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Abstract. A “Carathéodory-I'cjér method” is presented for near-best real ra-
tional approximation on intervals, based on the cigenvalue (or singular value) analysis
of a UHankel matrix of Chebyshev coeflicients. In approximation of a smooth fune-
tion F, the CF approximant R¢f frequentl&lill'ers from the best approximation
2* by only one part in millions or billions. T3 account for this we show here un-
der weak assumplions that if / is approximated on [—¢, €], then as e =+ 0 , ||F —
R*|| = O(e™+n*+1) while ||R¢f — R*|| = O(3™+27+3) . In contrast, the laticr figure
would be O(e™*+™*?) for the Chebyshev cconomization approximant of Machly or the
Chebyshev-Padé approximant ol Gragg. It follows that as ¢ — 0 , best approxima-
tion error curves approach Lhe real parts of m + n + 1 -winding DBlaschke products
to within O(e3™*2"*3). Numerical examples are given, including applications to
e* on [—1,1] and e* on [0,00). For the latter problem we conjccture that the
errors in (n,n) approximation decrcase with each n by a ratio approaching a fixed
constant 9.28903....
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0. INTRODUCTION

The purposc of this paper is to describe and analyze a new analytical mcthod for near-
best rational Chebyshev approximation on an interval, which we call the Carathéodory-
Fejér method, that is based on an eigenvalue analysis of a liankel matrix of Chebyshev
cocflicients. What is remarkable about the CF method is its extraordinary degree of
optimality in approximating many smooth functions. Let R* be the best (Chebyshev) .
approximation of rational type (m,n) on [—1,1] to a continuous function F(z), let R¢f

"be the corresponding CF approximation, and let E* = ||F — R*||c and E¢f = ||F —
Rf||o be the associated errors. Then Table 1 shows how close E¢/ and E* turn out to
be for the case IF(z) = €*.

(m,n) E* ‘ ECf - E* (approx.)
(0,0) 1.1°52 1074

(1,1) 2.0970(~2) 1078

(2,2) 8.6900(-5) 10712

(3,3) 1.5507(~7) 10720

(4,4) 1.5381(-10) <10”%

Table 1. Errors in best and CF approximation of e® on El,l]

by rational functions of type (n,n) , 0<n<g 4.

Such extremely strong agreement demands explanalion. In Lhis paper il is shown that il a
smooth function F(z) satislying a simple normality condition is approximated on [—¢, €],
then ||[R¢f = R*|| = O(3™+?2"+3) as ¢ — 0 (Thm. 6). As a corollary it is also shown
that to the same order as € —+ 0 , F'— * equals the real part of an (m+n+1)-winding
Blaschke product on the complex unit circle (Thm. 7). '

Our rescarch on CF approximation began with the study of error curves in approxima-
tion of analytic functions on the complex unit disk. If r*(z) is the best approximation
of type {(m,n) Lo f(z) on |z|] < 1, it turns out that the error curve (f —7*Y(|2| = 1)
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often approximates extremely closely a perfect circle about the origin of winding nymber
m + n + 1. This phenomenon for polynomial approximation was discussed by Trefcthen
in {10], where by an analysis based on the Carathéodory-Fejér thcorem [2,5], it was shown
that in best approximation on the disk |z| < ¢, the error curve is circular to O(e2™+3) as
€ — 0 . By means of an extension of the CF theorem due originally to Takagi [19,37] and
generalized by Adamjan, Arov, and Krein [1], this result was extended to O(c2m+2n+3)
for rational approximation in [41]. At the same time Gutknecht found that the CF tech-
nique could be transplanted by the Joukowski map z = {2+ 27!) from |z] =1 to z €
[-1,1], and the resulting rcal CF method was analyzed for polynomial approximation in
[21]. The present paper completes this serics by presenting and analyzing asymptotically
a CF method for real, rational approximation.

The Joukowski transplantation has previously becn applied for near-best rcal ap-
proximation by Frankel, Gragg, and Johnson [14,17], who derived a Chebyshev-Padé ap-
proximation on [—1,1] based on Padé expansions at £ = 0. This Chebyshev-Padé ap-
proximation is related to, but not the same as, the earlier rational economization fraction
of Maehly [6, p. 178; 17]. Our fraction might be called the Chebyshev-CF approximant,
for it fits directly into the framework of Gragg and his colleagues. Indced, correspond-
ing to their Fourier-Padé and Laurent-Padé approximations, one can develop Fourier-CF
and Laurent-CF approximations for rcal periodic and complex meromorphic functions,
respectively. In general the CF approximations will be more complicated but, for smooth
functions, much closer to optimal.

