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0. INTRODUCTION

The purpose of this paper is to describe and analyze a new analytical method for near-
best rational Chebyshev approximation on an interval, which we call the Carath~odory-

Fej6r method, that is based on an eigenvalue analysis of a Kankel matrix of Chebyshev
coefficients. What is remarkable about the CF method is its extraordinary degree or
optimality in approximating many smooth functions. Let R" be the best (Chebyshev).
approximation of rational type (m, n) on [-1, 1] to a continuous function F(z), let R'f

be the corresponding CF approximation, and let E' = ]IF - R*IIo and E'f = F -

RcfI1. be the associated errors. Then Table 1 shows how close Ecf and E" turn out to

be for the case F(x) = e'.

(m,n) E* Ecf - E* (approx.)

(0,0) . 210
- 4

(1,1) 2.0970(-2) 10 - 6

(2,2) 8.6900(-5) 10- 12

(3,3) 1.5507(-7) 10-20

(4,4) 1.5381(-10) < 10- 2 7

Table 1. Errors in best and CF approximation of eX on

by rational functions of type (n,n) , 0 < n < 4

Such extremely strong agreement demands explanation. In this paper it is shown that if a
smooth function F(x) satisfying a simple normality condition is approximated on [-E, e,

then IIR ' - II = O(C3,+2 " +3) as c - 0 (Thin. 6). As a corollary it is also shown
that to the same order as c -- 0 , F - R' equals the real part of an (m + n + 1) -winding

Blaschke product on the complex unit circle (Thin. 7).

Our research on CF approximation began with the study of error curves in approxima-

tion of analytic fanctions on the complex unit disk. If r'(z) is the best approximation

of type (m,n) to "(z) on Izi < 1, it turns out that the error curve (f - r)(zI "- I)

i t .. . ..- ... . ... .. ..1



often approximates extremely closely a perfcct circle about t he origin or winding nqinber

m + n + 1. This phenomenon for polynomial 'approximation was discussed by Trefethen
in [401, where by an analysis based on the Carath6odory-Fej6r theorem [2,5], it was shown
that in best approximation on the disk Izi € E, the error curve is circular to O(IE2m+ 3 ) as
S--* 0 .By means of an extension of the CF theorem due originally to Takagi [19,371 and

generalized by Adamjan, Arov, and Krein [1], this result was extended to O(C 2 m+ 2n+3 )

for rational approximation in [41]. At the same time Gutknecht found that the CF tech-
nique could be transplanted by the Joukowski map x = 2(z+ z- 1 ) from IzI = I to x E
[-1, 11, and the resulting real CF method was analyzed for polynomial approximation in
[21]. The present paper completes this series by presenting and analyzing asymptotically
a CF method for real, rational approximation.

The Joukowski transplantation has previously been applied for near-best real ap-
proximation by Frankel, Gragg, and Johnson [14,17], who derived a Chebyshev-Pad6 ap-
proximation on [-1, 1] based on Pad6 expansions at x = 0. This Chebyshev-Pad6 ap-
proximation is related to, but not the same as, the earlier rational economization fraction
of Maehly [6, p. 178; 171. Our fraction might be called the Chebyshev-CF approximant,

for it fits directly into the framework of Gragg and his colleagues. Indeed, correspond-
ing to their Fourier-Pad6 and Laurent-Pad6 approximations, one can develop Fourier-CF
and Laurent-CF approximations for real periodic and complex meromorphic functions,
respectively. In general the CF approximations will be more complicated but, for smooth
functions, much closer to optinial.

The history of ideas connected with the real, rational CF method is long and confused.
Eigenvalues of Hlankel matrices were used half a century ago for estimating the error of
the best approximation and for solving certain special problems exactly by Bernstein,
Achieser, and Mirakyan; see [31, p. 166] and [2, App. 1) for references. The use of
such a device for near-best approximation was apparently first proposed by Darlington

in 1970 [10] for the real polynomial case, and the first (and only previous) extension to
rational near-best approximation is due to Lam and D. Elliott in 1972 -3 [12,27,28]. The
connection between the CF method and approximation on the disk was first pointed out
in the excellent dissertation of Ilollenhorst [25] (for the polynomial case), and this was
also the first work to contain error estimates. Further related contributions have also
been made by C. Clenshaw, G. I. Elliott [13], A. Reddy, and A. TalboL [38,39]. One of
our own contributions in previous papers [21,40,41] has been to connect CF methods with
the Carath6odory-Fej6r theory and the related results of Takagi and Adamjan, Arov, and
Krein. This makes it possible to fill various theoretical gaps. A second innovation in our
papers has been that by means of arguments related to strong uniqueness, we apply results
of the CF method to get estimates on the behavior of the best approximation itself. In
our view, the CF idea is not just a method for generating near-best approximations, but a
theory that should reveal hitherto unrecognized properties of real and complex Chebyshev

approximation and of the relation between the two.
The present paper also differs from the previous work of Lam and Elliott in two

practical ways. First, our method applies for arbitrary m and n, rather than just m >
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n; the idea behind this extension is derived from an example by Talbot [381. Second, its

asymptotic order or accuracy on small intervals is O(c3
-+

2" +3 ) rather than (it appears)
o(c2m+2n+3)

