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! ABSTRACT

d

A strictly proper scoring rule or admissible probabilicy
measurement procedure (APMP) is a mathematical device that
allows a decision-maker to "score" probabilistic forecasts
made by experts once the outcome is known. The expected
score, as seen by the forecaster, should be maximized when
the forecaster states his true beliefs so that he will be
encouraged to do so. Applications to subjective probability
assessment will be given.
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THE CHARACTERIZATION OF STRICTLY PROPER SCORING RULES
IN DECISION MAKING
by Eduardo Haim

1. INTRODUCTION

A convenient way to express beliefs on future outcomes is 1o give a forecast weighted by
a probability distribution. For example, in weather forecasting, the forecaster attaches probabil-
ities to the events that snow, rain or sun will occur. These probabilistic forecasts which
describe the beliefs of an expert may be used by decision makers in their analysis of a problem.
It is, therefore, important to be able to "score” the expert based on past performance in order to
attach a "degree of credibility” to the forecast. [t is also important to get a forecast which is
representative of the expert’s "true” beliefs. The expert should not feel that by stating a hedged

forecast he will get a higher score.

A strictly proper scoring rule or admissible probability measurement procedure (APMP) is
a mathematical device that allows the user (or decision maker) to score the expert’s forecast in
such a way that the expert will be "encouraged” to state his "true” beliefs. These concepts will
be defined more rigorously in Section 2. In Section 1, the theory that will help in the analysis
and construction of scoring rules is presented. In Section 4, the results of the previous section
are used to construct a strictly proper scoring rule for a given model. The summary, conciu-

sions and topics for further research are in Section 5.

This paper deals exclusively with forecasts weighted by discrete probability distributions,
the continuous case will be treated in another paper. The main reference to this work is a 1971
paper by L.J. Savage [3] on the elicitation of personal probabilities. Application of scoring rules
1o weather forecasting and some desirable properties of scoring rules are presented in Refer-

ences (4] and {5].

An important aspect which is often overlooked in technical papers is stating the reasons

why a given technique is useful. Some applications of scoring rules are:




Elicitation of subjective probabilities;

Evaluation of expert opinion;

Use of past performance as represented by the scores to weigh diverging opinions among
experts;

Muitiple choice tests could allow for other than absolute forecasts and use scoring rules to

evaluate the results.

The reader is referred to the paper by Savage 1971 (3] for other uses of scoring rules.




2. DEFINITIONS AND EXAMPLES
Expert opinion is often given in the form of a probability vector. For example, a weather
forecaster can give a forecast of snow, rain or sunshine as a vector (r,7;,7y such that

rn+ratry=1,
0€<r<l1,i=123,

where
ry is the probability of snow
r2 is the probability of rain
r3 is the probability of sunshine,
Once the outcome is known, the users of the forecast would like to score the weather forecaster

depending on "how close” to the outcome his forecast was.

Definition 1:

Given n possible events, n € Z, (positive integers), a forecast may be represented as a
probability vector r such that
r=(ry..r),r €R"
01, i=1, ., n.

ir,-l.

Let the outcome be k, 1 < k € n, k € Z,. Let the forecaster’s score be given by the real
value S,(r). We call the real-valued mapping S from (r,k) to S,(r) a scoring rule. A score
may be thought of as a reward or as a penalty. In this paper, we shalil think of it as a reward so

the forecaster wishes to increase his score.

Let the vector p=(p,,....p,) . P € R" denote the forecaster’s true belief (judgment),

where

0Kl iml,.onandy p=1.

=]

Then p, represents the probability the forecaster attaches to the occurrence of outcome .
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The stated probability forecast » may not be equal to the forecaster’s true belief
represented by p. However, the users of the forecast would like to use scoring rules that
encourage the forecaster to make his forecast correspond exactly with his true belief. That is,

. to make r=p.

. Defiunition 2:

Let S, (r) denote the score assigned by the scoring rule S when outcome k occurs and r
is the stated probability forecast. Let £S(r,p) be the forecaster’s expected score where the vec-

tor p is defined as above and

ESG.p) = 3 piSulr) .