. The history of ideas connccted with the real, rational CI" method is long and confused.
FEigenvalues of IHankel matrices were used half a century ago for estimating the crror of
the best approximation and for solving certain special problems exactly by Bernstein,
Achicser, and Mirakyan; see [31, p. 166] and [2, App. Dj for references. The use of
such a device for ncar-best approximation was apparently first proposed by Darlington
in 1970 [10] for the real polynomial case, and the first (and only previous) extension to
rational ncar-best approximation is due to Lam and D. Elliott in 1972 -3 [12,27,28]. The
connection between the CIF method and approximation on the disk was first pointed out
in the exccllent dissertation of Hollenhorst [25] (for the polynomial case), and this was
also the first work to contain error estimates. Further related contributions have also
been made by C. Clenshaw, G. H. Elliott [13], A. Reddy, and A. Talboi {38,39]. One of
our own contributions in previous papers [21,40,41] has becn to connect CF methods with
the Carathéodory-Fejér theory and the related results ol Takagi and Adamjan, Arov, and
Krein. This makes it possible to fill various theorctical gaps. A sccond innovalion in our
papei‘s has been that by means of arguments related to strong uniqueness, we apply resuits
of the CF method to get estimates on the behavior of the best approximation itself. In
our view, the CI" idea is not just a method lor generating near-best approximations, but a
theory that should reveal hitherto unrecognized properties of real and complex Chebyshev
approximation and of the relation between the two.

The present paper also differs from the previous work of Lam and Llliott in two
practical ways. First, our method applics for arbitrary m and n, rather than just m >

2




T T R

n; the idea behind this extension is derived from an example by Talbot [38]. Sccond, its
asymptotic order of accuracy on small intervals is O(e3™+2"+3) rather than (it appears)
O(£2m+2n+3) . °

Our arguments proceed in two steps. First, one shows that the CF method yields an
error curve that nearly cquioscillates (real casc) or is nearly circular (complex case); this
implies E¢f = E*. Sccond, one shows by an argument related to strong uniqueness or
Lipschitz continuity of best approximations that this behavior further implies 12¢f =~ R*.
All of our estimates are asymptotic, pertaining only to the interval [—c,¢] in the limit
€ — 0. (Equivalently, one could consider increasingly smooth functions F(ez) on the
fixed interval [—1,1].) This is cffectively the same limit considered in the past in various
papers on Chebyshev approximation, notably [29,34] for real polynomial, [7,20,43] for real
rational, {32] for complex polynomial, and {42] for complex rational approximation. Where
these papers obtain one term of an asymptotic cxpansion of the best approximation (two,
in the case of [34]), the CI" mecthod gets many.

The CF mecthod and rclated ideas are currently attracting much attention in the
theories of digital filtering, control, and lincar systems. This work has been mainly
stimulated by the papers of Adamjan, Arov, and Krein (1}, and is being carricd out by
(among others) M. Bettayeb, A. Bultheel, P. Dewilde, Y. Genin, S. Kung, and L. Silverman.
See the book by Kailath {26] for some references, and also (20].
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1. THE CARATHIEODORY-FEJIER METIIOD

Let the unit disk and circle be denoted D = {2 :|2| < 1} and 9D = {z:]z| =1},
let dD* be the upper semicircle D ({z : Imz > 0}, and let I, = [~c,¢]. Let || ||z, ,
I[-Hlap , ete. be the corrvsponding supremum norms, but let Il -|| be an abbreviation for
{I -/, - In what follows = will always denote a real and 2z a complex variable; upper case
letters will be used for functions of z and lower case for functions of z.

We begin with a real function F(z) that is continuous on I, and with a pair of fixed
integers m,n > 0. Let V., be the set of rational functions of type (m,n) with real
coefficients, and let 'R'(z) denote the best approximation to F on I, out of V,,,. (R*
exists and is unique; see [2], [6], or [31].) For any finite M > 0, F possesscs a partial
Chebyshev expansion

M
F(z) = Fa(x) + Gu(z) = 3 axTilz/e) + Crala), (1.1)
k=0

with T, denoting the kth Chebyshev polynomial, where the prime indicates that the
term with k = 0 should be multiplied by 3. Here ai is defined by the inner product
(6, p. 117] '

2 [° dz.
ax = —/ F(z)Ti(z/¢) ———.
L e € - z2
Our fundamental transplantation is the map
z(2) = ¢Rez = %e(z+z'l), (r.2)
a bijection of AD* onto /., which for z € I, z € D leads to the formula

Tu(z/e) = %(z" + 27y, | (1.3)

In particular, let us set a_, = a; and define

M M .
)= 3w, = Y wet, (1.4a)
k=—~M k=m-—n+1
"‘iﬂ az*  ifm > n,
k=n—m
oz = (1.4b)
n—-—m-—|\
- Z akz" ifm < n.
k=m—n+1
Then | |
N Fu(z) = 3/lz) = l/*(2) + 1) + 1(2) (1.5)
4




The idea of the CI method is to first approximate the analytic function f* on 9D
by considering an infinite-dimensional space Vim, in which a best approximation can be
found exactly, then derive from this a near-best approximation R/ to F on I.. Let
Vimn be the set of functions that can be written with real coefficients in the form

#z) = i dkz"/i exzk,
k=-—00 k=0

where the terms of negative degree in the numerator converge to a bounded analytic
function in |z] > 1 and the denominator has no zeros in D{JAD . Let H be the real
symmetric Hankel matrix

Gm—-n+l GBm-_nt2 °°° an

Gm—n+2
H = . .

