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FOREWORD

The Transactions of the Twenty-Seventh Conference of Army Mathematicians are
being issued in order to preserve in print some of the scientific developments
presented in the invited addresses and in the contributed papers. These con-
ferences are sponsored by the Army Mathematics Steering Committee (AMSC) on
behalf of the Chief of Research, Development and Acquisition. Members of this
committee request that the guest lecturers be internationally known researchers
who are presently active in scientific fields that are of current interest.
They feel that the addresses by the invited speakers as well as the contributed
papers by Army personnel will help fulfill the main purpose for holding these
conferences, namely to stimulate the interchange of scientific information among
the scientists attending said meetings.

Colonel Harvey H. Perritt, Jr., Chief of Staff/Deputy Post Commander, in a
letter under date of 2 October 1980 to Dr. Jagdish Chandra, Chairman of the
AMSC, issued the formal invitation to hold the 27th Conference of Army
Mathematicians at the U. S. Military Academy. His letter stated that his Com-
mand would be pleased to host this meeting on the dates 10-12 June 1981. He
assigned Colonel Jack M. Pollin to act as Chairperson for local arrangements.
Captain Gordon Dietrick and Bard Mansager were assigned Project Officers to
coordinate administrative details. Those in attendance at this conference would
like to thank these gentlemen for all their efforts to make this an enjoyable
and smooth running conference, and for providing excellent physical facilities
for the conduction of this meeting.

The theme of this meeting was "Combustion and Explosive Dynamics". This is
currently a very active area of research, which is also of great importance to
the Army. This year the planned program of the conference consisted of three
parts, namely: (a) Four one-hour invited addresses; (b) Ten thirty minute soli-
cited addresses. These solicited papers represented an amplification of the
theme set by the guest lecturers; and (c) Contributed papers by Army and other
scientific personnel. The names of the invited speakers are noted below:

Speaker and Institution Title

Professor David Kassoy Gas Dynamics Aspects of Thermal Explosions
University of Colorado

Professor Andrew Majda A Theory for the Formation of Mach Stems in
University of Cal-Berkeley Reacting Shock Fronts

Professor Martin Sichel Modeling of Gaseous and Heterogeneous
University of Michigan Detonation Phenomena

Professor F. A. Williams Use of Activation-Energy Asymptotics for
University of Cal-San Diego Reacting Flows

We are sorry to say that Professor Andrew Majda was unable to attend this
meeting. 

IF7
OTIO 0L 1 -

0 ."

' I ,, I L . .. . .

L _____



The success of the conference was due to many individuals, the active and enthu-
siastic members of the audience, the chairpersons, and the many speakers. The
members of the AMSC were pleased with the fact that most of the speakers were
able to find time to prepare papers for these Transactions. These research
articles will enable many persons that were not able to attend the symposium to
profit by these contributions to the scientific literature.
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USE OF ACTIVATION-ENERGY ASYMPTOTICS FOR REACTING FLOWS

F. A. Williams

Department of Mechanical and Aerospace Engineering
Princeton University
Princeton, New Jersey

ABSTRACT. Attention is focused on asymptotic analyses in which the ratio

of the overall energy of activation for reaction to the thermal energy of the

reacting medium is a large parameter. Advances achieved in theories of ignition,

extinction and flame propagation are reviewed with emphasis on physical implica-

tions.

1. INTRODUCTION. The subject of activation-energy asymptotics (AEA) is now

sufficiently mature to have been expounded in a book [1]. This attests to its

widespread utility in describing reacting systems and to the fact that it has now

been applied to many problems. It will not be possible here to give a thorough

review of applications of the technique. Instead, attention will be focused on

physical aspects of its basis and on some of the physical implications of results

obtained by exercising the method.

1.1 Definition. AEA constitutes a particular brand of asymptotic expan-

sions that differs in detail from other applications of such techniques by fluid

mechanicians and applied mathematicians. Nonlinearity in a source term is essen-

tial to the method. The general form of the problems addressed may be illustra-

ted by the equation

L (T} = F(T) eE/(RT), (])

where L is a differential operator, possibly linear, F is a regular function and

E/R is a constant. The dependent variable T represents temperature, E is an

activation energy and R the universal gas constant. The operator L and the

function F are independent of E/R, as are the boundary and/or initial conditions

1



applied to equation (1). The factor e"E/ (RT) is an Arrhenius reaction-rate

factor.

In AEA there is a fixed reference temperature Tr such that the source term

is important for T near T r. The nondimensional grouping E/(RT r) then becomes a

parameter of the problem. AEA is concerned with developing an asymptotic expan-

sion of the solution for the limit E/(RTr) - -. Systematic approaches to AEA

generally involve scaling the independent variables, space and/or time, appearing

in L and also scaling T, in fashions suitable for generation of nontrivial asymp-

totic expansions. Usually scalings are different for different ranges of inde-

pendent variables, there being a narrow reaction stage or reaction zone in which

the source term is significant. These reaction regions separate broader regions

in which the source term is comparatively negligible in the limit. The tech-

niques of matched asymptotic expansions then come into play, exhibiting nuances

peculiar to AEA.

1.2 Generalizations. The ideas of AEA are readily applied to equations more

general than (1). Usually a system of equations is considered -- the conservation

equations for reacting flows. There may be a number of source terms, more than

one of which may have large values of parameters like E/(RT r). The Arrhenius

factor may occur in boundary conditions when heterogeneous reactions or phase

changes are considered. Autocatalytic reactions in isothermal systems may be

addressed in an analogous manner. The Arrhenius form is inessential; the key

attribute is the occurrence, in a source term, of a dependent variable that tends

to increase as the reaction proceeds, accompanied by a parameter, an increase in

which strengthens without limit the sensitivity of the source to this dependent

variable.

2



1.3 History. It may be considered that the seeds of AEA were sown more

than forty years ago, before the growth of matched asymptotic expansion, when

Zeldovich and Frank-Kamentskii proposed approximate solutions to the problems

of laminar flame propagation [2] and of thermal ignition [3,4]. Their approaches

were physically motivated yet produced results coinciding with the lowest ap-

proximation obtained by formal application of AEA. Formalisms of AEA are just

slightly more than ten years old. Bush and Fendell [5] published the first

systematic analysis amenable to development to higher orders, again in connec-

tion with laminar flame propagation. Reviews have been prepared covering early

[6] and some of the more recent [7] work. The numerous papers using AEA now in

the literature span a variety of different avenues to suitable formalisms.

2. PHYSICAL BASIS OF EXPANSION. Results obtained through AEA often have

been viewed with suspicion by researchers interested in experimental aspects of

reacting flows. This skepticism stems at least partially from questions con-

cerning validity of the approximations underlying the analyses. All good chem-

ists know that in the vast majority of reacting flows numerous reactions contri- r

bute to chemical source terms. Most AEA analyses employ just one source term with

a single parameter E representing an overall energy of activation for heat re-

lease. Justifications for introduction of this one-step approximation generally

are absent from AEA papers.

Applied mathematicians often are content with results that mimic experi-

mental behavior and usually do not seek numerical comparison with experiment,

reasoning that the approximations are insufficiently accurate to warrant such

comparisons. In this view, justifications for AEA with one-step chemistry need

be little more than analogy. A consequence of this stand is that experimentalists

can utilize the AEA results only for intuitive guidance, and they turn to numeri-

cal solutions of partial differential equations for detailed comparisons.
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It appears that physical bases for AEA approaches can be given that are

better than analogy and that motivate numerical comparisons of AEA results with

experiment. It has long been known empirically that a one-step, Arrhenius

representation of chemistry is useful for many purposes, over a sufficiently

narrow range of conditions, despite the complexity of the true kinetics. If

such a representation applies to a specific experimental process analyzed by

AEA, then it is possible to compare theoretical predictions with experiment.

Moreover, in such cases E/(RT r) generally is sufficiently large to make AEA

appropriate, since the inequalities T < 2,500-K and E/R Z 10,000 OK usually are

obeyed; values of E/(RT ) in the range of 10 to nearly 100 are typical, depend-

ing on the problem. Therefore the comparisons can be quite successful if com-

pleted properly.

2.1 Basis of One-Step Approximation. The physical reason for the empiri-

cal success of the one-step, Arrhenius approximation with E/(RT r) large can be

quite complex. Paradoxically, the three-body recombination steps responsible for

the major heat release in most combustion processes have essentially zero energy

of activation. However, these steps proceed at rates proportional to concentra-

tions of active radicals, and the radicals are formed in largely endothermic

steps that generally have appreciable activation energies. Therefore the

effective rate of the overall process, obtained through a combination of all steps,

has an overall activation energy E such that E/(RT r) is large. While individual

E's for many steps are zero in reactive flows, seldom will an overall E occur

such that E/(RTr) is not large; otherwise the system likely would be either too

reactive to be contained at room temperature or negligibly reactive at all temp-

eratures attainable.
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2.2 Limitations on One-Step Approximation. Limitations on the overall

Arrhenius description, especially the limited range of conditions over which the

overall E remains constant, should be kept clearly in mind when comparisons

with experiment are made. A given fuel-oxidizer pair does not have one fixed E

but instead exhibits a variety of different E's that pertain to different situa-

tions. For exampl-, an E for thermal ignition will differ from an E for flame

propagation; the reason is that the chemical kinetic mechansims of thermal igni-

tion differ substantially from those for flame propagation. Even when attention

is restricted to a particular type of flow, variations in E should be anticipated.

For example, in premixed flame propagation it is well established from chemical

kinetics that the overall E for fuel-rich conditions differs from that for fuel-

lean conditions; conclusions concerning variation of behavior with mixture ra-

tion cannot be drawn completely without taking the E variation into account.

In diffusion flames there is an automatic adjustment causing most of the exo-

thermic chemistry to occur near stoichiometric conditions; success has been

achieved in applying AEA [8] to diffusion-flame extinction, finding from extinc-

tion experiments overall values of E for conditions of combustion near extinction

[9]. However, this success does not occur if chemical species are added that

modify the chemical kinetic mechanisms [9]. Thus, ideas concerning kinetic

mechanisms responsible for an overall E are of importance in evaluating limita-

tions on comparisons with experiment.

2.3 Consideration of Multi-Step Kinetics. The time seems ripe for exten-

sion of ALA methods to the consideration of full kinetic mechanisms. Some work

along these lines has been initiated [10]. Information on rates of individual

steps, accumulated over the years, has achieved enough detail and accuracy to

enable thorough kinetic investigations to be undertaken for many real systems.

In some cases detailed kinetic studies may justify approximations, such as a

steady-state approximation for reaction intermediaries, that lead to a one-step
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description of the heat-release process with overall E; in such cases compari-

son of the overall E obtained from the detailed mechanism, with that found by

use of AEA in conjunction with experiment, would provide improved knowledge of

the relevant chemistry. In rany cases studies of detailed kinetics, using AEA,

can identify significant simplifications of the chemical description that never-

theless are more complex than a one-step approximation. These descriptions

could increase greatly our understanding of influences of chemistry in reacting

flows. They could afford possibilities of comparing AEA predictions with fine-

tuned experimental results currently emerging, such as observations of occurrences

of particular species in regions away from major heat-release zones. They could

indicate specific effects of chemistry on fluid dynamics of combustion processes.

In general, introduction of real chemistry into AEA approaches appears to offer

numerous avenues for future advances. So little work has been done along these

lines that none of it is considered in the following discussion, which is re-

stricted to one-step approximations.

3. IGNITION THEORY. The theory of thermal ignition of materials capable

of reacting exothermically has been one of the major arenas of success of AEA.

Experimentally, ignition is a sudden event. Reactive materials often exhibit

induction periods, during which slow chemical changes occur, followed by a rapid

heat release with an associated abrupt increase of temperature. Chemical kinetics

of chain reactions can describe this kind of behavior, the induction period being

a time during which reactive radicals are produced slowly. However, the one-step

approximation with E/(RTr) large also is consistent with such behavior. It can

be difficult to distinguish ignition events in which multi-step kinetics play an

essential role from those properly describable by AEA with one-step chemistry.
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Questions asked in ignition theory are first whether ignition will occur

for a given material subject to given conditions (i.e., specification of criti-

cality conditions) and second what the time delay prior to the ignition event

will be (the ignition time) for conditions under which ignition occurs. The AEA

methods are well suited to addressing both of these questions since they des-

cribe nearly discontinuous phenomena quite naturally. Numerous ignition prob-

lems have now been solved by AEA. Ad hoc approaches to theories of thermal

ignition are now largely obsolete because of AEA.

3.1 Representative Formulation. We shall not consider the spatially

homogeneous syslef.- characteristic of explosion theory, although appreciable

progress in describing behaviors of such systems has been made by AEA [11].

Instead, a cne-di-mensional, time-dependent problem of ignition of a combustible

materida] 1.-. external energy source will be considered on the basis of a

two-equation description. Introduce a one-reactant approximation with 1-Y de-

noting the ratio of the reactant concentration to its initial value, so that Y

may be viewed as a reaction progress variable that goes from zero initially to

unity at completion of the reaction. The equations for energy and reactant con-

servation then become

3T T a aT a e-E/RT (2)pc - vc - - - (X -) = pqv (l-Y) e2

and
aY aY a Y (l1 y)ae-E/RT

0 t+Pv a x ax cLe ax 1Y 3

Here T denotes temperature, c the specific heat and p the density of the

material; t is time and x distance, with v representing the velocity in the

x-direction. The thermal conductivity of the material is X, and the Lewis num-

ber Le denotes the ratio of heat to mass diffusivities, the thermal conductivity

divided by the product of c with the coefficient of diffusion for the reactant,

Fick's law having been adopted for diffusion. The overall order of the reaction
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is a, and the heat released in the reaction per unit mass of material consumed

is q. The pre-exponential factor in the reaction rate has been denoted by v,

which involves the initial reactant concentration as well. Overall conservation

of mass relates v to p. The four terms in (2) and (3) represent accumulation,

convection, diffusion and reaction, respectively; the first three of these cor-

respond to the operator L{T} in (1).

Initial conditions are T = T. and Y = 0 at t = 0. Boundary conditions de-1

pend on the problem considered. Although conditions may be applied at two

boundaries, it is simpler to consider a semi-infinite problem, with the combus-

tible material occupying the region x > 0 and to apply boundary conditions only

at x = 0, requiring T to approach Ti and Y zero as x approaches infinity.

This restricts attention to times short enough for reaction to produce negligible

changes in T and Y at temperature T.. The material must be heated to begin to1

react appreciably, and this heating is achieved through the boundary conditions

at x = 0. Such a formulation is useful only if E/(RTi) is large.

One problem of interest is ignition by a step in surface temperature [12,13].

Here T = T = const. is imposed at x = 0 for t > 0, with T > T.. This problem
s 5 1

turns out to be more complicated than many other ignition problems, in that the

rate of the reaction cannot be neglected near x = 0 even for very small t. A

simpler problem is that of radiant or convective ignition, by a constant energy

flux q, in which q = - XDT/Dx is imposed at x = 0 [14]. Various boundary condi-

tions on Y at x = 0 also are of interest [13].

3.2 Character of Results. For the simpler problem identified above it is

found by AEA that there is an initial stage of inert heat conduction, during which

reaction is negligible. Following the inert stage is a stage of rapid transition

to an ignited state. The appropriate large parameter of expansion is ETi/(RT
2),

i c

where Tc is the inert temperature at x = Oat the time of onset of the stage of
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transition to ignition; thus, Tr = T2 /Ti. In this problem it is found that even-

tually ignition always occurs. The time tc required for ignition to occur, if

Le = . and if cTi/q is of order unity or less, is found to be given by

t *24 RTin(l/D).E (4)42q

in which

.2 RT2 f * r~ RT\
qpXvT. L iE ~ch2

where1

T = T[ + % (6)

c i 2

The main functional dependence of tc may be obtained from (4) by putting D = J2/

(qpXvTi) and yields in a rough approximation tc - pcE 2/(R 22).

The results in (4), (5) and (6) are obtained through a detailed analysis of

the stage of transition to ignition. Since temperature-time histories are con-

tinuous, precise definition of t necessitates adoption of a specific definition
c

of ignition. AEA methods provide a very convenient way to do this since they

introduce a divergence in the transition-stage solution, a "thermal runaway",

arising essentially from a type of linearization of I/T within the exponential

in the Arrhenius factor. The ignition time is identified with the time of diver-

gence. Other definitions of ignition time give slightly different results that

converge to those given here as E/(RT r) - -. The accuracy of (4) through (6) has

been verified by numerical integrations of the original partial differential equa-

tions; these integrations in fact had been performed before the asymptotic analy-

sis was developed.
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3 3 Types of Problems Solved. These AEA methods have now been employed to

solve a wide variety of ignition problems. The constant energy flux applied to

the surface, in the problem considered above, is equivalent to a constant radiant

flux if the absorptivity of the combustible material for the radiation is infi-

nite. Finite absorptivity leads to in-depth absorption and introduces an addi-

tional parameter, the characteristic absorption length for the radiation. Inert-

stage histories and ignition-time formulas and graphs have been developed for

this problem, parametrically in the absorption length [15]. With radiant energy

application surface cooling may occur by convection or conduction. For transient,

one-dimensional conductive loss, an additional parameter enters r, the ratio of

the thermal responsivity (cpX) of the inert medium to that of the reactive

medium [16]. The AEA analyses for ignition time have been completed for small r

[16] as well as for F of order unity or large [17], thereby producing a sequence

of ignition-time curves with r and a non-dimensional absorption length as

parameters [17]. Results with conductive loss may be applied approximately for

convective loss through the identification r = hTi/j, where h denotes the heat-

transfer coefficient. However, proper AEA analyses for influences of specific

types of convective losses have not been pursued and could improve accuracies of

predictions for such losses.

Results of the AEA analyses can be presented in such a way that they are

applicable to general flux-time histories [15], subject to exclusion of the

limiting case involving a delta function, in which at time zero the surface temp-

erature is raised to a specified value and maintained constant thereafter. This

more difficult problem has been solved by AEA [12], including effects of

reactant consumption for both Le = w and Le of order unity. Extension has been

made to allow for surface catalysis, an additional parameter being the rate of

catalysis [13], but reactive bodies of finite sizes, e.g. small spheres, have not
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yet been treated by AEA. Another problem solved by AEA is the endothermic gasi-

fication of a solid by a constant energy flux, for an Arrhenius surface process

[18], for a distributed condensed-phase Arrhenius process [18] and for surface

equilibrium [19]. In this case, instead of thermal runaway there is a sudden

leveling of the surface temperature at onset of endothermic gasification, and

the surface temperature remains nearly constant thereafter.

The three classical theories for ignition of solids are condensed-phase,

heterogeneous and gas-phase ignition theories, the qualifiers here designating

the site of the principal exothermic process. Condensed-phase ignition theory

has mainly been considered above. Heterogeneous ignition theory is simpler in

that the rate is only in the boundary condition; this has been treated by AEA

[20]. Gas phase-phase ignition theory is the most complex since it involves at

least two steps, first gasification and then distributed exothermic reaction in

the gas. This ignition problem has been solved by AEA for a constant radiant

energy flux applied to the surface of the solid [21], as well as for radiant

ignition with in-depth absorption of radiation [22], for Arrhenius kinetics [22]

and for surface equilibrium [19]. A richer variety of parametric ignition-time

curves arises from these gas-phase ignition theories because of the greater num-

ber of parameters [22].

There are many ignition problems for which further work remains to be

done in application of AEA. One aspect requiring further study is

the development of the combustion processes following the ignition event, inclu-

ding possible occurrences of pressure-wave generation. Some work on problems of

this type has been completed by AEA [23,241. Another outstanding area involves

problems in which reactive gas motions occur that are not one-dimensional.

4. . LAME PROPAGATION. Steady propagation of laminar flames may be des-

cribed by (2) and (3) with the time derivative deleted and the boundary condi-

11
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tions revised. Since the work of Bush and Fendell [5], much has been accomplished

in analyzing such flames by AEA. In addition to one-reactant flames with Le 1,

two-reactant flames with two Lewis numbers have also been considered. One source

of more recent references is the note by Mitani [25], in which AEA predictions by

various authors are compared.

With AEA, premixed flames are found to be composed of two regions. There is

an upstream convective-diffusive zone in which reaction is negligible, followed

by a thinner reactive-diffusive zone in which convection is negligible in the

first approximation. The appropriate large parameter of expansion is

E(Tb-Tu)/(RT2), where T is the temperature of the fresh mixture and T that
bu bu b

of the reaction products; thus T = T2/(Tb-T It is seen that for the ex-r b Tb~ Itiuenta o h x

pansion parameter to be large, the heat release, c(Tb-Tu), cannot be too small.

The laminar flam propagates at a definite velocity, the laminar flame speed

S L  The AEA analyses provide formulas for SL through the matching conditions

between the two zones and show that puSL is proportional to v -c e-E / (ZRTb l

Practitioners of computer routines with full chemistry usually question AEA

results for S The computer calculations typically show man) species with reac-

tions occurring in what should be the convective-diffusive zone. Unfortunately

sensitivity studies of the importance of such reactions and of the extent to which

their effects can be approximated by AEA have not been pursued. Therefore add2-

tional studies remain to be done on AEA in steady laminar flames.

4.1 Flame Instabilities. A major area of success of AEA in laminar flame

theory has been to provide a convenient means for investigating flame instabilities.

The reaction-zone analysis provides jump conditions that can be used in studying

essentially linear equations that apply in the broader zones on either side of the

reaction zone. This enables attention to be focused more easily on instability

mechanisms. Occurrences of cellular flames and of pulsating flames have been

identified in this manner.
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Jump conditions across the reaction zone are best derived by formal asymp-

totic analysis rather than by intuitive appeal to reaction-rate delta functions.

Jump conditions are available in the literature [e.g., 26,27].

Pulsating flames are found to occur if Le is sufficiently large [28]. Such

phenomena are relevant to the combustion of solids but seldom are expected for

gases. The pulsating instability cannot be understood on the basis of static

stability arguments because of their essentially dynamic character. With atten-

ton restricted to Le = c, one may imagine a reaction sheet to be rapidly displaced

a small distance toward reactants. With insufficient time for conduction to re-

move the heat generated, the displacement may increase the local temperature at

the sheet. According to the flame-speed formula, this increases SL and there-

fore tends to produce a further displacement, thus providing a mechanism for

instability.

Cellular instabilities are more common than pulsations for gases and have

also been predicted successfully by use of AEA. These instabilities occur for

Le less than a cricical value less than unity and can be understood physically

on the basis of qualitative reasoning concerning static stability. Assume that

a small bulge develops in the reaction sheet, protruding toward the reactant side.

Since the reaction sheet is a sink for reactant and s _m."ce for ' t-t, this pro-

trusion has a character somewhat like a point source or sink. For Le < 1, the

higher diffusivity of reactant, in comparison with that of heat, allows propor-

tionally more reactant to diffuse to the bulge, in comparison with the heat that

is allowed to escape. The reactant releases energy by combustion at the reaction

sheet, and the consequent imbalance between heat release and heat conducted for-

ward must result in an increased temperature at the bulge. This increased temp-

erature increases SL locally and thereby causes the bulge to tend to be extended

even farther into the reactant. Thus, there is an instability mechanism for

development of nonplanar shapes of reaction sheets if Le < 1. The cellular
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flames that result from this instability have shapes fairly rounded toward the

fresh mixture and pointed toward the burnt gas.

A number of AEA studies of cellular instabilities may now be found in the

literature [e.g., 27, 29-341. These studies address a variety of influences on

cellular structure, such as effects of heat loss, effects of an acceleration

field, nonlinear behavior and effects of interdiffusion of two reactants. Con-

cerning this last effect, it seems clear physically that if a reactant mixture

is deficient in a readily diffusing reactant, then preferential diffusion of this

reactant to a bulge may cause the mixture to be locally more nearly stoichiomet-

ic there and hence to have a higher flame speed at the bulge, again promoting

cellular instability. This is indeed what is predicted [34] and also observed

experimentally [35].

4.2 Behaviors of Stretched and Curved Flames. Additional phenomena of

flame propagation can be understood on the basis of the same reasoning employed

to describe cellular instabilities. For example, a reaction sheet situated nor-

mal to a decelerating flow experiences stretch, in that flow streamlines tend to

diverge as they approach the sheet. This divergence tends to shorten distances

over which gradients occur and therefore enhances driving forces for diffusive

processes. More easily diffusing species therefore enter the stretched reaction

sheet relatively more rapidly. For one-reactant systems with Le < 1, this causes

the flame temperature and therefore the flame speed to increase. For Le > 1,

stretch causes the flame speed to decrease and may eventually produce flame extinc-

tion even under adiabatic conditions. There is a similar behavior concerning

curved flames; flames convex toward the fresh mixture have reduced flame speeds

for Le > I.
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These physical results have been clarified well by AEA analyses [e.g., 36].

It is helpful for many purposes to derive general partial differential equations

for the evolution of a reaction sheet. This has been done by a number of inves-

tigators using AEA ideas [e.g., 37,381. Further study of evolution equations

offers promise of clarifying dynamics of flame propagation.

5. EXTINCTION THEORY. The ability of AEA to describe extinction phenomena

has proven to be one of its most useful attributes. Extinction of premixed

flames has been mentioned above. Extinction phenomena also can be observed

readily in nonpremixed systems. For example, fuel and oxidizing gaseous jets

can be directed towards each other and ignited. A steady, flat, diffusion flame

then may exist where the jets meet. By increasing the velocities of the jets,

a situation eventually may be reached at which the diffusion flame is suddenly

extinguished. A detailed analysis of this type of extinction by AEA methods

has been given [39]. This analysis has provided a basis for comparisons with

experiment.

Other nonpremixed extinctions that have been treated by AEA include those

in droplet burning and in the combustion of surface-burning particles such as

carbon. Objectives have been to ascertain whether extinction is gradual or

abrupt and to identify critical conditions for abrupt extinction. Steady-state

equations may be employed to investigate these questions, the large parameter

usually being QE/(cRT2 f), where Taf is the adiabatic flame temperature and Q a

heat release per unit mass in the reaction. It is found that there is a thin

reactive-diffusive zone usually having thicker convective-diffusive zones on both

sides. Extinction conditions are those beyond which the reactive-diffusive zone

can no longer exist. Such extinctions occur if the strain rate or diffusion rate

becomes too large in comparison with the rate of the chemical heat release.

Radiant energy loss has been shown by AEA to enhance extinction (40].
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The principal outstanding question in analyzing extinction by AEA concerns

influences of multi-step chemistry. This question can be addressed by AEA

methods.

6. CONCLUDING COMMENT. This paper has only touched upon a selected few

of the many accomplishments of AEA. The reference list could be doubled in

length and still not contain all of the important contributions made in the past

decade. Moreover, the topic shows no sign of a decrease in growth rate. There

are many outstanding problems to be tackled. The subject is in a stage of

Arrhenius-like growth and has not yet encountered appreciable "reactant deple-

tion". It has not yet reached steady propagation and certainly is far from

extinction.
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MULTISCALE METHOD AND ACTIVATION ENERGY

AgYMPTOTICS FOR THE STUDY OF THE DYNAMICAL

PROPERTIES OF PREMIXED FLAME FRONTS
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Universit( de Provence

Centre St J~r6me, rue H. Poincar6, 13397 Marseille cedex 13, France

ABSTRACT

In a recent publication /8/, one of us (P.C.) in colla-

boration with F.A. WILLIAMS, has derived the local relation bet-

ween the dynamical properties of the premixed flames front and

the local characteristics of the flow field in the fresh mixture

just ahead of the front. This has been done including the thermal

expansion effect of the gases using a multiscale method and assu-

ming that the flame thickness is small compared to the wave

length of the wrinkles.

But, due to the fluid mechanics, the characteristics

of this umpstream flow on the flame front are functionnals of

the front position.

In this work, we solve the fluid mechanical problem

in the presence of gravity in order to derive the dispersion re-

lation controlling the stability properties of the planar front.

Two main results are obtained. First, the viscosity

effects in the gases do not affect the stability properties.

Second, for slow flames (velocity <15cm/s), the gravitational

acceleration associated with a realistic positive value of the

"Markstein constant" can make the planar front stable for all the

wave lengths even in the presence of the strongly destabilizing

hyarodynamical mechanism of "Darrieus and Landau".
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I - INTRODUCTION-

New interest was shown recently in the

dynamical properties of flame fronts which are expected to

control the efficiency of the turbulent combustion. There are several
reasons for this renewal of interest. The first one, which is

of fundamental nature, is related to the occurence, beyond the

stability threshold,of cellular structures on the front which

can produce chaotic movements in premixed combustion even for

laminar upstream flows. This phenomena which is related to the

general problem in physics of the transition mechanism to the

chaos was experimentally shown, for the first time in premixed

flame, by the pioneering works of MARKSTEIN /I/ and verified re-
cently in our laboratory /2/ for carefully controlled flow condi-

tions. The second reason is the developpement in our laboratory

of a new optical technic perfected by L. BOYER /3/ which provides

us with quantitative experimental data concerning these dynamical

behaviors of premixed flame fronts /2//4/. The last one is the

developpement of power-full mathematical technics which opened

the field of theoretical investigations of these phenomena in

combustion. One decisive step in this direction was the use of

an asymptotic expansion in large values of the reduced activation

energy to describe the inner structure of both the premixed /5/,

/6/ and diffusion /7/ flames. Another step was accomplished
recently by P. CLAVIN and F.A. WILLIAMS /8/ by coupling this asym-

totic expansion with a multiscale method which allowed them to take
into account completely,for the first time, the effect of the gas expan-

sion on the structure of a tilted front and thus on the dynamics

of wrinkled fronts.

The purpose of the present paper is to inves-

tigate theoretically by these methods the stability properties of the

premixed flame front including a complete description of the

thermal expansion effect.
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As the early works of DARRIEUS /9/ and

LANDAU /ID//II/ showed, this effect is expected to produce a

strong instability mechanism. In fact, the flame front is consi-

dered in these works as a surface of discontinuity with a normal

velocity kept constant relativelto the gas flow. Ihis surface is

the frontieer between the fresh cold mixture and the hot burnt

gases which can be both considered for the slow flow velocities

involved in the combustion, as incompressible flows. Thus, the cou-

pling of the hydrodynamics of the incompressible gas flow with

the deflection of the velocity due to the thermal expansion

through the tilted front produces an increase (lowering) of the

gas velocity near the concave part A '(convex part B) of the front

as it is shown on figure 1. The resulting effect is to push the

part A downstream toward the burnt gas and the part B upstream.

This produces a strong instability of the front which is descri-

bed by the following dispersion relation /10//11/

(2 -y)o2 +2ko-k2 (Y/ 1-) =0 ()

Where a is the growing rate of the instability, and, k the corres-
ponding wave number of the wrinkled front, et eikye,. y is the

expansion ratio defined by y = (pf-)/pf which is equal in the

isobaric approximation to (Tb-Tf)/Tb where P and T denote the

density and the temperature respectively. The subscripts f and b

identify the fresh and burned mixture respectively, O<1<1.

For usual premixed flame y varies between 0.75 and 0.95. The equa-

tion (1) shows that there is a strong unstable branch given by

-2 + / I -- ) ] k (2)

and that such a flame it clways unstable. These last result does

not agree with experimental observations on laboratory burners

where flat fronts of planar premixed flame of 10cm of diameter are stabilized

in an ugstream uniform gas flow /2/.

The weakness of the Darrtus-Landau model is to comple-

tely neglect the inner structure of the flame front which must be modified

by the local curvature of the front in such a way that the normal velocity

2 1
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of the front cannot be considered as constant. Such modifications
were first introduced in a phenomenological manner by W. ECKHAUS

/12/ and G.H. MARKSTEIN /1/ in the Darrieus-Landau model. Before

to recall the effects of such modifications on the stability pro-

perties, let us briefly present the diffusive thermal model first

proposea by b.I. BAKENULAIT, Y.B. ZEL'DOVICH and A.G. ISTRATOV /13/

which can be now analytically solved by an asymptotic expansion

/6//14/ to provide these curvature effects in a systematic way.

01 FFUSIVE-TfERMAL MOVLL

This model is exactely the opposite of Darrieus
Landau'sone. By completely neglecting the expansion of gases through

the flame thickness it uncouples the flow velocity field from

the equations of species and energy conservation which then govern

alone, the dynamics of the wrinkled front. Contrarily to the
Darrieus-Landau model, this last model considers the inner struc-

ture of the front but without the effects of the flow velocity
deflections mechanisms through the flame thickness. The heat and

species diffusion and the constant convection in the longitudinal

direction are the only transport mechanisms which are retained,
the transverse convection is completely neglected because the

constant density approximation makes the flow completely insen-

sitive to flame wrinkling. When only one species is supposed to

control the reaction rate, the problem is reduced to solving two

coupled equations concerning the normalized reactant concertration

v and the reduced temperature variable e =(T-Tf)/(Tb-Tf). Because
the flame velocity is very small compared to the sound velocity,

the energy conservation can be written with the assumption that

the Mach number is negligible in such a way that the two equations

for T and e only differ by the values of the thermal and molecular

diffusivities D and D. In gases the Lewis number, defined by
th

L = Dth/D. is close to unity and constant. These two equations
are coupled by the chemical production of heat F(o,y) which is

also the chemical consumption of the reactive species. This term

is well known to be highly sensitive to the temperature and its

temperature dependence is usually well represented by an Arrhenius
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factor exp -E/kT where the reduced value of the activetionE Tb-Tfl
energy s = (Tb -) is assumed to be very large, B>,.

A direct consequence is that the velocity of a planar and adia-

batic flame is also a strongly increasing function of the burning

temperature Tb. As it is shown on Fig.2, the key fact for this model

to be analiticaly soivaoleby an asymptotic expansion in large value

of s is that, in thelimit 8--, the nonlinear production term F(o,y),

becomes negligible except in a very thin reactive zone of d/O

thickness located at the end of a large convective-diffusive zone

of thickness d=pDth/PfUf, d is called the flame thickness, Uf being

the flame velocity relative to the fresh mixture. For usual defla-
-1

gration waves the order of magnitude are the following : d=5 10 mm,

Uf--lOcm/s and 0-1I. The second step in understanding the front

dynamics is to introduce the local modification of the flame tem-

perature by the curvature of the front. Because the temperature and

species concentrationm vary through the flame thickness, a curva-

ture of the front induces a transverse diffusive flux of heat and

mass which produces a local modification of the temperature of the

thin reactive zone. As it is shown in the figure 2, whenever the

diffusion of heat is more efficient than the diffusion of the

species limiting the reaction, the net effect of the wrinkling is

to produce a lowering of the combustion temperature and thus of the

local flame velocity in 15(and the contrary at A). It turns out,

that the flame front is stable in this case and that it can become

unstable when the diffusion of heat is less efficient than the

diffusion of mass. Thus, a critical value of the Lewis number L"

is expected to separate a stable region L> L:: from an unstable one

L<L::. In fact, when 0 is large the sensitivity to the temperature

is so high that a very small departure of the Lewis number from

one produces a strong effect and a detailed analysis /6//14/ shows

that the precise bifurcation parameter is L=O(Le-1) whith a cri-

tical value V' = -2. Close to this critical value, the dispersion

relation takes the following form :

= - t-? k2 - 4k4  (3)

Where d and t=d/Uf are the unit of length and time respectively.
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k2
The k term illustrates the transverse diffu-

sive nature of the response mechanism. The

sign of the coefficient of k2 controls the bifurcation. The always

stabilizing 4 th order term k4 comes from the heat diffusion rela-

xation of the perturbation of the combustion temperature which is

seen to be itself of order k2 . As it is shown on the figure 3.b,

a small range of wave numbers around k=O becomes unstable at the

bifurcation. However, the general dispersion relation given by

a detailed analysis for different values of t is more complicated

than (3) :

-r 2 (1-r) = ~(-r+2.) with r = (4)

Equation (4) shows that another instability appears for a

moderatly high value of t(tt32/3) for which an Hopf bifurcation

(Imo/O) occurs /6/. This result has been used recently to explain

spinning deflagration waves /15/ and travelling combustion waves

/2/ observed in premixed combustion in solid and gaseous phases

respectively. As is indicated by a simple developpemen of (4) in

small k and large i with ki of order one, a= - -(k2- W ), the res-

ponse mechanism is so strong that the effects of acceleration

cannot be neglected and can produce another mechanism of ins-

tability.

The results given by this diffusive thermal

model are very attractive for gas combustion because they involve

critical values of Lewis number sufficiently close to unity to be

relevant in gases. In fact the upper limit correponding to Lewis

number around 2 seems to be a little too high to be easily attai-

ned. But the lower limit corresponding to Lewis number slighly

smaller thanone'can be more frequently observed and has been

extensively used /6//14//16/, these last five years, to explain

the cellular structure which appears on premixed flame front

when the limiting component is sufficiently light (rich mixture

of hydrocarbons). The result of the analysis presented in the

following shows that this conclusion is doubtfull and we propose

another interpretation.

24



A TENTATIVE MODEL OF COUPLING

In fact, the weakness of the diftusive ther-

mal model is to ignore the strong unstability mechanism of Darrieus

and Landau presented at the beginning of this section. A realistic

theory of flame stability must couple the reactive diffusive phe-

nomena with the advective involved in the hydrodynamics.

Up to nowthe theoretical description of this complete coupling

was considered as a formidable challenge. It will be shown in the

following that this can be systematically accomplished by associa-

ting a multiscale method to the asymptotics analysis. One of the

recent tentatives of coupling hydrodynamics effects and the dif-

fusive ones in flame was done by G.I. SIVASHINSKY /17/ who used

a tricky approximation. In the preheated zone (diffusive non

reactive),the density p was considered as constant and equal to

its upstream value pf but, in the burned gas, the value of the

density was taken to be equal to its actual value Pb' =(Pf-b)/Pf"

This approximation consists simply in adding the two kind of me-

chanisms without a real coupling. Thus the corresponding dispersion

relation near t=t:: is a combination of (2) and (3) which, when Y

is small enough, reduces simply to :

o = Yk- k2 - 4k4  (5)

As it is shown on figure (3.C) this model predicts that contrarely

to experimental observations, the flame front is always unstable

for wave lengths larger than a critical value which is of order

of the flame thickness d. It is clear that this qualitative result,

obtained by this simple analysis, cannot be modified without addi-

tion of a new stabilizing phenomena.
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GRAVITY EFFECTS

The direct observations of the difference

between a downward and an upward flame propagation /18/, has

lead to think, some thirty years ago /1/, that the gravity must

play an important role in the stability properties of premixed

flames.

It is worthwhile noticing the following pro-

perty. When the simple coupling model is used in presence of the

gravity, the dispersion relation is similar to the one correspon-

ding to a burning liquid layer which was obtained by L. LANDAU /11/

with the pure hydrodynamical model of a reactive interface under

gravity but provided with an interfacial tension. The adimensional

coefficient of proportionality between the curvature and the pres-

sure jump produced by the surface tension has simply to be replaced

by the adimensional response time, 1/(z12+1) appearing in the

diffusive thermal dispersion relation (3). This clearly indicates

thatas it is shown by a comoarison of the Markstein result with the

Landau's one , these two distincts mechanisms act in a similar

manner on the stability properties. Thus, the corresponding dis-

persion relation is given by (cf./11/)

c-(2-y)+a(2k)+k(yb-k Y + k2(z+2))= 0 (5)

where b=gDth/U 3 is an adimensional measure of the effects of

the gravity acceleration g. It must be kept in mind that this

adimensional parameter varies from 5 10- 1 for the slowest flame
-3(Uf-1Ocm/s) 4 10 for flames of usual hydrocarbon-air mixtures

(Uf=40cm/s) propagating downward and, thus, must be considered

as a small positive quantity. When the flame propagates in the

upward direction the gravity has a destabilizing effect (b<O).

Asit is shown on figure 3.d, it turns out that the flame front

of a premixed flame propagating downward could be stable for

every wave numbers if the values of Z would be larger than the

critical value c = -2 + 4- Y)2b At this critical value tc' an

unstable wave number appears with the critical value kc= 2b(1-y).

Contrarely to the case of the pure thermal diffusive model, for which the
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Lewis number is less than one at the bifurcation, the presence
of the hydrodynamical instability mechanisms, even with a sta-
bilizing gravity effect, requires at the bifurcation a very stron-
gly stabilizing diffusive mechanism characterized by a value of
the Lewis number larger than one (L>I). But in both the cases

the stability limit is a lower bound (L>L or C? characterizing
in both the cases the domain of stability). In fact, even for the
slowest flame (corresponding to the smallest accessible values
of y,y-0.75), the critical value tc of 9 has a too high value

(tc >10) to be accessible in the actual gases mixtures.
Furthermore, it is readily seen that, for a rpalistic small value-1
c of b, kc and tc are of order E and c respectively, in such
a way that the product k ct c being of order unity, the upper dif-

fuse thermal limit of stability, t=32/3 corresponding to the
Hopf bifurcation mentionned earlier, is surely exceeded, ic>tt*
Then this model predicts clearly that there is always a range

of small wave numbers for which usual premixed flames are unstable
By using the troubling approximation, y-*O with b(1-y) kept equal
of order unity, B.J. MATKOWSKY and G.I. SIVASHINSKY /19/ derived
a model which leads to conclusions different of those presented
just above. But it is clear by looking at the order of magnitude
that this approximation cannot be relevant for usual flames for

which y-0.8 and b.O - 1.

DETAILEV ANALYSIS OF THE COUPLING BETWEEN THE DIFFUSION

PROCESSES AUV THE HVVRODVVNMICS OF THE GAS FLOW

For usual flames whose the thickness is

less than one millimeter, the wave lengths involved in the cellu-
lar structures observed experimentally are of an magnitude order

of one centimer 12/. Thus, the hydrodynamics phenomena are seen
to occur on a larger length scale than the diffusion processes

and it is natural to look for describing their coupling by a
multiscale method where the small parameter c is the ratio of

the flame thickness d by the wave length ., c=d/.. Such a method
was developped recently by P. CLAVIN and F.A. WILLIAMS /8/ to
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describe the modifications of the local flame structure induced

by the deflection mechanism of the stream lines through the flame

thickness. A further investigation shows that these mechanisms

produce a pressure jump accross the flame thickness which acts

at the lowest order in k expansion like a surface tension of a

dynamical nature. In /8/ the flow velocity u _. at the upstream

boundary of the preheated zone was considered as a given quantity

In the present work, these quantities have to be com-

puted, like in the Darrieus-Landau approach, by solving the hydro-

dynamical problem occuring on the scale. One of the main result

of /8/ is to obtain the evolution equation of the flame front

position a(y,t) in terms of u _.• Its linearized version is sim-

ply given by /8/

a- c(Y,T) = u_ - D o(Y,) (u_ X (6)

with D (Y't) = ln( 2 Di(y)
0Yl 1-Y (7)

and Dl(Y) = J dx x -1 tn(l+x)
Jo

Formula (6) indicates that the main effect on the front dynamics

pru'iuced by the flow deflection through the flame thickness is to

replace the coefficient 4 +1 appearing in the pure diffusive ther-

malmodel (cf.formula (3)) by Do (lim DO= 1+4).

Formula (6) shows also that, not only the longitudinal component

of the velocity u_. of the approaching flow immediately upstream

from the preheated zone affects the front dynamics, but also its

longitudinal gradient u_ .In the traditionnal litterature on Combus-

tion/18/20/ the effect of the gradient of the flow velocity is

called the KARLOWITZ-effect. As it was anticipated by W. ECKHAUS

/12./ in his pioneering analytical work, this effect

appears in (6) to be simply, in its linearized version and at the

lowest order in c, a correction of the front curvature in order

to make efficient only the relative curvature of the front compa-

red to the "curvature of the flow".
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The result of the work presented in the next section points out that the

main effect of the complete coupling in the limit of small k, is

that the "dynamical surface tension" and "the Karlowitz effect"

stabilize enough the flame to make the critical Lewis number L

close to one, in such a manner that the bifurcation can be expe-

rimentally reached in usual reactive gas mixtures. The critical

wave number k c being roughly unmodified. Thus, even with the

Darrieus-Landau instability mechanism, the present theory predicts

inagreements with the experiments, that a range of Lewis number

must exist for which the planar flame front is stable (at least

for slow flame). Furthermore, the bifurcation mechanism is seen

to be quite different than the one predicted by the diffusive

thermal model.
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II - ANALYSIS -

Except for slight modifications introduced by
the gravity, the formulation of the problem parallels the works

of CLAVIN and WILLIAMS /8/ and the reader is referred to this

publication. The conservation equations to be written in the

moving coordinates are those for mass, momentum, energy and
reactant. Except, for the equations (3), the equations (1) to

(9) of the reference /8/ are similar. Only the term r.b is added

to (3). According with the arguments presented in the introduc-

tion, b is considered as small parameter b=EB where <<1 and

B=O(1). As (5) shows, the order of magnitude of the relevant

wave numbers (_kc) and of the frequency is expected to be of the

same order c. Furthermore, as it is shown by the results of
Darrieus and Landau /9//11/, the amplitude of the flow velocity

involved in the stability analysis is of the same order c than

the wave number. Thus, the scaling presented in /8/ can be used

for the present analysis. In the spirit of the multiscale me-
thod /21/, the space coordinates appropriate to describe the
upstream incompressible flow and the preheated zone are (X=cx,

Y=cy, Z=cz) and E = x-a respectively where x=c(Y,ZT) is the

equation of the reactive surface /8/. Thus, the expansion intro-
duced in the formula (11) of /8/ can be used with a slight modi-

fication for the pressure due to the gravity :

p = po( )-cBr-cBa(Y,Z,T)+f: P_ (X,Y,Z,T)

+ Ep 1 (i ,&,Y,Z,T)+ ....... (8)

U = u (&)+cO (X ,Y,Z,T)+ &

(9)

V = e9_ (X,Y,Z,T)+ c 91(= ,E,Y,Z,T)+...

where B is defined by ==E& In fact p o(F)-cBC and u ()

correspond to the planar steady solution and p= -rB +-P

with um u ,.6and v-= are the modifications by the front
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wrinkling of the pressure and of the velocity field in the ups-

tream incompressible flow. The multiscale analysis associated

with the asymptotic expansion in B allows to compute order by

order in E the pressure and the velocity jump accross the flame

thickness ap = p+(X=O)-p_(X=O) 6u= u+(X=O)_u (X=O)... where

p+(X,Y,Z,T) u+(X,Y,Z,T), V+ and W+ are the fields (") in the

burnt gases. It must be noticed that, for the present stability

analysis, only the version of /8/, linearized in the amplitudes2
and limited to the c terms, is required. It turns out, from the

multiscale analysis, that u+, v+, p+ and u, v, p_ verifie' the

linearized equations of the incompressible fluid dynamics which

are simply(?

a a a a.--ju + 7 v_ = 0 ,, -~ u+ +. -y v+=

(10)

u - + u p= - - p_ ,+ 1 aa T a-y ax+ + T_ + I----YaT5URy X +

a v- a 1 a 1 a
T + -X = - -a y - v+ Y-- - v-X+ 1 -y 3p +-yb,

-sing the normal-modes decomposition of Fourier a=C eikY eaT,

u = U(X)e ikY+vT = V(x)eikY+ p = -ab+ (x)eikY+T

V+= -(l-y)cb+P+(X)e
i kY+aT (11)

and assuming bounded values everywhere in the space, the solution

can be written in the following form

P_(X)= P_(O)ekX, P+(X)= P+(O)ekX

X)= - (O) U+(X)= Ae y)X+ (1-y) k P()e-kX_: a P_(yOoe +O e

V_(X)= iu+(x) V(x)= ix U+(X) (12)

In order to save the notationsonly one transverse component

of the velocity V will be used.

Notice that, in the linear analysis, the variable z can be replace by X
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with the following boundaries conditions on the flame front X=O

which are valid up to the 2order

a u In 1 - u - V2 y)D + (-P-P'lVyy

6P = 
.y _Yy

(P+P')(axU+ - a u )- ycb , (13)

6u = Z (a u  - V 2 a) Di
7 yya 1

6v =(a Tv +3 13 v  -a (y + b In
T V_+T yn + P(xV+ v y _ vy

Where P and P' are the Prandtl numbers associated to the shear

and bulk viscosity. It is worthwhile to notice that the pressure

jump contains a term proportional to V 2ya which can be interpretid
2 y

at this 2 order, as a surface tension. Its origin lies in a se-

cond order mechanism of the deflection of the flow velocity

through the tilted front.

In order to obtain a non trivial solution for P+(O)

P_(O), A and C of the system (12) verifying the conditions(13)

and (6), the following 4-4 determinant must be zero

- + A a

1 k '", _(Inp,) 2 ' -(P+P')(I-y)o ' -yb

1-Y
, 2 , ,'_ 2k

2 2
+(P+P' ) k to k

I a1

+k+a

-k
-k D -k -1 : D1 k

7 1
- - - -- ------------------------- - -- - - - - - -

-k k (1-y)a/k , -ky/1-y

6 2 p(1 202
-koln + P(1-.y) /k +kbaln 1
+PkLk 1

kbl n" -

-k(l-kD ) 0 -a-k 2D
0 aaa0
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lhis relation provides us with the dispersion relation which

after factorizing the term (]-y)o-k takes the form

(2--Y)O +0(2k+k2 [109og -7 + D, (3-'r)(2-y)Dl

k(lyb-k( - y)4k 2[ -y + D (2 + ) ID ]
0/ 1 -y -

Dynamical Diffusive Karlowitz 6p
superficial response +
tension mechanism velocity deflection

Except a non important difference in the coefficient of c, this

dispersion relation is similar to (5) but with an important r,odi-

ficatioyi iF the order of maonitude of the coefficient of the

last term.



III - DISCUSSIONS OF THE RESULTS -

Except negligible terms which are omitted, the

relation (15) corresponds to the first three terms of the

developpement in power of E of the general dispersion relation

which is supposed to be an analytical function of c. This deve-

loppement is a developpement in the amplitude of the gradient

and (15) corresponds in fact to the following order of the

Darrieus-Landau's result concerning the purely hydrodynamical

model /9//11/. As it is clearly seen on the structure of the
3 2

determinant(14) the c order in (15) corresponds to a E order

in the developpement of p, u, v and 3 a

The first remark is that the viscosity does not

appear in the dispersion relation at this d order and thus,

can be considered as a negligible effect on the flame stability.
This result is not trivial because the c order of the disper-

sion relation is high enough in principle to contain the vis-

cosity effects which are seen to cancel exactely at this order.

The critical values k and i. are obtained by equa-c C
1Ig to zero simultaneously the last term of (15) and its k

dJri.ative to obtain

- 2b(1-y) (16)

+ Do(Y'tc)(2+ T_-)+ZcDj(y) = y/ 4 (1-y) 2 b (17)

One verifies directely on (16) the consistency of the choosen

scaling, b=O(e) with c=d/A. Thus the right hand side of (17) is

seen to be of a large order of magnitude =1/(1-y)2b. But, as
it is shown by a simple inspection of the order of magnitude

for y=0.8 and b=0.15, the equation (17) can be satisfied by a

not too high value of ic=5 and a small enough value of kc=6.10 2

to preclude the dangerous limit kctc= O(1)(cf.Introduction).

This result is due to the fact that each of the four terms of

the left hand side of (17) have the same positive sign (for t>O)

and are large enough for a realistic value of y. The physical
rea'ons are that every k terms, like the thermal diffusive

1 /4
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response of the front given by (6), the "dynamical surface ten-

sion" and the coupling of the Karlowitz effect with the velocity

deflection identified in (15), are all, stabilizing phenomena.

Furthermore a detailed investigation of the struc-

ture of the determinant (14) shows that, contrarely to the k2

terms, the k3 ones which are neglected in (13) and (6) can pro-
duce only negligible effects on the dispersion relation (15)

which is thus seen to contain the dominant physical phenomena

necessary to make the premixed flame front stable.

But, as the adimensional gravity coefficient b

varies like the inverse of the cubic power of the flame velo-
city, (17) shows that for fast enough deflagration Ufa20 cm/s

the Lc becomes too high enough to be experimentally accessible.

Thus, the present analysis shows that for slow

enough flame, the planar front can be stable even when the hydro-

dynamics destabilizing effect of Darrieus and Landau is taken

into account. One possible experimental test, of these theore-

tical results could be provided by measuring the cell sizes at

the bifurcation (thereshold of the cell apparition) in order

to verify whether the following predicted relation corresponding

to (16) is true or not :

"the cells size varies like the second power of the flame

velocity U2/(1-y)g".

Another possibility is to use the laser tomogra-

phic method /3/ for measuring.,as in /4/,the flame response

coefficient D of a premixed flame in a weakly upstream turbu-
lent flow to check whether or not D goes systematically to zero

at the bifurcation. The purely diffusive theory /16//14/ predicts

a zero value but not the present theory.
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ELEMENTARY CIlEiMISTRY IN TiiE MODELLING
01: ONE DIMENSIONAL COMBUSTION SYSTEMS

Joseph M. !leimcrl and Terence P. Coffee
USA Ballistic Research Laboratory, ARRADCOM

Aberdeen Proving Ground, MD 21005

ABSTRACT. In order to obtain validated kinetic reaction ne-tworks we have
assembled a code that models the one dimensional, premixed, laminar, steady-
state flame. Our objective is to check model predictions in detail with
experimental measurements. Herein we discuss (1) the results for our test case,
ozone and (2) the effects of employing different mixing algorithms for the well
characterized multispecies flame 11--O--N-2.

The ozone results show explicitv that burning velocity comparisons are
necessary but not sufficient to define the chemistry; and that profile measure-
ments are in fact necessary.

The five different mixing alg,,orithms used predict essentially the same
flame speeds and species profiles for a wide range of lk-02 -N2 concentrations.
This does not indicate that transport phenomena are unimportant, but rather
that the selection of the input values for the species transport properties is
more important than the selection of the method used to approximate multispecies
transport.

I. INTRODUCTION. The overall objective of these studies is to delineate
and validate the elementary gas phase kinetic mechanisms involved in the com-
bustion of tllX/RI)X propellants. The modeling of premixed, laminar, steady'
state flames is the approach taken; first because the governing equations are
simple relative to other combustion processes and so one can focus upon the
kinetics; and second because laser-based diagnostics enable species and temp-
erature profiles to be experimentally probed and so the model can be validated.
Detailed comparison of predicted and measured profiles of snecies and of
temperature serve either to validate the model if agreement is attained or to
indicate refinements in the model's kinetic mechanism and/or in the model's
input coefficients, if agreement is not attained. In the later situation the
validation process is iterated until agreement is reached. A sequence of
flame studies is underway; from the test case, ozone, through the recognized
intermediates, formaldehyde/oxides of nitrogen, to the gas phase elementary
network that describes the IIMIX/RI)X flames. This paper deals with two aspects
of this sequence. The first is a discussion of model results for the ozone
flame. The second examines the effects of using different methods of approxi-
mating multispecies transport phenomena.

II. RESULTS FOR OZONE. The ozone chemistry itself is simple and rela-
tively well known. It is thus of potential importance in the testing and
checking of new codes that simulate rather complex combustion phenomena and
employ elementary chemical reactions (A complete description of the background,
motivation and other details can be found elsewhere (1))
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The governing equations that describe a one dimensional, premixed,
laminar, unbounded flame for a multicomponent ideal gas mixture are 12-4]:

(p) t + (Pu) x =0 (1)

P(Yk)t + Pu(Y Ox (pYkVk)x + RkMk, (k = ],...,N), and (2)

-1 N
p(T) t + pu(T) x = cp {-qx + E h k [(PYkVk)x - RkMk]} (3)

i=l

where for the ozone case we have taken q = -AT . For the kth species Yk and
4 are the mass and mole fractions, respectively, Rk is the net rate of produc-
tion due to chemistry and Mk is the molecular weight. In addition the diffu-
sion velocity Vk is given by the Stefan-Maxwell relation

() =N (4) k)D'

(Xkx k= (V Vk) kj (4)

and the other symbols have their usual meaning. The pressure through the
flame is one atmosphere and constant [4,5]. We neglect effects of viscosity,
thermal diffusion, body forces and radiation. The boundary conditions are
those of an unbounded flame namely: T(--) = Tu, Yk(_-) = Y.u(i=l,...,N); and
(T)x = (Yi)x = 0(i=l,...N) at x = +-. We employ a relaxation technique and

use a modification of the PDECOL package [6] to obtain a solution. PDECOL is
based on a finite element collocation method employing B-splines. For comput-
ing efficiency we have developed a method of concentrating our breakpoints in
the steep flame front where accuracy is necessary [7].

Kinetic, transport and thermodynamic coefficients are required as input
to the model. The kinetic mechanism is:

03 + M *-+ 0 + 0 + MI (Ri)

0 + 0 -+ 01 + 0', and (R2)

0 + 0 + M - 0? + M (R3)

and expressions for the rate coefficients are taken from the literature [8-101
and are shown*in Table 1. Expressions for the transport coefficients [1,11-13]
are shown in Table 2 while the specific enthalpy, hk, and specific heat
capacity, c k, arc taken from Gordon and McBride [14]. Each expression for
the input cbcfficients is based on separate, independent measurements and the
methodology for obtaining them has been discussed [1].

The viscosity expressions are not explicitly used in the model presented
herein, but the)' have been used implicitly in the derivation of some of.
the other transport coefficients [1].

42



II1. RESULTS AND DISCUSSION. Figure 1 shows the 0, 02, 03 and
temperature profiles computed for an initial ozone mole fraction of unity.
No experimental profiles are known for comparison; however, we can compare
burning velocities. As can be seen in Figure 2 our computed burning veloci-
ties compare favorably with both the experimental results of Streng and
.Grosse [15] and the modeling results of Warnatz [161 (Warnat.- has developed
a finite difference model that also requires species dependent input
coefficients). The solid line in the figure is Streng and Grosse ts fit to
their data. Over the range of 0.25 to 1.0 initial ozone mole fractions our
results are no more than 30". greater than Strong and Grosse's. Over the

entire range shown our results agree with Warnatz' with ± 121. However, this
agreement does not imply that the sets of input coefficients used in the
respective models are equivalent.

Figure 3 shows the ratio of the values of Warnatz' input coefficients
to our corresponding values. This figure shows that at the higher tempera-
tures (i.e., at the larger initial ozone mole fractions), the values for k 1
and k, change in opposite directions (sec Figure 3). This suggests that the

individual effects of k and k, on the burning velocity offset each other.
This hypothesis is checked by substituting Warnat:' expressions for k1 and k2
into our code (This is done in such a way that the equilibrium constants
remain unchanged). For the case of the initial ozone fraction of unity, we
obtain a burning velocity of 459 cm/s. This value is to be compared to
Warnat-' computed value of 445 cm/s. As an added bonus, the difference in
these two values provides a measure of the collective effects of differing

transport coefficients and different numerical techniques.

In comparing profiles, there are sensible differences in some model
results. As an example consider the atomic oxygen profile for an initial
ozone mole fraction of unity, Figures 4. (For ease in viewing, the curves have
been arbitrarily displaced from each other along the distance axis.) Following
the method of comparison discussed above, we substitute Warnatz' expressions
for k1 and k7 into our code and find the dashed-line profile. Thus, we find
that difference in the model profiles are due mainly to the different expres-

sions for k 1 and k2.

We have recently and critically evaluated the available high temperature
experimental data for the ozone decomposition reaction [8], Reaction 1. The
expression used here and shown in Table 1 is consistent with all the direct

experimental data known to us and is valid over a decade range in temperature.

The expression for k, is another story. Figure 5 shows plots of the
values of k- against reciprocal temperature. Warnatz 117] has developed and

used his owni expression for k, and we have employed llampson's [9]. To use

them in our codes, we both have assumed that the respective expressions are
valid for temperatures greater than 1000K, the stated upper li~nit of applica-
bility of each.

In order to distinguish which expression for k,, if either, is correct

high temperature measurements and/or ob Initi)o calculations of the rate
coefficient for reaction (2) are required. Alternately, the computed differences
in the values for atomic oxygen in the burned region at an initial ozone mole

fraction of unity appears to be large enough that profile measurements above

such a flame may be sufficient to distinguish between the two expressions.
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In summary we have shown that this model and its input parameters predict
burning velocities that are in reasonable agreement both with the measurements
of Streng and Grosse and with the computations of Warnatz. lie have also demon-
strated that agreement with burning velocities, even over a wide range of
initial ozone mole fractions is a necessary but not sufficient condition to
ensure that the input coefficients are realistic; for this reason profile
measurements are vital to test a model's kinetic input coefficients; and by a
comparison of computed profiles, we have indicated the need to measure or
to calculate high temperature values for k2 , say in the range 1500-2000K.

IV. TRANSPORT ALGORITHMS. As outlined above our model requires as
input not only the kinetics information (of our immediate interest), but also
thermodynamic and transport data. Fortunately for the types of chemical
species we are interested in, the thermodynamics input is by and large well
defined [14,18]. In addition, while some transport coefficients are only
well defined through low temperature (< 1000 K) measurements [19], the theory
is sufficiently developed to allow reasonable estimates to be made at higher
temperatures 12]. A theory has been developed for multicomponent mixtures
[2,20-23], but it is computationally cumbersome. To circumvent this, previous
workers have generally employed some level of simplification [16,24-33].