L2

Then, the scoring rule S is said to be strictly proper if

ES(p.p) 2 ES(r,p) ¥ p, with equality if and only if r = p .

In other words, S is a strictly proper scoring ruie if and only if the forecaster’s expected score is

maximized uniquely when he sets r=p.

. S is a proper scoring rule if p maximizes £S but not uniquely.

Example 1: Brier Scoring Rule
Let,
r € R", the stated probability forecast vector.
2 € R", the forecaster’s true belief probability vector.
Let n be number of possible outcomes and

k € Z..1 £ k £ n, the outcome.

Define

S (r) = =(r = e)T1(r = ¥

where
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. 1 in position k
€ =10 eisewnere

e* is a vector of dimension » which indicates that outcome & has occurred and / is the identity

matrix of dimension ~.

We wish to show that the Brier Scoring Rule is strictly proper. Note that

ES(p.p) — ES(r.p) = (r = p)TI(r = p) 2 0 VY p, with equality if and only if r=p since / is

positive definite. Then,

ES(p.p) 2 ES(r.p) N p, with equality if and only if r = p .

Therefore, the Brier Scoring Ruie is strictly proper.

Note that the proof would be the same if / were replaced by any positive definite matrix

of dimension n. In this way the family of quadratic scoring rules is generated.

Example 2:

Let r € R" be the stated probability forecast vector.

Let p € R" be the forecaster’s true belief probability vector.

Let n be the number of possible outcomes and k € Z,, 1 € k £ n, the outcome.
Define T, (r)=—eT|r—e*|, a scoring rule. e* is the same vector as in Example 1 and e is a

column vector of ones. Both have dimension n. Suppose n=2, then’

Expected score = ET(r,p)
= =[pylry=1] + |r3=0]) + pylr; = 0] + |ry= 1]
==(2p\ry+ 2pyr1] .
ET(r.p) is maximized by
(rurg = :(1)(1); ffm>pz‘
1) if p1<p

So the scoring rule T is not proper.
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When a scoring rule is not as simple as the}mes presented in the above examples, it is
harder to prove that it is strictly proper through the expected score definition of the property.
In Section 3, a theorem is presented that will make it easier to demonstrate that a scoring rule
is strictly proper. The theorem can also be used to construct strictly proper scoring rules. In
Section 4, the problem of constructing scoring rules which better represent the interests of the

users of the forecast will be discussed.

2.1. The Utility Function of the Expert (Forecaster)

From a decision analysis point of view, the expert forecaster should be maximizing his
expected utility when he states his forecast. [t is technicaily incorrect to say that the forecaster

wants to maximize his expected score.

If the utility function of the forecaster is a real valued function / such that

Y Si(o € X SkP)px Y p, with equality iff r=p
k=1 k=1

7)) if and only if
Z"I(Sk(r))p;, < Z”f(S,,(p))pk Y p, with equality iff r=p
k=1

k=l

then maximizing expected score is equivalent to maximizing expected utility.
Let

g2 : R = R be such that
gx)=ax+b a€R,a>0,6€R.

It is easy to show that condition (/) holds for such a function g.

Necessary and sufficient conditions on f for (/) to hold are very restrictive [6]. How-
ever, since (/) holds for the linear increasing function g, it will be assumed that the utility
function of the forecaster is piecewise linear and increasing in the score. This assumption is
not too restrictive since any smooth function can be arbitrarily approximated by piecewise linear
functions and the utility function of the expert should be increasing in the score. For reiatively

small changes in the value of the score, the utility function can be assumed iocaily linear.




Based on the above, maximizing expected score will be assumed to be equivalent to maximizing

expected utility.
2.2. Perfect Forecasts

Definition 3:
A forecast that assigns probability one to one of the possible outcomes »ad probability

zero 1o all the others is defined as an absolute forecast. The vector r such that

1 fimk
"= 10 otherwise

is an absolute forecast of outcome k.

Definition 4:

A perfect forecast is an absolute forecast of the actual outcome.