0

(A Hankel matrix is a matrix with a;; = a};4; .} Let

amM

H=UAUT

be a real orthogonal cigenvalue decomposition of /I — i.e. U, A are square real matrices
with A = diag(\1,...,AMtn—m) and U is orthogonal (UT = U~'). We assume the
eigenvalues are ordered by absolute magnitude: [N 2> {ha| 2> -+ 2> Npgpn—m|. (If H
had complex coeflicients it would become clear that a singular value decomposilon rather
than an cigenvalue decomposition is most appropriate, but since /{ is real symmetric, the
two are the same here except for the possibility of negative signs.) Let A abbreviale A4t
and let {uy,...,up4n-m)T be the corresponding right cigenvector, namely the (n + 1)st
column of U . The following result was proved by Carathéodory and I'cjér in 1911 for the
polynomial case n = 0 [5], extended to rational approximation by Takagi in 1924 [37],
and genceralized further by Adamjan, Arov, and Krein in 1971 [1]. A presentation and

partial proof can be found in [41]. A full discussion of degencrate cases will be given in
(19].

Theorem 1. f* has a unique best approximation #* on AD out of i’m,. , which
is given by
It =7 =), (1.8a)
where

M U1 + ... +uM+ﬂ_sz+n—m—l

uM+n_m+.,.+ul2M+ﬂ—m—l'

b(z) = Xz (1.6b)

The error is
I/* = #llap = A,

and the error curve (f* — 7°) (D) is a perfect circle about the origin whose winding
number is m+n+'1 il | \a] > [N\ > Nnya|- 8 '
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The function b is X\ times a finite Blaschke product, which is why f+ —#* maps

dD onto a circle, and the oplimality of #* for the complex approximation problem can
be seen to follow from this by Rouché’s thcorem. Now this optimality is not of use to us.
However, let us transplant to I, by defining

R(z) = %[?'(z) +7(z7Y) + f2(2), (1.70)
or by (1.5) and (1.6a), _
R(z) = 3 /l2) ~ b(2) — =) (1.7)
Then by (1.5) again,
Fp(z) — R(x) = Re b(2), (1.8)

and if b has winding number m +n + 1, it follows that Fas ~ R equioscillates on [, at
m+n+2 points € =29 > Ty > 0 D Tymynyl = —€:

\Fae = Rllr, = N,
(1.9)
(Fum =~ R)(zj) = (-1F\

If R belonged to Viun , this equioscillation would imply R = R* and I\l = E*, and we
would have solved our original approximation problem (for F)s ) exactly. Unfortunately,
this is in gencral not the case. (The main exception occurs when M = m + 1, and
this gives risc to some of the examples of Achieser, Talbot, and others mentioned in the
Introduction.) But the key to the CF method is that for smooth functions F, R turns
out to be very close lo V,,p .

Let q=37_, ;2% denote the normalized denominator of 7* — the polynomial of
degree dq < n with constant term €y = 1 whose zeros are the finite poles of 7° lying
outside 4D . Define

Q(z) = q(Z)q(Z"‘)/T, (1.10)

where 7 is the scalar ¢(7)q(—17), inserted to make Q(z) have constant term 1. Note that
Q(z) = |a(2)|2/r > 0 ou I.. Now since #* € Vjpn,

I*(3) = bz) = 7() = O(z""%9) a8 2 oo,
hence since 3¢ < n and fur = [+ = O(z™"™),
fm(z) = b(z) = O(2™29)  as z — co. (t.11)

Let us consider the Laurent scries with respect to 3D of the product

fZ(z)Q(z) = %[[M(z) - b(z) - b(z"‘)]q(z)q(z"')/r. (1.12)

6




By (1.11) and the definition of ¢, [fm(2) — 8(2)]a(z)q(z~")/7 must be analytic outside
dD except for a pole of order at most m at oo, and thercfore all terms of order greater

than m in the Laurent series of (1.12) are due to b(z~')g(z)g(z~!)/7. By symmetry, all
terms of order less than —m are due to b(2)q(2)q(z~")/7. Hence, if we define

. M+n .
b(z) = b(z)a(=)al="") /T = Y bust, (1.13a)
k=—oc0
= Mff ez, B(2) = b(2) ~ b (2), (1.13b)
k=—m

then the function
Pi(z) = ;[fM(z)q(z)q(z-‘)/r =57 (21 - if(z-')]

is a polynomial of degrce m in z. If we further set

RS (z) = ’;_‘(%), BR(z) = %[5"(2) + i;"(z-')], (1.14a)
then we obtain _ BR(z)
hia) — (g z .
hence ,
R(z)Q(z) = R Q(z) + O(Tmsr(2)). (1.15)

We will call Rif € Vnn the type | or Machly type CI' approximation of F', because
as in Maehly’s generalization of Padé approximation (cf. [6], p. 118 and [17]), truncation of
higher-order terms in R is done after multiplying through by the denominator @ . There
is a second, probably superior way to truncate R, namely by using a Chcbyshev-Padé
kind of approximation with fixed denominator @ . That is, one may take the type 2 or
Padé type CF approximant as

Pz(z) .
R (z) = 1.16a
2 ( ) Q(Z), ( )
with P; defined by the condition

fe(z) = R§/(2) + O(Tms1(2))- (1.165)

One could go further, in complete analogy with the Chebyshev-1’adé approximation defined
by Gragg, and define a third type of CF approximation by permitting the denominator of
R¢! to be free as well as the numerator. However, one might then end up with a fraction
having a pole on I, . For this reason, and on the basis of numerical experiments and the
analogy with the Chebyshev-Padé situation, we believe that R;’ is the best of these three
possibilities, and from now on we will drop the subscripts and assume R/ = R;’ .