This section of the paper addresses the question: which of the mathematical
approximations to the multicomponecit transport properties provides a desirable
trade-off between precision and computational effort. Another way of phrasing
this question is to ask what loss in precision of predicted flame speeds and
profiles occurs as the mathematical approximations to the multicomponent,
polyatomic transport expressions are made cruder.

We have~approached this problem by actually computing the properties of
the H2-02-N 2 which has a set of well characterized input parameters. We fix
these input parameters and vary the transport algorithms. The computed flame
speeds and profiles are then compared. The numerical method is discussed
in [34,3S], and the details of the input parameters and transport algorithms
are discussed elsewhere [30,36]. It shall suffice here to simply enumerate
the approximations used and briefly discuss the results.

We shall now outline five approximations to the multicomponent, polyatomic
formalism, based on the theory of Wang, Chang, and Uhlenbeck [2,20-23). We
start with the most accurate and progressively consider cruder approximations.

Method I

We can write for the heat flux

N N RTD, T
q = E pYiVihi -oTx - E, (X) (5)

M.X. ii=l i-- 1 i x

*The ozone flame discussed above is essentially a binary mixture as far as the

transport coefficients are concerned and so will not suffice as a test case.
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and for the diffusion velocity, which enters into the mass flux, oiYiVi ,

we have

N DiTI_. r(-t (n T) (6)
V. =- lD (X) --- (nXi j=1  j ij ix i '6

Expressions for Di, DkT and Xo are computed by a formal expansion.
k 0

J
Method I is the three term Sonine approximation to the formalism expressed

in equation (5) and (6), [37] gives a discussion of this approximation.

The three term expansion requires the solutions of two matrix equations
each involving a matrix of dimension 3NX3N, where N is the number of species.

The elements of this matrix are complicated functions of the pressure,

temperature, mole fractions, viscosities, binary diffusion coefficients,

specific heats, collision numbers and collision integrals. For further

details see [36] or [37].

Method 1I

The above formalism is quite complicated to work with, and so further

simplifications are almost invariable made. We can simplify by taking only

one term in the Sonine polynomial expansions. For diffusion this simplifi-
cation can be rearranged [2] to give the Stefan-Maxwell equations, equation (4).
This set of equations is not independent, and the constraint

N
E Y.V. =0 (7)

i=l

must be used in place of one of the equations in (4). Then the diffusion .
velocities can be found by solving a set of N equations in N unknowns.

Thermal conductivity is also simplified in this manner. But the result-

ing expression, Xmon is valid only for a mixture of monatomic gases.

To define the heat conductivity for a mixture of polyatomic gases,

we adopt lfirshfelder's Eucken-type relation [19,38],

xpoly = mon N X -

8mol

mix mix + E i Xj (8)

77 Xji=l 1 + r. a.. X.
j~i 13 1
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I

Method III

By making additional assumptions, the Stefan-Maxwell equationg (4) can
be further simplified. A common assumption is that all but the it species
move with the same velocity V. Then we find that

X.
(X.) =X (V - V) E (9)

x j3i 1)

Employing (7) we find

-Y.V.
V = 1 10)1-Y. o

1

which when substituted into (9) yields the formula recommended by Hirshfelder
and Curtiss [39]

(1 - Y.)

X i j~i x

13

Unfortunately, the expression in (11) does not in general satisfy equation (7).
One technique to satisfy this constraint is due to Boris and Oran [40]. They
note that if A set of diffusion velocities V. satisfy the Stefan-Maxwell
equations (41, then so does the set (Vi + Vcj, where Vc is some constant.
The value of Vc is ciosen such that the constraint (7) is satisfied.

The heat conductivity formula employed at this level of approximation
is taken from Mason and Saxena's [19,411 simplification of (8), specifically

N A.1
0 E I + E (X./X.) (12)

i=l jli

where

1.065 ( 1 -1/2 n.M. 1/2 M. 1/4 2

tj W7 +.-) [ n + M M. I (13)3 3

Here ni and M. are the viscosity and molecular weight of the ith species.
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Method IV

Equation (11) or some analogous form has often been used to compute
diffusion. However, the usual procedure has been to use (11) only to
compute V 1. ... , VN_ 1. Then VN is computed from (7). This is less accurate

*than the Boris and Oran procedure, expecially for VN.

Also, an empirical formula for the thermal conductivity,

N N
X = 0.5 1 z X.X + { X./x i }  ]0 i~l 11 i=l ii(4

is often used [19,42].

Method IV is comprised of these common approximations.

Method V

In the case of binary mixture the Stefan~Maxwell equations (4) reduce
to Fick's law. Specifically we have,

YIVI -D12 (Y (15)

A generalization of (15) can be made [3], and yields

Y.V. = ( -Dim (Yi (16)

where

1 - X1
D. = (17)
im si

jir ij

Additional assumptions that p2 Dim, pX and (cp mix are each independent

of temperature arc made and the procedure that permits an a priori selection
of these quantities has been discussed [36].
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Table 3 shows a summary of the five methods of computing the transport
properties used in this paper. Five 112-0 2 -N2 flames were selected and their
initial conditions listed in Table 4. The total pressure is fixed at one
atmosphere for all flames. The computed flame speed for each flame as a
function of transport method is tabulated in Table S (The flame speeds for
.flame A are not corrected to 291 K, as has been done [24]. If this were done,
the value Al for example would be 12.2 cm/s instead if 14.1 cm/s). The values
of the flame speeds span a large range and for a given flame are essentially
independent of the transport method. The largest difference between Method I,
the most complete formulation of the transport, and any other method is 16%
(Compare Methods I and III, flame D).

Note that even our a priori method of selecting constant transport
coefficients, Method V, gives results that are quite close to the much more
complex Method 1.

As we have seen in the ozone flame, reproduction of flame speeds is a
necessary but not sufficient condition to judge the relative effectiveness of
the transport methods. We must also examine the species and temperature pro-
files of these flames. As examples we consider two sets of profiles that
exhibit differences among the five methods that are as large as any observed.
Figures 6 and 7 show the OHi profiles for flame D. Figures 8 and 9 show the
H2 profiles for flame C. As can be seen these profiles are very similar.
The other species profiles and the temperature profiles show at least this
degree of similarity among the five profiles as in the example given.

V. DISCUSSION. The numerical results shown in Table 5 demonstrate that
reliable results can be obtained for the 112-02-L"2 system even for the case of
our a pr-ori determined constant transport method. Note that we cannot infer
that transport is unimportant! The computed profiles and flame speeds can be
sensitive to the choice of transport parameters selected. For the relative
tests of the transport methods here, we have employed the same set of species
viscosities, thermal conductivities and binary diffusion coefficients in all
cases. We have demonstrated that the method used to generate the multicomponent,
polyatomic transport coefficients is not critical for the 112 -02-N2 flame. And
since this flame is reasonably complex we infer that this result has a high
probability of being valid for other flames.

Indeed, we conclude that gross errors detected in comparing the results
of different models'are more likely to be traceable to differences in input
data rather than to the method of approximating multicomponent polyatomic
transport properties.

In summary we find that the choice of a multicomponent transport algorithm
is not critical.

Note added in proof: In practice the solution to equation (1)-(3) is
facilitated through the introduction of the transfornation ()X = p. See
[1] for details.
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TABLE 3. SUmmARY OF TRANSPORT METHODS

Method Remarks

I 3 terms of Sonine polynomial expansion (3 N by
3 N matrix); only method that has non-zero
thermal diffusion.

II For diffurion, I term of Sonine polynomial
expansion (N by N matrix), Eq. (4) and (7).
For thermal conductivity, Hirshfelder-Eucken
method (N by N matrix), Eq. (8).

III Diffusion velocities computed from simplified
Stefan-Maxwell relation, Eq. (11). Each is
adjusted by a common factor, Vc, so as to

N
satisfy E Y.V. 0. Thermal conductivity from

i=l

Mason and Saxena, Eq. (12) and (13).

IV Diffusion velocities computed from the simplified
Stefan-Maxwell relation, Eq. (11), for N-1
species. V is computed from Eq. (7). Empirical
thermal conductivity formula, Eq. (14).

V Diffusion velocities from generalized Fick's law,
Eq (16) and (17). Empirical thermal conductivity
formula, Eq (14). In addition 02 oim = constant;
pX = constant; c = constant; constants are
determined a prigri.
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___ r.m 3!z Z Y.;2 Tu
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TALE s. S * .m sP-:Es C ACULATED USING
TE FIVE TRANSPORT HODELS

T1&m I 1I 111 Iv v

A 1Z..1 14.6 1,.9 14.9 16.0

2 98 101 102 103 96

C 292 300 310 308 291

D 378 379 438 402 348.

E B92 922 971 969 847
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PULSATING COMBUSTION

Bernard J. Matkowsky
Department of Engineering Sciences and Applied Mathematics

The Technological Institute
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Evanston, Illinois 60201

Pulsating combustion, in which the velocity of propagation exhibits

periodic oscillations about some mean value, has been observed in a variety

of contexts in the combustion of both solid and gaseous fuels.

In this paper we will review some of our work on pulsating combustion

in the gasless combustion of solid fuels, as well as in the combustion of

gases.

1. Pulsations in the Gasless Combustion of Solid Fuels

In an interesting paper, Merzhanov, Filonenko and Borovinskaya l"

reported on their experimental findings in the gasless combustion of condensed

systems. This type of combustion occurs without formation of a gas, so

that the solid sample itself burns and is tranformed directly into solid

products. The authors reported the phenomena of autooscillatory combustion

and of spin combustion. In experiments with a cylindrical sample consisting

of a mixture of niobium and boron, the observed autooscillatory combustion

consisted of a propagating planar reaction front whose velocity pulsated

periodically. The burned samples retained their cylindrical shape and

exhibited a layered structure; tht: number of layers was equal to the number

of pulsations. The authors described the phenomenon of spin combustion,

which was observed in cylindrical samples of hafnium in a nitrogen/argon
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mixture, as follows. Upon ignit ion of the specime-n, a small luminous spot

appeared and moved in a helical. motion along the surface of the unburned

specimen. The spot was observed to rotate in borh clockwise and counter-

clockwise direction.s, and some timcs several spots were, observed rotating

cither ;n the samne or in opposite iiirect ions. qpin Lfetc s were also cobserved

in the combus tion of -,Jrconi uw a1nd ti t an i urn II ;I ii I Lrog i/ar ~oiiwixtnrf

Further observations of spin t-ombustion of gaisless ~ytrswete re-porten

in ry lli Tese systr'is irivol-ved compressed t itanium/ ferrocarbon, --nd

t it Anitim/aluminum rixturt- in helium or argon, under lou, pre-ssulre. in

contrast to the expiriu:nts in :1], where- the burning occurred only on and

near the lateral surface of Ltc cylinder, thscxperiments (-xhibj ted spiral

propagation throughout the interior of the cylindrical somple, as well as

on its surface.

In a theoret ici I sto~dy, O~iowsky 011d Si Vashiin!ky -jdec i-ibed he-w LlI--

phenomenon of autooscillatory combustion in condensed s'ysttems originated

fromi an instability of a unifurriily propagating plane front. I'mploying '!

nonl inear reaction dif fusion moo r the tempe)Lratuire and th,. coric.titration

of the che-mical specie lswhich1 I iniLs the ec in Lhu,' showed that, a plane

front soluition whi ch pr)!ag t-,s wjilii ~ons~tant vel ocit y from t ii h i,,! tempera3-

ture combustion prodticts to CIL' loiw. t~mpferiiiite iittirnod -xi,(t-d for ai' I

values of the para!,,et. rs. ,, i 1piarmi Ir f in, re-.;ed 1),.:-)n6 a cr itij'.al

value -Y. *thes iini Form frot b earle tijistabl -ind I niew :iolut ion corr' :.ponu inW

to I pil siting pli Otingi tre.nt biit i I jedTin Ilkk iiii i Itr,- pn.~ltul).:ti , ;n

solution. 'rh' parzuiiett~t ! wit proportinI (0 d I iondililela11 aeltivat ionl

eniergy, and to the ditIfe renee(, between the- noil idhit Sfolios I t :ane rat ui in lte

burned and unburneA vg ions . I n I he imode I ,d iI i I ii o t lhe re-act L:IIL Wa
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neglected, since the unburned fuel ana the combustion products were both

solid. Employing numerical methods on a similar model, Shkadinsky, Khaikin

and Merzhanov [4] observed the existence of pulsating p)lant combustion fronts.

Recently, IvIeva, )M'rzhianov and Shkadinsky 'L*'] employcid a simplified

model of combustion in a cyl ndricail acIto nuiner~cal ty describe spinning,

combustion as a surface phenomenon. Thait is, tiovy deLacribi- the situation

in which tile burnii n,; occurred only on the siirlace of thle cyiindi ical samPLe-.

in order to describe spinning coinbustioT in which the burning occurs thiroughudt

the cylindrical sample, Sivashin:;ky [6j conls idered thDe mTodtel of Matkow'-ky

and Sivashinsky [31 in a cylindrical geoynot ry. Hie presented a 1linear staobil it,-

analysis of the uniformly propagating plane( front and showed that, as a

parameter increases beyond icritical value, the plUane front is unstable2

to perturbat ionis which correspond to spinning inudt-. of prop~agat ion. Of

course, to :,how thait the inodel actually describes spinning propagation, it is

necessary to derive spinning solutions Af Ll( lull nonli nflar problemn, and

to show that these Solutions are stable. Thlerefore Kaper, Leaf and

I-Atkowsky ['7;, pr,-.;cntc-d it nonlinear analysis to -.how that. varioti. types of

solutions bifurcate supercritically front Ltt uniformly propagating plane

front solution. One type correziponde to a propagatinog pulsating react ion

wi-,h waves travelling in both clockwise and Coun1tcr-clockwise directions

along its front, another corresponds tLo a plIsatinjg rtaction with standi!-,,

waves along its front . Cho iormer type of S01 tiion corre4speedCS tO s 1 'intnojg

propagation. The t rav- 11 irg wave i;ol tat-i OI:. e~r i spine tg propat-.I 1-011l

we-re then shown Lt. h(- stale, wiierca:, iii. tanid iiw, wayi ;o attions Wet e

unstable. in addi tion, othe-r cOMMTiaWiion: ot ax ial, iradial anid taitgent ial

modes of propalgat ion were Observed ti bifu-rcate(. and thmeir s t :ah lit y was s t.tidieC'
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2. Pulsations iii Gaseous Contbu : ILiol

In the model employed ink the analysis of gas less corihust ion, di ffusion

or the reactant was neglected, since the iujiburned tutci as well -s the

combustion products were botit solid(. 1M ilTitiat talLy , this corresp.jnds to an

infinite Lewis number, defined as thec rati jo l Lbi rilial dif [us ivit y to

di ffusivity of the react ant whi h l im~it Ole rea~tran. :~~*authors IhaVC

at tributed the appearancec of Llt pul s :iti. n , & oli ions to thle fact thII. thec

Lewis number was inf Lntl. However, it has beeni shiown that such pulsation.,

can occur at finite Lewis numbers 1,, exceeding a critical.L, thus describing,

combustion in gases. Employing a simplified model for flame propagation

in gases, derived by Matkowsky and Sivashinsky Lr8], Matkowskv and Olagunju

presented nonlinear analyses of the problem for gases in one :9", and two rlt)'

dimensions respectively. They showed in "9 that for i. > Lc, a plane

pulsating front arises as a stable sup-rcritical bifurcaition from the uniforly

propagating plane front, while in 7101 thecy :-;iowed thot for 1,> L, a stable

pul sating solut ion with t rave 1 1ini, waves along- it , [rout bifurcat id super-

critically, in r13 , Mat kowsky and u) 1agl-ili n ;)W d lIOW~ U hw II a ,ti 11ns ar-i st i r

burner stabilized flat Ilam,-s , thlus uxpli irinrg 'lit, epx1,riitt resrilts

invol ving anmoia-oxygen mixtu re:;, re i rredl tou iii PuIl. ii in;- plt uri

iron Is have been ohs5crV'dep in s i a-s s 'c t. It , is hive I ren s

With travelling waVLS along, their surfaces 12,U3,1l'. In I 16, Matikowsky

and 1 lagunj u consider Lhe prol Iniiin a c ylin rd ri cal domiait, anid all o;, titee

d i!;reus ional per turbot ions . A nunlinear analy s i s i a pre5 ;cnt d to show Llzit

for L > L c, various type-s of solut ions, includting spinrig% waves, bi furcatt

from the uniformly propagating plane front. ]lit. amplitude aid frequency

of the b ifirrcatced solu t i n.s are cal culIaItd , arid it is siowni tihat t heir
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average speeds are less than the speed of the uniformly propagating solution.

Finally the stability of the bifurcated solutions is discussed. Numerical

studies by Margolis [ii], who considered hydrogen-oxygen flames, and by

Golovichev, Grishin, Agranat and Bertsun [171 who considered hydrogen-bromine

flames, also exhibited pulsating flame fronts.

RI.FERENCES

1. A. G. Merzhanov, A. K. Filonmnko and 1. P. Borovinskaya, '"NJw phenomena
in combustion of condensed systcms," Proc. Acad. Sci. U.S.S.R., Phys.
Chem. Soc., Vol. 208 (1973), pp. 122-215.

2. Y. M. Maksimov, A. T. Pak, 6. B. Lavrnchuk, Y. S. Naiborodenko and
A. G. Merzhanov, "Spin combustion of gasle. s systems," Combustion,

Explosion and Shock Waves, Vol. 15, No. 4 (1979), pp. 415-418.

3. B. J. Matkowsky and G. 1. Sivashinsky, "Propagation of a pulsating reaction
front in solid fuel combustion," SIAM Journal on Applied Mathematics,
Vol. 35 (1978), pp. 465-478.

4. K. G. Shkadinsky, B. 1. Khaiken and A. G. Mcrzhanov, "Propagation of a
pulsating exothermnic reaction front in the condensed phase, Combustion,
Explosion and Shock Waves, Vol. 1 (1971), pp. 15-22.

5. T. P. Ivleva, A. G. Merzhanov and K. G. Shkadinsky, "Math'l model of
spin combustion, Soviet Physics Doklady, Vol. 239 (1978), pp. 255-256.

6. G. I. Sivashinsky, "On spinning propagation of combustion waves," SIAM
Journil on Applicd Mathetiatics, Vol. 40 (1981), pp. .432-438.

7. i. G. Kaper, C. I.. Leal nd B. J. Natkow ;ky, "Spinning waves in gasless
combustion," to appear.

8. B. J. Matkosky and . 1. Sivashiasky, "An a.-yMptotic derivation o; two
models in flimne thtry a.- ociated with Ilic conLLant density appi ximation,"
SIAM Journal on Apnlicd Mathematics, V,. 37 (1979), pp. 686-699.

9. B. J. Matkowsky and P. L. Olai,,unjhl, "Prp.. ;ation of a p'ls..ting flame
front in a gaseous curvbtstiblL mixtull:," "ut. 39, No. 2 (1980), pp. 290-300.

10. B. T. Ntakowsky and I). 0. Olaginimj, "'r.vw! ling waves along the front
of a pulsating flar., acce.pted for pubtic:ition.

69



11. S. B. Margolis, "Bifurcation Phenomena in burner-stabilized premixed
flames," Combustion Science and Technology, Vol. 22 (1980), pp. 143-169.

12. G. H. Markstein, Nonsteady flame propagation, Pergamon Press (1964).

13. C. R. Ferguson and J. C. Keck, "Stand-off distances on a flat flame
burner,"Combustion and Flame, Vol. 34 (1979), pp. 85-98.

14. F. Sabathier, L. Boyer and P. Clavin, "Experimental study of weak
turbulent premixed flames," Proc. Seventh Int'l Colloq. on Gasdynamics
of Explosions and Reactive Systems, to appear in AIAA Series Progress
in Aeronautics and Astronautics.

15. B. J. Matkowsky and D. 0. Olagunju, "Puisations in a burner-stabilized
plane flame," SIAM Journal on Applied Mathematics, Vol. 40 (198 1),pp. 551-562.

16. B. J. Matkowsky and D. 0. Olagunju, "Spinning waves in gaseous combustion,"
to appear.

17. V.I. Golovichev, A. M. Grishin, V. M. Agranat and V. I. Bertsun, "rhermo-
kinetic oscillations in distributed homrogeneous mixtures," Sovier Physics
Doklady, Vol. 241 (1978), pp. 477-479.

70j
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ABS'I'CI. In this paper a weight function, obtained from an existing

stress intensity factor solution and associated crack shape, is used to

determine the class of analytic solutions corresponding to a more general

loading for the same geometry, Bv this technique, the stress intensity

factor for ai infinite array of collinear cracks, whose surfaces are

subjected to a variable pressure distribution, is expressed in the form of

an integral. This integral is solved explicitly for the case of a band of

constant pressure actir g over a portion o " the crack surfaces. A possible

rise of thi so lotiton ill the construction of' a Iui,alalc inodel is discussed,

.11d all ippi icit lon to the case of ;aIn array- of rivet-loaded cracks is demonstrated.

I%]ROI C/I ON. Consider a two dimensional, linearly elastic body,

under conditions of plane strain, containing an infinite array of straight

cracks (Fig. 1). Suppose that each crack is of length 2a, and that distances

between centers of adja cent cracks are cach eqital to 2h.

Stress intensity factors are sought for the case in which the same

pres,ure distribution is applied to the upper and lower surfaces of each

crack. The pressure distribution p(x), where x is measured from one of the

crack centers, is then periodic of period 2 in x. Defining direct stress,

shear stress and vertical displacement as ,o, t and v, respectively, the

boundary conditions for the solution are
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a y(x, 0) = -p(x) I- 2nbi < a (1)

Txy (X, 0) = 0 , -w < x < (2)

v(x,o) = 0 , a < Ix - 2nbI < 2b - a

Sneddon & Srivastav [I] have obtained a plane strain solution to this problem

for the special case p(x) = po, in which the pressure on the crack faces is

constant. The crack tip stress intensity factor is then given by

K=po (2b tan 2b1 (4)

:ind the associated crack shape is

Tx ,i I' " x 2 '~a 1/2 71

V(x, a) = ) n(cos + + [cos - cos - n cos -- ()

where
2(1 - v-) p a

i I ('

lere I and v denote Oing's Moduhis an( l'ois- on' ratio, respect ively.

l'l1 lI !hi 11lh. Ine approach which may be uted to obtain new stress

int ,ei.',ity a- tor ;oltitions i, tihe wei 'ht funct ion m thod of Bhueckner 21 aid

R ice fL f. i .( .Jl , [lJ. 1,,), 1([. I'h weI'ht Iilict ion, which i.s ui e t, ;

'I VeII .1,akCed geomet rv, may he drri ved from one Known stress ilUtensi ty fact or

solit ion and iSo ciated Clrack shape. It m'iv then be used to obtain other K

> Olutions for the same geometry, under a different set of applied loads. The

additional information re(IU red to determinie the second solution is simply the

str ess dist r ilnbt ioi ationg the" Ilin of the crack, ini tie eqtliVa lent tuncracked

geolnet ry.
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In general the weight function for plane strain is defined as

E 1 av(x, a) (7)re(x, a)2(7

(1 - v) 2K a

The new stress intensity factor Knew for the same geometry under a given crack-face

loading p(x) is then given by:

K = f p(xj . m(x, a) dx , (8)

provided that p(x) has the same symmetries as the original solution (see 121 for

details).

For the geometry Linder consideration, different iation of equation (S) yields

Ty(T'IV 2 x i -1/'3v(x, ;1) _ 41(1 - v-) fh 2h -l 1) c o s 2)
a _F po . ..- x-- -,.. 2 -. x ..... 11 a - 2 -+ 2-, t n f

COS -, [Cos - COs 1-1

2T 2 x 2 ra 2rRewriting cos - - os" 2 s sill in - and making simplifications, we

obta i n

4V~~~- jiV' 1*v(x, a) -2(1 - v') 'T;a "-h
- -; a . . . -- - 1). , tail 2- - ----- ---'- . -- - ---- l

Isin h n -,

Substitting for K and V(x, from (4) and (10) into (7), we obtain the weight

filuic t i oil

re(x, a) = (21) tan " a _ ) 112 1 - -- - 2 0 ... _ -_1l------

2b; 2b 2r xIIIIsin 2-b sill 2-b -I

S'TRI;SS I NTrINSI'Y FACTOR SOU.IT'IONS. Suhstituting equation (11) into (8), we

obtain the stress intensity factor
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li X
ta 1/2 1 a cos

K (2b tan L-.) 2b p(x) 2 x. (12)
-a [sin 2 a. - sin2 .x 112

To test this solution as the crack spacing increases, we note that
LtKa - p (x)

It K e 12 1 dx, (13)
T new I -a [a" - x2]

which conforms with the solution due to Sih et al (71 for a single, symmetrically-

loaded crack in an infinite sheet.

For the case of a hand of constant pressure, p, acting over upper and lower

crack faces from -d to d, for any d between 0 and a (Fig. 2), equation (12) becomes

p(2b tan d fn dx (14)

1)21[tn f2 a 2i TIX11new 2b) 2b [si 2- sin- b

By making the substitur:ion

six TIX
n2b 7 cos -b

- a ' dz-b (1
sin - sin 2-

equat ion ( 14) ca i be integrated i rmired iate lv to giv e

: 1/2 [1 In,1 11

K 1 12 t;aIn ,"bj - a r'' s I" (16)ne<w ... in *hJ

Two special cases of equation I1(,) are as follows:

(a j d - a, i.e. confsta*nt prsture over the whole of both crack faces for an

infinite array of cracks. In this case (10) reduces to:

K ) [2b tan 1/2
new [-b

which is precisely the value of K given by (4).

(b) d 1), i.e. central point loading for in infinite array of cracks. In this

case (16) gives
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K
Lt new ia -1/2&O 2pd lb s --]

which conforms with the solution due to Tada [8], obtained by the use of Westergaard

stress functions.

A MODEL TO TAKE ACCOUNT OF CRACK-TIP PLASTICITY. By employing the superposition

illustrated in Figure 3, it is a simple procedure to obtain K for a narrow band of

constant, negative pressure along the parts of the crack faces nearest to the tips.

This may be used as a Dugdale model [9] in order to take account of crack tip

plasticity in the infinite array. In this case the magnitude of the pressure and the

necessary modification to crack length are dictated by the yield strength of the

material.

GRAPICAL PRESENTATION OF RESULTS.

(a) Band of Pressure

Figure 4 shows a plot, based on equation (16), of dimensionless stress intensity

factor versus d- for various b ratios. Note that the solution is non-dimensionalized
a a

with respect to K for a fully pressurized crack carrying an identical force over the

crack face--.

{h) Application to Riveted Configurations

A simple model to represent an array of cracked, rivet-loaded holes is illu-

strated in Figure Sa. The opening-mode stress intensity factor, K1, for this con-

figuration may be obtained by the superposition technique illustrated in Figure 5.

Figure 6 shows a plot of the superposed, dimensionless K solution for various 1)

rat i os. This presentation keeps thc ratio of i)res Sure hand dimension to crack

spacing constant, in order to model a riveted configuration.

CONCLIJSIONS. Weight functions, which are unique to a geometry containing an

array of cracks may be calculated from existing stress intensity and crack shape

solutions. These weight functions may be integrated to obtain new stress intensity

solutions for a different loading applied to the same geometry. A simple superposition

allows the extension of such solutions to the case of an array of cracked, rivet-

loaded holes in an infinite sheet.
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Figure 3 Superposition Technique to Obtuin Dugdale Model.
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I-'igure 4 :Stress Intensity Factors for an Array of Cracks i

Loaded by a Band of Pressure on Crack Faces.
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ABSTRACT. In this paper it is shown that the weight function Im'

due to Bueckner [1] and Rice [2] may be generalized to include the effects

of boundaries on which displacement conditions are imposed, giving rise to

an additional weight function Im*".

Superposition arguments are employed extensively to demonstrate in

a straightforward manner that it is possible to use either crack-line

loading or boundary loading, or a combination of the two, in the deriva-

tion of stress intensity factors provided the correct weight function is

selected. Furthermore, all of the components of the weight function may

be derived concurrently b careful selection of the applied loading.

After calculating stress intensity, it is possible to recover displace-

ments for the new loading (via 'im') and stresses (via 'm*'). The body

force term associated with 'Im' is equivalent to a "distributed strain"

term associated with 'm'.

Finally, some possible practical applications of the generalized

weight function are noted, in particular residual stress and thermal

stress problems, bonded sheet and stiffener problems, contact problems,

and special elements for numerical applications.
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INTRODUCTION. Bueckner [1] and Rice [2] have demonstrated that a

particular function, normally termed the weight function, is a property

of a cracked geometry and is independent of the loading. The weight func-

tion may be employed in the derivation of additional stress intensity

factor solutions provided details of boundary loadino (or the equiv-

alent crack-line loading) are available.

FORMULATION. Consider the cracked configuration illustrated in

Fig. 1, having displacement boundary conditions over rU and traction

conditions on the remainder of the boundary, rT. Bowie and Freese [3)

have modified the formulation due to Rice [2) to allow the applied

tractions to be functions of both position and crack length, demonstrat-

ing that:

(1)l (2 2 U1 U(2) aT2 =a U a dF (1)r FT+ Fuj aa

and H = E (plane stress), H = E/(l - v2) (plane strain), where E is the

modulus of elasticity, v is Poisson's ratio and K M (i = 1,2) is the

crack tip stress intensity factor for a loading system (i) which consists

of stresses TM applied over r T' and displacements L IM applied over r

In general KW = 00(a), T(i) = T(i)(x,y) and U(i) = U(i) (x,y).

Consider now two particular loading systems applied to the geometry

under consideration:

First Loading System

In the event that IT /Ia -- 0 over F T (representing traction

boundary conditions alone) and U (2) = 0 over r 0 (representing so-called

'fixed grip' conditions) from Equation (1) we obtain:
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2 ) = f T ( 2 ) m(x,ya) dr, (2)
r T

where:

iH aU (1)
m(x,y,a) =2K ( )

and m(x,y,a) is the familiar weight function of Bueckner [1] and Rice [2].

Second Loading System

In this case 3U(1)/aa = 0 over rU (representing displacement

boundary conditions) and T(2) 0 over r (traction-free boundary).

From Equation (1) we obtain:

K(2) = f U(2) m*(x,y,a) dr, (4)
r U

where:

_H1 aT ( M

m*(xya) = (5)

2K(1) a

The implications of Equations (2) to (5) are that it is possible

to obtain a conventional weight function m(x,y,a) with U = 0 along r U

and arbitrary tractions applied to rT. Furthermore, one may obtain

an additional function m*(x,),a) with T = 0 along rT for arbitrary

displacements along rU .

SUPERPOSITION OF RESULTS. In order to solve the mixed boundary

condition problem, loading system 'A' in Fig. 2, consisting of tractions

T(x,y) over rT and displacements U(x,y) over rU s we invoke the linear

superposition illustrated in Fig. 2(b) and (c) wherein system B has
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displacements set to zero over rU and system C has tractions set to zero

over r Denoting the stress intensity factors for systems A, B, and C

as KAt K., and KfC, respectively, we see:

KA = KB + K (6)

clearly, K. may be obtained from Equation (2) as:

K fT(x,y) m(x,y,a) dr (7)
rT

whilst KC is given by Equation (4) as:

KC = J U(x,y) m*(x,y,a) dr. (8)

This approach requires a knowledge of 'm' for the evaluation of KBand m*' for the evaluation of K C . As an alternative, system C may be

solved by the additional superposition KCl + K C2 illustrated in Fig. 2,

which requires 'm', and a knowledge of the crack-line loading in the

unflawed structure caused by the displacement boundary conditions

applied alone.

Finally, an alternative approach to the solution of system B is the

superposition K + K which again requires 'n', and a knowledge of theBI B2'

crack-line loading in the unflawed structure arising from traction bound-

ary conditions alone. In the event that the crack-line loading due to

nondisplacement boundary conditions is caused by residual stresses or

body forces, the latter superposition may be the most straightforward

solution method.

84



DETERMINATION OF 'im' AND 'i*k Consider the configuration illus-

trated in Fig. 3(a), where U t1 over rU and T = 0 over rT. In order to

determine m* a solution is sought for 8T/aa and K. Employing the super-

position of Fig. 3(b) and (c) we note that not only does K = K, but

fT/Ba = aT/aa, indicating that m* may be obtained from K and Tla.

The implications of this result are that not only may aU/Ba, and

hence 'im', be obtained with arbitrary loading applied to the crack line,

but so may aT/aa, and hence 'm*'. Thus, m and m* may be derived simul-

taneously with an arbitrary crack-line loading, provided displacements

or tractions are set to zero over appropriate portions of the remainder

of the boundary.

RECOVERING DISPLACEMENTS AND STRESSES. Knowing KB and K it is
B C

possible to rearrange Equation (3) to give:

UB = f KB m(x,y,a) da, (9)

and hence reconstruct the complete displacement field with appropriate

boundary conditions to evaluate the constant of integration. The dis-

placements for system A may be obtained from the superposition illus-

trated in Fig. 4 wherein system D is the equivalent uncracked geometry,

loaded by the same tractions and displacements as system A. The term o(x)

is the crack-line loading for system D, and system E has U and T set to

zero over r and rT, respectively, the crack being loaded by -0(x). If

only crack-line displacements are required (which will frequently be the

case), for cracks oriented along the x-axis:

UA(x) = UE(X). (10)
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Equation (9) is essentially equivalent to the method proposed by

Paris [4], and employed in the derivation of crack-opening data in [5].

However, it is important to note the functional dependence of K B on a,

and the need to include this dependency when evaluating the integral.

It appears that some displacements quoted in [5] may be in error, since

this dependency is ignored in calculating certain displacements.

In similar vein, rearranging Equation (5), the stresses for system C,

TC are given by:

TC f KC m*(x,),a) da (11)
C H C

with appropriate boundary conditions. Once again, stresses for system A

may be obtained from the superposition of Fig. 4.

BODY FORCE AND DISTRIBUTED STRAINS. Equation (2) is generalized by

Rice [2] to account for body forces, giving:

K = f T m(x,y,a) dr + f F m(x,y,a) dA, (12)
rT AT

where F = F(x,y) is the body force, and AT is the area over which body

forces are distributed. In similar fashion it is possible to generalize

Equation (4) giving:

K f U m* (x,y,a) dr + f D m*(x,y,a) dA, (13)
r U Au

where D represents a distributed strain field, and Au is the area over

which it acts.
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POSSIBLE APPLICATIONS

(a) Residual Stress and Thermal Stress Problems

Consider the case of a complex thermal stress field applied to a

clamped plate which is initially stress free, and clamped along the hori-

zontal faces, Fig. 5(a). Provided the profile of the plate without crack

and clamping U(x, ±h) is known it will be possible to apply equal and oppo-

site displacements which straighten the horizontal faces as in Fig. 5(c),

this will require an 'm*' type weight function. It will also be necessary

to apply a crack-line loading with zero-end displacements, Fig.5(d) to

eliminate any thermal residual stresses ot(x), this will require an 'im'

type weight function. As an alternative, the superposition outlined in

section (3) may be employed in the solution of Fig. 5(c), via an 'im' type

weight function.

(b) Bonded Sheets and Stiffeners

Configurations in which sheets are bonded or glued to stiffeners or

to other sheets (including the case of 'patch' repairs of cracked struc-

tures) are becoming more common. Tradionally these problems are solved

by ensuring compatibility and equilibrium at a number of discrete points,

the number of points being increased until the solution converges. By

employing the 'distributed strain' term in Equation (13) it may be possible

to match distributed displacements in a cracked sheet with those in a

bonded sheet, stiffener or repair patch.

(c) Contact Problems

Contact problems (particularly nonlinear problems) present signifi-

cant difficulties in their solution. The presence of cracks and defects
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can make such pro ]ems even less attractive, since the crack may serve to in-

crease the nonlinearity of the problem. Employing weight function methods a

direct (in the linear case) or iterative (nonlinear case) approach could pro-

duce accurate, economical solutions in a short time with modest computing

effort.

For example, the problem of cracked, pin and rivet loaded holes is

commonplace in aeronautical and civil engineering. A single, accurate

weight function will permit the subsequent recovery of stress intensity

factors and displacement fields for various combinations of pin-fit,

material properties, frictional effects, and residual stress (mandrel

enlargement), including testing for (and correcting) physically unaccept-

able 'overlapping' of crack surfaces [6].

(d) Special Elements

Various techniques are currently employed in the determination of

accurate stress intensity factors via finite element analyses, for example,

collapsed isoparametric elements, and classical solution and polynomial-

based functions. Some disadvantages of the latter formulation are the

large number of boundary points required, the complexity of the functions

employed, the problems of accuracy at short crack lengths (particularly

important if K solutions are to be used to predict component lifetime under

fatigue loading), and representation of residual stress effects as a load-

ing along the crack line.

It is already clear that weight function data may be 'packaged' with

minimal loss of accuracy 17]. In principle therefore, it would be possible

to obtain weight functions for a limited number of appropriate geometries,

using methods of high accuracy (collocation, modified mapping collocation),
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and to subsequently fit the data in convenient form as the basis of a

special element capable of high accuracy.

CONCLUSIONS. The familiar weight function 'im' of Bueckner and Rice

which is unique to a given cracked geometry may be employed in the deter-

mination of stress intensity factors with stress boundary conditions

applied to the geometry. There also exists an additional weight function

'm*', also unique to a given cracked geometry, which may be employed in

the derivation of stress intensity factors with displacement boundary

conditions applied to portions of the geometry. Weight functions 'im' and

'm*' may be derived simultaneously with an arbitrary crack-line loading.

The weight function 'im' permits the recovery of displacements for a

new set of stress boundary conditions, whilst 'm*' permits the recovery

of stresses for a new set of displacement boundary conditions. In using

'm' and 'm*' to recover additional information, it is important to recog-

nize the functional dependency of stress intensity on crack length.

Whilst the weight function 'im' may be employed in the determination

of stress intensity in the presence of a distributed body force, in like

manner 'm*' may be employed in the determination of stress intensity in

the presence of a distributed strain field. The combination of weight

functions 'Im' and 'm*' may have application to residual and thermal stress

problems, bonded sheets and stiffeners, nonlinear contact problems, and

special elements for numerical applications.
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AN INCREMENTAL APPROACH TO NONISOTHERWLJ
ELASTIC-PLASTIC DEFORMATION

SHIH C. CHU

TECHNOLOGY BRANCH, ARMAMENT DIVISION
FIRE CONTROL & SMALL CALIBER WEAPON SYSTEMS LABORATORY

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND, DOVER, NJ 07801

ABSTRACT

On the basis of Drucker's flow rule and Ziegler's kinematic rule, a

general nonisothermal Incremental constitutive law for elastoplastic, work-
hardening solids has been developed. The derived Incremental constitutive
relative contains an unspecified loading function of stress, stress history
and temperature. Several special explicit constitutive relations have derived
on the basis of von Mises' yield criterion with temperature-dependent yield
strength of materials. Since Ziegler's kinematic hardening rule is included
in the analysis, the derived nonisothermal elastoplastic theory is particularly
suitable for analyzing the inelastic behavior of work-hardening solids subjected
to both cyclic mechanical loading and cyclic thermal loading.
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I. INTRODUCTION

The isothermal constitutive rules for work-hardening solids have been

discussed in great detail in literature [1-9]2. However, very little work

has been done on the theory of plasticity under nonisothermal condition.

Prager [10] presents a nonisothermal plastic deformation theory in which he

considered a special case that the nonisothermal stress tensor is equal to

the product of the isothermal stress tensor and a temperature-dependent para-

meter. Moreover, since elastic strain and thermal strain were neglected,

Prager's nonisothermal theory can be applied only to rigid, work-hardening

solids. No general nonisothermal theory is available for elastoplastic

problems of work-hardening solids subjected to both cyclic mechanical and cyclic

thermal loading. On the basis of Drucker's flow rule and Ziegler's kinematic

hardening rule, a general nonisothermal incremental constitutive law will be

derived in this paper for analyzing elastoplastic deformation of work-hardening

solids in which the elastic, the plastic, and the thermal deformation are

taken into account.

11. DEVELOPMENT OF CONSTITUTIVE LAW

In this investigation, small deformations are assumed to be valid, Hence,

the strain tensor cij is given by

Ci= 1/2 (ui,j + uij) (1)

where ui are the displacement components referring to rectangular cartesian

coordinates xi, i=1,2, and 3. Differentiation with respect to a coordinate

is indicated by a comma followed by the approximate subscript (ui,j aui/xj).

'Numbers in brackets designate references at end of paper.
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The total incremental strain tensor dcij is assumed to be the sum of
elastic part dcq , plastic part dcpj, and the part of thermal strain dcii, i.e.,

e p 0

dcij = dcej + dcPj + dcio (2)

As indicated Ziegler [5], the inelastic behavior of a material can be de-

scribed by the following:

(1) An initial yield condition by which the elastic limit of a material

is defined.

(2) A flow rule by which the plastic-strain increments are related to

stresses and strain increments.

(3) A hardening rule by which conditions are established for subsequent

yield from a plastic state.

Therefore, to study inelastic behavior of a material requires, first, a

functional representation constituting a generalization of the yield point

associated with uniaxial stress. In the case of initial yielding, the function

is termed the yield function and the equation constitutes the yield surface.

In the case of subsequent yielding from plastic state, the surface used to

define the elastic limit is referred to the subsequent yield surface, or the

loading function, and can be represented as

f (aij - ai, 0) = 0 (3)

where iij is a tensor representing the total translation of the center of the

initial yield surface, and e is temperature.

On the basis of Drucker's postulate [11], the work done by an external

agency during a complete cycle of loading and unloading must be nonnegative,

the yield loading surfaces must be convex with respect to the origin in the

stress space.
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The state of stress at any material point can be specified by the

function f accordingly as

(i) Plastic loading, if f = 0 and 'fdi+ >0 (4)

(ii) Neutral loading, if f = 0 and =-da. + = 0 (5)aaij 1J -

(iii) Unloading dcij = 0, if f < 0 or a- i +i;!dB<0 (6)oij "o - <o(6

In addition to the yield and loading condition, a constitutive relation

between plastic strain increments, stress, and stress increments is required

to describe the inelastic behavior of a material. The constitutive relation

(flow rule) used in this investigation is based on Drucker's postulate for

work-hardening materials (11]. The flow rule is given as

dcj = dX ij7)

where dX is a positive scalar quantity. On the basis of Drucker's statement,

this plastic strain increment tensor must lie on the outward normal to the

loading surface at the instantaneous stress state.

After yield condition and flow rule have been determined, a hardening

rule must be chosen to complete the description of the inelastic behavior of

a material. With the use of the kinematic hardening rule proposed by

Prager (2,7], the increment of the translation of the center of the loading

surface in a nine-dimensional stress space in the direction of the external

normal to the surface at the instantaneous stress state can be predicted, i.e.,

daij = Cdcij (8)

where C is a parameter characterizing the hardening behavior of the material

and can be determined from a uniaxial stress-strain test

100 _

LI



C()= do1  (9)

in which doll is the unlaxial stress increment and dc4 is the corresponding plastic

strain increment at specified temperature 0.

Inconsistencies have been found when Prager's hardening rule is applied to

various subspaces of stress [4]. To avoid the difficulty associated with the

implementation of Prager's hardening rule, Ziegler [5] has proposed a [:,odifi-

cation by which the increment of translation of the center of the loading surface

is assumed to be directed along the radius vector connecting the center of the

loading surface to the instantaneous stress state, i.e.,

daij = (Oij - aij) dii, dii > 0 (10)

where dv can be determined provided the stress point remains on the translated

yield surface during plastic flow, i.e.,

af dkl + f

dp = 
( 1)

(amn-amn) am

A comparison of Prager's hardening rule and Ziegler's modification was

shown in Figure 1 (a).

An expression for dA, associated with the flow rule equation (7), can be

determined if the vector CdEcj, as shown in Figure 1 (b) is considered as the

projection of daij (and thus of daij) on the exterior normal to the loading

surface at the istantaneous stress state. Hence, for small incremental of

stress and strain, one can readily find that

af doij + afd 1 ~-- daj de

- I - (12)C af I f
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Therefore, the flow rule becomes

1i
dP doi Bf af

dc = l dokl +- dJ (13)

The sum of incremental elastic strain and thermal strain can be determined

by use of the Duhamel-Neumann law, i.e.,

dc j + dc j d J- - . • do
dE d j ( dak - 8d ) 6ij (14)

in which E is Young's modulus, v is Poisson's ratio, dO is the change of temper-

ature, 0 is the thermal expansion coefficient which may be a function of temper-

ature, and 6ij is the Kroneker delta.

Substituting equations (13) and (14) into equation (2), one obtains
af

dcij aij do_ aF dak d~ (15)dc~=(1+vl. (V @icd~jj3

E E dokk - BdB) 6ij + a f ) ak d (c -omn) yn

Hence, the general formulation of a nonisothermal incremental theory of

elastoplastic, work-hardening solids has been completed.

III. SPECIAL CASES

The incremental stress-strain-temperature relation given in equation (15)

is very general which satisfies any given 'loading function f and all states of

stress, strain, and temperature. On the basis of the von Mises' yield criterion

with temperature-dependent yield strength of a material, several explicit ex-

pressions of equation (15) will be derived in this section.
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A. Six-Space. If the synnetry of stress and strain tensors is assumed, a

general nine-space problem is reduced to a six-space problem. For corfven-

ience here and for the subsequent specializations, the physical coordinates

are denoted by x, y, z; the stresses, by x, ay, az, Txy, Tyz, Tzx; the strains,

by ex, Cy, cz, cxy, cyz , czx; and the translation of the center of yield surface,

by 0x, ay, az, axy, ayz , azx.

If the material is assumed to be von Mises' material, then the temperature-

dependent loading function, equation (3), may be written

f {[(ax-ax)-(ay-ay)]' + [(oy-ay)-(Oz-az)]2 + [(oz-az)-(ox-ax)]2

+ 6 [(Txy-ay)2 + ( yz )2 + (Tzx-azx)]) - = 0 (16)

where oe = Oa(O) is the temperature-dependent yield strength of the material

in tension.

Substituting equation (16) into equation (7), one obtains the incremental

plastic-strain components:

dc = xdA, d = ydX, dcP = §zdX, dcy d P yzdX,

and dcP~ = zxdX (17)

in which

' X = f-ox 2(ox-ax) - (ay-ay) - (az-cz)

Ky = af - 2 (ay-cty) - (az-az) - (acx.ax)

af

= i z - 2(oz-az) - (ax-ax) - (oy-cy)

xy - 6(Txy'axy)

y

'zx 6(Tzx'azx)
'9Z X T~zX103



Substituting equation (16) into equation (12), one obtainsf

dX [fxdox + S-ydoy + zdoz + -XydTxy + KyzdTyz 4 Kz-xdTzx

+ 2 0o aoe do] (19)

in which

2 4 2 + 2' + S x 2 + + (20)

Ziegler's hardening parameter, dv, can be determined by substitution of

equation (16) into equation (11), i.e.,

Sxdox + Syday + Szd(,. + SXyTXy + SyzTyz + SzXTZX + 2oabdO (21)

(Ox-ax)Sx + fcy-ciy)y + (Oz-az)Sz + (Txy-cxy)Sxy + (Tyz-ayz)Syz + (Tzx-azx)-zx

Hence, the increv,.ental translation of the center of loading surface can be

determi ned

dcx = (ox-axd J, day = (oy-ay)dv, daz = (oz-az)du

daxy (Txy-axy)dp. dayz = (Tyz-ayz)dp, and dazx = (Tzx-CIzx)dj (22)

The incremental stress-strain-temperature relation, equation (15), can now

be written in the following simple matrix form:

{de) [K1:K2) {d,-K (23)

in which (dIT = <dcx, dey, dez, dcxy, dcyz, dczx> (24)

doT = <dcrx, day, doz, drxy, d'yz, dTzxldB> (25)

and
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kil k12  kis k14 k15  k16 k1

k21  k22  k2S k24 k25  k26  k, -

k3l k32  k,, k34 kss k36  k3

[K] = K1: K2]1 k%1  k42  k43 k.., k4S k46  k4 (26)

ks1  k52  kss ks4 kss k56 ks

k6i k62  k6S k64 k65 k66  k6

where

ki Sx2 E k12 = k2 l E

sxsz v %x*y
k1 3 = kl= - - -k 14 = k61 = __

cS2 E CS2  E

k22 = Tk 2 + - kc23 = k.. = S
cc S2 2

kc26 = k6.2 C 2ks

kzk 3  z3*xy ks s Z'§yz
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k36  = kf3 - k 3 2 +V
CS2 C-S E

E

ks,= ks, - k46 k64 - S
c 2  c32

-z + I+v ks k 65  -

CS2  E Cp

Szx2 1+v 2-xcg aae
CS2  E CS- a

2S (yo aa 2S'yza e a

k 27,= -a-e ks7  +
c 2  ae Cp ao

k67 = (27) :
c3S ae

From the definitions given- above of kij. one can conclude that K, is a

symmetic partition of matrix [K].

B. Plane-Strain. On the basis of plane-strain assumption, the nonvanish in-

cremental strain components are dcx, dcy, dcXy, and the nonvanish incremental

stress components are dax, day, daz, dTXy.
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Since dcz = 0, one can readily find

doz L- (kdox + k32day + ks dTxy + k37d63 (28)

Hence, the axial stress component can be eliminated by use of the equation

given above. The resulting incremental stress-strain temperature relation is

given in the following form:
da) (29)

{dc) = [Ls.L 2) {-)(2

where

{dcJT = <dcx, dcy, dcxy> (30)

f = <dox, doy, dTxy dO> (31)

and

k 1 3k31  k13k32  ' ki 3k3 7
(ks ss)s ((=k 1  ak (k17  k-- )

k-( k12 ) (kkk _ ,
33*33 33

k2Sk31  k23k32  k2 3 k3  k2 3k3 7[1) = [L 1 .LK] = (km*s k- ) (k,, ks ) (k 2w ks ):(k 2 7k 1 1 ) (32) .

k%3k,3  k+,k32 .) k4 3k3 7(k% - k (k 2 2 (k 24 k . (k 7 k 3 "

k43 k l kssk4 ,4k

in which kij are defined in equation (27). Since kij= kj, (i,j=l.'",6), one can

readily see that L, is a symmetric partition of matrix [L].

C. Plane-Stress. On the basis of plane-stress condition, the nonvanish incremental

stress components are dax, doy and dTxy; and the nonvanish incremental strain com-

ponents are de., dcy, dcz , and dcV. By definition.

o= TyZ TZX 0 (33)
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Following Ziegler's argument [5), one has

=I = CY CZ 0 (34)

Then the explicit expression of equation (15) can readily be written in the follow-

ing simple matrix form:

in which

NOCT <dcx, dcy. dcz, dcxy> (36)

AqT <do, day, dtxY'.d6> (37)

and

in21  in22  Mn23  M24(8
[14) (M~l M21 (8

in31  in32  M3 Msa.

where 
in.41  M4 2  M43 M It

in11 = -2~ (2(Oax-a) -(cy-ay)J +

in12  M 121 =Cdy [2(ax-x) - (oycty))[2(cytiy) -(ox-ax))

Cd6 2  ox-x) - cya)(ry x)
M S M 1 1

M 1--~ (2(cr-ay~) - (ax-ctx))

In, [ 2(oyx-cx) -(qy-ay))[(ox-ax) + (ay-cty))

-1 (39)
11 C 1 2(ay-ay) -(ax-ax))[(ox-ax) + (cy-ay)J
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- -6

N,3 = (d [°x-ax) + (oy-ay)](Txy-axy)

= 36 
2 +

2 ao

m = 2- d [2(ox-ax) - (oy-cy)]-ro-ae+ 0

4 [2(ox-ax)]C0-a- + 0

2 ae +

m,3 = [(ox-ax) + (cy-ay)]a-p - +a

_ 12 _ __

m Cd2 (Txy -axy)a aO

and

d2 =6[(ox-ax)2 - (cx-ax)(oy-cy) + (Oy-ay) 2 + 6(Txy-axy)2 ] (40)

REMARK

One implicit assumption made so far is that the temperature-dependent

yield strength c(e) of the material is differentiable. The actual relation-

ship of yield strength of the material vs temperature must be determined by

experiment. Fortunately, this relationship can usually be approximated by a

polynomial; hence, it is differentiable. The test data of yield strength vs

temperature for chrominum-molybdenum-vanadium (Cr-Mo-V) steel are shown in

Figure 2 by open circles. A fourth-degree polynomial approximation for test

data, as shown in Figure 2 by solid curve, is

oe - 131,000 - 10.890478 + 0.0648353602

- 0.00016669790' + 0.0000000598456584

One can see that this relation exhibits a very good approximation of test data.
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ELASTIC-PLASTIC THICK-WALLED TUBES SUBJECTED TO INTERNAL PRESSURE

AND TEMPERATURE GRADIENT

P. C. T. Chen
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. Using von Mises' criterion and the Prandtl-Reuss flow theory,

numerical solutions are obtained for the stresses, strains, and displacements
in an elastic-plastic thick-walled tube subjected to internal pressure and
temperature gradient. The material is ideally-plastic or obeys the isotropic
hardening rule. The formulation is based on the incremental finite-difference
method in conjunction with a scaled loading approach. All incremental
quantities are determined in the program and no iteration is needed. The
approach is simpler than others yet quite general and accurate.

I. INTRODUCTION. The elastic-plastic problems of thick-walled tubes
subjected to mechanical loadings have been solved by many investigators based
on different theories or methods [1-4]. Very little work has been done on the
elastoplastic solutions for thick-walled tubes subjected to thermal loadings
[5-71. Recently, a new finite-difference approach was developed for solving
the plane-strain problems of elastic-plastic thick-walled tubes subjected to
mechanical loadings [31 or thermal loadings [7]. The approach has been
extended to solve the generalized plane-strain problem subjected to mechanical
loadings [4].

In the present paper, the generalized plane-strain problems of
elastic-plastic thick-walled tubes subjected to mechanical as well as thermal
loadings will be considered. The formulation includes internal pressure,
external pressure, axial force, steady or transient thermal loadings. The
numerical result will be reported for a closed-end tube subjected to internal
pressure and to temperature gradient. The formulation is based on the
incremental finite-difference method using von Mises' criterion, the
Prandtl-Reuss flow theory and the isotropic hardening rule. All incremental
quantities are determined in the program and no iteration is needed. In order
to improve the efficiency of the program, a scaled loading approach has been
implemented. The numerical results have been compared with those of Bland [51
and additional results due to large temperature gradient are to be reported.

1I. BASIC EQUATIONS. Assuming small strain and no body forces in the
axisymmetric state of generalized plane strain, the radial and tangential
stresses, or and o8 , must satisfy the equilibrium equation,

r(aor/Dr) - 08- Or ; (1)

and the corresponding strains, er and ce, are given in terms of the radial
displacement, u, by

113



er - au/ar , co - u/r . (2)

It follows that the strains must satisfy the equation of compatibility

r(ac6 /3r) = Cr - CO • (3)

Whereas the differential equations (1), (2), and (3) hold throughout the tube
regardless of the material properties, the constitution equations assume
various forms according to the adopted form of yield function, hardening rule,
total or incremental theory of plasticity. In the present paper, the material
is assumed to be elastic-plastic, obeying the Mises' yielding criterion, the
Prandtl-Reuss flow theory and the isotropic hardening law. The complete
stress-strain relations are:

Aei' = Aoi'/2G + (3/2)0i'AO/(OH') (4)

Ao 0 for i = r,O,z

Acm  E-l(1-2v)Aom + aAT (5)

where E, v, a are Young's modulus, Poisson's ratio, coefficient of thermal

expansion, respectively, AT is the temperature increment,

2G = E/(1+v)

em = (cr+cse+z)/3 , ej' = ei - em ,

a m = (or+ao+cz)/3 , oi' = ai - am  ,

a = (1/V2)[(Gr-O0) 2 + (Go-Oz) 2 + (Oz-Or )2]1/2 > oo  , (6)

and ao is the yield stress in simple tension or compression. For a strain-
hardening material, H' is the slope of the effective stress/plastic strain
curve

a = H(fdeP) (7)

For an ideally-plastic material (H' = 0), the quantity (3/2)do(oH') is
replaced by dA, a positive factor of proportionality. When a < oo or do < 0,
the state of stress is elastic and the second term in equation (4) disappears.
Following Yamada et al [8], equations (4) and (5) can be rewritten in an
incremental form

Aoi - dijAcj - EaAT/(1-2v) for ij - r,B,z

and

dij/2G = v/(1-2v) + 6 ij - oi'j'/S (8)
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where
2 1

S - ( + - H'I/G)o 2  , H'/E w/(-w) , (9)
3 3

wE is the slope of the effective stress-strain curve, and 6ij is the Kronecker
delta.

Consider an open-end or closed-end thick-walled tube of inner radius a

and external radius b. The tube is subjected to inner pressure p, external
pressure q, and force f, inner temperature Ta and external temperature Tb.
The boundary conditions for the problem are

Or(a,t) - -P , Gr(b,t) - -q

b2
2Tf b rozdr - a p + f (10)

a

where p is 0 for open-end tubes and I for closed-end tubes.

When the temperature T is not varying with respect to time, the steady
state distribution is given by

T = Ta + N log (r/a)

and

N = (Tb-Ta)/log (b/a) (11)

The stress solution in the elastic range is well-known. The quantities p*,
q*, f*, Ta* or Tb* required to cause initial yielding can be determined by

using the Mises' yield criterion.

III. FINITE-DIFFERENCE FORMULATION. For loading beyond the elastic
limit, an incremental approach of the finite-difference formulation is used.
The cross section of the tube is divided into n rings with rl=a,r2,...,rk-p,
...,rn+lb, where p is the radius of the elastic-plastic interface. At the
beginning of each increment of loading, the distribution of temperature,
displacements, strains, and stresses is assumed to be known and we want to
determine &u, &Er, &E0, Acz, AOr, ao0, Aoz at all grid points for the applied
incremental loading, Ap, Aq, Af, ATi (i = 1 to n+H). Since the incremental
stresses are related to the incremental strains by the incremental form (Eq.
(8)) and Au - rAcb, there exists only three unknowns at each station that have
to be determined for each increment of loading. Accounting for the fact that
the axial strain cz is independent of r, the unknown variables in the present
formulation are (Aco)i, (Arr)i, for i = 1,2,...n,n+l, and Acz .

The equation of equilibrium (1) and the equation of compatibility (3) are

valid for both the elastic and the plastic regions of a thick-walled tube.
The finite-difference forms of these two equations at i 1 1,...,n are given by
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(ri+i-2ri)(AOr)i - (ri+l-ri)(~Ae)i + ri(Acr)i+l

(ri+l-ri)(00-0r)i - ri[(Or)i+l - (0r0iJ (12)

for the equation of equilibrium, and

(rij-2i)&c_)i- (tj+l-rj)(&Er)i + i66)l

=(ri+l-ri)(Cr-rB)i - ri[(ee)i+l - (ce)j (13)

for the equation of compatibility. With the aid of the incremental stress-
strain relations (Eq. (8)), equation (12) can be rewritten as

t(ri+1-2r1)(dl2)i + (-ri+1+ri)(d22)iICAce)i

+ I(ri+i-2ri)(dii)i + (-ri+1+ri)(d201)i(Acr)i

+ ri(dI2)i+l(AEO)i+1 + r~l~+(c~~

+ [(ri+j-2ri)(dl3)i + (-ri+l+ri)(d23)i + ri(dl3)i+lIAErz

=(ri+l-ri)(clO-0r)i - riL(Or)i+l C00)

+ rj Ea(I-2vY'I(ATi+i-ATi) .(14)

The boundary conditions for the problem are

n
I~ [ ri(&oz)i + ri+l(Aaz)i+li(ri+l-ri) = jjwa 2 Ap + Af , (15)

where p is 0 for open-end tubes and 1 for closed-end tubes. Using the

incremental relations (Eq. (8)), we rewrite equation (15) as

(dl)1AF-)1+ Cdli)1(AEr)l + (dl3)IAF-z - -AP + Ea(l-2vY'ATl (16)

(dl2)n+1(1F-e)n+l + (dll)n+I(AErr)n+l + (dl3)nl~ez - Aq + Ec(l-vY-'ATn+l

(17)

and

n
)(ri+l-ri){ri[Cd23)i(Ace)i + (dl3)i(Acr)ij + ri+lL(d23)i+1(Ac8)i+l

n
+ (d13)i+1(AF-r)i+l]} + (ri+l-ri)Lri(d33)i + ri+I(d33)i+1]Acz

n
- ia2Ap + LAf/ir + (ri+l-ri)(riATi + ri+iA~i+iIEai/(l-2v) (18)

116j



Now we can form a system of 2n+3 equations for solving 2n+3 unknowns, (Ac8 )i,
(Ar)i, at i - 1,2,...,n,n+l and Acz . Equations (16), (17), and (18) are
taken as the first and last two equations, respectively, and the other 2n
equations are set up at i - 1,2,...,n using (13) and (14). The final system
is an unsymmetric matrix of arrow type with the nonzero terms appearing in the
last row and column and others clustered about the main diagonal, two below
and one above.

