becomes too costly to restructure. Prior to
the development of & system code this validation normelly takes the
form of reviews in which users, developers, and project mansgers
cooperate to determine conformance to the project's plans and goals.
The most expensive and time-consuming form of validation, testing,
currently and in the past, has occurred after the design has been
translated into programming language. Alberts (1976) has estimated
that up to 50 percent of development cost is incurred during the test-

ing of software system elements, whereas up to 90 percent of life-cycle

i
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costs involve maintenance to correct errors and rewrite system codes to

meet new requirements.

The Role of Validation

Validation Research Areas

Areas for research in system validation may be categorized in
a varilety of ways, including: by development phase addressed, manual
methods vs. automated tools, or the degree to which the results of
other disciplines are employed. Another useful dichotomy is suggested
by the alternative views of software as a static document versus soft-
ware as & dynamic systeg.‘ Hence the validation of system code can take:

two general forms:
. System verification, which attempts to prove the correct- i
ness of the implementation by formal methods, and
. System testing, which involves the application of test

data sets that exercise a software system in a manner

representative of future and current use.

One important area in testing research is software reliability i
theory, in which models are proposed that serve to approximate or pre-
dict the frequency and composition of faults that may occur during sys—'
tem operation. Because testing is costly, reliability theory gives

one a means of maximizing expected utility by indicating the level of
testing necessary to trade off optimally the cost of further quality

assurance measures with the cost of improper system execution. The

tradeoffs differ from system to system and depend, for example, upon

iwhether a system's errors will result in financial discomfort or loss

i

;of human life. An excellent overview of software reliability theory

i1s given by Schick and Wolverton (1978).

}
!




arly Validation

“Early validation" refers to software development practices
that attempt to enhance the fidelity of translation from problem
statement to software system design. Proponents of early validetion
are justified in believing that software system reliability must be
fmaintained through the phases of system construction that precede the
programming stage.

Static enalysis methods involve the examination of documents

representing various aspects of the system. Analysis of requirements
statements, formal specifications, and design documents is normally
static because these re-p;'esentations are seldom machine readsble and
lalmost never executable.

The importance of requirements analysis has become a major
theme in the litersture of software engineering for large systems
(Bell & Thayer, 1976; Ross, 1977a). Requirements enumerate the needs
of the system's client(s) by communicaeting a desire for function within
Tscme performance context. Analysis of requirements implies checking
ffor the desired properties such as consistency, campleteness, lack of
pmbiguity, and feasibility.

Formal sutomated systems for describing and analyzing require-
nt sets are under development. 8Systems currently exist which auto-
E:te many of the informal checks for properties desirable in specifica-
tions. The ISDOS system (Teichroew & Hershey, 1977) and REVS (Davis &
Wick, 1977), for example, check to ensure the uniformity of data defi-

nition and use and consistency of views of module interface, while

providing reports facilitating manusl validation of system descriptions.

|
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A variety of language forms and media are available for design
representation (Ross,'l977b; Caine & Kent, 1975; Stay, 1976). Like
requirements analyses, the validation of design documentation is
normally informal and restricted to review and discussion among the
development team. Such reviews include the tracing of requirements
to design, analysis of control logic, critical camparisons of algo-
rithms, and other analyses to verify consistency, necessity, suffi-
ciency, and correctness. Automated analysis techniques are currently
limited to tools that check interface consistency or simlate struc-

tured models of system execution (Ramamoorthy & Ho, 1975).

Validatiaon by Symbolic

Verification

Program cerification refers to the use of mathematical proof
techniques to validate program correctness. A program proof requires
a goal proposition that indicates the relationships that should hold
lbetween program variables at the conclusion of the program's execution.

IThis goal proposition is normally termed an output asserticn; assump-

tions regarding system states prior to execution (e.g., implied rela-
tionships between subroutine parameters) are reflected by input asser-
tions.

A program is (totally) correct if it terminates for all valid
input, in a state for which the output assertion holds. A proof of
total correctness must treat program statements as theorems that relate
statement precanditions to postconditions. A case~Yy-case analysis is
usually necessary to treat the proof subsequences resulting from deci-

sion points in the program. These notions are equally important in
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top~down verification (constructive proof validating output assertion
through & series of implications originating at the input assertion)
and bottom-up verification (showing that the output assertion is true
for an input domain, part of which conforms to input assertionms).

On the validation continuum between program verification and
test case application, reside the techniques associated with symbolic
evaluation. Symbolic execution of a program can be performed in the
same way &s actual execution: the state of program progress is re-
corded by the values of variables and current instruction. The differ-
ence in symbolic and actual execution is the form of value assigned to
variables and the evaluAéion of conditions dictating the execution
path. The symbolic evaluation of & path is cerried out by evaluating
the sequence of, say, assignment statements occurring in the path.
[Each assignment statement provides a new value for the target varisble
(left-hand side) through substitution of the current symbolic values
for each variable in the source expression (right-hand side).

The branching conditions that cantrol the selection of execu-
tion paths (say, if an IF or DO-WHILE) can be symbolically evaluated
{0 form symbolic predicates. The sequence of symbolic predicates as-
sociated with a path can be generated by assuming a truth value for
each decision point during program execution. This symbolic system of
predicates for a path can be used to assist the tester in constructing
test data. If the system of predicates for a path is unsolvable, then
the peth is infeasible; otherwise the solution describes the subset of
the input domain (uninitialized variables and system parameters) that

invokes execution of that path.

|




10
Validatlon of System Testing

Testing involves the application of sets of data in & con-
trolled environment to assess the reliability of a software system and
identify errors, if any, in the system representation that may be cor-
rected, Testing goals usually include the determination of whether
the system meets functional and performance specifications associated
with user requirements. Requirements-oriented goals are not normally
considered a sufficient set of criteria for system testing, for they
are seldam sufficiently detailed to indicate the test data that prove
conformance. Test criteria of a larger scope are also necessary to
insure that the system behaves correctly under conditions not antici-
pated by system users.

Researchers in testing theory have attempted to identify the

characteristics of testing criteria that could identify test data whose

application could insure system reliasbility to the same degree pro-
vided by formal proofs of correctness (Goodenough & Gerhart, 1975).
These system validation criteria normally arise from one of two
sources:

» A set of specifications that detail copditions for success
as dictated by the requirements document.

e Criteria camposed by analyzing program structure to dis-
cover conditions that lead to successful program execution.