Theorem 1:

If a scoring rule is (strictly) proper and the outcome is k, the score for outcome k is

maximized (uniquely) by a perfect forecast of k.

Proof:

Let S be a strictly proper scoring rule, then

L n
Y S(p; €Y S(p)p, ¥ p, with equality if and only if r = p ,

1= =]

or
3 (S(p) = S()p, 20 VYp, with equality if and only if r = p .
-]
Let p be a perfect forecast of outcome k.
1 ifimk
P =10  otherwise
then

e ke gty il e am gl e e
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(S (p) = Si(r)) - 1 2 0, with equality if and only if r = p
S.(p) = Si(r), with equatity if and only if r = p .®

-l
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR A SCORING RULE TO BE
‘STRICTLY PROPER

Definition §:

A subset C of R" is said to be convex if (1-A)x+Ay € C where x € C, y € C and

0<a<l.

Definition 6:

A real-valued function f on a convex set C is said to be (strictly) convex on C if,

S =Ax +Axd () S U =N flx) +Aaf(x),0< A <1

for any two different points x; and x;in C.

Definition 7:

A vector x " is said to be a subgradient of a convex function f at a point x if,

SO 2+ -x)xT) Yy
where { -, - ) is the usual inner product. This condition is referred to as the subgradient ine-

m

quality If £ is strictly convex, equality occurs if and only if x=y.

Theorem 2:

A scoring rule S is strictly proper if and only if

Sk(r) = G(r) = (r,G™ (N} + Gi(r) + a;

where r is the vector of probability forecasts of dimension n, k is the outcome, 1<k <.

G'(r) = (Gi(r), .... Gg(r), ... Go(r))

is a subgradient at the point s of the strictly convex function G, and a, is a constant that may

depend on the outcome k but not on the vector of probability forecasts 7.

(1) The subgradient iaequulity has a simple geometric meaning when /15 finute at X it says that the graph
of the affine function h (y)m f (x)+((y-x).x ) is 4 non-vertical supporting hyperplane 10 the convex set
epr f at the point (x,/(x)) See Rockafellar 19¥0. Section 23 (Reference 2).
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Proof:
Suppose
Se(r) = G(r) = (r,G'(r)) + G(r) + a,
. where G (#) is a subgradient at the point - of the strictly convex function G and d, is a con-

stant that depends on k but not on r.

We wish to show that § is a strictly proper scoring rule. Let p=(p,,....p,) be the
forecaster’s true judgment and a=(ay,...,a,), then
ES(p.p) — ES(r,p) = G(p) = (p.G " (p)) + {p.G"(p)) + {p.a)
=G~ {r.G' )+ {p.G" (N} + (p.a)l

therefore,

ES(p.p) - ES(r.p) = G(p) = G(r) = ((p = 1),G"(r). |

Since G (r) is a subgradient at the point  of the strictly convex function G,
Gp) 2 G(r) +{lp = r).G'(r)) V¥ p, with equality if and onty if r = p .
Therefore,

j ES(p.p) 2 ES(r.p) ¥ p, with equality if and only if r = p .

So S is a strictly proper scoring rule.

Conversely, suppose S is a strictly proper scoring rule, that is, |

1’ ES(p.p) 2 ES(r,p) ¥ p, with equality if and only if r = p .
| Let
G(p) = ES(p.p) = (p.5(p)} .
| Gi(p) = S (p)
4 and
ay = 0,
then

Sk(P) - G(P) - (p.G°(p)> + G;(ﬂ) + ay .

B R T CUNUITPRRRIRE LS TS SRS RS SRR S S

R . ) ) .
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To show that G is strictly convex and G '(p) is a subgradient at the point p of G. note that
G(p) 2 ES(r,p) = (p.S(r)} ¥ p, with equality if and only if r = p
since § is strictly proper.