Our arguments proceed in two steps. First, one shows that the CF method yields an

error curve that nearly equioscillates (real case) or is nearly circular (complex case); this

implies El - E* . Second, one shows by an argument related to strong uniqueness or

Lipschitz continuity or best approximations that this behavior further implies R !  R*

All of our estimates are asymptotic, pertaining only to the interval [-c,c] in the limit

f - 0. (Equivalently, one could consider increasingly smooth functions F(fx) on the
fixed interval [-t, 1] .) This is effectively the same limit considered in the past in various

papers on Chebyshev approximation, notably [29,34] for real polynomial, [7,20,43] for real
rational, [32] for complex polynomial, and [42] for complex rational approximation. Where

these papers obtain one term of an asymptotic expansion of the best approximation (two,

in the case or [341), the CF method gets many.
[lhe CF method and related ideas are currently attracting much attention in the

theories or digital filtering, control, and linear systems. This work has been mainly

stimulated by the papers of Adamjan, Arov, and Krein [1], and is being carried out by
(among others) M. Bettayeb, A. Bultheel, P. Dewilde, Y. Genin, S. Kung, and L. Silverman.

See the book by Kailath [26] for some references, and also [201.
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1. TIlE CARATI11ODORY-FJIMR METIIO()

Let the unit disk and circle be denoted D {z: Izj < l} and OD = {z - Izi 1)
let 6D + be the upper semicircle OD n{z: lmz > 0}, and let -- [-C, ]. Let II" ib,,
11 HaOD, etc. be the corre!sponding supremum norms, but let j" I be an abbreviation for
I" hi. •In what follows x will always denote a real and z a complex variable; upper case
letters will be used for functions of x and lower case for functions of z.

We begin with a real function F(x) that is continuous on 1. and with a pair of fixed
integers m, n > 0. Let V,, be the set of rational functions of type (rn, n) with real
coefficients, and let R*(x) denote the best approximation to F on 4. out of V,,,,,. ( R"
exists and is unique; see [21, [6], or [31].) For any finite M > 0, F possesses a partial
Chebyshev expansion

F(x) = Ft,,(x) + GM(X) = 'akrk(x!.) + Cm(x), (1.1)
k=O

with Tk denoting the k th Chebyshev polynomial, where the prime indicates that the
term with k = 0 should be multiplied by t. Here ok is defined by the inner product
[6, p. 1171

ak 2 c dx

Our fundamental transplantation is, the map

x(z) = e= e C(z + Z-1), (1.2)

a bijection of oD+ onto [4, which for x E [,, z E OD leads to the formula

T(=/ (k + zk). (1.3)

In particular, let us set a-k = ak and define

IM(Z) =kk M+Z M kZk (1.4a)

k=-M I=m-n+1

0" -a--zk -m n,

f(z) (1.4b)
- akZk if m < n.

k=rn-n+l

Then

2 2 f+(Z)+ f+(-(1.5)

4
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The idea of the CF method is to first approximate the analytic function f+ on OD
by considering an infinite-dimensiornal space V,,,, in which a best approximation can be
found exactly, then derive from this a near-best approximation R'f to F" on I,. Let
V,,,, be the set of functions that can be written with real coefficients in the form

i(z) = dkz k/ ekzk,

where the terms of negative degree in the numerator converge to a bounded analytic
function in Izi > I and the denominator has no zeros in DUoD. Let H be the real
symmetric [(ankel matrix

ai-,n+2 a.,2 m

( am

(A Hankel matrix is a matrix with ai-- = aj1+j.) Let

H = UAUT

be a real orthogonal eigenvalue decomposition of II - i.e. U , A are square real matrices
with A = diag(X,...,XM+,,_,n) and U is orthogonal (UT - Ut). We assume the
eigenvalues are ordered by absolute magnitude: lXtI > IX21 > ... > iX>+,, + -. (if L

had complex coefficients it would become clear that a singular value decompositon rather
than an eigenvalue decomposition is most appropriate, but since II is real symmetric, the
two are the same here except for the possibility of negative signs.) Let X abbreviate Xn+t
and let (ul,..., UM+,,)r be the corresponding right eigenvector, namely the (n + 1) st

column of U. The following result was proved by Carath6odory and Fej~r in 1911 for the
polynomial case n = 0 [51, extended to rational approximation by Takagi in 1924 [371,
and generalized further by Adamjan, Arov, and Krein in 1971 [1]. A presentation and

partial proof can be found in [411. A full discussion of degenerate cases will be given in
[191.