IV. INCREMENTAL LOADING - FIXED VS. SCALED. When the total applied
pressure p or temperature Ti(i-l to n+l) are given, it is natural to divide
the loading path into m equal fixed increments such as Ap = (p-p*)/m, ATi -
(Ti-Ti*)/m. These fixed increments need not be equal for all steps and any
sequence of m increments can be supplied by the user. A sequence of
decreasing load increments is a better choice than that of equal increments.

In order to increase the efficiency of the program, an adaptive algorithm

based on a scaled incremental-loading approach [81 has been implemented. In
each step, a dummy load-increment such as Ap is applied and the incremental
results Aa for i - r,@,z at all grids are determined. For all grid points at
which a - haill < co, we compute the scaler a's by the formula

1
a - (r+ r2 + 4ll&oihI2(ao2-1{il2)1l/2}/llaiH2  (19)

2

where

r = IIoill1 + II oill1 - Iai + aoill 2  , (20)

and 11oi,1, IIA0i, 1loi + Aoill 2 are computed by

12
11i0,1 2  - [(Or- ae) 2 + (ae-az) 2 + (az-0r) 2  . (21)

2
Let A be the minimum of the a's. Then A is the load-increment factor just
sufficient to yield one additional point. A sequence of X(J) can be
determined for all steps j - 1,2,...,m and the updated results are

p(J) . p(J-) + X(J)Ap(J)

i(J) = ai(J-1) + (i)Aci(j) , etc. (22)

V. NUMERICAL RESULTS AND DISCUSSIONS. Consider a closed-end tube
subjected to internal pressure p, inner and outer temperature Ta and Th. The
numerical results were based on the following parameters: b - 2", a - 1", n -
100, v - 0.3, E - 30xlO 6 psi, 0o - 30x10 3 psi, w - 0, a - 7.75x10-6 in/in*F.

According to Bland [51, let us define

6 = EacN/2(1-v)ao/F3l
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as a measure of the effect of the temperature differences in the stress
system. The mean temperature

Tm . 2(b2-a2)-If Trdr
a

is taken as zero in the calculation of u/r. Three values of the temperature
stress factor 6 are chosen: 6 = -1/2, 0, and 1/2, i.e., Tb-Ta = -72.3*F, 00 F,
and 72.3*F. The thermal stresses are in the elastic range. In the presence
of these temperature gradients, internal pressure p is applied incrementally
until fully plastic state is reached. The internal pressure p and inside
displacement Ua are obtained as functions of elastic-plastic interface P as
shown in Figure 1. The effect of temperature gradient on these relations is
clearly shown in the figure. In order to compare the results by Bland [5],
the state of stress is evaluated at p/a = 1.73. The dimensionless stresses
(Or,O6,Oz)/Oo are expressed as functions of r/a as shown in Figures 2 through
4 for three cases of 6 = 0, -1/2, 1/2, respectively. After removing the
temperature gradients and internal pressure, the residual stresses have been
obtained for all three cases. The states of residual stresses for the first
two cases are still elastic but reverse yielding occurs when unloading the
last case. Five scaled-incremental-loading steps and one applied-incremental-
loading step are needed to unload completely. The residual stresses for the
last case are shown in Figure 5. The results in Figures 1 through 5 are
roughly the same as those of Bland [51 except oz. This difference is
reasonable because Tresca's yield criterion is used in [5].

As a last example let us consider a closed-end tube subjected to inner

temperature Ta only. When the temperature gradient is of sufficient
magnitude, yielding will first expand from the inside. When Ta is larger than
a certain limit (238.4*F), plastic zone will expand from both the inside and
outside surface toward the interior. The relation between the inside
temperature and elastic-plastic interface is shown in Figure 6. The stresses
in a closed-end tube subjected to temperature gradient (Ta - 299*F, Tb - 0) is
shown in Figure 7. The dotted lines are elastic-plastic interfaces.
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Figure 2. Stresses in a closed-end tube subjected to
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FLAME PROPAGATION WITH MULTIPLE FULLS

Stephen B. Margolis
Applied Mathematics Division
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ABSTRACT

The steady propagation of a flame through a premixed combustible
mixture is studied for the case in which the mixture consists of two
distinct fuels. The overall chem~ical reaction mechanism is represented by
A + vAO - wAP, B + vBO - VBQ, where A and B denote the fuels, 0 is the
oxidizer, P and Q are the corresponding products, and VA,IJA,VB,PB are
stoichiometric coefficients. We employ the method of matched asymptotic
expansions to derive a solution for large activation energies, in which
case both chemical reactions are confined to a thin layer. The? (small)
separation distance H between the points where the two reactions go to
completion and the propagation velocity U are determined as functions
of stqch quantities as Lewis numbers, activation energies, Damkohler
numbers, and heat release fractions. The formnula for If represents a
relative measure of the flame thickness in terms of standard parameters,
while that for U determines the role of each reaction in the overall
flame speed.

1. Introduction

In analytical work on combustion, it is now commonplace to approximate
the complicated chem:tical reaction mechanisms that occur by a global one-
step reaction in which fuel and oxidizer react to forii a product. By
exploiting the fact that the activation eneroy of the reaction is large, a
whole theory of asy|;ipLotics, peculiar to coi;du Stion problleis with Arrhenius
reaction rates, has been developed. They range fromii steady-state studies
of one dimensional flames3 - 5 , to stability and bifurcation analyses in various
geometries. 7 ,11,12,14-1 However, there are t:many chemical reaction mechanisins
for which a global one-step reaction might not be a suitable approximation.
Examples include systems with multiple fuels (the case considered here),
inhibitors, catalysts, and branched chains. [or sch problems, it is often
desired to obtain profiles of intermediate, ca!.,lyt ic or addiLional reactant
perci es, as well a to study tLeir effects on fl,wmue LhicknesS, pripagation

velocity, and stalility.
There have been only a few asymptotic analyses of flames consisting of

more than one reaction. Bermian and Ri aentsev1 , considered a seueontial
mechanism of the form A + B + C and a semi-parallel mechanism of the type
B *- A + C. By assuming that the Damkohler numbers (i.e., reaction
raLes) of the two reactions were of the same order of magnitude, they
obtained asymptotic expressions for the steady-state prop)agation velocity
of an adiabatic one-dimensional flame. Their analysis dealt with those
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cases for which the corresponding flame separation distancc was either
identically zero or 0(1). Generaj.izations of the A + B ) C flame to
account for widely disparate Damkohlltr numbers have been pursued by
several authors. 6,,

9, 0
The present work considers steedy one-dimensional flame propagation

governed by a global parallel reaction mechanism of the form

A + vA 0  AP  
, B + VBO * B , (la,b)

where A and B denote distinct fuels, 0 is the oxidizer, and P,Q are pro-
ducts. Th quantities vA,vB,OA,nB are stoichiometric coefficients which
need not be integers for these types of global mechanisms. Reactions
(la,b) are coupled by a comron dependence on temperature and are useful
for modelling systems with multiple fuels. In our analysis, we employ
reasonable assumptions on the large activation energies and the diffusion-
weighted reaction rates (consumption rates). These approximations result
in a merged flame to leading order and permit the derivation of explicit
analytical expressions for both the propagation velocity U and the (small)
separation distance H between the points where the two reactions go to
completion. In what follows, we only present a summary of the analysis
and emphasize the physical results. A more comprehensive analytical
presentation is contained in another publication.

13

2. Governing Equations

.In a density-weighted coordinate system whose origin is attached to
the flame zone, a set of nondimensional equations governing a freely
propagating flame with the mechanism (la,b) is1 3

dY I
1

a d- - = L_1 d 2 Y-_A 2

d -j = K-1  AZ exp m(1 0 ((-1] (3)
d d 2 (1 -- +-1--- (4

. ...j- - - (TAZ
+ Y exp] (1-ti) A/ exp [ -(1 -(4)

(1O d * 0+ ex Z 04

Y = Z = 1, ( = 0 at P = - ; Y = Z = 0, 0 = 1 at ' = +- . (5a,b)

Here, Y and Z are the mass fractions of species A and B divided by their
unhurried values at ' = -- , and 9 is a normalized temperature variable.
The nondimensional parameters appearing in Eqs. (2)-(4) are the Lewis numbers
L and K, activation energies N and M, modified Daimkohler numbers (reaction
rates) . and k, unbiurned temperature o, expansion parmieter u , and heat
relea!',e fraction; - ,(1-I,) due to reac, inn'; (,a .h) . A i'; Ihe fI lim, ;lpeed
ci ijiv,illm, prolOrfb iort ,l t l.o J- -, whre Il. ,' tho i i';notii il h i i hi~ .. , ic
f I aw, slpe(d.

L(quations (2)-(6) are solved by exploitirg the fact thaL tile acLiva-
tion energies N and M are large. We assume that

M4 Y K'kI +4 K- = 1 +- , A - N(l-o) , (6a,b,c)

where " , 0 (1) aid A >> 1 is introduced as our large exlpinsiom pa rameter.
We refer to th1e diffUsion-weighted Damrikoh ler numbers K'k,L'k as consuiip-
tion rates.
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3. Outer Solution

In the limit of large activation energies, the reaction rate termas
become negligible except in a thin O(A-1 ) zone where 0 is close to unity,
just as in the case of a single reaction mechanism. The reaccion zone is
considered as a chemical boundary layer and the regions within and outside
the layer are treated by the method of matched asymptotic expansions. In
the outer region, each reaction term is replaced by a 6-function distribu-
tion, whereas in the inner region all quantities are expanded in inverse
powers of &. To all algebraic orders, the outer solution satisfies

aYo = L-IY" - P6(m), cZo = K-IZ'. Q6(,-H) (7a,b)

ae° = 0° + 0P6(p) + (1-6)Q6(-H) , (8)

subject to the boundary conditions (5a,b). This has the solution P=Q=(,

Y~ O( = 1 - exp(A m), *p < 0 1O - expcK(a -H)], 1P < "1(9,10)
0 10, mp > 0 1 0'1 1 o,>H

I exp(a4) + (1-Ri) exp[q(-H)] , < ain (O,H)

- 13 + (1-B) exp[o,( -H)], 0 < (H, H,> 0e00y) = 1- + a exp(a), H < < 0, H < 0' (11)

I1, p > max (O,H)

and is sketched in Fig. 1 for typical parameter values.

0

SI I

0 0 H 0

Figure 1. Outer Solution Profiles for Typical Parameter Values

The flai;ie separation distance II, like A, plays the role of an eigenvalue,
since both quantities are deLermuined in the course of the analysis. The
fact that neither reaction can occur until E z 1 (a consequence of Eq.
(6)), implies that H is small. Consequently, H might also be interpreted

as a relative measure of flame thickness. Both II and A are determined as
functions of the various flame parameters by a boundary layer analysis in
the reaction zone.
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4. Reaction Zone Analysis

In the thin reaction zone, the independent variable is stretched
according to p = n/A and the remaining unknown quantities are expanded as
follows:

lyv -i -1 31-1Y= A- Z= z z I 1 A= Xi , H= hi-A . (12a,b,c,d,e)i= i=i i =1 i =I i= =i

Substituting these expansions into Eqs. (2)-(4), equating the coefficient
of each po',er of A separately to zero, and riatching with the outer solution
(9)-(11) yields a sequence of problems, the first two of which are con-
sidered in detail.

The solution to the first order problem is
1 3

= = -c, , h = 0 , Y, - Lo, z =  -Ko (13a,b,c,d)

1 2 1- 2 l

2 [I+(e-- do, a -.935 . (14)

a
This solution is essentially equivalent to that obtained for the sinqIle-
step flame problem. 3 , 19 To this order of analysis the multi-fuel flai:be
behaves as if it were governed by a single reaction, since both reactions
occur at the same spatial location. In order to determine the effects of
the parallel reaction mechanism on the flame speed and the flame thickness,
it is necessary to calculate X2 and h2 , the second order correction to
these quantities.

Since our main purpose in considering the second order problem is to
determine h2 and p as functions of the flame para;neters, we do not attem'.1pt
to completely solve the second order problem. Rather, we derive a coupled
pair of solvability conditions for these two unknowns based on an analysis
of the adjoint problem. The result is13

h2 (2yI2 + vi) (15)

2 
=  L 1(3(1-o)+ 1 (1-s)(2y-v)- 12 + [,iL+(I-3)K](2I1+I2)} (16)

I f [I-P(T) 12jdT = -1.344, 12 = f *I-p(i)I/
2JdT = +1.731 . (17a,b)

O 0

5. Results

The final dimensional form of the second-order accurate asympLotic
expressions for the flawe thickness 71 arid the adiabatic flame speed are
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U2 ~ A~ -2 '

alAa P al 'a a -

+ kAa)exp-_ A/Ra) 2

6 L(u A-1s 2 (a - + l-)(21, + 121+R' I -R-'lua - 1 [aa2 Z 0a ac

In these formulas, VA and B are the rate constants for reactions (la,b),

EAand E'B are the activation energies, A and b are the values of the

multicomponent diffusion coefficients evaluated at tile adiabatic burned
state, Tu , 'a, ua are the unburned and burned values of temperature
and density, despectively, and a,cp are the adiabatic values of thermal
conductivity and heat capacitX. The combination (Y/Da)exp(-t/RTa) is a
consumption rate. Note that U appears in the formula for 1i, which has
the units of mass x length-2 . The flame thickness D in units of length is

:= i d . (20)

By studying tile above formulas for VH and -02, it is easy to see quanti-
tatively how parameters such as Lewis numbers, activation energies, and
consumption rates affect the thickness of the flame and its propagation
velocity. The sign of R is determined by the ratios of activation energies
and consumption rates. If the activation energies of the two reactions are
equal (M=N), but the second reaction has a larger (smaller) consumption
rate than the first reaction [i.e., K-k >(<) L-z], then species B is deple-
ted upstream (downstream) from species A [i.e., H <(>) 0]. Conversely, if
the consumpion rates are equal but the activation energy of the second
reaction is larger (smaller) than the first [i.e., M >(<) N], then species
B is depleted downstream (upstream) from species A [i.e., H <(>) 0]. In
fact, we see from Eq. (18) that the ratios of activation energies and
consumption rates have opposite effects (since II < 0 and 12 > 0) and
thus H may be positive; negative, or zero depending on the relative values
of these parameters. Similar statements can be made for the effects of
consumption rates and activation energies on the flame speed. In particu-
lar, larger (smaller) consumption rates and smaller (larger) activation
energies produce larger (smaller) values for the flame speed f.

The effects of selective diffusion on i and -0 are contained in
tile teria involving the quantity (211+12)(0 in) L.. (19). Assuming fixed
consump tion rates and activation energies, a value of b" >(<) 'DA', 6' fixed,
[i.e., K<(>) L, L fixed], results in a decreae, e (increase) in the flame
speed from tbal for the case of equal diffusion of both species. Although
the sign of H depends only on consumption rates anmd activation energies and
is thus fixed in this argument, the maanitude of H is inversely proportional
to U. Thus, tile decrease (increase) in the flame speed is accompanied by an
increase (decrease) in i . Although one might thiink that an increase in the
diffusion of species 13 would Lend to result in a larger flame speed, we now
see that the increased spatial separation of the two reactions hinders the
flame propagation and produces the opposite conclusion.
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Finally, we emphasize that it is the corsimtion rates (k'K1X'L), and
not merely the reaction rate coefficients, which are important in deturmin-
ing the flame speed and thickness. The fact that smaller diffusion coef-
ficients are associated with higher consumption rates, and therefore higher
flame speeds, can be qualitatively understood by recognizing that smaller.
diffusion coefficients (higher Lewis numbers) intensify the chemical
reactions. This occurs through a greater concentration of the reacting
species in the reaction zone. Thus, the consumption rates are a :ieasure of
the rate of depletion of the reactants, taking into account both the
temperaturt and concentration dependence of the reaction rate terms.

6. Conclusion

Thus, in summary, we have considered a steadily propagating planar
flame governed by a global parallel reaction mechanism of the form (la,b).
Employing the method of matched asymptotic expansions, we have obtained
explicit analytical formulas for the propagation velocity U and the
relative flame thickness, or separation distance, H in terms of various
flame parameters. Our approach extends to other types of reaction iechan-
isms, and future papers will deal with flames governed by sequential,
reversible, chain branching, and catalytic chemical reactions.
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SECONDARY COMBUSTION IN GUN EXHAUST FLOWS

Edward M. Schmidt
Fluid Physics Branch

Launch and Flight Division
Ballistic Research Laboratory, USAARRADCOM

Aberdeen Proving Ground, HD 21005

ABSTRACT. The muzzle flash from cannon is analyzed using a simple
description of the gun exhaust plume flow structure coupled to an empirical
ignition criteria. The effect of muzzle devices such as recoil brakes is
estimated through an approximate description of their internal flow. The
influence of the transient nature of the weapon exhaust plume is examined
by using a one-dimensional, unsteady numerical model to develop the flow
properties along the axis of symmetry. These properties are input into the
ignition model and the possibility of the occurrence of secondary combustion
is determined as a function of time during gun tube emptying.

INTRODUCTION. Excessive blast overpressure in the crew area of artillery
pieces is restricting the operation of certain current systems. One reason for
the emergence of the problem with newer cannon is the requirement to increase
weapon performance, generally through the use of highly energetic propellants.
These produce high pressure and temperature in the gases exhausting from the
weapon muzzle following shot ejection. As a result the blast overpressure due
to the expanding gases increases. Additionally, the propensity of the exhaust
plume to ignite into secondary combustion of the unoxidized propellant gas
species increases. Secondary combustion results in excessive flash signature
of the weapon improving probability of detection and reducing night vision of
the artillery crew. Another, equally serious effect of this combustion is the
generation of strong pressure disturbances which can reinforce the initial blast
pulse and lead to excessive overpressure in the vicinity of the crew member. In
the present paper, muzzle flash is described and an attempt to analyze some of
the features of the phenomena using relatively simple methodology is presented.

The development of the flow from the muzzle of a gun has been extensively
investigated for the bare muzzle configuration (1-4). The structure (Fig. 1)
consists of two impulsive jets. The first, or precursor, develops as the air
in the gun tube is forced out ahead of the projectile. The second, propellant
gas, jet develops when these high pressure gases are released by projectile
separation. The muzzle pressure level of the precursor jet is typically an
order of magnitude lower than that in the propellant gases. As such, this
initial flow is rapidly engulfed in the expanding propellant gas jet and
associated air blast. The propellant gas plume growth is influenced by the
precursor flow, the projectile, and the ambient conditions. However, the gross
nature of the plume development is highly directional 3. The Mach disc moves
continuously away from the muzzle leaving behind a lateral shock structure
which is essentially invariant once established. This is contrary to the

decay of the plume wherein the total jet structure shrinks toward the muzzle.

The behavior of the Mach disc is of particular importance since the shock
heating of the propellant gases strongly influences the occurrence of secondary
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combustion. From optical measurements it is observed that at early times, the
Mach disc dominates the flow. Almost all of the exhausting gases are processed
through it. At later times when the plume has grown to its maximum dimensions,
the Mach disc attains its greatest strength but only processes a small fraction
of the exhaust flow (10-15%). During this period of rapid changes in the flow
structure, the muzzle exit conditions are continuously decaying. Thus, the
properties of the exhaust gases which mix with the surrounding air in the lateral
viscous layers, impulsive vortex, and turbulent jet are spatially and temporally
non-uniform.

Cannon flash is related to the development of these jet flowfields (Fig. 2).
As the projectile accelerates down the gun tube, high pressure propellant gases
leak around it and mix with the tube gas. If this gas was largely air, the ejected
mixture could be burning upon exit; or, if the tube gas was mainly the propellant
gases remaining from a previously fired round, then mixture with the atmosphere
could cause ignition. In any case, the flash which can occur prior to the round
breaking the muzzle is known as preflash. With uncorking of the projectile, the
propellant gases are released. At the muzzle, the propellant gases are at a
high temperature and particulates in the flow incandesce. This bright orange
glow is known as primary flash. As the gases move away from the muzzle, the
strong expansion within the supersonic core of the jet quenches this incandescence.
When the gases pass the Mach disc, the temperature rises toward the stagnation
value (in excess of the muzzle temperature) and strong luminosity may once more
be observed. This region is termed intermediate flash. By far the most severe
flash phenomena is secondary flash resulting from the combustion of the propellant
gas/air mixture at the boundary to the impulsive jet. The propellant gases mix
with air in the turbulent shear layer on the lateral jet boundary and in the vortex
ring which entrains flow which passes the Mach disc. Since the propellant gases
are not fully oxidized, mixture with air can develop a combustible mixture requiring
only a suitable source of ignition. Some possible sources of ignition include;
preflash, burning powder particles, hot muzzle for burst fire, tracer rounds, or,
more likely, ignition due to elevated temperatures in the gases behind the Mach
disc and in the lateral shear layers.

The presence of muzzle devices can alter the flash characteristics of a
particular weapon. Flash suppressors consist of conical or slotted nozzles
which are placed on the muzzle of guns. These devices alter the shock structure
in the exhaust plume preventing the formation of a strong normal shock in the
plume and thereby reducing the temperature in the propellant gases. On the
other hand, muzzle brakes can act as flash inducers. These devices consist of
a series of baffles placed in the exhaust gases in order to deflect the flow
and recover momentum for the attenuation of the recoil impulse. However,
shock formation on baffle surfaces can cause severe heating of the exhaust
gases. This is illustrated by examining the flash from a 30mm cannon (Fig. 3).
With no muzzle attachments, only minor luminosity is recorded on the photograph
(color Polaroid film, ASA 75, f2.5). With a single baffle muzzle brake installed,
the luminosity increases in the form of intermediate flash. With a double baffle
muzzle brake installed, secondary flash completely envelops the exhaust field.

The energy released by secondary combustion of the propellant gases in
the exhaust plume of guns can result in the generation of blast waves which
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may be as strong as or stronger than the primary blast due to initial free
expansion of the jet. Additionally, the secondary combustion induced blast
may interact with the primary blast in a manner that significantly raises the
overpressure level at a given position. For example, consider the blast field
about a 155mm, M109 self-propelled howitzer firing a Zone 7 charge. From
high speed photography, it was determined that in one of the firings, the
weapon flashed; while in the second case no flash was observed. The pressure
transducers were located along a 900 radial at a distance of 30 feet from the
weapon (Fig. 4).

For the round where no flash was observed, the peak overpressure was 0.15
atmospheres and corresponds to the arrival of the ground reflection at the gage
station. For the round with flash, the peak overpressure is 0.24 atmospheres
and corresponds to the arrival of a strong secondary pulse roughly coincidental
with the ground reflection. In both cases, the free field blast due to the
expansion of the muzzle gases has an identical level of 0.14 atmospheres.
Similar alterations of the blast pulse due to the occurrence of muzzle flash
have been observed in a number of other weapons. For the 81mm mortar, the
problem was quite critical in that flash related overpressures two to three
times greater than the expansion driven blast were recorded. In order to be
capable of anticipating such problems, a means of predicting the probability
of a particular weapon/projectile/propellant combination to produce secondary
flash is desirable.

FLASH PREDICTION TECHNIQUE. Previous Approximations. The approach taken
is to adapt existing techniques to approximate the gasdynamic processes occurring
during transient mixing of the exhausting propellant gases with the ambient. A
significant amount of research has been dedicated to modeling the steady exhaust
plume from rockets and has led to the development of standardized models of the
flow, combustion, and radiation processes in these plumes 5' 6 . However, these
models are formulated to treat steady, axisymmetric flows from nozzles having
relatively low exit pressure ratios. The exhaust from large caliber artillery
firing high zone charges can leave the muzzle with pressures of 500 atmospheres
or more. Additionally, the flow is transient and often three-dimensional.
Attempts to estimate the ignition and combustion in such a flow requires the
application of significant simplifying assumptions.

Carfagno 7 '8 conducted extensive experimental investigations into the
occurrence of and radiation from gun muzzle flash. lHe developed a set of
ignition temperature limits for various mixtures of air and propellant gas
at atmospheric pressure. The limits were established in shock tube tests.
Combustion gas composition was determined from equilibrium calculations of the
chemistry. Five propellants were simulated. Each had combustion products
containing between 40 and 70 percent of combustible CO and H2 . Muzzle gas

mixtures were simulated from commercial bottled gas and then mixed with air
and water vapor. The mixture was placed in a shock tube and subject to the
incident and reflected waves in order to achieve the required pressure
(atmospheric) and temperature. Ignition was determined from luminosity
measurements.
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From these tests, the ignition lemperatures shown in Fig. S were
established. Carfagno fotud that there was relatively little variation with
propellant composition; although, the addition of flash suppressants such as
K SO did raise the ignition temperatures measurably. After concentrations

24
of 3 0 suppressant, little additional benefit was achieved.

Using these ignition temperature limits, Carfagnot8 examined the structure
of the muzzle flow field. 'hrough one-dimensional mixing and gasdynamic models,
he attempted to characterize the flow processes that led to ignition. Iiis
recommended model (Fig. C) assumed that the propellant gas expanded isentropically
to atmospheric pressure, mixed with the ambient, passed through a normal shock,
re-expanded to atmospheric pressure, and finally was ignited if the mixture
temperature exceeded the specified limits (Fig. 5).

Hav and Einstein 9 point out that the flow model reconmmended by Carfagno
is not in good agreement with experiment. Only the propellant gas passes
through the normal shock (Mach disc) ill the exhaust plume (Fig. 1). They
recommend an alternative approach (Fig. 7). The propellant gas expands
isentropically to atmospheric pressure, pass through a normal shock and re-
expand to atmospheric pressure where mixing with air occurs followed by possible
ignition. Mav and Einstein also use an improved interior ballistic model 0 to
arrive at the weapon exit conditions.

While the nodeIs of C(irfagno and May and Einstein agree qualitatively
with experiment, the approximations of the basic propellant plume flowfield
are not satisfactory. Yousefian1 1 uses a more realistic model of the supersonic
jet as input to a finite difference computation of two-dimensional plume mixing
and chemistry (Fig. 8). lie uses empirical correlations 1 2 ' 1 3 to locate the
downrange position and lateral extent of the Mach disc:I

m.d. /D = 0.b9 v'l*/p) - , (1)

dm.d./D = 0.41 (I)*/p,) (2)

From computations of the supersonic core flow1 2, Yousefian develops an expression
which may be used to interpolate for the Mach number upstream of the Mach disc:

_1

Y-1
(X i.d.,'M -- 0.49 ) [2+('Y-1)M ] T /-[+l] [2yll - (y-1)) (3)

Yousefi an assumes that the only shock heating of importance occurs in the
gas passing the Mach disc. Lateral shocks are taken to be sufficiently weak
that isentropic expansion from muzzle conditions may be assumed. The fraction
of propellant gas passing the Mach disc is given as

I I o + 1))/2 ('y- 1)
S0.5: (Xm.d./I)- NJ [(y+I)/t2+( -l)M-)] (4)
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The two propellant gas streams are assumed to undergo instantaneous, one-
dimensional mixing and form the input to a steady, two-dimensional finite
difference computation of mixing and chemistry between the propellant gas
and air.

While providing the most realistic model of muzzle flash to date,
Yousefian fails to examine the influence of the basic unsteady nature of gun
exhaust flow and does not treat the effect of muzzle devices common to large
caliber gun systems. To examine these factors, a flash model is suggested
which combines many of the features of the above approximations.

Present Model. The present model is illustrated schematically in Fig. 9.
To determine weapon exit conditions, the Baer and Franklel0 interior ballistic
model is applied. The expansion to sonic conditions is computed if the initial
exit properties are subsonic. The jet plume is approximated as a steady plume12

with the shock structure and mixing of the propellant gas streams processed
through Lhe lateral shocks and Mach disc according to Yousefian I . The mixing
of the propellant gas and air occurs in an instantaneous, one-dimensional fashion
using the approach of May and Einstein 9. Finally, the Carfagno8 ignition
temperature criteria is applied.

To account for the unsteady development of the flow, the decay of the
muzzle properties is computed in an approximate manner and coupled with both
experimental 3 and numerical1 descriptions of the growth and decay of the
propellant gas plume and associated air blast. However, the basic application
will assume quasi-steady conditions with muzzle exit conditions at the initial
sonic value. A step-wise procedure is summarized below:

1. Compute weapon exit properties using a suitable interior ballistic
analysis: (ue, ae, pe)

2. Compute sonic conditions following projectile separation:

u,/a 2 + 2 . ]=I
y+l (5)

eep*/pe =Ue (6)

T* = u*2 /yR (7)

T* = yl T* (8)s 2

3. Isentropic expansion through lateral shocks to atmospheric pressure:

T = T* (p./p3)7Y-1)/y (9)
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ui = [(Ts - T.)/2 c e (10)

4. Flow properties following transit of Mach disc may be estimated once
Mach disc is located, Eq. (1), and the Mach number of the flow entering the
Mach disc, M1, is determined, Eq. (3). The properties of interest are:

p 2 /p.= [(2yM 2  (y-l))/(y+l)] [(y+l)/(2 + (y-1)ml] (p*/p/ - ) (11)

M= [((y-1)M 1
2 + 2)/(2yM12 _ (y-l))] (12)

T = T*/(l + y-l 2 (13)
2 s 2

In general, the steady state location of the Mach disc should be such that

P2 /p - 1.0; however, if this is not the case, the flow will be assumed to

undergo isentropic expansion to ambient conditions:

TS = T2 (p/p2) (Y-1)/Y (14)

U = [(T* - T )/2cp] (15)

5. The ratio of propellant gases passing the Mach disc is given by*:

(y+l)/2(y-l)
a = 0.96 (Xd/D)2 MI[(y+l)/(2+(y-l)M 2)] (16)

6. Compute mixing of propellant gas streams:

u = (i-a) ui + au

T = T*
5 s

7. Compute mixing of propellant gas with air:

c = rc + (l-r) cP P00  PC

u = (l-r) u

= [rc T + (l-r) c e ]/cs p sPe s p

*As described in following section, the coefficient is increased from that given

by Yousefian to account for measured shock structure of actual muzzle flow.
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8. Compute the variation of the final temperature, T, versus mixture
ratio and compare with the ignition limits specified by Carfagno (Fig. 5).

155?M HOWITZER FLASH. The 155mm, MlO9AI, self-propelled howitzer is used
to examine the capabilities of the proposed flash prediction methodology. The
weapon is equipped with a high efficiency muzzle brake (Fig. 10). Firings of
a 46kg, M483 projectile were conducted for Zones 3-8S. These data are supple-
mented by firings at Zone 8S with no muzzle brake attached to the tube. The
latter firings were conducted by the Interior Ballistics Division, BRL, on a
test stand.

Both blast field pressure measurements and high speed cinematography
were taken for each firing event. The high speed cinematography was
accomplished with 16mm Fastax cameras framing at 2000 frames/s. Occurrence of
secondary flash was quite evident in these photographs.

Launch properties were computed by Keller1 3 and are summarized below(Table 1).
The Zone 8S firings are of particular interest since this is the "super
charge" configuration for the system. The thermodynamic properties for the
M30Al propellant which makes up this charge are:

y = 1.24

T = 3012 °k
a

c = 1849 m2/S 2 ,kP

R = 357.9 m2/S2 ,k

As previously mentioned, the MI09Al is equipped with a double-baffle muzzle
brake. The presence of a baffle has been shown I to generate strong shock waves
in the flow. To approximate the heating associated with the shocks standing off
the baffle surfaces, the gasdynamic model shown in Fig. 11 is employed. An
axisymmetric plume expands from the muzzle and passes a normal shock at the first
baffle. The shocked gas exits laterally as a plate jet and axially through the
projectile hole. The gas passing the projectile hole reaches sonic velocity
and forms a second plume which impinges upon the next baffle. After repeating
the shock/expansion process on the second baffle, the flow expands as a free
jet through the exit hole of the brake. This final exit flow is analyzed
using the techniques described in the previous section.

For a Zone 8S firing, the mixture temperature is computed at various air/fuel
ratios for both the bare muzzle and muzzle brake cases (Fig. 12). The difference
between the two temperature profiles is dramatic. With a bare muzzle, ignition
is not predicted to occur; however, with the muzzle brake in place, mixture
temperatures reach quite high values and ignition would be expected.
Experiment shows that for Zone 8S with the muzzle brake in place, secondary
combustion occurs in each of 20 observations. For the bare muzzle firings, the
picture is not as clear. When the Zone 8S firings were conducted with the
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standard charge, secondary flash was not observed (one round); however, when
0.23kg of propellant was removed, secondary flash was observed (five rounds).
Additionally, when the amount of flash suppressant was reduced to 1%, flash
was observed (five rounds). In order to resolve this disagreement and to
expand the bare muzzle data base, more firings are required.

The prediction procedure was used for the remainder of the M109AI tests
conducted with the muzzle brake in place, Fig. 13. The results are summarized
in Table 2.

Table 1 155mm, M109A1 Launch Properties

Zone Propellant %Suppressant V T a pe/p- u* p*/p T*e e e p/ s
(kg/type) (m/s) (0k) (m/s) (m/s) (°k)

3 1.50/Ml(SP) 2.0 250 1418 793 68 735 31.4 1319

5 3.21/Ml(7P) 2.0 379 1425 795 148 749 82.6 1376

7 6.07/Ml(7P) 1.5 542 1353 775 273 749 196.9 1376

8 9.59/M6(MP) 3.6 649 1490 813 486 795 393.1 1549

8S 12.24/M30(MP) 4.7 790 1756 883 703 872 629.5 1865

Table 2 155, MI09Al Secondary Flash

Zone Measured Secondary Predicted Secondary

Flash Flash

3 No No

5 No No

7 Yes Yes

8 Yes (?)

8S Yes Yes

The firings at Zone 7 showed two types of flash behavior. In some instances,
secondary flash was observed only in the gas exiting through the projectile
hole but not that passing out of the lateral vents. On other occasions,
secondary combustion completely enveloped the field.

For the Zone 8 firings, the mixture temperature was predicted to be 70*K
below the ignition limit. The observations showed combustion only in the
gases exiting the projectile hole. With this charge, suppressant is added in
the form of a 0.34kg bag of K 2 So 4 tied to the front of the charge (ammunition
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for the 155mm is separate loaded). There is some debate as to the nature of
suppressant mixing with the propellant gases; thus, if the effective percentage
of suppressant is lower, the mixture temperature could exceed the ignition
limit.

Since the muzzle exhaust process is basically an unsteady phenomena, it
is of interest to examine the sensitivity of muzzle flash predictions to changes
in the nature of the flow.

UNSTEADY FLASH ANALYSIS: BARE MUZZLE 155MM HOWITZER. The development of the
muzzle flow field is illustrated in Fig. 1. The shock structure within the
propellant gas plume grows in a manner which is strongly influenced by the
projectile presence and pressure field associated with the expanding air blast.
Both medium caliber 14 and small caliber 3 weapons show nearly identical flow
field properties at correctly scaled times if the exit conditions are similar
in each case. Assuming that the inviscid flow structure for a 155mm howitzer
can be scaled from data acquired on a 5.56mm rifle 3 will permit estimation of
the influence of muzzle flow field growth and decay.

The technique 10 used by Keller 13 to calculate weapon exit conditions can
not define the temporal decay of propellant gas properties during tube emptying.
For the 155mm, MIO9Al firing the Zone 8S charge, this decay is estimated using
data acquired from a 20mm cannon 14 . It is assumed that the property decay from
peak values occurs similarly for both weapons if the time scale is

t = t/T

where

-r = L / a °0

L = gun tube length

a* = initial sonic velocity in propellant
0 gas at muzzle

For the 20mm case, only exit pressure could be measured. Lacking additional
data, the remaining gas properties were estimated under the assumption that
the emptying process was isentropic. For the 155mm howitzer, these approxi-
mations lead to the following:
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Table 3 155mm, M109AI Muzzle Exit Property Variation when
Firing Zone 8S Charge

t u* p*/p T*
S

(ms) (m/s) (OK)

0 872 630 1918

1.9 835 446 1759

3.7 808 316 1647

5.6 784 234 1551

7.4 762 179 1469

9.3 741 134 1385

11.1 723 106 1319

14.8 692 67 1208

20.4 660 42 109.9

26.0 626 25 989

30.0 594 15 890

The flow development was computed using a one-dimensional, unsteady

numerical model developed by Erdos and DelGuidice1 (Fig. 14). It is inter-
esting to note that by the time the propellant gas plume reaches its maximum

size (t - 6 ms), the muzzle exit conditions have dropped markedly from the
initial levels. Five points were selected as representative of various stages
of development. Two of the conditions were taken during growth of the plume;
the fully developed stage was selected; and two conditions representing plume
decay were examined.

From spark shadowgraph records of small caliber firings 3, the shock

structure internal to the plume at each condition is determined (Fig. 15).
The following properties were determined:

142



Table 4 Mach Disc Properties During Growth and Decay of Propellant
Gas Plume

Stage t Xm.d./D a Vm.d. Mre.

(ms) (m/s)

1 1 6.0 .99 698 3.7

2 3 12.3 .28 328 6.2

3 6 15.3 .16 0 7.7

4 9 12.5 .06 -255 8.2

5 15 6.5 .10 - 87 5.8

Using the computed Mach disc velocity, a relative flow Mach number is
determined. Using this, the shock jump conditions are evaluated. The flash
analysis described previously is then directly applied. For each stage of
the flow life cycle, the mixture temperature variations are shown in Fig. 16.

The most interesting feature of this plot is the prediction that the gas
processed through the shock early in the development cycle, stage 1, produces
very high mixture temperatures with an increased probability of ignition. This
stage shows that very high fractions of the exhausting propellant gas are passing
the Mach disc. Even though the wave is relatively weak, the mixture temperatures
are significantly elevated.

As the gre.:-:i of the plume continues, the mixture temperatures monotonically
decay. Apparently, this portion of the cycle is dominated by the variation in
muzzle exit propertics a.td by the diminishing mass flow through the Mach disc.

The results of this analysis could help explain some of the bare muzzle
firing data with the 155mm howitzer. Assuming the prediction of high mixture
temperature propellant gases exiting at early times is correct, the Zone 8S
charge would be borderline for even bare muzzle firings. Additionally, these
results are partially supported by experimental results of Klingenberg and
Mach15 who show time-resolved, smear photographs of the muzzle flash from a 7.62mm
rifle. Their data indicates combustion initiates behind the Mach disc in the
gases which exit early in the tube emptying cycle. Additionally, the high speed
cinematography of the 155mm shows a tendency for the propellant gas to ignite
early in the venting. This initial secondary combustion may be extinguished
as the fuel is consumed only to reignite later in the exhaust cycle.

SUMMARY AND CONCLUSIONS. The muzzle flow field from guns is analyzed to
determine features which influence the tendency of the weapon to produce
secondary flash. The gun tube exit conditions and plume shock structure are
strong factors in the flash process. The presence of muzzle devices also is
shown to alter the properties of the exhaust flow. Finally, the basic unsteady
nature of the process appears to require serious consideration.
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The model used in the analysis is overly simplistic. It does not treat
the gasdynamics or chemical kinetics of the process in a satisfactory manner.
However, the ignition criteria can be easily coupled to existing inviscid
analyses of muzzle flow and used to point out qualitative variations in flash
processes.

Additional experimental data is required to define the temporal sequence
of muzzle flow ignition and combustion. Improved analytical techniques are
needed to address the problem of transient, high pressure exhaust flows.
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THREE DIMENSIONAL FLOWS
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ABSTRACT

The air blast in the irregular Mach region was investigated in a series
of high explosive experiments known as Operation Mighty Mach. These tests
used 490 kg, spherical, Pentolite charges detonated at heights of burst of
3.26 to 6.04m over a concrete surface. ligh response pie:coelectric pressure
recordings made with wide hand FM magnetic tape provided side-on and stagnation
overpressure time histories of the flow phenomena at shock strengths of 8000
to 350 kPa. The progression of the air shock through the reflection regions
is presented in this paper.

The reflection of shock waves has long been a subject -f ;r'estigation
by numerous researchers using both analytic and experimental techniques.
Research activities using shock tubes have examined one-dimensional flows
over a range of shock strengths, with some having as high a Mach number as
10. Works of such researchers as Gvozdeva1 , Glass &i Ben-Dor "-, Ileligt,
Takayama4, and Bertrand 5 are well known, and established much of the ground
work for the various conditions and domains of shock wave reflection in the
region of transition from regular to Mach reflection.

As a result of this research work, many people within the U.S. became

virtually interested in the transition zone for high shock strengths as it
develops from height-of-burst (HOB) explosions. The surface reflection for
IIOB air blast is illustrated in Figure 1 with the transition region between
regular reflection and regular Mach reflection labeled irregular Mach
reflection (IMR). The general term of irregular was used to cover both the
regions of complex Mach and Double Mach reflection as described by Ben-|or6 .
The structure of the irregular Mach for three dimensional flows was first
observed by Carpenter7 in 3.6 kg HOB experiments conducted in 1973. The
investigation was done over a planar surface instrumented to measure static
overpressure above 689 kPa. Subsequent to these experiments, the Defense
Nuclear Agency sponsored the Ballistic Research Laboratory in an extensive
HOB program to study the flow characteristics of the air blast in IMR.
The effort was code named Operation Mighty Mach, and as shown in Table I.
was carried out in 1978 and 1979, with a continuation into 1980. The recent
work placed the emphasis on models and generic shapes located in the IMR for
blast loading.
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lable I . Sut ary ( ! ra t i on Mi 1.t y Mach

YEAR OBJEC'Tf VI" NO. Si1OTS AVG C-IARGE1 WT I--XPOS-I VF! I10B
(kg) (spherel (m)

1978 Phenomena
Studies 2 500.0 I'entoI i te I .(

1979 Phenomena
Studies 5 (2) 490.8 Pentolite 1.55

(3) 487.9 Pentol ite 3.05

1980 Mode! (, (1) 484.0 Pentolite o.04

Load i ng (4) 487.0 Pentol i tC 1.80

Studi es ( I 185.0 loito I i t" 2

Operat ion Mighty Mach w;Js fielded as a joint effort with the Iet'L'ce RCsearch
lstabl ishment, Suffield (IItS), Alberta, Canada, at their soth houitdarv test
range. Quartz piezoelectric pressure transducers of commercial manufacture were
used ill a static and stagnation measurement mode. The transducers have a 500 kll:
resonant frequency and were configured for field use as shown in Figure 2.
Signals from the transducers were transmitted through line drivers located near
the test pad over RG-58 cable 600m in length to wide-hand (400 kil:) FM magnetic
tape recording systems in a recording trailer.

The pr 's surC gages wore mounted in steel wedge-shaped mounts called rakes
at cievations near the surface to obse rve the conditions close to the triple
point as it rises with distance. The elevations chosen were 1.27, 3.81, 8.89,
13.90, and 2-1.13 cm. Althou h static and stagnation gages were of necessity
mounted in different rakes, they vere located at equal radial distances from
ground -ero. F igoure 3 shows a photograph of the oage rakes. A reinforced
conc rete pad was instaI led to provide an ideal reflecting su a,, lcIce, a;s shown
ill :i,ce i. Pressure gage's were located in the icncre sulace- It var ions

I;,di,1 distanLlces trom st;t ioi grou nd zero direct 1ly under tie charvie to 9.2m.
\ Scotchl ite screen for laser photography is seena on tile right side of the
pOnt ().r I1h , aid striped IMckdrops for I ate i me photogrammet t ic t kid(ie o of
Sli triple point path .iare seen in the hack),round.

'ressure-time records from the surface-motited gages ;re Pre en tCd in
Figures 5-7 from a 11013 of 4.55m (Mighty Mach 11-79, Shot 1). St at ions 0.
through s;tation 12.5.0, Figure 5, indicate the regular reflection region with
typical exponential decaying waveforms. Figures 6 and 7 show w;av(forms of
, ges iln the irregular Mach region. A second peak is first sCen :it slatioil
I I,0, 4.27m, which is 21, times the magnitude of the initial peak. The secodo rv
peak is a compression wave. It decreases in magn i tude and occurs lat e r ii t i me
as the wave moves outward. At station 30.0, 9.1Sm, whose waveform is shown
in Figure 7, the secondary peak has disappeared and the transition is complete.
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The stagnation (T) and static pressure records were used to calculate the

Mach number and dynamic pressure (Q) according to the procedures described in
Reference 8. Results from a typical station located in the region of early
irregular Mach development are shown in Figures 8-10. The gages were located
at elevations of 1.27 (.05), 3.81 (1.5), and 8.89 (3.5) cm at station 16. The
time of occurrence of the second peak of the stagnation pressure record is
noteworthy as it occurs at the beginning of the rise of the second peak of the
static record. At greater distances, such as station 22 (6.71m), whose waveform
is shown in Figure 11, for instance, the time of occurrence of the two is the
same. A second observation is seen in Figure 9, station 16.15, where the
stagnation and Q records show a very decided fall-off in pressure, evidently
created by a downward component in the flow. A very turbulent flow is indicated
in this region and is supported by the velocity results of the hydro-code
HULL computations of Reference 9 discussed below.

Needham and Booen 9 in January 1981 published HULL computations of a 4.57m
IOB, 498 kg Pentolite shot equal to that of Mighty Mach 11-4. For relative
correlation, the pressure gradient of the HULL run for 2.787 ms is shown in
Figure 12 with the static pressure record positions superimposed and the time
histories associated with those positions shown. The gages are all located
within the region of IMR as indicated by the pressure contour and confirmed by

the double peak in the waveforms. The triple points together with the shocks,
slip streams, and vortex are also shown by the HULL computation. Pressure as
a function of time is compared in Figure 13 for static pressure for the experiment
and the code for station 16, 4.8m at the three elevations. A very good correla-

tion is evident.

The structure of the IMB as determined from laser photograpy is shown
in Figure 14, Part A. It compares well with the density contour of the

code. The time occurrence is difference so the height of the Mach stems do

not compare.

In summary, the irregular Mach reflection produced by explosions in air has
been investigated and the double peak phenomena clearly recorded by high resolu-
tion pressure instrument.ition. Comparisons made with the hydro-code HULL show
good correlation.
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Figure 4. Photograph of Test Bed.
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Mach Stem Formation From Multiple Detonations

John H. Keefer
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ABSTRACT

The shock phenomena from single detonations have been studied and discussed
in many technical papers and reports. Far less attention has been given to the
interaction of multiple detonations. This paper will review the work that has
been done to better understand Mach stem formation with interacting shock fronts.

Analytical prediction techniques will be compared with the actual measure-

ments. In the multiple charge case, the overpressure is enhanced at the experse
of the dynamic pressure thus resulting in damage at greater distance than if

the total explosive weight had been detonated as a single charge.

When a spherical charge is detonated above the ground surface the resulting
spherical blast wave reflects from the ground. At a distance from the point on
the ground immediately beneath the charge, approximately equal to the height of
the charge above the ground hbt vaIryving with shock strength, the reflected shock
begins to overtake and combine with the primary shock to form a single shock
known as the Mach stem. The point at which the primary shock, the reflected
shock and the Mach stem meet is called the triple point. As the Mach stem shock

moves outwards the heiktht of the triple point continues to grow, as described by
several Computer Codesy, in a hyperbola-like trajectory.

The physical properties of the Mach stem blast wave and the trajectory of
the triple point depend upon the energy yield of the charge; the height of
burst of the charge above the ground, and on the nature of the groknd surface.

When the primary shock reflects from the grotnd, some energy will be absorbed
by the ground and will appear as seismic disturbances, including cratering if
the explosion is close enotgh to the ground. As the blast wave continues to
move across the ground surface, there will he a continued transfer of energy
between the air and the ground, anti also a redistribution of energy within the

blast wave.
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A better understanding of the air blast environment surrounding a two
charge multiburst detonation above the ground was gained through an experimental
research program known as DIPOLE WEST. This series of 16 experiments was
conducted at the Defence Research listablishment, Suffield, Alberta, Canada.

It was postulated by R. Reisler (BRiL) that if two identical charges are
simultaneously detonated, at a certain distance apart, the two resulting
identical spherical blast waves will interact along a plane, and since there
will be no energy loss in this interaction it will be possible to observe an
ideal spherical shock reflection.

In two of the experiments (DIPOLE WEST, Shots 8 and 11) one of the charges
was at 7.6 metres above the ground and the second charge at a further height of
15.2 metres above the first. A photograph of Shot 11 fireballs at 0.05 seconds
after detonation is shown in Figure 1. For each charge configuration, one
experiment was carried out over smooth ground and another over rough ground.
In each experiment photogrammetrical measurements were made of the trajectories
of the primary spherical shock from the bottom charge; of the Mach stem shock
along the ground surface, and of the Mach stem shock produced along the ideal
reflecting plane between the two charges. Comparisons of the shock strengths
of the Mach stems along the ground and close to the ideal reflecting plane,
indicated an energy loss in the shock front of approximately 10% over the smooth
ground and of approximately 37% over the rough ground. The trajectories of the
triple points formed by the junction of the primary shocks, reflected shocks
and Mach stems, also show a difference for the rough ground compared with the
smooth ground, and the smooth ground compared with the ideal reflecting plane2 .

See F:igure 2.

In order to consider tile effect of' surface absorptivity for a given height
of burst (IIOB) a power function best described the variation in growth (y) of
the path of the triple point with r;ine (r) feet

(a) (r f

where f = 1.53 -
r

a .139 x e

and e = 1.00 for Ideal Surfaces

e = .90 for Hard Surfaces

e = .63 for Soft Surfaces

Comparison of maximum overpressure for the 15.2 metre vertical separated
events with the Air Force Weapons Laboratory 1111LL. code results are presented
in Figure 3. Correlation between the calculated results and the measured data
is excellent 3,4

In a multiple burst of more than two charges, the interaction of the blast
waves begins as an interaction between blast wave pairs. The interaction for a
pair would develop to a point where a third blast wave becomes involved in the

interaction.
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Several small scale tests were conducted in 1960 at the Ballistic Research
Laboratory (BRL) 5 to establish the enhancement in air blast coverage gn the
ground that can be obtained from the simultaneous detonations of a cluster of
explosive charges as compared to the detonation of a single large charge. In
those early studies it was shown, using trios of bare explosive spheres located
on the vertices of an equilateral triangle, that efficient use of such simultan-

eously detonated charges requires an optimization of the separation distance
between charges and their height of burst to obtain maximum coverage on the
ground with a given overpressure. Particular emphasis had been placed on
developing iso-pressure contours for special pressure levels in and about the
triad for both ground and air bursts.

Several phenomenological aspects of the blast problems associated with
simultaneous detonations remained uncertain at the completion of the small
scale studies. Therefore, it was felt by the Air Force Special Weapons Center
(AFSWC) and the BRL that a large scale test should be conducted. Consequently
a larger scale test was considered with the following air blast objectives:
(1) to determine the dynamic pressure field both within and outside a triad of
charges, (2) to determine more precise mapping of the peak overpressure field
in the region close to the center of the charges and in other regions of reflec-
tion enhancement. The test site selected for the program was White Sands Missile
Range, New Mexico. The nickname "White Tribe", an acronym derived from White
Sands Tr1ple Burst Experiment, was selected. The test conditions were scaled
from the previous 454g and 3.6kg charges fired to give the optimum separation of
a triangular array, for ground bursts, for the case of maximizing ground coverage
with peak pressure exceeding t)89.5 kPa 6. Thus, a nominal separation of 53.6 metres
between each of three 4536 kg bare charges of Pentolite was selected. Moreover,
these conditions could simulate those predicted for the simultaneous detonation
of three 200 KT nuclear weapons at a separation of approximately 1463.0 metres.

The air blast in and about the triad of explosive charges was measured at
a large number of stations using several different techniques. A total of
29 piezo-electric gages of BRL design, 2- strain gages and 43 mechanical self-
recording pressure transducers were used. Several motion picture and still
cameras were used to observe the detonation from both the ground and from the
air.

A day or two before the three tests, when all instrumentation was nearly
ready, the large explosive charges were prepared at the vertices of the triangle.
The explosive was TNT, formed in 3.h kg blocks, and stacked in an hemispherical
shape to yield an air blast equivalent to that from a 4536 kg charge of 50/50
Pentolite at sea level conditions. So the charges weighed 5248 kg in order to
compensate for the 1220 metre elevation of the White Sands site 6 .

With the exception of several variations in the location of gages, each
of the White Tribe firings was conducted in essentially the same manner and
yielded similar results. The side-on overpressure contour plot for the first
shot is shown in Figure 4. From these results it can be seen that by dividing
the charge into three approximately equal portions and then detonating them
simultaneously that the area on the ground covered by at least 689.5 kPa is
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increased by 55% over the coverage that would have been obtained if the total
quantity of explosive had been left in one charge. Mapping of the dynamic
overpressure field was not accomplished, although some of the expected dynamic
pressure phenomena were observed.

If n-charges are placed in a row and n>3 the resulting shock pattern is
shown in Figure 5 for simultaneously detonated charges. If additional rows
are added to the multi burst array blast focusing will occur.
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BLOW-OFF OF A FLAME LOCATED IN A REAR STAGNATION POINT FLOW

D. Mikolaitis and J. Buckmaster

University of Illinois, Urbana 61801

Abstract

If a combustible mixture flows past a thin plate, experiment shows
that a flame may be stabilized in the wake. At moderate Reynolds
Numbers the wake is characterized, near the symmetry axis, by a rear
stagnation point flow and this is the fundamental ingredient of a
mathematical model of this situation. Analysis shows that static
stability is determined by the outcome of a conflict between the de-
stabilizing effects of heat transfer to the rear of the plate, and if
the flow is too strong blow-off occurs.

Introduction

Gas flow at modest Reynolds Numbers past the blunt trailing edge
of a thin plate is characterized by a closed laminar wake, and it is

possible, if the gas is combustible, to stabilize a flame in the rear
stagnation point flow immediately downstream of this wake (Kawamura,
Asato, Mazaki, Hamaguchi & Kayahara (1979)). At large enough flow
rates the flame is blown off, and the aim of our investigation is to
understand these phenomena in the context of an elementary combustion
model. This model is defined by the following system of equations:

2 1 -6/T(v.V)(T,Y) = V (T, Y) +BYe (l,-l) (1)
'L

v=2U(x,-y)

B = 4 exp T+Y

2(Tf+Yf) Iff

Here fresh mixture is characterized by a temperature Tf and mass
fraction of reactants Yf , and x is measured downstream from the

stagnation point. These equations are solved in the asymptotic limit

of infinite activation energy (8-) with the Lewis Number close to

1 [L- 1 = 0(6- 1)] . Moreover a similarity solution is constructed
that is valid only on the axis of symmetry. The stability of the steady

solution is examined by adding appropriate time derivatives to the
equations and then formulating an eigenvalue problem that is solved
numerically using the method of weighted residuals.

Results

The essential results are shown in Fig. 1 which reveals how h
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the distance between the flame and the stagnation point, varies with

the straining rate a These results are expressed in terms of the

single parameter

Y O(L-I)
( (2)2

2(Tf +Yf)

Note that there is a maximum straining rate that any flame can tolerate,

beyond which it may be inferred that blow-off occurs. Only those portions

of the curve that are solid are stable so that for Q2 -.9 the steady

state becomes physically unattainable before reaches its maximum.

It is possible that bifurcation occurs at the transition point but no

analysis has been undertaken of this question. It would be an interesting

matter to examine experimentally.
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THE EQUATION GOVERNING THE PROPAGATION
OF FAST DEFLAGRATION WAVES FOR SMALL HEAT RELEASEt

D.S. Stewart and G.S.S. Ludford
Department of Theoretical and Applied Mechanics

Cornell University, Ithaca, N.Y. 14853

ABSTRACT. The initial-value problem of a plane flame subjected to
arbitrary upstream and downstream disturbances is treated using activation
energy-asymptotics (AEA) and the limit of small heat-release. The flame is
a discontinuity whose locus is found from an appropriate ordinary differential
equation. The position of the shock wave formed by the expanding burnt gas
can be calculated. The unsteady analysis uses the solution for the fast
deflagration developed in a paper by Stewart & Ludford (1981); under suitable
circumstances the flame behavior is quasi-steady. This asymptotic solution
to the unsteady equations of combustion allows study of the flame acceleration
and shock formation incipient to the transition from deflagration to detonation.

I. INTRODUCTION. The question of transition from deflagration to deto-
nation (DDT) has long defied being answered by a simple theory. This is in
part due to the inherent nonlinearities of the equations of reacting flow
which have precluded analytical solutions. In their recent book on detonation
theory, Fickett & Davis (1979) wrote, "Except for a few very special cases,
there are no explicit solutions of the equations. They are studied by theo-
retical analysis of their general properties and by numerical calculation of
particular cases". In this paper we give a simple, explicit solution to the
unsteady, one-dimensional, reacting flow equations for the initial-value prob-
lem of a plane flame subjected to suitably prescribed disturbances.

The present work is preceded by two papers. Recently Lu & Ludford (1981)
analyzed steady detonations; the assumptions required in using AEA in their
paper are made here as well. Then Stewart & Ludford (1981) discussed steady
deflagrations for wave speeds which are appreciable as must be the case in
DDT. In their paper they gave an explicit asymptotic solution for deglagra-
tions which this paper uses as a starting point.

The development of the present model proceeds in two distinct steps.
First, we treat the reaction term, AY exp(-6/T) in the governing equations
(system (1) of Section II) by using the limit of large activation energy, 6 - .
This linit, with no other assumptions allows us to pose an unsteady, initial-
value problem in which the reaction term is eliminated; but the effect of
treating the reaction term in this way is to produce a moving discontinuity
across which certain asymptotically derived conditions must hold. We will give
a brief discussion of how this problem is arrived at in Section III, but the
full details of this step are worked out by Stewart (1981). The second step
is treated in detail in this paper and involves the solution of the problem
posed4 by e -> when the heat released by the chemical reaction, 8, is small.

Present address: Department of Theoretical and Applied Mechanics, University

of Illinois, Urbana-Champaign, IL 61801.

iThis work was supported by the U.S. Army Research Office under Contract

No. DAAG 29-79-C-0121.
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Stewart & Ludford (1981) discussed the steady deflagration wave solutions
for system (1), using the limit 0 -), -, for finite B. This steady wave solu-
tion is parametrized by the flame speed, V, which is 0(1) instead of being
small as is usually assumed in the combustion approximation; they dubbed these
solutions, for finite wave speeds, "fast deflagrations". Throughout the steady
flame-zone, the density, velocity, temperature and mass fraction vary from
quiescent values upstream to downstream equilibrium values. The overall changes,
upstream to downstream, which depend on V, can also be found directly from the
classic Rankine-Hugoniot relat ions as well as from integrating the appropriate
differential equations. Stewart & Ludford also showed that when B is small,
the fast deflagration solutions have a simple, explicit form. The small heat-
release version of the Rankine-Hugoniot conditions can be inferred directly from
these solutions as well.

If the upstream and downstream disturbances, away from the flame, are
"sufficiently" gradual, then these "outer" disturbances are governed by acoustic
solutions. The fast deflagration solution for small heat-release can then be
used as the appropriate description for the flame-zone which interacts with the
upstream and downstream disturbances as a Rankine-Hugoniot discontinuity. Thus,
as we well show in Section V, if the heat release is small and if the initial
data is sufficiently gradual, the solution to (1) is an acoustic solution mod-

ified by the presence of an (quasi-steady) accelerating or decelerating flame;
the solution is then completely determined by integrating an appropriate first-
order differential equation for the flame location.

At a certain point in the paper we specialize our treatment to consider
problems when the flame is initially disturbed only downstream. We show that
it is possible to accelerate a flame with a rarefaction disturbance downstream;
our results also imply that a flame may be decelerated or even extinguished by
a downstream compression wave that passes through the flame. This might seem
surprising at first until one considers the ordinary results of a Rankine-
Hugoniot diagram which shows that the mass flux through a flame increases with
the negative pressure drop across it. We briefly discuss the development of
a precursor shock that occurs upstream of an accelerating flame.

II. THE GOVERNING EQUATIONS. The equations used here are the equations of
one-dimensional, unsteady combustion. In order to obtain tractable equations,
certain simplifying assumptions must be made, the most important being: one
step reaction, Arrhenius kinetics, perfect gases, Newtonian fluids, equal spe-
cific heats, equal molecular masses and constant material properties. For a
discussion of these assumptions and their justification, see Buckmaster &
Ludford (1981).

