AD=A110 122 GEORGIA INST OF TECH ATLANTA k76 S/%
COMPUTER AIDED SPECIFICATION TESTING SYSTEM (CASTS), VOLUME l!l—E‘rC(U)
MAR 81 D E HUMPHREY. D P MILLARD DAAK7ﬂ-79-D- o

UNCLASSIFIED

|0 Kz j
= & & 122
I i

TRLE -

=" e

12 it s

MICROCOPY RESOLUTION TEST CHART
*d

AATIOMAL G

N g R T by T e

m

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
- . REPORYT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
I BN
&. TITLE (and Subtitle) 8. TYPEZ OF REPORT & PERIOD COVERED
CASTS R§D Technical Report Final
(COBOL PROGRAMMING CONVENTIONS) 6. PERFORMING ORG, REPORT NUMBER
B ; AUTHOR(s) [} EONTIACT OR GRANT NUMBER(s)
D. E. Humphrey, D. P. Millard DAAK70-79-D-0087
_ - { EES, Georgia Institute of Technology Task Order Number 0007
Is. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggR.A=°!RLK;’J§:‘TT'N’U'I°IJ!£§:' TASK

Georgia Institute of Technology
Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADORESS 12, REPORT DATE

_ US Army Institute for Research in Management 15 March 1981
{1EOHEeTe B, Compyper Seience

Atlanta, Georgia 30332 26
. MONITORING AGENCY NAME & ADORESS(I(ditferent from Controlling Otfioe, 18. SECURITY CLASS. (of this report)

Unclassified
TSa. D!C&MSIFICATIO“? DOWNGRADING
SCHEDULE

- —— m
16. DISTRIBUTION STATEMENT (of thie Report)

_ Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different from Report)

Same

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer-Aided Design, Man-Machine Interface, Human Factors, Specification
~- Testing, Interactive, Data Entry.

/ 20. ABSTRACT (Cantinue am roverss sl N nagocuasy and identity by block number)

—AThe Computer Aided Specifications Testing System (CASTS) is a tool to aid in the
design of interactive systems. It is concerned with human factors and the man-
machine interface during the initial capture of data and the editing of that

— data. CASTS is divided into two processes. The first process is that used by
the designer to construct simulations of interactive video display terminal
dialogue; the second process gathers the performance data of an actual user who
_ runs the simulation designed in the first process. -

N

DD , S WT3[eornow or 1 wov es 13 ossoLeTe : 9 4% 00 A (#

SECUMTY CLASSIFICATION OF THIS PAGE (Wien Dacs Entered)

fbAigcession For
NTIS GRA&I
DTIC TAB
Unannocunceq

Fr_

Pl T
AL r odes
‘Di:t ' J o J_/ °r

COBQL PROGRAMMING]
CONVENTIONS
PTIC
{

a

Justificat ton.___ |

Prevpared bv
Computer Science and Technoloay Laboratory
Enaineering Exveriment Station
Georaia Institute of Technoloagv
Atlanta, Georaia 30332

D. E. Humphrev

AIRMICS
Georqia Institute of Technologv
Room 325, Hinman Research Buildino
Atlanta, Georaia 30332

Under DAAK70«79«D=0087, Task Order 0007

cory
INSPECTED
3

B AT S

T ——

PAGE 2

JABLE OF CONIENIS

0.0 Introduction
1,0 Programminag Considerations
2.0 Conventions Throuchout a Progranm
— 3.0 1Identification Division
4.0 Environment Division
- 5.0 Data Division
6.0 Procedure Division

Aooendix A = Acknowledaements
Appendix B = Example Proqram

Index

Supersession/Update Information:

Clld Po doiaiad Sadican s o0 o

This is a8 new document, Version 0. Mav 29, 1980,

-

PAGE 3

0.0 INTRODUCTION

Motivations for the desian of the vroaramming
lanauaage, COBOL. included achleving a common standard
lanquaage and imrnroving the readabilitv of source pro=-
crams. COBOL has certainlv enioved widesrread aoplica-
tion. but the opportunities for claritv and readability
of bproarams are often nedlected. This document speci-
fies a set of vprodarammina conventions, emphssizina
CNBOL codina practices, for use in writina proarams
which are easv toc understand and to maintain.