Data generators exist to produce test data subject to each of these
two approaches (Stucki, 1977).

Consider a test data set, S, generated to affirm conformance

to specifications, and test data sel P, generated by analyzing program :




structure. A mechanism for exploiting these two forms of test data
generation may analyze the union of the two date sets, S and P, to
reduce their number by eliminating redundant data while providing
useful informetion sbout test date inconsistency and the manner in
which each of the two test date sets was incamplete.

A related problem occurs when testing for regression errors.

Regression errors are those errors introduced into the system during
system modification. Brooks (1972) provides evidence that & substan-
tial percentage of maintenance activities introduce errors that did
not previously exist. In retesting the system after maintenance, it
is theorétically sufficient to apply & limited set of test dsmta:
those test data that reaffirm the correctness of the modified compo-

nents and those system elements affected by the modified elements.

The Role of Errors in Software Research

Caomputer-related studies may be loosely dichotomized into

those subdisciplines dealing with function and those concerned with
fidelity and form. In the former class can be included the application
areas (operations research, management information systems) s the algo-
rithmic areas (numerical analysis, time and space efficiency analysis),
and the special systems areas (operating systems, data base management)
Fields of study in the second category include those disciplines that
recognize and contend with the difficulty of producing automata that
conform to any desired function; in short, they share a view of soft-
ware that recognizes the error as a primitive component of the develop-

ment process. Because the difficulties of proper design and imple-
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imentation are apparently application-independent, each approach to
these difficulties exhibits & characteristic generality even though
each differs widely in method. The following taxonomy is proposed to

describe these approaches:

Error Control: the application of numerical analysis to

bound the inaccuracy of finite machines.

Error Prevention Methodologies: development procedures
like structured analysis, design, and programming that
prescribe means with which to facilitate the translation

of problem statement to coded solution.

Error Prevention Tools: programming language and support

. system refinemén%s that reduce the complexity of imple-

mentation.

Error Detection Methodologies: systematized debugging
procedures like desk-checking and structured walkthroughs
that increase the likelihood of finding misconstructions.

Error Detection Tools: software tools like cross-

referencers, static analyzers, and dumps that point
out syntactic and procedural anomalies.

Fault-Tolerance: the study and design of hardware or

software systems that recover from failure with minimum
damage.

Proof-of -Correctness: the study and design of methods
for constructively assessing the conformance of a proce-

dure to its specifications.

Failure-Inducing Methods: test data selection methodologies
like path-based and specification-driven approaches in which

sets of program inputs are chosen to "provoke" errors to

evidence themselves.




» Failure Behavior Modeling: the branch of Software Relia-
bility Theory in which the phenomenon of program failure
is viewed as stochastic and conforming, in the aggregate,
to specified distributions.

{All of these approaches are associated with fields of study and vigor-

ously coexist as complementary solutions to problems of anticipating,

recognizing, explaining, predicting, and correcting for program mal-

function.

A Camparison of Software Reliability Theory
and Modern Testing Theory

The areas of research lisiz@ in the previous section have, in
general, evolved from a: ;mmnon tese of thought. Each of the disci-
plines associated with these apr: "sthes has benefited from concepts
and advances offered by anoiviher. However, the sreas of Modern Testing
Theory (Failure-Induced Methods:)} &nd Software Reliability Theory
(Failure Behavior Modeling) eppear as disjoint a pair as any two
research areas in this collection.

It cen be surmised that the differences evident between these
approaches bave their roots in the training and motivations of the
relatively disparate research groups that publish in each area.
Modern testing theorists and practitioners have invariably received
training in the computer sciences, view programs as manifestations
with mathematical structure, and consider the most effective and
efficient means of "flushing out" what errors remain. By comparison,
the majority of Software Reliability Theorists bave & background in

statistics, view programs as stochastic event generators, and concern




themselves with modeling the sources of nondeterminism and probability
distributions that describe their behavior. Table 1 exhibits a synop-

sis of the methodological and philosophical differences separating

these disciplines.

An Overview of this Research

In this study we report the results of an experiment conducted

to determine the many influences which affect the process of software

testing. To motivate aspects of testing methodology chosen for experi-

mental analysis, a review of the literature in Testing Theory and
Software Reliability Thééry is given in Chapters II and III. The ma-
terial in Chapter II ocutlines the testing tools and approaches that
have been proposed, employed, and studied by researchers and practi-~
tioners engaged in software validation. Chapter III reviews the most
important models proposed to describe the failure behavior of software
systems under test. Chapters IV and V describe an experiment designed
to investigate the claims and assumptions made in the literature. 1In
the final chapter we will report the significance of our findings and
suggest how they should affect the future choice of research avenues

in the field of software validation research.

1&}
\
i
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Table 1

A Comparison of Modern Testing and
Software Reliability Disciplines

Modern Testing

Software Reliability

Theory Theory
Principal Estimating
activity Finding errors error content
View of Deterministic Probabilistic
errors
Eventual Assurance of Proper reliability
aim error elimination assessment
Published In relatively small In relatively large
successes software systems software systems

Typical disciplines
of investigators

Computer science

Statistics

Typical publication
topics

Theory and practice
of test data
selection

Models of software
failure behavior

Principal publica-
tion vehicle

Software Engineering Literature




CHAPTER II
THEORY TESTING AND PRACTICE

Introduction
A program P may, in theory, be proved correct in one of two

weys: by formal verification or exhaustive testing. P effectively

computes a function f by correctly mapping elements of f's input
damain D into the proper element of f's output range. Formal verifi-
cation normally involves a case analysis of the program P to prove
symbolically that the collection of partial functions composing f is
ifaithfully represented in the structure of the program. Altnough
Fesearch proceeds vigorously on brogram verification, there is little
hope that large or complex programs will admit of proof in the near
tuture (Huang, 1975).

Exhaustive testing is also out of the question for all but
triviel programs, because even one 32-bit integer input requires the
”application of 23 test cases (and inspection of results) to prove
Program correctness. One obvious simplification in the test procedure
kollows from the comsideration of program structure.

Program execution is a matter of successive instructional in-
terpretation (as mirrored by a path through & program flowchart). A
substantial reduction in the size of the test data set is expected by

lapplying one test data set for each unique flow through the program.