7
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To obtain the polynomial P (= P,) satislying (1.16), one procceds as follows. Let
¢, Bk, and 7 denote the kth Chebyshev coellicients of 2(z), P(z), and 1/Q(z),
respectively. Then the coeflicients {8«} satisfy the Toeplitz system of equa.tions

0 M o Tem\ [ Bm Em
N \ . :
SN, A =2 & | (1.17).
nopc :
T2m .. TN 70 Bm Cm
Since 1/Q(z) > 0 on [, the infinite symmetric Toeplitz matrix (v)i—;|)f5— o is known

to be positive definite [18], and hence the principal submatrix appearing in (1.17) is positive
definite also, hence nonsingular. Moreover, since this submatrix is symmetric ‘about its
anti-diagonal, a symmetric right-hand-side (¢x) leads to a symmetric solution (f), as
indicated in (1.17). Indced, in practice one may reduce (1.17) to a system of size m + 1
instead of 2m + 1. Consequently, P is always well defined by (1.16).

In summary, here is the real rational (type 2) CF approximation method. We have
indicated lour points at which a numerical implementation can naturally be based upon the
Fast Fourier Transform. For further information on uses of the FF'T in complex analysis,
see [22]. The FFT method indicated for the polynomial factorization of Step 4 is that
proposed in §3.2 of [22]; see also [41].

Step 1. Given F, find its Chebyshev cocflicients ag,...,ap for some large M (FFT).

Step 2. Construct the Ilankel matrix H and find its n + 1 st eigenvalue (in absolute
value) and eigenvector.

Step 3. [Find the Laurent serics on the circle of the Blaschke product b(z) defined
by (1.6b) (FF'T). Subtract this plus its conjugate from fum(z) to obtain the
Chebyshev coellicients {¢x} for R(z) by (1.7b).

Step 4. [Factor the denominator of (1.6b) to obtain the polynomial q(z) and construct
Q(z) from (1.10) (FFT). Find the Chebyshev coellicients {7k} for 1/Q(z) (FI'T).

Step 5. Determine the polynomial P(z) satisfying (1.16) by solving (1.17), and dcfine
R =P/Q.

Step 6. To get a bound on Ef —E* , examine how close the ervor curve of R°f cones
to equioscillating.

Remark. This somewhat obscurc construction of R°f can be made much more

transparent in the case m > n. The theory of complex CF approximation shows that #*
in Theorem 1 is close to Vn, and for m > n, (1.7a) then implies that R is close to
Vmn also.




2. ASYMPTOTIC RESULTS FOR SMALL INTERVALS

The basis of our results for small intervals is the theory worked out in [41] for complex
approximalion on small disks. For these results a normality assumption is needed. Let F
be given, and let M > 3m + 2n + 2 be a fixed integer.

Assumption A. The M th derivative of F(z) exists and is Lipschitz continuous at
z = 0. Morcover, il F(z)= E,I‘":o arzk + O(zM*!), with o =0 for k<0, then

Am—n41 Am—n42 v am
A —n42 :
det . . # 0.
. A 4n-2
Qm e Am+n—2 Ampn-i

Equivalently, the Padé approximation of F of type (m,n) has a full n [inite poles—see
[23], Thms. 7.5¢-f and [16], §3. '

The nonvanishing of this Hankel determinant is a standard assumption that appears
also, for example, in [412], [43], and [31, p. 170]. TFor many functions, including €*, it is
satisfied for all (m,n).

Here is the main result from (11] that we require:

Theorem 2. Let I’ satisly Assumption A, and for cach ¢ > 0, let ¥* be the
extended best approximation in Vi, of the function f+ defined by (L.4@). Then for
all sufficiently small ¢, b= f* —~ 7" has winding number exactly m+n+1 on 9D, it
approximates a monomial according to .

(S* =7)2) = X" 1L+ O(e) (2.1)

uniformly on 9D, and its Laurent coeflicients on dD satisfy
b = [O(e)]?m+2n+2-k VE<m+n+1 (2.2a)
uniformly in k. In addition, Lhe cocflicients of the denominator g of 7 satisfly f
&r = 0(c) ' (0 <k < ) (2.2b)

Proof. 1t can be seen that as € =0, {ar} and {ax} are related by
ar = oy 2 TR E 4 O(el*I+T) -M<k<M
(cf. [21], Lemma 3.3), hence since ax =0 for £ < 0,

ar = o2 kek L O(Ft) M <k M. (2.3)

Now if the O(c**!) term were zcro, the extended approximation preblem for f* would
be that of approximating 3o, ax2!~*(c2)*, and for this the theory of [41] applies. From