For each fixed r, the function £5S(r.p), which is linear in p, lies strictly below the func-
tion G, except at r, where the linear function and G have the common value ES(r,r)=G(r).
In short, £S(r,p) is, for each r, a linear function of support of G at the point r and only there.
Therefore, G is a strictly convex function of p. (This follows from {2] Rockafellar (1970),

Theorem 5.5, page 35.)
Now consider,

G(p) = G(r) = {(p - r).G'(r))
- (p,S(p)) - (r.S(r)) - (p.S(r)) + (r.S(r))
= (p.S(p)) = (p.S(r))= ES(p.p) = ES(r,p) 2 0

¥ p. with equality if and only if r=p, since § is a strictly proper scoring rule. So,

Gp) 2 G(r) +{(p=r).G'(r)} ¥ p, with equality if and only if r = p .

Therefore, G '(r) is a subgradient at the point r of the strictly convex function G.®

Corollary 1:
A scoring rule S is strictly proper if
Silr) = G(r) = (rVG(r)) + Gi(r) + a,

where r is the vector of probability forecasts of dimension # and & is the outcome, 1<k <.

vG() =38 3G (G, ... Gilr). ... GlrD)
an 6!,

is the gradient at the point r of the strictly convex, differentiable function G, and a, is a con-

stant that may depend on the outcome k but not on the vector of probability forecasts ».




Proof:

The gradient is also a subgradient since

G 2 G(r)+{(p=1r),VG(r)) Yp, with equality if and only if r = p .

Apply Theorem 2 and the result follows.®

The results of this section are quite important. They provide us with another way 1o
recognize strictly proper scoring ruies, but more important still, they give us a method to con-
struct them. In Section 4, the results of this section are used in the construction of a strictly

proper scoring rule.

e AL g RTINS <L b €255 u AP ot A Ll e s
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4. CONSTRUCTION OF STRICTLY PROPER SCORING RULES BY THE USER. AN
APPLICATION
In Section 2, the Brier Scoring Rule was presented. [t has the desirable property of being
. strictly proper. However, it does not allow for the user to be represented in the scoring rule.
One way the user can be taken into consideration is the inclusion of his utility function in the
scoring rule.
In this section, we construct a scoring ruie that is a function of the user’s utility. The
construction is based on Theorem 2 of Section 3 and it illustrates the way in which this

theorem can be used to construct strictly proper scoring rules for different situations.

4.1. The Model

Suppose there are n possible outcomes or events £,,....E, and that the user of the fore- !
cast or decision maker can take one of m possible actions 4 ,...,4 n.
Let 4, be the utility of the user when the action he took was 4, and the outcome is E,.

Then there is a matrix U of utilities

El . En
Al uu o o uln
U=, . uy 3
Am “ml . e e um
- -

The value of the utility of each point of matrix U is relative to the utility of the other

points. Without loss of generality it is assumed that «,,>0 V. ;.

R T N IR . - L
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The forecaster atiaches a probability to the occurrence of each event,

n
re(ry...ry); 3 r=l; r,30,iml,...,n, where  is the vector of probability forecasts.

1]

4.2. Construction of a Strictly Proper Scoring Rule
Given the above model, a strictly proper scoring rule is constructed based on Theorem 2
of Section 3.

max(7. U}

) Let G(r) = e '

where U, is row i of matrix U.

L

(i) Let G'(r) = VG(r) = gradient of G at r .

. : 3G (r)
G(r) = G (r) a7 k=1,...n

for all r € C for which G is differentiable where the set

C={r|reR" 3 r,=1,r,20,i=1, .., nis convex .

=]

If 7€ C and G is not differentiabie at the point #, G ‘() is defined as the right (side direc-

tional) derivative of G at the point r.

Glr+a)=G(r)

G'(r) = G.(r) =G(r,]) = lililg
Now G'(r) is well defined since G is strictly convex [see proof below] and, therefore, the
directional derivative exists for all r€C [Reference 2]. Also, G.(r)=VG(r) if G is

differentiable at r.

(iii)  Let a, be a constant that depends on the kth outcome.

Claim 1:

mu(rU,)
G(r)me ' is strictly convex.

