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1. INI.RODUCTION2

1 Introduction

This research is concerned with the building of hardware, firmware, and sofLware
tools for the design of efficient, reliable, and maintainable computing systems.
These tools can use knowledge about the programming process to assist the
system builder with many tasks, including design, specification, coding, debug-
ging, modification, documentation, maintenance, and reliability assurance, all
in a cost-efficient manner [Parnas] [Phillipsl. Our current research deals mainly
with knowledge-based concurrent programming and the process of transforming
high-level specifications into microcode.

In [Green], we presented some very-high-level constructs with which we could
straightforwardly specify problems that had different degrees of concurrency.
We also presented a calculus which allowed us to transform these specifications
into different, but equivalent, programs. The calculus consisted of a set of
transformation rules which enabled us to go from the specification to difierent
lower-level target expressions.

In this report, we consider the use of the successive refinement paradigm to trans-
form very-high-level program specifications into the microcode target level, thus
integrating the software and firmware development process. This integration
requires the extension of the body of transformation rules from the domain of
very-high-level expressions down to that of microcode. The use of the knowledge-
based transformational approach should diminish the conflict between efficiency
and ease of specification. It may also reduce some of the exponential search
problems posed by microcode optimization [Dasgupta79], through the use of in-
formation carried down during transformation from higher abstraction levels.
For example, the high-level specification indicates which pieces of microcode are
completely independent and can be run in parallel, thus avoiding search that only
re-discovers possible parallelism. Also, a knowledge-based system using stepwise
refinement of high-level specifications allows efficiency estimation of alternative
implementations, avoiding blind search through the space of the possible cluster-
ings of micro-operations.

1.1 Summary of Previous Work

Most of our work has been covered in our previous report [Green]. Below we
provide a brief summary of that report.

The report covered the extension of our work in sequential programming into the
area of concurrent programming. First, we extended our language for express-
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ing program synthesis rules to allow the expression of concurrent programming
knowledge. Given that extension, we were able to express elementary trasfor-
mation rules that map a high-level program (which is non-committal with respect
to sequentiality or parallelism) into various concurrent versions. We gave an ex-
ample in which we synthesized several versions of a simple retrieval program,
with the versions having different degrees of concurrency.

An example we studied in detail is a concurrent odd-even transpose sort, which
is a type of sorting network. Transpose sort did not appear to fit directly into
our stepwise refinement paradigm for program construction. We proved the
correctness of the algorithm, and presented a derivation which suggests the need
for extending the stepwise refinement paradigm.

We briefly examined more complex algorithms including concurrent shortest
path and prime-finding algorithms. These derivations appear to be as tractable
as their sequential versions of comparable complexity.

The report included background material on our general approach to program
synthesis. A tutorial explained how knowledge can be codified as a collection of
rules which may be used to transform a specification into a program. Also dis-
cussed was the subject of which allowable reorderings of computations would not
violate constraints imposed by the hardware or by the high-level specifications.

§2 Parallel Constructs

In [Green], we proposed some basic constructs which allowed us to specify highly
parallel problems [Fuller]. The basic parallelism operator is //, which is applied
to a function and a collection of arguments. // applies the function to each of
the elements of the collection, but in any order, or in parallel.

The result returned by the // statement consists of a collection of the results of
each application. If the given collection of arguments is a set, the results will
be encapsulated in a set. If they are given as a list, the order of the results will
be preserved as in the given list of arguments. We delimit collections with angle
brackets when we talk about abstract collections, but we use curly brackets or
parentheses for sets or lists respectively.

// can be terminated in three ways: (1) return a value as in standard LISP; (2)
return EMPTY (distinct from NIL); and (3) abort all other parallel computations
generated by this // and return a single value. For example,

(//op (ar 1 ar2 ... arg,,))
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would cause the parallel application of op to each argi, and the result would be

((op arg1 )(op ar92 )...).

IF any of the applications of op returns EMPTY, that value will simply not
appear in the result list. This enables us to represent filters. We also use a
feature which allows us to stop every sibling process when one of these processes
says (Alldone (Value)). This feature is particularly useful for parallel searches,
because it allows us to stop all the parallel processes which are seeking some goal
as soon as one of them attains it.

The way to start multiple processes is:

(/ Identity (proc1 ... procn)).

Processes are independent computations, and no extra operator is applied once
the arguments are evaluated. That is, once the processes have run (each one
deciding by itself if it returns any value or not), the collection of their results be-
comes the result of the // statement. To simplify the notation, when the operator
is just Identity, it need not be written. Hence (// (collection of processes)) will
start a group of parallel processes and terminate when one of them flags Alldone,
or when all the processes are done normally.