Theorem 1. f+ has a unique best approximation i" on OD out of which,,, which
is given by

f+ - F0 = b, (1.6a)

where

b(z) = XzM u + + UM ,_-ZM+ - n -  (1.6b)
UM+n-,n + + UtzM+n-M-

" .

The error is

If - i'l1a = IXI,
and the error curve (f+ - f*)(OD) is a perfect circle about the origin whose winding

number is m + n+1 if IXnI > IXI > IX+21. .
5



The runction b is X times a finite Blaschke product, which is why f+ - F* maps

OD onto a circle, and the optimality of' i* for the complex approximation problem can

be seen to follow from this by Rouch6's theorem. Now this optimality is not or use to us.

However, let us transplant to 4, by defining

!()= 2[i*(z) + P(z-1 ) + fo(z)], (l.7a)

or by (1.5) and (1.6a),

()= 2[fM(z) - b(z) - b(z-)]. (1.7b)

Then by (1.5) again,

Fm(x) - R(x) = Re b(z), (1.8)

and if b has winding number mi + n + I , it rollows that FM - 1? equioscillates on [4 at

m +n+2 points E=xo > xt >-.. > x,+,+ =-E:

lFPM - hll. = lxi,

(FM - R)(x,) = (-1)jX.

If h belonged to Vn, this equioscillation would imply I? - R* and lxi = E* , and we

would have solved our original approximation problem (ror FM ) exactly. Unfortunately,
this is in general not the case. (The main exception occurs when M = m + 1, and

this gives rise to some of the examples or Achieser, Talbot, and others mentioned in the
Introdiction.) But the key to the CF method is that for smooth functions F, 1R turns

out to be very close to Vn.

Let q = Z"-0 ezk denote the normalized denominator or * - the polynomial of

degree Oq < n with constant term ; = I whose zeros are the finite poles of i* lying

outside MD. Define

Q(=) q(z)q(z-)/Tr, (1.10)

where r is the scalar q(i)q(-i) , inserted to make Q(x) have constant term I . Note that
Q(x) = q(z)12/r > 0 on I.. Now since P E

f+(z) - b(z) = *(z) = O(zm - a q ) as z -. 00,

hence since Oq !_ n and fM - f+ -= O(z,-n)

fm(z) - b(z) = O(z - °a) as z , oo. (1.11)

Let us consider the Laurent series with respect to oD of the product

S[fM(z) - b(z) - b(z-')jq(z)q(z 1-)/r. (1.12)

6



By (1.11) and the definition or q, [fM(z) -. b(z)]q(z)q(z-')/r must be analytic outside

0D except for a pole of order at most m at cc, and therefore all terms of order greater
than m in the Laurent series of (1.12) are due to b(z-')q(z)q(z-')/,. By symmetry, all

terms of order less than -m are due to b(z)q(z)q(z-')/T. Hence, if we define

b(z) = b(z)q(z)q(z-')r = E z, (1.13a)
k=-oo

IT M+n k _T

= k b-(z) = b(z) - b(z), (I.13b)

then the function

P;(X) = '[fm(z)q(z)q(z1')/r - VT(z) - I(-)

is a polynomial of degree m in z. If we further set

ReP(x) (x), B'(x) = -[b(z) + b(z-), (1.14a)

then we obtain 1()= n(') R(z)
IQ((z + R (1.14b)

Q(z)
hence

R(x)Q(x) = R 1 Q(z) + O(T,(x)). (1.15)

We will call R'I E V,,, the type I or Machly type CF approximation of F, because

as in Machly's generalization of Pa(16 approximation (cf. [6], p. 118 and [17]), truncation of

higher-order terms in h is done after multiplying through by the denominator Q. There

is a second, probably superior way to truncate iU, namely by using a Chebyshev-PadA

kind of approximation with fixed denominator Q. That is, one may take the type 2 or

Pad type CF approximant as R()-_P 2 (z) "11a

R'f (x)1I 6a)2Q( :)'

with P2 defined by the condition

R(x) = Rt'(x) + O(T,+t(M). (.t6b)

One could go further, in complete analogy with the Chebyshev-Padil, approximation defined

by Gragg, and define a third type of CF approximation by permitting the denominator of

Rd! to be free as well as the numerator. However, one might then end up with a fraction

having a pole on [,. For this reason, and on the basis of numerical experiments and the

analogy with the Chebyshev-Pad6 situation, we believe that R1W is the best of these three

possibilities, and from now on we will drop the subscripts and assume Rf =R Rf

7



To obtain the polynomial P ( P2 ) satisfying (t.16), one proceeds as follows. Let
Ck, k, and 7 'denote the k th Chebyshev coefficients of il(x), P(z), and 1/Q(x),
respectively. Then the coefficients {ik} satisfy the Toeplitz system of equations

717
=o 2 .0 (1.17)

72m 71 .•0 O, 2,,

Since 1/Q(x) > 0 on I,, the infinite symmetric Toeplitz matrix ('7Ijj_-j)..__ is known
to be positive definite [18], and hence the principal submatrix appearing in (1.17) is positive
definite also, hence nonsingular. Moreover, since this submatrix is symmetric about its
anti-diagonal, a symmetric right-hand-side (Ek) leads to a symmetric solution (0k), as
indicated in (1.17). Indeed, in practice one may reduce (1.17) to a system of size m + I
instead of 2m + I . Consequently, P is always well defined by (1.16).