16
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figure 1 shows & sample flowchart associated with e program P, com-
posed of functional instructions S;,«..,8¢ and decision points D;, Do,
and Dz. The input domain I of this program may be partitioned into
subsets I,,Iz,"°*,I, where every input data point in I; leads to the
same execution sequence of the functional instructions $;,,5i5,++*;
that is, I is partitioned into subdomains, where each member of a sub-
domrain leads to the same path through the flowchart.

A more campact form of representation is useful for demonstrat-

ing path analysis. The control graph (Figure 2) represents a program's:

uninterrupted sequence of functional statements (termed segggnts) as
nodes, "and alternatives for execution flow as arcs. The control graph
arcs can be labeled by the conditions that must be satisfied for an

arc to be selected, as the ¢, and T, represent the true-valued and

i i
false-valued outcomes of the decision corresponding to Di in the flow-

chart.

Testing involves the selection of a subset T of the input

domain, the application of each data point t in T to the program and '
the determination that the program output P(t) is an acceptable result,‘
i.e., that P(t) is an effective computation of f{t). 1In a seminal ‘
paper, Goodenough and Gerhart (1975) attempted to define the conditions -
under which testing is the practical eguivalent of a formal correctnessl

proof. Howden (1976) elucidated these results in the following way:

Fonsider a8 test strategy H, associated with a test criterion CH' H is

& procedure for selecting a subset T of a program's input domain so
t

fthat the t € T individually or collectively satisfy the test criterion

C

H
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T* is a reliable test set if the successful execution of every

t € T* implies the correctness of P. Because no strategy exists that
can generate T* for an arbitrary program (this is undecidable), work
proceeds on identifying particular classes of programs and program
errors for which some test criterion is reliable (Howden, 1976;
Gerhart & Yelowitz, 1976). Howden (1976) identified two general
classes of program error by indicating the reliability of path-testing
in disccvery of each error class. A path-testing strategy is a proce-
dure for selecting one data point from each subset Dj of the input
domain, that is, the application of one test case for each unique path
through the program. Such a strategy is reliable for discovering

computation errors, in which a subject program P has an

identical structure to the correct program P* (same paths,
same partitions DJ) but always yields a differing result
for same path;

. domain and subcase errors, in which both & correct program

P have the same collection of paths, “ut a differing par-
titioning of the input domain associated with the paths,

and a differing selection of paths, which ylelds differ-

ing results (Howden, 1976).

The results fram the theory of testing have little practical applica-
bility, but do provide bounds on the kinds of errors that can be dis-
covered (at all) by testing criteria less comprehensive than path
testing. Like the problem classes proposed by computability theorists,
modern testing theorists have attempted to prove the inherent Aiffi-

culty of various kinds of errors.

t
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Testing Approaches and Results

Structural Testing

|
|

211
|
The identification of paths is an integral part of every formal'

testing procedure. Prior to the realization that formal testing was

|

worth its cost, programmers constructed test data sets in hopes of
discovering errors, thus ensuring proper program execution for those
data deemed representative of real system use. The obvious opportunity
for misjudgment and resulting proliferation of errors "in the field"
has led many organizations to formalize testing by creating test datsa
that might affirm conformance to the explicit functional and perform-
ance reduirements of the system under test. In a study of six large

programs, Howden (1978a) found that functional testing uncovered more

errors than test criteria based solely upon program structure.
Functional testing is effective but can fail to detect many
errors that may be detected by more methodological approaches

(Ramamoorthy & Ho, 1975). Structural testing provides a complementary

method of program validation by approaching the problem by analysis of
the program. Path testing is often impossible because the number of
paths through a program can be very large. In fact, if & cycle with
no bound on iteration exists within a program, the number of paths may
be unbounded. There are three common test criteria that attempt to
exercise relevant aspects of a program without resorting to full path

testing: segment testing, branch testing, and selective path testing.

Each testing approach attempts to identify & set of program paths whose

successful execution will increase the confidence in program correct-

!
{ness.

L
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Segment testing involves the construction of test cases to

ensure that every statement in the program is executed at least once.
If & program statement is seriously misspecified, segment testing may
identify a program error irrespective of the execution path in which
the erroneous statement is included. Segment testing derives its name
from the concept of a seguent: a series of program instructions with
a consecutive execution sequence. A reduced control graph for a pro-
gram normally contains vertices associated with program segments. The
first statement in & segment is the object of one or more branching
instructions (designated by arcs). The last stetement either leads
directly to a decisionai Etatement or is & decisional statement (de-
rending upon the desire to implicitly or explicitly represent branching
statements in the control graph).

Figures 3 and 4 show an abstract program and control graph in
which vertices have been employed to represent segments of sequential
instructions. The paths (a,b,d,e,f,j) and (a,b,g,i,f,j) in graph G
provide a covering of the vertices of the control graph G and so
ensure the execution of every segment. An alternative testing strategy
involves the application of test data to exercise every decision branch
in a program, hence every edge in the control graph. The minimal
number of test cases required to ensure edge covering serves as an
upper bound on the number for vertex covering, for if every interseg-
Lwnt branch is taken, every segment must be invoked. The path set
((a,v,8,e,f,3),(a,b,g,e,1,3),(a,v,8,1,f,3),(a,v,d,e,f,b,g,1,f,3)) is

one edge covering for G.
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Program flow chart

Figure 3.
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Reported results witl segment and branch testing effectiveness
have varied, depending upon the sophistication of testing procedures
that were replaced by these formal methods. In one aerospace applica-
tion, branch testing purportedly eliminated 90 percent of program
faults (Brown, 1975). In another study of development costs for &
command and control system, Alberts (1976) concluded that automated
tools employing branch testing caught 60-100 percent of all program
errors two to five months earlier than they would otherwise have been
detected. Very few results have been published indicating the effec-
tiveness of vertex covering. Fisher (1977) employed segment testing
(vertex-covering) as a retest criterion to select test cases to reapply
%fter program modification. In & small study camparing & vertex-
covering test date set to an expanded edge-covering set, Brown and
Lipow (1975) found the latter much more representative of a variety
lof assumptions regarding input data distributions. Segment testing
is, however, nearly always superior to intuition. For example, one
study of typical testing practice in a large software organization
revealed that on the average only one-third of all program statements

were being exercised by existing test data sets (Stucki, 1978).

ounds on the Test Set Cardinality

It would seem that in same situations the tradeoffs between the
cost of testing and desired program reliability would lead one to opt

kor & vertex covering approach. One factor in the choice of edge over

fvertex covering test criteria is the additional resource required by

he latter, depending upon the relative sizes of their minimal test

| |
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sets.