The equations for p, v, T and Y, the dimensionless density, fluid vel-
ocity, temperature and reduced mass fraction of the deficient reactant, express
the usual balances of mass, momentum, energy and species. The dimensional
units of p and T have been chosen with respect to a quiescent, unreacted
state, so that if quiescent, p and T are 1. The reduced mass fraction
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Y is the mass fraction of the reactant divided by its quiescent value, so
that if quiescent Y = 1. The velocity unit is chosen to be the quiescent

sound speed. x denotes dimensionless distance and the distance unit Is
X/cpM, where X and c are respectively the thermal conductivity and
specific heat of the fluid, and M is the mass flux found by multiplying
the quiescent density times the quiescent speed of sound. t represents
non-dimensional time and the time unit is formed from the length unit and
divided by the velocity unit.

To simplify the present discussion we have set both the Prandtl and Lewis
numbers equal to 1; it is a simple matter to generalize the present discussion
to include other values. The other parameters that appear in the governing
equations are y, the ratio of specific heats, 0 a non-dimensional measure

of the amount of heat released by the reaction, A E DM- 2  where D is the
Damkihler number and 0, the dimensionless activation energy. The governing
equations are written concisely in a vector form, where u is the column vector
formed by respective components p, v, T and Y, as

u + C - u = D • u + G + AY exp(-O/T) H. (1)
t -~ ~XX

Here the subscripts x and t denote partial differentiation and C, D, G,
and H are square matrices and column vectors

v p 0 0 o 0 0 0

T/(yp) v l/y 0 0 liP 0 0
C =,D=

-"0 ( y-lJ)T v 0 "" 0 0 Y/p 0

00 0 v0 0 0 I/p '

(2)

0 -0

01 0

L2 ' L-y(.y-i)(v ) /P
x

In general, the task is to solve the system (1) when u is prescribed

initially at t = 0. In particular we will focus on the initial value prob-

lem of a flame propagating to the left into an Initially quiescent mixture
upstream, while subjected to an initially prescribed disturbance downstream.
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Ill. ACTIVATION-ENERGY ASYMPTOTICS; FAST DEFLAGRATIONS. Here we present
the results of using the limit of large activation energy, e - , in order to
treat the reaction term, AY exp(-e/T), in (1). The effect of e - - is to
eliminate the reaction term everywhere except in a thin flame sheet (a region

of reactive-diffusive balance). The flame sheet is effectively a discontinuity
which separates unburnt, upstream gases from burnt, downstream gases and re-
quires certain jumps across it. The advantage of this limit is that the flame
speed is precisely defined as the speed of the discontinuity.

A standard flame-sheet analysis requires that we consider the stretched
coordinate

z - O[x - x* (t)] (3)

where x = x (t) is the flame location, expansions of the type

u = u (t) + O(e - ) , (4)

and a distinguished limit for the Damkohler number, namely,

2
D = CO exp(O/T,) (5)

C and T* are 0(l) constants that characterize D. The analysis is
straightforward (See Stewart (1981)) and we are led to the following conditions
across the flame sheet. Denoting a jump across the flame sheet at x = x* by,
fl = O(x*) - O(x*), we find

[u o ] = [ ° 01 =v ] = [T + 6Y 1 = 0, (6)
x x x x

T T* at x = x and Y 0 for x--.x(7)

Using AEA, the problem of unsteady flame propagation is posed by solving
the reactionless equations (1) subject to the conditions (6) and (7). Initial
disturbances may be arbitrarily prescribed both upstream and downstream with
the requirement that the conditions at the flame sheet are satisfied initially.
This problem is well-posed and we will solve it explicitly for a limited class
of disturbances whenever the heat release 8 is small, and the initial distur-
bances are sufficiently gradual.

Stewart & Ludford (1981) found the steady wave solutions of the above
problem for deflagrations when V, the flame speed, is 0(l). They found

that such "fast" deflagrations are composed of three regions; a convective-
diffusive zone on the x scale, upstream of the flame sheet, the flame sheet,

(now the discontinuity given by (6) and (7)), and a downstream convective-
diffusive zone which adjusts the solution to its final equilibrium state.
Finally, the main result in their paper is that the flame temperature T*
(a property determined by the mixture) is determined as a function of the

flame speed V.
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IV. THE LIMIT OF SMALL HEAT RELEASE. Stewart & Ludford also showed that
the steady solution of a fast deflagration takes a simple limiting form when
the heat release 0 is small. Determination of this steady solution is found
when u is expanded as

-o

U U +U (x - Vt) + ... , where Y Y/O (say). (8)

Here u and u are the column vectors (1,0,1,0) and (p ,v,TlY1) respec-
tively.' Substitution of (8) into reactionless equation (1J leads to a set of
linear equations for the components of ul containing the flame speed V as
a parameter. The resulting equation for uI must be solved subject to the
flame sheet conditions (6) and (7) and, in general, matching conditions that

I -u+ (say) as x - x - + C.

The upstream, convective, diffusive zone followed by the flame sheet, and
the downstream adjustment region has been referred to as the flame-zone. As
x - x* varies between -- and +-, the components of ul vary continuously
from u-, to u . On a scale larger than x, ax = X for example, this flame
zone can be viewed as a discontinuity similar to a shock wave. These overall
jumps are found in terms of the wave speed V from the solution for ul, or
equivalently from the small heat release version of the Rankine-Hugoniot rela-
tions. Denoting the overall jump in a quantity *(x - x*) by {d - +c) -t(-).,
these jumps are given by

{v = -[V/(-yv2 ]{Tl } = V(} [V/(l-V 2 )] {YU=-YV/(l-V 2) (9)

The detailed structure of the flame-zone is needed, however, to determine
the flame-temperature, flame-speed relationship. The flame temperature, T*,
is assumed to be given as 1 + Bt,, so that setting T1 = t, at x x* in
the solution for u., described above, leads to the equation

t, = T_ + Y_/[I + (y - I)V 2 (10)

V. QUASI-STEADY ANALYSIS. The unsteady solution developed in this paper
requires that the flame behaves quasi-steadily in the manner described by (9)
and (10). Hence, we restrict the disturbances applied to the flame-zone to
those that vary sufficiently slowly, spatially and temporally, so as not to
destroy thequasi-steady flame response. Therefore it is necessary to assume
the outer hydrodynamic disturbances evolve on the slowly varying length and
time scales X = Bx and T = St.

Under this change of variable and by expanding u as in (8), u sat-
isfies the linear wave equation 0

U + c u =0, (11)
T c x

where C - C(u). Fquation (1) has a simple sol ution giver by
__C Z C
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4
Ul Z fi ( i)ri Fi X - A T (12)

I=1

where X. and rI are the eigenvalues and right eigenvalues satisfying

(c - X I) ri = 0. (13)
2:C Z -i

The eigenvalues are easily found to be X = 1, x =-I, X3 = X4 = 0, and the

eigenvectors (as column vectors) are r = (1,iY-i,0), r2 = (l,-ly-l,0)
r3 = (1,0,-1,0) and r4 = (0,0,0,1). ~rom (12) it is easy to write out the
components of u in terms of fi and vice-versa. Note that the solution for

uI is a superposition of four traveling waves; fl(Cl) and f2( 2) represent
waves that travel at the sound speed to the right and left respectively, and
f3(Q3) and f4 ( 4) are stationary.

The solution for u is determined by evaluating f." Prescribing the
initial data u at T ~= 0 is equivalent to specifying fi = Fi(X), (say),
as seen from (1)). If there is no flame present, (i.e., we are dealing with
purely acoustic disturbances) then f (U ) = F (E ). Now consider how the
existence of a flame modifies this acoustic solution.

Let the flame location on the X scale be X *(T), where X*(T) - V.
Note that the jumps in the components of uI  imply jumps in f. as well and
are given by 1

fI)= -Vf4 /[2(l-V)], {f2}Vf 4 /[2(l+V)], {f3 )={f 4}=-f 4 _ (14)

The initial data F(F.) is assumed to be arbitrarily given except that
initially it must satisfy the flame-zone jumps (14). Construction of the
solution for fi when a flame is present will be illustrated by solving for

f 
1

At this point, and for the remainder of the paper, we will make the
explicit assumption that the flame is propagating into an initially quiescent
mixture. Also, we will assume that the flame is originally at the origin and
that the initial flame speed is Vo . Note that for this example it is proper
to set f4- = 1; f4 - would be different from 1 if the mixture ahead was not
initially quiescent. Then the initial data required for fl, consistent with
(14), has the form

F =0 for X < 0, FI(X) bounded for X > 0, where FI(0+)= -Vo/[2(l-V)]. (15)

Consider the flame locus X = X*(T) as a monotonically increasing curve
to the left, (say). For points (X,T) such that X > T or X < X*(T), fl
is assigned the initial value F1 (El). However, in the region T > X > (T),
the characteristic which passes through the point (X,T) also passes through
the flame locus. See Ti,ure I . f1  iS theT given by the value of fI on
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the downstream side of the flame sheet, i.e., fl Vwhich is simply calculated
using the jump condition (14). Thus, for the regton T > X > X*(T)

f - I()- V/[2(l - V)] . (16)

Thus, we have determined fl(El) once we are given the initial data for
f, and know the location of the flame locus, X = X *(T). It is a simple matter
to verify that similar arguments apply for f f3 and f4  as well. The only
restriction on the construction of this solution is that the flame locus never
have characteristic slope, i.e.,

V = X* # + 1,O . (17)

To determine the flame locus we note that equation (10) is a first-order
ordinary differential equation for X *T) which is to be solved subject to
the initial condition X (0) = 0 (say). And for a particular initial-value
problem it is necessary to evaluate T and Y in equation (10). By the
definition of uI  from equation (12) we find

Y- = f4- and T. = (y - l)(f -+ f2 ) - f3- (18)

and for our present example of initially quiescent upstream conditions

fl- = f3- = 0 and f4- = 1 (19)

The only remaining unknown in (18), f2 -. is to be evaluated at X = X *(T)
and is found in terms of V and f 2+ = F2 (X*(T) + T) from the jump condi-
tion in equation (14). The differential equation for the flame speed becomes

t, = (y - 1){F2(X* + T) X*/[2( + X*)] + 1/i + (y - I)X* . (20)

Note that since initially X = V and F2 (0+) = Vo/[2(l + Vo)], t, and
V0  are related by the steady result (10) as expected.

It is important to emphasize that equation (20) and the conclusions
drawn from it apply specifically for flame propagation into an initially
quiescent atmosphere. However, it is possible to treat many other initial
value problems in a similar way by simply reevaluating T and Y inequation (10).

VI. AN EXAMPLE. In this section we present the results of integrating
equation (20) and the subsequent determination of u for a particular initial
downstream disturbance. We examine the case where initially far downstream
of the flame the burnt gas is motionless, at the quiescent temperature but at
a different pressure, i.e.,

V= T = Y = o(l) and pl p, + T, = P + o(l) as X - . (21)
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For purposes of illustration let the initial downstream disturbance (X > 0)
be given by

FI =- V /[2(l-Vo) +{p./2y + V /12(l-Vo0M g(X)

F2 = V/[2(l+V 0 )]+{p/2y - V0 /f2(l+V o ) ] g(X) (22)

F3 = - 1 + [p(Y-1)/+ll g(X) , F4  0

where g(X) = 1 - exp (-X)

The result of integrating (20) for y = 1.4, V°  -.1 and p., -1 is shown

in Figure 2 and the profiles for plvT 1,Y
i and p1  are evaluated at times

T = 1,2.5,5 and 10 and are shown in Figures 3 through 7 respectively.

The first thing to notice is that a negative pressure gradient downstream
causes the flame to accelerate. It is a simple matter to calculate the final

speed of the wave X*(-) in terms of p. = 2y F2 (a) directly from (20); the

result is shown in Figure 8. As p. becomes more negative, the flame accel-
erates towards sonic velocity. This effect can be understood in terms of a
Rankine-Hugoniot diagram which clearly shows that as the pressure drop across
the flame becomes more negative, the mas\5 flux and, hence, the flame velocity
must increase. This conclusion is the direct consequence of the quasi-steady

assumption.

VII. SHOCK FORMATION. It is well known that the rapid acceleration of

a flame acts as a piston and causes compression of the unburnt gases upstream
of the flame. For our example the compression upstream of the flame-zone is

clearly shown in Figure 7. Ultimately the piston effect of the flame-zone
leads to the development of a precursor shock wave which must be described by
taking into account the convective steepening in the hydrodynamic regions out-

side the flame zone.

The precursor shock wave can be described if we assume that the distur-

bance evolves on the long time scale T = BT. Assuming a traveling wave solu-
tion of the form

2
Uo u c + e f2 (C2,-)r2 + 2 g( 2 ,Tr)r2 + .... , (23)

and the expansions

C(u) = C (u ) +8 C (f)+... D (u + (24)
Z Zc -C 2 Z "

we find that g must satisfy
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gTr2 =-f 29 2 - *r f2x + D r f2x (25)

To obtain a scalar equation for gT we multiply (24) by f2' where t2
satisfies

2 (C + I)' 0 and k r = (26)

In order to suppress the secularity that otherwise develops in g we must
require that the right hand side of (25) vanishes. That requirement implies
that

f2- - 1(y + 1)/2] f2f22= (y/2)f 2C2F.2 (27)

which is Burger's equation for the evolution of f2 "

To obtain the initial data for f2 we examine the region in the X,T
plane where the focusing of characteristics caused by the flame takes place,

namely, X < X*(T). This region can be further divided into two regions
X< - T and -T < X < X*(T). In the region X< - T, 2 < 0 and by choosing

any non-characteristic path (starting from the origin) we can evaluate f2
for 2 < 0. A convenient path, of course, is T = 0, X < 0; the initial data
for f2 when E2 < 0 is F2 (). Note that for our specific example F2 (X) =0
for X < 0. In the region -T < X < X*(T), C2 > 0, and we can similarly choose
any non-characateristic path on which to evaluate f2 (% ). The simplest choice
is the flame locus X = X*(T); each point on the flame focus is assigned a
value of & = X*(T) + T and f2  is then given by f2 _(%2 ), a function which
has been calculated in the course of solving for uI  in Section V. This data
then forms the initial data for f2 on 1r 0 in the (F2,-T) plane. Thus
equation (27) is to be solved subject to

f = F2([2) for & < 0 and f f for 0 (28)

2 22 '2 2 2-~2~ o 2 0. (8

The result of calculating f2 according to (28) for the example of Section
VI is shown in Figure 9.

In the usual analysis of weak shocks an additional length scale, char-
acteristic of the disturbance at hand, is introduced. Typically, 6-1 rep-
resents the non-dimensional length that measures the maximum initial fluid
velocity of the hydrodynamic disturbance divided by the maximum initial velocity
gradient. Letting k = 6 2, i = 6f in equation (26) allows us to replace (26)
with the nonlinear wave equation

f^ - (y + l)/2ff - 0 (29)

This equation has a simple characteristic solution (see Whithan (1974)) that
shows that the time of breaking, or initial formation of the shock caused by
the flame acceleration, is given by
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= 2/(y + l)JF'(j )1 (30)

where FB corresponds to the characteristic where .F'(i-)I is maximum
for the initial data and F2(F) > 0. For our example IF;(kB)I is maxi-
mum at = 0 and has the value .25. Thus the time of ?reaking is esti-
mated to ge x = .33. If desired, an entire shock trajectory may be
calculated by standard shock fitting.
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Figure 1 . Characteristic plane for the solution of fl( l).

Solid lines represent characteristics that
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require evaluation of fl at the flame locus.
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Figure 2. Result of Integrating (20) for t he example in Section VI.
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Figure 3. Density profile p, for times T =1,2.5,5 and 10, for

the example in Section V1.
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Figure 4. Veloc ity prof ilIe v, f or L imes T -1,2.5,5 and 10,
for tbhe example In Section V1.
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Figure 5. Temperature profile T1  for times T =1,2.5,5 and
10, for the example in Section VT.
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Figure 6. Fuel fraction profile Y for times T =1.2.5,5

and 10, for thp example In Section V1.
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Figure 7. Pressure profile p1  for times T = 1,2.5,5 and

10, for the example of Section VI.
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Figure 8. Sketch of p.. versus M*derived from

equation (20). 19
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Figure 9. The initial data (28) for the example of Section
VI. Note f 2 0 for 2< 0.
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CYCLIC PLASTICITY AIHAD 01 A BLUNT CRACK

Dennis M. Tracey and Colin E. Freese

Mechanics and Engineering Laboratory
Army Materials and Mechanics Research Center

Watertown, Massachusetts

ABSTRACT. Results are given for the elastic-plastic stress and strain states

which develop ahead of a cracklike elliptical flaw isolated within an unbounded

plane strain tension field. A finite element-boundary collocation formulation

was employed to obtain the numerical results. Comparisons are made with elastic

and fully plastic stress predictions and these provide guidelines to the range

of applicability of these theories. Plastic zone growth is discussed and also

the stress variation which occurs during load cycling. The sensitivity of solu-

tion to element capability to accommodate near-incompressible deformation was

tested and, by comparison with slipline results, the four-triangle quadrilateral

was found to provide highly accurate results.

INTRODUCTION. We are concerned with the details of stress and deformation in

the material immediately ahead of a blunt-tipped, cracklike flaw. In our anal-

ysis, we have employed the non-hardening Prandtl-Reuss constitutive theory and

have considered problems of plane strain. An elliptical shaped flaw was consid-

ered as buried in an infinite domain, with a uniform remote stress T directed

perpendicular to the flaw's major axis. For general applicability, results are

given in dimensionless form. The stress data is normalized by the yield stress

Y, strain data is normalized by the simple tension yield strain Y/E and distance

scales are normalized by either the flaw half length, a, or the flaw root radius,

P.

The elastic-plastic results have been generated for the elliptical flaw with

a/P ratio of 1000 (major to minor axis ratio of 31.6). Fully plastic results

have been obtained for a set of large aspect ratio cracklike elliptical flaws.

The elastic solution to these problems is available in analytical form. We have

compared the elastic, elastic-plastic and fully plastic results with the goal of

establishing when, in the load history, the slipline result holds near the flaw

surface and when, away from the surface, the elastic results become unrepresen-

tative.
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We have described the elastic-plastic numerical formulation in a previous

report, Ref. (1), along with preliminary results for the cracklike ellipse prob-

lem. Finite elements are used to model the nonlinear behavior and beyond the

finite element mesh the solution is represented by elastic stress functions.

The finite element mesh surrounds the flaw root, Fig. 1, and extends a distance

of 8p ahead of the root in the analysis that was performed. In the computations,

symmetry conditions were invoked so that only the upper part of the mesh illus-

trated in Fig. 1 was used. Results over a smaller finite element region extend-

ing 4p ahead of the root were discussed in Ref. (1). Since elastic stress func-

tions are used to represent the solution beyond r, load incrementation in the

elastic-plastic analysis must be terminated when the plastic zone reaches r.

This occurred at a load level of T = 0.12 Y for the problem of Fig. 1.

Complex variable techniques involving conformal mapping and analytic con-

tinuation were employed in establishing the elasticity equations governing be-

yond r, following the work of Bowie and Freese, Ref. (2). The elliptical flaw

in the physical plane is mapped onto the unit circle Icl 5 1 in an auxiliary c-

plane. The simple circular shape allows conditions to be formulated which im-

plicitly satisfy the traction free condition on the flaw surface kit = 1. A
single analytic stress function * then governs over the entire -plane and it

was chosen to have the following approximate form:

AT [(a+b)C - (3a+b)/l]/8 + 1 an /(,2-1)n

n=l

The first term is the exact elastic solution corresponding to a remote load in-

crement AT, for a flaw with semi-axes a and b. This elastic solution is expected

to be adequate far from the plastic zones. As the plastic zone is approached,

the elastic solution will become less and less meaningful, hence the choice of a

negative power series expanded about the flaw ends = t1 to complete the ap-

proximate representation of the unknown function *. With real coefficients an,

the remote stress condition and the symmetry conditions are satisfied by this

stress function.

The conventional collocation approach employs truncated power series approx-

imations for the governing stress function(s) and establishes the undetermined

coefficients from known data at distinct boundary locations. Here the coefficients
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are determined in conjunction with the finite element unknowns. The two sets

of unknowns are coupled by conditions of equilibrium and compatibility at the

nodal locations on the boundary r. Force increments acting on the r nodes,

which represent the load transfer across r, are expressed in terms of AT,

and likewise displacement increments of these nodes are expressed in terms of

AT, a . By eliminating the interior nodal degrees of freedom from the finite

element stiffness equation, a system of equations in a is established. As is

characteristic in collocation analysis, the system is overdetermined and solu-

tion is by least squares. Whereas 15 coefficients appear in the stress func-

tion, there are 53 nodal degrees of freedom along r. Overall, there are 608
finite element degrees of freedom. With an determined, the nodal displacement

increments and then strain and stress increments are determined throughout the

finite element mesh. The value of AT at each step in the incrementation is

adaptively established to accurately trace the spread of plasticity and flow

rule changes in the finite element region, Ref. (3).

An important consideration in the finite element formulation is the ability

of the network of elements to accommodate the near-incompressible deformation

that will develop in the highly strained root region. Nagtegaal et. al., Ref.

(4), have demonstrated that a mesh of four node quadrilaterals each of which is

subdivided by its diagonals into four constant strain triangles can represent

a non-homogeneous pure inccomnressible deformation field, while the four node bi-

linear isoparametric quad cannot. For a given problem, it is not possible to

a priori establish when .. the L"ading history the near-incompressible state

will be achieved and thus -'elict when this modeling facet will become signif-

icant. To establish 4%en th.:. effect is important for our problem, we obtained

two separate solutions. In one analysis, the quads of the mesh shown in Fig. 1

were considered to be fcj node isoparametric elements. In the other, the quads

of the mesh were subdivided into triangles. We found significant differences at

the load levels reached and were able to quantify errors by comparing against

slipline stress predictions. Before discussing the elastic-plastic results we

will first describe the numerical procedure used to establish the slipline solu-

tion to our problem.
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SLIPLINE ANALYSIS OF ELLIPTICAL FLAWS

Slipline analysis provides the stress state which is asymptotically ap-

proached as the deformation becomes predominantly plastic during load increase.

Although the slipline solution gives the limiting stress state, elastic-plastic

analysis is necessary to establish when the slipline result is effectively a-

chieved. When the elastic strain is neglected as in slipline theory, the equi-

librium equations and yield condition constitute a set of hyperbolic equations

governing the variation of the stress components axx, Cxy, a y. Hill (5) clas-

sifies our problem of developing the stress field ahead of the flaw from the

known fully plastic stress state along the flaw surface (tangential stress equals

2Y/l3) as a Cauchy problem. Solutions are obtained by utilizing the relationships

which hold along the sliplines (maximum shear directions), the characteristics

of the problem.

In our analysis, we employed the Hencky equations which govern the slip-

line stress variations. The equations involve the mean normal stress am and the

angle which the a-slipline makes with the x-axis (CCW positive). Of course,

both am and ' are functions of position, and knowledge of these variables is

sufficient to determine the stress components at a point. The convention used

to distinguish the a and -sliplines has the a-line clockwise 45 degrees from

the maximum principal stress direction. The Hencky stress conditions holding

along the a and -lines are given in terms of the constants C1 and C2 as follows:

- 2 Y q, = C1 along an a-line

/'a m + 2 Y = C2 along a 1-line

Both stress parameters are known on the flaw surface: a equals Y//3 andm
follows from the fact that sliplines intersect free surfaces at 45 degrees.

The numerical algorithm for developing the slipline field ahead of the flaw

starts with selecting a finite number of stations on the flaw surface and com-

puting C1 and C2 at each. Using C1 and C2 from adjacent stations, the Hencky

equations are simultaneously solved for am ,  which gives the stress solution

at the location in the domain where the C1 a-line and the C2 6-line intersect.

An approximate slipline network is constructed by following this procedure in

a step-by-step fashion, progressing deeper into the domain at each step. A

final aspect of the computation is to establish the (x,y) location of the slipline
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intersections making up the network. This is done by computing the intersection

of chordal approximations to the slipline arcs by using the average slopes from

the previously determined nodal 4 values. Symonds (6) suggested this method of

slipline construction in 1949 and, coincidently, he used elliptical cutouts as

demonstration problems. Graphical tools were required then to make the construc-

tion manageable, as the number of arithmetic operations are too great for manual

calculation. By necessity, he limited his analysis to small aspect ratio el-

lipses. We computerized his algorithm and obtained results for a set of crack-

like elliptical flaws.

The slipline stress distribution for the various flaws considered are

plotted in Fig. 2. Considering crack length fixed, the figure demonstrates the

effect of flaw root acuity on the stress magnitude at locations out to a distance

of O.Ola ahead of the flaw. Excepting the sharp crack case, a/p = , the value

of a at the root is always equal to 1.15 times the yield stress and, as can be
yy

seen, the stress gradient increases with acuity ratio a/p. The sharp crack has

the root value of 2.97 Y=(2+Tr)Y//v- and this value remains fixed ahead of the

crack, corresponding to the constant state region of the Prandtl slipline field.

The blunt tipped flaws have distributions which approach the Prandtl value over

the size scale plotted. For elliptical flaws this value is achieved only when

plasticity has progressed to encompass the entire crack. For the 1000/1 flaw,

the Prandtl value would be realized very far from the root, at x = 2.06a. If

distance is normalized by the root radius, the stress distribution for all

cracklike ellipses blend into one over the 8p range used in our finite element

analysis. We have generated results which show this to be true for a/p greater

than 100. This single representative distribution is given in Fig. 4. The

manner in which the root region stress field evolves into the limiting slipline

prediction will be considered after the following discussion of the plastic zone

growth.
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ELASTIL STI( ,ESULTS

Growth of Plastic Zone

The nature of our elastic-plastic formulation is such that incrementation

of the remote tension must be terminated when the plastic zone spreads to the

modeling interface r, Fig. 1. The zone had spread to within one finite element

of r at a T value of 0.12 Y. The elastic-plastic boundary at this peak load and

at 0.045 Y and 0.09 Y are illustrated in Fig. 3. In the very early stages of

loading, the boundary tends to parallel the flaw surface and the dimension of

the plastic zone along the surface exceeds the maximum depth into the material.

Sharp crack solutions suggest that the zone will eventually take a "butterfly"

shape, with the maximum distance of the elastic-plastic boundary from the crack

tip at an angle of roughly 70 degrees from the symmetry axis. The boundaries

shown in the Figure suggest that the zone is indeed approaching this crack zone

shape.

It is useful to contrast these results with the crack solutions of Rice and

Tracey (7) and Larsson and Carlsson (8). The former is a general small scale

yielding solution following from an analysis which set remote boundary conditions

according to the leading term of the elastic singular solution. The latter is a

specific small scale yielding solution for a center cracked tension plate (with

crack length one-half the plate width). Results for both solutions are given in

2 2
terms of the length parameter (K/Y) , which equals wa(T/Y) for an isolated

tension crack, a/p = -. For the load T = 0.12 Y, the angle of maximum plastic

zone extent is very close to the 65 degree angle found by Larsson and Carlsson

for their problem. It would be of interest to determine how the angle changes

with further loading. The Rice and Tracey asymptotic solution has the maximum

extent at 71 degrees from the x-axis. At T = 0.12 Y, this maximum distance
max.

(r ) from the root tip (x=a) to the elastic-plastic boundary is equal to 7 .6p

or 0.0076 a. There is substantial difference in the sharp crack predictions.

At our peak load level, the two solutions bound the result for the cracklike

ellipse:

max 2
rx = .15 (K/Y) = .0065 a Ref. (7)p

r = .23 (K/Y) = .010 a Ref. (8)

P
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The differences in the crack solutions have been attributed to the constant

valued non-singular term in the crack tip expansion for the stress component

oxx. This term was not included in the asymptotic analysis reported in Ref.

(7). Both crack plastic zone results have the maximum extent far exceeding the

extent along the x-axis. This result is anticipated for our problem once the

plastic zone dimensions become large compared to root radius, at which point

the flaw shape does not significantly influence the solution at the elastic-

plastic boundary.

Stress Ahead of Flaw

We have discussed the slipline solution to our problem and have noted that

while slipline theory provides the limiting stress state in monotonic loading,

elastic-plastic analysis is required to establish how stress varies with load

prior to attaining its fully plastic value. Here of course we are considering

the solution at points within the plastic zone. Another consideration is the

solution in the unyielded region. It is of interest to establish how the elastic-

plastic results for this region deviate from the predictions of elastic analysis

at different load levels.

Comparisons have been made and are plotted at T values of 0.06, 0.09 and

0.12 Y in Fig. 4. The data show that as load increases the slipline state is

achieved over an expanding region, corresponding to the growth of the plastic

zone. From a numerical accuracy viewpoint, the agreement of the elastic-plastic

results with the slipline result is exceptionally good. It is worth noting that

at any particular load level the slipline result holds only over a portion of

the plastic zone, the portion which has plastic strain levels far in excess of

elastic strain. The elastic-plastic results are seen to rapidly approach the

elasticity solutions. neviations drop to within 10% at distances roughly three

times the x-axis plastic zone dimension.

In our previous report, Ref. (1), we discussed the near root stress solu-

tion for a cyclic variation of load. We found that the method of plastic super-

position, Ref. (9), provides very accurate estimates of the solution after load

reversal. With the method, all that is required is the monotonic solution. We

have used the method to generate the residual stress state after unloading from

the load value of 0.12 Y. This residual state is plotted in Fig. S along with
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the distributions for the intermediate load level 0.06 Y and peak load. The

residual state is simply computed as the state at peak load minus twice the

state at intermediate load. Another result verified in the previous work is

that the cyclic plastic zone is essentially the same as the yielded region at

the intermediate load level in monotonic loading.

Solution Sensitivity to Element Interpolation

The results discussed above were obtained with the four-triangle quadri-

lateral finite element mesh. At the stress level T = 0.12 Y, the significant

differences between that solution and the one following from the bilinear quads

occurred within a distance of one root radius from the flaw root, a distance

approximately one-third the x-axis plastic zone extent. It was in this region

that plastic strain far exceeded elastic strain magnitudes. Of course, as the

elastic-plastic boundary is approached, the magnitudes become comparable and

differences caused by near-incompressible deformation are not expected. The

solution differences were greatest at the flaw surface and comparisons of re-

sults for the first quadrilateral element bordering the x-axis are shown in

Figs. 6 and 7.

The numerical results for the variation of a at this near root location
yy

during load increase is displayed in Fig. 6 along with the slipline result.

The element spans the region 0 1 (x-a) I 0.187p, so the slipline result

(Gyy 1.258 Y) chosen for comparison corresponds to the solution at (x-a,y) =

(.093 5p, 0). The data for the constant state triangle with base along the x-

axis represents one solution, while the average stress data for the two Gauss

stations nearest the x-axis represents the other. The bilinear quad solution

is seen to rise above the slipline result very early in the loading and the

deviation grows with load at an increasing rate. In contrast, the four-triangle

quad solution quickly levels off to a value 1.251 Y and remains there; step to

step changes are in the fifth significant figure. It would be of interest to

establish how this result might change with further loading.

The excellent agreement found with slipline theory, displayed in Fig. 6

and earlier in Fig. 4, is ample justification for claiming high accuracy for

our solution using the four-triangle quads. Certainly, the data show that the

ability to model near-incompressible deformation is essential to our problem at

208



very low load levels, and thus the isoparametric element should not be used for

problems in this class. The differences in the solution for the equivalent plas-

tic strain using the data from the first element ahead of the root are shown in

Fig. 7. The strain levels using the triangles exceed those using the bilinear

element over the entire loading history. At peak load there is an 18 percent

difference in the solutions and the trend suggests that the differences will be

more pronounced with further loading.

Data displaying the spatial gradient of equivalent plastic strain over a

one root radius distance ahead of the flaw is given in Fig. 8. Results are

given for T/Y levels of 0.06, 0.09, and 0.12. The plastic strain at T = .06 Y

is seen to fall to a value below the yield strain at x-a = p, corresponding to

the fact that the elastic-plastic boundary is then at x-a 1.2p. The accelerated

strain intensification during load elevation that is displayed in Fig. 7 is also

evidence in Fig. 8. At the load levels represented, extrapolation gives surface

plastic strain values of 6.2, 13.6, and 26.7 times the yield strain. These re-

sults suggest local to global strain concentration factors of 103, 151, and 223

for the respective load levels, in contrast to the concentration factor of 64

suggested by the elastic solution to our problem.
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THERMO-ELASTIC-PLASTIC STRESSES IN MULTI-LAYERED CYLINDERS

John D. Vasilakis
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. One of the many efforts undertaken to increase the life of gun

tubes and/or increase their resistance to erosion involves the use of liners

fabricated from different materials. A finite difference computer code for

investigating the thermo-elastic-plastic response of gun tubes has been
expanded to include multi-layered cylinder response to time dependent boundary
conditions. Considered are both cyclic heat input and cyclic stress input.
Response curves from inputs representative of repeated firing cycles will be
presented. The emphasis in this report is on the transient temperature
response and on the thermo-elastic stresses and mechanical stresses in the
layers.

I. INTRODUCTION. One of the many efforts undertaken to increase the

life of gun tubes and/or increase their erosion resistance involves the use of
liners fabricated from materials differing from the base material of the gun
tube. Typical properties sought in these materials, many of which are
refractory materials or alloys of them, are high melting points for protection
against erosion due to the high flame temperatures, different elastic moduli
to effect transmission of loads to the base gun tube, etc. Currently most
designs are of the two-layer system or liner-jacket type and with a variation
that the liner may be coated or not. This paper does not consider coatings
for reasons to be mentioned later.

In this paper, the response of monobloc and multi-layered large caliber

gun tubes due to a typical firing schedule will be calculated. This response
is found using a finite difference computer code reported in [1,2] for
transient temperatures and thermo-elastic-plastic stresses. The program was

updated to accept time dependent boundary conditions and to apply to multiple
layers. A consistent set of data for a firing pulse was found in [3] for a
specific weapon and this configuration was chosen for this study.

The computer program is a two part program. Knowing gas temperatures and
heat transfer coefficients as a function of time during the firing cycle
allows the computation of the transient temperatures in the gun tube. This is
accomplished in the first part of the program. These temperatures are then
used in the second part to calculate the associated thermo-elastic stresses.
The program is capable of computing the thermal response of the tube for any
desired firing cycle, thus monitoring an average temperature use at the bore.

This can be used in cook-off studies, cook-off being the undesirable condition
of premature propellant ignition. The temperatures at any time are saved on
disk and are used as input to the stress portion of the program. The interest
here is in the mechanical and thermal stresses due to the pressure pulse and

the thermal pulse respectively. It should be mentioned that the thermal
problem and stress problem are treated as uncoupled.
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II. DESCRIPTION OF THE PROBLEM. The partial differential equation for
determining the temperature in a cylinder is given by

1 a aT 3T
- -- (rkL(T) -- ) - pL(T)cL(T) -- (1)
r 3r ar at

where the superscript L refers to the layer number and

T is temperature,
kL(T) is thermal conductivity in layer L,
pL(T) is density in layer L,
cL(T) is specific heat in layer L,
r is radial distance

and t is time. The problem is assumed to be axisymmetric and axial effects
are ignored. Figure 1 shows a typical geometry. At the interface between
layers, the following continuity conditions must apply:

continuity of temperature

TL = TL+I (2)

rL- rL+

and continuity of heat flux

aT aT
kL(T) -- =kL+(T) (3)3LT r I r

U
rL rL+

where rL is the radius to the outer surface of the Lth layer. Contact
resistance between layers is ignored at this time.

The above quantities are dimensionless, normalized to the properties of
the steel layer.* Thus if the thermal conductivity can be written as

kL(T) - kSLsokL(T) (4) *

where kL(T) is the dimensioned thermal conductivity of the Lth layer and kSLSo

is the thermal conductivity of the steel layer at some reference temperature,
then 

for L = 1
...... kl(T) (5)
kSLso

and L > 1,
kL(T) kL0

kL(T) (6)
kSLSo kSLSo

*In the results that follow, one of the layers was steel. Other definitions

or material properties can be used so long as one is consistent.
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The specific heat and density are defined in similar fashion. Also

r T
r = - , T . ....- (7)

b Tgas

where Tgas is initial gas temperature, and time

kSLsot- - (8)

pSLocSLob 2

The stresses are computed in the second part of the program. Again,
finite differences are used. The equations of compatibility and equilibrium
are written at each node,

aer 1

+ - (oLr - oL 0 ) = 0 (9)
3r r

a c a L . I

+ - (EL 0 - L) = 0 (10)
r r

where L identifies the layer. Between layers, the continuity conditions for
radial stress and radial displacement must be satisfied. Between the L and
L+1 layer, therefore,

o 0r = L+lr  and uL = uL+ l (11)

Initial stresses may exist due to fabrication methods used for the
multilayered cylinder, the Prandtl-Reuss equations are used to relate the
incremental stress and strain. The assumption of plane strain is used. The
equations (9) and (10) are written in finite difference form. Expressions
relating incremental stress to incremental strain similar to those of Yamada,

equation (9) in terms of the incremental strains.

For the computation of the thermal stresses, the new temperature
distribution and temperature increments are used at each time step. As the
yield criterion is approached, the temperature increments are themselves
divided into smaller increments to maintain smaller load steps.

III. BOUNDARY CONDITIONS. It is important when solving for the response
due to firing pulses of these geometries to have a set of consistent boundary
conditions. For the thermal response, either the temperature versus time on
the boundaries or the gas temperature and heat transfer coefficients is
required and for the pressure pulse, the bore pressure versus time. Kovacs
[31 considered the transient temperature response for several firing cycles,
see Figure 2, and did give in his report a complete set of data. The data is
based on a program relying on empirical information for heat flux and applied
to a large caliber weapon with chrome plating. It was felt that the heat
transfer coefficients generated would apply to a steel monobloc tube or to a
multi-layered tube where the steel layer was at the bore. Lacking better
input, however, the data was used in all cases.
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Future plans include the incorporation of an initial program for the
purpose of analytically computing the heat transfer coefficients for the
designated multilayer properties. The problems encountered in comparing
responses of different multi-layered designs would then be alleviated.

IV. RESULTS. Several runs have been made, mainly to show the different
problems that can be accommodated by the computer prograia. Once a geometry
has been chosen, either monobloc or multi-layer, and the material properties
found, the first part of the program can be run for temperature response
versus time. One can look at both the temperature distribution throughout the
tube wall and the change in bore temperature in time. If a firing cycle
consists of a number of firing pulses and pauses, the bore temperature can be
monitored in time. If stresses are required, the temperature distributions at
each time step are saved in a file which is subsequently used as input to the
second part of the computer program. These temperature distributions are used
to compute the thermal stresses. The associated stress pulse can also be
applied to the tube, either by itself for a mechanical response or with the
thermal loads for a combined response. As mentioned before, however, the
thermo-mechanical problem is considered to be uncoupled. If the distortion
energy criterion is satisfied, then an incremental thermo-elastic-plastic
analysis will be performed. It should be noted that while some examples
showing elastic-plastic response are presented, the loading generated from the
data of Ref. 131 was not of sufficient magnitude to cause this and the stress
pulse was increased to cause the program to perform a plasticity solution. If
the problem is more realistically modeled with material properties and yield
strength a function of temperature, it may not be necessary to artifically
induce this type of solution.

Figure 3 shows the result of the problem of thermal response due to the
heat pulse for a monobloc tube. The response to a single pulse is shown for
different time increments. An important function of this type of analysis is
to be able to predict bore temperatures under various firing cycles and for
long firing periods. Being able to use coarser time increments allows the

prediction of bore temperatures for longer periods. Figure 4 shows the
response of a monobloc tube for about five cycles.

Table I shows the properties for the multi-layered geometry chosen. The
liner is a tantalum tungsten alloy (Ta-LOW) with a steel jacket. The bore
diameter is 3.351 inches, the outside diameter is 5.6 inches, and the
interface diameter is 4.1 inches. The properties are assumed constant in
temperature but a variation in temperature is allowed. Figures 5 and 6 are
equivalent to Figures 3 and 4 for a multi-layered tube. Figures 7 and 8 show
the stress response of a monobloc tube to a stress pulse and a thermal pulse,
respectively. It should be noted that most of these results show the effect
at the bore. During the early stages of the response, there is little effect
on the rest of the tube.

Figure 9 shows the stress response of a multi-layered cylinder (Ta-10W/

Steel). The material behavior is assumed to be elastic. The change in the
tangential stress at the bore with time is shown for the stress pulse (M
curve) and for the temperature distributions (T curve). The combined curve
shows the computed stresses due to both the thermal and mechanical loading.
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Since only elastic behavior occurs, however, the same combined loading curve
could be arrived at by assuming the results for the individual loads.

An elastic-plastic response due to the applied pressure pulse is shown in
Figure 10. The curve labeled pressure is actually the radial stress at the
bore, or, and the pressure should be lOrl. The other three curves are the
response of a monobloc steel tube and two multi-layered systems, a Ta-lOW
liner with a steel jacket and a steel liner with a Ta-10W jacket. The figure
shows mainly the effect of the elastic modulus of the materials. The Ta-lOW
liner, having a modulus approximately one third less than steel, transmits the
load towards the interior of the tube better than the other configuration
which has a more rigid liner. Figure 11 was included just to show that the
stresses throughout the wall thickness are computed. The figure shows the
response of a Ta-IOW liner/steel jacket cylinder to combined thermo-mechanical
loads.

Figure 12 shows the elastic response due to thermo-mechanical loads in a
multi-layered cylinder with a steel liner and Ta-lOW jacket. Figure 13 shows
the thermo-elastic-plastic response for the same configuration. The radial
stress and the tangential stress at the bore are shown as the change in time.

V. CONCLUSIONS. The above results are an indication of the type of
problems to which the computer program can be applied. Several layers can be
handled and for the two layer geometry initial stresses, due to interference
fits (for fabrication reasons) can be calculated. In either program part, the
properties can be considered as a function of temperature. While the program
does not have the full responsibility of a general purpose finite element
program, for the allowed geometry, a wide variety of behavior can be examined.
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ON THE NUMERICAL SOLUTION OF SINGULARINTEGRAL EQUATIONS USING GAUSS-JACOBI FORMULAE*

R. P. Srivastav
Department of Applied Mathematics and Statistics

State University of New York at Stony Brook
Stony Brook, New York 11794

ABSTRACT: Of concern here is the question of convergence of computed
solutions of integral equations with principal value integrals Using
the Jackson Theorem on "best approximation" and an estimate for the norm
of the inverse matrix of the discretized system, it is shown that a
direct method of solution based on collocation yields convergence.

1. Introduction

In this paper, we consider the question of convergence of interpolatory
polynomials interpolating the numerically computed approximate values of
the solution of the singular integral equation

(1.1) Tg S a g(s)+ t + X 1K(s,t)g(t)dt = f(s), -1 < s < 1.•t-s 1 ~~tgtd

Such integral equations arise in the mixed boundary value problems of solid
and fluid mechanics, and are solved frequently using direct methods based
on quadrature and collocation. Of concern here is a method proposed by
Krenk [4], which consists of Gauss-Jacobi quadrature and collocation at
zeros of a suitable Jacobi polynomial, after g(t) has been replaced by
w(t)y(t), where

(1.2) w(t) = (l-t)a(l+t)B.

The exponents a, a are determined by the index of the equation, which is
either 1, 0 or -1. In this paper, we consider only the index 1 for which
ct+B = -1, a = -a, where a is given by the equation

(1.3) cot(a w) = (a/b), 0 < a < 1.

The solution of (1.1) is not unique. Usually, the equation (1.1) is
augmented by an additional condition of the form

(1.4) 1 g(t)dt = N.

Let wi and w respectively, denote the weights of the classical
Gaussian $uadrature, using the zeros {tj) and {sj} of the polynomials

*Research supported by U.S. Army Research Office under Contract No.
DAAG-29-80-C-0030.
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P( -as'1)(x) and p(O 1-a)(x)
n n-1 (

The weight corresponding to the zeros {x } of P 0B)(x) are given by
zeg* ([7], p. 352) as

= r(n+ n2+l)rn++l (l-x2)[p- , ) (xf)l- 2

for a > -1, 8 > -1.)

For the approximate solution of (1.1), quadrature and collocation
yield the equations

n y(ti )  n(1.5) bji wj t_-Sk + X7j=I w K(sk~ yt )  f(Sk) k= 1,2,...,n-1

j=l i sk j II k l)~ )

n
(1.6) 1 wjy(t.) = N.

j=lJ J

The method is an extension of the popular Erdogan-Gupta method [1]
for dealing with the integral equations of the first kind, i.e. with a=O.
In [4], it is argued that if

Tcn = 6 n(x)

and sn(x) - 0 uniformly, then en - 0 uniformly. However, Stewart [6) has
shown that uniformity is not enough to interchange limiting processes
involving singular integrals. We are able to prove convergence for the
problems in which y(t) e C3[-1,1] and K(s,t) is equally smooth, with Xsufficiently small. For simplicity, we describe only the case x = 0.

The paper is organized as follows: In Section 2, we derive an
estimate for the norm of the inverse matrix of the system of equations
(1.5), (1.6). In Section 3, using Jackson's theorems on "best approxi-
mation" and the properties of the Lebesgue constants on Jacobi nodes, we
prove the convergence of the sequence of interpolatory polynomials to
the solution of the integral equation. Finally, in Section 4 we show
that a "natural interpolant" also converges to the solution of the
integral equation.

2. Norm of the Inverse Matrix

It has been shown by Gerasoulis and Srivastav [2], that the coeffi-
cient matrix

(2.1) An = (aij) = b w /(tj-si), i=l,2,...,n-l; j=l,2,...,n

ani wj, j=1,2,...,n

has the inverse
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(2.2) A- - (bi) = b w!/{(a 2+b2 )(t-s )}, J- 1,2,...,n-l; i= 1,2,...,n

bin = 1 , i1,2,...,n.

Observe that
(2.3) A 1  D AT A,

n n
where D and A are diagonal matrices, whose elements dj6jk and xj6jk (6jk
is the Kronecker delta) are given by

d. = I/wi, x = w!/(a2+b2), j =l,2,...,n-I

(2.4) i i
dn = 1/wn ,  n = .

Now, let An = QC where Q is non-singular and C is non-singular,
diagonal. This decomposition is not unique. A routine calculation gives

(2.5) Q- = (CDCT)QTA.

C is now chosen so that (CDCT) is reduced to the identity matrix.

The elements of C are simply w - IIQ- 111 is the spectral
radius of the matrix

(Q-1)TQ-1 = A Q Q-I = A.

Hence,
.

11Q-II = max(jw 1 ,

From the inequality
JjAnljI ' -. 1 II lQ-111

it follows that

(2.6) IIA- 1 sl .max wI-Nax( lmax Iw*j hI2, 1).n l.<j<n 3 l4j~nl 1

In a similar way, noting that A = A-I(A-I)TD-1, it can be shown that

(2.7) IIAn11 S max Iw.1n2max( max 1w*1 ).1 ,< j.<n I< j<n- 1

In the special case, a= = - , which corresponds to a=O, b=1,
we have wj = I/n, wj = n-Isin2(1/n). Then (2.6) and (2.7) reduce respec-
tively to

(2.8) IIAnl11 f 2

(2.9) IlAnlI  < cosec(r/n).
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It has been shown in [5] that in this case,
II An11 Fn

and n

IAn I = cosec(7r/n).

Hence, in the general case, there does not seem to be much room for
improvement in the estimates (2.6) and (2.7).

The asymptotic properties of the classical polynomials given by
Szegb ([7], p. 238) may be used to derive an upper bound for the right-
hand sides of (2.6) and (2.7). By definition,

(2.10) w 1  r(n+l)r(n+ (l-t){P(a-l)(tj)}2 .
i .-~ nC 1j n 3

Since tj = cos{n'[jin+Ol)]}, where 0(1) represents terms uniformly
bounded for all values ofj= 1,2,...,n, and for positive zeros,

(2.11) IP(-"'O-l)'(tj)I O1ja- 3/2 n" +2 ,

using the Stirling formula for the Gamma functions and the inequality
sin 2x S x2, we can show that

(2.12) ]w.V 1 < O(1)n 2 2  if 2a < 1

(2.13) jwjj -  S 0(1)n if 2a > 1.

Similarl , for negative zeros, since these are the positive zeros of
PPO -'-°(x), it can be shown that

(2.14) 1wj 1 I S(l)n2 a-I if 20 > 1

(2.15) jwj1- s 0(1) if 2a < 1.

Hence

(2.16) max IwjV < O(1)n p, p = max(l-o, ),

and consequently (see [7], p. 355 for a bound of w*)

(2.17) IIA III 0 O(1)n p , p = max(1-a,3).

11AnII can be similarly estimated.

3. The Interpolatory Polynomial

The equations (1.5), (1.6) are approximate because the quadrature
error has been neglected. Let

Y = [Y(tl) Y(t' " Y(tn)]
Y- = [Y~ (tl) Y- (t2)' "'" (tn)]T.

-- - . . . ... . .. - . . . .. . .. i . i ... i . . . . ,i . . . . . . .



Instead of solving

Any f= +

we solve

A~y f.

Hence,

11Y-Y-I A 112'nn

(3.) Iy-y11.S Y 11 n1211EI F1- Cn (say).

Now, let qnil(t) and y-..1(t) denote the polynomials interpolating y(tj)
and yi(tj), respecti vey. Then

For a given f, let En..l(f) denote the error of "best approximation" by a
polynomial of degree n-l and let

n
(3.3) x n = max I -(1

-l<t<1 j=l J

where z.'(t), j=l1,2,...,n are the Lagrange polynomials for the Jacobi
nodes {ij}.1 The first term on the right hand side of (3.2) is the error
of interpolation using the true values of y(t), and cannot exceed
En-l(y)(l+Xn ). For the second term, we note that

n n

j=l

and hence its supremui is bounded above by cnAn [cf. (3.1)). The error
of Gaussian quadrature is

(3.4) 11Ill. S v E*_ (F)(x

where

(3.5) p = fw(x)dx

(3.6) E*_ (F) = max i(E n- F(x,s k)]

where %

(3.7) F(x,s) = x-. : :
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Summing up the above results, we get the inequality

(3.8) 1Iy(t) - Y/nl 0 , (l+Xn)[En-l(Y)+O(1)E*.l(F)nP+ ]

From Jackson's theorem on "best approximation," if f e Ck+lk-,,l], then
E.l-i(f) = O(n'k' ). Moreover, n = 0(0), O(log n) or O(n -), respec-
tively for a > a, a = and a . Hence, it is sufficient for the
convergence of the sequence y-_I that y belongs to C3[-I,13.

Remark: The above analysis can be easily extended to deal with
y e C2[-l,l) and y" satisfying an appropriate Lipschitz
condition using Jackson's theorem in that form.

4. The "Natural" Interpolant

For cot an = (a/b), w(t) = (l-t)~O(l+t)y0 l and x = 0, the equation
(1.1) may be written in the form

(4.1) b I w(t) V(t)Y(~s) dt = f(s), -I < s < 1.
n f- It - s

Using the Gaussian integration formula, we obtain the equation

(4.2) b[j w_ -*1 y*(s) I f(s), -I < s < 1.
= tj- s j=l J .

The asterisk indicates that it is an approximation to y(s).
Furthermore,

(4.3) x 1 cosec wPa.-)(x) '

a d j=l X t 3  2 P ira-
and

b n-I wtf(s.)
(4.4) y(t) = A 1 (f) = N+2bb  j 3

ji n ti-si

(4.2), (4.3) and (4.4) together yield the equation
n-l w*[f(s )- f(s)]

(4.5) y*(s) b sin2 an-lk k
a +bzi k 5k - s

+ 2b sin na P(aGa4) (s)f(s) + N.
a2+b2  1

Recall that
P(-GO°') (s) = 12s + ,(l-2a).
I

Thus, for a = , it reduces to the expression for the Gauss-Chebyshevnodes ([3J,[5J).

Annalytically,
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y(s) = N+a- f(s)(ls),(l+s)l
-a

(4.6) b -(lt)"(l+t)l-'f(t)dt

- (a2+b2)1 l t- s

If the integral in (4.6) is replaced by Gauss-Jacobi quadrature, the
resulting expression is y*(s). The convergence of the "natural" inter-
polant is tantamount to the convergence of the Gauss-Jacobi quadrature.
Once again, using the theorems on "best approximation" if f e C1[-l,l]
and f' satisfies the Lipschitz condition, it can be shown that y* converges
uniformly to y.

The interpolatory polynomial Yn-l(t) can be expressed as follows:
n-I wff(s MP-°°l)t - P (-a %a-1)(S )I

b n np_~~)(j(~j
(4.7) ynl(t) = N + Ij=l

n
After some simplification, we find that

pCt(',0-I) (t)
(4.8) yn(t)-y* = 0() n - e n(t)

n-l P~~l-_a0(t) n

where

n-I f(t)-f(s (a 1-) M
(n t) Y wt " p{- i~ -)

j=l J t 3- s s
n

is the error of interpolation to f(t) at the zeros of Pn_(l-a)(t). It is
quite likely that a careful analysis of (4.8) may give weaker conditions
for the uniform convergence of yn-l to y.
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METHOD OF SOLUTION FOR VARIATIONAL PRINCIPLE
USING BICUBIC HERMITE POLYNOMIAL

C. N. Shen
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. In solving mixed boundary and initial value problems of a
second order partial differential equation using spline functions, the
computation may be simplified considerably if the variable in time can be
truncated into arbitrary sections. Each section may have several node points
for the spline functions in the time domain. This is true because we found
from a previous paper [1] that the initial value problem can be solved in one
direction using variational principle and cubic Hermite Polynomials, without
worrying about the conditions at the other end.

The end conditions of the adjoint system can be adjusted according to the

end conditions of the original system so that the bilinear concomitant is
identically zero. This satisfies the variational principle. A bilinear form
of the original and adjoint variables is employed in determining the
coefficients of the variations of the functions and their first derivatives.
There is no term involving the variations of any higher derivatives. A
bicubic Hermite Polynomial spline function will be used which gives continuity
in the function and first partial derivatives in space or time, together with
the mixed first partial derivative in space and time. Algorithm and procedure
of computation are given.

I. INTRODUCTION. This paper is concerned with the use of variational
principles to solve a mixed boundary and initial value problem. From a
previous paper [1] we understand that the far end conditions are not imposed
for solutions in an initial value problem. This implies that the boundary
value problem can be solved in strips of arbitrarily chosen intervals of time.
The size of the computation can be reduced substantially if the time interval
taken is sufficiently large and number of strips small. This depends, of
course, on the accuracy of the method.

A procedure can be obtained for a recursive relationship in the time
domain, where the final conditions of first strip can be regarded as initial
conditions of the second strip. These recursive solutions can be obtained by
using variational principles with the aid of the bicubic Hermite polynomial
spline functions as finite elements.

II. ESTIMATION. A dynamical system can be modeled by the following

partial differential equation.

L(W) Ya() -Q() (1)

with appropriate boundary and initial conditions. In the above equation L is

a linear operator, in both spatial and temporal domain, Ya is the dependent
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variable, Q is a forcing function and represents all independent variables,
both spatial and temporal.

The inner product < > of an adjoint forcing function Q and the solution

(Ya()) of Eq. (1) can be used for the purpose of estimation. This inner
product is

GlYal - <QYa> (2)

The estimate y which differs from the actual solution Ya of Eq. (1) by an
increment 6y can be written as

6Y = Y - Ya (3)

Then the estimate y becomes

G~y] - G[ya + 6y1

- <Q, (ya+ 6y)>

- G[Ya] + <Q,Sy> (4)

which is in error to first order in Sy and Q. This is undesirable because the
error depends on the variation 6 y which is supposed to be arbitrary. Thus the
estimate will not be accurate.

III. THE VARIATIONAL PRINCIPLE. A more accurate estimate can be made by
constructing a variational principle 121 for Eq. (2). By using the adjoint
variable y as a Lagrange multiply for Eq. (1) added to G[y] we have

Jy,y] - G[y] + <y,(Q+Ly)>

<Q,y> + <y,Q> + <y,Ly> (5)

In order that J be a variational principle for G the following requirements
must be satisfied.

(a) J is stationary about the function ys which satisfies the relation in
Eq. (1).

Lys = -Q (6)

(b) The stationary value of J deduced from Eqs. (2) through (5) is

J[y,yJ = G[ysl + G[yal (7)

Consider first the stationarity of J by taking the variation of Eq. (5)
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6J <Q,'Sy + <6y,Q> + <y,Ly> + <y,L6y>

(<y,(Ly+Q)> + <6y,(Ly+Q)>

- <6y,Ly> + <y,L6y> = 0. (8)

We will make an effort later to impose certain conditions in order that

the following equality holds:

(yL-y> = <6y,Ly> (9)

where L is the adjoint operator.

By combining Eqs. (8) and (9) one obtains

6J - <6y,(Ly+Q)> + <6y,(Ly+Q)> 0 (10)

Since the variations 6y and 6yare arbitrary it leads to the requirement that

the stationary values ys and ys must satisfy

Lys = -Q (11)

Lys = -Q (12)

Since Eq. (11) is the same as Eq. (6) therefore, J is stationary about the

function ys.

Equation (12) is the adjoint equation in terms of the adjoint operator L,

the adjoint variable y, and the adjoint forcing function Q.

It is noted that 6J in Eq. (10) vanishes and is independent of the

arbitrary variations 6 y and 6y, in contrast with Eq. (4), where 6G is in error
to the first order in 6y. By using 6J instead of 6G one can claim that the
estimate is more accurate and free from the arbitrary variations.

Using the relationship in Eq. (11) the stationary value of J from Eq. (5)

is

J[ys,ys] - <Q,ys> + <Ys,Q> + <Ys,Lys> G[Ys] (13)

Since J is stationary and 6J + 0, then

G[ys] + Gfya] (14)

which is the requirement given in Eq. (7).

It is noted that Eq. (10) contains no boundary terms to be satisfied.

This bears an important point in the future discussion.
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IV. BILINEAR CONCOMITANT. We will find out the conditions for the
assumed equality in Eq. (9) to be true. Let us consider the following
bilinear concomitant 12):

D = <y,Ly> - <y,Ly> (15)

The above expression can be integrated in two different ways and can also
be written in terms of boundary conditions and initial conditions. It is
assumed that these boundary conditions are assigned in such a manner that the
above bilinear concomitant is identically zero for all independent variables,
i.e.,

D 0 (16)

Theai the first variations of D also vanish.

6D - SD(6y) + 6D(6y) = 0 (17)

Since 6y and 6y are independent of each other, then

6D(6y) = <6y,Ly> - <y,L~y> = 0 (18)

6 D(6y) - <y,L 6 y> - <6y,Ly> - 0 (19)

Equation (19) is identical to Eq. (9), which is the assumed equality
previously. The implication is that if Eq. (16) is true then Eq. (9) or (19)
is automatically true.

Since Eq. (15) can be expressed in terms of some integrals involving
boundary conditions, Eq. (16) can be true if these boundary conditions are
satisfied. The next section will discuss integral of bilinear expression and
its boundary conditions.

V. INTEGRAL OF BILINEAR EXPRESSION. The integial of a bilinear
expression for a two dimensional second order problem in space-time can be
written as

Xb tb
I = I f *[y(x,t),y(x,t)]dt dx (20)

xo to

where *[y,y] is a given bilinear expression in the form

[Y,Y] = aYtyt + 8YtY + YYt + £yxyx + Pyxy + vyyx + Cyy (21)

The subscripts t and x indicate the partial derivatives of the function y a:,i
y.

Equation (20) can be integrated by parts. Two different forms of
integration and end conditions can be obtained. The first form of the
integral is
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Kb ftb- Xb _tb /tb - xb

I = -f f yLydtdx + f (ayt+yy)y I  dx + f (£yx+vy)yl dt (22)
Xo to Xo to to Xo

which is obtained by integrating by parts on the adjoint variable. On the
other hand, we can perform integration on the original variables to give

Kb ftb -- Kb - - tb tb - _ Kb

I = -f f yLydtdx + f (ayt+ay)yl dx + f (kyx+py)y dt (23)
xo to Ko to to Xo

where

Ly - (ayt)t - Syt + (Yy)t + (£Yx)x - pyx + (vy)x - EY (24)

and

Ly = (ayt)t + (0y)t - TYt + (Yx)x + (pY)x - Vyx - ey (25)

For a two dimensional second order system in space-time domain, Eq. (15)
becomes

Kb -b Kb b -- _

D = f ftb yLydtdx - f ftb yLydtdx (26)
xo to Xo to

By equating Eqs. (22) and (23) and solving for D in Eq. (26) we are converting
the double integral into two simple integrals in terms of the boundary

conditions.

We can express the quantity D as the sum of two parts D 1 and D2 as

D = D1 + D2

The terms in DI involve the initial conditions of y and y as

xb - _
D1 = f {ab(YtbYb-YtbYb) - no(YtoYo-YtoYo)

K0

+ (yb-ab)YbYb - (yo-Bo)yoYoydx (27)

The terms in D2 involve the boundary conditions of y and y as

tb - _
D2 f ttb(YxbYb-YxbYb) - £o(YxoYo-YxoYo)

to

+ (vb-Jb)yby b - (vo-1io)yoYodt (28)
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In order that D H 0 in Eq. (16) it requires that

D1  0 (29a)

and
02  0 (29b)

VI. END CONDITIONS FOR THE ADJOINT SYSTEMS. We may take four different
cases in discussing the end conditions for the adjoint systems in order to

satisfy the requirements in Eqs. (29).