In summary, here is the real rational (type 2) CF approximation method. We have
indicated rour points at which a numerical implementation can naturally be based upon the
Fast Fourier Transform. For further information on uses of the FFT in complex analysis,
see [22]. The F FT method indicated for the polynomial factorization of Step 4 is that

proposed in §3.2 of [22]; see also [41].

Step 1. Given F, find its Chebyshev toefficients ao,..., am for some large M (FFT).

Step 2. Construct the lankel matrix II and find its n + 1 st eigenvalue (in absolute
value) and eigenvector.

Step 3. Find the Laurent series on the circle of the Blaschke product b(z) defined
by (l.6b) (FFT). Subtract this plus its conjugate from fM(z) to obtain the
Chebyshev coeficients {4} for !?(x) by (l.7b).

Step 4. Factor the denominator of (l.6b) to obtain the polynomial q(z) and construct
Q(x) from (1.10) (FFT). Find the Chebyshev coefficients {7k} for 1/Q(x) (PIT).

Step 5. Determine the polynomial P(x) satisfying (1.16) by solving (1.17), and define
Ref = P/Q.

Step 6. To get a bound on Edf - E*, examine how close the error curve of R ' f comes

to equioscillating.

Remark. This somewhat obscure construction of R f can be made much more
transparent in the case m > n. The theory or complex CF approximation shows that i*
in Theorem I is close to Vn,,, and for m > n, (1.7a) then implies that I? is close to
V,, also.

8



2. ASYMTI'OTIC RESULTS FOR SMALL INTERVALS

The basis or our results for small intervals is the theory worked out in [411 for complex

approximation on small disks. For these results a normality assumption is needed. Let F

be given, and let M > 3m + 2n + 2 be a fixed integer.

Assumption A. The M th derivative of F(x) exists and is Lipschitz continuous at

x = 0. Moreover, if F(x) = _,M=O ak? + O(ZM+I), with ak 0 for k < 0, then

a,,-+, am-n+2 *. an

a~m-n+2I

det , 0.
• avn+n-2

am " m+n-2 atn+n-

Equivalently, the Pad6 approximation of F of type (in, n) has a full n finite poles-see

123J, Thins. 7.5e- f and 1161, §3.

The nonvanishing of this Hlankel determinant is a standard assumption that appears

also, for example, in [12], [431, and [31, p. 1701. For many functions, including e', it is
satisfied for all (m, n).

Here is the main result from [41] that we require:

Theorem 2. Let F satisfy Assumption A, and for each c > 0, let i* be the

extended best approximatibn in Vn of the function f+ defined by (1.4a). Then for
all sufficiently small , b = f+ - P has winding number exactly m + n + I on CD, it

approximates a monomial according to

(f+ - i*)(z) = z"+n+'( + O(C)) (2.1)

uniformly on OD, and its Laurent coefficients on OD satisfy

bk = [O(W)]2m+2n+2-k V k < m + n + 1 (2.2a)

uniformly in k. In addition, the coefficients of the denominator q of F" satisfy

= 0(,) (0 < k < n). (2.2b)

Proof. It can be seen that as E --. 0 , {ak} and {ak} are related by

ak = alkI2 1 -lkl1k + O(cIk l+ 1) - M < k < M

(cf. [211, Lemma 3.3), hence since Ok = 0 for k < 0,

ak =----k 21-k + O(fk+l) - M < k < M. (2.3)

Now if the O(ck+l) term were zero, the extended approximation problem for f+ would
be that of approximating ,=o ak21-k(z)k, and for this the theory of [411 applies. From

9I



Lemmas 4.1, 1.3 and 4.4 of f41 i one would obtain (2.2b), (2.2a), and (2.1), respectively,
on the basis of Assumption A. In fact the term O0(k+I) is not zero, but it is of size O(c)
relative to the terms just considered. This is enough to make the arguments of [11J still
go through; we omit the details. In particular, Assumption A and (2.3) imply that for all
sulficiently small c , the corresponding Hankel matrix made up of coefficients ak will also
have nonzero determinant. 1

We will need a lemma on the behavior of the denominators of Rf! and R* . Let us
write

Re' = P/Q, R' = P-/Q*,

where P and P* are polynomials of degree at most m, and Q and Q* are polynomials
of degree at most n with constant terms 1.