On the other hand, we may want to apply the same function as a filter to all
the elements of a set. This can be specified as:

(// filter (collection of elements))

This provides a multi fork-join facility. There is no need for more concurrency

control for the so called "internal concurrency problems." Note that the join is
well defined because all the arguments have to be evaluated so that the operator

may be applied.

§3 Implementation with Microcode

Our calculus must be extended with new rules to transform programs from//
constructs down to the microcode level. STRUM [Patterson and S* [Dasgupta78]
provide useful ideas high-level microcode constructs.

The hardware architecture could facilitate the development of refinement deriva-
tions by providing features which resemble the higher level constructs. For ex-
ample, [Arden] presents the MP/C approach, a concurrent computing environ-
ment having the shared memory aspects of tightly-coupled multiprocessors and
also the characteristics usually associated with loosely-coupled message-oriented
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systems. A large address space is dynamically partitioned in a hierarchical way
through the use of dedicated switches which control the common bus through
which the processors can access segments of a linear memory. These switches are
also connected with a command bus which enables them to implement powerful
operations like the ones needed for the // construct in a direct way. Hence, better
use of the processors could be made through the non-commital very-high-level
specification of the programs.

/CInterpreter Aion(otae+ hardware) x

I

Transformations T .

Equivalence

Cmds. (hardware) x

y

Fig.1: Transformation and interpretation

3.1 Space and Time Efficiency Considerations

Since microcode affects every operation, it cannot be inefficient. Microcode can
be viewed as being the innermost loop of every computation, so that if the
microcode is inefficient, every computation is inefficient. Therefore, the micro-
code synthesized should approach hand-coded efficiency.

A compaction problem arises when the high-level microcode is transformed into
elementary control words. The micro-compilers for general purpose machines
first generate sequences of micro-operations which have some constraints (in-
troduced as a partial ordering in time and limited resources on which to run
these micro-operations). Then, these operations are bundled in control words
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in the most compact way which satisfies the aforementioned constraints. This
compaction problem has been solved only with minor success in the past: when
the microcode is mostly vertical, microcompilation as well as verification is
not difficult. However, when the control words are horizontal, and there is an
inherently high degree of microparallelism, the problem grows rapidly with the
size of the input.

The advantage of handcoded microcode is that it can be very fast, but it is very
difficult to ensure its correctness. The advantage of automatically generated
microcode is that it can be proven correct with respect to higher-level specifica-
tions. Its disadvantage is that until now no one has generated automatically
acceptably efficient microcode for horizontal microarchitectures.

One possibly bad approach is to generate microcode automatically and then
try to optimize it. There are two key aspects to be optimized: time and
space. Clearly, these are interdependent. Reducing space may be achieved
by reducing either the size or the number of control words. Increasing speed
requires a high degree of microparallelism and short decoding delays for the
control words. These last two considerations are in conflict with the reduction
of word size because a tighter encoding organization allows fewer possibilities for
microparallelism. Also, the requirements of more complex decoding introduce
an additional delay in the execution of each microprogram.

There is a disadvantage in using a maximal encoding schema, outside of speed
considerations. Namely, adding a new instruction requires a new state and
new encoding and decoding logic, all of which implies hardware change. In the
maximal parallelism alternative, as many micro-operations can be run simulta-
neously as the hardware allows (that is, as many additions can be run at once
as there are adders and appropriate data paths), and there is no need for any
decoding at all, since each bit of the control word directly controls the hardware
involved in a microoperation. Because of this, it is frequently called direct control.

An intermediate approach can avoid the lack of flexibility and parallelism of the
first alternative and the excessive word length of the second. In this minimally
encoded approach, a group of microoperations which are never executed together
(that is, they are mutually exclusive during a microcycle) are encoded together.
Hence, there is a partition of the totality of microoperations into k sets of tn
microoperations. This partitioning allows for an encoding in a total control word
length JwI I f10log 2 mil. This intermediate approach is the one in which
the optimization difficulties appear. The problem consists of minimizing the
total number of bits Jwl satisfying a given set of disjoint operations. Although
this requires a separate decoder for each field, each decoder is very simple since
the fields are small.
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The problem of minimizing the length of the microcode is closer to the traditional
code optimization problems found in compilers, except for some timing restric-
tions and hardware dependencies that are intrinsic to microcode optimization.
This similarity comes from the fact that in both cases there is a set of limited
resources to assign to a computation, and a space of admissible solutions, with
time/space tradeoffs. Of course, there are differences which make the techniques
of software optimization not directly applicable to this kind of optimization.