9




Lemmas 4.1, 4.3 and 4.4 of {11] one would obtain (2.2b), (2.2a), and (2.1), respectively,
on the basis of Assumption A. In fact the term O(c¥*') is not zero, but it is of size Of(e)
relative to the terms just considered. This is enough to make the argument:s of [11] still
go through; we omit the details. In particular, Assumption A and (2.3) imply that for all
sufficiently small €, the corresponding Hankel matrix made up of coeflicients a; will also
have nonzero determinant. g

We will need a lemma on the behavior of the denominators of R¢f and R*. Let us
write

RS =P[Q, R =P/Q,

where P and P* are polynomials ol degree at most m, and @ and Q" are polynomials
of degree at most n with constant terms 1.

Lemma 3 (cf. [41], Lemma 6.1). As ¢ = 0,

Q =1+ O(e), (2.1a)
Q" =1+ 0O(e), (2.4b)

and hence
QQ" =1+ 0(¢) (2.4¢)

uniformly on I, .

Proof. Equation (2.1a) follows from (2.28). LEquation (2.1b) is a corollary of the
known fact [7,43] thal as ¢ — 0 , R* approaches cocllicientwise the Padé approximant
RP € Vipn, whose normalized denominator, having coefficients independent of ¢, ob-
viously satisfies QP = | + O(¢) uniformly on I, as ¢ = 0 . (In lact [7] and [43] show
R* — RP for [0,c], not [—¢,¢]. However, C. Chui of [7] assures us that the result also
holds for the latter problem (private communication, September 1981).) g

We now show that from Theorem 2 it follows that F — R/ cquioscillates at m+n+2
points on I, to within O(™*27+3) Lot {2T} be the set of (2m + 2n + 2) th roots of
unity on @D*, and let {:z:JT} be the corresponding set of Chebyshev abscissae for I,

T

— T
T, =€ Rez:J .

Theorem 4. Let F satisfy Asssmption A, and for each ¢ > 0, let R/ be its
CF approximation out of V,,,, . Then for all sulliciently small ¢, there is a set of points

€E=1To > Ty > ' > Impntt = —¢ salislying
T, = zf(l + O(c)) (2.5)
at which
NF = R\ = sgn N(—1) (F = R )(z,) = O(*m 2 +3), (2.6)

Proof. Let {z;} be the set of m + n + 2 points on AD* at which f* —#" is
real, numbered in ¢ounterclockwise order from 29 = 1 to zmyn+1 = -1, and take

10




z; = ¢ Rez; . The bound (2.5) lollows from (2.1). By (1.9), Fa — It cxactly equioscillates
on the set {z;} with error [\|, so to prove (2.6), it is cnough to show

IF = Fagl] = O(¥m+2m+3) (27)

and
[li2 — R¥T)| = O(3m+3n+3), (2.8)

The first bound follows from the Lipschitz continuity statement of Assumption A. To
establish (2.8), we observe that from (1.13a) and (2.2a,b), we have

b = [O(¢)]2mF2nt2-k VE<m+1.

This implies by (1.135),
(;R - 0(€3m+2n+3).

h From this and (1.14) and (2.4a) it follows that the analog of (2.8) holds for type 1 CF
' approximation:
IR - R|| = O(>m+?mtY). (2.9)

Now B° has terms only of degrece < —m — 1, each of order O(e3™+27+3), and from
(1.10) and (2.2b) it is straightforward to sce further that the Chebyshev coeflicients of
1/Q(z) satisly : -

' I = [O(Q)F V.

From these facts and (1.14) it follows that the degree-m part of the Chebyshev series of
2 — 125 has magnitude O(3™+27+1) | In other words, if the 8 -cocllicient vector for Py
is inserted in the lefl hand side of-(1.17), then that system is satisfied up to an crror of
magnitude O(*™+2*+4) . Bul as ¢ — 0 , the matrix in (1.17) approaches the identity,
so it follows that the coeflicients of [’ agree wilth those of P up to O(e?™*+27+1). By a
final application of (2.4a), this implies

“Rif _ Rcf" — O(€8m+2n+4)

and with (2.9} this yields (2.8). §

Thus Lhe error curve of R®f equioscillates up to O(e3™+2"+3) . By the de la Vallée
Poussin theorem for rational approximation (31, Thm. 98], this implies

Corollary. As ¢ —+ 0

“F - RcI“ _ “[" _ Ro" = 0(€3m+2n+3)

and
lx‘ - "F _ Ro" — 0(£3m+21\+3). 1
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We wish to show further that ||Rf — R*|| = O(e*™+2"+3). Now by definition
(|1F = R*|| < ||FF— ReT)}, so (2.6) implies that at the m +n + 2 points {z,;}, R - R
must satisfly an alternating sequence of coustraints