(a). The Wave Equation: In this case Eq. (24) becomes

Ly f (tyt)t + (LYx)x 0 (30)

and the coefficients are

Yb = 8b Y Yo a8o, vb = Pb, Vo = Po

ab  0, ao 0 0, Xb * 0, and to * 0 (31)

Let us assume that the adjoint variables are

yb - kyo, yo = kyb (32)

Ytb -ab- 'lokyto, Yto , -io-labkytb (33)

Yxb = -b- 1 okyxo and yxo = -10-
1 tbkYxb (34)

where k is constant.

The above boundary values satisfy the requirement that D1 - D2 - 0 in

Eqs. (27) and (28). Thus it also satisfies Eq. (16) that

D -O

(b). Heat Equation: In this case Eq. (24) is

Ly - -5Yt + (yy)t + (Pyx)x - 0 (35)

and the coefficients are

Vb 1b, V o Io, b = 0, ao 0

Yb b, Yo 8o, Lb 0 0, to * 0 (36)

Let the adjoint variables be

Yb ' (yo-Bo)kyo, Yo - (Yb-Bb)kyb (37)

Yxb -Lb- o(yb-0b)kYxo, Yxo = -o-tb(Yo-Oo)kYxb (38)

We also have D 1 - D2 - 0 and D F 0.
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(c). First order partials of x in Eq. (24) are missing, i.e.,

Vb - 1b, Vo = Vo, Yb Y b o $ 8o (39)

Let

Yb = (Yo -ao)kyo, Yo (Yb-6b)kyo (40)

Ytb = -ab-Iao(b-ab)kyto, Yto = -o-lab(Yo-6o)kytb (41)

Yxb = -Lb-lio(Yb-0b)kyxo, Yxo -o- 'tb(yo-ao)kYxb (42)

We also have D I - D2 = 0 and D = 0.

(d). First order partial of t in Eq. (24) are missing.

Yb = b, Yo = ao, Vb P b, Vo V 1o

ab  0, ao t 0, lb t 0, and to $ 0 (43)

Let

Yb = (vo-Po)kyo, Yo = (vb-Pb)kyb (44)

Ytb = -ab-lao(vb-Pb)kyto, Yto = -co- lb(Vo-po)kytb (45)

Yxb = -tb- io(vb-ib)kyxo, Yxo = -to- Lb(vo-ijo)kYxb (46)

We also have D 1 = D2 = 0, and D = 0.

From the expression D E 0 in Eq. (15) we can conclude that 6D - 0 in Eq.
(19) and Eq. (9) hold, which leads to the condition in Eq. (10) that

6J - 0

for all arbitrary variations 6 y and 6y.

VII. FIRST VARIATION. Since the variations 6y and 6y are independent to
each other, the part of 6J in Eq. (10) with variation 6y can be expressed as

- Kb t bt

6J(6y) - f tb 6yLydtdx + f xb ftb 6yQdtdx = 0 (47)
Xo to Yo to

where Ly is given in Eq. (24) and contains second order partial differentials
in y. It is intended to include only first order partial differentials and

the function y itself in 6J(6y). This can be achieved by considering the

variation of the bilinear expression I in Eqs. (20) and (21) which gives

SI = 6I(6y) + 61(6y) (48)
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where
- xb tb-__

6I( 6 y) = f f t(ayt+yy)6y t + (Byt+cy+piyx) 6y + (tyx+vy)6yxldtdx (49)
xo to

A different version of the above variation can be obtained from Eq. (22) as

- b - b tb
61(6y) - x  6yLydtdx + f X  6y(ayt+yy) to dx

Xo xo to

tb - xb
+ f 6y(£yx+vy) dt (50)

to K0

Equating Eqs. (49) and (50), solving for the term containing integral for 6yLy
and substituting into Eq. (47) we have

- xb - tb ftb -x

6J(6y) - I (ayt+Yy)6yl dx + f (tyx+vy)6y dt
Xo to to Xo

+Xb ft b 6yQdtdx
x o t o

Xb tb -
- I f t (ayt+yy) 6 yt + (Oyt+cy-+yx) 6y + (tyx+vy)6yxldtdx- 0 (51)

Ko tO

This is the key equation which uses variational principle in solving a
mixed initial and boundary value problem. The above equation contains only

6y, 6yt, and 6 yx and none of the variations of higher derivatives. The
dependent variable contains only y, yt, and yx and no higher partials.

VIII. TRANSFORMATION OF COORDINATES. The integral signs in Eq. (51) can
be converted into summation signs if discrete intervals for integration are
used. We may take some scale factors to nondimensionalize the problem by
giving

to - 0, tb = 1 0 4 t 1 1 (52)

xo - O, xb - 1 0 1 x I (53)

Moreover, Eq. (51) can be discretized by letting

- Ht - i+1 0 4 ( I i - 1,2,...,H (54)

n -Kx - J+ 0 n 1 j - 1,2,...,K (55)

where H and K are number of intervals for t and x respectively.
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Thus the partial derivatives are

ay ay
Yt = --a a HY (56)

at

ay ay
Yx =.-.a K -- a Kyn  (57)ax an

Use of Eqs. (52) through Eq. (57) then leads to

- K 1 tb 1
6J(y) I [icy (iiJ) + yy(i,J)16y(i,j) t dn

J-I 0 to K

H I Xb I
+ [ f y i0K jY(i) + vy(i'i)j6y(i'j)) - dt

il0 xo H

K I H 1- 1 1

+ 6 ( [ 6y(i,J)Q - dt} - dri
j-1 0-1 0 H K

K R i
f 0 J ( f [(Oiy(i,j) + yy(ii))H6y (i,J)-i 0 o

+ ( 861y(i,) + Ey(i-J) + Kyn(iJ))6y(i.J)
1 1

(tKyn(i,J) + vy(i,J))K6y,(i,)J W d n (58)H

IX. GRID SYSTEMS. The (16xl) vector y(iJ) has a grid of four (4xl)
vectors YI(,3) through Y4 (i,j), thus

y(iJ) - {[yl(t,J)lT [Y2 (i,J)lT [y3(iJ)lT [y4(iJ)I (59)

Each of the (4xl) vector has four components, consisting of the function, its
first partials in both directions, and its mixed partial.
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Y( Ej, nj) (inj)

yj(i~j) - YE(Ei,i) Y3C(i~j) - E&'Tj1

Y~(F&,nj) Yn&~jl

Y2(i~j) Y&(&i+i fi) Y4(i,j) - y&(i-..i nj+l)

Ynr(i+i"nj) YFn(i+I j+) (60

If we increase the row index from i to i4-1, then the grid point shifts down by
one step and the following holds

y1(i+iJ) -Y 2(£,j) Y3(i+l"J) - Y4(i"J) (61)

If we increase the column index from j to J+1 then the grid point shifts to
the right by one step and one obtains

y1(~jI)= 3C~j y(i,j+I) -y(i~j) (62)

The following diagram shows the relationship of the grid system.

Y1 (i~j) Y3(Ji~J) . y1(i,j+1) Y3(i~j+l)

[y~i,j)j [Y(i,j+I)]

Y (i, J) Yt(i+Ij) - Y (i+Ij+) Yt(i+,j+)

if (i+Iti) I (i+1,j) if Ci+1,j+1) I (i+1,j+1)
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X. SPLINE FUNCTION. We may express the variables y(iJ) and 6y(ijJ) in
Eq. (58) in terms of the (1x16) spline function aT(E,n) and the (16xl) node
point function y(iJ) as follows.

y(i,J)(&,n) - aT(C,n)Y(i, j ) (63)

where

aT(&,n) - {[al(t,n)IT [a2(E,n)IT [a 3 ( ,n)lT [a 4 (,n)] T }  (64)

and

6y(i,)(&,r) - aT(C,jj)6Y(i,j) (65)

A typical term for a product can be written as

6;(i,j)y(i,j) = [6y(ij)]Ta(,n)aT( ,n)y(i,j) (66)

XI. BICUBIC HERMITE POLYNOMIAL SPLINES. With the aid of Eq. (59), Eq.
(63) may be expressed as

y(i,J)( ,n) - [al(,n))TYl(ij) + [a 2 (&,rl)]TY 2 (iJ)

+ [a3 (C,n)lTY3(iJ) + [a4(&,n)jTY 4 (i,J) (67)

The bicubic Hermite polynomial spline is continuous in the functional value,
its first partials in two directions, and its mixed first partial in both
directions. The bicubic Hermite polynomial spline gives

T T

*(E) O(n) a3&n (&) P(n)

[.)4(n) ,M. W(n) '-
a 1 ( ,n) , a3(&,n) -

4,(M *(n) PM (r.) )

p(M *(n) UK{ 0 U n)a2(F,,ni) - a4({,n) -=w~

(68)
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where

- - + 20 q(t) = -69 + 6g2

S 2&2 + t3 O() 1- 4t + 32

p(E) - 3E2 - 20 pt(E) = 6, - 6W2

W(C) _ -42 + 1 wt(4) -2 + 32 (69)

At grid points (nodes) the value of C or n takes the value of 0 or 1. 
Thus we

have

(0) - 1 ) - 0 0() - 0 (1) - 0

W0) - 0 W(0) - I ot(i) = 0 *1'(1) - 0

p(O) - 0 W(O) M 0 p(1) I O) . 0

pC(O) - 0 &(O) - 0 p(1) - 0 W() - 1 (70)

It is noted that the diagonal elements of the matrix are unity and the off

diagonal terms are zeroes. Similar expression are held for 4(n), etc. in

terms of n. For example

00) - I - 3n2 + 2 3 , etc. (71)

XII. CONSISTENCY AT NODES. To show that Eqs. (67) through (69) are

consistent at the node points, we will check only the following cases.

(1) For the case 0 and n - 0, from Eqs. (68) and (70) we have

a2 (OO) - a3(OO) - a4(OO) - [0 0 0 01

31(0,) - [1 0 0 01 (72)

(a) Y(i'J)(, n) 1-o - [al(4,n)]Tt.O YI(i
'j)

n-O n-0

-1 0 0 ooY 1 (ij) = y(i,j)(o,o) (73)
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n~-0

T

ij()*(n) iJ)0O

n-0

10 1o i 0 1Y1 (i~j)

=Y&(ii)(O,O) (74)

Cc) Y~n(i"D(En) .O [a'E(,n)jTE. 0 yj(i~j)

=nn *y(i) *(,Cr))

O& *n,(n) nij(,0

-10 0 0 iiY1 (i'i)

The above expressions show that the function, Its first partial in one
direction, and its mixed partial are consistent and continuous at the node
point & 0 and n -0.

(2) For the case I and n - 1, from Eqs. (68) and (70) we have

al(1,1) a2(j,l) -a 3(1,I) - 10 0 0 01

a4(j,j) _ 11 0 0 0] (76)
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(a) Thus

=~ ~ ~ -[a ( , ) T 1 Y4(ij)

- 1 0 0 O)Y4C'ij) . y(i,J)( 1,1 ) (77)

(b)0 o&~)Cn &.1(~i _ yg4(,)jj (78)~

In-1 n-I

T

n-1

- 0 0 0 1]Y4 (i,J) -yC~(ij)(1,1) (78)

(tcan be proved tha al te16 elemnE)ts atj for orer fhegrdr
consitant.It cn als be povedthat he fnoisto ietoa

firt drivtivs ad is mxedpTilaecnnusatllgdpots

PEM n~n y~~i260J

* E --.n----,--. * ----

L ~~~~~~~.~ I - - n- - _ _ - . - . --



XIII. WAVE EQUATION. Let us take a special case for further study of

the mixed initial and boundary value problems. We choose the wave equation

where the parameters in Eq. (24) are

V = . 0(80)

and a -const * 0 (81)

9. = conet $ 0 (82)

Then Eq. (24) becomes

Ly - aytt + LyXX - -Q (83)

Eq. (58) is simplified to

- K aH I tb

6JCuy) - I K f 6y(i,i)y (i,J)d,i

H MI I -;i xybi~~dI
+ I -- f 6I ,~y~,~~

imi H 0 x

K H 1 1 -
+ -- I J Kf 6y(i,i)Qddi

K H 1 a H -

i-i- 00 K

+ H~ 6y(i,i)yrl(i,i)1d~dn - 0 (84)

Differentiating Eqs. (63) and (65), and substituting into Eq. (84) we

have
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K OnH Ti1 tb

j.1 K 0 to

KH H 1 - T j 1
+ I -- 6y(i,) f J ,nar(t~r(,n)dF Y dn

. iHK 0 0

K H 1ii -

++ I --((sy~i i) f f a C,n)~(E,n)d~dn yij
j.1~u 0.IH 0 0

K H L -(i Tfl I
+ I --(yi~) Y f aE yni&j) - 0 (85)iJ
j-1 i-IH 0 0

Eq. (85) may be written into a different form as

- K - T
6J(Sy) I (6Y(tb,J) PO (tb)y(tb,J)

J-i

- 6y(tOgi Poc(to)y(to'j)
J-1

H - T
+ [ 6Y~i,xblPoncxb)y(i,xb)

- [6y(iX Px)y(iX))

K H T

J-1 i-i

K H T
I I [6i(i.J)] p(i"J)y(i,J) . 0 (86)

J-1 i-I

It is noted that the first two terms involve initial values, the next two
terms involve boundary values, and the last two terms involve interior
quantities within the region.
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Equation (86) uses the following notations

aH 1
P0t(tb) - -- f a(C,)aET(tn)dnj (87)

K 0 t-tb

OH 1
PoE(t°) - K- f0 a(En)aT(,n)dn t-to88)

XK I T
Pon(xb) - -- f a(,n)an (En)dtl (89)

K 0 x-xb

1K 1
P0 n(x°) - K- f a((9n)anT(0)n)d~lx(x o

K 0 Xx0

aH XK
P -- PE + -- PTn (91)

K H

1 1

PE= f f aE(Ef)aET(r)d~dn (92)

1 1

Pnn f0 f0 an(En)anT(En)d~dn (93)
0 0

and

q(i,J) =__1 fo fo a( ,n)Q(E,n)d~dn (94)
HK 0 0

For a given spline function, such as bicubic Hermite polynomials, a(,n)
is given in Eqs. (64), (68), and (69). For a given grid the number of node
points are known, so are H and K. Thus Eqs. (87) through (93) can be
determined and stored in advance. For any given forcing function Q(t,n), Eq.

(94) can also be evaluated.

The (16xl) vector y(iJ) in Eq. (86) was defined in Eq. (59). Its

components can be overlapped as given in Eqs. (61) and (62), we have found
previously that the first term in Eq. (86) can be dropped because it can
automatically satisfy the final conditions for an initial value problem. In
the second term the function Y(to,J) are known because they are the initial
values. Although some of the boundary values Y(i,Xb) amd Y(i,xo) are given,
most of these terms are to be determined. The entire problem is to solve for
y(iJ) by setting to zero the assembly coefficients of the individual elements
of SY(i,j)•

It is a tedious task to assemble these coefficients. These will be
performed in the future as a separate paper.
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XIV. CONCLUSION. A bilinear form of the original and adjoint variable
is employed in determining the coefficients of the variations of the functions

and their first derivatives. There is no term involving the variations of any
higher derivatives. A bicubic Hermite polynomial is used which gives continu-
ity in the functions and first partial derivatives in space or time, together

with the mixed first derivating in space and time. In solving mixed boundary
and initial value problems of a second order partial differential equation
using spline functions, the computation may be simplified considerably if the
variable in time can be truncated into arbitrary sections. The entire problem
is divided into several strips of distinct time intervals, each strip contain-
ing mostly the boundary value problem.

The variational principle for spatial and temporal problems with boundary
and initial conditions have been investigated. This variational principle is
very general in scope and can be applied to many linear partial differential
equations. The principle is applicable if the bilinear concomitant is
identically zero. This leads to the requirement that a set of end conditions
for the adjoint systems must be found to satisfy this condition. Otherwise

the variational principle as stated may not be applicable.

Both the wave equation and the heat equation (with one dimensional
spatial direction) satisfy these variational principles. For future work the
analytic solution of these equations using finite element method will be
studied. The assembly of the elements of the matrices involved in the
formulation will be demonstrated. The stability problem in numerical
solutions on these equations will also be investigated. This lays the

foundation for the gun dynamics problem to be studied in the future.
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SMOOTHEST LOCAL INTERPOLATION FORMULAS
FOR EQUALLY SPACED DATA

T. N. E. Greville and Hubert Vaughan
Mathematics Research Center

University of Wisconsin-Ma& son
Madison, WI 53706

ABSTRACT. Let a moving-average interpolation formula for equally spaced

data, exact for the degree r, have a basic function L e Cm - 1 of finite

support with L(m) piecewise continuous. Such a formula is called
"smoothest" when the integral of the square of L (m  over the support of L

is smallest. If m, r, and the support of L are given, either there is no

such formula or there is a unique smoothest formula, for which L is a

piecewise polynomial of degree at least r and at most max(r, 2m - 1),
uniquely characterized by certain conditions on the location of its knots and
the jumps occurring there. A similar result is obtained if consideration is
limited to formulas that preserve (i.e., do not smooth) the given data.

1. INTRODUCTION. Schoenberg pointed out in 1946 (7] that a large class
of local interpolation formulas for equally spaced data can be expressed in
the form

vx  I Lx -v)y u , (1.1)

where y denotes a given ordinate, vx  is an interpolated value, and L(x)
is a given function called by Schoenberg the basic function of the interpola-

tion formula. This class includes the numerous formulas of so-called "oscula-

tory interpolation" published by actuarial writers (for additional references
see [31 ). For the latter formulas L is typically a piecewise polynomial

function of finite support belonging to continuity class C1 or C2 .

Also included is what may be called moving Newton-Lagrange interpolation,

often used, before computers became available, in the preparation of tables of
mathematical functions. An example would be the case in which the function
f is interpolated in (Vh, (V + 1)h), V being any integer, by means of the

cubic p uniquely determined by the four conditions

*A 6-page synopsis of results, without proofs, appeared in Approximation

Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980.

IThe late Hubert Vaughan was General Secretary and Actuary of the Mutual Life

and Citizens' Assurance Company, Ltd., Sydney, Australia.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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p(x) = f(x) (x = (V + j)h; j = -1,0,1,2)

In this example L is a continuous piecewise cubic with support in (-2,2),
whose first derivative is discontinuous at x = -2,-1,0,1,2 (see Fig. 1).

These discontinuities did not give rise to any problems in interpolating
smooth mathematical functions, but are undesirable if one is interpolating
empirical data.

Formula (1.1) is called reproducing when L is such that vV = y for
every integer V, whatever may be the values of the quantities yv. A is
clear that (1.1) is reproducing if and only if

L(V) = 6 0v = ...,-1,0,1,...) . (1.2)ov

where 8 is a Kronecker symbol. In practice an interpolation formula that
is not reproducing smoothes as well as interpolates, since each given ordinate
y is, in general, replaced by an adjusted value v • (Whether the adjust-

ment does, in fact, actually increase the smoothness of the data depends on a
judicious choice of L; see [7] .)

Figure 1 shows the graphs of three typical basic functions. Note that
Karup's formula and the Newton-Lagrange central third-difference formula are
reproducing, while Jenkins' "modified" third-difference formula is not. On

the other hand, note that the Newtonian graph has corners, while the others do
not.

LX
1.0..4 4;.

SR 0INARY CNTRAL ThIR-0IF'ERENCC I" '.

....... XARUP

- JENKINS " OOIFIEO T M I o -orFrD.C E 0 8 --

'..

0.6

%

02., %

BAI FUCTON OCETI ON INEPOA1O ORUA

Pigure I

266 .



Formula 1.1) is called exact for the degree r when L is such that
the formula gives exact values whenever it is used to interpolate a polynomial
of degree r or less. In other words, using it to denote the class of
polynomials of degree r or less, L is such tfat, for every p e wr'
yv = p(V) for all integers V implies vx = p(x) for all real x.

In the case of moving Newton-Lagrange interpolation, r is merely the
degree of the polynomial arcs employed. For the actuarial formulas, r is
less than the degree of the piecewise polynomial function L, the "degrees of
freedom" thus gained being utilized to increase the order of continuity of
L. The latter is, of course, also the order of continuity of the composite

interpolating function, for if L e Cm - l, then it is clear from (1.1) that

v e - 1 .

When L is discontinuous (as occurs, for example, in the case of
symmetrical moving Newton-Lagrange interpolation of even degree), the
definition of exactness for the degree r requires interpretation. In such a

case, it must be assumed that L, though discontinuous, is nevertheless such

that, for every p e wr

(x) L(x - V)p(V)

has only removable discontinuities, and they are removed by taking

0(x) = (x + 0) = g(x - 0)

2. MINIMIZED-DERIVATIVE FORMULAS. Let I (a,R) be a finite open
interval on the real line, and let Fi rm  denote the set of interpolation
form!Aas of the form (1.1) that are exact for the degree r, and have a basic

function L e c m - 1 with its support contained in I and with L(m)
piecewise continuous. Also let FreP denote the subset of F consistingIrm rp Irm sitn
of reproducing formulas. It follows from (1.2) that F r is empty unless
o e I. By a piecewise continuous function we mean one having only jump
discontinuities and at most a finite set of these.

In each of the classes Firm or Frep we would like to find thatIrm
formula which is in some sense smoothest. We shall judge smoothness by the
closeness to zero of the mth derivative of the interpolating function v x
Now, m-fold differentiation of (1.1) gives

(m)= L lm)( - V)y, (2.1)

almost everywhere. As we have some la Itude in the choice of the basic
function L, but non 7  s regards the ,liven ordinates y ' (2.1) suggests
that the values of v x will be clossr to zero than would otherwise be the
case, if L is chosen so that the values of L(mI are, in some sense, as

close to zero as possible. Accordingly, we shall call a qiven formula of one
of the classes Firm or Frep a minimized-derivative formula (mdf) of its

I 0 Irm
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class if the quantity

J f I [L(m)(x)]2 d (2.2)

assumes for the given formula its minimum value for the class in question.

The thought leading to the definition of mdf can be made more precise in
the following manner. Let a be a given real number. Then, if M denotes
the maximum value of ly for V in (a - B, a - a + 1), (2.1) gives

00

IV(m) < M IL(m)(x - v)Ivx  l! i (

for every x in (a,a + 1). Consequently,

f IV (M) Idt < M f IL ( m ) (x)Idx (2.3)

a+t

If

U= B-ct

denotes the width of the interval I, we have, by Schwarz' inequality,

f IL(m) (x)Idx < (W) 1/2

a

where J is given by (2.2). Thus, (2.3) gives

f1 IV (m) Idt < M(W) 1/2

In other words, we have shown that, for a given M, by minimizing J we

minimize a certain upper bound to the integral over a unit interval of theabsolute value of v m).
vx

Minimized-derivative interpolation formulas were previously defined by us
in 13], and a few examples were given, but no general theory was developed.

In this paper we shall show that the class Fir is empty for
U < r + 1, is empty or contains a single formula (of moving Newton-Lagrange
interpolation) when P = r + 1, and is infinite when tj > r + 1. In the

latter case, we shall show that there is a unique mdf, and shall characterize
this formula in a way that leads to an algorithm for its determination in any
particular case.

It was previously noted that the class rr is empty uless the open
interval I ontains the origin. When this condition is satisfied, we shall
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find that Frep  is identical to Firm when the number of integers contained
in I does not exceed r + 1 This implies, of course, that
r + 1 < P < r + 2, but the converse is not true.

When the number of integers contained in I exceeds r + 1 (and 0 is
among them), Frm is a proper subset of Firm, and the former contains a
unique mdf different from that associated with the latter. In this
(reproducing) case too, we shall obtain a characterization of the mdf leading
to an algorithm for its determination.

In order to arrive at the results just described, it is first necessary
to express the requirement that (1.1) be exact for the degree r in
manageable form as a set of constraints on the basic function L. A
digression for this purpose is the subject of the next section.

3. MAINTENANCE OF DEGREE. Schoenberg noted in [7) that the implications
of exactness of formula (1.1) for the degree r become clearer if considered
in relation to a certain weaker condition. This weaker condition, in a
modified form, was utilized by us in [3] and is used again here. Let H be a
given function with its support contained in I, and let a function p and a
function 0 be related by the formula

0(x) = ) H(x - v)p(v) . (3.1)

This relation may be regarded as a transformation TH  that transforms p

into 0, or

= THP

It is evident that TH is a linear operator. We shall say that TH
maintains the degree r if it maps the space wr into itself, or, in other
words, if p e w' implies 0 e " •r r

An important special case of maintenance of degree is that in which TH
annihilates w : in other words, 0 is identically zero whenever p e w rr r

Schoenberg in (7] defined a transformation TH that preserves the
degree r as one having the property that, for every p e wr , o is ar

polynomial strictly of the same degree as p with the same leading
coefficient. He showed that TH has this property if its characteristic
function (Fourier transform of the basic function H) has the value I for the
argument 0 and zeros of order r + I for all nonvanishing integral multiples
of 2w.

We showed in (3] that if H lids an (r + 1)th derivative in the sense
of distributions, then TH maintains the degree r if and only if the
convolution of that (r + 1)th derivative with every element of Wr

vanishes. A more limited result, that can he stated and proved without
introducing distributions, will suffice here, and is contained in the nesxt
theorem.
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If H has a piecewise continuous jth derivative, let b denote the
jump of H at x -

Theorem 3.1. If TH maintains the degree r and if H is piecewise
continuous and has piecewise continuous derivatives of all orders, then, for
all real t,

CD

I vb. = 0 (i = 0,1,...,r; j = 0,1,...) . (3.2)
V=_-AM 

,t-V

If H is a piecewise polynomial function with finite support and satisfies
(3.2), then TH maintains the degree r.

Proof If we take p(V) = Vi  in (3.1), the left member of (3.2) is the
jump of (x) at x = t. But, if TH maintains the degree r and i is
one of the integers 0,1,...r, is a polynomial and this jump vanishes.
Thus (3.2) is established.

On the other hand, let H be a piecewise polynomial function of finite
support satisfying (3.2), and let p e v! in (3.1). Then 0 and all itsr

derivatives are continuous everywhere. But, if d is the maximum degree of

the polynomial arcs composing H, then 0(d+1) vanishes almost everywhere by

(3.1). Since 0(d+1) is continuous everywhere, it is therefore identically
zero. It follows that 0 e wd-

If 6 denotes the "central-difference" operator defined by

6 f(x) = f(x + 1/2 )- f(x - 1/2

we have also from (3.1)

6 r+1 1(x) = p(V)6r+1H(x - v)

Expanding r+t H(x - v) in terms of H(x) values by the well known binomial
formula and rearranging terms gives

,r+ x H(x _ v)6r+p() ,

where the sumnation E' is over all the integers when r is odd, and over

all the real numbers oV the form integer + 1/2 when r is even. Note that
the required rearrangement of terms is permissible because the support of H
is finite.

Now, since p e Wr 6  p(V) - 0 for all v. Therefore 6 r+1O(W - 0

for all real x. But, a polynomial whose (r + 1)th derivative vanishes
identically belongs to w . Therefore TH maintains the degree r. 0r

If TH maintainn the degree r, then there is a differential operator

of order not exceeding r, which we shall call the signature of T R  and
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shall denote by S., of the form

r
SH I aiD, (3.3)

i=0

that is equivalent to TH over w • In other words, SHP T~p whenever
r

p e it . In (3.3) D denotes differentiation. The following theorem is an
r

immediate consequence of the preceding definitions.

Theorem 3.2. TH is exact for the degree r if and only if it maintains
the degree r and its signature is the identity operator.

We can express SH in terms of H in various ways. Thus, the
coefficients ai of (3.3) are given by

i
(-1)ai = - V'H(U) (i = 0,1,...,r) . (3.4)

If H is integrable, we have also

a (-I) f xiH(x)dx (i = 0,1,...,r)

If a basic function L satisfies (1.2), then, by (3.4), the
coefficients aj in the expression (3.3) for SL are given by

a1  6 i (i = 0,1,...,r) .

Thus we have established the followinq corollary, previously noted in [3,71.

Corollary 3.3. The interpolation formula (1.1) is exact for the degree
r if it maintains the degree r and is also reproducing.

The existence and properties of the signature SH were established in

131 (though the term wsignature" does not appear there) using the concept of
distributions. However, what has been stated here is easily verified by
elementary mans. A similar remark applies to the following lemma, in which
we take

P = -Cr + 1)
2

The lemma can be verified by noting (after some algebraic manipulation) that
the function

r(x)r x - 1) (3.5)
j-0

has the required properties.
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Lemma 3.4. If K is piecewise continuous with its support contained
in I and T. annihilates wr , then there exists a piecewise continuous
function G with support contained in (a + P, 8 - P), such that

6r+G(x) - K(x) (3.6)

for all real x such that the left member is defined.

4. CHARACTERIZATION OF GENERAL mdf's. We note that a formula (1.1) that
is exact for the degree r must satisfy

7 ViL(x - V) = xi  (i = O,1,...,r) . (4.1)

If the support of L is contained in I, all but a finite number of the
coefficients L(x - V) vanish automatically. If P < r + 1, it follows that
there is some interval for x within which each of the r + 1 linearly

2 rindependent functions 1,x,x ,...,x is expressible as a linear combination
of r or less given functions. This is impossible. Therefore Firm is
empty for P < r + 1.

If 0 - r + 1, then for every x such that x - a and x -8 are
nonintegers, (4.1) can be regarded as a system of r + 1 linear equations in
the r + I unknown values of L(x - v). Moreover, the determinant of the
matrix of coefficients of the linear system is a Vandermonde, and therefore

nonvanishing. Thus, the system has a unique solution. Now, it is evident
that the equations are satisfied by the r + I fundamental functions of
Lagrange interpolation (or extrapolation) for the function value corresponding
to the argument x, given those corresponding to the r + 1 arguments V

for which L(x - V) is undetermined. Moreover, each of these fundamental

functions is, indeed, a function of x - V, as (4.1) requires.

In this case of P = r + 1, L is discontinuous at those arguments x e I
that differ by an integer from a or 0, except in the special case in which
a and 8 are themselves integers and also 0 e I. Only in this special

case is the formula reproducing and L continuous everywhere.

We conclude from the preceding discussion that the class FIrs is empty
for P < r + 1, and also for U - r + I and m > 1, while for P - r + I
and m - 0 or 1, it is either empty or contains a single formula.

For U > r + 1, FIrm contains an infinite number of formulas for every
nonnegative number m, and among them, as we shall see, a unique mdf. The
following theorem is the key to the characterization of this unique mdf.

Theorem 4.1. For any nonnegative integers r and m, and for
P > r + 1, the class Firm contains a single formula whose basic function

L satisfies the following three conditions:

(i) L is a piecewise polynomial function of deqree at least r and at
most d - max(r,2m - 1).
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(ii) Each knot of L is an argument that differs by an integer from a

or 0 (or both).

(iii) The piecewise polynomial function dr+1L is given in

(0 + P, B - P) by a simple polynomial of degree at most 2m - 1.

This theorem requires interpretation for m = 0. In that case, we
interpret a polynomial of degree -1 (in condition (iii)) to mean one that is
identically zero.

We shall postpone the proof of this theorem, as it will become easier
after we have developed some further paraphernalia. However, without waiting

to prove it, we shall proceed to demonstrate its connection with the existence
of a unique mdf. For this purpose we shall need the following lena.

Lemma 4.2. Let K e C -1 , with K(m) piecewise continuous, have its

support in I, and let TK  annihilate w . Let H be piecewise continuous,
with piecewise continuous derivatives of orders I to m, let TH maintain

the degree r, and let 5r +H be given in (a + p, 8 - p) by a simple
polynomial of degree at most 2m - 1. Then,

I H(m)(x)K(m)(x)dx = 0 . (4.2)

Proof. By Lemma 3.4, there exists a function G e C - 1 , with support in
(d + P, - P), such that G( W is piecewise continuous and (3.6) holds.

Denoting by Ci the left member of (4.2), we have

a . f H(M)(x)Sr+l G(m)(x)dx

If 5 r+lG (x) in expanded in terms of G(m)(x) values, the finite support

of G ( m ) then permits rearrangement of terms, so that

S(- 1 )r+ l f G(m)(x) 6 r+l H(m)(x)dx

Since G (m ) vanishes outside of (0 + p, 8 - P), and 5r+Ix(m) is given in
that interval by a polynomial of w M, say q, we have

8.-P
0 - (- 1 )r l f G(m)(x)q(x)dx . (4.3)

a +p

As G e Cm-1 , m-fold integration by parts now gives 0 0, as required. 0

Theorem 4.3. The unique interpolation formula determined by Theorem 4.1

is the unique mdf of the class Fire*
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Proof. Let L be the basic function of the unique formula determined by
Theorem 4.1, and L, the basic function of any formula of F_. Also let
J and J1 denote the corresponding values of the quantity given by (2.2),
and let K1  be defined by

L1 (x) = L(x) + Kl (x) (4.4)

Then, it is easily verified that K fulfills the conditions required of K
in Lemma 4.2. Similarly, L fulfills the requirements for H in that
lemma. Therefore, by Lemma 4.2,

f L (m ) (x) Y m ) (x)dx = 0 (4.5)

From (4.4) and (4.5) we have

- J f Krm)(x)]2dx

It follows that J < J1. Moreover, equality holds only if K1
m ) vanishes

almost everywhere. Therefore, in this case, 1im-" is a step function.1 K"'1l isa te untin
But, since K1 e cm-i , K m- l) is continuous, and therefore K I  is
identically zero. It follows that K1 e wM-1" But a polynomial with finite

support is identically zero, and so L = L. []

5. CHARACTERIZATION OF REPRODUCING mdf's. We shall first dispose of the
and Frep are identical. Let t denote the number of

integers contained in I.

Theorem 5.1. If F is nonempty, it is identical to Frep if andI rm Irm
only if 0 e I and t < r + 1.

Proof. We have seen that Firm is empty for P < r + 1. Therefore we
must have 1 > r + 1. This implies that t > r. In fact, t - r occurs only
when P = r + " and a and 0 are integers. By (3.4) and Theorem 3.2,
the r + 1 relations

V iL(v) (i O,l,...,r) (5.1)
V. oi

must be satisfied. These may be regarded as a system of linear equations in
the quantities L(V) for the t integers v contained in I. If
t = r + 1, the matrix of coefficients is square. (In the special case of
t = r, one of the end values, a or 0, may be included.) The matrix is
also nonsinqular, because its determinant is a Vandermonde and therefore
nonvanishing. Thus, the linear system has a unique solution. However, if
0 e I, it is evident that the values given by (1.2) are a solution, and
therefore the unique solution. Hence the formula is reproducing and F
and r are identical.
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As previously pointed out, there is no reproducing formula if 0 0 I.
Now, let I be such that t > r + 1, and let f1  be a formula of Firm . It
follows from Theorem 4.1 that such a formula exists. If f1  is
nonreproducing, the theorem is established. Otherwise, let LI be the basic
function of f1 and T the largest integer in I. Then, for some e in
(0,1/2), [T - r - 1 - e, T + e] C I. Now, consider the interpolation

formula f2 under which, for x in (X - e, X + e) for every integer A,

vx  j L (x - V)y V + k(x X + e)m(x - A e)1A X-, (5.2)

k being arbitrary, while, for all other values of x, vx  is given by the
summation term only. Here A is the usual finite-difference operator.
Evidently f2  belongs to Firm* However, (5.2) gives

vX  =YX + k(-1) m e2m Ar+1= yY -(1) '

and the formula is clearly nonreproducing for k * 0. J

The analogue of Theorem 4.1 for the reproducing case is the following
theorem.

Theorem 5.2. For any nonnegative integer r and positive integer m,
and any finite interval I = (a,8) containing 0 and such that 0 > r + 1,
the class Frep contains a single formula satisfying the following threeI rm
conditions:

(i) L is a piecewise polynomial function of degree at least r and at
most d = max(r,2m - 1).

(ii) Each knot of L is either an integer or an argument that differs
by an integer from a or 8 (or both).

(iii) The piecewise polynomial function rl+L is given in
(a + P, 0 - P) yr+V a spline function of degree 2m - I with simple knots.

The knots of6+L in (a + P, S - p) are at the integers when r is odd,
and at the arguments of the form integer + 1/2 when r is even.

As in the case of Theorem 4.1, we shall postpone the proof of this
theorem, but we shall now show its relationship to reproducing mdf's, for
which the following lemma will be needed.

Lemma 5.3. Let functions K and H satisfy the same hypotheses as in

Lemma 4.2 except that (i) K vanishes at the integers, and (ii) 6r+1H is
given in (a + P, 0 - P) by a spline function of degree 2m - 1 with knots
as specified in condition (iii) of Theorem 5.2. Then (4.2) holds.

Proof. The proof is the same as that of Lemma 4.2 down to equation (4.3)
except that q is a spline of degree m - I with knots as specified in
condition (ii), and it follows from the expression (3.5) for G that it
vanishes at the knots of q. Thus m-fold integration of (4.3) gives
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a = 1-11 m+r+l - G(x)[q M-1)(x + 0) - qm-1) (x - 0)]x

where the summation is over the knots of q in (ot + P, 8 - P). Since G
vanishes at these knots, 0 = 0, as required. 0

Theorem 5.4. The unique interpolation formula determined by Theorem 5.2
is the unique mdf of the class Frep.Irm

Proof. The proof is identical to that of Theorem 4.3, except that the
role of Lemma 4.2 there is now assumed by Lemma 5.3. 0

6. COMPACT EXPRESSION FOR mdf BASIC FUNCTIONS. If there is a formula
of Firm  with a basic function that satisfies conditions (i) and (ii) of
Theorem 4.1, this basic function can be regarded as a spline function of
degree d with multiple knots of multiplicity d - m + 1. In general,
therefore, it has a unique expression (see [2]) of the form

d nL(x) = I [c + g (x a 8 + J) , (6.1)

i=m j=O + 1J

where n denotes the largest integer contained in 1 and y= max(yi,).

The coefficients ci . and g. are subject to the constraints arising from
Theorem 3.1, which cIn be written as

n
(a) jkcij =

j=0
(k 0,1,...,r; i = m,m + 1,...,d) . (6.2)

n
(b) )jkg.. =

j=0

If 0 is an integer, the second term of the summand in (6.1) is absent (as
are, of course, the constraints (6.2)(b)).

For a formula of Frep that satisfies conditions (i) and (ii) of TheoremIrm
5.2, in general there must be added to the right member of (6.1) the
expression

j h (x - j)2m-1 (6.3)
3eE

where E denotes the set of integers contained in I, and the constraints

X jkhj . 0 (k 0,1,...,r) (6.4)
Cee

must be satisfied. However, when a or B is an integer, the addition of
(6.3) is not required.
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We shall now show that by taking Lnto account condition (iii) of Theorems
4.1 and 5.2 and by introducing certain special spline functions, we can
rewrite (6.1) in a form involving a much smaller number of undetermined
coefficients and can also avoid the necessity of considering separately the
cases in which 0, %, or B is an integer. For this purpose we shall need
the following lemma.

Lemma 6.1. For eveiry nonnegative integer r and every positive integer
n > r + 1, there is a unique polynomial Prn e wr such that

I jkprn(j) = 60k (k = 0,1,...,r) . (6.5)

J=1

Proof. This follows easily from well known properties of orthogonal
polynomials, but it is also readily seen as follows. Equations (6.5) may be
regarded as a system of r + 1 linear equations in the r + 1 coefficients
of Prn" The latter system has a unique solution if and only if the
corresponding homogeneous system has only the trivial solution. But any
solution of the homogeneous system gives rise to a polynomial P e v such
that r

n

I P(j)q(j) = 0 (6.6)
j=1

for all q e 7 . In particular, one may take q P, so that (6.6) becomes a
sum of squares r, and therefore P vanishes for j = 1,2,...,n. Since n > r,
P is identically zero. DI

We now define the splines of degree r,

n
rn - X Prn(j)(x -

j=1

n
Sr (x) = xr _ pr(j)(x + j)rSrn(X =+ - rn +"

j=1

Parenthetically, we remark that by means of (6.5) and the identity

yr = y- (-1) r(y) r

it is easily shown that S*n(x) = (-,)r+lS (-x). We observe also that Srnrn rn
has its support in (O,n) and Sn in (-n,O).

rn

Note that condition (iii) of Theorem 4.1 or 5.2 implies, in general, that

certain knots that the function 6r+ L would otherwise he expected to have
are absent (or reduced in multiplicity in special cases of a reproducing
formula). Using the notation of (6.1), this means that

Ar+1c Ar+1 = 0 (j 1,2,...,N r - ; i m,m + 1,...,d)
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where the finite differences are taken with respect to j, and N is the
largest integer less than P. (Note that N differs from n when P is an
integer.) This implies the existence, for i = m,m + 1,...,d, of a
polynomial qi such that ci = qi(j) for j 1,2,...,N but not, in
general, for j = 0. Similar remarks apply to gij. we conclude from these
facts and the constraints (6.2) that

N

L [Cx W + g(x 8 + j) I
j=0 ij+ 1

S- a) + gs*(r-i)(x - 8) (6.7)rN irr

(i = m,m + 1,..o,d)

where ci and gi are obtained by multiplying ci0  and gio by appropriate
constants depending only on i and r, and, in case i > r, a derivative of

negative order denotes that particular integral of corresponding order that
vanishes identically for x < a. A little reflection will convince the
reader that the right member of (6.7) is a valid substitution even when P is
an integer (and N = 4 - 1). However, in the case of a reproducing formula,
the expression (6.3) now must always be added, even though a or B (or
both) is an integer.

Accordingly, (6.1) can be expressed uniquely in the form

d S(ri) + *(r-i)

L(x) = [Cis-i (x - a) (x - a) (6.8)
i=m

A function L satisfying conditions (i)-(iii) of Theorem 4.1 that is the
basic function of a formula of F r m  has, therefore, a unique express'on of
the form (6.8). Similarly, a function L satisfying conditions (i)-(iii) of

Theorem 5.2 that is the basic function of a formula of Frep has a uniqueIrm
expression of the form (6.8) with (6.3) added.

The coefficients ci and gi (and hj in the reproducing case) must
satisfy certain constraints. These will now be described.

(a) In the reproducing case the r + 1 conditions (6.4) must be
satisfied. When this is the case, the expression (6.3) vanishes for x > 8.

(b) The function given by (6.8) has its support in I when d = r.
This is also true in the reproducing case if the preceding condition (a) is
fulfilled. However, when d = 2m - I > r, (6.8) gives, for x > 8, a
polynomial of degree d - r - 1. The vanishing of the d - r coefficients of

this polynomial involves d- r constraints.

(c) In the general case, exactness for the degree r requires that
the r + 1 conditions (5.1) be satisfied.

(d) In the reproducing case, (c) is replaced by conditions (1.2). This
involves t effective constraints.
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(e) The form of (6.8) ensures that 6r+1L shall be given in
(a + P, 8 - P) by a polynomial in the general case, and by a polynomial

except for discontinuities in the (2m - 1)th derivative in the reproducing
case. However, in the case when d = r > 2m - 1, condition (iii) of Theorem
4.1 or 5.2 involves also a reduction in degree from d to 2m - 1. This
constitutes d - 2m + 1 constraints.

7. PROOFS OF THE CHARACTERIZATION THEOREMS. We now have the machinery
needed to prove Theorems 4.1 and 5.2.

Proof of Theorem 4.1. If there is a formula of Fir m  whose basic
function satisfies conditions (i)-(iii) of Theorem 4.1, that function has a
unique expression of the form (6.8) with parameters ci and gi satisfying
conditions (b), (c), and (e) of the preceding section, to the extent these
conditions are applicable. On the other hand, if there is an expression of
this form with parameters satisfying these conditions, then it is, in fact,
the basic function of such a formula.

Now, (6.8) contains 2(d - m + 1) undetermined parameters. The numbers
of constraints involved in conditions (b), (c) and (e) are, respectively,
d - r, r + 1 and d - 2m + 1. (Note that the integers d - r and
d - 2m + 1 are not both different from zero.) The total number of
constraints is 2(d - m + 1), the same as the number of parameters. Without
spelling out the constraints in detail, it is easily verified that they are
linear equations in the parameters. The parameters must therefore satisfy
2(d - m + 1) equations in as many unknowns. To prove Theorem 4.1 it is
sufficient to show that this linear system is nonsingular.

This is the case if the corresponding homogeneous system has only the
trivial solution. In fact, the only one of the constraint equations that has
a number other than 0 on its right-hand side is the one obtained by taking
i = 0 in (5.1). Thus, a function K of the form (6.8) whose parameters
satisfy the homogeneous system has the property that TK annihilates 7rr
This function K therefore fulfills the requirements for both K and H in
Lemma 4.2. Consequently, by Lemma 4.2,

f (K(m)(x)]2 dx = 0
-W

By the same reasoning used in the proof of Theorem 4.3, it follows that K is
identically zero. Thus, the homogeneous system has only the trivial solution. fl

Proof of Theorem 5 2. The perceptive reader may have noticed that the
possibility of m = 0, though allowed in Theorem 4.1, is excluded in Theorem
5.2. In fact, a reproducing mdf with m = 0 is somewhat meaningless, for the
following reason. Application to this case of the criteria that we have
developed would lead to a solution in which the basic function of the
corresponding mdf without the reproducing requirement is modified by
arbitrarily assigning at the integers the values given by (1.2), even though
these are inconsistent with the values at neighboring arguments. Thus, the
resulting basic function would have removable discontinuities at the inteqers
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in I. Strictly speaking, such a function is not piecewise continuous, and
therefore is not the basic function of a formula of the class FIrO*

If there is a formula of Frep whose basic function satisfies conditionsIrm
(i)-(iii) of Theorem 5.2, that function has a unique expression of the form
(6.8) with (6.3) added, and the parameters cie gir and hj satisfy
conditions (a), (b), (d), and (e) of the preceding section, to the extent
these conditions are applicable. On the other hand, if there is an expression
of this form, with parameters satisfying these conditions, then it is, in
fact, the basic function of such a formula.

Now (6.8) and (6.3) together contain 2(d - m + 1) + t undetermined
parameters. The number of constraints involved in conditions (a), (b), (d),
and (e) are respectively, r + 1, d - r, t, and d - 2m + 1. The total
number of constraints is 2(d - m + 1) + t, the same as the number of
parameters. As in the general case, all the constraints are linear equations
in the parameters, and they constitute a linear system having a square
coefficient matrix.

The remainder of the proof is the same as for Theorem 4.1, except that
Lemma 5.3 now assumes the role played by Lemma 4.2 in the earlier proof.

8. SOME mdf's ARE PREVIOUSLY PUBLISHED FORMULAS. In some instances the
minimized-derivative formula of a class turns out to be a previously published
formula. Table I lists, for the cases known to us, the class Firm or
Frep involved, the name of the originator, the publication citation, and theIrm
year of publication. Two of the papers cited contain a large number of
formulas, and in these cases the particular formula is identified. In two
instances in which the published formula contains an unspecified parameter,
the numerical value of the parameter that yields the mdf is given in a
footnote. The entry "Both" in the fourth column means that Firm and PreXp
are identical for the case involved.
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TABLE I. Previously Published Formulas that are mdf's

Rep or Originator Publication
I r m Nonrep and Citation Year

(-2, 2) 1 2 Nonrep Jenkins (5] 1927

(-2, 2) 2 2 Both Karup (61 1898

(-2, 2) 2 3 Both Greville [1] (105) 1944

(-5/2, 5/2) 2 2 Nonrep Greville [1] (67)2 1944

(-5/2, 5/2) 3 2 Nonrep Greville [1] (69) 1944

(-3, 3) 3 2 Nonrep Greville [1] (73)3  1944

(-3, 3) 3 3 Nonrep Vaughan [10] "C" 1946

(-3, 3) 3 2 Rep Henderson [41 1906

(-3, 3) 4 2 Both Shovelton (8] 1913

(-3, 3) 4 3 Both Sprague [9 1880

2With a13 = 13/80.

3With a04 = -7/108.
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INTERVAL ANALYSIS: A NEW TOOL FOR APPLIED MATHEMATICS

L. B. Rall

Mathematics Research Center
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ABSTRACT. Interval arithmetic has been found to be useful in numerical
analysis as an automatic means to bound data, truncation, and roundoff errors
in computations. Now that the speed of microprogrammed interval arithmetic

approaches that of standard floating-point operations, a wider range of
application to engineering and other problems has become feasible. Since, in
many practical situations, data are only known to lie within intervals and

only ranges of values are sought as satisfactory answers, straightforward
interval computation can yield the desired results. Examples of this type of

application are worst-case analysis of the stability of structures and the
performance of electrical circuits. The recently developed theory of
integration of interval functions also bears directly on the problems of

solution of integral equations and the minimization of functionals defined in
terms of integrals. Since certain chaotic phenomena, such as catastrophes and
turbulence, are difficult to describe by single-valued functions, the
introduction of interval functions and the corresponding analysis may lead to
simpler models which will yield results of accuracy satisfactory for practical
purposes.

1. WHAT IS INTERVAL ANALYSIS ? This paper is addressed to the
questions: What is interval analysis, and what can it do for applied
mathematics? Naturally, these are big questions, so only a sketch of the

answers can be given here. It is hoped , however, that enough can be conveyed
to suggest possible useful applications of the subject, as well as to satisfy
curiosity.

First of all, although interval analysis as a discipline is fairly recent
(a likely beginning point is the Stanford Ph.D. thesis of R. E. Moore, written
in 1962 [16]), it has grown beyond the scope of any single paper. Another
survey has been given by Nickel [211, and there are at least three books on
the subject [1], (17], [18], and the proceedings of three international
conferences [91, [201, [22] are in print. A bibliography published in 1978
[2] lists 757 titles (this bibliography is reproduced in [18], pp. 125-179).
Research in interval analysis and its applications is carried on most
vigorously at the present time in the Federal Republic of Germany, where an

Interval Lihrary is maintained at the Institute for Applied Mathematics,
University of Freiburg, under the supervision of Prof. Dr. Karl Nickel.

In spite of the extent of the subject, it is possible to characterize
interval analysis by analogy with real analysis. In real analysis, the basic
units are real numbers, and one studies transformations f or real numbers
x into real numbers y, symbolized b,

Sponsored by the U. S. Army under Contract No. DAAG29-80-C-0041.
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(1.1) y = f(x).

Properties of these transformations (real functions) are of interest, as well
as operations (differentiation, integration, etc.) applied to these
transformations.

Similarly, in interval analysis, the basic units are the nonempty closed
intervals X = [a,b] on the real line R, where

(1.2) X = [a,b] - {x I a 4 x < b, x e RI.

Interval analysis is thus concerned with transformations F of intervals X
into intervals Y, that is

(1.3) Y = F(x)

(see Figure 1).

Real Transformations

x f y

Interval Extension

X F

Interval Transformations

Figure 1. Relationship between Real and Interval Analysis

There is an obvious connection between interval analysis on the real
line R and real analysis: One can identify each real number x with the
corresponding degenerate interval [x,x] having both endpoints equal to x,
and write

(1.4) x = [x,x].

Real and interval transformations are also related through the concept of
interval extension, which will be treated in more detail in the next section.

The relationship between real and interval analysis is thus analogous to
the relationship between real and complex analysis. The real numbers can also
be identified with a subset of the complex numbers, and real transformations
can be onsidered to be a restricted class of complex transformations.
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However, as everyone knows, complex analysis does not supersede real analysis,

but is rather a complementary field of mathematics, with its own theory,
techniques, and applications. Interval analysis also complements real
analysis in a similar way.

Secondly, the question of the usefulness of interval analysis cannot be
answered completely here, since one never knows entirely the capabilities of
any mathematical theory or other tool, no matter how long its history. Here,
a few examples of interval methods which have proved effective in practice
will be given, and some speculation as to other applications will be made in
hopes of stimulating further investigations into the uses of interval analysis
in the solution of practical problems.

Before going on, it should be noted that just as real analysis extends

from numbers R to real vectors in R, interval analysis also applies to
interval vectors with n components. This simple generalization will be
taken for granted below where appropriate. It should also be mentioned that
there is a complex version of interval analysis, based on the use of disks or
rectangles in the complex plane; attention here, however, will be restricted
to real interval analysis.

From a philosophical point of view, it can be observed that measurements
of physical phenomena do not yield real numbers and functions in general, but
only approximations to these ideal concepts. However, it is usually possible
to determine intervals in which the observed data lie, making interval
analysis a natural language for the description of processes involving
inaccurately know data, or as a way to handle the results of variations in

quantities of interest. Some illustrations of these ideas will be given
below.

Before going on to a more detailed treatment of the subject, mention will
be made of two problems which are solvable by the methods of interval analysis

for which no techniques from real analysis are known:

(i) Global optimization: For f:R n + R, minimize f on Rn

(unconstrained optimization), or subject to the constraints

(1.5) pi(x) 4 0, i = 1,2,

where f and p1 '...'pm are at least once differentiable. Algorithms for
the solution of these problems have been given respectively by Hansen [10] and
Hansen and Sengupta [11].

(ii) Integration. In real analysis, theories of integration of real
functions, such as those due to Riemann and Lebesgue [15] define the integral

(1.6) = f(x)dx

for only a subset of the real functions. In the theory of interval

integration [61, all real functions (and all interval functions) are

integrable. More details will be given in §16-7 below.

2. INTERVAL EXTENSIONS. Figure I indicates another relationship
between real and interval analysis, namely, interval extension of a real
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transformation. This concept is made precise in the following definition.

Definition 2.1. An interval transformation F is said to be an

interval extension of a real transformation f if it has the following

properties:

(i) inclusion,

(2.1) f(X) = ff(x) I x e x) C F(x);

and (ii) restriction,

(2.2) (x) =f(x),

where the convention (1.4) has been used to write F(x) = F([x,x]).

Of course, there are interval transformations F which are not
extensions of real transformations f.

If f is a continuous function of a single variable, then f(X) is an

interval by the theorem ,)F Weierstrass, and thus F defined by F(X) = f(X)

is an interval extension of f. However, in two or more dimensions, f(X) is

not in general an interval of the form Y = ([C ,d ),...,m ,dm 1) for

X = ([al,b 1],...,[a n,b ). For example,

(2.3) t(x,y) = x , y/7 -X 2 )

maps X0 = ([0,11,[0,1]) onto the rcogion in the first quadrant bounded by the

coordinate axes and a quarter of the unit circle, which is obviously not a

rectangle. An interval extension of f given by (2.3) would have the

property that X0 C F(X0 ), since X. is the smallest rectangle X such

that f(X0 ) C X.

A fundamental interval extension of real transformations is interval

arithmetic [171, (18], which extends the real arithmetic operations

(considered as functions of two variables, that is, f(x + y) = x + y for

addition, etc.). The rules of interval arithmetic are as follows:

(i) Addition

(2.4) [a,b] + [c,d] = [a + c , b + d].

(ii) Subtraction

(2.5) (a,b] - [c,d] = [a - d, b - ci.

(iii) Multiplication

(2.6) [a,b] (c,dl = [min , max i,

where { - (ac,ad,bc,bd}.

(iv) Division
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(2.7) [a,b]/[c,d] = [a,b] • [d ,c - I if cd > 0,

undefined otherwise.

These interval extensions of the ordinary arithmetic operations have the
important property of inclusion monotonicity in the sense of the following
definition.

Definition 2.2. An interval transformation F is said to be inclusion
monotone if

(2.8) X C Z => F(X) C F(Z).

Note that since interval analysis deals with set-valued quantities, then set
relationships and operations, in certain instances, appear in a natural way.

The importance of interval arithmetic as defined by (2.4)-(2.7) is that

it allows the construction of inclusion monotone interval extensions of
rational functions automatically, simply by replacing the real variables by

intervals and the arithmetic operations by their interval counterparts. For
example,

3°X + 1
(2.9) F(X) - 2X + 1

2"X - 1

is an inclusion monotone interval extension of the real function

(2.10) 
f(x)= 3x + 1

2x - I

on its domain of definition, which is the real line with the point x = 1/2

deleted.

Two cautions are in order cxncerninq the straightforward use of interval

arithmetic to obtain interval extensions. First of all, intervals do not form

a linear space, as illustrated by the simple result,

(2.11) [0,1] - [0,I] = -1,1],

obtained from (2.5). Without a linear substructure, one cannot expect

techniques from real analysis which depend on linearity to work in general in
interval analysis. For this reason, interval arithmetic cannot be applied
indiscriminately to extend certain methods of linear algebra which are

effective in the real case. In fact, the lack of a concept of linearity means

that there is no way to distinguish between linear and nonlinear problems in
interval analysis without going back to their real restrictions.

Secondly, the rules (2.4)-(2.7) of interval arithmetic are not adequate
to produce small interval extensions of even some simple rational functions,

for example, the extension

(2.12) F(X) = XX

of

(2.13) f(x) x 2
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gives

(2.14) FM-1,1]) = [-1,1]°-1,1] = [-1,1],

while

2
(2.15) f([-1,1]) = [-1,1] = [0,1]

for the extension f(X). Thus,
(v) Squaring

2 [minfa 2 ,b 2 }, max(a 2 b 21] if ab ) 0,
(2.16) [a,b] = 2[0, maxta 2,b2}] if ab < 0,

can be added to the rules for interval arithmetic to obtain improved interval
extensions in the appropriate cases, and so on.

One way to improve the accuracy of interval extensions (in the sense of
making F(X) as small as possible) is thus to add additional operations to
interval arithmetic. Another method is to use alternative expressions for the
interval extension, and not just simple substitution of interval values and
operations. For example, suppose that f is differentiable and f' has an
interval extension F'. Furthermore, let y = m(X) denote the midpoint of
x; m([a,b) = (a + b)/2, with a similar expression for vector intervals X.
In this case, the mean value form [41

(2.17) F(X) = f(y) + F'(X).(X - y),

defines an inclusion monotone interval extension F of f which is accurate
for small intervals X.

Further problems connected with the computation of interval extensions
will be considered in the next section.

3. INTERVAL COMPUTATION. In actual practice, it is impossible in
general to represent real numbers or evaluate real transformations exactly.
This is because one must work with a finite set G of real numbers, called a
grid [26] or screen [13]. A typical example of G is the set of fixed and
floating-point numbers available on a given computer. The error introduced by
having to work with G rather than R presents some thorny problems of
numerical analysis in connection with the computation of real transformations.
In interval analysis, on the other hand, the transition from R to G does
not present any great theoretical difficulty, although one must forego the
restriction property (2.2) of interval extensions in general. The
construction of what will be called computable interval extensions having
properties (2.1) and (2.8) of inclusion and inclusion monotonicity,
respectively, will now be described.

It is helpful, but not necessary, to adjoin the extended real numbers
± to G: otherwise, as in actual practice, the calculation of numbers
x < min G or x > g = max G is said to overflow the grid G, and will
generate an error indication rather than a numerical result. With this in
mind, attention will be restricted to the set RG of real numbers x such
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that ( x ( g.

The set of intervals with endpoints in G will be denoted by IG, that

is,

(3.1) IG - {[a,b] I a,b e G, a 4 b}.

These are the intervals which are exactly representable using the available
set of numbers. Now, the directed rounding operators A, V from RG to G,
and 0 from IRG (the set of intervals with endpoints in RG) to IG will
be defined.

For x e IG, the upward rounding operator A is defined by

(3.2) Ax = minty I y ) x, y e G),

and the downward rounding operator by

(3.3) Vx = maxz I z 4 x, z e G1.

The directed rounding operator ® applied to [a,b], where a 4 b, a,b e RG
gives

(3.4) *(a,b] = [VaAb],

an element of IG. In particular, if x e R is a real number, then

(3.5) ox = ®Ix,x] - [Vx,Axl,

using the identification (1.4) of real numbers with degenerate intervals.

For example, if G is the set of four digit decimal numbers, then 0
applied to the real number x = 1/3 gives

(3.6) 0(1/3) = 1.3333, .33341,

which is the unique representation of 1/3 in IG of minimal width (and also
of each real number z satisfying .3333 < z < .3334 ).

It follows that b is an inclusion monotone interval operator which
inaps IRG (and hence IG) into IG. If F is an interval extension of F,
then

(3.7) OF

will have properties (2.1) (inclusion) and (2.8) (inclusion monotoncity), and
will map IG into IG. Interval operators 0 of this type will be called
computable interval extensions of F.

The advantages of working with computable interval extensions # of real
transformations are obvious: I one starts with an exactly representable
interval X (that is, X e IG), then the trarnsforned interval

(3.8) Y - O(X)
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will also be exactly representable; furthermore, one can be sure that if

x e X, then y = f(x) e Y. Much of the usefulness of interval computation
stems from this latter fact.

On present computers, directed rounding and hence interval computation

can be implemented by software [28) or microprogramming [19] with a certain
amount of effort. Upward and downward rounding should, of course, be required
to be available as a standard feature of future machines so that ordinary and
interval arithmetic can be performed rapidly and accurately.