Since microcode generated from higher-level specifications must be optimized, a
transformational approach that modifies a specification along a refinement path
can be very advantageous. By its mere existence, this path indicates the validity
and satisfaction of all the constraints.

We should note that there are two efficiency considerations: the efficiency of
the search in the space of implementations, and the efficiency of the resulting
code. These are directly related because the higher the search efficiency, the
more alternatives can be explored for the target code.

3.2 Correctness

The second reason to prefer the transformational approach is that of ensuring
the correctness of the synthesized code. In [Patterson], it is reported how several
errors were uncovered through the systematic verification of microcode generated
from a higher-level specification language. It should be noted that, in our
system, verification rules can again use the same rule-manipulation machinery,
but most of them do not even need to appear in the system in any explicit
way, since the transformation rules already fulfill that purpose by transforming
correct specifications into correct microcode. Of course, there are still two
requirements to ensure the correctness of the resulting microcode. The first is to
show that the transformation rules preserve correctness. That is, the soundness
and consistency of the synthesis system must be proved, but that need be done
only once for all the programs to be generated. The second problem is to improve
the chances of correctness of the specifications. We can significantly modify the
chances for success by providing notations which will facilitate the specification
of problems in a way consistent with our ideas of what we want to specify. It
should be noted that this key issue to the true total correctness of programs is
frequently neglected in traditional program correctness proving. We think that
the clarity and simplicity which is achieved through very-high-level languages
using such constructs as the ones we use is one step in the right direction for
this problem.

p
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For completeness, it should be noted that the equivalence between the original
specifications and the target code does not yet include the termination properties
of the programs. That is, although the specification of a program could be
correct, and have a terminating solution, once some sequences of transformations
are applied, the resulting code could no longer be guaranteed to terminate. This
is a limitation of the calculus we presented, but, as was suggested in (Green],
that issue could be taken care of by a heuristic technique which would handle
the termination problem. While pruning the less efficient branches, the efficiency
expert might also be able to eliminate most non-terminating ones.

§4 The Space of Refinements

One reason knowledge-based synthesis is appropriate is that a key aspect of it
involves the generation of alternative implementations. Since the generation/use
ratio is even lower for firmware than for systems software, it is viable to spend
more time and resources in the generation and search of alternative implemen-
tations. This should not give false hopes: exponentially growing problems, even
those that appear small, may be for all practical purposes unsolvable. Micr3code
optimization has been shown to be NP hard, which is one more reason to prefer
a knowledge-based heuristic approach.

In a rule-based system, instead of having to create a complex algorithm which
will generate valid microcode, the constraints are incorporated as rules in a
homogeneous system of specification transformations. In this way, optimization
can occur in small intermediate steps. Every branch need not be improved, since
many of them will be discarded anyway. This avoids leaving all the optimization
for the end, when all the higher-level information will have been lost. Most of the
work done in micro-compilers up to now had either used specific algorithms or
blind searches, but none used a knowledge-based search for the transformation.

There are two clearly distinct domains in which parallelism takes a central role
in microprograms. One could be called "micro-parallelism', which refers to
the parallelism which appears in the control of the lowest level of the abstract
processor. This means that several of the sub-parts of a machine instruction
are done in a concurrent fashion by the micro-architecture. This is a very low-
level granularity kind of concurrency, and has little similarity with software
concurrency; it is similar to the parallelism of the components of an abstract
electronic device.

Some of the key issues in concurrent systems involve the development of a well-
defined hierarchical structure in which lower levels implement the abstractions
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used at higher levels. In this structure, the firmware can provide very efficient
implementations for approaches whose practicality is marginal if implemented in
software, but which become theoretically and practically sound if the firmware
provides an adequate support. This brings us to several important questions
which relate to architecture and concurrent software development. Mainly, what
should be put in hardware, what in firmware, and what in software? This
presents still another question which is how to describe and formalize what to
implement at the different levels?

A system can be built by describing a sequence of refinements, in which each
level supports the abstractions defined one level above by providing an adequate
set of primitives which are used to define these abstractions. It is necessary
to introduce islands in the language in which this refinement chain is expressed.
The need for these islands arises from the significantly different kind of problems
solved at each level.