Lemma 3 (cf. [411, Lemma 6.1). As c --+ 0,

Q = I + 0(c), (2.4la)

Q - I + O(C), (2.4b)

and hence

QQ" = I + O(C) (2.4c)

uniformly on 1,.

Proof. Equation (2.1a) follows from (2.2b) . Equation (2..Ib) is a corollary of the
known fact 17,13 that as c -- 0 , R* approaches coe[licientwise the Pade approximant
RP E V,,, , whose normalized denominator, having coefficients independent of C, ob-
viously satisfies QP = I + 0(() uniformly on 1, as c - 0 . (In fact [71 and [431 show
R* - RP for [0, cJ , not [-c, ] . lowever, C. Chui of [7] assures us that the result also
holds for the latter problem (private communication, September 1981).) 1

We now show that from Theorem 2 it follows that F-Rcf equioscillates at m+n+2
points on 1, to within 0(c3m+ 2n+ 3 ) . Let (zT} be the set of (2m + 2n + 2) th roots of

unity on (9D+ , and let {xT  be the corresponding set of Chebyshev abscissae for ,,

xT = c RezT.

Theorem 4. Let F satisfy Asssmption A, and for each c > 0, let Re! be its
CF approximation out of V,, n Then for all sufficicntly small c, there is a set of points
c = xo > xI > ... > x,+,+ -,E satisfying

Xj = XT(l + 0(C)) (2.5)

at which

[IF - Rf 1I - sgn (-I)'(F - Rcf)(x,) = O(ESm+2"+3). (2.6)

Proof. Let {z,} be the set of m + n + 2 points on OD + at which f+ - * is
real, numbered in counterclockwise order from zo 1 to z,+, +, = -1, and take

10
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x .  c Rez,. The bound (2.5) follows front (2..). fly (1.9), FM - 1' exactly equioscillates
on the set (zx} with error IXI , so to prove (2.6), it is enough to show

hIF - EMIl = O(( 3 m+ 2n+ 3) (2.7)

and

III - R l = o(e3m+ 2 "+3 ). (2.8)

The first bound follows from the Lipschitz continuity statement of Assumption A. To
establish (2.8), we observe that from (l.13a) and (2.2a, b), we have

bk = [o()i 2m+2 n+2-k V k < m + 1.

This implies by (1.13b),
O(f 3m+2n+

3 )"

From this and (1.14) and (2.4a) it follows that the analog or (2.8) holds ror type I CF

approximation:

fIR - RVil = o(Eam+2"+3) (2.9)

Now b has terms only of degree < -m - I, each of order o(Ea3 n+ 2 f+ 3 ), and from
(1.10) and (2.2b) it is straightforward to see further that the Chebyshev coefficients of

I/Q(x) satisfy

1 0k 1 (c)J)k V k.

From these facts and (1.14) it follows that the degree-in part or the Chebyshev series of

- RI? has riagnitude O(f3m+2',+4). In other words, if the fi -coefflcient vector for PI
is inserted in the left. hand side or(1.17), then that system is satisfied up to an error of

magnitude O(c3m+ 2 "+ 4 ). Bult as c -+ 0 , the matrix in (1.17) approaches the identity,
so it follows that the coefficients of P, agree with those of P tip to O(f 3m+2"+4). By a

final application or (2.4a), this implies

IIRcf _ n'ill = o(,3n +2n+ )

and with (2.9) this yields (2.8). 1

Thus the error curve of WIR equioscillates tip to O(, 3 "+ 2
n+

3). By the de la Vali~e

Poussin theorem for rational approximation [.31, Thin. 981, this implies

Corollary. As c -- 0

tIE - Ref 1- lIe - RII - O(C3 ,n + 2. + 3 )

and

IXi - ' lI -- O(c 3
lU+

2 n+ 3 ).

1



We wish to show further that IIR f - R*1 = O(f 3m+ 2
n+

3 ). Now by definition

II"' - lVII < III,'- Icflj , so (2.6) implies that at the m + n + 2 points {X} , Rcf - R*
inust satisfy an alternating sequence of constraints

- sgn \(-l)'( l 1 - R*)(z;) _ 1, (2.10)

where 77-- O(c 3 m+2 n+ 3 ). Does this imply that RcI-R * is small? In fact it does, and this
question was taken up directly in the paper on rational approximation on small intervals
by Machly and Witzgall [30, Lemma 4.61. however, for our needs (2.10) can be reduced
to a similar set of constraints on a polynomial instead of a rational function, which will
be easier to deal with. Let us write

p p* pQ. - *Q
R ef - R"= P-.= Q PQ

Q Q" QQ*
and let S denote PQ" - P*Q, a polynomial of degree at most m + n. Then by (2.4c),