The programmina conventions described herein at=-
tempt to embodv the concepts of structured proarammina,
consistencv. understandability and readabilitv,
Steowise refinement and too=down develooment ao hand in
hand with structured proarammina and modularitv, Thev
should be reflected in both the final coded program and
the aquidelines for codinag that oroqram. Thus, the con=
ventions {nclude such thinas as a8 consistent indenta-

tion scheme, the use of meaninaful deta and varaaraph

names and the avoidance of nonstandard features,

I

N . . .
A T e WS L ., AR T

ot

A s

i

1.0

1.1

PAGE 4

RBOGRANMING CONSIDERAIIODNS

Notes on Proqgram Desian

The followina notes should be taken into
consideration durina the desian onase of program
development, The 1dea to keep in mind is cleritv,
Sav what is meant, simplv and directlyv.
Generallv, 8ll proarsms should be structured so
that thev are readable, logicsllv efficient and
easilv maintained. Choose a data reoresentation
that makes the obproaram simple. Modularize the
proaram structure, Each module should do one
thina well, Bad code should be rewritten, not
patched,

Top=down structured oroaram desion lends it~
self to a hierarchical oroqrasr structure. The
suqaested approach is co consider the overview of
the proarsm function as a “zero level" routine (or
paraaraoh). This corresponds to the root of a
tree. Consider each function in turn. On a VTOC
(Visual Table of Contents) diacoram this would be
araphicallv oraanized from left to riaht, At each
level, each function can be further broken down
into 1ts components until e orimitive function

level is reached. (see diaaran)

O

PAGE S

000
NAME
REORDERING
100 200 300
INITIALIZE PROCESS
AND NAME CLOSE
OPEN FILES RECORDS DOWN
200
PROCESS
NAME
RECORDS
210 220
READ REORDER UPDATE
NAME NAMES PROCESS
FILE FILE COUNT

Example VTOC

Inout and output should be olanned careful-
lv. Test inout for validitv and plavsibilitv,
Ensure that inout cannot vioclate proararm limits or
cause an abnormal endina. Terminste innhut bv an
end=of=file mark, not bv a count. ldentify bad
inoput and recover if oossible, Finallv, localize
inout and output in order to facilitate detuaaina

and future rmaintenance,

A

=0
P 50 LN

st p e

1.2

PAGE 6

Code runs fester and i{s easier to read and
understand {f it {s comnact, ﬁeblacc repetitive
expressions bv & paraaraph that mav be bperformed
vhen needed. However, don°t strain to re-use
code) reoraanize ingtead. Make sure soeciasl
cases are trulyvy special. Keep the proqram simple
to make it faster, Make it riaht before makinag {t
tfaster, Keer it right when makina it faster,
Don’t sacrifice clarity for small aains in “effi-
ciency".

Documentation is verv important in oroviding
maintainsbility, In-=line documentation means more
than qust a fev comments. It can be the most usee
ful form of documentation with minirmal effort.
First., make sure comments and code acree. Do not
fust echo the code, make comments count, Don‘t
comment bad codes rewrite 1it, Ana don‘t over
comment. In-line documentation also entails using
meaninaful variable names and varsarapch names, ine
dentina to indicate loaical oroaram structure and
formatting to help the reader understand the opro-

aram.

Terminal Format vs. Conventional Format
All of the guidelines for conventional fore

met apblv eauallv vwell to terminal format pro-

-

-

PAGE 7

arars. Onlv two differences need be oolnted out,
First., since there are no columns for secuencine
in terminal tormat, all conventions referrina to
column @ translate to column 1, and likewise co-
lumn 12 to column S. Second. the comment indice-

tor (%) should be placed {n column 1,

3.0

2.2

2.3

2.4

2.5

2,6

PAGE &

CONMMENIIONS IHROUGHOUI A BRQGRAN

Comment lines_should be ysed in_gll sections where
@ conceot _niaht need exclanation other than what
is evident in the COBOL code. Normallv, however,
well chogen data and paradraoh names should convey
the meanina.

Comment lines_should be used to document calls to
external rouvtines.

Division headers and parsaraph headers beain 1{n
column 9.