—sgn M= 1J(R - R*)(z;) < m, (2.10)

where 7 = O(e3™+2"+3) | Does this imply that R/~ R* is small? In fact it does, and this
question was taken up direclly in the paper on rational approximation on small intervals
by Machly and Witzgall [30, Lemma 4.6]. Iiowever, for our needs (2.10) can be reduced

to a similar set of constraints on a polynomial instead of a rational function, which will

be casier to deal with. Let us write
P P PQ* - P*Q
RY —R* = — - = —,
QR @ Q"

and let S denote I’Q* — P*Q, a polynomial of degree at most m + n. Then by (2.4c),

R — R* = 5(1 + O(¢)) (2.11)
uniformly on /I, as € — 0 . Thercfore (2.10) leads to the sequence of m+n+2 constraints
—sgn \(—1YS(z;) < n : (2.12) i

for some new n = O(3™+27+3) | We want to deduce that ||S|| = O(e3™+2n+3),

This is a commonly occurring problem in approximation theoretic proofs. If {z;} :
were a fixed set of points (i.c. not dependent on ¢), then the argument that would be
required is the key step in proofs of strong uniqueness or Lipschitz continuity for poly-
nomial Chebyshev approximation. Essenlially the same reasoning for this has appeared
in (at least) papers of Freud {15], Machly and Witzgall [29], and Cline [8); Machly and
Witzgall even give a ligure illustraling (2.12) graphically. For a general discussion see [6].
In our application the near-alternation points are not fixed, but by (2.5) they are close
to Chebyshev abscissae for small ¢, hence uniformly separated from cach other. This
uniform scparation is what is needed to make the argument go through, and Lhe same is
the case for applications to strong uniqueness and Lipschitz continuity [11,24].

Lemma 5 (¢f. [21], Thm 2.1). Let S(z) be a real polynomial of dcgree at most p
on I.. Suppose there exist p+ 2 points € > 2o > 2y > +++ > z,441 > —€ al which

(—1)S(z;) < n (2.13)

for some n > 0, and suppose thal z; = ccos¢; with

jx 6
o < 2.14
|¢’ p+1| = p2p+1) (@.14)
for some § < |. Then 2
isi < Bl (2.15) _

: |
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Proof. S(ecos¢) is a trigonometric polynomial of degree u in ¢, so by Bernstein's

incquality [6, p. 91], onc has :
dS(ecos )

< .
% | S uiisi
If {z}'} are the Chebyshev points z}' = ecos{jn/(u+ 1)}, then this bound together with
(2.13) and (2.14) implies
(-1Y8(zf) < & , (2.16)
where
ey S8
2u+1°

Now according to a computation of Cline in [8}, §4, (2.16) implies

ISl < (20 + 1) (2.17)
Therefore 85|l
< — | =
It < 2w+ )(n+ L) = 2w+ ) + sl

hence (2.15). §
Lemma 5 pr‘ovides all that is needed to prove our first main theorem:

Theorem 6. Let F satisfy Assumption A, and for cach € > 0 let R/ and R* be
its CI' and Chebyshev approximations in Vpn . Then as € - 0, '

”Rcf - Rt” — 0(€3m+2"+3)-
Proof. Applying Lemma 5 to (2.12) with g =m + n gives
”S“ —_ O(€3m+2n+3).

The result follows from (2.11).

Together with (2.8) Theorem 6 implies
|R* — R|| = O(e*™+2+3), (2.18)

We can interpret this as a statement about the gcometry of optimal error curves, analogous g
to the theorcms in [10] and [41] showing that error curves in complex Chebyshev ap-
proximation are close to perfect circles:

Theorem 7. Let F satisfly Assumption A. Then for all sufficiently small €, there
exists a function b(z) that is a constant multiple of a finite Blaschke product, is analytic
in 1 < |z| < oo except for at most n poles, and has winding number m+n+1 on 9D,

satislying
I(F = R*)(z) - Re b(2)[| = O(>™+2"+2).

13




Proof. Follows from (1.8), (2.7), and (2.18). g

Theorems 6 and 7 are the extensions to rational approximation of results given in
Theorem 3.4 of {21]. Theorem 3.5 of that paper also proves analogous estimates for m —
oo on a fixed interval, but we have not extended these results.

If I satisifes Assumption A, then ||[FF — R*|| has size O(c™*"*!) but not o(e™tm+1)
as € — 0 . Relative to this scale, therefore, our results have strength O(e2™+n+2), It
appears that these orders are best possible, except that in the case n = 0, a certain
“bonus” cancclilation makes it possible to increase 3m +3 to 3m + 4 in Theorems 6 and
7 (but not in the estimate on |\| in the corollary to Theorem 4). See the proof of Lemma
3.2 in {21] for details.

14
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3. NUMERICAL EXAMPLES

The CF method is not difficult to implement numerically, and the techniques we have
used are described in §7 of [41]. In outline, we rely heavily on the Fast Fourier Transform
as indicated here at the end of §1, and use EISPACK routines based on Sturm sequencing
for the eigenanalysis of Step 2. The bottleneck is the eigenvalue computation, which takes
time 0(M3) , for unforlunately no way is known to take advantage of the Ilankel structure
of H . Idcally one wants M to be large enough so that the Chebyshev coeflicients a; for
k > M are ncgligible, hence Fy¢ == F . For most of the examples considered below, such
as those involving e*, this is achieved with M = 35, leading to computation times on the
order of 0.1 secs. on our IBM 370/168. With FF(z) = |z|, on the other hand, M = 120
is only barely large enough to get aprroximations with m,n < 2 accurately, and the
computation time increases to 2 secs. Thus the CF method is nol only more accurate, but
also much faster if the function to be approximated is smooth. For certain high-precision
numbers below we have resorted to quadruple precision.