-
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Proof:

max(r.U) /h i\
G(r)=¢e ' " = max e\
1

since e* is increasing in x.
Define

)

- /s
Gir,i) = ¢ i=1, .., m.

The Hessian H of G(r,i) with respect to r follows:

B m
u2 e « + . u,.u
i1 il in
2

<r’“1> T .
H=e¢e . . .
. . .
u,.u u2

ilin ° ° ° Tin

We need to show that H is a positive definite matrix.

Let y be an arbitrary vector of dimension », then

rU
yTHy = U Gy + -+ yu?.
Recall that, by assumption, ;>0 for all i,j. Therefore, yTHy >0 for all y=0, so H is posi-
tive definite. This implies that G (r,i) is strictly convex. Since
G(r) = max G(r.i) ,

it follows that G is a strictly convex function of .®
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G'(r) is a subgradient at the point r of the strictly convex function G by definition.

Before using Theorem 2 to construct a strictly proper scoring rule, the following set is defined,
Dy={r|{r,U)3{rU) Vjmi] iml .,n.
Claim 2:

D, is a convex set, i=l,....n.

Proof:
rRUYZ2 (e U) Y=
r,t € D, implies that <I.U,) > (l,Uj) Vs
Then, J
MUY+ (=D UN 2 A UN+ U =AU
\ J/ J
Vi#iand0 <A <.
So,

(ir + A =N0, U) 2 (r + (1 =00, Uj)
Vj*iadO0<A<1.

Therefore, D, is a convex set.®
Now, using the sets D,, i=1,...,n
LU
G(r)=¢""""" r €D,

. /’ \
Gi(r) = u,e Ui re D, ;lr,r +¢) C D,

where e=(¢; ....¢,) for some ¢ such that ¢, >0. Let the scoring rule S be as follows,

Si(r) = G(r) - (r.G‘(r)) + G(r) + a,
/U \
Se(r) = &Y~ (r,U,e("u'>> + u,ke<"u" + a, reD;lrr+e)CD,.

7\
S (r) = e<""”(l ={r.U) + uy) + a, reD;,lrr+e)CD,.
S is well suited for the model presented in Section 4.1. The score that the forecaster gets
is a function of the expected utility of the user when he takes action A4, and also of the utility

of the specific outcome. The term a, depends only on the outcome & and can be disregarded
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while interpreting the score.

(r,U,) is the expected utility of the user given the forecast r € D,. u, is the utility
obtained from having taken action 4, when the outcome is £,. wu, is the term that most clearly

improves the forecaster's score.

By construction, § is a strictly proper scoring rule [Theorem 2]. The score for outcome k

is maximized uniquely by a perfect forecast of k [Theorem 1].

For comparison, suppose

G(r)=(r,U) re€D,
Gi(r)=u, reD :lrr+e)cCD, .

Note thai G(r7 is now convex (not strictly convex.) Following the same procedure as before

we gei,

Se(r)=uy+a, reD, ;. lr.r+e) CD,

which is a proper scoring rule (not a strictly proper scoring rule).
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5. SUMMARY AND CONCLUSIONS

A strictly proper scoring rule was constructed which takes into consideration the utility
function of the user of the forecast. The scoring rule was presented as an application of
1 Theorem 2 in Section 3 which gives the necessary and sufficient conditions for a scoring rule to

be strictly proper.

Suppose a model of a given situation is presented. By finding a strictly convex function
that accounts for some part of the behavior of the model, a strictly proper scoring rule can be
constructed following the procedure of Section 4. More applications of this methodology will
be presented in a forthcoming paper. Also, the case of a continuous density function forecast

(as opposed 10 a discrete probability forecast) will be studied separately.

Different scoring rules are needed because forecasters are not ideal subjects. In theory,
any strictly proper scoring ruie should encourage the forecaster to state his true beliefs. How-

ever, this does not happen in practice and the need arises for scoring rules adapted to each

N situation. Also, the forecaster being subjected to evaluation by scoring rules should have a
minimum knowledge of probabilistic concepts and of utility theory in order to realize that his

objective is to maximize his expected score.
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