Indentation: _successive levels of indentation
will consist of 4 spaces.

Line svacinas space 3 blank lines before a divi-
sion heeder, 2 1lines betore s section header, 1
l1ine before a parsqgraph bheader, { 1line_ betyeen
group items in the Dgta Division and no line after
the psragraph header and before the paraqaraph
bodvy.

Although words may be broken off and continyed on
the next lipne, this should be avoided for the sake
of readabilitv.

T P oo

e

J.0

3.2

3.3

3.4
s

IDENZIIEICAZTION DINISION

Should containt
PROGRAM=1D.
AUTHOR.
INSTALLATION,
DATE=WRITTEN,
DATE=COMPILED.
REMARKS.

PROGRAM=ID is the first sentence and _should be
preceded_ bv 2 blank lines. The nare given as_the
proaram identifier is the same as the source file
nane.

The AUTHOR is the programmer who originallv coded
the proaqaranm.

The DATE=WRITTEN {s the date codina beaan,

DATE=COMPILED signals_the compiler to oprint the
date on the program listina.

The REMARKS paragraoh.
3.6.,1 Form,

3.6.1.1 All REMARKS lines have an asterisk
(*) {n column 7,

3.6.1.2 Place each remark on itsg own_line,
indentina anv continuation lines 4
spaces,

3.6.1.3 Three_ tvpes of remarks are 1)
functional. 2) additional and 3)
moditicational. Each aqroup is
separated bv_one blank line (¥ (n
column 7), with_ no blank lines
amona remarks within a aroup,

3.6.2 Funcrional remarks avoear first and contain
the application or_oroject name and g brietf
descriotion of ghat the proaram does.

3.6.3 Additiona}l remarks asre second, if avoroprie-
ate, and include such thinas as subroutines
referenced, 1librarv modyles reterenced
(copyY or CALL modules) and oproaram
switches,

b i G it e

PAGE 10

3.6.4 Proarar modification remarks.

3.6.4.1

3.6.4.2

Each modification 1line hes _the
forms:_ *MOD® YY/MM/DD =_text_line,
with indented continuation lines,

These remarks assist 1in trackina
down_ _maintenance _debug errors,
providing modification historv doe=
cumentation, Thev should be brief
and concise,

[~y

4.0

‘.4

PAGE 11

ENYIROMMENT DIXISION

Leave_3 blank 1lines_between _the_ 1Identification
Division and the Environment Division header and 2
blapk lines_after the header, before the Contfiau=-
ration Section.

Division header, section names and paragraphs
beagin in column 8,

Should contain:
ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE=COMPUTER,
OBJECT~COMPUTER.
INPUT=0QUTPUT SECTION,
FILE=CONTROL,
<file SELECT statements>

SELECT statements,

4.4.1 Each_SELECT statement {s separated from the
previous statement bv one blank line,

4.4.2 Place the SELECT and ASSIGN clauses on the
same line whenever oossible., beainninag in
column 12,

4.4.3 Place additicnal_clauses on separate lines,
indentina each line to column 16,

4.4.4 Suqaested order for SELECT statements_ 1Is
agcording to order of usage of the files
within the proaram, An alternatjve order-
inag i{s listing the most active files first,

30

—

- 5.2

5.4

DAZA DINISION

Leave 3 blenk lines between the Environment Divie
sion and the Dats Divigion header and 2 blank
lines after the header, betfore the first section.

Division heeder., section names, parsaraphs, FDs
and level 0f data descriptions beain in column 0,

FD declarations.
S.3.1 Precede FDs with one blank line,

$5.3.2 Leave 2 spaces between "FD" and ts file
name.

5.3.3 FDs_should anvear {n the same order as
their corresponding SELECT statements,

$S.3.4 Additionel FD clauses Dbpeoin on separate
lines, indented to column 12,

$S.3.5 Those file descrintions that are_ permanent
oy _are used more than once within a gvstem
of orograms_should be stored in a 1library
and copied into the vroqranms,

Data description level numbers.

S.4.1 Precede all level 0f numbers with one blenk
line.