In general the CF method will yield an approximation satisfying

I\~ E*,
and by the de la Vallée Poussin result one has

B, < B* < EY, (3.1)
where
Bidin = min|(F — R<)(z,)]

with the minimum taken over that set of m + n + 2 nearly alternating points which
maximizes its valuc. In our experiments RS/ and \ were computed to close to machine
precision, and by means of a minimization routine ("'MIN, by Richard Brent), E<f and
Efnfin were also found to this accuracy (Step 6). The quantity not so precisely known
is E*, for we do not have a high-accuracy rational Chebyshev approximation routine at
hand. Therefore in what follows we report |X\| rather than E* .

As a first example, let us give more details related to e¢*. Table 2 shows the cigenvalue
IA] in approximation on- [—1,1] for 0 < m,n < 3. Each digit known to agree with the
corresponding digit of E* after both are rounded has been underlined. In most cases
this knowledge is based on (3.1). The agreement is excellent, and we belicve that it will
get steadily betler as m,n — oo in any fashion. (The table leaves some doubt as to
whether this is Lrue for, say, m = 0 and n — oo, but lurther experiments show that
by type (0,9), five significant digits can be underlined, and the number is growing with
n.) This example relates to a conjecture of Meinardus (31, p. 168] which proposes that

as m,n — oo, :
i (ef) = m!n!
‘mal® I gmtn(m 4 n) (m + 0+ 1)

(1 + o(1)). (3.2)
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m=0 m=1 ' m=2
n=0 }__._1_961(-0) i._z_8_7994(—1) 4.5017 38776(-2)
n=1 2. 1724(-1) _2___.=_O_‘_&982(-2) L____7_§_9_Q 66755(-3)
n=2 gﬁZSS(-Z) liQHOU(-B) 8=_§_§£ 91075(-5)
n=3 2.5235(-3) ;g3_9_861(—4) 4.2766 46704(-6)

corresponding digits of E* , after rounding.

key proofs would be enough to settle the issue:
(i) M= E;.(1+0(1)) as m,n — oo,

(ii} |M| satisfies (3.2) as m,n = o0o.

be very intcresting to know that asymptotically, best approximation errors agree with the

this conjecture with exact best approximation errors for m,n < 3 is about as close as in
the real case. The disappecarance of the power of 2 is natural in the light of (2.3).

18
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At this writing the conjecture is unproved, but it is known to be valid up to a constant
factor [4,33] of less than 40. The double underlinings in Table 2 mark digits where (3.2)
agrees with |\}, and it is evident that |X\| is much closer to E* than (3.2) is. This
suggests Lthat it might be possible to resolve the Meinardus conjecture by means of the CF
method. (Chebyshev-Padé approximation, it turns out, is not strong enough [17).) Two

Unfortunatcly, these claims are not at all easy to establish, and the Meinardus conjecture
will probably be proved true before long by some simpler technique. Nevertheless, it would

cigenvalues of an infinite Hankel matrix of Chebyshev coellicients.
Incidentally, we conjecture that for the problem of complex approximalion of e* on

the unit disk, formula (3.2) holds with the factor 2™*" removed. The best approximation
errors computed in [11], Table 3 by the complex CF method show that the agreement of

m=3
_5_.5283 70108 _7_1194(.—3)
1.3461 23369 20018(-4)

4.3991 63371 96896 (=6)

1.5506 69053 97117(-7)

Table 2. The eigenvalue !XI in CF approximation to e’ on [—1,1__\
for various (m,n) . Underlined digits are known to agree with
Doubly underlined

1 digits agree with the conjectured limit formula (3.2) of Meinardus.




Table 3 shows some results of the CF method for functions besides e*. In each
case |X|-is given for approximation of type {0,1), (1,1) and (2,1) on [-1,1}, with
underlinings as before. Evidently CF approximation really works, even for as low a degree
as (1,1). It is apparent that it performs relatively poorly for |z|, and this is not surprising
in view of the nondifferentiability of this function.