Analogously, different constructs are used at each level to describe algorithms
throughout their refinement from software to hardware. At each level of refine-
ment, the formalism should be clear in its meaning. That is, it is not enough to
have just a clear high-level description which is transformed into unintelligible
code at lower levels. That there are different constructs in which the domain
problems have to be posed at each level does not preclude a uniform approach
for the refinement methodology.

Since there are various domains of objects which are populated by differen kind
of entities (e.g. registers, data paths, gates, control words, activation records,
sets, etc.), descriptions are needed of the constraints on the interactions between
these components to generate the specified behavior of the system, and also the
constraints which define the valid (or even possible) modes of behavior. For
example, at the software level, the set of entry points to a class gives the only
possible ways to interact with it. At the firmware level, there are constraints on
the number of possible parallel actions that can be initiated in a cycle because of
the chosen grouping and decoding scheme. At the hardware level, these entities
might be registers, data paths, etc.

This description system needs to be rich enough to describe any part for which
the synthesis system is to generate options for implementation. On the other
hand, it must be simple enough so that these descriptions can be manipulated
easily (either manually or automatically). Earlier efforts which developed high-
level microcode languages with microcompilation and/or verification in mind can
suit our synthesis needs.

The verification of programs a posteriori is a much more difficult task than creat-
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ing them correct (through correctness preserving transformations), so particular
advantage can be taken of the decoupling between many of the functions which
result from software migration into hardware. Most of the programs which have
been automatically synthesized to date are relatively short, but this is precisely
the case with microprograms: they tend to be short and have little interaction
with other modules. There is another domain where microprogramming has a
bearing on concurrency, and which corresponds to large granularity parallelism:
communicating microprocesses, running on a net of microprocessors. Here, the
degree of variability of the micro-substrates is even wider than for micro-archi-
tectures, and for the most part there is no developed formalism to deal with this
at the substrate description level. On the other hand, there are valid analogies
with the tools developed for dealing with concurrency at the software level, and
which are being used with increasing success in the operating systems area.

Although we should use the simplest and most abstract notation to achieve a
good degree of generality, there are some limitations which are again intrinsic to
microprogramming. Namely, it makes sense to talk about a software language
which runs on an abstract machine which implements the abstractions the lan-
guage uses (via a compiler or an interpreter running on some extended machine
[DasguptaT8]), but this cannot be used at the microprogramming level, since
levels of abstraction cannot be interposed -unless they are implemented in the
hardware micro-architecture. Hence, we should extend the work which develops
tools to describe the full scope of variability of this domain, by writing high-level
microprograms which exploit the full possibilities of concurrency given by the
micro-architecture.

§s Mapping HI Constructs into Microcode: an Example

We experimented with transforming manually a high-level expression into micro-
code. We assumed a simple target architecture which was devoid of high-level
parallelism, but which allowed several microoperations to take place in the same
cycle. There were several registers, which allowed overlapped fetch and store, but
only one ALU which limited the available parallelism for arithmetic operations.
The intention was to find if a system could take advantage of the microparallelism
when the specification of the problem allowed high level concurrency. The
specification was

0(struct) = {min(z) I Z E Struct}

which means to find the set composed of the minimums of each of the subsets
-which are in struct. For example: 0({{1 3 6}{87 12}}) = 1 112). This is non-
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committal as to a parallel or serial implementation. Noticing that the operation
min in each of the sets does not affect the value of the elements of the set, and
that to calculate min of a set only the values of the elements of the set are
needed, implies that the min of for all the subsets can be computed in parallel.
Hence, using our // notation, the specification may be transformed into:

(// min struct)

which could be computed in INTERLISP with:

(for s in struct collect (min s)).

Of course, in neither of the last two transformations is there any indication of the
order in which these min operations are to be performed. Next, we transformed
this into a serial algorithm, then into a pidgin high-level microcode language,
with the expectation of being able to take advantage of all the microparallelism
features of the assumed architecture. At this point, the higher-level parallelism
could not be extracted (or detected) from looking at the serial algorithm micro-
code. This seems to support our belief that the parallelism of an algorithm can
be better exploited at a high level. That is, there is no clear way in which we
could see the macroparallelism through microparallelism. It should be noted
that in spite of this, many special-purpose machines may have advantages at the
microparallelism level, in particular for very regular numerical algorithms.

§6 Conclusions

We have brought out some issues concerning the use of the paradigm of step-
wise refinement to transform concurrent program specifications using very-high-
level constructs into microcode. We considered optimization in the light of this
paradigm, and how it could give us an edge over a strictly algorithmic approach.
Work is needed to select appropriate intermediate-level constructs, and to de-
velop further the base of refinement rules that code high-level parallelism.
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