$S.4.2 Level numbers subordinate to 01 are as=
sianed in increments of 1 (exceot 68),

S.4.3 Leave 2 spaces between a level number and
its data name,

S.4.4 Level 03 descrivptions beajn 1in column 8,
Successive levels are indented 4 spaces,
After level 02, indentina onlv 2 svaces I3
8llowed if and onlv {f wultiple level spece
ing becomes a problenm,

Alfen all PICTURE clauses in one c¢olumn, Alian
VALUE and USAGE clauses as much as possible.

S.5.1 The VALUE cleause ghould apoear on the_ sane
line as the_ PICTURE clause, 1f it is the
first clause followina the PICTURE clause.

B

S.6

5.7

5.9

$5.10

PAGE 13

If the veslue to be assigned 1s twelve chere
acters long or less, it should also _go on
the sare 1line. _Lonaer values continue on
the next 1line indented the standard 4
spaces.

Use meaninaful data names., (see 4,10,3 alseo)

EX. RANGE=BOUNDS
REPORT-TITLE

Use_PIC X, instead of PIC A, for aqreater update
flexibility,

When defininag congtants with lenathv VALUE 1liter=-
§ls such as headinas, uge severs) elementarv data
items to sub=define the item, This will simplity
maintenance, particularly when_ a report myst be
adfusted to add an element or alion the headina.

Use FILLER for anv data item not explicitly refere
enced, unless the fitem descriotion is in a COPY
module.

Working Storaqge Section.

5.10.1 Level 77 {tems are not allowed, use 01
itens.

$.10,2 Variables with similar functions should be
grouped toaether under level 01 data names,

EX. CONSTANTS POINTERS
COUNTERS SWITCHES
FLAGS anv tables
MESSAGES

£.10.3 Namina conventions for level 01 arouvs.

$.10.3.1 Gounters should end in *=CTR" or
'-CNT' .

5.10.3.2 Message data items should have
"=MS8G" appended to them,

5.10.3.3 Pointers should end in "<PTR",

$5.10.3.4 Switches should end in “=8W"_ g@nd
should have level 88 _condition
names assianed for testina.

EX. 02 EOF=8¥ PIC 9 VALUE O,
88 EOF VALUE 1.

e AT £ VP 1= Y RO TR Yo o T

PALE 1%

5.10.4 All _pointers, switches, kevs., etc. should
be initisliged,

$.10.5 Switches use { for "true” or "on"™ and 0 for
"false" or “off",

6.0

6.2

6.3

PAGE 1D

RROCEDURE DIMISION

Leave 3 blank lines_between the Dats Division _and
the Procedure Division header gnd 2 blapnk lines
atter the header, betfore the first section.

The division_header, section names and oparaaraph
names beain in column 8,

There ghould be pg GOTD statements! There is only
one exceptioni_ in the INPUT and/or OUTPUT PROCE=-
DURE sections of a SORT, and_then there should be
onlv one to branch to the exit paragraoh.

Modular Proaram Structure.

6.4.1 A module refers to 8 unit of code_that:_ 1)
has one entrv point, 2) has one exit point,
3) has one functign_end 4) can be refer-
enced by an identifier as a uynit. In other
words a module is usuallv a paraaraph, but
can 8lso be construed as a section or su-
broutine,

6.4.2 A proaram ghould contain:.
Main_line routine _
Inftialization routine
Processing modules
Input/Output roytines
End of Yob routine

6.4.2.1 The main line routine should be
the bhiahest 1level executive cone-
trolling varacrasph for the Dpro=-
qram, It causes all other parae
arephs to be _verformed and (|t
should bhave 1little or no condi-
tional loaic.

6.4.2.2 The inftialization teakes_ care of
the “"gettina__up" functions. such
as ooening files, Jgetting the
date, initislizina variables, etc,

6.4.2.3 Processipg. modules shoulc each
perform ana function, reflected by
the module name,

6.4.2.4 1Input/Outoyt routines contain all
reads, writes and rewrites for

it T

PAGE 10O

each file and are aorouped toaethe
er, _There should be onlv one pare
agraph {n the proaram for each ot
these__functions. Maintenance s
sipplified_bv centralizing direct
I/0 operations,

6.4.2.5 The end of_ 9Yob routine should _pere
form closina "housekeeping® funce
tiong, such as closing files, proe-
cegsing last records and end of
report routines.