Ref - R* = S(1 + 0(c)) (2.11)

uniformly on 4. as c - 0 . Therefore (2.10) leads to the sequence of m+n+2 constraints

-sgnX\(-l')S(xz) _< 27 (2.12)

for some new 7 = 0( 3m+ 2n+3 ). We want to deduce that IISIl - ((3,n+2-+3).
This is a commonly occurring problem in approximation theoretic proofs. If {x,}

were a fixed set of points (i.e. not dependent on c), then the argument that would be
required is the key step in proofs of strong uniqueness or Lipschitz continuity for poly-
nomial Chebyshev approximation. Essentially the same reasoning for this has appeared
in (at least) papers of Freud [15], Maelily and Witzgall [29], and Cline [8]; Maehly and
Witzgall even give a figure illustrating (2.12) graphically. For a general discussion see [61.
In our application the near-alternation points are not fixed, but by (2.5) they are close
to Chebyshev abscissae for small c , hence uniformly separated from each other. This
uniform separation is what is needed to make the argument go through, and the same is
the case for applications to strong uniqueness and Lipschitz continuity [11,241.

Lemma 5 (ci'. [211, Thin 2.1). Let S(z) be a real polynomial of degree at most I
on 4.. Suppose there exist p4 + 2 points c > zo > x, > ... > xA+j -c at which

(-l)' S(X) <5 7 (2.13)

for some ? 1 0, and suppose that xi = c cos Oj with

j (2+1) (2.14)

for some 6 < I. Then

II < (21A + 1) (.51 2 (2.15)

12



Proof. S(c cos 0) is a trigonometric polynomial of degree As in 4), so by Bernstein's

inequality [6, p. 911, one has
IdS(c cos ) < JosII.1SI d0 I

if {xT} are the Chebyshev points TJ = cos(jlr/(Iz+ 1)), then this bound together with

(2.13) and (2.14) implies

(-1)iS(XT) < i (2.16)

where

611S11
211 + f

Now according to a computation of Cline in [81, §4, (2.16) implies

IISII _ (21 + 1)'. (2.17)

Therefore

IlSll _< (21A + 1) (7 + 2 (2) + (21A + +61S11,

hence (2.15). *

Lemma 5 provides all that is needed to prove our first main theorem:

Theorem 6. Let F satisfy Assumption A, and for each E > 0 let Rcf and R* be

its CF and Chebyshev approximations in Vm, . Then as E -+ 0

IIRe1 - R*II = o(,3m+2+3).

Proof. Applying Lemma 5 to (2.12) with j = m + n gives

ISll- = o(I3"+2"+3).

The result follows from (2.11). 1

Together with (2.8) Theorem 6 implies

IIR* - R11 = 0(,3"+2n+3). (2.18)

We can interpret this as a statement about the geometry of optimal error curves, analogous
to the theorems in [401 and [411 showing that error curves in complex Chebyshev ap-

proximation are close to perfect circles:

Theorem 7. Let F satisfy Assumption A. Then for all sufficiently small c, there
exists a function b(z) that is a constant multiple of a finite Blaschke product, is analytic
in I < Izi < oo except for at most n poles, and has winding number m + n + I on OD,

satisfying

II(F - R')(x) - Re b(z)lI O(E 3 "+2"+ 3).

13



Proof. Follows from (1.8), (2.7), and (2.18). 1

Theorems 6 and 7 are the extensions to rational approximation of results given in

Theorem 3.4 or [21]. Theorem 3.5 of that paper also proves analogous estimates for m --

oo on a fixed interval, but we have not extended these results.

ir F satisires Assumption A, then JIF-R*1I has size O(c+n+l) but not o(tm+"+')

as c - 0 . Relative to this scale, therefore, our results have strength O(c2m+vt+ 2 ). It

appears that these orders are best possible, except that in the case n = 0, a certain

"bonus" cancellation makes it possible to increase 3m + 3 to 3m + 4 in Theorems 6 and

7 (but not in the estimate on iX[ in the corollary to Theorem 4). See the proor of Lemma

3.2 in [21] for details.

14



3. NUMERICAL EXAMPLES

The CF method is not difficult to implement numerically, and the techniques we have
used are described in §7 of 141J. In outline, we rely heavily on the Fast Fourier Transform
as indicated here at the end of §1, and use EISPACK routines based on Sturm sequencing

for the eigenanalysis of Step 2. The bottleneck is the eigenvalue computation, which takes
time O(M 3 ), for unfortunately no way is known to take advantage of the lHankel structure
of H. Ideally one wants M to be large enough so that the Chebyshev coefficients ak for
k > M are negligible, hence FM = F. For most of the examples considered below, such

as those involving ez, this is achieved with M = 35, leading to computation times on the
order of 0.1 sees. on our IBM 370/168. With F(x) = JxJ, on the other hand, M = 120

is only barely large enough to get approximations with m, n < 2 accurately, and the
computation time increases to 2 sees. Thus the CF method is not only more accurate, but
also much raster if the function to be approximated is smooth. For certain high-precision

numbers below we have resorted to quadruple precision.
In general the CF method will yield an approximation satisfying