Figure 5, then G is strongly connected and a cycle (path from a vertex :
to itself) exists from every node. A definition fram graph theory
(Harary, 1972) specified that the cyclomatic number of a connected
graph, V(G) equals e - n + 1 where e is the number of edges and n is % !
the number of nodes. A resulting theorem (Berge, 1973) proved that

V(G) is equal to the maximum number of linearly independent circuits

in G. A set of linearly independent circuits of a graph can be com-

bined to form any path in a graph, and contains no circuit that can be

composed of any combination of the others. For any graph, there exist

26

A bound on the minimal size of & test set that provides edge
covering was inferred by McCabe (1976) in an article describing the
’relationships between control graph structure and complexity. Because
of the importance of this article in describing the graph relationships
vthat hold for programs, a synopsis of the results follows.

A strongly connected {directed) graph is one in which any
vertex can be reached from any other by some path through the graph. !
If an edge from the exit vertex (last program statement) to the entry

vertex (first program statement) is added to & control graph G as in

#mny guch sets of linearly independent circuits.

As an example, consider the augmented control graph Figure 5

1with six vertices and nine (program) edges. When augmented with edge

|
[10, the result specifies that there exist 10 - 6 + 1 =5 linearly

i

‘independent circuits. Every path from a to f, when augmented with ‘

iedge 10, forms a circuit. By definition, each path can be represented

|as & combination of any set of five linearly independent circuits,

eadibateling
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vwhich form a basis for all circuits. Because the union of the edges
composing the five linearly independent circuits exhausts the graph
edge set, a maximum of five paths need to be used to cover the graph
edges, even if each of the five paths employs a different linear inde-
pendent circuit in its path description. Paige (1975) independently
derived this bound on the maximum n;mber of paths necessary to provide
edge covering.

The cyclomatic number V(G) is only an upper bound on the mini-
mum number of paths necessary to test every program branch. If one
path can be composed of all V(G) independent cycles, then only one

test data point is necessary from edge covering.

Other Structural Tests

Researchers and practitioners generally employ branch testing
as a minimum measure of coverage (Brown & Lipow, 1975; Osterwell &
Fosdick, 1976; Miller, 1976). It is often the case, however, that a
larger set of test data is employed to exercise critical or interesting
patbs or to exercise particular segments under & variety of conditions
to assess a program's reliability. For example, one test coverage
eriterion in Mills (1971) and Ramamoorthy, Kim, and Chen (1975) is

called structured testing and has been shown to compare favorably to

other test data selection criteria (Howden, 1978). As an approximation
to full path-testing, structured testing dictates that all paths be
tested that require fewer than an arbitrary number of iterations of
any cycle. Variations in this strategy are often employed in cases

where applying this criterion would leave part of a module untested
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because of complicated interdependencies between an outer loop index
and inner loop bounds.

Another popular testing strategy requires test data that reside

at boundary points at the input values. Other special values may be

subtmitted to ensure that

| . related data have distinct values

, . certain arithmetic expressions involve zero-valued
arguments

. nonnumeric inputs are submitted for each of the significant

values that they may assume.

Test Data Selection

The problem of test data selection for structural testing is by -
no means solved upon the identification of the program paths to be
tested. In fact, the problem of generating test data to execute any
fspecified statement in a program is formally unsolvable. If a means
can be found to ascertain a finite bound on program cycles (arbitrary
bounds on loops), then a more reasonable problem results. The test
data selection problem can be viewed as the identification of a data
point x that invokes the execution of the path p(x) consisting of a
finite number of functional statements sequenced by implicit (next-

statement) and explicit (IF-THEN-ELSE, DO-WHILE) control structures.

|
1

A path is represented in a control grapa by a sequence of
jedges. Recall that these edges may be labeled with conditions that
i
,serve as branch selectors when more than one edge emanates from a

ivertex. These conditions parallel the conditions found in corresponding

program statements as the IF-THEN-ELSE, DO-WHILE, and CASE statement.
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The input domain I associated with path p can be defined by the con-

Junction of these corditions. This conjunction represents a collection
wf predicates for which at least one desired test data point must
'serve as & solution. In general, finding this point is also an un-
decidable problem, even if the conditions are merely inequalities.
Moreover, the conjoining of conditions into & path predicate is non-
krivial, as it requires considering the effects of changes in the

Eredicate arguments (free variables) made by assignment and other types

T statements within segments.

The problem of path selection (by segment-covering, branch-
;covering, or other method) cannot in most instances be divorced from
&he determination of input data generating a path. This is due to the
1 act that abstract path selection based upon covering ignores the con-

'ditions what must hold for a path to be exercised. Many programs have

ia large number of infeasible paths whose path predicates evaluate to
kgégg. Howden (1978b) believed the presence of infeasible paths to be
lthe most serious problem in path selection. Moranda (1978), in ran-
gdomly exercising a numerical algorithm, found far fewer paths than
Lould be expected if each path were feasible and equiprobable. Many
;of the designers of test generation systems ignore the possibility of
linfeasible paths, preferring to iterate between path selection and
infeasibility determination until a covering is found (Miller, 197<),
Many articles on test data generation merely ignore the problem
(Hoffman, 1976; Miller & Melton, 1975).

Path infeasibility determination is a natural consequence of

path predicate determination in test aata generators. Test dats
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generators can be roughly categorized by

. the degree to which they aid in path selection, and

. the degree to which they aid in path predicate evaluation.
RSVP, one of the earliest such systems, produced a branch-covering on
FORTRAN programs and partially evaluated the path predicate by folding
constant expressions and dropping obviously redundant path constraints
(Miller & Melton, 1975). The resulting series of inequalities (vir-
tually all FORTRAN predicates involve comparisons of numerical data)
is printed out for the user to solve. PET, a Program Evaluation Tool
developed by Stucki (1977), instruments a FORTRAN program with probes
that indicate segment and branch usage. A testing system at TRW Sys-
tems, Inc., aids in path selection and attempts to evaluate path predi~
cates composed of equalities by algebraic methods (Hoffman, 1972).
Hence it appears that the computing community is a number of years
away fram developing systems that generate sets of nonredundant test

data that cover all feasible paths.