6.4.3 Module Naminag Conventions.

6.4.3.1 Each module (parsocravh or section)
name _consists of two varts:_ 1) a
3 digit number, 2) a_ meaninaful
name, This {s _helpful from the
program desian_phese through teste
ing and debvagine, documenting and
£inallvy maintensnce.

6.4.3.2 The digit portion of a module name
is _indicative of the module’s po-
sitfon, both loaicallv in_the pro-
qram hierarchy and physicallv in
the coded _program., _ Modules _are
arranged_ in ascendina numericyl
order, with_the controllina main
routine being "000". Thev shoyld
reflect a tree~ljike gtructure with
levels,

6.4.3.3 VWithin the same vroqeram, verbs
used in module names ouaht to have
the same meaning.

One blank line separates each paraarsvh bodv from
the followina header.

Each statement should apoesr on a separate line,
ng multiole statement lines. This enhances reada-
bilitv and uodate ease,

Four spaces are used for locic level indentation,
Statement formats,

6.8.1 If a_statement is 1longer _than one line,

cgntinue on successive lines at the start
of a clause or phrase. indentina 4 spaces,

C R A AT AN PR TS P O T SR AT w e

n

PAGE 17/

EX. PERFORM <paraqgraoh name>
UNTIL <conditioni>
AND <condition2>,

6.8.2 1In statements such as OPEN, CLOSE and some=
times MOVE, gimilar elements should be al~
ianed, i{.e. €file and dats names.

EX. OPEN INPUT OLD=MASTER-FILE

UPDATE=FILE
OUTPUT NEW=MASTER=FILE
ERROR=REPORT=FILE,
EX. MOVE ZERO TO LINE=CNT.

MOVE SPACES TO PRINT=LINE,
MOVE PART=INFO TO PRINT=PART.

6.89.3 1IF statements.

6.8.3.1 Put the IF and ELSE (it there {is
one) on sgeparate lines from the
indented statements.

EX, IF <condition>
<gtatement>
ELSE
cgtatement>,

6.8.3.2 Nested IF statements are also ine
dented., _ If there are more than $
levels of nested IFs, re-evaluate
the proqram degian. The levels
may be indented onlv 2 soages 1if
necessarv to keeo from running out
of codina space.

6.9.3.3 For the IFr statement used in a
“case" structure, the next IF
should aopesr on the same line as
the ELSE eand al) ELSEs should be

alianed,
EX. IF <ceonditioni>
<statementi>
ELSE IF <condition2>
<statement2>
ELSE
<staterentd>.

6.9 Compound conditions.

6.9.1 In compound conditions., use parentheses to
indicate the order of evaluation,

6.9.2 Alion similar varts.

~ EX. IF <conditioni)
OR <condition2>
OR (<condition3> AND <conditiond>)
<statement>,

6.10 Often used literals should bpe defined as con=
stants,

6.11 If a specitic occugrence of a table_item is used
repeatedly, move it to an unsubscripted data ele-
— ment and use that data element instead.

6.12 Files should be opened and_closed immediatelv Dbe-
fore _and after use. Myltiple openina snd closina
of a file should be avoided.

6.13 In orograms that use the CALL_ statement, use as
- few data names as oossible in the USING 1ist, _A
level 01 can reoresent all argqumepts with {ndivi-
dua) _items appearing as subdefinitions, which can
- be initislized as reauired orior to the CALL,

6.14 All proqgrams should be impervious to input data,

6.14.1 Check divisors for a zero value.

§.14.2 Range checks should be performed on input
- used as tadble_subscriots. The ranae limits
should be defined as constents in workjng
Storage, not 1litersls becayse table size
— may change throuagh oroarsm maintenance,

6.14.3 Items used in calculations should be tested
for NUMERIC and ranae before use.

—

6.14.4 Error handlina procedures should indicate
the nsture of the errors that miaht occur.

S

3-,7 6.15 Restrict the use of COBOL INDEXes_and_ SET state~
mgnts since these are inflexidble and mav