JXl E%

and by the de la Valle Poussin result one has

m1< E" < Ecf, (3.1)

where

-mi. = min J(F - Ref)(xj%

with the minimum taken over that set of m + n + 2 nearly alternating points which

maximizes its value. In our experiments Rcf and X were computed to close to machine
precision, and by means of a minimization routine (FMIN, by Richard Brent), Eel and

E'i n were also found to this accuracy (Step 6). The quantity not so precisely known
is E*, for we do not have a high-accuracy rational Chebyshev approximation routine at
hand. Therefore in what follows we report JXJ rather than E*.

As a first example, let us give more details related to e'. Table 2 shows the eigenvalue

I>X in approximation on 1-1, 1) for 0 < m,n < 3. Each digit known to agree with the
corresponding digit of E* after both are rounded has been underlined. In most cases
this knowledge is based on (3.1). The agreement is excellent, and we believe that it will
get steadily better as m,n -- co in any fashion. (The table leaves some doubt as to

whether this is true for, say, m = 0 and n -- oo, but further experiments show that
by type (0,9), five significant digits can be underlined, and the number is growing with

n.) This example relates to a conjecture of Meinardus [31, p. 168] which proposes that

as m,n -- 0,

ml n!

- +(m + n)! (m + n + 1)!(1 + o(l)). (3.2)

15



m=0 m-- m=2 m=3

n= l. 1961(-0) 2.787994(-l) 4.5017 38776(-2) 5.5283 70108 71194(-3)

n= 1 2.1724(-l) 2.096982(-2) 1.7890 66755(-3) 1.3461 23369 20018(-4)

n= 2 3.5288(-2) 1.677017(-3) 8.6899 91075(-5) 4.3991 63371 96896(-6)

n=3 4.5235(-3) 1.239861(-4) 4.2766 46704(-6) 1.5506 69053 97117(-7)

Table 2. The eigenvalue !XJ in CF approximation to ex on

for various (m,n) . Underlined digits are known to agree with

corresponding digits of E* , after rounding. Doubly underlined

digits agree with the conjectured limit formula (3.2) of Meinardus.

At this writing the conjecture is unproved, but it is known to be valid up to a constant

factor 14,33] or less than 40. The double underlinings in Table 2 mark digits where (3.2)

agrees with JX, and it is evident that '.I is much closer to E" than (3.2) is. This

suggests that it might be possible to resolve the Meinardus conjecture by means of the CF

method. (Chebyshev-Pad6 approximation, it turns out, is not strong enough 1171.) Two

key proofs would be enough to settle the issue:

(i) IXi = E:,,(1 + o()) as m,n --, o,

(ii) IXI satisfies (3.2) as m,n -+ oo.

Unfortunately, these claims are not at all easy to establish, and the Meinardus conjecture

will probably be proved true before long by some simpler technique. Nevertheless, it would

be very interesting to know that asymptotically, best approximation errors agree with the

eigenvalues of an infinite I-lankel matrix of Chebyshev coefficients.

Incidentally, we conjecture that for the problem or complex approximation of ex on

the unit disk, formula (3.2) holds with the factor 2' + " removed. The best approximation

errors computed in [411, Table 3 by the complex CF method show that the agreement of

this conjecture with exact best approxination errors for m, n < 3 is about as close as in

the real case. The disappearance of the power of 2 is natural in the light of (2.3).

16
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Table 3 shows some results of the CF method for functions besides e'. In each
case JXJ is given for approximation of type (0, 1), (1, 1) and (2,1) on 1-1, 1), with

underlinings as before. Evidently CF approximation really works, even for as low a degree

as (1, 1). It is apparent that it performs relatively poorly for Izi , and this is not surprising
in view of the nondifferentiability of this function.

Now let us confirm that the asymptotic orders of accuracy predicted in Section 2

are valid, and sharp. Table 4 shows (XI and E'f - E i. in (1, 1) approximation of e*

on I. for c = j,;,.... . With each factor of 2 reduction in E, we expect NXJ to

decrease by approximately 2 m"+ + = 8, and Ed! - E ;n to decrease by approximately

S2a3 n + 3 
"- 256 . The table confirms these predictions. Such asymptotic behavior,

F(x) 1XI: (0,1) 1)1- (1,1) IX (21)

!Xi 4.483(-1) 4.4827(-1) 1.1359(-l)

6
x 5.397(-1) 5.3970(-1) 1.9257(-1)

/j71 -x 2.238(-1) 1.6331(-2) 2.9709(-3)

arctan(x) &.312(-1) 4.7889(-2) 4.7889(-2)

i/ (x+) 4.041(-l) 1.1955(-1) 2.1045 75498(-2)

eX 2.172(-1) 2.0970(-2) 1.7890 66755(-3)

log -i 1.598(-1) 8.6079 41336(-4) 4.9591 1561392(-5)

Table 3. The eigenvalue JXJ in CF approximation of types

(0,1), (1,1) and (2,1) to various functions on -1,11 .