Now let us confirm that the asymptotic orders of accuracy predicted in Section 2 -
are valid, and sharp. Table 4 shows |\[ and F¢f — E¢._ in (1,1) approximation of %

min
on I, for ¢ = 1,%,...,7’5. With each factor of 2 reduction in e, we expect |\ to

decrcase by approximately 2m*t"+! =8 and E¢/ — E¥_ to decrease by approximately

min
23m+2n+3 = 956, The table confirms these predictions. Such asymptotic behavior,

F(x) 0,1 D@L Al (2,0
Pxf 4.483(-1) 4.4827(~1) 1.1359(~1)
x° 5.397(-1) 5.3979(-1) 1.9257¢-1)
V1.1 - x 2.238(-1) 1.6331(-2) 2.9709(-3)
arctan(x) 8.312(-1) 4.7889(-2) 4.7889(-2)
1/T (x+1) 4.061(~1) 1.1955(-1) 2.1045 75498(-2)
. " 2.172(~1) 2.0970(-2) 1.7890 66755(~3)
log 2 1.598(-1) 8.6079 41336(~4)  4.9591 1561392(-5)

Table 3. The eigenvalue |A] 1in CF approximation of types
(0,1), (1,1) and (2,1) to various functions on C—I,l] .
Underlined digits are known to agree with corresponding digits
of E*,
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e Ratio 2ot Ratio
1 2.097(-2) 2.03(-6)

1/2 2.605(-3) 8.04 9.18(-9) 221
1/4 3.255(=4) 8.00 3.73(-11) 246
1/8 4.069(-5) 8.00 1.47(-13) 253
1/16 5.086(-6) 8.00 5.77(~16) 255

Table 4. Type (1,1) approximation of e on [-e,e] for

various € .

however, is dependent on the smoothness of F. With F(z) = |z|, for example, cutting
¢ in hall is equivalent to dividing F by 2, and thercfore the cffcet will be to cut A and
E</ — E<L cxactly in half, no matter what m and n are. Thus for F(z) = |z| there is
nothing to be gained by shrinking the interval, although the CF method still improves if
m and n are increased. ‘

Our final example is associated with some further conjectures about asymptotic
degree of approximation. In a paper of Cody, Meinardus, and Varga [9], the problem of
approximaling e~* on the semi-infinite interval [0,00) was studied. They proved that
in rational approximation of type (0,n) or (n,n), thc error decreases geometrically as
n — oo, but did not determine an asymplotic rate of decrease. For approximation of type
(0,n), they gave numerical results that suggested the limiting behavior

lim (Ea,‘)l/" =

1
n —+00 3

and this cquality was later proved valid by A. Schiinhngc [35). For approximation of type
(n,n), their numerical results reported for n < 14 suggest to us

18
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E, 1
. e AU Hatlat+l
,.li.moo(”nn) = lim Ei, — 9.28.. (3:3)

and a limit 1/9 has also been conjectured. But no result of this kind has been established.
Despite appearances, this problem can be approached by the CF method. The

function
11—z

142z

maps [0, 0o} bijcctively onto [—1,1], inducing a one-to-one correspondence between ra-
tional functions R(¢) and R(z) in V,,. Under this transplantation an equioscillating
curve on one domain maps to an equioscillating curve on the other, and as a consequence
it can be shown that the given problem is equivalent to the problem of approximating

F(I) —_ e(z—l)/(z-ﬁ-l)

on [-1,1], which can he treated by the CF method. (For justification see the thcory
1 of [3]; this transplantation only works when m = n.) Here F is C* on [-1,1], but
anaivt’c only on (—1,1], so its Chebyshev series decreases faster than any polynomial
but not geometrically. We took M == 200, leading to truncated terms |ax| < 10723 for
£ > M, and ealculated eigenvalues in quadruple precision on the IBM 370/168. This gave
us \,41 for 0 < n < 18 accurate to many places, and for n > 5, |\| agrees with the

N LA
Vit %

-

reported by Cody, Meinardus and Varga to all four places that they give. We
have little doubt that |\ = E*(1 + o(1)) as n — o0.
On the basis of these numbers. we conjecture

'xn+ll

A 1
el = oy

for some constants A =~ .656, B = 9.28903. The evidence is summarized in Table 5.
Remarkably, in the course of this writing Schonhage [36] has independently conjectured

that (3.3) approaches a limit

1
9.28547°

3
5(2 - V3~

In fact he proves that liminf(E},)!/” is at least two-thirds of this value. The closencss
but inequality of these two conjectured limits is striking.
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10

11

12

13

14

15

16

17

18

Richardson extrapolant

Ratio
iiﬁill ‘ P = b‘r1/>‘n+1‘ °n * %(on-'pn/z)
.560172 (-0)
.668057 (-1) 8.38508
. 735558 (-2) 9.08232 9.31473
.799452 (-3) 9.20078
.865210 (=-4) 9.23998 9.29253
.934574 (-5) 9.25779
.100845 (-5) 9.26740 9.28961
.108750 (-6) 9.27316
2117227 (=7) 9.27689 9.28920
.126329 (-8) 9.27944
.136112 (-9) 9.28127 9.28910.
.146631 (-10) 9.28262
.157946 (-11) 9.28364 9.28905
.170119 (-12) 9.28444
.183217 (-13) 9.28507 9.28904
.197314 (-14) 9.28558
.212485 (-15) 9.28600 9.28904
.228815 (-16) 9.28635
.246392 (-17) 9.28664 9.28903

Table 5. Eigenvalues [R] in (n,n) approximation of expC§i%)

on [71,1] for various n . This is equivalent to approximation

of e on (0,2) . Digits agreeing with the values of E* given
by Cody, Meinardus, and Varga [9'] have been underlined. (The
results of [ 9] were given to four places and for n<1l4 only.)

The ratio appears to approach a limiting value 9.28903....
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