: — hinder maintenance,

3

k

F

k —

IRl . st st
——— it —— . o a - & aa

TR TR

PAGE 1Y

ARBENDIX A Ackponslesdaanants

b o
4

"

e

.
T I

— b b m cwm i

Y

The need for some sort of standardigation of
COBOL oprocrams., Iin soite of variovs programmers and
their diverse backarounds, provided the incentive for
oroducing the COPOL Programmina Conventions., The ef=
fort was based on the documents entitied "Computer Ope
erations Groun, COBOL Program Conventions®™ (Mav 7,
1980) bv Thomas §. Brinks of the Price Gilbert Memori-
8l Librarv. GIT, and "COBOL Program Standards® (May
1979). Sefice of the Reqistrar and 0CS Aoplications
Syvstem Desian, GIT. S8Suqgestions and corrections were
offared bv EES/CSTL associates David Winters, Gary
Peckhsyn and Joe Celko.

This document was initiallv develoved under the
CAST8 Proiect A=2560, funded bv AIRMICS. GIT. These
conventions are adhered to throughout the CASTS system

softwvare in an eftort to dProvide consistency and maine

tainadilitv,

" : TS USSR . '1

PAGE <V
ARRENDIX B Exaspls BRzag:ran
IDENTIFICATION DIVISION.
PROGRAM=ID, EXAMPLE.
AUTHOR. DAVID WINTERS,
DATE=WRITTEN. 28=MAY=1980,
DATE=COMPILED. . _
REMARKS. NAME REORDERING.

% THIS PROGRAM READS FROM THE FILE “INPUT’ THE

¥ NAME TO BE RE=ORDERED AND CONVERTS IT TO THE
* FORMAT (LAST NAME, FIRST NAME, MIDDLE NAME)
* AND WRITES IT TO FILE “"OUTPUT".

ENVIRONMENT DIVISION,

CONFIGURATION SECTION. ‘
SOURCE=COMPUTER, VAX=11,
OBJECT=COMPUTER, VAXe11.

INPUT-0UTPUT SECTION,

FILE=CONTROL.

SELECT NAME«FILE=IN ASSIGN TO "INPUT",
SELECT NAME<FILE=OUT ASSIGN TO "OUTPUT®.

SELECT PRINTER ASSIGN TO "PRINT",

DATA DIVISION.

FILE SECTION.

FD NAME-FILE=IN _]
LABEL RECORDS ARE OMITTED | .
DATA RECORDS IS NAME=RECORD=-IN.

01 NAME-RECORD=IN,)
02 FIRST-NAME-~IN PIC X(10).
02 MIDDLE=NAME=-IN PIC X.

02 LAST=NAME=IN PIC X(20).

- FD NAME=FILE=OUT
LABEL RECORDS ARE DHITTED
DATA RECORD IS NAME=RECORD-OUT.

01 NAME=RECORD=0UT.

02 LAST=NAME=QUT PIC X(20).
) 02 FIRST-NAME=OUT PIC X(10).
02 MIDDLE=NAME=OUT PIC X.
FD PRINTER .
- LABEL RECORDS ARZ OMITTED
' DATA RECORD IS PRINT=LINE,

-~ 01 PRINT=LINE. .
02 FILLER PIC X(133).

WORKING=STORAGE SECTION,

01 FILE~CONTROL=SWITCHES,

~- 02 EOF=INPUT=SW PIC 9 VALUE 0,
88 EOF VALUE 1,
, 88 NOT~EOF VALUE O,
i 01 RECORDS=PROCESSED=-COUNTERS, _
g 02 RECORDS=READ PIC 9999 VALUI 0,
. 02 RECORDS=WRITTEN PIC 9999 VALUE 0.
4 01 PRINTER=-MESSAGES.
4 02 PROCESSED=-MSG.
a - 03 FILLER PIC X, VALUE SPACE.
F 03 FILLER PIC X(S) VALUE
- "READ ", o
2 03 RECORDS=READ=DUT PIC 272Z. :
. 03 FILLER PIC X(5) VALUE SPACES.
03 FILLER PIC X(8) VALUE
“ "WRITTEN ", ,
: e 03 RECORDS=WRITTEN=DUT PIC 222Z.
2N b

ST N

i ENEPRRESRBEREARNELRERRXRRXERESRLER KRR RERRERRXXERE R RS

PROCEDURE DIVISION.