4. APPLICATIONS OF INTERVAL COMPUTATION. Interval computationi, which
here will mean calculation using computable interval extensions of real

functions, has at least two closely related applications. The first, already
widely used in numerical analysis, is to error estimation. It is assumed that
there are exact data x and that one wishes the result y = f(x) of
performing an exact transformation f. However, all that one knows is that
x lies in an interval X and that, due to inexact knowledge of coefficients,

round-off and truncation error, the best one can compute is an interval
transformation F of f. In this case, the interval transformation

(4.1) Y = F(X)

is a precisely defined model of inaccurate computation on inexact data. Here,
"the interval contains the answer," since y e Y. Knowing this, it is easy to
find an approximate value n of y and a corresponding bound C for
absolute, relative, percentage, or other error of n as an approximation to
y [23). Most of the literature on interval analysis is devoted to applications
of this type [2].

A second application of interval computation, possibly equally important,
is to give a convenient, automatic way to estimate the effect of variation in
input data on output results. For example, most structures, such as
buildings, bridges, airframes, offshore drilling platforms, etc., are subject
to a range of loadings, not just a single load, and the same is true for

electrical power networks, pipelines, communications links, and so on. In
these cases, the data X are really intervals, and one wants to examine an
interval result Y to determine possible outcomes. In other words, "the
interval is the answer" here. In prediction problems, also, the results of
financial deals or the outcomes of battles may require estimation of interest
rates, costs, military strengths and effectiveness, and so on. Interval
analysis thus also provides a natural language for problems of this type,

since one may view the results of assuming that the quantities of interest lie
in various intervals, and make decisions accordingly.

To be more precise, consider the problem of the stability and safety of

an offshore drilling platform attacked by waves having a range of amplitudes
A and wavelengths A, that is, by an interval wave. In real analysis,

suppose that the deflection of the i-th joint (node) of the structure is given

by a formula of the form

(4.2) Y, =  fi (a'N'x I . m

i 1,2,...,n, where the xj represent loads, strengths of members (not

usually known except within intervals), etc. Now, one calculates the interval
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values

(4.3) Yi = F i(AA'x ...'X )

using suitable computable interval extensions. The result is essentially a
"worst-case" analysis, leading to the following conclusions:

(i) If all the Yi lie within intervals of deflection considered to be
acceptable, then the structure can be deemed to be safe under the given range
of conditions.

(ii) On the other hand, if some of the computed intervals Yi go beyond
acceptable limits, this does not necessarily mean that the structure is

unsafe. However, the nodes in question should be singled out for more exact
investigation and possible reinforcement to insure that the structure will be

stable.

It can be argued that the use of interval analysis is justified if this

would prevent the failure of a single structure or power or communication
network.

An interval analysis of linear electric circuits has been carried out by
Skelboe [27] along the above lines. An application in finance, giving
projected returns for rates lying in estimated intervals, has been worked out
by A. S. Moore, and is given in [18], Chap. 9.

Many significant applications of the above idea are undoubtedly possible;

the crucial point is to produce interval extensions which are realistic and
accurate in the sense that the intervals obtained do not extend far beyond the
limits which would actually be observed.

Another property of interval omputation which is useful in applications
is the intersection property. Suppose that one is trying to compute a point
y, or, more generally, an interval Y, and one knows that

(4.4) Y C YI

on the basis of an interval computation. Another computation gives, say,

(4.5) Y C Y2

It follows, since intervals are sets, that

(4.6) Y C Yl 1 ny2 = Y 3 1

and Y3 may be considerably smaller than YI or Y 2 # but never larger.

Thus', additional interval computations can only improve accuracy. This
principle has been used in numerical integration to reduce error bounds, see
[8] for an example.

Now that interval arithmetic can be microprogrammed to operate at

essentially floating point speeds [19], and is available in the powerful
scientific computing language PASCAL-SC [14], the use of interval computation
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in applications is in a position to grow at an explosive rate.

5. INTERVAL ITERATION. This section will deal with an application of
interval computation to the problem of finding fixed points of real
transformations, that is, real numbers, vectors, or functions y which
satisfy the equation

(5.1) y = f(y)•

Since the formulation here is general enough to include systems of equations
in several variables and integral equations [24], many problems in applied
mathematics can be reduced to finding solutions of (5.1).

In real analysis, a standard way to obtain approximate solutions of
equation (5.1) is by iteration. One starts with a point y deemed to be a

good approximation to y, and then generates the sequence ?yn} by computing

(5.2) Yn+1 = ffYn) " n = 0,1,2,...

If this sequence converges (and f is continuous, which will be assumed
throughout), then

lim
(5.3) 

y = ni Y

satisfies (5.1). In other words, convergence of tyn) implies the existence
of a fixed point y for continuous f. This is all very well, but ty n can
diverge, even for y0  close to y, and thus not yield any useful information
(If there is no fixed point y of f, then {yn must diverge, hence,

nonexistence of y implies divergence of {y }.) Furthermore, since real
transformations cannot be performed exactly in general, one does not compute

fy },but rather some approximate sequence {z ). The usefulness of [z )
thus depends on a comparison with {y n whicfl can be a difficult problem in
its own right (although this does provide employment for numerical analysts).

As shown in [261, the situation is quite different in interval
analysis. Here, one starts with an interval Y0  (in IG in actual practice)
thought to contain a fixed point y of f, and computes the sequence of
intervals [Y } defined by

n

(5.4) Yn+1 = Yn ) F(Yn ), n = 0,1,2,...,

where F is a computable interval extension of f. In [26], it is shown that
if y e Y 0 ' then

(5.5) Y e Y Y n~
n=0

(0 denotes the empty set), so existence of the fixed point y in Y0 implies

convergence of the interval iteration to a nonempty limit interval Y which
also contains y. Furthermore, the endpoints of each Yn' as well as Y,
furnish lower and upper bounds for y. On the other hand, if

(5.6) Y=

292



for some positive integer N, then YO contains no fixed points of y of
f. In this case, the interval iteration (5.4) is said to diverge, which
implies nonexistence of a fixed point in Y0.

'o)r computationr. on a finite yrid G, which iL the case in dctuL.
practice, it has been shown [26] that

(5.7) YN = YN+1 = Y  or YN

for some positive integer N. Thus, interval iteration is a finite process in
actual computation. In case Y 0 0, the usefulness of this limit can then be
determined by direct inspection.

It should be noted that Y 0 does not imply that y e Yo; it is the

converse which holds. Thus, it may be necessary to apply some existence test
to Y. However, in finite dimensions, it is sufficient that

(5.8) F(Y N) C Y N

for some positive integer N to guarantee the existence of a fixed point
y e Y0 ' and hence the convergence of the interval iteration as a consequence
of the Schauder fixed point theorem. Interval iteration can thus be used to
rind improved bounds for fixed points known to be in Y0 , to obtain regions

YN possibly smaller than Y0 to test for existence of fixed points, or to
establish nonexistence of fixed points in Y in case (5.6) holds.

6. INTLRVAL IPUNCTlONS. Znt(- val Furactions are .truitalhLFrorwarel

generalizations of real functions. Given real functions y % y (in the sense
that (x) 4 y(x) for each x), the function Y defined for each x e x =

(a,b] by

(6.1) Y(X) = {y I .(x) I y < y(x)}

wi 1l be called an interval function on X with endpoint functions , y.
Figure 2 illustrates the graph

(6.2) Y(X) = {y I V(x) 4 y 4 y(x), a 4 x 4 b)

of a simple interval function.

As a set of functions, the interval function Y can be considered to be
the set of all real functions y satisfying X ( y 4 y in the sense cited
ahove. Thus, in order to extend the concept of integration from real to
int,rval fulnctions, one must be prepared to integrate all real functions. The

way to do this will be explained in the next section.
An important interval function Ls the vertical extent VY of an interval

function Y. This is defined by

(6.3) VY(X) = Y(x)}, e(Cx,)}],

and is interval-valued. In Figure 2, VY(X) -c,d] is indicated on the y-
axis. If VY(X) is a finite interval, as in this case, then Y is said to
be a bounded interval function.
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Figure 2. The Graph of an Interval Function.

Given interval functions Y, Z on X, one writes Y C Z if Y(X) C Z(X)
as point-sets in the plane.- Thus, if Y = [,y] and Z = [z,z], then this is
equivalent to z and y 4 z For the endpoint functions of y and Z. Given
an interval function Y, it is possible on this basis to introduce the idea of
directed rounding of Y to a larger interval function Z with endpoints
belonging to a specified class (step-functions, splines, continuous or Riemann
integrable functions, etc.). This idea is useful in the construction of
computable extensions of integral operators, etc.

Interval versions of discontinuous real functions can also be constructed
to model finite or infinite jumps. For example, consider the real step-
function

(6.4) :3(X)
1, x 1,

The corresponding interval step-function is

S(x), x #1

(6.5) S(x) =
1-1,1], x = 1,

as illustrated in Figure 3. Thus, interval step-functions include the
"risers" as well as the "treads" of real step-functions, considered as
mathematical moels of staircases.

Note that the graphs of interval versions of discontinuous real functions
will be connected sets in the plane. Interval functions of this type may be
useful in the description of physical phenomena known as shocks or
catastrophes, where rapid changes take place in certain quantities.
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Figure 3. An Interval Step-Function.

7. INTERVAL INTEGRATION. A construction of the interval integral and

some of its important properties are given in (6]. Briefly, the idea is
this: Let y be real function, and suppose S and S are the sets of
step-functions s, s such that

s ( y for s e S, and y < s for s e S. Since step-functions are
integrable in the extended real number system, one can always form the lower
and upper Darboux integrals of y [15], denoted respectively by

(7.1) (LD) y b '(x)dx s
a : Up~f9eS a -

and

(7.2) b y(x)d Inf b

(UD) f af s(x)dxl.

Definition 7.1. The interval

(7.3) fb y(x)dx = [(LD) fb y(x)dx, (UD) f b y(x)dx]
a a a

is called the interval integral of the real function y over the interval
X = a,b] . t

The interval integral, thus, always exists in the set of intervals on the
extended real line [6], (15]. The interval integral (7.3) of a real function
y is degenerate (a real number) if and only if y is Riemann (R)

integrable, since

(7.4) (R) f b y(x)dx = (LD) fb y(x)dx - (UD) Ib y(x)dx

by definition of Riemann integration [15].

For Lebesque L) integrable functions y,
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(7.5) L) fb yW dx e a y(x)dx

in general (6].

Definition 7.2. The interval

(7.6) fb Y(x)dx = [(LP) fb y(x)dx, (UD) fb

is called the interval integral of the interval function Y over the
interval X = [a,b].

Of course, (7.6) reduces to (7.3) if Y = [y,y] is degenerate (a real
function). Interval integrals have many properties similar to those of real
integrals, for example, the mean interval value theorem

(7.7) fb Y(x)dx = w(X) •

a

holds, where w(X) = W([a,b]) - b - a, and Y is some interval contained in
VY(x) (6].

Another important property of interval integrals is inclusion
monotonicity, that is,

(7.8) Y C z => fb Y(x)dx C Ib Z(x)dx,a a

as shown in [6]. Thus, interval integration is an inclusion monotone interval
extension of real integration, with the restriction property (2.2) holding on
the set of Riemann integrable functions by (7.4).

One useful application of interval integration is to construct computable
interval extensions of integral transformations, which will be considered in
the next section.

For bounded interval functions Y and finite intervals X, it has been
shown that for the interval sums

n b-a
(7.9) Y(X) h • V VY([a + (i - 1)h, a + ih]), h - n 1,2,...,

i= 1
one has

(7.10) a y(x)dx = f
n= 1

which gives a very simple construction of the interval integral in this case
(25]

At the present time, differentiation does not seem to be an appropriate
concept for interval functions in general, except by means of interval
extensions. Thus, if y is a smooth real function, then one may work with
interval extensions Y of y, Y' of y', Y" of y". and so on, to obtain
interval versions of results from real analysis. Indefinite interval
integrals, however, have a "derivative" equal to their integrands at points of
continuity of the latter (that is, points of continuity of both and y),
just as in the case of real integrals [61.
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8. APPLICATIONS OF INTERVAL INTEGRATION. As mentioned in §7, the
theory of interval integration can he used to construct computahle interval
extensions ,of integral transformati-ns of real functions, such as

(8.1) Gy(x) = a b q(x,t,y(x),y(t))dt

In real analysis, one assumes Riema,.n or Lebesgue integrability of the
integrand, which is not required in interval analysis. In any case, suppose
that it is known that y e Y, an interval function, and that Y is a
computable interval extension of g obtained by interval arithmetic or
otherwise, in the sense that the endpoint functions Y, y of y have
computable Riemann integrals. (It may be necessary to use directed rounding
to obtain Y, Y.) Then, r definei by

(8.2) ry(x) = fb Y(x,t,Y(x),Y(t))dt
a

will be a computable interval exten.;ion of the integral operator G.

Two applications of this idea will be mentioned: The solution of
integral equations and the minimization of functionals. First, consider the
fixed point problem for d, defined by (8.1) with X = [0,1], that is, the
integral equation

(8.3) y(x) = g(x,t,y(x),y(t))dt.

Equation (8.3) is very general. It is of Volterra type if
g(x,t,u,v) B 0 for t > x (or more generally, for t > h(x)f1), in which case
the upper limit of integration in (8.3) can be replaced by x (or h(x));
otherwise, (8.3) is of Fredholm type. Linear integral equations of first,
second, and third kinds correspond to the following integrands:

1st kind: g(x,t,y(x),y(t)) = y(x) + f(x) + )K(x,t)y(t),

(8.4) 2nd kind: g(x,t,y(x),y(t)) = f(x) + XK(x,t)y(t),

3rd kind: g(x,t,y(x),y(t)) = (1 - f(x))y(x) + f(x) + AK(x,t)y(t).

Among nonlinear integral equations of the form (8.3) which are of special
interest are the equations of Hammerstein type,

(8.5) g(x,t,y(x),y(t)) = K(x,t)f(ty(t)),

Urysohn type,

(8.6) g(x,t,y(x),y(t)) = f(x,t,y(t)),

the Chandrasekhar H-equation [71,

(8.7) g(x,t,y(x),y(t)) = 1 + AY(xJy)t),
x + t

and many others.

An obvious approach to the approximate solution of equation (8.3) is the
use of interval iteration,
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(8.8) Yn+1 ry nn y n, n 0,1,2,...,

starting with an interval function Y0 which is presumed to contain a

solution y of the integral equation. The theory of interval iteration 1241,

126] applies in this case also: If y e YO, then (8.8) will converge to an

interval function Y = [ ,y] such that

(8.9) X(x) 4 y(x) 1 y(x), 0 4 x 4 1,

thus giving pointwise bounds for the solution y of the integral equation
(8.3). On the other hand, if Y = 9 for some positive integer N, in the
sense that Y (x) n ry N1(x) 0 for some x, so that YN is not defined

as an interval function, then there is no solution of (8.3) such that
-!

(8.10) Y0 (X) 4 y(x) y y0 (X), 0 • x < 1,

that is, the interval function Y0= [(0, Y0 ] does not contain a fixed point
y of G [241.

In the case in which the limit of the interval iteration (8.8) is
degenerate, the following regularity theorem holds: If the interval iteration

(8.8) converges and
tim

(8.1n1 ) r = yo

a real function, then y satisfies (8.3) in the sense of Riemann (R)

integration (241, that is,

(8.12) y(x) = (R) 41 g(x,t,y(x),y(t))dt.

This kind of convergence will occ%-r if the interval operator r is what
is called an interval contraction (3], (5]. Even if G and hence r are not

contractive operators, interval iteration can be used to obtain improved lower
and upper bounds for y (241.

Another application of interval integration is to the minimization of
functionals, to which many problems in applied mathematics reduce. For
example, instead of the functional.

(8.13) f(y) (x,y(x),y'(x))dx,

one can examine the interval functional

b
(8.14) F(Y) , b *(x,Y(x),Y'(x))dx,a

where *, Y, Y' denote computable interval extensions of *, y, y',

respectively. It follows that (8.14) provides immediate lower and upper
bounds for the values of the functional (8.13) for y e Y, y' e Y', that is,
if F(Y) - (c,d], then c 4 f(y) 4 d for y e Y, Y' e Y'. An algorithm
similar to the one of Hansen and Sengupta [11] could then be applied to locate
and obtain lower and upper bounds for

(8.15) min f(y), y e Y, y' e y'.

298



Since many physical principles, ordinarily formulated as differential
equations, have alternative formulations as minima, maxima, or stationary
values of functions expressed in integral form, or as integral equations, this
is an area in which interval analysis can be extremely useful, particularly if
the data are inexactly or imcompletely known. This is a topic for future
researchl others will be indicated in the next section.

9. DIRECTIONS FOR FUTURE RESEARCH. Research in applied mathematics
follows two closely related lines: Application of known mathematical
techniques to problems of importance in practice, and the development of new
methods when known ones are inadequate or inefficient. The applied
mathematician thus functions both as problem-solver and as "toolmaker to the
trade". To a certain extent, the emphasis on tool making occurs in
academic environments, and on using tools in laboratories. The U. S. Army
Mathematics Steering Committee and the U. S. Army Research Office have
provided a valuable service for many years by organizing meetings such as the
Conferences of Army Mathematicians, which bring together applied mathematicians
with both theoretical and practical orientations. To these groups, interval
analysis is hereby offered as a new tool. It will work well on some problems,
not on others, and will need improvement to be effective in other cases.

The usefulness of interval computation as described in 14 is well-
established by now. Given the increased availability of fast interval
arithmetic, interval analysis can and will be applied to more computational
problems of the type described. This also applies to the solution of systems
of equations (§5), integral equations (§8), and finding lower and upper bounds
for values of functionals, as described also in §8.

In a more speculative vein, it appears that interval functions might
provide a more realistic description of chaotic phenomena, such as turbulent
flow, than single-valued real or complex functions. Also, since many physical
principles have integral as well as differential formulations, interval
integration might be applicable to a whole range of problems now solved
approximately by the numerical integration of ordinary or partial differential
equations. while interval analysis may or may not work in some of these
areas, it has enough potential to at least be investigated, which is what
research in applied mathematics is all about.
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DYNAMIC RESPONSE OF A HE1IISPHERICAL ENCLOSURE SUBJECTED
TO EXPLOSIVE BLAST LOADING

Aaron D. Gupta and Henry L. Wisniewski
Terminal Ballistics Division

Ballistic Research Laboratory
U.S. Army Armament Research and Development Command

Aberdeen Proving Ground, Maryland 21005

ABSTRACT. Large deflection elastic-plastic response of a 9 m radius
hemispherical shell enclosure structure .0254 m thick clamped to a hori-
zontal rigid foundation and subjected to explosive blast loading due to a
29.03 kg TNT charge at the center was analysed using a finite-difference
structural response code i.e. PETROS 3.5.

The peak reflected overpressure was estimated from a scaled distance
of the wall from the point of detonation based on a conservative cube-root
scaling law. The reflected overpressure decay with time was assumed to
obey the modified Friedlander equation. The residual quasi-static over-
pressure was obtained from an equation developed by Kinney and Sewell based
on the ratio of the available vent area and the internal volume.

Only a quarter segment of the structure was modelled using 18 equal
width meshes in one layer and four Gaussian integration points through

the thickness in each mesh. The 1020 steel was represented by a trilinear
curve followed by a perfectly-plastic behavior and elastic-plastic un-
loading resulting in a polygonal approximation.

The results indicated the initiation of flexural waves at the clamped
edge propagating towards the pole and thereby altering the spherically
symmetric breathing mode of response of the structure. The peak deflec-
tion was predicted by the code to occur at the pole and permanent dis-
placement after releasing the load was found to be quite small. Transient
strain components at the inner and outer surfaces near the clamped edge
due to mainly elastic oscillations showed significant bending deformation.
In conclusion, the protective structure was found to be efficient config-
uration capable of safe containment of internal explosive blast loading.

I. INTRODUCTION. The Ballistic Research Laboratory is currently
in the process of acquiring a target enclosure to facilitate destructive
terminal ballistic testing of chemical explosives (CE), armor and kinetic
energy (KE) penetrators by safe containment of blast, fragments and
resultant harmful combustion products. The present investigation is
based on a preliminary concept of the firing range as shown in Figure 1.

The target is located inside the hemispherical enclosure at the end
of a long concrete pipe-guide. The gun-launched projectile travels
through the pipe-guide and enters the enclosure through a .914 m
diameter hole. The target interaction with the projectile is monitored
photographically with flash X-ray equipment and penetration velocity is
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obtained using velocity screens and electronic counters. An air exhaust
system mounted at the rear of the structure operates during the test and
draws back aerosolized material out of the enclosure after a test and traps
it in filters in the exhaust ducting. A large sliding door with a config-
uration to match the curvature of the hemispherical wall allows equipment
access inside the enclosure. The door is sealed to the wall with a
pressurized hose seal along its perimeter. The entire structure is built
to contain blast and fragments, to trap aerosolized materials and to per-
mit photographic observation of the test.

A significant problem associated with the enclosed range tests is the
overpressure resulting from shock loading as well as rapid heating of the
air within the enclosure as the penetrator and the target are torn apart
during their encounter as shown by R. Abrahams et.al [1]. The structure
must survive both the reflected and the residual overpressures induced by
the interaction until ambient conditions are reached due to venting out

to the atmosphere through the exhaust system.

Since the key element of the AHKELS (Advanced High Kinetic Energy
Launch System) range is the enclosure structure, The Target Loading and
Response Branch was assigned to estimate the overpressure loading on the
wall and analyze dynamic response of the preliminary configuration at
critical locations and assure structural integrity from a conservative
viewpoint. The choice of a hemispherical configuration was influenced by
an earlier investigation by N. J. Huffington et.al 12] who demonstrated
the effectiveness of such a protective structure.

In the absence of any available experimental data it was decided to
obtain a theoretical estimate of the transient and residual overpressure
loading due to a centrally located equivalent charge weight at the base.
The subsequent objective was to perform an approximate conservative static
analysis for an initial estimate of wall thickness. Finally the dynamic,
elasto-plastic, large deflection response of the shell configuration
clamped to a horizontal rigid foundation was studied to indicate critical
locations where peak strains or deflections could occur.

II. ESTIMATION OF TRANSIENT LOADS. The transient loads were esti-
mated under the assumption that the test firing of penetrator rounds
would generate overpressures inside the containment chamber similar to
those caused by an internal blast due to an equivalent central charge
weight of 29.03 Kg at the base as shown in Figure 2. Assuming the walls
to be rigid, the symmetry of the charge and the structure about a vertical
axis through the center indicates uniform distribution of internal reflec-
ted loading upon the structure. For the estimation of peak reflected
overpressure, a conservative cube-root scaling law [3] is employed to
compute the scaled distance, Z, of the wall from the charge location in
the form

R
5 (1)
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Figure 2. Section through hemispherical containment structure

where 'A. is the equivalent charge weight and R is the distance of the wall

from the charge location.

Once the scaled distance is known the reflected parameters such as
peak overpressure, impulse, time of arrival and duration time of the shock
loading could be estimated from compiled airblast tables [4,5]. The decay
of the reflected overpressure is assumed to obey the modified Friedlander
exponential decay equation which can be written as

Pr = P m[1 - t/t]e 0  (2)

where t is the positive phase duration of the impulse, P is the peak

reflected overpressure and t is the clapsed time from impact or detonation.
The exponential decay parameter, a, is given as

0.65P M + P 0
a = S7 o (3)

0

where P is the peak quasi-static overpressure obtained from quasi-steady

residual overpressure calculations, the equations for which are given in
the following section.
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III. ESTIMATION OF QUASI-STATIC LOADS. Quasi-static pressures
immediately following the reflected pressure were predicted assuming that
the heat of combustion of TNT is used totally to heat the air within the
enclosure [6]. A relationship for the resultant increase in pressure is

0.4 hWE
AP V kPa, (4)

where V = 1513.9 m3, the internal volume of the enclosure,

WE = 29.03 kg, weight of the explosive charge, and

h = 13.5 KJ/g, the heat of combustion of TNT.

An internally pressurized structure vents the pressure to the surroundings
through openings in its walls causing a slow decay to ambient conditions
as shown by Kinney and Sewell [7] and is computed from

Ln P = Ln P0 - .315 (Av/V) t , (5)

where t = elapsed time in mss

P = absolute pressure at ts

A = 2.33 m2, the available vent area.V

The long term duration of the decay is essentially due to the relatively
small vent area available causing a slow pressure decay to the atmosphere.

The blow-down time, t , required to reduce the residual overpressure

to ambient conditions developed by Keenan et.al [8], based on the firing
of high explosives in chambers with known vent areas and volumes, is
given as

t = 6.28 (A v/V)-.86 (6)
gv

The above equation is valid for A /V < 0.21. In the current design

the ratio, A v/V 2/3, equals .018 and the duration time for the quasi-steady
pressure is approximately 1600 ms.

The computation involves determination of peak residual overpressure
from Eq. (4) which when combined with Eqs. (5) and (6) yields the quasi-
steady part of the loading history. The junction between the reflected
overpressure history and the quasi-steady loading was smoothed by a curve
interpolation scheme in order to avoid a sharp transition. The resulting
load profile is shown in Figure 3. This loading is applied uniformly at
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Figure 3. Computed pressure-time history due to internal explosive
blast loading of the hemispherical enclosure.

each meshpoint on the inside wall in the radial direction in the finite-
difference structural response model in the PETROS 3.5 computer program
[9] developed for the BRL. In Figure 3 the load-time history inside the
hemispherical enclosure was zeroed out after 180 ms to facilitate damping
of small elastic oscillations and to observe any residual deformation of
the hemispheric wall. The peak reflected overpressure was found to be
2S7.3 kPa while the peak residual overpressure was approximately 100 kPa.

IV. STATIC STRESS ANALYSIS. Prior to a detailed dynamic response
study, a static stress analysis in the linear-elastic-small deflection
regime was conducted to obtain an initial estimate of the enclosure wall
thickness. Since the duration of the reflected pressure is less than
1.5 ms compared to 1600 ms for the duration of the quasi-steady over-
pressure, an approximate static analysis based on a minimum factor of
safety of 2.0, is considered to he satisfactory. For the preliminary
investigation, stress-concentration near holes, cutouts and wall openings
was neglected. However the effect of ground-plane reflection of the shock
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wave was included through a load multiplication factor of k = 2.0, which
in effect doubled the applied load.

To contain the initial pressure pulse in an elastic manner only the
peak reflected overpressure, Pr was included in the calculation of

stresses and deflections. An equivalent static meridional stress, a, can
be calculated from Figure 2 by equating the resultant upward force due to
internal pressurization to the net downward restraining force due to the
stress developed at the clamped edge resulting in

RkP
r (7)

where R = 8.987 m, the median radius

k = load multiplication factor

However for an assumed factor of safety of 2.0 a a O, where a is the

static yield stress. Substituting this value of a in Eq. (7) and
rearranging terms results in an expression for the estimated thickness,
h, in the form

RkP
r (8)

y

The yield stress, ay, for the wall material which is 1020 steel is

241.3 MPa. Hence the wall thickness, h, from Eq. (8) is found to be .019 m.

Up to this point no consideration has been given to the possibility
that fragment induced damage to a shell might result in catastrophic rup-
ture when the blast loading is applied. One should estimate the material
removal produced by the impact of the worst threat fragment and perform a
local three dimensional analysis of the stress field to determine whether
a crack would be propagated under such loading. This problem in fracture
mechanics is difficult to analyze and can be at least partially circum-
vented by a conservative selection of wall thickness under the assumption
that the residual thickness is capable of withstanding the peak quasi-
steady pressure even when a 50% depth of penetration has been achieved by
a part-through fragment. The final thickness chosen was .0254 m (1 in),
a material thickness which is readily available. The .0254 m thickness
corresponds to a stress level of 45.5 MPa which when compared to the yield
stress results in a final margin of safety of 4.3 which is satisfactory.

The peak radial deflection AR at the pole is estimated from reference
[10] as
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AR = R vr ) (9)

2Eh

where E, v are elastic material properties.

'o detect resonance due to coupling of the duration time of the
pressure pulse with the natural vibration period, the time period, T,
was calculated from reference [10] as

T = R 2(I- 1))E (10)

where p is the mass density. Further check of interaction of the reflected
pressure pulse due to ground plane reflection with the elastic oscillation
of the pole did not reveal a significant problem.

The peak radial elastic deflection at the pole from Eq. (9) was
.0011 m which is quite small and is consistent with the design objective.
"le gross weight of the hemispherical enclosure was approximately 96400 kg
based on a .0254 m wall thickness. In this study allowance was made for
the weight of flanged material at the base but not for extra weight
associated with access provisions, welds or foundations.

An optimization study based on equivalent strength showed substantial
weight saving for a hemispherical configuration at or below 6 m radius
but marginal savings at higher radius up to 9 m due to compensating
thickness increase. An cquationt proposed by R. Karpp ct.al 1111 for the
minimum amount of vessel material, V to contain a specified charge is

given as

S1.0406 0406 0406
Vm = 41T0f(L) (po) (1

where e is the yield point strain of the vessel material in biaxialy
tension, WE is the charge weight, p0 is the density of the vessel

material and K is an empirical curve-fit constant found to be 4.08 x

10-6 m 3/kg. Unfortunately the optimum configuration could not be achieved
due to constraints of minimum workspace and equipment access requirements.

V. DYNAIIC RESPONSE ANALYSIS. Response of the structure subjected
to transient loads from an internal blast shown in Figure 2 was conducted
using the BRL version of the PETROS 3.5 computer program [9], which
employs the finite-difference method to solve the nonlinear equations
governing finite-amplitude elastoplastic response of thin Kirchhoff
Shells. The model is valid for large deflections and can be employed to
treat the entire structure rather than a small section.
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A. Material Model. The uniaxial tensile quasi-static stress-strain
property for 1020 steel which is used as the primary vessel material is
shown by the continuous line in Figure 4. The material is modeled in the
code as a combination of three linear segments indicated as the dashed
curve in Figure 4 followed by a perfectly plastic behavior and linear
elastic-plastic unloading resulting in a polygonal approximation of the
experimental data. The strain-hardening part of the stress-strain curve
is generated by a sublayer hardening model from a weighted combination of
elastic perfectly-plastic curves yielding a piecewise multilinear hardening
representation. Strain-rate effects were neglected, which is conservative
since these effects increase the structural resistance and thus reduce the
total deformation.

70 -
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4n - - 241.32 MPa

30 - 200 Uv
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0.0 0.02 0.04 0.06 0.08 0.10 0.12
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Figure 4. Stress-strain property modeling.

B. Finite-Difference Model. Since both the responding structure
and the applied loads are symmetric with respect to the vertical axis as
shown earlier in Figure 3, it is sufficient to model the response of a
single pie-shaped segment of the hemispherical enclosure and generate the
entire structure by 3600 rotation of the structure about the axis of
symmetry resulting in quite economical computer runs.

A total of 18 meshes along the surface and a single layer through
the thickness were used to represent the pie shaped segment. Four
Gaussian integration points through the thickness were used at each mesh
for computational purpose. Total number of mesh-points did not exceed 37.
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A. Material Model. The uniaxial tensile quasi-static stress-strain
property for 1020 steel which is used as the primary vessel material is
shown by the continuous line in Figure 4. The material is modeled in the
code as a combination of three linear segments indicated as the dashed
cuirve iii Figure 4 followed by a perfcwtly plastic behavior and linear
elastic-plastic unloading resulting in a polygonal approximation of the
experime|ntal data. The stra in-hard i jig part of the stress-strain, curve
is generated by a sublayer hardening model from a weighted combination of
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representation. Strain-rate effects were neglected, which is conservative
since these effects increase the structural resistance and thus reduce the
total deformation.
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Figure 4. Stress-strain property modeling.

B. Finite-Difference Model. Since both the responding structure
and the applied loads are symmetric with respect to the vertical axis as
shown earlier in Figure 3, it is sufficient to model the response of a
single pie-shaped segment of the hemispherical enclosure and generate the
entire structure by 360* rotation of the structure ahout the axis of
symmetry resulting in quite economical computer runs.

A total of 18 meshes along the surface and a single layer through
the thickness were used to represent the pie shaped segment. Four
Gaussian integration points through the thickness were used at each mesh
for computational purpose. Total number of mesh-points did not exceed 37.
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Initial configuration of the finite-diffcrence model employed for all
subsequent calculations is shown in Figure S.

POLE

FIXED EDGE

POLE
N

Figure 5. Initial configuration of the finite-difference model.

VI. RESULTS AND DISCUSSION. rhe deformed cross-section of the
hemispherical segment relative to the initial undeformed configuration at
36 ms is shown in Figure 6. At this time the maximum deflection occurs
at the pole. The deflections are exaggerated due to a high magnification
factor of 1000 and are, in fact, small enough to be in the linear elastic
range, in accordance with the design objective.
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,,,-DEFORMED CONFIGURATION

ORIGINAL CONFIGURATION

mm FIXED EDGE

POLE

Figure 6. Deformed configuration at 36 ms corresponding to

cycle no. 1500.

Figure 7 describes the transient rectangular components of displace-
ment in a meridional plane at point A at 450 from the vertical axis of the
hemisphere. The maximum displacement at this point is only .82 mm,
essentially radially outward. Displacements at other locations are
correspondingly small except in the neighborhood of the pole of the
hemisphere where a peak deflection of 1.17 mm is observed at approxi-
mately 36 ms as illustrated in Figure 8. However this displacement is
less than 4% of the shell thickness so that geometric nonlinearities are
insignificant. The peak deflection is of the order of elastic deflection
at the pole and any residual deflection, after elastic oscillations are
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Figure 8. Transient displacement at pole of
hemisphere.

Energy balance studies using the code confirmed absence of plastic
work and numerical instability. Both total and kinetic energies were
bounded. The fluctuations of kinetic energy appeared to have twice the
frequency of the work performed by the internal blast pressure.

Transient strain components on the outer and inner surfaces of the
hemisphere at a point near the edge are shown in Figures 9a and 9b
respectively. The meridional strain components on the inner and outer
surfaces are almost in phase initially but become out of phase and un-
equal in magnitude with increasing time signaling the build-up of some
flexural deformation. The hemisphere moves outward and inward, except
at the fixed boundary , in a spherically symmetric breathing mode result-
ing in membrane strains upon which the bending strains are subsequently
superposed due to propagation of flexural waves from the fixed boundary
towards the pole. Significant difference in strains between the outer
and the inner walls at the clamped edge could be primarily attributed to
domination of the response by the bending strains. The circumferential
strains indicated by continuous lines in Figures 9a and 9b are zero as
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expected. Calculations for maximum meridional stress baset on peak strain
results in a stress level of 48.26 MPa which is equivalent to a safety
margin of 4.0. As expected from elastic theory, peak strai,,s occurred at
the fixed edge, while maximum deflection occurred at the polt.

The variation of strain at the inner wall with time at a point near
the pole is shown in Figure 10. The continuous line depicts the circum-
ferential strain which is in phase and very similar to the meridional
strain shown by the intermittent line. The strains at the outer wall near
the pole exhibits elastic oscillations of approximately the same magnitude
and duration as in Figure 10. This behavior indicates substantial
weakening of the flexural wave near the pole and domination of meridional
and circumferential strains by the membrane component of strain due to
elastic vibration of the wall in the breathing mode. The peak meridional
stress at the pole was calculated based on elastic equations and was found
to be approximately 25 MPa, which is considerably lower than the maximum
stress at the clamped edge. The stress level is equivalent to a safety
margin of 8.6 based on the yield stress.

0.012 1 I I I -
CIRCUMFERENTIAL -MERIDIONAL

0.010

0.005
if

0.006

S0.004

0.002 H
0.0 -, ! ,

ii ,, iijIII I, i

-0.002 I .

-0.004 j I I I I I I , I I I I I 1
0 30 60 90 120 150 180

TIME (rns)

Figure 10. Surface strains at the inner wall near pole.
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Both strain components are relieved completely upon damping at
approximately 198 ms. An isometric view of the fully damped configuration
generated by 3600 rotation of the pie-shaped segment about the axis of
symmetry is shown in Figure 11. The view through Section A-A in this
figure depicts the final configuration upon damping superposed on the
initial configuration. The coincidence of the two configurations at a
high magnification ratio of 1000 indicates the absence of any plastic
deformation and confirms small strains and deformations throughout the
structure in accordance with earlier results.

SECTION A-A

Figure 11. Isometric and sectional view of the fully
damped configuration.

VII. 'CONCLUDING REMARKS. It has been demonstrated, through use of
a rigorous nonlinear shell response methodology, that it is possible to
design a containment structure with a hemispherical configuration in an
efficient and cost effective manner. The methodology could be easily
extended to structural optimization studies, resulting in considerable
cost savings provided internal volume and access considerations could be
met.
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In spite of simplifying assumptions and limitations of the PETROS 3.5
version of the shell response analysis code which neglects transverse
shear deformation and rotatory inertia, the analysis gives a clear insight
into the initial loading mechanism due to structural resistance and
interaction of various components of the response. However an examination
of the characteristics of the hemispherical structure reveals the
following:

1. The 9 m radius, .0254 m thick hemispherical enclosure is an
efficient protective structure capable of withstanding internal blast from
a 29.03 kg TNT charge with assured structural integrity.

2. The structure is capable of successful containment of combustion
products and fragments with sufficient mass and velocity to achieve a 50%
depth of penetration with a satisfactory margin of safety.

3. Peak deflection occurs at the pole due to elastic oscillations
of the structure in the breathing mode resulting in focusing of vibratory
energy at the pole.

4. Peak strain occurs at the clamped edge and exhibits considerable
difference in strain magnitude between the inner and outer surfaces due
to bending waves originating in this region.

5. The ratio of the vent area to the internal volume is small enough
to result in a slow rate of venting and ar extended venting time of
1600 ms for the quasi-steady residual overpressure to blow down to the
external ambient conditions.

6. Cumulative damage effect due to repeated test firings could
conceivably cause low cycle fatigue of the structure and a periodic
inspection of the internal surface and joints for cracks in critical
regions is recommended.

7. Future work should be directed to modelling of the enclosure
structure with wall openings for the equipment and personnel access doors,
protective walls for X-ray equipments, detailed analysis of critical
joints and stress concentration due to holes and cutouts in corner
regions.
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ABSTRACT. Explicit finite difference and finite element schemes are
constructed to solve wave propagation, shock, and impact problems. The
schemes rely on exponential functions and the solution of linearized Riemann
problems in order to reduce the effects of numerical dispersion and diffusion.
The relationship of the new schemes to existing explicit schemes is analyzed
and numerical results and comparisons are presented for several examples.

I. INTRODUCTION. Exponentially fitted and/or weighted finite difference
[9,11), finite element [3,9,10], and collocation [5) schemes have become
popular and effective methods of solving steady convection-diffusion problems.
They avoid the spurious mesh oscillations that are found near boundary and
shock layers when centered schemes are used at high cell Reynolds or Peclet
numbers and they reduce the effects of numerical diffusion that are associated
with classical upwind difference schemes.

We seek to extend exponential methods to transient problems and as a
first step we consider one-dimensional scalar initial value problems of the
form

ut+ f(u)x- cUxx . t > 0 , xl<i-

u(x,0) - u°(x) . lxi < (1)

where 0 4 C << I is either a real or an artificial viscosity parameter and the
x and t subscripts denote partial differentiation.

Our primary motivation for studying exponential schemes is a desire to
develop improved numerical methods for elastic-plastic impact problems in
solids and blast problems in gases.

*This research was partially sponsored by the U.S. Air Force Office of

Scientific Research, Air Force Systems Command, USAF, under Grant Number
AFOSR 80-0192. The United States Government Is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright
notation thereon.
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In this paper. we confine our attention to explicit difference
approximations of (1) having the form

1
U,-lj - Unj - - [10 + zflj.../l)(fSj - Pj-) + (1 - znj+1/ 2)(f'nj+l - '.l

2

+ ex (j-l - 2Unj Unj+l) ,n > 0 I I <i

Uoj - uO(jAx) . Il < ( (2)

where Ax and At denote the uniform spatial and temporal grid spacings,
respectively, Uuj is the numerical approximation of u(jAxnAt),

fnj :- f(Unj) , X- At/Ax (3,4)

and zuj+ 1/2 are upwind weighting factors.

Many popular difference schemes have the form of (2) and some of these
are discussed and compared in Section II. We also introduce an exponential
scheme that is based on determining znjtl/ 2 so that Unj is the exact solution
of the linearized steady equation

cux W U-xx (5)

when c - f'(u) is a constant. We call this method the linearized steady
exponential (LSE) method and it is the simplest extension of the exponentially
fitted and weighted schemes [3,9,10,11) to transient problems. The scheme
gives improved accuracy for steady shock problems, but offers little improve-
ment over classical upwind differencing for moving shock problems.

In Section III we develop an exponential scheme that is based on the
exact solution of a linearized transient equation (1) that is subject to
piecewise constant initial data, i.e., a linearized Riemann problem for (1).
We call this method the linearized transient exponential (LTE) method and,
like other methods based on the solutions of Riemann problems [1,2,4,6,8,13,
15,161, it sharply resolves boundary and shock layers without added diffusion
or spurious oscillations. As c + 0 the LTE method becomes formally equivalent
to Roe's method (15,161 for hyperbolic systems of conservation laws. van Leer
[171 has noted that Roe's method treats an expansion fan as a so called
"expansion shock" (cf. Figure 6) and, unfortunately, our LTE method also has
this disturbing property even when t is nonzero, but small.

In Section IV we present some preliminary results for vector systems of
equations and in Section V we discuss our results and indicate some directions
for future work.

II. THE LINEARIZED STEADY EXPONENTIAL (LSE) METROD. The LSE ethod is
obtained from (2) by selecting snk, k - J11/2, as

* k coth pk/2 - 2 1 k (6)
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where pnk is the cell Reynolds number

hi cnk+l/2 + Cnk-1/2
P k - ( . . . . . ) ( 7 )

2
and

cnj :- f,(UIJ) (8)

As previously noted, the LSE method will give a pointwise exact steady state
solution of (1) when cnj is a constait. This or similar schemes have been
used by several investigators [3,9,10,111 for steady singularly-perturbed
problems and herein we try to apply it to transient problems.

We first consider a linear stability analysis of the difference scheme
(2) by letting f(u) - cu where c is a constant. We also let p and a denote
the constant values of p'k and znk, respectively, a denote the Courant number

a - ctt/Ax (9)

and 0 denote the dissipation parameter

0 - a(z + 2/p) (10)

In this case, equation (2) can be written as
1 1

Un+l " .Unj - I a(Unj+1 - Uni- 1 ) + 1 o('nj+1 - 2Unj + Un3-1) (11)

Several popular difference schemes have the form of (11) for different
values of 0 (or z) and some of these are listed in Table 1. All of these
schemes are first order accurate in time, except the Lax-Wendroff scheme which
is second order.

A von Neumann analysis (cf. Richtmjer and Horton [141) shows that
equation (11) is stable in the region a C 0, 0 4 B C 1. This region is shown
shaded for a ) 0 in Figure 1. Curves corresponding to the methods in Table 1
are also shown. We see that the LSE method slightly improves upon the
stability and accuracy properties of upwind differencing and that centered
differencing and the Lax-Friedrichs scheme are outside of the stability region
for most values of a and P.

Example 1: We compare the methods in Table I on the constant coefficient

initial-boundary value problem

Ut + U" MCUKx , t > 0 0 < x <

u(x,O) 0 0, O< x <

u(0,t) I 1 . u(1,t) - 0 (12)

The exact solution of this problem features a shock layer that moves from x -
0 to x - I with unit speed and then approaches the steady state solution
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u(x,t) = - (13)
1 - e-11€

as t* -.

The maximum error at steady state

mazju(jhx,nAt) - UI . n (14)

computed by the Lax-Wendroff, upwind, LSE, and Lax-Friedrichs schemes are
shown in Table 2 for Ax - 1/20, p - 6, a - 0.375. 0.75 and Ax - 1/20, p - 500,
a - 0.475, 0.95*.

The centered difference scheme produced overflows for both p - 6 and
500, so no results could be listed for It. The Lax-Friedrichs scheme only
overflowed for p - 6. The LSE scheme gives the exact steady state solution
for this example and the small errors reported in Table 2 are due to the
combined effects of roundoff and our failure to reach the exact steady state.

These results are very encouraging; however, when we examine the LSE
solution during the transient phase of the solution the situation is quite
different (cf. Figure 2). The LSE solution is overly diffusive and the
computed solution is not much better than that obtained by upwind
differencing. This observation was also noted by Cresho and Lee [7) about
methods that are similar to the LSE method.

III. THE LINEARIZED TRANSIENT EXPONENTIAL (LTE) METHOD. We would like
to improve upon the results of the LSE method for transient problems and,
thus, we consider developing a method having the form of (2) that gives a
pointwise exact solution of (1) when f(u) - cu and c is a constant. Since we

are primarily interested in obtaining good resolution near shock and boundary
layers we choose to solve (1) subject to Riemann initial data. To be
specific, for each j and n we compute Un+lj as the exact solution of the

initial value problem.

Ut + CU - EuM , t > nAt * 1:<"

(UL , x < (J-1+6)hx
u(x,nAt) - (15)

(u , x > (J-1+6)AX

where uL and uR are constants, & is a constant on [0.1) to be determined, and
we assume that c > 0. We shall present results for c < 0 later.

The exact solution of (15) at I - JAI and t - (*+I)bt Is

u(Jhx,nut) - uR - i(uR-uL)erfc - 1i-l-6-0) (16)
2 a~

*All numerical results were obtained In double precision on an IBM 4341
computer at the tenet Weapons Laboratory.
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whereas the solution of equation (2) at this point Is1I

j - - G(1 + znj-1/2 + 2/0)(uR-uL) (17)

The two solutions will be the some provided that

enj-1/2 - -1 - - + erfe (1-6-ti (18)P~ aa2d

In this paper, we simplify (18) by assuming that p/o >> and approxi-
mating the complementary error function by 2R(6+a-1), where H is a Heaviside
function. Also, since zni+1/ 2 is not determined by this procedure, we specify
it according to equation 16) with coth p/2 approximated by unity. Thus, we
have

2 1 2
znj_1/ 2 - 1 - + 21- H(8+r-1) 11 , znj+i/ 2 - I -(19a)

p a P
When c < 0 we choose

2 2 1
znj 1/2 -- 1-- , znj+i/ 2  -1- + 21- H(6-a-l) + 1J (19b)

P P a

It remains to specify 6. One possibility is to choose it to be a random
variable uniformly distributed on 10,I), in which case equations (2) and (19)
would yield a linearized random choice scheme 11,21. A second possibility is
to always select 6 - 112 which would give a Godunov 161 type scheme. The
third possibility is similar to a scheme suggested by Roe 1151 and is the one
that we have been using. We begin by selecting 6 - 0; however, any value of
6c 0,1) will do. After each time step we add the magnitude of the Courant
number Jul to 6 and obtain a new value of 6. We continue this process until 6
exceeds unity, in which case we replace 6 by 6-1. The procedure has to be
modified slightly when a is not a constant and we shall indicate how this is
done shortly; however, if a is a rational number of the form p/q and r - 0
then equations (2) and (19) have the advantage of giving the pointwise exact
solution of the linearized Riemann problem every q time steps.

We refer to the scheme consisting of equations (2) and (19) and the above
choice of 6 as the linearized transient exponential (LTE) method and we begin
by applying it to the following linear Rimann problem.

Example 2:

ut+u a t>0 , < (20)

u(x,1O)
0 , >O

In this example, the initial discontinuity becomes a shock layer which travels
with unit speed in the positive x direction while widening as t increases.

We have computed the solution of this problem by the LTE method with Ax -

1/20, p - 500, and a - 0.75, 0.95. For this value of p and for times less

than order l/, the shock layer is well contained within one mesh subinterval
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and we have plotted the locations of the ends of this subinterval along with
the exact position of the center of the shock layer in Figures 3 and 4 for a -
0.75 and 0.95, respectively. We see that the shock layer is tracked exactly
on the average and that we obtain the pointwise exact solution every 4 and 20
time steps when a - 0.75 and 0.95, respectively.

For nonlinear scaler problems we still use equations (2) and (19);
however, we now use local values of the Courant and Reynolds numbers based on
a local shock speed. Thus, on each subinterval we calculate

onj-1/2 - snj.. 1 / 2 At1x , nj-i/2 - snj- 1 / 2 x/c (21a,b)

where enj-l/2 is a local shock speed which we choose as

$'1J-1/2 - (fnj - f'jl)/(Unj - Unjil) (22)

Equations (21) are used in equations (19) to calculate zuj.l/2 and we proceed
as in the linear case. After each time step we add

(minl ,nj-1 /21 + maxld'j. 1/21)12
j a

to 6 and obtain a new value of 6. Once 6 exceeds unity we again replace it by
6-1.

Equation (22) gives the exact shock speed whenever Un and Unj. 1 satisfy
the Rankine-Hugoniot Jump conditions (cf. e.g. Whitham [18i and equation
(27)). An alternate definition of snj.l/2 that is easier to use
computationally, but only gives the correct shock speed when f is at most a
quadratic function of u is

n'-if/ -1 lf'(U1j) + f'(Uj_ 1 )] . (23)

22

Example 3: We consider a Riemann problem for Burgeril equation"--

ut + , (u2)- _ U= u" t > 0 ,' jai <-.

u~xO)- uR , x > 0 (4

The exact solution of this problem can be obtained by the Hopf-Cole transfor-
mation and is given in, e.g., Whitham 118). Herein, it suffices to give
asymptotic formulas which are valid for t/s > 1. Thus, when uL > uR we have

1 1 UL - uR
u(X-t) -(UL + ui) - -(uL - uR) tanh (-- )(Z - St) (25a)

2 2 4c

where
1

s - - (uL + uR) (25b)
2
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and when uL < ui we have

UL , /t ( UL

u(X,t) x/t , uL  x/t 4u1  (26)

UR , uR < x/t

Equation (25) represents a shock layer moving in the positive x direction with
speed S and equation (26) represents an expansion fan.

We calculated solutions with C _ 10-4, Ax - 1/20, and X - 0.95 by the LSE
and LTK methods for a shock problem with uL - 1, uR - 0 and an expansion
problem with uL - -1, uR - -1/2. In Figure 5 we compare the exact shock
position with those calculated by the LSE and LTE methods. We define the
shock position for the numerical methods as the point where the solution is
(uL - uR)/2 when linear interpolation is used to compute solution values
between mesh points. In Figures 6a and 6b we plot the exact LSE and LTE
solutions at t - 0.95 for the shock problem and at t - 0.38 for the expansion
problem, respectively. The LTE method again confines the shock layer to one
subinterval and gives the correct shock speed and position on the average.
The LSE method is overly diffusive and is giving the correct shock speed, but
the position is wrong by about Ax/2.

The situation is quite different for the expansion fan. The LSE method
Is still overly diffusive; however, the LTE method is representing the
expansion fan as a shock. This phenomenon also occurs with Roe's scheme for
hyperbolic systems (cf. Roe 1161 and van Leer 1171) and it must be remedied if
these schemes are to be useful on expansion problems.

IV. SYSTEMS OF EQUATIONS. In principle the LTE method consisting of
equation (2), (19), and (21) may be directly extended to vector systems of
the form (1) once we have selected a shock speed snj 1/2. When e - 0 the
exact shock speed S Is determined by the Rankine-Hugoniot condition

€R- UL)S - f(u ) - f(uL) (27)

where uR and VL are the values of u(xt) on opposite sides of the shock. When
e is nonzero but small we would lite the numerical shock speed snj. 1/2 - S
whenever the numerical solution U j1, Unj satisfies (29).

In a recent paper Harten and Lax 181 suggested selecting

.nj-1/2 - (fnj - !nj. 1)I - j-l) (28a)

where t(w) is the linear functional

(N) - IV' (Uj) - V'(J.-1)Iw (28b)

and V(u) is an entropy function. They show that this choice gives unique
physically admissible numerical solutions of their random choice finite
difference methods.
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Roe [161 suggests an alternate method of calculating sni-I/2 that is
based on the sigenvalue of a matrix approximating the Jacobian *f/bu.

We have not tried either of these alternatives, but instead use the very
simple prescription

(ri - -III.)T( ,J - .fnj-)
snj-ll 2 - (29)

(.aj - gnj_,)T(glj - gnj_ 1)

Equation (29) gives the exact shock speed whenever Unj and Un tl satisfy the
Rankine-Hugoniot conditions (27), but it may fail to give a p ysically
acceptable solution.

Example 4: We solve the following impact problem for the linear wave
equation

it - u2x " 0 u2t Ulx = 0 t > 0 IxI <-1 x x(0

ul(x.O) -0 * u2(x,O) " (30)
-I , x> 0

Here ul(x,t) and u2(x,t) represent the strain and velocity in two elastic rods
that impact each other with unit speeds at x - t - 0.

We calculated the solution of this problem by the LSE and LTE methods and
by the EPIC-2 code [121. The latter is a two-dimensional finite element code
for elastic-plastic impact problems. Our results for uI at t - 0.95 obtained
with Ax - 1/10 and X - 0.95 are shown in Figure 7. The LSE and LTE solutions
are typical of our results on previous examples. The LTE method again calcu-
lates the correct shock position and speed with no diffusion or oscillations.
The LSE solution is overly diffusive, although less so than the EPIC-2 solu-
tion.

V. DISCUSSION OF RESULTS. The LTE method appears to be a very promising
scheme for shock problems. It Is simpler to apply than methods based on the
exact solution of Riemann problems [1,21 and does not suffer from the effects
of artificial diffusion or spurious oscillations. However, our results are
very preliminary and there are still many questions to be answered and many
problems to be overcome. The performance of the LTE method in regions of
expansion must be improved, van Leer [171 has suggested incorporating
expansion fans in the approximate Rlemann solution of Roe's method [161, and
this approach should work for our LTE method as well. Another possibility Is
to base the difference scheme (2) on the exact solution of (1) when f Is a
quadratic function of u. The solution of this problem does contain expansion
waves; however, extending this method to systems of equations would be
considerably more difficult than extending the LTK method.

Both the LSE and LTE methods are first order accurate in time when the
solution is smooth. van Leer [171 has developed a two-step procedure that can
be used to extend these methods to second order accuracy and we plan to
experiment with it shortly.
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There is also the possibility of developing implicit exponentially fitted
and weighted schemes, which would be desirable when approaching a steady state
and which may improve the phase characteristics of the LSE method (cf. Gresho
and Lee 171).

Finally, we note that the LSE and LTE methods can be extended to higher
dimensions by using operator splitting techniques. Hwever, this may
introduce some numerical diffusion.
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TABLE 1. VALUES OF z AND 0 FOR DIFFERENCE METHODS
THAT RAVE THE FORM OF EQUATION (11)

Method z Si-a(z + 2/)

Centered 0 2a/p

Lax-Wendroff a a2 + 2a/p

Upwind sgn(p) a(egn(p) + 2/p)

Linearized steady toth(P/2) - 2/p acoth(p/2)
exponential (LSE)

Lax-FrIedrichs 1/a 1 + 2a/P

TABLE 2. MAXIMUM ERROR AT STEADY STATE FOR EXAMPLE I.
AN * INDICATES THAT THE COMPUTED SOLUTION
PRODUCED AN OVERFLOW.

pm6 P 500

Method
a - 0.375 0.75 a - 0.475 0.95

Lax-Wendroff 2.9 E-1 1.6 E-3 3.5 E-1 2.3 E-2

Upwind 2.0 E-2 2.0 E-2 2.0 E-3 2.0 E-3

Linearized steady 2.5 K-14 2.5 E-14 8.5 E-8 2.1 E-12
exponential (LSE)

Lax-Friedrichs * * 3.6 E-i 2.8 E-2
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coth p/2 -1

0p/

Figure 1. Region of linear stability for equation (11) and curves of 0 vs. a
for the centered difference (C), Lax-Vendroff MLW). upwind
difference (U), linearized steady exponential (LSE), and
Lax-Friodriche (LI) methods.

us LSE

E xact

00 0. 2 0.4 0.6

Figure 2. Omparison of exact and LSE solutions of Ixmple I at t -0.475.

Calculations wre performed with Ax -1/20, a - 0.95, and v - 500.
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0 0.2 0.4 0.6 0.8 1.0

Figure 3. bxact shock layer position and the location of the subinterval
containing the shock layer calculated by the LTS aethod for Example
2 with Ax - 1/20, a - 0.75, and p - 500.
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Figure 4. kact shock layer position and the location of the subinterval
containing the shock layer calculated by the LTE method for Ixinple
2 with Ax- 1/20, a- 0.95, and p 500.
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ligure 5. Exact shock layer position and those calculated by the LSE and LTE
methods for Example 3 with c - 10- , Ax- 1/20, and a 0.95.
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Exact
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Exact
-Uf LTE
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0 0"1 0-2 0-3 0"4 0"5 0-6

Figure 6. Exact, LSE. and LTE solutions of Exmple 3 with c a lO-, Ax=
1/20, and a - 0.95. In (a) we show the solution at t a 0.95 of &
shock problem with uL a 1, uR - 0, and in (b) ve show the solution
at t 0.38 of an expansion problem with uL - -1u RR " -1/2.
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Figure 7. Coupariuon of exact, LSE, LTE, and XIC-2 soluions for is1 of
Rzmple 4 at t -0.95 with As 0.1 and At *0.095.
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NUMERICAL STUDY OF A

CONFINED PREMIXED LAMINAR FLAME:

OSCILLATORY PROPAGATION AND WALL QUENCHING

DOUGLAS E. KOOKER

U.S. Army Ballistic Research Laboratory, ARRADCOM
Aberdeen Proving Ground, Maryland 21005

ABSTRACT - Numerical predictions are shown for constant-volume laminar flame
propagation in ozone/oxygen mixtures. Flame-generated pressure
disturbances lead to pulsating flame velocities. The concept of
burning velocity is discussed; a conservative estimate is shown
to be a factor of two greater than the steady-state value for the
example case considered. Flame quenching at an adiabatic boundary
involves oscillations in internal structure. Quenching at a cold
boundary is dominated by heat loss which suppresses the flame
velocity pulsations and eventually forces the flame to retreat.

The behavior of deflagration waves in premixed gases has been of interest
since the classic work of Mallard and LeChatelier (1). Current numerical
solutions, e.g. Tsatsaronis (2), for one-dimensional, constant-pressure
laminar flame propagation in an infinite medium are limited primarily by un-
known (or uncertain) decomposition mechanisms and chemical rates for the
real gas mixture in question. However, many combustion applications involve
transient processes in complex confinement. The influence of confinement
can be substantial as witnessed by reactive mixtures which exhibit a well-
behaved burner flame, but transit to detonation when suitably confined. In
addition, recent constraints on allowable exhaust emissions and fuel efficiency
of intermittent-burning internal combustion engines have rekindled interest
in theoretical prediction of laminar flame propagation and interaction
with boundaries.

Modeling of one-dimensional flame/end-wall interactions encompasses both
analytical and numerical approaches with assumptions of varying complexity.
Carrier et.al. (3,4) analytically solve a Stefan problem for a unity Lewis
number, isobaric, flame sheet interacting with an adiabatic wall. Sirignano
(5) examines a non-isobaric adiabatic wall case. Kurkov and Mirsky (6)
combine analytical methods with numerical integration to study an isobaric
cold-wall problem. Bush et.al. (7) tse numerical integration of an isobaric
Shvab-Zeldovich formulation for an extensive investigation of boundary condi-
tions between cold wall and adiabatic. Carrier et.al. (8) propose a novel
approach to non-isobaric flame problems, but with the pressure field assumed
spatially uniform. Westbrook et.al. (9) carefully examine the influence
of complex decomposition mechanisms for methanol-air and methane-air in cold
wall flame quenching, using a numerical model without restrictions on the
pressure field. However, the computational examples are based on a chamber
whose open end is held at constant pressure.

The present study focuses on constant-volume flame propagation, eliminating
many common assumptions. Flame-generated pressure disturbances which are
trapped by the confining boundaries will be shown to influence flame behavior.
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With reference to Fig. 1, a time-dependent external heat flux (10) at z=O
ignites the quiescent mixture and is then set to zero. The resulting flame
is terminated at the opposing boundary (z=l) which may be held adiabatic
or isothermal. No steady-state exists, other than the trivial all-burned
condition.

ANALYSIS

The current investigation, based on (10) with modest improvements,
looks at one-dimensional transient laminar flame spreading in a real gas
mixture of ozone and oxygen whose simple decomposition mechanism and
chemical rates are well-established. Reaction rates and transport
properties are those of (11), and temperature-dependent specific heats are
from (12). No constraints are imposed upon the magnitude or variability of
the mixture Lewis or Prandtl numbers. Radiation, gravity, bulk viscosity, the
Dufour effect, the Soret effect, and diffusion due to pressure gradients are
neglected. Ignition and flame propagation are predicted by numerical solution
of the one-dimensional, compressible Navier-Stokes Equations in strong
conservation form.