Symbolic Execution

] ATTEST, a system codeveloped by Clarke (1978) exhibits the
}most sophisticated approach to path selection and feasibility
ideterudnation. A user may select fram a set of testing criteris,
!including segment-covering, branch-covering, structured testing, and
!full path selection. ATTEST employs a linear programming algorithm
Eto determine the minimum and maximum values for each loop in the path.

'The traversal of the control graph that searches for paths is heuris-

tically driven and integrated with a "solver" routine that attempts to




evaluate path predicates as they are composed. The solver employs

linear programming metheds on linear predicates and heuristic methoés
for more complex conditions.
In operation ATTEST closely resembles many aspects of a

symbolic execution system. A symbolic execution system is usually

initiated at the root (first executable statement) of a program. A
set of input variables of indeterminate value is identified (these are
subroutine parameters, COMMON variables, and the subjects cf input
statements). Every other program variable value is maintained as =
function of the input variables. Hence every decision point's condi-
tion can be reexpressed in terms of input variables. During an inter-
active session with a symbolic execution system, a user is asked to
specify which branch to take at each decision point. Each decisic.
branch adds one more decision conditicn to a set that, when conjoi-eg,
specifies the path predicate, hence the input conditions that generzte
a path to the particular state at which the symbeclic execution is
stopped.

In EFFIGY, a symbolic execution system ceveloped by King
(1976), the user may save state information so that he may back up to
an earlier decision point t< take a different path of execution. Simi-
lar systems are under development elsewhere (Howden, 1977; Bayer,

Elspas, & Levitt, 1975).

Data Flow Analysis

Although it falls outside the definition of vesting, data flcvw

analysis is a powerful validation method often integrated within zym-

AV
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tolic execution systems. Data flow analyses involve the determination
of when program variavles zre referenced and defined within an execu-
tion sequence. Datz flow aznalysis can be performed during path enum-
.eration or symbolic execution ty determining, for each analyzed execu-
tion segquence, whether varialles are used prior to their definition
(assignment) or assigned a value ané then not used. The identificatiorn
;of these and other data flow anomalies is the function of datzs flow
ranalysis systems. Both the DAVE and ATTEST systems referenced above

'incorporate data flow analyses as an option during path generation.

[

‘Software Error Classes

A number of researchers have attempted to categorize program
ierror types. The most extensive study of this kind was conducted by
gTRW Systems, Inc. (Thayer, Lipow, & Nelson, 1976), and included an
tanalysis of error reports collected during the development of four
large software systems. A great number of automated analysis tools
was brought to bear on the systems' source code and on the error-
reccrding documentation generated during the course of systems develop-
ment. A very extensive list of error classes and subclasses resulted,
including

- Computational errors, resulting from
--the improper coding of formulae used in problem solving
(e.g., quadratic roots equation)

--bookkeeping (e.g., array index or record number calculation)

. Logic errors, in which
--missing, excess, or erroneous cond@itions were discovered
-~functional segquencing wacs incorrect for some case

--an algoritnr. rezlizec a fwiction other than what wac aecired
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--physical characteristics of the problem were misunderstood
(e.g., memory requirements, time duration, device inter-
i face)

. Input/output errors
--improper format or timing of output

--excessive or insufficient results display

. Data handling errors
--~data structures undefined or uninitialized
--improper data types used for an operation

--~attempts to access data outside of legitimate
address space or data structure bounds

. Interface errors, in vwhich global, shared, or passed data
were incompatible or improperly referenced from routine
to routine, routine to database, or system to external

environment

. Standards violations, in which nonconformance of program
text to coding standards was discovered or incamplete
documentation was provided.

Because these "errors" were recorded under all conditions of
Fmproper system performance or representation, some of the designated
prrors, in fact, describe "failures," including failures to meet re-
Puirements and failures resulting from operator error. The sources of
these errors were attributed to developmwent phases (requirements,
design, coding, maintenance) depending upon the time when error-
producing decisions were first made (Thayer et al., 1976). The fre-
puency of the major error categories for three of the four projects is
Fhown in Table 2. The category "Other" wes used to group errors result-

ing from improper system analysis or design.
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Table 2

Empirical Frequencies of Major Error Categories

Percentage Percentage
Number of of Code of Total
Error Category Errors Based Errors Errors

Computational 552 12 9
Logic 1,333 29 20
Input/output 911 20 14
Data handling 887 19 14
Interface 932 20 ik
Total code based 4,615 100 71
Standards 391 6
Other 1,470 23
Total 6,476 100

Note. From Software reliability study by Thayer, Lipow, &
Nelson. Redondo Beach, Calif.: TRW, March 1976, p.

Rubey, Dana, and Biche (1975) analyzed a collection of data
obtained fram a variety of (undisclosed) medium-scale assembly language
development efforts. In developing an empirically-based estimating
formula for validation cost, the authors reviewed the type and fre-
quencies of errors discovered during the validation phase. The error
classes defined by these researchers colncide approximately with those

employed in the TRW study as shown in Table 3.




Table 3

Empirical Frequencies of Major Error Categories

i Percentage Percentage

] Number of of Code of Total

i Error Category Errors Based Errors Errors
Computational 113 30 9

Wrong operation $69;

Poor scaling 22

Other (22)

Data access 120 32 10
Logic/sequencing 139 37 12

Wrong condition (28)

Sequencing (98)

Other (13)

Total code based 372 100 31 |
Specification 485 4o
Standards violation 18 10
Documentation 96 8

Total 1,202 100

Note. From Quantitative aspects of software validation by Rubey,
Dana.z g Biche, IEEE Transactions on Software Engineering, June 1975,
SE-1(2),

+ One significant finding of this study was the apparent usefulness of
static analysis (e.g., data flow analyses, cross reference checks,
code review). The application of static analysis techniques resulted
in the discovery of about half of the errors found, and these errors

were discovered early in the validation effort at less cost than

| execution-based testing. Alberts (1976) cited a similar efficacy for
static analysis, reporting that U6 percent of logic and coding errors

vere detectable by manual inspection and formal static methods.
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In a recent paper, Fujii (1977) outlined the validation activi-

ties performable in each phase of system development. Her classifica-
tion of implementation errors includes legical/branching, data access-
ing, and sequencing, defined in a manner very similar to the studies
mentioned above. Fujii's analysis refers tc medium to large programs
with high reliability requirements developed under contract to the

Department of Defense.