Underlined digits are known to agree with corresponding digits

of E*.

17



Ecf E cf
E li Ratio min Ratio

1 2.097(-2) 2.03(-6)

1/2 2.605(-3) 8.04 9.18(-9) 221

1/4 3.255(-4) 8.00 3.73(-11) 246

1/8 4.069(-5) 8.00 1.47(-13) 253

1/16 5.086(-6) 8.00 5.77(-16) 255

Table 4. Type (1,1) approximation of e on 7-EE' for

various E

however, is dependent on the smoothness of F. With F(x) = Izx, for example, cutting
c in half is equivalent to dividing F by 2, and therefore the effect will be to cut X and

- E,, exactly in half, no matter what m and n are. Thus for F(x) = Izi thcre is

nothing to bc gained by shrinking the interval, although the CF method still improves if
m and n are increased.

Our final example is associated with some further conjectures about asymptotic

degree or approximation. In a paper of Cody, Meinardus, and Varga [9], the problem of
approximating e-' on the semi-infinite interval [0, oo) was studied. They proved that

in rational approximation or type (0, n) or (n, n), the error decreases geometrically as

n -. oo, but did not determine an asymptotic rate or decrease. For approximation of type

(0, n), they gave numerical results that suggested the limiting behavior

lr (E,, = 1

and this eqpuality was later proved valid by A. Sch6nhage [35]. For approximation or type

(n,n) , their numerical results reported for n < 14 suggest to us

18



lir (E,) n/9 = lin 9...(3.3)n -oo ,7-%_ ,,, 9.8..

and a limit 1/9 has also been conjectured. But no result of this kind has been established.

Despite appearancis, this problem can be approached by the CF method. The

function 1-z

maps [0, co] bijectively onto [-1, 11, inducing a one-to-one correspondence between ra-
tional functions R(t) and R(z) in Vn. Under this transplantation an equioscillating
curve on one domain maps to an equioscillating curve on the other, and as a consequence
it can be shown that the given problem is equivalent to the problem or approximating

F(x) =

on [-1, 1], which can be treated by the CF method. (For justification see the theory

or [3); this transplantation only works when m = n.) Here F is C o on [-1, 11, but

ana'w c only on (-1, 1], so its Chebyshev series decreases faster than any polynomial
but not geometrically. We took M -- 200, leading to truncated terms lakI < 10-23 for

k -z M, and calculated cigenvalues in quadruple precision on the IBM 370/168. This gave
us \,,+t ror 0 < n < 18 accurate to many places, and for n > 5, IJX agrees with the

, reported by Cody, Meinardus anti Varga to all four places that they give. We
have little doubt that lXi = E*(l + o(1)) as n --* oo.

On the basis of these numbers. we conjecture

for sonic constants A _ .656, B - 9.28903. The evidence is summarized in Table 5.
Remarkably, in the course or this writing Sch~nhage [361 has independently conjectured
that (3.3) approaches a limit

2- 9.28547

In fact he proves that lir inf(E, J)/" is at least two-thirds of this value. The closeness
but inequality of these two conjectured limits is striking.
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Rati.o Richardson extrapolant

n n+l I  
n n I~/n+ll n 3 n n-n/2)

0 .560172 (-0)

1 .668057 (-1) 8.38508

2 .735558 (-2) 9.08232 9.31473

3 .799452 (-3) 9.20078

4 .865210 (-4) 9.23998 9.29253

5 .934574 (-5) 9.25779

6 .100845 (-5) 9.26740 9.28961

7 .108750 (-6) 9.27316

8 .117227 (-7) 9.27689 9.28920

9 .126329 (-8) 9.27944

10 .136112 (-9) 9.28127 9.28910

11 .146631 (-10) 9.28262

12 .157946 (-11) 9.28364 9.28905

13 .170119 (-12) 9.*28444

14 .183217 (-13) 9.28507 9.28904

15 .197314 (-14) 9.28558

16 .212485 (-15) 9.28600 9.28904

17 .228815 (-16) 9.28635

18 .246392 (-17) 9.28664 9.28903

Table 5. Eigenvalues IXI in (n,n) approximation of expx;-+)

on -i,11 for various n . This is equivalent to approximation

of e- t on [0,-) . Digits agreeing with the values of E* given

by Cody, Meinardus, and Varga 9 ] have been underlined. (The

results of [9 2 were given to four places and for n:E14 only.)

The ratio appears to approach a limiting value 9.28903....
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