MAIN=PROGRAM SECTION.

a 000=MAIN=LINE,
PERFORP 100-INITIALIZE-AND-0PFN.
PERFORM 200-PROCESS=NAME=RECORDS

A L i A SR e i

UNTIL EOF,_ .
PERFORN 300-CLOSE=DOWN,
STOP RUN.

100=INITIALIZE=AND=OPEN,
OPEN INPUT NAME=FILE=IN)
OUTPUT NAME~FILE=OUT. PRINTER,

200=-PROCESS=NAME=RECORDS.
PERFORM 210-READ=NAMESFILE.
IF NOT-EOF .
PERFORM 220=REORDER=NAMES~FILE
PERFORM 230-UPDATE=PROCESS=COUNT.

210-READ=NAME=FILE.
READ NAME=FILE=IN AT END
MOVE 1 TC EOF=INPUT=SW.

220~REORDER=NAMES~FILE, .
MOVE LAST=NAME=IN TO LAST=NAME=OUY.
MOVE FIRST=NAME=IN TO FIRST=NAME=QUT.
MOVE MIDDLE«NAME=IN TO MIDDLE=NAME-OUT.
WRITE NAME=RECORD=-OUT,

230=UPDATE=PROCESS=COUNT,
ADD § TO RECORDS<READ,
ADD § TO RECORDS=WRITTEN.

300=CLOSE~DOWN,)
MOVE PROCESSED=MSG TO PRINT-LINE,
WRITE PRINT=LINE,)
CLOSE NAME-FILE=IN, NAME=FILE-DUT, PRINTER,

PAGE 22

ey

INDEX

Adaitional Remarks .

ASSIGN . o« o o«
AUTHOR . . « &

CALL ., ¢ ¢ o o
Case Structure
CLOSE . & ¢« o

Comment' e o g
Compound Conditio

Constants -
Counters . . .

DATA DIVISION
Data name o o
Data names . .
DATE=COMPILED
CATE=WRITTEN .

Division Header

Documentation

ELSE ’ - *® [L]

.
o

e o o o 18

.
.
©

9, 18
17

17

6, 8
17

13, 18
13

e » pu s o 0

[N) 30 L I I)
. e o & @

® » 8 o & 0

12

12, 13
17

9

9

]

6, 8, 10

17

End of Job Routino . 15, 16

ENVIRONMENT DIVISION

rp] L J [] [] L] []
Filles . . . =
FILLER . « «

Functional Remarks

GOT-O * L] L J L] L)

IDENTIFICATION
I' [2 L J C-. o []
Indentation .
INDEY 4 .« o

!nitlalization
Input Data . .

INPUT PROCEDURE

Input/Cutout .

Level 01 ., .
Level 77 . «
Level Numbers
Line Svacina .

Main Line Routine

11

12
11, 12, 18
13
9

] L] . L] 15

DIVISION 9
e o o o 17, 18

e 8 8 @
® o 8 s o @
® e o o 0 o
o v » o o @
(o8
®

. 5, 11. 15, 17
12, 13, 18

13

12

8

1s

Messeage Data Iters , , 13

PAGE «£3

D et e 25 3 e Ly e M

. e e = e s d e e -

- . ,)
e o e Al e b o s e o e O

&
;

e 1 iy e an v 05N

Modification Remarks

Module . . ¢ & o o
MOVE . ¢« ¢ ¢ ¢ o o

Namina Conventions
Nested IF . ¢« ¢ =

OPEN »
OUTPUT PROCEDURE .

Paraqraoch Header
Parentheses . . .
PICTURE &
Pointers « o o
PROCEDURE DIVISION
Proccsuna Modules
Proaram Structure
PROGRA"‘ID * e o @

»

REMARKS .« ¢ & « &

SELECT v« o o o o »
SET - [4 [J E J -* - -
SORT [} L) [} L]
Statement Formata
Switches . « o « &

Terminal Format .

USAGE L] [3 L] [] [L]
UsING L] L] [L . ®

VALUE
vToc L] [] [] [] L] L]

WORKING=STORAGE .

10
4,
17

13,
17

17
15

9,
6

12
18

12
4

13,

18,

16

13,

18

16

14

PAGE 24