Global Continuity

Pt + (pu)z= 0 (1)

Momentum

(pu)t + (pu 2 + P)z (~zRU) C2)

Energy
N

E + [(E + p)u], = {k T + RUU - p Y.hiV (3)
tg z Rz i~ i z()

Species Continuity

( i ) p+ i(u + Vi)] z = W , i=l, ... , N-1 (4)

State
N

p pRT ; R R 0 r Y./M i  c a)

N o fT
h E Y.h. ; h. h. + T c dT (Sb)

i=l 1 1 1 i 0  Pi

where pi = Yip E = ph -p + u /2

and MR = (4/3)tj/Re
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Diffusion velocities, V., are functions of the instantaneous mixture composi-
tion, local mass fraction gradients, and the binary diffusion coefficients
between all pairs of species present. Numerical solution of Eqs. (1-3) is
based on a linearized block implicit scheme after solving the Eq. C4) system
with a stiff integrator routine (13). Mesh Reynolds numbers are held below
two, and no explicit artificial viscosity is added to stabilize the computation.
Time steps are constrained by a unity Courant number to preserve small-amplitude
wave motion.

RESULTS

Two example cases are based on 25 mole % 0 in 02. Initial conditions
assume pl atm, utO, T=298°K, chamber length of 0.5 mm and 100 computational
cells. Sequential numbers listed on the figures are non-dimensional times from
the onset of external heating, which is terminated at t=12.8. Figure 2a
illustrates the chamber temperature distribution history for an adiabatic wall at
z=l, and Fig. 2c for a cold wall, T =298 K. The continuously increasing
temperatures downstream of the flamw are a result of stagnating the burned gas
velocity at z=o and recombination of the radical intermediate, 0, atomic oxygen.
A reservoir of 0 (4 orders of magnitude above equilibrium) is left behind the
fast moving flame (Fig. 2b), i.e., flame chemistry is far from equilibrium.
Mitchell et.al. (14) discuss exactly this behavior for both premixed and
diffusion flames. As the flame advances, compression of the reactants results
in an increasing temperature and density field which will accelerate the chemical
production rates. As the flame approaches the adiabatic wall (Fig. 2a), the
reactants trapped within approximately one-half the flame thickness from the
boundary will burn in bulk, reaching a temperature in excess of the local isobaric
flame temperature. Since the Lewis number, (thermal/mass diffusion) of the
approach f]"n ii greater than 1.2 (based on 03/02 diffusion), this is consistent
with the results of (7). As the flaine approaches the cold wall (Fig. 2c) heat
loss causes it to deelerate and eventually retreat (to be shown) leaving
a small pocket of unburaed 0 ("fuel") which will slowly diffuse outward to
complete the reaction. Similar behavior is described by Westbrook et.al. (9)
and Bush et.al (7).

The velocity of the flame is of considerable interest in a transient
problem, but must be preceded by a definition of flame location. No unique
definition exists. The present study chose to track a constant value of temp-
erature (850 K) in the high gradient region instead of the maximum reaction
rate because of interpolation difficulties in locating the "peak". The resulting
flame locus is shown in Fig. 3a. Fitting this data (8000 points) with a third
order spline and analytically differentiating produces the flame velocity seen
by an inertial observer (Fig. 3b). The result is a pulsating laminar flame,
with typical amplitude of 100 cm/sec. This amplitude can be a strong function
of heat release in the flame as illustrated by Fig. 4 for a 30 mole % 03 flame
in an otherwise identical calculation. The slowly increasing frequency of the
dominant oscillation is within two percent of the fundamental mode predicted
by Jost's acoustic analysis (10).

Burning velocity, defined as the linear or fundamental rate of reactant
consumption, is a trivial calculation for steady flame propagation into an
infinite medium. However, in a transient problem where reactants undergo
nonuniform motion, the concept of burning velocity becomes obscure (Here,
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flame velocity is that seen by the inertial observer, whereas burning velocity
is the fundamental rate). Consider the chamber velocity distributions during
one-half cycle of flame oscillation (denoted by arrows in Fig. 4) shown in
Fig. 5a, with the temperature distributions superposed (no scale given).
A characteristic maximum velocity always appears upstream of the flame, at
a location nearly coincident with the "foot" of the temperature distribution.
Subtracting this maximum value from the inertial flame velocity provides a
conservative estimate for transient burning velocity, i.e., a minimum value.
Note that the numerical solution of Eqs. (1-5) is independent of any
such definition.

Several observations can be made. The chamber pressure distributions in
Fig. Sb during the half-cycle flame oscillation illustrate an obvious point:
very small amplitude pressure disturbaiices can lead to large oscillations in
flame velocity. The large initial values of flame velocity in Fig. 3b result
from ignition and flame formation within the thermal wave created by the external
heat source. The flame then, on average, appears to decelerate. However, the
burning velocity (Fig. 3c denoted as velocity difference) shows the anticipated
acceleration. These values can be compared to the steady laminar burning velocity
(U ) which would exist at the local values of upstream pressure and temperature.
Using identical kinetic rates and transport properties, the steady state analysis
(15) predicts the results in Table I which are compared to the transient values
(U r) from Figs. 2 and 3. The transient burning velocity can be a factor of
two greater than its steady counterpart. This fact would pose difficulty for
the non-isobaric flame propagation analysis of Carrier et.al. (8).

Flame interaction with the adiabatic wall intensifies as the flame approaches
within two flame thicknesses of the boundary. The amplitude of oscillation in
burning velocity (Fig. 3c) grows significantly. Some insight is possible by
tracking the movement of the ozone mass fraction distribution (at 1/2 the initial
value) and computing inertial flame speed as before. Figure 6 displays a
comparison of two measures of flame velocity, one based on the temperature pro-
file and the other on ozone mass fraction. During most of the travel, the two
velocities are coincident. However, as the flame approaches the boundary,
the mass fraction profile oscillation grows to a much larger amplitude. Thus,
the internal flame structure is changing; the flame does not remain quasi-steady.

Flame tracking results (based on 850K) for the cold wall case (Fig. 2c)
are shown in Fig. 7. Flame speed and burning velocity are nearly the same
as in the adiabatic wall case until, again, the flame approaches to within two
flame thicknesses of the boundary. Energy losses then suppress the flame pulsa-
tions and dramatically decelerate its overall motion. The flame halts before
reaching the boundary and actually retreats as indicated by the negative
values of both inertial flame velocity and burning velocity. The results indicate
a quenching distance of 0.006 mm when the pressure is 5.5 atm. Although the
transient process introduces some ambiguity here, the Peclet number is approxi-
mately 1.2 which is slightly lower than the values computed by Westbrook et.al.
(9) for methane-air and methanol-air flames. As might be anticipated, cold
wall quenching of the thin ozone flame involves a very small layer of

unburned reactant.
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CONCLUDING REMARKS

Confined laminar flames are inherently oscillatory. Momentum conservation
through the reaction zone leads to static pressure imbalances which interact
with the confining boundaries. Since small amplitude pressure disturbances can

cause large velocity fluctuations of premixed flames, modeling assumptions such
as a spatially uniform pressure field must be examined carefully for each appli-

cation. The present numerical prediction for transient burning velocity is a

factor of two greater than the steady state burning velocity computed at the
local upstream values of pressure and temperature. Flame interactions near

an adiabatic boundary can be strong enough to generate internal oscillations

of the flame structure. Transient flames may also be far from chemical
equilibrium. Present computations would support flame approximations based
on the partial chemical equilibrium ideas of Mitchell et.al. (14).
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Table 1.

BURNING VELOCITY COMPARISON

25 MOLE % 03/02, ADIABATIC WALL (Zz1)
UPSTREAM UPSTRE AM M)U _sRANGE

TIME TEMPE RATURE ('K) PREUEAM) (Is Ut, (-/') OVER YE

45.87 364 2.2 96.5 198 193-199

65.05 401 3.2 j 121.2 214 212-220

STEADY STATE LAMINAR BURNING VELOCITY
COMPUTED BY HEIMIERI & COFFEE (REF )I1
FOR THESE CONDITIONS

/Z 02
M 03/02 or

~ C 1 T= CONSTANT
Z-0 ZzI

Fig. 1 Problem configuration.
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EFFECT OF SUPPORT CONDITIONS ON BEAM VIBRATIONS

SUBJECTED TO MOVING LOADS

Julian J. Wu
U.S. Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. Solutions of beam vibrations under moving loads are presented
with a variety of support conditions. The purpose is to demonstrar- how the
support conditions will effect such beam motions. The solution method and
mathematical background will be reviewed including the introduction of various
support parameters. By slightly modifying an existing computational scheme,
the desired results have been obtainied and presented in several tables ild
plots showing the effect of support stiffness on beam motions.

I. STATEMENT OF THE PROBLEM. The dynamic equation uf Euler-Bernoulli
beam subjected to a moving force caa be written as the fc1lowing

• " - -0 x <

Ely.. + pAy - P6(x-x) , (I)
0 ( t <T

where y = y(x,t) denotes the beam deflection as a function of the spatial
coordinates x and the time t. The Letters E, I, A, £, and p denote elastic
modulus, second moment of the cross-sectional area, and the area itself, the
length, and the material density of the beam, respectively. A Dirac delta
function is denoted by , x - x(t) Ls the location of the force P. T denotes
some finite time of interest. As usual, a prime (') denotes differentiation
with respect to x and a dot (.), differentiation with respect to t.

The boundary conditions are written as

Ely"'(O,t) + kly(O,t) - 0

EIy"(O,t) - k2y'(O,t) - 0

(2)
Ely"'(I,t) - k 3 y(9,t) = 0

Ely"(Z,t) + k4y'(X,t) - 0

where ki, i - 1, 2, 3, and 4 are the spring constant which model the support
characteristics. The initial conditions are

y(x,O) - yo(x)
- (3)

;(X'o) - yl(x)
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Equations (1) through (3) will be written in dimensionless form for the sake
of generality and simplicity. This is accomplished by the introduction of
dimensionless parameters. In the following an arrow (+) will be read as
"replaces":

y ty +- x t + -
I T

k1 1
3  k2t

kj .. k2 + --

El El

(4)
k 3 ,3  k4ik3 + --- k4 --
El RI

p1 3

Yl + Tyl ,P + ---
El

With these new dimensionless paramei.ers, Eqs. (1) through (3) become

y ..+ y2j 6xxy 'x 1(1')

y"'(O,t) + kly(O,t) - 0

y"(),t) - k2y'(O,t) - 0

0 t(2')
y"'(1,t) - k3y(1,t) - 0

y"(1,t) + k4y(l,t) - 0

and

y(x,O) - yo(x)

0 x 1 (3')
k(x,O) - y 1(x)

where in Eq. (1'), we have

C
Y M - (4a)

T

which is dimensionless, with
pAt4 1/2

El ((4b)EI

which has the dimension of the physical time.
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Hence then, we shall obtain solutions for the problem defined by Eqs.
(1') through (3') for various values of kj, i- 1, 2, 3, and 4.

II. AN EQUIVALENT VARIATIONAL PROBLEM. The problem of solving the
equation (1') through (3') in the previous section will be transformed into a
variational problem. Consider

61- 0 (5a)
with

I - --

I f [ y y* '* -y2yy + Q6(x-x)y*]dxdt
0 0

+ f dtikly(Ot)y*(Ot) + k2y'(Ot)Y*'(Ot)
0

+ k 3 Y(l,t)y*(l,t) + K4Y'(1,t)y*'(1,t)}

+ Y2 fo dx {k5 [y(x,O) - yo(x)Jy*(x,l) - yl(xv*(x,O)j (5b)
0

where y*(x,t) is called the adjoint function of y(x,t). If one takes the
first variation of I considering y(',t) to be fixed and 6y* to be completely
arbitrary, it is easy to see that the differential equation (1') and boundary
condition (2') will be recovered and the initial condition becomes

y(x,1) - k5[y(x,O) - yo(x)] - 0

(x, - yl(x) - 0 (3)

In Eq. (3"), it is seen that if one let k5 + -in the limit, the initial
condition of (3') will also be recovered. The use of a large parameter such
as k5 is known as the penalty function method or the method of large spring
constant Ili.

III. OUTLINE OF SOLUTION FORMULATION. To derive the finite element
matrix equations, one begins with Eq. (5a') and write

( 61 )6y=0 0 (6a)
1 1

'= 3o [y" 6 y*" - y + Q6'(x-x)6y*Idxdt
0 0

+ fO dt[kly(Ot)6y*(Ot) + k2y'(Ot)6y*(Ot)
0

+ k3y(l,t)6Y*(1,t) + k4y'C1,t)6y*'(1,t)1 II+ Y2 fj dxtk5jy(xO) - yo(x)]6y*(x,l) -yl(x)6y*(x,O)} (6b)
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The element local variables are now introduced

(i)
= - Kx-iri

(j) (7a)
rl -rn Lt-j+1

or

1x- - ( +Ii-1)
K

I
t = - (ni+j-1) (7b)

L

where K is the number of divisions in x and L, in t. (A typical grid scheme
is shown in Figure 6). Equation (6b) can now be written as

K L I I K 3  y2L
j. I [- Y"(ij) 6 "(ij) - Y(ij)6Y*(ij) Idtdni-mI j-l 0o 0L -

L I kj K2
+ 1 f dn I-- Y(ij)(On)Sy*(ij)(O,n) + k2 L- Y'(ij)(0-n)6Y*'(ij)(0n)

i-I+ I Lf
+ I d& [y2k5(Y(ij)(4,0)6Y*(ij)(E,1))I

K L Q11
S- K f f S'(x-x)6y*(ij)(&,n)dtdn

i.1 i.1 L 0 0

K Y2k5  I -
+ I---- d [y(i)(M)Y*(iL)(,)]..

i-I K 0

K y 2 1
+ I -- I d Iyj(i)y*(ij)(&,0) (8)

i- 1 K 0

The shape function vector is now introduced. Let

y(ij)(k,n) - aT( ,n)Y(ij)

y-(ij)(&,n) aT( ,nOY*(ij) - Y*T(i4 ~a( ,n) (9)
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Equation (8) then becomes

K L K3 L

im J= L K

L ki k2 K2

+ 6*(ij) t-FI -- B2 Ii)

L k3 k4K
2

+ X6y*T (Kj) f-- B3 + --- B41 Y(ij)
j~j -L - L

K 'y2k5+ 6y*T UQ f---- B5} ~L

K L p K r5
6y*T(ij) -F(ij) + I s*T (iL) -- - G(i)

i-lIJ-1 L -m K

K Y
+ I 6Y*T 1  -Hj)(0

i'01 K -

where, as it can be seen readily, that

A ff I a& aT d~dn
0 00' -

B f 0 fo an aT,, d~dri

0 0

B3 - f a(0,r~aT(0,n)di , B4 - f aC(naTCjnd

00f a(&,n)'5(ij)(4-&)dd1 G(i) -s f a(E.,1)yo(i)(Q)dC

and Hi: fs I'a1na(,~r B'fa(~~T(~)d
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Now Eq. (10) can be assembled ii, a global matrix equation

6y*T K Y - 6Y* ± (12)

By virtue of the fact that 6Y* is not subjected to any constrained conditions,
one has

K Y - F (13)

which can be solved routinely. More details can be found in [1].

IV. RESULTS OF COMPUTATIONS. Appropriate values of physical n. meters
must be assigned for obtaining numerical results. Let

I
v = - (14)

T

be the velocity of the travelling force. Only constant velocity will be

considered in this paper. Thus T becomes the time required for the force to
move from one end of the beam to the other end. As T varies from - to 0, the
velocity v varies from 0 to - as I is always finite. Sin4 we have normalized
all the parameters in length with respect to L, it is not necessary to specify
I in numerical computations. Instead, the beam's length is considered to be
unity. The real value in length can be recovered simply by a multiplication
of it to the normalized (dimensionless) ones. Then it will be helpful if v in
Eq. (14) can be related to some reference velocity associated with the beam's
characteristics. We shall select the velocity of the first mode of vibration
(standing waves) of a cantilevered beam as this reference velocity and call it
v1 . Hence the normalized velocity is defined by

- v
v = -- (15)

vi

Now, we shall relate this v with the parameters defined earlier in this paper.
It is known in many textbooks on vibrations (for example, see [31) that for a
cantilevered beam, the first mode of vibrations has a circular frequency

w1 - (1.875) 2 /c - 3.516/c (16)

where c is given in (4b). The corresponding frequency and period are then
respectively

W1

f -.- - 0.560/c (in cycles per seconds)2w

1
T . . 1.79 (in seconds) (16)

fl

Hence

2L
v i  -- = 21f i - 1.12 - (17)

T 1  c
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and- v /T c

v - = - 0.891 -= 0.895 y (18)
v1  1.12 £/c T

where y c/T, as defined in Eq. (Sb).

For the results computed in this par .. , y is set to be ten. Hence v =
8.95 or v is about nine times v 1. At this load velocity, the dynamic effect
of the moving force on the beam vibration is quite evident as shown in Figures
I through 5. This is also approximately a typical speed at which a projectile
moves down a cannon tube (see, for example, [4]). Figure 1 shows .-3
deflection curves for a beam with fixed-fixed supports. Curves numbered I,
II, III, and IV are at the moment when P is at 1/4, 2/4, 3/4, and 4/4 of
support. Figures 2 through 5 are tae same curves for the support conditions
of fixed-simply supported, fixed-free, free-free and free-fixed respect vely.

It should be noted that the load P is assumed to move from the left es."
toward the right. The beam motions from fixed-free supports are quite
different from those of free-fixed supports as demonstra, 4, for example, by
Figures 3 and 5. This dynamic behavior has also been notea by Fryba [3]. In
fact, the deflection curves for the case of free-fixed supports resemble more
closely to those of free-free supports than the fixed-free ones.

The values of the "spring constants" in Eqs. (2') and (Sb) are as
follows. For a fixed rigid support the ki is taken to be 1010; for no support
at all, it is assigned a zero. The value of k5 in Eq. (5b) is also assigned
to be 1010.

Results presented above are based on a grid scheme of 5x8 elements. (A
typical grid scheme is shown in Figure 6). Numerical convergence of these
data should be fairly good as discussed previously in Reference [I].
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Figure 1. Beam deflections under a moving load for fixed-fixed
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Figure 2. Beam deflections under a moving load for fixed-simply
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FINITE ELEMENTS FOR INITIAL VALUE PROBLEMS IN DYNAMICS

T. E. Simkins

U.S. Army Armament Research and Devjiopment Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory
Watervliet, NY 12189

ABSTRACT. The work of C. D. Bailey amply demonstrates that a

variational principle is not a necessary prerequisite for the formulation of

variational approximations to initial value problems in dynamics. While

Bailey successfully applies global power series approximations to Hamil on's

Law of Varying Action, the work herein shows that a straightforward extension
to finite element formulations fails to produce a convergent sequence of
solutions. The source of the difficulties and their elimination are discussed
in some detail and a workable formulation for initial value problems is
obtained. The paper concludes with a few elementary examples showing the
utility of finite elements in the time domain.

I. INTRODUCTION. According to Finlayson and Scriven :11 it is not
variational notation or even the concept of a varied path which is the key
criterion of a true variational 'principle' but rather the existence of a
functional which when varied and set to zer,, generates the governing
equations and constraints for a given class of problems. In this sense,
certain fundamental principles of mechanics such as d'Alembert's Principle do
not truly qualify as variational principles. That is to say, these mechanical
principles or 'laws' cannot be posed as central problems of the calculus of
variations. On the other hand there are others, such as Hamilton's principle
which do qualify as true variational principles. Yet it is d'Alembert's
Principle which forms a basis for all analytical mechanics [21 and it follows,
therefore, that the vanishing of the first variation of some functional is not
a necessary condition for the scalar formulation of any mechanics problem -
however elegant or convenient this may be. Whether a true variational
principle or a more fundamental variational statement is used to obtain a
numerical solution to a dynamics problem, an important argument is that well
established laws such as d'Alembert's Principle or true principles such as
Hamilton's, are physically based and avoid the arbitrariness inherent in
general weighted residual methods and contrived variational principles.
Moreover, only those variational principles which are also maximum or minimum
principles appear to offer any special advantage for obtaining approximate
solutions - mainly through their ability to provide bounds on the variational
integral. Even then the system treated must be positive-definite and the
upper and lower bounds are often too far apart to be of practical value. In
hrief, there seems to be little point in contriving a variational principle in

pr.'f-r.nce to a variational law of mechanics despite the more primitive status
* ', lirtor. Indeed the many solutions to initial value dynamics problems
, '.,t v . Kallev 11! by applying the Ritz method to Hamilton's 'law of

d,'f,.fl-tr te the usefulness of variational formulations not
,- ru '~i, . Thus motivated, the work herein explains the

* t., .n.-rito..rod in attempting to generalize Bailey's
i ,. lie neri,)d of finite elements.
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Zienkiewicz [41 has expressed serious reservations toward the use of
finite elements in the time domain. Indeed, when the functions involved are
sufficiently smooth, the number of time steps required to integrate a set of
ordinary differential equations may not be great and it may require roughly as
many finite elements to produce a solution of comparable accuracy. In view of
the increased storage required, the use of time-finite elements to solve such
systems is questionable. There are many other cases, however, in which
conventional algorithms for step-by-step integration may call for a very large
number of time steps. This is especially true when dealing with the
(hyperbolic) equations of structural dynamics should the excitation and/or
material properties change rapidly in time. A physically based variational
method, with its inherent stability and physical origin, may lower the
computational effort considerably.

The many solutions achieved by C. Bailey were generated by the Ritz
method [51 using a power series approximation in which globally defined po. -
nomials are the basis functions. Ultimately the length of interval over whic"
solutions may be generated as well as the detail to be provided in any subin-
terval will be limited by the degree of polynomial used as a basis. The pit-
falls of using higher powered polynomials are well documente [61 and
partially account for the use of locally (piecewise) defined basis functions
(finite elements) to solve problems iii many branches of mathematical physics.
The extraordinary accuracy and simplicity of procedure attained by Bailey,
however, are not to be understated.

Apart from avoiding the problems which -an arise when higher powered
polynomials are employed as basis functions, finite element formulations have
other advantages when used to solve problems in continuum mechanics. Even
though the principal motivation for their use has been the need to handle com-
plicated boundary shapes (non-existent in the time domain) finite elements are
also well suited to handle sudden changes in load functions, extending the in-
terval of solution indefinitely without restirt, and providing great detail to
the solution in any subinterval. Two examples which exploit the advantages
afforded by the finite-element discretization of time are given in Section V.

Since 1977, several investigators have publications dealing with the use
of finite elements to modify or replae conventional integration methods.
Hughes and Liu [7], and Belytschko and Mullen [81 are notable examples. One
also notes the work of Serbin, Dougalis, and Gunzberger who have recently
begun a computational and theoretical study of finite element methods for
hyperbolic equations [9]. Thus despite the reservations expressed by
Zienkiewicz, the extension of the finite element method to the solution of
transient field problems is well motivated and was first reported by Argyris
and Sharpf [101, later by Fried [11, and most recently by Baruch and Riff
[12,131. All of these works attempt to use Hamilton's principle as a starting
point for the finite element formulation of initial value problems. As will
be pointed out in the following section, this cannot be accomplished without
some logical inconsistency when bringing the initial data into the
formulation. In the sequel it will be shown that the use of Hamilton's 'law',
rather than Hamilton's 'principle', makes possible the logical incorporation
of the initial conditions into the variational formulation.
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II. HAMILTON'S PRINCIPLE - A CONSTRAINED VARIATIONAL PRINCIPLE. The

following equation is known as the generalized principle of

d'Alembert [141:
N

(F-Pi).6ri = 0 ; () = 3/3t (1)

This equation applies to any system of N-particles, the ith particle having a

position ri, a momentum Pi, and subject to a resultant applied force Fi.

Under the assumption that the virtual work of the applied forces is

derivable from a scalar V, a time integration of equation (1) leads to

Hamilton's law of varying action [15,16]:

ft2 ( N t2

6f (T-V)dt - ) mJirj6ri] 0 (2

T is the kinetic energy of the system

N
T = 1/2 mi riri

and V is the potential energy of the forces impressed on the N-particles. The

existence of V makes little difference as far as numerical calculations are
concerned. In the event V does not exist, equation (2a) can be written:

t 2  - N . t 2

f (ST+6W)dt - Y mir i • 6rj ]  = 0 (2b)
tI i-l ~ tI

The bar signifies that in general the virtual work of the applied forces

cannot be derived from any scalar function of the generalized coordinates.
Either of equations (2) can be used as a basis for a Ritz approximation to a
dynamics problem.

If the ri are constrained to take on specified values at t1 and t2 , then
Orj(t 1 ) and 

6 ri(t2) vanish in equation (2a) and the result is Hamilton's
pr nciple: -

t 2

6f (T-V)dt - 0 (3)
tl

Since the vanishing of the displacement variations at the end points is
not the only means by which the partial sum in equation (2a) may vanish, equa-

tion (3) may not always represent Hamilton's principle in the strict sense.
Should equation (3) be used as a basis for the numerical solution of a dynam-
ics problem without the requirement that all of the 6L vanish at t1 or t2,

zero momentum conditions will prevail instead as natural boundary conditions

on those displacements whose variations are free. This aspect of variational
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principles is covered very clearly in many ,eferences (cf. ref. [17]). An
observation to be made here is that equation (3) corresponds to a system of
boundary value problems - not initial value proLiens - since the partial sum
can only vanish through boundary (end point) constraints either natural or
imposed. Thus equation (3) cannot, with complete logic, be used to formulate
any system of initial value problems of dynailics. The introduction of initial
data has in fact always been the obsticle preventing the use of Hamilton's
principle for the variational formulation of initial value problems [18,19].

Since equation (3) is a valid physical statement of mechanics only when
the boundary constraints are such that the partial sum vanishes, it is proper
to refer to this equation as a 'constrained variational principle' ae :posed
to equations (2) which are unconstrained variational laws of mechanics, suit-
able for the application of arbitrary constraint conditions.

III. GLOBAL AND PIECEWISE RITZ APPROXIMATIONS. Equations (2) and (
differ only in the presence or absenc., of boundary terms. For the case of a
single particle (N-I) having only one degree of freedom u(t), the Ritz
procedure when applied to either of equations (2) leads to a scalar relation
of the form:

6UTI(K-B)U-Fj - 0 (4)

whereas for equation (1):

6UTIKU-F] 0 U (5)

Equations (4) and (5) are assumed to derive from applying the Ritz procedure
whereby the displacement function u(t' is approximated as:

u(t) , aT(t)Uj (6)

The relation (6) applies to the entire int,'rval of solution when globally
defined basis functions are used or to a particular subinterval thereof when
piecewise functions (finite elements) are employed. When a global power ser-
ies approximation is used U is a vector of generalized coordinates, the first
two of which are identifiable as u(t1 ) and o(t 2). The 'shape function', a(t),
in this case is simply:

aT(t) - [4,t,t 2 ,...,tn ]  
, tj t ' t2  (7)

If piecewise cubic Hermite polynomiali are used instead, the components of
are local values of u and defined at the endpoints of a particular subinter-
val, and

aT(t) - 12t 3-3-r 1, h(T 3-2T2+T), 3TZ-2T 3 , h(r 3-T2)] (8)

where T - t/h, h being the length of the particular subinterval. Referring
first to equation (5), it is noted that K tends to be singular of degeneracy
one. For certain simple problems Kmay compute to be exactly singular. In
general, however, K will only become singular in the limit as the number of
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basis functions employed in the Ritz approximation becomes infinite. The
degeneracy of K represents the possibility that neither u(ti) or u(t2 ) has
been specified. That is, if neither 6u(t1 ) or :u(t 2) vanishes, then mu must
vanish at both endpoints as natural boundary conditions. Under these condi-
tions u(t) may only be determined to within an arbitrary constant. Thus in
equation (5) E may be reduced to a nonsingular matrix by specifying values for
u(tl) and/or u(t2) so that the variations of one or both of these quantities
vanish. The essence of the discussion which follows is not changed if, in the
sequel, it is assumed that u(tl) has been specified. This is known as a
'geometric' or 'imposed' constraint. Because 6U1 = 6u(tl) = 0 multiplies the
first row of K in equation (5), this row is effectively removed from the

formulation. Since the remaining variations are arbitrary the final -et of
equations to be solved is then:

j KijUj - Fi - KilU l  , i - 2,3...n (
J-2

where U1 - u(tl) is the specified value and n21s the dimen,ion of K. Whether
these equations derive from a global power series approxi74tion or from one
based on finite elements, one may readily verify that as n ii increased their
solutions do indeed converge to the exact solution of the corresponding two
point time-boundary value problem. Should one wish a solution to an initial
value problem, however, equation (4) must be used instead of equation (5). In
this case, specifying values for u(tl) and u(t2 ) cause 6U1 and 6U2 to vanish

thereby deleting the first two equations of this set. The resulting system of

equations to be solved is thus:

(Kij-Bij)Ui - Fl - (Kjj-B11)U1-(K1 2-B1 2)U2  , i - 3,4,...,n (10)

In all cases attempted to date, solutions to equations (10) have been observed
to converge to the exact solution if these equations are derived using a
global power series approximation but not if they are formulated by finite
elements. An example of this anomaly will be given in the next section. As
the only difference between equations (4) and (5) is a subtraction of B in the
former, and in as much as convergence is achieved when equation (4) derives
from a power series approximation, one suspects that it is the finite element
representation of the matrix B which is somehow at fault. It is therefore of
interest to know in more detail just how the subtraction of B is supposed to
affect the coefficient matrix of the system.

In contrast to the matrix K, the matrix K-B must tend to be singular of
degeneracy two - no constraints having been assumed a priori. Thus when u(t1 )
is specified and the first row of K-B is deleted, the remaining equations
still must possess one degeneracy in the limit as the number of basis func-
tions becomes infinite. Thus the effect of subtracting A must be to free the
natural boundary condition at t2 (inherent in equation (5)) and to introduce a
degeneracy. This remaining degeneracy can only be removed by specifying the
value of u(t) at a time other than t1 or a value for u, resulting in the dele-
tion of another row of K-B.
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IV. ANOMALOUS BEHAVIOR OF FINITE ELEMENT FORMULATIONS. The degree to
which the subtraction of the matrix B from K can both free the natural
boundary condition at t2 and introduce a degenerAcy differs with the type of
approximation employed. When global power series approximations are used the

matrix is quite full and the subtraction affects many rows of K. When
locally defined Hermite polynomials are used, however, B is very sparse and in
fact contains only two non-zero components. Moreover, one of these appears in
the first row of B which is deleted when u(tl) is specified. In this case
freeing the natural boundary condition and introducing a degeneracy depends on
the subtraction from a single component of K. Even though both effects may
actually be produced in the limit as the numer of elements becomes infinite,
the degree to which they are approximatted for any finite number of elc.. nts is
evidently insufficient and the solutiens do not converge to the correct
result. This is exemplified in Figure 1. The problem represented is that of
a free oscillator of unit mass and stiffness, subject to the prescribed
initial constraints of zero displacement and unit velocity. For this case
equation (2a) reads:

J"(u6u-u6u)dt - u6uI - 0 (11)
0 0

or simply,

fJ(u+u)6udt 0 * (12)
0

The finite element results of Figure I were obtained using piecewise cubic
Hermite polynomials. (Higher ordered Hermite polynomials yield similar
results.) It is observed that the solutions tend to diminish from the exact
solution, sin(t), as the number of elements is increased. Using only two fin-
ite elements the finite element matrix formulation (equation (4)) for this
problem is as follows:

0 - 6UT[K-BJU = ,6U1 6U2 6U3 6U4 6U5 6U6 1

kil k12 k1 3  k14 0 0 0 -1 0 0 0 0 U I

k2 1 k22  k2 3  k24  0 0 0 0 0 0 00 112
k31  k32  k3 3+kll k34+k1 2 k13 k14  0 0 0 0 0 0 U3
k41  k42 k4 3+k21  k44+k22 k2 3 k24  0 0 0 0 0 0 U4
0 0 k31  k3 2  k3 3 k34  0 0 0 0 0 1 U5
0 0 k41  k4 2  k4 3 k4 4  0 0 0 0 0 0 U6

(13)

*Note that Eq. (12) would also result from application of the Galerkin

procedure, implying that the Galerkin method has some physical justification
for problems in dynamics.
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Using expression (8), the element matrix k is calculated in terms of the

element length h as:

h 'TT 6 13h I 11h 2  9h 6 13h 2  I

k f (aaT-aaT)dt----------------------
" 0 . . 5h 35 10 210 70 5h 420 10

2h h3  13h 2  1 h3  h

15 105 420 10 140 30

6 13h Ilh2  1
-SYMM. -

5h 35 210 10

2h hl

15 105

Since U1 is specified the first row of K - B is deleted. As the subtracLion
of B only affects one row of the reduced system, the only way in which a
degeneracy can be introduced is for the next to last row L- join the space
defined by the rows remaining. Thus rows two through six in equation (13)
ideally would become linearly dependent. This dependency &Long rows must be
quite general as specification of any other of the Ui must remove it.

One suspects that a simple subtraction of unity from K56 in equation (13)
may not do the best job of introducing a degeneracy or of freeing the natural
boundary condition at t2 - w- One can gain some idea of how 'close' this

subtraction brings the fifth row into the space of rows 2,3,4 and 6 by
comparing it with its projection onto this space. Substituting N/2 for h, the
fifth row of equation (13) calculates to be:

[0.0 0.0 -0.96590326 -0.17637194 0.180505097 -0.9707551751

whereas its projection is:

17.8587183E-3 -8.5978979E-3 -0.974496335

-0.184380835 0.172642875 -0.96178341

Further calculations show that If the interval of solution remains fixed and
the number of finite elements is allowed to increase, closer agreement between
the next to last row vector and its projection Is observed but this is not
accompanied by a convergence of the solution vector toward the exact solution
to the problem. While the exact reasons for this instability are not known it
is apparent that the rate at which the next to last row tends to become depen-
dent is important. It stands to reason, therefore, that should one invoke the
limit condition without actually proceeding to the limit, a convergent
sequence may result and indeed this proves to be the case.

Asserting that the row vectors two through six are linearly dependent
allows the fifth row (equation) of equations (13) to be replaced by a linear
combination of the others. For example, let
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-r

R5  a c 2R2 + a3R3 + a 4R4 + %R6 (14)

where Ri denotes the ith row of ( - B. Aft* r impoting the second initial

constraint, U2 - 1, equations (13) can be wuitten:

6U3R 3 - U + 6U4R4 • U + 8U5(a2R2+a3R3+Q4R4+a6R6) • V + 6116R 6 e U - 0 (15)

Since all variations in equation (15) are arbitrary, there results the

following system of equations for solution:

0 - R3 • U - R2 • U - R, * U - R6 * U (16)

Thus the second equation (row) which was orLginally deleted through the spec*-
fication of U2 , is brought back into the formulation in place of the fifth in
a logical and consistent manner. Equations (16) are the same set as would
result from following the procedure of Argyris and Scharpf. These authors,
however, started with Hamilton's prin, iple which requires that 6U1 - 6U5 - C.
This would delete the first and fifth equations from the set. Further speci-
fication of U2 should then delete the second equation as we. overspecifying
the problem. Argyris and Scharpf 1201 allow this equation to remain without
justification. Moreover, no explanation is given as to why 6U5 should vanish
as U 5 is never specified in an initial value problem. All of these
inconsistencies derive from the fact that Hamilton's principle corresponds
only to boundary value problems - never to Initial value problems.

In summary, the work of this section shows that Hamilton's law of varying
action, unlike Hamilton's principle, is an ,inconstrained variational statement
permitting the introduction of arbitrary co-istraints including data ordinarily
given for initial value problems. When piecewise Hermite cubic polynomials
are used as a basis for a finite element formulation, the singular state of
the resulting coefficient matrix in the limit justifies retention of the
second equation of the system in preference to the next to last when typical
initial values for displacement and velocity are specified. Following this
procedure, convergent solutions are then obtained for the problem of the free
oscillator considered in this section. These results are presented in Table I
for formulations based on one, two, and six finite elements.

372



TABLE I. SOLUTIONS TO FREE OSCILLATOR PROBLEM (DISPLACEMENT/VELOCITY)

Exact
6t/ One Element Two Elements Six Elements Solution

0 0.0* 0.0* 0.0* 0.0
1.0* 1.0* 1.0* 1.0

1 0.49978005 0.5
0.86602547 0.86602541

2 0.86564452 0.86602)41
0.50000025 0.5

3 0.97817298 0.99956036 1.0
2.02985945E-4 4.4572957E-7 0.0

4 0.86564496 0.86602541
-0.49999948 -0.5

5 0.499780823 0.5
-0.86602502 0.86602541

6 0.'166090783 3.9845105E-4 8.9120273E-7 0.0

-1.00079414 -1.00000946 -0.99999999 -1.0

*Imposed values.

V. APPLICATIONS. Example I. Linear Oscillator Subjected to
Discontinuous Forces. A linear oscillator of unit mass and stiffness is
subjected to a force f(t). Two cases are considered:

(a) f(t) = H(t-1/2)

(b) f(t) - 6(t-1/2)

Ii and 6 are the Heaviside and Dirac functions respectively and for either of
these cases equation (2) reads:

t2  * . t2
J Ju6u + (f(t)-u)6u}dt - u6u ( - 0 (17)
tl tl

For case (a) four finite elements of equal length are used to approximate u(t)
over the solution interval (0,2). The element polynomial shape function is
Hermite cubic and an element length of one half takes advantage of the specif-
ic shape of the forcing function. Table II compares the calculated displace-
ments and velocities with those computed from the exact solution.
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TABLE 11. SOLUTION TO u + u = H(t-l/2)

0 < t 1 2.0

Computed Exact
t Displacement Velocity Displacement Velocity

0.0 0.0* 1.0* 0.0 1.0
0.5 0.47932149 0.87708716 0.47942555 0.877582565
1.0 0.96370936 1.0199163 0.96388844 1.01972786
1.5 1.45700388 0.91238744 1.45719267 0.91220819
2.0 1.83836447 0.5805616 1.83856024 0.58134814

*Imposed values.

In case (b) a discontinuity in velocity can be expected in the solution.
As the use of cubic shape functions enforces continuity of "elocity through-
out, a better solution might be expected when linear shape functions are
employed. Table III compares the exact solution on the inte. al (0,1) with
that obtained using ten such elements of equal length.

The two problems considered in this example demonstrate the manner in
which the type of element and its points of attachment (i.e., the 'nodes' or
'grid points') may be varied to suit specified transient events.

TABLE It. SOLUTION TO u + u = 6(t-1/2)

0 4r t I

t Computed Displacement Exact Displacement

0.0 0.0* 0.0
0.1 0.1* 0.099833416
0.2 0.199001664 0.19866933
0.3 0.296016622 0.295520213
0.4 0.390076343 0.38941834
0.5 0.58007539 0.57925896
0.6 0.76428335 0.76331182
0.7 0.94086118 0.93973791
0.8 1.10804607 1.10677443
0.9 1.26416892 1.26275246
1.0 1.40767112 1.40611348

*Imposed values.
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Example 2. Response of a Beam to a Moving Mass. A concentrated mass is
assumed to move at constant velocity v along the length of a uniform Euler
beam, simply supported at each of its ends aai' having zero displacement and
velocity at t - 0. Under suitable definitions for k and m, the representative
equations may be written [21]:

yiV + ky + f(x,t) = 0

y(O,t) = y"(0,t) = y(l,t) = y"(I,t) = y(x,O) = y(x,O) = 0 (18)

The function f(x,t) consists of a sum of inertial terms:

f(x,t) = m(y + 2vy' + g + v2y")6(x-vt) (19)

where g denotes the gravitational constant and 6 is the Dirac function. Thi-
problem is particularly interesting in that the convention-! use of piecewise
cubic shape functions to discretize the space variable on.'-, introduces forces
which are discontinuous functions of time into the resulting ordinary differ-
ential equations. These discontinuities are associated with the beam curva-
ture load term appearing in the expression (19). Since the piecewise cubic
polynomials are discontinuous in the second derivative at the element attach-
ments, the term mv2y"6(x-vt) - when multiplied by the shape function 2(x) and
integrated over the element length - will produce functions of time which are
discontinuous whenever the moving mass arrives at any point of attachment.
Clearly these discontinuities have nothing to do with the physics of the prob-
lem and are certain to invite trouble when one attempts to numerically inte-
grate the time dependent equations via established algorithms. It is possi-
ble, of course, to use shape functions of higher degree to discretize the
space variable thus eliminating the discontinuities at the onset but this is
hardly consistent with the finite element method which should permit the use
of even linear shape functions if nted be. One is tempted to somehow
'smooth' these discontinuities, yet this should not be done in a purely
arbitrary fashion. Integrating the effects of these forces throughout the
time domain through the use of Hamilton's law of varying action provides a
consistent way to handle this problem.

While it is possible to handle the space and time finite element
discretizations in one operation, the amount of computation and computer

programming tend to become inordinately large. Moreover, there exist any
number of finite element codes (e.g. NASTRAN) which can quickly accomplish
much of the space discretization. It seems more efficient, therefore, to
apply the finite element method in two steps, by first discretizing the space
variable and then applying Hamilton's law to the resulting system of ordinary
differential equations in time. For the case at hand, the differential

equations governing the motion of the Ith beam element turn out to be:

(p + mcl)u + mc2u + (q + mc3 )u + mga(vt)= 0 (20)
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p and q are proportional to the usual mass and stiffness matrices for beam
Zlemenfs and have been evaluated many times in the literature. Here all of
the beam elements are of the same length X, and .he displacement within the
ith element is interpolated from ui(t), a vector of end point displacements
and velocities, i.e.,

y(x,t) aT(Ci)ui(t)

0 ' <i 1 (21)

where Ei(x) = x/i - (i-i), a nondimensional element coordinate.

The c matrices in equations (20) correspond to transverse, Coriolis, and
centrifugal accelerations respectively and are defined for the ith element as
follows:

cl = a(i) aT(,i)Ixvt

c2 = 2va(Ei)a"1'( i)Ixvt (22)

c3 = v 2 a(i)a"T( i)Ix-vt

It is noted that c3 will be discontinuous at i = 0 and 0i = 1. The function
m takes on the value of m only when the concentrated mass lies within the ith

element, otherwise m is zero.

The element equations (20) are combined in the usual way to form N equa-
tions of motion for the combined structure. Symbolically:

M(t)U + C(t)U + K(t)U = F(t) (23)

Each of the matrices in equation (23) can be viewed as a conventional matrix
of constant coefficients plus a time variant set of components which are
active in a band along its main diagonal as the moving mass traverses the beam
in time. For this system of equations Hamilton's law of varying action can be
written:

N N t 2  t2

J t (6imij j + 6ui[(Mij-cij)j-ijJj + Fil dt - 6UiMij'j 2 I-= 0 (24)
i-l J-i tI tI

It is interesting to observe the accuracy of solution which can be
obtained from equation (24) using only two finite elements in space and two in
time. & formulation using two elements in space results in a system of N-4
ordinary differential equations in time once the geometric support constraints
have been applied. A two element formulation of these four equations for the
time domain, followed by the application of all initial constraints in the
manner summarized in Section IV, gives a final system of sixteen linear
algebraic equations for solution. Figure 2 compares this solution with the
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experimental results of Ayre, Jacobsen, and Hsu [22] and a conventional finite
element solution using three elements in the space domain followed by a
time-integration of the equations (28) by Hamming's predictor-corrector
algorithm [231. The mass velocity in this case is v - v*/2, ---v* being the
lowest velocity to cause resonance when the load is a moving weight only and
the magnitude assigned to the moving mass is 25% of the total mass of the
beam. (Other parametric values are the same as those in reference [221.) The
displacements have been normalized with respect to the maximum deflection
produced if the weight was applied statically at midspan and L is the total
beam length. In particular one notes that the conventional solution obtained
via three finite elements in space only, produces non-physical discontinuities
in the slope of the solution curve at vt/L = 1/3, 2/3. (The continucus data
for generating this curve is obtained by interpolating the solution to
equation (23) using equation (21).) No discontinuities of this sort can arise
when finite elements in space and ti.me are employed. Improved agreement with
the experimental results is also observed.
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NUMERICAL ANALYSIS OF IMPACT STRESSES IN AN ELASTO-PLASTIC BAR
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ABSTRACT

This paper reports results of a numerical computation in determining the

stress field caused by geometric discontinuities in a finite cylindrical bar.

One bar has a nonuniform diameter, the other has a notch. Materials for both

bars are elasto-plastic. The bar is fixed at one end and at the other end a

step load is applied. HONDO code, which is a finite element dynamic code, is

used for the Durpose. Stress contours are plotted for various time instants

so that both incoming and reflected waves are observed. Stress concentration

factors are computed.
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1. Introduction

In the design of small caliber weapons components, the dynamic stress field

caused by impact loads must be determined in order to assess the service life

of the components. A typical component such as a firing pin will have dis-

continuities due to material defects or change in geometry. Stress distribution

in the neighborhood of these discontinuities are extremely non-uniform and the

nature of the singularities is not well understood. G. Kirch (1898) [1]

calculated the stress field around a circular hole in a flat plate. He fond

that, deDendina Dn the size of the hole relative to the plate, various deareEs

of amplification of the applied stress occur at the edge of the hole. This is

due to the fact that the cross-sectional area over which the total stress is

distributed is reduced by the presence of the hole and the redistribution is

such that the material farther away from the hole is less aware of the existence

of it, thus taking a lesser share of the load. In the case where the applied

load is dynamic in nature the analysis of the localization of the stress is

more complicated because it involves reflection and diffraction of waves. This

problem has been studied in recent times [2]. A large body of literature arose

which uses methods of diffraction in wave prooagation [6], asymptotic expansion

method [7] and complex variable techniques [3],[.]. Photoelastic techniques

were developed for such problems incorporating high speed photoqraphy. The

types of problems which are amendable to analytical approaches involve simple

aeometry only. Problems with more complex geometry had to be solved by numerical

methods such as finite elements. In this paper the results are obtained using

HONDO.

HONDO is a finite element code which uses Galerkin's spatial discretization

and central differences in time integration. The code has several constitutive
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equations, one of which is an elasto-plastic material obeying von Mises yield

criterion. Elements are isoperimetric quadrilaterals.

Two problems are presented below:

(1) finite circular cylindrical bar with an abrupt change of cross-section at

mid-length,

(2) finite circular cyclindrical bar with a circumferential notch at mid-length.

This bar is fixed at the far-end and subject to step load at the near-end.

2. Non-uniform Bar

Figure 1(a) and (b) show the contour lines of constant axial stress in a bar

subject to a step load equal to 1/2 of the yield stress of. the material. The

bar is lOOmm long with diameters equal to 20 mm for 50 mm and 40 mm for the

remaining length. A total of 375 elements is used, each element is 2 x 2 mm square.

There are 436 nodal points. The material is steel. The sound speed in steel

is calculated to be 5 x l05 cm/sec. Thus, it takes 20 x 106 sec for the wave

front to travel from the front to the back end of the bar. Two values of

Poisson ratio are used. The case v=0 is used to eliminate the radial and circum-

ferential stresses. The second case is for v=0.3.

For the case v=0, in the portion of the bar near the loading end, it is

observed that the wave is one-dimensional for a short distance and then becomes

distorted as the effects of the interactions with the wave diffracted from the

discontinuity take over. The time of the plot is 2.01 x 10"5 sec. which is the

time it takes for the wave to just be reflected from the back end. As there is

a complicated wave interaction process going on due to the corner, the stress

pattern becomes very non-uniform. Two points need be mentioned: (1) since

the cross-sectional area in the large portion of the bar is four times as large

383



as the small portion, the average stress should be much lower near the back end

than near the front. This is the case as observed from the figures, (2) there

is the stress localization around the inner corner and the extreme gradient

from the inner corner to the outer corner. It is clear that in the neighborhood

of the outer corner a "dead zone" exists - the material is essentially unstressed.

The amplification factor (computed/applied) is calculated to be 2.2 at the inner

corner which is most severely stressed. The effective stress Te = (3/2 iiSij

is less than the yield stress, although the maximum az has already exceeded th,?

yield stress.

For the case of v = 0.3, the stress pattern near the frot.t end is not Dlana:

thus showing the effect of cylindrical geometry.

3. Uniform Bar with Notch

This is the case of a finite bar with the same conditions at the boundaries

as above. The bar has a circumferential square-bottom notch. Three depths of

the notch are used. The depth to radius ratios are 1/6, 1/3 and 1/2. Dimensions

of the elements are 2 mm x 1 mm.

Figure 2 shows for the bar with'a depth-radius ratio 1/6 (Bar A) the contour

lines of constant axial stress at time 2.4 x l0- sec. when reflection from the

fixed end already started. As can be seen, near the far end the stress is about

double the incoming stress wave at the front end. At the corner the amplification

factor is 1.7. Again, a high gradient exists in the neighborhood of the inner

corner, whereas there is a "dead zone" at the outer corner. For the deeper

notched bar (Bar B) Figure 3 shows that the computed amplification is 2.24, which

becomes 2.60 in the next figure (Figure 4) for the deepest notch (Bar C). For

all these cases, the effective stress has not yet reached the yield.
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Figure 5 shows for Bar C the stress contour lines at time 4.01 x 10- sec.

when the reflected wave from the fixed end has reached the front end. A side

plot shows the time histories of az for two elements at the bottom of the notch.

Figure 6 is a similar plot as Figure 5 except the load has been increased to

70% of the yield. Figure 7 is similar to Figure 6 except the material is 10%

linear work hardening. In this last case the effective stress exceeded the

given yield stress. The corresponding axial stress is higher than the previous

case.

Figures 8, 9, 10 and 11 show the axial stress distribution along the axis

for various radial positions. Figure 8 and 9 are for an elastic - nerfectly

plastic bar at two different times. Figures 10 and 11 are for a linearly

work hardeninc materials. Generally speaking it is observed that the radial

variation of the axial stress does not differ a great deal. The axial stress

rises very high at the notch.

4. Future Work

To investiqate the dynamic stress concentration problem for materials which

are rate sensitive one needs to incorporate a viscoplastic constitutive

equation into HONDO. This was the initial objective of the current paper.

Work of implementing this phase is goinq on and results will be reported in the

future. A brief description of the viscoplastic constitutive equation will be

given here. This equation is based on the theory proposed by Bodnar [5].

It is assumed in the theory that both elastic and viscoplastic deformation occur

at all stages of loading and unloading. Consequently, a criterion of yield

is not needed to distinguish between elastic and viscoplastic regions of

deformation.

For small deformation, it is assumed that
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ij. j + Vij (1)

and the viscoplastic strain rate obeys the flow rule

-vp = FCij -t (2)

where F = re-k (von Mises) (3)

T is the effective stress

2 ,j 1 (4)
e  2 ij i

and F _ 3 (6)
Tu ij 2 Te

• vD 3 Si = S .
6

and 2i a 21 ij ( 6)

A is a parameter, but not a constant.

Bodnar assumes that [5]

d2V 2 C(G4) (7)
0

where d2vp is the second invariant of the plastic deformation rate tensor.

VP 1 - vp' P
d2  ' f 'ijjt (8)

From Eq. (6), it follows that

d2 T ii1Vp , I x 2 StSt N 2 xjz (9)

2 2 2p

Therefore, 2 dvP (10)
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Let D be the elastic modulus matrix, )
then D .vP) (11)

butvp X s -v 
(12)

therefore,

D D( -- (13)
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ON THE DYNAMICS AND STRESS ANALYSIS

OF INTERMITTENT-MOTION MECHANISMS*

** t
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ABSTRACT. A mathematical model of impact has been formulated for
the intermittent-motion mechanism. The model, which includes clearance
and material compliance, is basic to the determination of the dynamical
response such as force amplification and the stress of mechanisms with
intermittent motion. The theory developed has been applied to a prac-
tical mechanism, the Geneva mechanism. It is a popular indexing device
and has been widely used in many production machinery and automatic
weapon systems. A computational procedure incorporating the dynamic
model with the finite-element approach is presented for the Geneva wheel,
although not simple, due to the complicated geometry of the wheel. The
computer-aided procedure makes possible, for the first time, to accurately
predict the performance as well as durability of an intermittent-motion
mechanism with respect to its operational speed.

I. INTRODUCTION. Intermittent-motion mechanisms play an important
role in modern technology and industry. They are the essential elements
in many machinery and automatic weapon systems, for instance in machine
tools; business office machines such as typewriter, photocopier, mecha-
nical and electro-mechanical counting apparatus; production and packaging
machines; automatic rifles and machine guns. A variety of intermittent-
motion mechanisms have been described in the literature [1]. Basically,
there are two types. One gives a finite dwell, such as the standard ex-
ternal Geneva mechanism [2]; the other provides instantaneous or momentary
dwell 13]. The latter can be used for performing functions while machin-
ery is in motion, for example, in flying shears, labeling, closing of cans,
etc. From the point of view of mechanism structure, intermittent-motion
can be generated either from single or compound mechanisms. Geneva mech-
anisms, cam-follower systems and linkages [4] are examples of the single
type; while compound Geneva mechanisms [5], chained linkage [6]; and geared
linkages [3] belong to the compound intermittent-motion mechanisms.

Of particular interest and concern in this investigation is the study
of high-speed intermittent-motion mechanisms of the finite-dwell type,
which are more difficult to analyze because of their inherent shock load-
ing. In addition to inertia loading from the high-speed, the mechanism
is characterized by the presence of essentially discontinuous forces,

* Research supported by U. S. Army Research Office through Contract

DAAG29-81-K-0016 to Rutgers University.
** Associate Professor

t Graduate student
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masses, velocities and potential energies. The problem is therefore com-
plicated, and needs special attention.

There have been significant contributions recently on the study of
dynamic response of mechanisms and mechanical systems involving intermittent
motion! Most of them take an approach which is general, involves the
treatment of Lagrangian formulation of the system equations of motion and
the use of numerical methods to yield solution. This is useful in many
applications concerned particularly with large and complicated mechanical
systems. System components may have various degree of freedom and the
generation of system equations in this case is not simple. Large-scale
kinematic and dynamic analysis codes such as DADS, ADAMS, DRAM, DYMAC, IMP,
KINSYN, LINCAGES and others have significantly facilitated the implementa-
tion of modern analytical developments in mechanisms to the solution of
realistic problems which may otherwise difficult to obtain.

In this investigation we take an approach which is believed to be
different ;11d fundamental, i.e., the study of the dynamics of a single
intermittent-motion mechanism, rather than the entire mechanical system,
with joint consideration on kinematics and stresses. The motivation of
this investigation is to develop methods capable of predicting the per-
formance as well as motion characteristics of certain basic mechanisms
which generate intermittent-motion and are useful in industry and mili-
tary applications. In particular, the objectives are: 1) to formulate
analytical dynamic models for a certain class of intermittent-motion mech-
anisms; 2) to apply these models on a particular mechanism, the Geneva
mechanism to investigate its dynamic load and its response; 3) to develop
a computational procedure incorporating the dynamic model with the finite-
element approach to estimate the stress distribution on the Geneva wheel.
The result of this research, it is hoped, will provide not only numerically
efficient design equations and computer package for the Geneva mechanism,
but also an added advantage -- a deeper understanding of the dynamic load
on intermittent-motion mechanisms and a physical insight to the dynamic
characteristics of these mechanisms. Such an investigation is believed
to be trustworthy, and to the authors' knowledge, has not been reported
in the literature.

In the following, we begin by discussing the background of the dynamics
of the intermittent-motion mechanism and its relationship with the well-
investigated field of clearance in the mechanical joints. Analytical models
suitable for intermittent-motion mechanisms are formulated and their solu-
tions are derived. A common and useful type of intermittent-motion mecha-
nism is then chosen for analysis and its dynamic response is presented.
Finally a computer-aided procedure for Geneva stress analysis using finite-
element approach is developed. The result of this investigation, it is
believed, will represent a contribution towards the more efficient and
economical design and analysis of mechanical systems involving high-speed
intermittent-motion.

1 The work of E. J. Haug and his coworkers; the work of M. A. Chace, N.

Orlandea, J. J. Uicker, etc; Beckett, R. E., Pan, K. C., and Chu, S. C.,
J. Engg. Ind. Aug. 1977, pp. 665-673.
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II. DYNAMIC MODELS. All intermittent-motion mechanisms share some
common characteristics. First, there exists generally shock or impact
loading which may be inherent in the mechanism, or as a result of external
loading. In the dynamic analysis of these mechanisms, therefore, kinematics
as well as load and driving characteristics have to be taken into consider-
ation. Secondly, clearance or backlash is unavoidable in the mechanical
joints or connections, which makes possible a loss of contact between the
members. This may lead to subsequent impact which would give rise to vi-
bration. The study of the dynamic response of intermittent-motion mecha-
nisms at high speed is therefore analogous to the investigation of the
dynamics of mechanical systems with clearances -- a field which is becoming
important and active in the past decade.

Most of the investigations relating to mechanism clearance involves
the formulation of mathematical models of impact as a basis of their study.
Essentially simple system of springs and dashpots with clearance are used
to simulate the complex and nonlinear phenomena of mechanical connections.
Some of the notable models were presented by Langer [71, Johnson [8],
Kobrinskiy and Babitzky [91, Dubowsky and Freudenstein [101, etc. A use-
ful outline of the background to this field of investigation is given in
[11], and recently Haines [121 gave a comprehensive and thoughtful review
of the subject.

In this study two mathematical models are presented, which are used
to investigate the dynamic response of the intermittent-motion mechanism.
These models are taken from the one proposed by Dubowsky and Freudenstein
[10] on their study of clearance in the mechanical joints. However, modi-
fications are made to include mechanism elasticity. Standard operating
load conditions for a popular type of intermittent-motion mechanism are
used as forcing function, rather than free vibration, constant load and
periodic loading conditions, and general solutions are obtained. In the
following, a terminology for the models is given first, a discussion of
these models then follows.

Referring to Figs. 1 and 2, we have,
P - external force applied to element M2
X - displacement of M I

X2- displacement of M2
r - clearance
MI- lumped mass represents the equivalet mass of the driving element
M2- lumped mass represents the equivalent mass of the follower

element
Keq- equivalent spring constant = 1/ K
Kb- beam stiffness
Kc- surface complianceCeq equivalent damping coefficient

Model No. 1

The dynamic model no. 1 is shown in Fig. 1. It is basically the model
used in [10], except that an infinite-mass assumption [81 is employed. The
driven member, Ml, is assumed to have infinite mass, i.e., its velocity
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Fig. 1 The dynamic model no. 2

K M 0

Fig. 2 The dynamic model no. 2
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during the impact period does not change. The model considers the effect
of surface compliance and a linearlized model of Hertz contact theory is
employed. The coefficient K represents the slope of the load and deflec-c
tion curve shown on Fig. 3. Referring to that figure, we have the deflec-
tion, a,

a = (KI+ K2 )(P/a) [n 
8 a3 b -n P (1)1 2 ~(K 1+K 2)R 2

where the subscripts 1 and 2 refer to the parameters associated with
elements I and 2, respectively. Parameters a and b are the half length
of the pin and the natural base.

Equations of Motion

The equation of motion for the model no. 1 shown in Fig. I may be
obtained as follows:

M2 X 2 +CX 
+ K X2 = P(t) (2)2M2

or, X +2 w + 2 X = P(t)/M (3)2 n 2 n 2

where w2=K /M and =C/(2Uw M ) represent the square of natural frequency
n c 2 n 2

of the system and damping coefficient, respectively.

The differential equation, eq. (2), may be nonlinear and nonhomogeneous,

depending upon the functions, K, C and P(t). With the aid of Laplace trans-
formation, the solution is,

X (t) P()+ ())Cxp(-tWncos6)sin(6-twnsin6))2(t (S2+2r, nS +,)M, sin6

+(2$wnX(O)+X'(O)),sm [exp(-twnCOS ) sin(twnSin6)J (4)

n

where,

cos6 = (5)

If the forcing function can be expressed in terms of a polynominal

of time, say,
n (5)

P(t) = a. (5)
i=l

the solution may then be represented as,
i+l

(a i!)  t t

X2(t) M WnSin f0j exp(- n tcos6) sin(w ntcos6)dt

2 M~sn6, 0  ...' n

+ X(O) sexP(-ntCS6) sin(6-twnsin6)J (8)

+ (2 MnX(O)+X'(O)) xp(-wntcos6) sin(wntsin6

n s in6 e
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Fig. 3 Determination of surface compliance using linearlized
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[I
Model No. 2

The objective of employing model no. 1 is to show the effect of surface
compliance as well as clearance on the dynamics of the driving element of
the intermittent-motion mechanism. However, the model offers no information
on the driven element. It is therefore not realistic. The study provides,
nevertheless, valuable information on the effect of surface compliance
which has shown to be significant. In model no. 2, we consider not only
the dynamics of the driven element, i.e., MV but also its elasticity. This
is a modification of the model in [101 where elasticity of element M 1 is
not included.