Very few data have been published on error frequencies in small

software. Because small projects seldom have the budgetary luxury of
gathering development statistics, one can only infer from intuition
and other researchers' comments that the error camposition for small
software is most heavily concentrated in physical design and implemen-
tation flaws, with a higher frequency of computational, logic, and
sequencing errors. Over a period of years, Howden (1978) studied the
efficacy of various testing procedures on small programs written in
higher-level languages. Each of the following testing approaches was

employed and the number of errors discovered was tallied for each:

Number of Errors

Testing Approach Discovered
Path testing 18
Branch covering 6
Structured testing 12
Special values testing 17
Interface testing 2
Anomaly detection
Specification-based testing 7

Total errors 28
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The relative effectiveness of path-based and special values (boundary

points) techniques and lesser efficacy of formal specification, inter-

face, and anomaly-detection approaches supports the contention that
errors in requirements and interface definition are less prevalent in
the small software development domain. The high proportion of "simple",
implementation errors in small systems mey justify optimism that small :
projects may be more mechanically tested at a reduced cost. Computa-
tion errors can typically be found by segment-covering approaches,
because any path incorporating such an error may lead to failure.
Logic errors are amenable to discovery through branch and special
values testing, whereas sequencing errors may often be found by struc-
tured and other limited path testing. Each of the testing approaches
can be facilitated by automated tools providing program instrumenta-
tion, test data selection, and failure detection (Ramamoorthy & Ho,
1975).

Although testing serves to purge programs of errors, it also
cperationalizes the assessment of reliability. Error discovery has
always been a phenomenon greeted with mixed emotions by developers.
Although the reliability of the code has undoubtedly been enhanced by

error removal, one's confidence in program correctness may also suffer,}

depending upon the timing, frequency, and circumstances associated with

the failure.

Failure circumstances are primarily dichotomized into the

differences between testing and operational environments. Failures

are provoked in testing, the object of a formal search for unfaithful .

ltranslation of specifications, Failures in operations are avoided as
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much as possible, however, and any model of fault occurrence must dis-
tinguish between these program execution environments.

The difference between testing and development environments is
often approached by considering the representativeness of the test data
set applied to a software package. Littlewood (1979) stated that reli-
ability models have not yet fully dealt with the question of represen-
tativeness. Thayer et al. (1976) attempted to address directly test
representativeness by modifying a data-domain reliability estimator
by an hypothesized operational profile. Brown and Lipow (1975) pro-
posed the use of the X2 statistic to measure the conformance of struc-
tural test sets with an assumed input distribution, and showed how
additional test data points can help converge the testing and opera-
tional input profile. Testing theorists appear to ignore the issue
altogether, apparently feeling that guarantees of testing thoroughness
preclude the need to consider the distribution of program use (Howden,
1978; Ramamoorthy & Ho, 1975).

The differences in approaches hiuse upon the theorist's prefer-
ence for prediction and fear of failure. Testing costs are directly
related to testing duration; testing duration is, in turn, dependent
upon the growth of confidence in a program and can be enhanced by
predictors of residual error count, time-to-next-failure, and failure
rate. In a sense, testing proceeds until the cost of running without
failure becomes prohibitive,

The situation in the operational environment is exactly oppo-
site. Whereas the deferral of error correction to the operational

phase may lead to increased debugging costs, it is the cost of failure
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that motivates formal testing. Littlewood (1979) proposed that we are

currently in the second stage of reliability model development, the
fourth of which will explicitly include operational failure costs in
the lifecycle costs that affect development decisions. He, as well

as other researchers, appreciates the problems of failure cost predic-
tion. Unlike errors, whose cost of removal depends upon their subtlety
and complexity, the cost of failure depends greatly upon the circum-
stances of program use. In real development environments the possibil-~
ity of costly failures is considered and often motivates the systematic
testing of infrequently used program functions. Viewed in this context,
thorough nonrepresentative testing becomes a reasonable approach to
risk aversion, even though the resulting reliability estimators may

poorly predict testing duration and/or operational failure rate.

Testing Cost and Efficacy

The Testing Problem

Software developers are frequently faced with the problem of
determining how much testing should be performed on a software good.

One may attempt to end up with the same cost distribution per develop-

‘ment phase as that recommended in the literature (Zelkowitz, 1978;
’Boehm, 1973), but these percentages vary a great deal and are usually
Iapplica.ble only to large, well-organized development teams working on
;large, critical systems. Most developers still determine a testing
‘budget by informal estimation based upon experience with similar sys-
tems. As testing tools and strategies become more abundant, test

‘planning becomes more complex, for the cost and efficacy of alternative

_approaches must be considered.

At i bt e o o
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A variety of phase-dependent techniques has been discussed in
:previous sections. Although early validation of requirements and
jdesign is an important and worthwhile activity, this section focuses
;on the decision making in the code-testing phase. Code testing is a
;development step that no software developer can ignore, and so an
;analysis of the alternatives available in this phase is expected to
:have the most general applicability.
5 Code testing guidelines are particularly useful to the develop- i
iers of small- to medium-scale software goods. The requirements for
small software are usually well-defined and the moderate budgets allo-

cated for these projects often preclude the use of formalisms in organ-

ization and representation that admit of modern validation techniques.

Testing strategies and techniques, on the other hand, are better
understood, generally more intuitive, and span a wide range of sophis- i
tication that permits the developer to choose a degree of formality

suitable to the importance of the system and its reliability require-

Im.ents.

l Testing costs can be categorized by cans’ ering the steps
;involved in code validation. The transition from design to program
?code results from decisions including choice of programming language,
;algorithms and data structures, and target machine. Program valida-

ition procedures commence with examination of the coded program as

,represented in a human (coding sheet) or ma. hine-readable form (cards,

'disk file). Syntactic validation is necessarily performed by a
translator (compiler, interpreter) invoked to reduce the program

text to an executable form. A translator reports on syntactic correct-
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!ness by determining the program's conformance to the grammar associated
|with the programming language. Although sophisticated translators can
perform many types of static analyses to assess semantic correctness,
*it is assumed here that separate tools are required to perform data

i flow analysis, reachability analysis, and other static validation pro-

| cedures.

i
iSampling Strategies

! When & program is free of syntactic errors, it remains to be
]

'tested for operational conformance to its desired function. Testing
involves the application of data and this application involves the

selection of representative inputs. This choice may be termed a

sampling strategy because it requires the selection of one or more

data points from the (generally) large set of possible program inputs.
In the discussion in previous sections, the set of possible data inputs
has been designated by the set D. Each element of D is a collection
of inputs that forces a program P to proceed from an initial state to

one or more states that signify completion. A sequence of program

iactions from initiation to termination is considered an execution or

)
'run and serves as the basis of analysis for correctness.

In some programs or systems this unit of execution may be dif-

'ficult to assess: real-time code may continuously monitor and react to

environmental stimuli; query systems may interact continuously with a

:variety of users; operating systems may continuously provide system
services while controlling access to system resources. 1In nearly all

cases, however, a run or complete execution can be defined., Program
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terminations serve as obvious boundaries for simple programs, whereas I
runs in continuous systems may be defined as execution sequences be-
tween transaction submittals or service requests.

Discovering a relevant definition for program inputs may also
prove elusive. One may, however, simply consider the time-ordered data
values submitted to a program during e run and designste each sequence
of input data valuecs 4 = (dl,dz,--‘) as an element of the input domain,
D. 1In simple systems the ordering of the dk's is unimportant, where,
for example, each dk represents a separate value and the entire set is
submitted simultaneously at program start. A program may, however,
acquire inputs during the course of execution and sequences of dk's
may be highly interdependent.

The cardinality of D is dependent upon the data types of the
dk's and the relationships among them. In simple programs each con-

stituent dk of an input data point d may be a separate variable of a

common date type (say, integer or character). The cardinality of D,
then, is at most the product of the cardinalities of each associated
data type, where data type indicates a set of permissible variable
values., This maximum cardinality is often bounded by interrelation-
ships among program inputs. For example, in matrix multiplication
the input matrices must be conformable (L by M and M by N) to be
proper inputs.

‘ Other bounds may be placed upon individuel input values as

well as permissible combinations. A programming language may provide

only general data types (for example, integer) when an input value is

;specified to reside in e restricted range (say, gross income in a tay
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computation routine). One must recognize the collection of constraints
on input values as this collection is important in determining the
permissible execution paths through the program.

To reiterate, a sampling strategy requires the selection of
sample points for application to a program P to attempt computation
;of the program function f, Informal sampling strategies abound, in-
Ecluding pseudorandom, functional, descending-criticality, and most-
!obvious-first. A testing procedure is considered pseudorandom if the
:selection of test data is performed in a manner in which no methodology

i
‘is apparent, and for which it appears that input sets are selected from

;D with equal probabilities. True random sampling may be performed,

{of course, by employing a mechanism to choose from D nondeterministi-
ically with the resulting sample d aistributed according to the mechan-
'ism‘s selection function.

Functional testing results from the application of test sets to

idetermine the conformance of the program to its specifications. When
éthe specifications imply some easily recognizable classes of desired
iprogram behavior, functional sampling attempts to confirm the correct-
‘ness of the program functions associated with the desired behavior. A
ipartitioning of the input domain is usually suggested by the set of
;desired functions (say, different transaction types in a bank's teller
;system) and functional testing requires a selection of data points
within each partition. The selection within partitions may be per-
formed by any other sampling technique.

Sampling in order of decreasing criticality refers to tne

informal notion of %ecting thoce program functione whose failurc
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'would preclude further testing, or which, if found incorrect, could

prove costly. As an example of the former case, a frequently used sub-

routine may be validated first to allow e confident assessment of error

types in other program parts that employ that routine {this is the moti-

vation for bottam-up testing). The latter case refers to a test order-

-‘ing in which & preference function is imposed upon the kinds of errors

éallowable in the program. One may assess the need for extensive testing

:of life support software for & space capsule, but commit fewer resources

to testing less critical functions (e.g., caloric intake monitoring). Y %'

Closely associated with sampling by decreasing criticality is 1

the modeling of ssmpling by removal of the most obvicus errors first. I
‘In practice, a large number of errors is discovered in initial testing

Phases, with error discovery decreasing as time goes on. This phenome-

i
{
l
i

lnon results because some error types are more obvious than others: for
}exa.mple, those involving a single statement rather than cambinations
jof segments. Sets of related errors made uniformly throughout the

|

F)rogram (e.g., improper declarations or subroutine calls) also tend to

lbe discovered early and, depending upon the error discovery model, may

foe counted as a large number of single errors. Time-domain models

[

rtha.t employ a decreasing hazard function can account for this phenome-
Pnon (see Chapter III).

Formal sampling strategies require a stratification of the data

domain. Structural testing involves a stratification with partitioning
]

‘4nduced by the structure of the program. Structural testing is com- 1

posed of three steps: structure determination, partitioning, and test

data selection. Structure determination involves the analysis of
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possible program execution paths and is normally performed by con-
structing a graph that indicates program segments and precedence rela-
tionships among them. Partitioning involves the recognition of dis-
Joint subsets of D, each of which 1s associated with some aspect of
program structure. Segment covering is one such sampling criterion

in which the desired test data set must exercise every program state-
ment. Branch covering requires that a set of data invoke the transfer |
between e?ery connected segment pair. Structured testing requires the
execution of every basic path.

The usual outcome of partitioning is a specification of the
set of paths that satisfy a covering criterion. With each path is
associated a path predicate characterizing the property of the domain
subset whose members force the path's execution. To operationalize
these partitionings, one or more data points must be defined for each
subset. As discussed above, this determination may be nontrivisl,
requiring the solution of the path predicate in terms of the input

variables.

Sampling Cost and Effectiveness
The costs and benefits of test data selection arise in two

general ways: sampling cost and sampling efficacy. Sampling cost

relates to the time, effort, and money expended in constructing a test
data set conforming to specified testing criteria. For random, pseudo-
random, or functional testing this cost may be minimal because thesc
thods are relatively intuitive. Moreover, inexpensive test tools

xist to aild in these simple forms of test data construction (Reefer &
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Trattner, 1977). The cost of sampling subject to structural testing
constraints is greater because it involves

. the construction of a program graph

. the selection of paths providing the desired test coverage

. the determination of path feasibility by definition of data
points forcing each path's execution.

The cost of graph construction if basically linear in the
number of statements, elthough manual construction requires a slightly
higher order cf effort for large and cumbersome graphs (Aho & Ullmann,
1975). Path selection time is also proportional to the number of seg-
ments or branches for their respective coverings, and often is immedi-
ately obvious in manual analysis of small graphs (Gabow, Maheshwari, &
Osterweil, 1976). Basic path selection is also linear in the number
of branches, although more difficult to perform manually (Paige, 1975).
More camplex criteria may require execution time that is s polynamisl
function of the segments or branches. Full path testing is generally
impractical for 811 but the smallest of programs.

Feasibility analysis and data point selection are formslly un-
solvable, but some current systems do perform this function for path
predicates of special forms. Path predicave composition is linear in
the number of statements on the path. Path predicate solution depends
upon the efficacy of the routine employed for feasibility analysis and
depends upon (at least) the number and type of path conditions (con-
straints).

Sampling effectiveness is related to the "speed" with which a

sampling technique discovers errors. The application of different test




points is clearly more efficient than that of simple random test

points, because duplication is precluded in the former. In a number
of studies, Howden (1976, 1978) compared the observed relative effica-
cies of various test criteria (segment covering, branch covering,
structured testing, full path testing) but failed to give any measure
of the variability of each criterion's error discovery.

The efficacy of a particular data set selection approach should
be reflected in the reliability model employed in assessing program
correctness. More effective sampling strategies should increase the
detection rate in time-domain models as reflected in the hazard func-
tion. Data-domain models should show faster reliability growth and/or
faster reliability estimate convergence.

ost of Test Data Application
Fault Detection

A\ssociated with each test data point or set are the costs of

its application and results-assessment. A test run may be a simple

[procedure in which initial data are input interactively or a camplicated
procedure in which test drivers are required to simulate environmental
inputs. 1In either case, it 1s probably reasonable to assume that each
Ltest: case incurs a fixed cost of application, although this cost may
vary greatly fram system to system.

To be tested, a data point must invoke program executiomn, which
requires computing resources. Many programs require computing re-
sources (CPU time, memory) in quantities related to the values of

input values. The time and space efficiency orders of tested programs

ictate this resource use and hence impose a cost of test execution
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dependent upon the values of test data input. Test data values (dk's)
that affect data structure size (e.g., matrix order) or loop bounds
(e.g., convergence tolerance) can vastly affect the cost of test data
application. In practice, running times appear to be the more costly
variable. Running time (elapsed or CPU) is directly related to the
length of the execution path associated with each data point.

Fault detection involves the examination of test results to
confirm correctness. The assessment of output correctness requires an
independent evaluation of the program's function on the test input by
vhat is termed a test oracle. Fault detection is easily performed for
simple programs whose function is in some sense invertible (say, a
square root routine), end can be performed inexpensively by a human
oracle. Output fram large complex systems is generally much more
difficult to assess and often requires a simulation or execution of
ancther similar program for output validation. It is probably reason-
able to assume, however, that the cost of a test oracle is linear in
the number of test data points. Where correctness can be determined
only by comparison with & similar system the cost of detection may
resemble that of test execution, but in many cases correctness of an
output can be determined at a cost independent of the program time and
space necessary for its computation.

Cost of Error Detection
and Correction

Once a test input is found to cause premature program termina-
tion or generation of improper output, a search proceeds for the

cause(s) of the fault. These causes are normally termed errors and
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their detection normally requires code review to determine the failure

source(s). Error detection is still the most artful of programming

practices, depending upon deep knowledge of the program, vagaries of
the programming language employed, and other subtleties. It is prob-
ably less than realistic to assume that error detection costs are
uniform over all program inputs. In the same way that prevalent fail-
ures occur early in testing, obvious errors are generally found first.
In fact, part of the appeal of decreasing hazard function time-damain
fmodels is the way in vhich this phencmenon can be represented.

Error correction involves the rectification of program defi-

clencies by changing the text to reflect properly the functional speci-

fications. Error discovery is closely associated with error correction
d it is usually possible to integrate these costs as one function.

Textual changes are normally followed by retranslation of the source

to object program. Retranslation costs are usually polynomiel in the

number of statements and, in most cases, linear. Retranslation costs
and turnaround times are often sufficiently great, however, that col-
lections of test inputs are often datched so that a number of correc-
tions can be made between test submittals.

The Cost of Errors in
the Operational Phase

The costs associated with program errors that persist into the
operational phase can be dichotamized into two general categories: the
cost of failure and the cost of maintenance. The cost of failure is

the prime determinant of reliability requirements and can include




. opportunity losses, organizational disruption, and other
effects of system service suspension

. financial loss through lmproper accounting, over- or under-

utilization of resources, improper purchases or sales, or
other real loss

. Jeopardizing of human life.

The consequences of program failure to the developer-user are the
direct kinds enumerated above. The software supplier may incur many
indirect costs when a product is found to be unreliable, including

« loss of sales as a result of product reputation for
unreliability

« litigation and settlement costs incurred as the result of
program misperformance.

Both users-developers and software suppliers generally incur
the cost of maintenance. The developer may or may not have the respon-
ib1lity to maintain custamer versions of a product, but must acknowl-

Edge errors reported by users and correct them if continued sales of
the product are desired, As an approximation to reality, one may
Essume that all of these costs can be integrated into a simple function
of the number of failures. Each failure incurs a fixed cost represent-
ing the damage caused Ly the misperformance, and a maintenance cost
corresponding to same multiple of the error detection and correction
Posts of testing. These costs are usually a function of the number of

remeining errors, B, but not necessarily linear in n, (for time-domain

r:odels other than exponential).
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No one has yet proposed a model which would dictate the type |
Ha.nd duration of testing depending upon the costs of sampling, applica-
tion, error detection/correction and program failure outlined above.
*Most researchers would agree with Littlewood (1979) that it is prema-
ture to attempt such a model before the computing commurity has
reached a consensus on the proper mix of tools and approaches for 4if-~
ferent software development situations. In the sections above, the
cost order of magnitude for each testing for each testing activity and ;
|

result has been inferred. In this study experimental results will be

L e et SO

reported in hopes of laying the groundwork for an economic model of
testing. We believe that such an economic modél is within the construc-
tion capabilities of the Software Reliability community and we offer

[this study as a step toward its resolution.
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CEAPTER III j

}

SOFTWARE RELIABILITY THEORY AND PRACTICE !

Introduction

Software reliability has been s topic of much study and many ;
publications during the current decade. Software reliability relates g
to the ability of a software system to perform as expected and is often!
associated with the degree to which embedded errors can cause system g
failure or misperformance. In & recent paper, Schick and Wolverton
(1978) reviewed competing models proposed to relate system reliability
to program errors and fajilure distributions. These approaches are
generally based upon differing models of the probability distributions
underlying fa