Equation of Motion

During contact, the equations of motion of model no. 2 may be expressed
as, referring to Fig. 2,

M 2 + C (2 - 1 + K (X 2 - X I )  PM (9)

MI iX + C (X-I X2) + K (X - X) 0 (10)

Introducint the relative displacement, Xc,

Xc = X2 - X I  (11)

For P(t) as an arbitrary function of time, we have, from Laplace transform,
the solution is,

-1 P(S) +exp(-tw cos6) sin(6-tw sin6)]X()= +X(0)nn

Xc(t) (S2+2 n S+w2)M c c sin6 n

n n 2

+ 2CwnX c(0)+X'(O) xp(-tn cos6)sin(twnsin6 (12)
w snS nnn

If P(t) is a periodic forcing function, we have,

XW 2sin(wt+O)
Xc (t) = A exp(-wn6t) sin( t+4) +( 2+(2&n )2

where X, w and 4Pare the amplitude, frequency and phase angle of the forcing
function, respectively.

In the case of non-contact, C=K =0, a simple numerical integration
scheme, for instance, the Runge-Kutta scheme can be used to yield solution.

The force-displacement relationship of the spring is shown in
Fig. 4. During contact stages, the relationship is non-linear. This is
because of elasticity and material compliance. The overall relationship,
however, may be considered as piece-wise linear.
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Dynamic Load

In the design of high-speed Geneva mechanism, stress distribution on
the Geneva wheel as well as the contact stress between pin and slot are
of major concern. In order to evaluate these stresses, the load producing
them must be known. But the determination of this load is not simple.
Due to the inherent shock loading of the Geneva mechanism and other factors
such as manufacturing error in pin slots and spacing, elastic deformations
under load, imbalance, load and wheel inertias, the resulting action is
a variable dynamic load, which is essentially a superposition of a waste
load on a useful transmitted load. It is the major concern of this investi-
gation to apply the models presented in the last section in order to predict
this dynamic load.

Referring to Figs. I and 2, the dynamic load, Pd' is defined as,

d eq c (14)

where K and X are the equivalent spring stiffness and the spring

deflecten, respectively as defined previously. Eq. (12) gives the solu-
tion of X

c

The spring deflection, X , as can be easily seen from eq. (12),
depending on the Geneva load (S), and initial conditions, X (0) and X'(O).c C
It is also an implicit function of many factors such as clearance, equiva-
lent mass, spring stiffness and damping, etc.

A useful parameter, the dynamic load ratio is introduced and defined
as follows:

P =-d (15)
r P 4

It is a dimensionless parameter used to measure the dynamic effect,
of the mechanism. Similar in function to the classical "design accelera-

tion factor" [7] which is a function of the weight of the part and its
natural frequency of vibration, the dynamic load ratio, however, is
derived based on the "starting velocity" concept which is considered
to be more accurate in the modelling of high-impact shock problems. The
model is assumed to he acceLerated tp to 8ome finite velocity In a neg-
ligible tength of time and then maintaLtis that velocity during the initial
and most important phase ot the shock motion. The parameter P is useful
in the design of intermittent-motion mechanisms. r

III. DYNAMIC RESPONSE OF GENEVA MECIIANISM. The mathematical models
presented in the previous section are applied to a particular type of
intermittent-motion mechanism, the Geneva mechanism. There are several
reasons to choose this mechanism for study. First, it is a popular indexing

device which has been widely used in industry and military applications.
Secondly, there are not many investigation of the dynamics of this mecha-
nism on the record, except in a very few cases [13]. The mechanism has
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been operated at high speeds regardless of its inherent dynamic limita-
tions and as a result, pin wear and wheel breakage have often occured.
A comprehensive study of the subject is necessary in order to provide
better understanding and design guidelines. In the following, a brief
summary of the kinematic characteristics of the Geneva mechanism is given,
then the results of applying the mathematical models are presented in
graphical form, and finally a discussion is given.

The Geneva mechanism, although has its main advantage of simplicity,
has poor dynamic characteristics. The output motion starts and ends with

non-zero accelerations which correspond to infinite shock. Fig. 5 shows
the motion graphs of a typical four-station Geneva. In this investigation,
we are concerned here primarily with the determination of the dynamic load
which is a essential information to be used for stress determination.

Pin Dynamics

Figs. 6 and 7 contain the time-displacement plots for the pin using
model no. 1. Here, the assumptions are that the initial conditions are
zero (i.e., with non-contact initial condition) and the Geneva wheel sur-
face is assumed to be able to bounce in order to maintain the contact con-
dition with the pin. Both of these assumptions are certainly unrealistic.
Fig. 6 shows the effect of surface compliance. Notice that the force
amplification is largest at the position slight off the mid-point of the
Geneva travel which corresponds to the end of the pin working stroke, or

the beginning of the return stroke. The large magnitude of displacement
is due to the doubling of the clearance. Fig. 6 also shows the superposi-
tion of the vibratory effect due to material compliance on the static
Geneva load curve. As the clearance reduces to zero, the vibration damps
away and there is essentially no vibration at the later stage of the motion
stroke (Fig. 7).

In practice, Geneva wheel moves, therefore, model no. 2 applies. Figs.
8 and 9 show the results of pin displacement and velocity, respectively
using this model. The following assumptions are used: 1) surface of Geneva
wheel can only be compressed and can not bounce; and 2) initial conditions
are applied using the equaitons of motion of the contact case (with a pin
velocity of 1.0 in/see). Fig. 8 shows a striking phenomena that in the
later half of the motion travel, there is considerably period of free-flight
mode (i.e., non-contact) depending on the magnitude of the static Geneva
load, P(t). Force amplification factor obtained from model no. 2 is expected
to be more accurate than the one obtained from the model no. 1. Pin velocity
is shown in Fig. 9. There are several observations: 1) the graph charac-
terizes by a successive sequence of free-flight and contact modes; 2) the
pin in general follows the behavior of the applied load, P(t). During the
free-flight mode, the pin is acted by the load P alone, therefore, the pin
velocity increases with an increasing slope until it reaches a position
where the load reaches maximum.
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Wheel Dynamics

The dynamics of Geneva wheel are shown in Fig. 10 and 11. Dynamic
effect can be seen from these figures. It causes certain distortions of
the kinematic profiles of wheel displacement and velocity (Fig. 5). During
the non-contact period, the wheel separated from the pin, keeps at essentially
constant velocity due to the inertia. In the contact region, acceleration
remains almost constant while the velocity of the wheel changes abruptly.
Since clearance has a dominant effect on the separation of pin and wheel,
it effects therefore the dynamics of the Geneva wheel.

Geneva Dynamic Load

Fig. 12 shows the effect of pin initial velocity on the dynamic load
ratio. There is a strong effect of initial condition on the first half
stage of Geneva motion, while on the last half of motion, the effect is
not apparent. The effect of surface compliance is just reverse. Fig. 13
shows it has a dominate effect only on the last half of the motion. Fig.
14 shows the effect of clearance on the dynamic load ratio, there is

essentially no effect on the first half stage of motion, however, it has
an important influence on the latter half. This is because the pin usually
does not bounce during the early half of motion which is the working stroke.

Phase-plane plot

Fig. 15 contains the phase-plane plot of the motion of model no. 2.
It is a result of a numerical calculation. The phase-plane analysis
presents a convenient manner of displaying and interpreting the transient
behavior of the nonlinear system. The following observations can be made:

(1) At the entering contact stage, in general, the pin does not ex-
hibit bouncing at the surface. This can be seen from Fig. 15, or more
clearly, from Fig. 16 which gives an amplitied graph around the initial
pin position, point A.

(2) The free-flight mode includes two types of motion characteristics:
i) The initial bouncing stage. The pin leaves position A and

impacts the left-hand side of surface. This motion is due

to the kinematics of Geneva mechanism. The pin reaches the
end of the slot and is making a return stroke.

ii) The repeated bouncing stage. In this stage, the relative

velocity, as can be seen from Fig. 15, varies with large
amplitudes, from approximately, -60 to +54 in/sec. At the
boundary of contact, i.e., X=-r, the slope of trajectory
changes rapidly. This is due to the fact that all the kinetic
energy at the moment has to be converted into strain energy
of the material during impact. While on the bouncing stage,
the process reverses, there is, however, very little change
in slope.

(3) The relative velocity at the terminal position of the pin stroke,
i.e. point D in Fig. 15, has finite value. This value would contribute

toward the kinetic energy during the initial phase of the Geneva dwell

motion, and hence causing vibration.
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(4) The classical definition of the coefficient of restitution may
be quantitatively evaluated using the phase-plane plot. For instance, the
relative velocities at points B and C (Fig. 15) are 27.4 in/sec and 25.8 i
in/ec, respectively. Therefore, this gives a coefficient of restitution
of 0.94.

IV. STRESS ANALYSIS-FINITE-ELEIENT APPROACH. In this section, our
goal is to develop an automatic procedure for the determination of the
Geneva wheel stress for a given configuration of the Geneva mechanism which

is subjected to a known Geneva dynamic loading. First, we are concerned
with the development of a mesh generation problem for the Geneva geometry
in order to generate the superelements needed to define the Geneva element
mesh. This sub-program is developed and is called SUPER. Secondly, a
general mesh generation program [14] is used. The output of SUPER becomes
the input to this program. Finally, data are prepared and they are the
input to the finite-element program, NONSAP (15], which is a sturctural
analysis program for static and dynamic responses of nonlinear systems.

A computational package for the analysis of Geneva stress is developed
and it is called GSAP, the Geneva Stress Analysis Program. Fig. 17 shows
a flow chart of the program. The finite-element mesh and finite-element
nodal mesh of a four-station Geneva wheel, shown in Fig. 18, is shown in
Figs. 19 and 20, respectively. The final output from GSAP is plotted in
Fig. 21 which shows the stress distribution of the Geneva wheel.

The computer program, GSAP, can be used for the determination of Geneva

stress for any number of station of Geneva mechanism. The user needs only
to supply the design parameters of the Geneva mechanism and the program
automatically generates the finite-element mesh and give the stress distri-
bution. The program is very useful for the optimum design of high-speed
Geneva mechanisms.

V. CONCLUSION. The dynamics and stress analysis of intermittent-
motion mechanisms have been investigated. The following conclusions can
be drawn:

(1) Dynamic models for intermittent-motion mechanisms are formulated

which includes clearance and surface compliance. The models are the
basis for study the dynamic response of these mechanisms.

(2) The dynamic response of a particular mechanism, the Geneva mecha-
nism, is investigated.

(3) An automated finite-element computational procedure is developed
for the determination of Geneva stress distribution.
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DP, DG, DC, DH, T, XN, RLOD, NOD, IDIRN, AMATL, ANU

SUPER DATA REORDER

Input~ paraeter

I MESH  RD -1 ILO

TENUMBER W - OPTIMUM I R

L OUTPUT1

GESA STRESSE OSA -DEFLECTIONS
-RREQUENCY

input parameters

DP - PIN DIAMETER RLOD- APPLIED LOAD

DG - GENEVA DIAMETER NOD LOCATION OF APPLIED LOAD

DC - CRANK DIAMETER IDIRN -DIRECTION OF LOAD
DH - HUB DIAMETER AMATL -MATERIAL MODULUS

T - Tip WIDTH ANU -MATERIAL POISSON RATIO

XN - POINT NUMBER

GENEVA STRESS ANALYSIS PROGRAM

Fig. 17A Geneva stress analysis program-- flow chart
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DATA - Reads all the data necessary to define the Geneva geometry.

SUPER - Generates the superelements needed to define tie Geneva
element mesh.

REORDER - Renumbers the superelements in such a way that as the nodes
are generated for each superelement, no duplicate node
numbers will be created.

MESH - Generates node numbers and nodal coordinates.

LINEAR - Generates the element conr.ectivety array for a four noded
quadri lateral.

RENUMBER - Determines how many nodes are directly connected to a given
node and the node numbers of the nodes that are connected
to a given node.

OPTIMUM - Renumbers the generated nodes to reduce nodal connectivety
bandwidth.

OUTPUT - Outputs nodes, nodal coordinates, elements, and element
coinectivety array for input to NONSAP. Also, outputs load
and material properties which are read by NONSAP.

NONSAP - A Structural Analysis Program for Static and Dynamic Responses
of Nonlinear Systems.

GENEVA STRESS ANALYSIS PROGRAM - CCNT'D,

Fig. 17B Geneva stress analysis program-- subroutines
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ROOT 
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A NONLINEAR HYPERBOLIC VOLTERRA EQUATION

OCCURRING IN VISCOELASTICITY

John A. Nohel*

Mathematics Research Center

University of Wisconsin-Madison

Madison, WI 53706

ABSTRACT. A general model for the nonlinear motion of a one dimensional,

finite, homogeneous, viscoelastic body is developed and analysed by an energy
method. This note summarizes recent research of Dafermos and the author in
which it is shown that under physically reasonable conditions the nonlinear
boundary, initial value problem has a unique, smooth solution (global in
time), provided the given data are sufficiently "small" and smooth; moreover,
the solution and its derivatives of first and second order decay to zero as
t + -.

I. INTRODUCTION. In nonlinear systems of "hyperbolic" type,
characteristic speeds are not constant so that weak waves are amplified and
smooth solutions may blow up in finite time due to the formation of shock
waves. It is interesting to consider situations where this destabilizing
mechanism coexists (and thus competes) with dissipation.

In certain cases (e.g., viscosity of the rate type) dissipation is so
powerful that waves cannot break and solutions remain globally smooth. A more
interesting situation arises when the amplification and decay mechanisms have been

predicted at the outset. Elementary dimensional considerations indicate that
breaking of waves develops on a time scale inversely proportional to wave
amplitude while dissipation proceeds at a roughly constant time scale. It
should thus be expected that dissipation prevails and waves do not break when
the initial data are "small". Results of this type were first obtained by T.

Nishida for the quasilinear wave equation with first-order frictional damping
for sufficiently smooth and small initial displacements and initial
velocities.

A different and subtler dissipative mechanism is induced by memory
effects of elastico-viscous mater'als. Dafermos and Nobel [3] have recently
developed and analyzed such a one-dimensional nonlinear model for the
homogeneous extension of an elastico-viscous rod whose ends are free of
traction. Special cases of the prepent model, as well as other closely
related problems were discissed by Daformos [2] at the Twenty Fifth Conference
of Army Mathematicians. The purpose of this note is to motivate the problem

from physical considerations and to state the principal mathematical result.
The reader is referred to [3] for the necessarily technical details of proofs
and for references to earlier literature.

In the viscoelastic problem the dissipation mechanism is induced by
memory effects of the viscoelastic materials (stress-strain relaxation

function - the stress is a nonlinear functional rather than a function of the

*Research sponsored by the United States Army under Contract No.

DAAG29-80-C-0041.
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strain). Using elementary energy methods, which are combined with frequency
domain techniques for nonlinear Volterra equations, it is shown in [3] that
under physically reasonable conditions on the stress-strain relaxation
function, the known history of the displacement, the nonlinearities of the
model, and on the assigned external body force, the boundary-history value
problem (2.8), (2.9), (2.22) in the text which describes the model has a
unique, smooth solution (global in time), provided the given data (history and
external body force) are sufficiently smooth and "small". Moreover, the
solution and its spacial and time derivatives of first and second order decay
to zero as t + 1. Various modifications and generalizations of the model,
including two and three dimensional problems, are also considered in (3]. The
difficult and natural question of establishing the existence of shocks
(breaking of waves) in finite time if the smooth data becomes sufficiently
"large" which has not been solved up to this time in full generality, is under
study. The existence of shocks in viscoelastic materials, but in a different
physical and mathematical context, was demonstrated in [1] and confirmed by
experiment.

2. THE MATHEMATICAL MODEL AND SUMMARY OF RESULTS. A simple, one
dimensional, nonlinear model for viscoelastic bodies, suggested by the
research of Coleman and Gurtin [1], corresponds to the constitutive relation

t
o(t,x) = (e(t,x)) + f a'(t - T)*(e(T,x))dT , (2.1)

-W

where a is the stress, e the strain, a the relaxation function with
I = d/dt, and *, P assigned constitutive functions. The relaxation

function is normalized so that a(0) = 0. Wen the reference configuration is
in natural state, *(0) = V(0) = 0. Experience indicates that f(e), f(e),
as well as the equilibrium stress

def
X(e) = (e) - a(0)l(e) (2.2)

are increasing functions of e, at least near equilibrium (lel small).
Moreover, the effect of viscosity is dissipative. To express mathematically
the above physical requirements, we impose upon a(t), f(e), f(e) and x(e)
the following assumptions:

a(t) e W2, (0,_),
(2.3)

a(t) is strongly positive definite on [0,];

*(e) e C3 (-a* ) (0) = 0, 4'(0) > 0 ; (2.4)

f(e) e C 3(-,0), (0) = 0, 1'(0) > 0 ; (2.5)

X'(0) - f'(0) - a(0) '(0) > 0 . (2.6)

The notation a e W2' (0,0) means that a, a', a" are integrable over
[0,10 . Assumption (2.3), which requires that a(t) - a exp(-t) be a

positive definite kernel on [0,0) for some a > 0, expresses the
dissipative character of viscosity. Smooth, integrable, nonincreasing, convex
relaxation functions, e.g.,

434



k
a(t) = V kexp(-k t), Vk > 0, Pk > 0 , (2.7)

k=1

which are commnly employed in the applications of the theory of visco-
elasticity, satisfy (2.3).

We now consider a homogeneous, one dimensional body (string or bar) with
reference configuration [0,1] of density P = 1 (for simplicity) and
constitutive relation (2.1), which is moving under the action of an assigned
body force g(t,x), -* < t < 0, 0 < x < 1, with the ends of the rod free of

traction. We let u(t,x) denote the displacement of particle x at time
t in which case the strain is e(t,x) = ux(t,x). Thus the equation of motion
Putt = 0x + Pg here takes the form of the nonlinear (hyperbolic) Volterra

functional differential equation

0

U = *(u ) + f a'(t - T)P(u ) dT + gtt x - x x

(2.8)

-< t < 00 0 < x < 1

The physical problem of the motion of a viscoelastic body suggests that the
history of the motion of the body up to time t = 0 is assumed known, i.e.,

u(t,x) = v(t,x), -® < t < 0, 0 < x < 1 , (2.9)

where v(t,x) is a given sufficiently smooth function which satisfies
equation (2.8) together with appropriate boundary conditions, for t 4 0. In
order to show that the motion of the viscoelastic bar remains smooth for all
t > 0, the mathematical task is to determine a smooth extension u(t,x)

of v(t,x) on (-x,) x (0,1] which satisfies (2.8) together with assigned
boundary conditions, for -0 < t < .

Upon setting

0
h = f a'(t - T)*(v ) dT + g, t ) 0, 0 4 x < 1 , (2.10)

u 0(x) = v(0,x), u (X) = V t(0,X), 0 4 x ( 1 , (2.11)

the history-value problem (2.8), (2.9) reduces to the initial-value problem

t
u = O(u ) + f a'(t - T)'j(u ) dT + h ,

tt x x x x0 (2.12)

0 t<b, 0X( 1,
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U(O,X) = U0 (x), u t(Ox) = U (x), 0 & x 1 1 . (2.13)

Conversely, (2.12), (2.13) can be reduced to (2.8), (2.9) by constructing a
function v(t,x) on (-,0] x (0,11 which satisfies v(0,x) = u0(W,
vt(O,x) =Ul)

v (O x ) = flu ) + h (O ,x ) 0 4 x 1 1.,Ot 0X) #Ux x" (2.14)

vttt ( O 'x ) = I(u )U u + (u )u +(Ox)Uoxx lx + OUxl lxx+

a'(O)*(uOx)x + h t(Ox) , 0 x 1

together with appropriate boundary conditions, for t 4 0, and then
defining g(tx) on ( x,) x [0,1] by

t
v - *(v ) - f a'(t-T)*)v ) dT , t ( 0, 0 ( x < 1

g(t,x) = (2.15)
0

h - f a'(t-T)*(v ) dT , t n, 0 4 x 1 1
X x

The purpose of (2.14) is to ensure that g(t,x), as defined by (2.15), has
the smoothness properties across t - 0 which are required in the existence
theory.

We now consider the problem consisting of the nonlinear equation (2.8)
satisfying (2.9) and the case where the boundary of the body is free of
traction. The latter leads to the boundary conditions 'A

c(t,O) = o(t,1) = 0, -' < t < . (2.16)

These and other types of boundary conditions are discussed in [3]. It is also
shown in [31 that (2.16) is equivalent to the boundary condition
u (t,O) = u (t,1) = 0.
x x

The change of variable (superposition of a rigid motion)

t T I
u(t,x) = u(t,x) + m0 + m1t + f f f g(s,y)dydsdT

0 0 0

shows that without loss of generality we may assume

f g(t,x)dx = 0, -< t < , (2.17)
0

1
f u(t,x)dx 0, - < t < . (2.16)
0
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Of the external body force g we require the following technical
assumptions

g(t,x),g t (t),g 2(t,°) in C((-22,(2); L.2)(0,j)) n L L2(0,1))

2(
[g(t,x) = g1I(t,x) + g 2(t,x). with g ltt (t,°),g 2tx (t,") in L 2((-,-(L 2(0,1))

The notation g(t,') e C((-0,0);L 2(0,1)) means that the function
1 L22

f g2 (t,x)dx is continuous on (-I,I); g(t,*) e L ((-,);L (0,1)) means
0 f Ig 2

that (t,x)dxdt < -. As noted above, despite the presence of viscous

dissipation, it is not to be expected that a global smooth solution of (2.8),
(2.9), (2.16) will exist unless the amplitude of waves remains small.
Consequently, one may only hope to obtain global existence results under the
restriction that g(t,x) be appropriately "small". We "measure" g(t,x) by

df2 2 r 12 2 2 2 2
G def sup f (g2 + gt + g } (tx)dx + f f {g2 + gt + g2 + g 2 + g 2t}dxdt.

(-0,0) 0 -c 0 x

Our main result is
Theorem 2.1. Under assumptions (2.3)-(2.6), there exists a constant Ii > 0
with the following property: For every g(t,x) on (-x) x [0,1] which
satisfies (2.17) and (2.19) with

2
G (Ir , (2.20)

and for any history v(t,x) on (-0,01 x [0,11, with v(t,*), vt(t,o),

Vxt,, ttt'' V txt') Vxxt ' vtttt'' Vttxt'' Vtxxt''
2 2L2

(t,o) in C((-,0]; (0,1)) l L 2((--,0; L (0,1)), which satisfiesxxx

Equation (2.8) together with the boundary conditions (2.16) for t 4 0, there
exists a unique u(t,x) on (-x,) x [0,1], with u(t,*), ut (t,°), ux (t,*)

utt(t,*), utx(t,°), uxx(t,*), uttt(t,s) , uttx(t,*), utxx(t,), u xxx(t,
)  in

C((-','); L 2(0,1)) nL L2((-,); L (0,1)), which satisfies (2.8), (2.9),
(2.16), as well as (2.18). Furthermore,

u (t,°), u t (t,°), u x (t, ), u tt (t, ), ( . 1

t.)unif. ., +c
Utx (t,) xx [0,1 0,

The general strategy used in the proof of Theorem 2.1 in [3] is as
follows. First one establishes the existence of a unique smooth local

solution u defined on a maximal interval (-,t 0) x [0,1], with the
property that when T0 < 0 a certain norm of the solution becomes infinite as

t T 0 ; this is done by a fixed point argument (combined with a standard
energy method for linear problems) on a suitably chosen abstract space of
functions. Second, energy methods are combined with properties of strongly
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positive kernels to show that due to the viscous dissipation of the integral
term in (2.8), the aforementioned norm of remains uniformly bounded on the
maximal interval, provided the data g and v are sufficiently smooth and
small. By standard theory for nonlinear problems this means that T =4-0

and the smooth solution exists qlobally in t. This part of the ana~ysis
involves obtaining technically complicated a priori estimates of certain norms
of the derivatives (in one space dimension, up to and including order 3)
directly from the equation (2.8). It is here that it becomes convenient to
use the equivalent form

t
u = X(u ) + f a(t - T)4X(u ) dT + gtt x x x ix

_Q0

(2.22)

- < t < , CO 4 X 4

of equation (2.8) (equation (2.22) is obtained from (2.8) by integrating by
parts with respect to T and by using the definition of the equilibrium
stress X); it is therefore clear that assumption (2.6) plays a crucial role
in the proof.

Another important role in the analysis is the present normalization of
the kernel a with a() = 0 (see assumption (2.3)), which is different from
that in the earlier literature (see [2] and [3] for further comments). The
reader should note that a', not a, enters the constitutive relation (2.1),
as well as the equation of motion (2.8). In the earlier literature in which
only the special case ' - was studied, the normalization

a(t) = a. + A(t) 0 4 t < 00

a(O) = 1, a. > 0, A e w 2,(0,-), A strongly positive was used. The
normalization used here is crucial for generating the a priori estimates
directly from equation (2.22) (equivalent to (2.8)). The reader should note
that the present, normalization and (2.6) imply that if 0 2 *,
0 < a(0) < 1. The physical appropriateness of the restriction $ - , which

was made in the earlier literature for technical reasons is by no means
evident.

Some modifications of Theorem 2.1 for boundary conditions other than
(2.16), as well as certain generalizations to finite viscoelastic bodies in 2
and 3 dimensions are discussed in (3].
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THE DEVELOPMENT OF MASS DETONATION IN AMMUNITION STORES
TREATED AS A STOCHASTIC PROCESS

Abdul R. Kiwan and Philip M. Howe
Ballistic Research Laboratory, USAARRADCOM

Aberdeen Proving Ground, MD 21005

ABSTRACT. The problem of mass detonation is of considerable interest
from a prevention point of view. The process of propagation of the deto-
nation from one ammunition round to another bears a strong analogy to
several physical problems studied in percolation theory. For our study
we replaced the ammunition rounds by abstract objects called sites and
connected them by bonds along which the reaction can propagate with a
fixed independent interaction probability p. This interaction proba-
bility, p, is a function of the physical conditions of the ammunition
round, and the physical arrangements of the rounds relative to each
other. The number of rounds, n, in a reaction cluster which consists of
the detonated rounds and the connecting bonds is a function of the inter-
action probability p, the dimension of the ammunition lattice and the
geometric arrangements of the rounds relative to each other. Concepts
such as critical probability p c, in percolation theory have analogues in
our ammunition problem.

We constructed a multidimensional Monte Carlo model for our problem
and used it to study a number of interesting aspects of the ammunition
mass detonation problem. Our study dealt with the effects of dimension-
ality, of unequal interaction probabilities p, in different directions,
as the case may be with some types of ammunition rounds, and included
also the synergistic effects which arise from the simultaneous detonation
of neighboring rounds.

I. INTRODUCTION. Fire and impact comprise the two principal sources

of explosive incidents. As a result of fire or impact, one or more
munitions within a storage area can detonate. Under certain commonly en-

countered munitions and munition configuration conditions, neighboring
munitions can detonate "sympathetically," a chain reaction can establish,
and we have what is called a mass detonation.

The conditions which control the development of a mass detonation are
of considerable interest, and there is a special need to relate these
conditions to characteristics of the individual munitions, and the nature
of the storage array. Thus, if we change the probability that one round
detonating can cause another round to detonate, through shielding or re-
design of the munitions, how will changing that probability influence
the expected explosion size? In particular, how small do we have to make
the round-to-round interaction probability, p, in order to keep the ex-
pected explosion size below some (arbitrarily chosen) number of detona-
ting munitions? Furthermore, how does the expected explosion size depend
on the dimension of the storage lattice and the geometry of the arrangement?
Other questions which arise are:
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What are the values of p for which a finite, nonzero probability
exists that an infinite number of rounds in an infinite stack will de-
tonate?

Since large tests are expensive, only a few validation tests can
be performed. It would be embarrassing to predict an explosion size
and then obtain wildly different test results. Hence, what is the dis-
persion of the mean explosion size as a function of p?

In some physical situations, if two nearest neighbors detonate
simultaneously, the probability of a third round, which has each of the
above two rounds as nearest neighbors, detonating simultaneously is
near unity. How does this affect explosion size?

The mathematical modeling of the evolution of an explosion in a
stack of mass-detonable munitions falls within the realm of percolation
theory1 '2 '3 and has a very close similarity to stochastic models of
phase transitions and propagation of epidemics 4'5. The munitions are
treated as lattice points and the development of the mass detonation
is described in terms of lattice topology and interaction probabilities
between lattice points, where the "interaction probability" is actually
the probability that detonation of one munition can cause detonation
of another neighbor.

II. MODEL DESCRIPTION. The problem of propagation of reaction from
an ammunition round to other munitions in a munition store is seen to
fit the model of an unoriented bond percolation problem with some
differences. Thus, in this model the sites of a percolation lattice
correspond to tfhe ammunition rounds and the bonds represent the paths of
interaction between rounds, with probability p being the probability of
one round detonating ca.sing a neighbor to detonate. In this model we
assumed that a munition routnd can only be initiated by a nearest neighbor
round. The number of nearest neighbors of a site depends on the dimension
and topology of the lattice, or equivalently, in our ammunition problem, on the

1V. Shante and S. Kirkpatrick, "An Introduction to Percolation Theory,"
Advances in Physics, 2 325 ff (1971).2 H. Stanley, R. Birgeneau, P. Reynolds, and J. Nicoll, "Thermally Driven

Phase Transitions Near the Percolation Threshold in Two Dimensions,"
J. Phys. C.: Solid State Physics, 9,_ L553-560 (1976).

3j. Essam, "Graph Theory and Statistical Physics," Discrete Mathematics,
1,1 83-112 (1971).
D. Ludwig, "Final Size Distribution of Epidemics," Math. Biosciences,
23 33-46 (1975).

5W. Goffman, and V. Newell, "Generalization of Epidemic Theory, an
Application to the Transmision of Ideas," Nature, 204. 225-228 (1964)

440



dimension of the storage method and the arrangements of the rounds
relative to each other. The number of bonds leaving a site is
called the coordination number of the lattice and is denoted by c.
The percolation probability, P(p), for a lattice is defined in general
as the probability that the fluid from a randomly selected atom (bond)
source wets infinitely many other atoms (bonds). Thus mathematically

P(p) = lim P n(p) (1)
n-,

where P n(p) is the probability that a randomly selected atom source

wets at least n other atoms. The critical probability pc is defined as

Pc = Supremum [p/P(p) = 0] (2)

hence, for p > pCA

P(p) > 0, (3)

i.e., there is a finite probability of getting an infinite cluster. The
lattices encountered in the ammunition problem are considered finite
although they may consist of a large number of rounds. This simplifies
our computational process and we do not concern ourselves with the
limiting process of equation (1). We point out here that the number of
rounds in a munition reaction cluster is less than or equal to the cor-
responding cluster size of the analogous theoretical bond percolation
problem. This difference arises because a munition round can only de-
tonate once. Hence, munition reaction clusters do not have any closed
loops as might be the case in the theoretical bond percolation problem.
If Nm is the cluster size, IPn(p)I M the probability of clusters of at

least size n, (P C)m is the critical probability for the munition problem,

Nt, (Pn(p))t , and (pcdt are the corresponding quantities for the analo-
gous theoretical bond percolation problem then

Nm t (4)

This implies that

(Pn(p)) m _< (Pn(P))t (5)

(p))m -< (P(P))t (6)

(pc t _ (pc~ (7)
c t c m

The developed model is a computational one, based on Monte Carlo
methods, and is capable of treating a bond, or a site percolation
problem in one, two, or three dimensions. The computation is started
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by setting up the computational lattice as specified by the input. A
site of the lattice, representing a munition round, is selected at
random. The selected round is considered to be detonated. If the in-
put specified that more than one round is initially detonated then a
program subroutine is called to select the remaining rounds of the
initial reaction set (ISET) from the nearest neighbors of the randomly
selected site. An array, (IND) in this computational model keeps record
of the status of each round in the lattice. Thus, in a two dimensional
bond problem, IND(i, j, 1) = 1, if the reaction propagated to the round
at (i, j, 1), IND(i, j, 1) = 0, otherwise. At the beginning of a typical
cycle of calculations, the bonds emanating from all sites at the reaction
front are examined to see which bonds propagate the reaction to their
nearest neighbors and which bonds block the reaction. This determination
is achieved by using a random number generator to generate a continuous
random number, r, such that 0 > r > 1, and r has a uniform probability
density distribution f r(r ). The sample space for r is partitioned into

two events, (i) the event E,, (r p), that the bond is unblocked and

propagates the reaction to a neighboring round, (ii) the event, E2 ,

(r > p), that the bond is blocked and does not propagate the reaction
to a neighbor. Because of the assumption that a round can only be
initiated by an immediate neighbor, the search process is limited to the
first generation neighbors of the reaction front. The newly detonated
rounds form the reaction front for the next cycle of calculations. The
location of the new reaction front at the end of each cycle is saved in
coordinate arrays. The calculation cycles are terminated when no new
rounds are detonated. This will complete a trial and a new trial is
initiated up to an input specified number of trials NTRIAL. At the
end of each trial the total number of reacted rounds in the reaction
cluster for the trial is saved in an array, ND(j). At the end of the
run, the mean reaction cluster size, and its standard deviation are
computed and printed. A histogram of the reaction cluster size n, is
printed together with values of the cumulative probabilities Pn(p), and

Qn(p) for a number of input specified values of n, where

Qn(p) = 1 - Pn(p). (8)

Several values of the interaction probability can be computed in a
single run. The developed code has a number of options that can be
either selected on input or achieved with a change of a few cards. The
code will print out the hierarchy of the reaction branching process
through the ammunition lattice if input specified. It is also possible
to treat the nonisotropic case of unequal interaction probabilities p

py, and p z. Another option treats also the synergistic case of making

the interaction probability p 1, when two neighboring rounds detonate
simultaneously.
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III. MODEL APPLICATION. The application of this model to various
munition problems requires that we determine the number of trials (r)
neededfor a certain case, in order that the mean reaction cluster
size, n, lie within a small c neighborhood of the expected value, E(n).
Let 2 be the lattice size; p, the interaction probability. Let n. beth
the cluster size on i trial.

1 !_ ni _ Y. (i = 1, 2,... r) (9)

Let p(n i = j) = p(j), (10)

then p(j) = 1. (11)
j=l

Let n. be drawn from a distribution whose mean is E(n) and variance2 1

a2 (n). Let

- n (12)
i--l

and let E(n), and 2(n) be the expected value and variance of n. It
is well known that:

E() E E(n), (13)

a 2(n) a (n). (14)
r

We want to choose r sufficiently large so that,

= (n)/V < £. (15)

Now o(n), and o(n) are not known, but

2 r2 -2a (n) Z (Zni - r. n )/r, (16)

hence, we choose r sufficiently large so that (15) is satisfied. If we
let
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E= ., (17)

then (15) reduces to:
r > 2(1)

For most cases o(n) ! n, hence for X = 0.1 and assuming equality to
hold we find

r > 100. (19)

Computationally, we studied the convergence of the mean cluster size n,
as a function of the number of trials r in a 20 x 20 x 1 lattice for the
cases p = 0.3, 0.4, 0.5, and 0.6 and found that r = 200 is sufficiently
large for most cases of interest. Figure 1 shows the results of this
study. The solid lines through the data points represent the means of
these points.

Computational studies on a number of two and three dimensional
lattices have shown that dn/dp attains a maximum for values of p close
to the theoretical values of the critical probability pc' for the

corresponding infinite lattice. Hence, defining the critical probabi-
lity for such a lattice to be the value of p for which the maximum is
attained, we found that for 100 x 100 square lattice pc M 0.51 and for

40 x 40 x 5 cubic lattice pc = 0.305. The corresponding theoretical

values for the infinite square and cubic bond percolation problems are
0.50 and 0.254.

The above model was used to study the variations of the mean cluster
size n, as a function of the interaction probability p, and the
stacking method for three lattices L1 = 100 x 80 x 1, L2 = 40 x 40 x 5,

and L3 = 20 x 20 x 20. Figure 2 shows the results of the study and re-

veals the advantage of stacking ammunition in a two dimensional lattice
over a three dimensional lattice. It is realized that the probability
of hit is greater in the two dimensional case due to the larger exposed
surface area. Figure 3 shows a comparison of the mean cluster size as a
function of p, in a lattice for the isotropic case, the synergistic
effects case, and the nonisotropic case where the interaction probabi-
lity in one direction might be large as is the case with HEAT (High
Explosive Anti-Tank) munitions. Figure 4 shows a comparison of three cases
with decreasing interaction probability in one direction. Some HE muni-
tions, e.g. the 155 mm projectile, have small interaction probability in
a nose to nose configuration. The case Pz = 0.01 represents such a muni-

tion and is seen to be close to the two dimensional case if packed in a
nose to nose configuration.
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IV. CONCLUSIONS.

The framework of percolation theory offers a means of studying the
problem of propagation of the detonation in an ammunition store as a
bond percolation problem.

The stochastic model constructed and used to study the survivability
of an ammunition store shows that survivability depends on the inter-
round interaction probability p, as well as on the stacking procedure of
the ammunition.

For a given stacking method survivability dictates that the inter-
action probability p, be less than a critical value pc' for the lattice
in question.

For given ammunition characteristics (p), and quantity, survivability
dictates that they be preferably stacked in a manner as close to the two
dimensional lattice as possible; rathcr than a three dimensional lattice.
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TERRAIN MICROROUG{NESS AND THE DYNAMIC
RESPONSE OF VEHICLES

Richard A. Weiss
Mobility Systems Division

U. S. Army Engineer Waterways

Experiment Station, Vicksburg, MS 39180

ABSTRACT. The design of vehicles with particular operating character-
istics on rough terrain requires accurate descriptors of terrain roughness.
At present a one parameter description of surface roughness is available
that uses the standard deviation of a detrended elevation profile. In order
to introduce the frequency content of the terrain into the roughness de-
scription, a three parameter model of the surface roughness power spectrum
is developed whose parameters are determined from the values of the standard
deviation of displacement, slope and curvature obtained from a detrended
elevation profile. The three parameter model predicts five distinct types
of power spectra which can be used to classify terrain roughness including
the cases where periodic features are present. For some types of terrain
it is not necessary to use detrended data, and for these cases the power
spectra are developed using an undetrended formalism.

The three parameter roughness model can be used to predict the power
absorbed by the driver. The effects of vehicle geometry including wheel
size, wheel spacing and track length are introduced in a natural way through
the roughness model. Vehicle dynamics effects including the location of the
driver relative to the center of mass of the vehicle are introduced by trans-
mission functions. A comparison with experimental absorbed power data is
made.

PART I: INTRODUCTION. The dynamic response of a specified type of wheeled
vehicle operating on a terrain depends on the vehicle speed and the terrain
roughness. For satisfactory operation of both vehicle and driver, the dynamic
response of the vehicle must be predictable for a given type of terrain. To
achieve this prediction capability, the U. S. Army Engineer Waterways Experi-
ment Station (WES) was requested to develop improved methods of describing
terrain and use them to calculate the resulting vehicle and driver motion.

A description of terrain roughness is especially important for the de-
velopment of new vehicles because ride tests on various types of terrain are

required to evaluate new design concepts. An accurate surface roughness
description is required to separate the effects of a new vehicle design from
the effects introduced by the surface roughness properties of a test site.
Both the frequency content and the amplitude of an elevation profile will
influence the ride quality of a vehicle, and an effect observed during a
vehicle ride test may be due to a peculiarity of the terrain roughness rather
than a specific vehicle effect.

The development of new vehicle designs is helped by a thorough under-
standing of how changes in the geometry and dynamics of a vehicle will inter-
act with the terrain roughness to produce changes in the ride quality.
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Especially important are the effects of geometry including wheel size, wheel
spacing, driver location and track length, and the effects of dynamical param-
eters including spring constants, damping constants and the weight.1 The
effects of soil conditions are not treated although they may be important to
the vehicle response.

Description of Terrain Roughness
A description of surface roughness begins with a measurement of an ele-

vation profile, Figure la. Elevations are measured at small intervals
(usually one foot or one half foot) over a distance of several hundred feet.
Numerical differentiation gives the slope and curvature profiles. The mea-
sured elevations include gradual changes of elevation over a long distance.
In some cases this nonstationary character of the measured elevation profile
may have to be removed by a detrending procedure in order for the data to be
processed. In other cases the measured elevation data can be used directly.

Roughness can be described as a stationary random process if the statis-
tical properties of the profile height do not change with position along the
profile. To remove nonstationary trends from the data a detrending procedure*
is applied to the data which removes the very long wavelengths (the trend),
see Figure lb. The mathematical procedure for obtaining detrended data is
given by

2

Fd(x) = F(x) - A f[F(x + a) + F(x - a)]e - a/A da (l)
0

where Fd(x) = detrended function

F(x) = original function
A = filter constant (detrending constant)

Computer program RRFN has been developed to calculate the detrended data from
the original input data.

1

After removing the trend the question still remains as to the frequency
constant of the terrain roughness. This is important because a dynamical
system such as the spring support of a vehicle has a resonance frequency, and
this resonance may be excited if the vehicle runs over a given terrain at a
specified speed. Therefore it is of importance to know the wavelength content
of the terrain roughness because this will determine the frequency content of
the input displacement, velocity, and acceleration on the wheels of the moving
vehicle. The wavelength content of a terrain displacement profile can be
described by a power spectral density function.

The power spectral density (PSD) gives the spectral density of the
variance of a random process. 2 -4 Therefore, a

= V = f PSD dQ (2)

* "Detrend" means to remove the trend of the elevation variations.
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where a = RMS value of the random process = standard deviation for zero
average value

V = variance
0 = spatial frequency = reciprocal wavelength number of cycles/meter

In this paper the RMS value and the standard deviation will be used inter-
changeably because the baseline can be chosen so that all average values are
zero. The PSD gives a measure of the frequency content of the random process.
For example, the surface displacement profile PSD is a measure of the wave-
length content of this profile.

One Parameter Model
A descriptor commonly used in terrain roughness models is the standard

deviation (RMS) of displacement obtained from a measured elevation profile.
The one parameter roughness power spectrum can be calculated from the value
of the RMS displacement. The one parameter power spectra of the surface dis-
placement and slope can be written as

2
,
5

pd(Q) _ C (3)
d 2

Ps(Q) = (2 T )22 si AL)] 2P() (4)

where Pd = PSD of displacement profile

P s = PSD of slope profile
C = roughness parameter

AL = interval of elevation of profile measurement
For the undetrended case the RMS displacement integral (2) does not converge
with P given by equation (3), however the RMS slope integral (2) does converge
with P given by equation (4). For the single parameter model a theoreticalS.

expression for the RMS value of the displacement can only be determined for
detrended data, and the theoretical need for detrending is that it allows the
elevation power spectrum integral to he evaluated. For this reason the value
of the parameter C must be determined from detrended data. The spectral win-
dow function occurring in equation (4) introduces the interval of measurement
of the elevation profile.

The power spectrum for a detrended elevation profile can be written as
2

P DET AA) = (2n)4()4 -
T I I + (2n0)21

0 -2pd (0)

where the detrending function 1 is defined by

I : 1 + (2nAD) - 2  (6)
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Since the RMS integral of the slope power spectrum converges, Van Deusen uses
the undetrended slope power spectrum given by equation (4) to calculate the
RMS value of the slope. The integrals presented are

2

G2 (Undetrended) = J Pd(Q)dQ Diverges (7)

o2 (Detrended,X) = itP , A) dQ - XC (8)
d eee fdDET,d 2  2

G2 (Undetrended) = J P (Q)dQ 2n2C (9)
s 0 S AL

where 0d = standard deviation of terrain displacement

Y = standard deviation of terrain slope
s

A determination of the RMS displacement for detrended data (by computer
program RRFN, for example) immediately determines the constant C, and there-
fore the power spectrum for the undetrended data is calculated. Two basic
theoretical concepts are introduced in the one parameter model: (a) the
detrending function which allows the elevation RKS value to be calculated
analytically, and (b) the slope spectral window function which introduces the
measurement interval of the elevation profile. The value of a can be used to
calculate C directly from undetrended data using equation (9).

Three Parameter Model
A comparison of the one parameter monotonically decreasing power spectrum

Pd = C/(2 with the power spectrum values obtained by calculating the Fourier
transform of the autocorrection function of an elevation profile suggests that
the one parameter representation is valid only for high spatial frequencies
of the terrain roughness. Also, quasi-random terrain areas such as plowed or
disked agricultural fields cannot be described by a one parameter model be-
cause a pronounced peak occurs in the measured power spectrum at a frequency
corresponding to the width of the plowed furrows.

A more complete description of surface roughness is needed, one that goes
a step beyond a one parameter characterization that is based on a single RMS
value of surface displacement. This paper introduces a three parameter rough-

ness power spectrum model that can describe terrain areas having periodicities,
and gives a better description of the roughness power spectrum in the long
wavelength region.

The three power spectrum parameters are determined from the values of the
standard deviations of the displacement, slope and curvature of a measured
elevation profile (Figure-la). The power spectrum determined by these param-
eters is found to be of five distinct types of which the Van Deusen form CO

2

is one. The displacement power spectrum Pd(0) is found to be a complicated
function of frequency that includes spectral windows of definite bandwidth.
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The resulting frequency channels of power transmission and power suppression
may be responsible for the anomalous dynamic response of some vehicles on a
given terrain.

Actual terrain locations where military trucks and track vehicles are
expected to operate can vary considerably in quality (frequency) as well as
their RMS values of elevation. Terrain types such as trails, cultivated
fields, virgin terrain, test courses, etc., are expected to be encountered by
military off-road vehicles. An attempt is made to classify terrain roughness
in terms of the five basic types of roughness power spectra by associating
each terrain site with one of the five types of power spectra. The type of
power spectrum associated with a terrain site will determine the nature of
the dynamic response of a vehicle moving over that terrain. In this way the
expected dynamic response of a vehicle can be related to a specific terrain
site. A computer program TERR was developed to accomplish this work.'

Absorbed Power
Driver fatigue can be related to the power absorbed by a driver during

the operation of a vehicle. Absorbed power is a physiological concept and by
definition it is related to the acceleration power spectrum measured at the
drivers seat.6 Experience has shown that a driver can absorb no more than
six watts of power and be physically able to drive a vehicle for an extended
period of time.7  It is of military interest to be able to predict the vehicle
speed that corresponds to the six watt absorbed power level, and to determine
the terrain roughness descriptors required to do this.

At present the six watt speed is estimated from the RMS value of surface
displacement as determined from a detrended elevation profile.8 - 13 This
single parameter terrain roughness description is sometimes found to be inad-
equate because the frequency content of the ground surface elevation is not
considered. The three parameter terrain roughness description was developed
in part to improve the method of determining the six watt speed by including
the effects of frequency content.
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PART II: THEORETI CAL ROUGHNESS MODELS

INTRODUCTORY REMARKS. Terrain areas can be natural or man-made or a com-
bination of both types. Natural terrain elevations appear to be random, but
some features such as windblown sand dunes have an apparent regularity. Man-
made areas such as roads, trails, plowed and disked fields, etc., can contain
apparent regularities although their elevation profiles are still character-
ized as random data. Plowed fields, for example, exhibit a quasi-sinusoidal
pattern and will have a power spectrum that peaks at a spatial frequency that
corresponds to the quasi-sinusoidal pattern. This case clearly cannot be
described by a one parameter power spectrum of the form Cp- 2 which is a
monotonically decreasing function of spatial frequency. This part of the
paper develops a three parameter power spectrum model that can be used to
describe random terrain roughness elevation which include regularities, man-
made or natural.

The power spectrum coefficients of the three parameter model are calcu-
lated from the RMS values of elevation, slope and curvature that are obtained
from a detrended elevation profile or from an undetrended elevation profile
when possible. The values of these three parameters can be used to classify
terrain roughness.

FORM OF THE THREE PARAMETER POWER SPECTRUM. This section suggests an
appropriate form for the three parameter roughness power spectrum. The choice
of the form of the three parameter power spectrum model is a natural extension
of the Van Deusen one parameter model C - 2 . Figure 2a shows that the PSD of
the undetrended and detrended displacement profile is described by the form
CQ "2 only in the region of large Q (short wavelengths). For small 0 (long
wavelength) the PSD deviates from that predicted by CQ- 2 . Additional param-
eters are required to describe the deviation from CQ- 2 in the region of small

(. Assuming that the short wavelength region is accurately described by the
form Cf "2 , the modification of the PSD must consist of terms Q-C (with a > 2)
that are added to the Cf- 2 term. In this way the modification of the PSD
becomes important only for small 0 and approaches the form Cp-2 for large Q.

The PSD for undetrended surface displacement can be written as a general-

ization of COV"2 in the form of a power series as follows

Pd = CO-2 + D(- 3 + EQ -4 + ... (10)

For practical calculation, the power series must be cut off at some finite
term. If two parameters are chosen to describe Pd in the form

Pd = CQ-2 + DQ'- (11)

then the measurement of both (d and 7s is required to determine C and D. If

three parameters are chosen to describe Pd in the form
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P= Cf-2 + DQ- 3 + EQ' 4  (12)

then ad, a and a would be required to determine C, D, and E, where
a = standard deviation of curvature (second derivative of elevation with

c
regard to space coordinate). In this paper the term curvature will be used
to describe the second derivative.

Polynomial models beginning with the term AQ 1 such as

Pd = AQ-' + CU-2 + Df- 3  (13)

are not valid for two reasons: (I) they do not approach the Van Deusen form

CO-2 for large 9, and (2) the integral f Pd0-2 dQ for detrended data has a

logarithmic singularity and cannot be evaluated.

The short wavelength (high frequency) part of the power spectrum is de-
scribed by the parameter C, while the long wavelength (low frequency) part of
the power spectrum is described by the parameter E. The middle ranges of
frequency are determined by the parameter D. The values of the power spectrum
parameters C, D and E are determined by the type of terrain elevation profile

that is measured, and these parameters can be used as descriptive numbers to
classify terrain roughness.

CLASSIFICATION OF TERRAIN ROUGHNESS. This section shows how a terrain

roughness classification can be developed in a natural way from the algebraic
signs of the parameters C, D and E. Terrain roughness can be classified

according to the shape of the power spectrum associated with the natural ele-
vation profile. The shape of a theoretically predicted roughness power spec-

trum is determined by the values of the parameters C, D and E. These param-
eters will be determined from the values of ad' a and a associated with the
elevation profile. c

A priori, the values of the three parameters can be positive or negative
yielding a total of 2 x 2 x 2 = 8 possible types of power spectra. But the
case C < 0, D < 0 and E < 0 must obviously be excluded because the power spec-
trum must be positive at least in some frequency range. This leaves seven
possibilities. But of these seven cases two are redundant and only five
physically distinct types of elevation power spectra are possible for the
three parameter model. These are shown in Figure 2b. The basic forms of
Type 2 and Type 3 remain unchanged for D > 0 or D < 0 so that either sign
still represents only one spectral type, and this redundancy yields only five

distinct spectral classes.

The one parameter power spectrum CO "2 is seen to be a special case of a

Type 1 power spectrum with C > 0, D = 0 and E = 0. Type I power spectrum con-
tains all frequencies with little power at the high frequencies. Type 2 has
no power at high frequencies. Types 3 and 4 have pronounced peaks at definite
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frequencies and can be used to describe a large scale rolling type of terrain.
Type 4 with D 2 < 4CE gives a power spectrum which is all negative and so this
case must be excluded. Type 5B with D2 > 4CE describes the situation where a
high frequency periodicity occurs within the train, such as in the case of
plowed or disked fields. Type 5A with D2 < 4LZ can be considered to be a
special case of Type I where the power is positive for all frequencies.

Power spectra, by definition as the Fourier transform of an autocorrela-
tion, are always positive. Therefore only the frequency ranges where Pd(Q)
is positive in Figure 2b are physically acceptable. The regions where

P (0) become negative must be regarded as physically unacceptable for power
transmission and Pd(0) is set equal to zero here. In this manner it is seen
that the roughness power spectrum Pd(0) is not in general a simple function
but rather may contain cutoff frequencies (00 and 9 1) which produce "windows"
(bright areas) and zero power areas (dark regions) of definite bandwidths.
Therefore only in distinct frequency regions may power be transferred to a
moving vehicle. The type of power spectrum exhibited by a given site is de-
termined from measured values of ad , s and a from which the values of C, D
and E are obtained. d s c

The power spectra used are one-sided because they are defined only for

positive frequencies. Sometimes two-sided power spectra are used which are
defined for positive and negative frequencies. The two-sided power spectra
can be obtained as mirror images of the one-sided power spectra. Power
spectra must be symmetrical about the zero frequency axis because they are
defined as Fourier transforms of autocorrelation functions which themselves
are symmetrical. The power spectrum model given in (12) can be used for nega-
tive 0 by choosing i113 , absolute value of , in the regions of negative 0.

The type of power spectrum obtained from an elevation profile will depend
on the length of the measured profile. Therefore the classification of ter-
rain areas will be scale dependent, and a comparison of two terrain areas
should be made on the basis of equal elevation profile lengths. This paper
does not investigate scale dependence.

The five possible types of roughness power spectra are associated with
the choice of a three parameter power spectrum model. The choice of a greater
number of parameters would produce more complicated power spectrum shapes.
For example a four parameter model would exhibit two additional types of spec-
tra giving a total of seven types. The three parameter choice made in this

paper is justified by noting that Newton's law of motion relates the force act-
ing on a vehicle to the acceleration input. Therefore as far as vehicle dynam-
ics is concerned there are three stochastic kinematic quantities to be obtained:
acceleration, velocity and displacement. This suggests a three parameter sur-
face roughness model because the standard deviations of velocity av and accel-

eration a can be related to the standard deviations of the slope a and cur-a s

vature c, respectively, of the terrain elevation profile (Part I1). There-

fore the calculation of the basic kinematic quantities associated with the
vertical dynamic response of vehicles (ad, av, a ) requires the three measured

456



roughness quantities ad, as and a from which three power spectrum parameters
(C, D and E) can be determined.

THREE PARAMETER MODEL OF DETRENDED TERRAIN ROUGHNESS DATA. This section
develops the formalism and mathematical details required to evaluate the power
spectrum of a measured elevation profile from the RMS values of the elevation,
slope and curvature obtained from the corresponding detrended elevation pro-
file. This is done for each of the five types of power spectra described
above.

For roughness power spectra of Types 1, 2 and 5 it is impossible to use
values of ad, a and a obtained directly from undetrended data to calculateS c
the power spectrum coefficients because the integral ofPddg diverges (at (2 = 0)

for the form of power spectrum given in equation (12). These three types of
terrain roughness must be handled using detrended data and the values of ad,
a and a for detrended data can be related to integrals of the form

s c

ODPd -2d2O which converges. For roughness spectra of Types 3 and 4 it is

not necessary to use detrended data because the integrals defining d'. GS
and a are defined from a lower cutoff frequency go and so the singularity atc
0 = 0 is avoided and undetrended data can be used. But the detrended formalism
can be applied to spectra of Types 3 and 4, and this section evaluates the in-
tegrals that appear in the mathematical expressions for ad, as and C (for de-
trended data) for all five types of terrain roughness power spectra.

For the power spectrum given by equation (12), the values of Pd" Ps and
P for undetrended data areC

Pd = Cg-2 + DO- 3 + EQ- 4  (14)

Ps = (2tr)2(2 (CQ-2 + DO-3 + EQ-4) [sin MAL)] (15)

= (2n)4g4(CQ-2 + Dg-3 + E- 4) sing)]4 (16)

The form for the slope and curvature PSD is developed in Reference 1.

The necessary integrals for the detrended scheme of the three parameter
model will now be evaluated. This will be done for each of the five basic
types of roughness power spectrum.

Type I Power Spectrum
The variance integrals of Pd and P cannot be performed directly on (14)

and (15) because they are singular for 0 = 0. In order to calculate C, D and
E, the variance of the detrended displacement, slope and curvature profiles
must be used. For the case of detrended data the displacement, slope and
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curvature power spectral densities are P d -2  p Ps0-2 and P c-2 respectively

where 40 is defined by (7). From (14) - (16) the RMS values of the detrended
terrain displacement, slope and curvature are

d2 =d = j'Pd0-2dQ = Cft(X) + Df2 (A) + Ef3 (A) (17)

02 = V = JfP s- 2dQ = Cg1 (A) + Dg2 (A) + Eg3 (A) (18)S s 0 5

a2 = V = fcP 0 2di? = Chl(A) + Dh2 (A) + Eh3 (A) (19)
c c o c

The values of a2, a2 and a2 are represented as a linear combination
s c

of integrals where the f.(A), g.(A) and h.() are given, with b = 27A and
a = TAL, as

fl(X) U-20-2d!Q = Of (r2dQ (20)

S(1 + b2(2 )
0 0

f2 (A) = -- dQ = bf ( d 2 (21)P (I + b2Q2)

0 0

o 0

8 1 (A) = (2n)2  a10-.dfl = 0) Q +in2(2)d (23)fsi / f ( + b2 2)
0 0

g2 (A)= (2n)
2  sin ag 20-2d = (2n)2b4  0 ( sin2 (a(t)dQ (24)f t /2 f ( + b2 2)

0 0
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fI sin2 (afl)d{2

g3(X) = (2n)2  -  ¢d - (+bZzz25

h93M (2) 4 D 2 1 siina) (2n)b 4  f 2 sin 4 (aQ)d2 (6

f2) a a frd (I1+ b2fl2 )'

0 0

o o

h (271sin.24sin a 4 (2) 4 b 4  Q sin4 (aQ)d Q

h 2 ( X ) = ( 2 i r) 4  
_ _ _ _ _ _ _ _2 7 )

f an ) -2di --- a4- f (I + b2Q2 ) (26)
0 0

h( = (20 4  /S(fL aQ)4 2dQ (2n)4b4  sin4 (a)dQ (28)
f ~ a? a' f (1 + b2Q 2)

0 0

Note the integrals gl, g2 , hl, h2 and h3 diverge where a = 0, so that a ands
ac diverge for AL = 0. Only for the case AL 0 are cid, U and 0o properly

C

defined by infinite integrals when Q 4 0 . Also, the integrals representing
od and a would diverge in the low frequency limit if the detrending factor

0-2 were not inserted into these integrals. In other words, whereas AL $ 0

avoids singularities at high frequencies, the detrending factor 0 2 avoids
singularities at low frequencies.

The values of the integrals in (20) - (28) are evaluated in Reference I
by complex integration using the contours shown in Figure 2c, and have the
following values

f(X) = 7b (29)

b2
f2(A) T2  (30)

f3 b3 (31)
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g ( -[(b +e2ab+ e2a/b (32)

n2b 2a/b e2a/b9200) e Ej (2a/b) + e- E*(2a/b (33)

nab3* -~a/b) 2a/[]

g3(X) 2- 1 - -e ) e- (34)

4r5b e ba e-2a/b I - 2a/ (35)
h (A) a + 8 2 1 2

4n4b 2a/ ea/ _ 1
h2(A)= b e2a/bE (2a/b) + "2a/bE*(2a/b) [ e4a/bEi(4a/b)

ag - 1 
2+ e 4a/b E*(4a/b)] (36)

h4(A) b3  3 1 -2a/b 1 -2a/b - a e2a/b 1 -2a/b\1 (37)
a 47 8 21 4 b 21-~ j

where E, (x) and E*(x) are exponential integral functions which are tabulated
in the literature. The exponential integrals are defined as follows

E1 (x) = -Ei(-x) f dt (38)

x

E*(x) = Ei(x) f t- dt (39)

For small values of x these functions have the following series expansions
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x
2  x

3  x
4  x

5

E (x) = -¥ - loge(X)+ __ _ + (40)
e 2!2 3!3 4!4 5!5

*( +lg()+x+X
2 

+-X3 X
4  X

5

E * x o e ( X i+! x3 + - 3 +  -- +  +  " "( 4 1 )

where Y = Euler constant = 0.5772157.

Type 2 Roughness Spectrum
Detrended data must be used for this case. The integrals defining Vd' V

and V are (see Figure 2b) 'C

CY 2 Pd -2dQ = CAfl(A,Q0 ) + DAf2 (A,QO) + EAf3 (A,Q0 ) (42)
do d

0

(2o

=/ Ps- 2d = CAg1 (X'Q°) 
+
- D~g2(A 2o) + EAg3(A,Qo) (43)00

a P02d CAh1(X,00) + DAh2 (AJ? 0) + EAh3(A9Q0 ) (44)

0

=J2 Pc0- 2&a = CAhl(,Qo) + DAh2(A,0O) + EAh3(A,flo) (44)
C =

where the integrals Af. (A,Q0 ), Ag (A,Q0 ) and Ah.(A,Q0 ) are given by

Q 2dQ b - sin 0o cs 0J (I + b2g 2 ) 3

0
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2o

(,o) + dbf) - (0o+ sin O cos 0 o) b4oo (47)

where

O0 = tan-'(bQo) (48)

00

Ag 1(A'00) = 2 O 
2 sin 2 (afl)dQ (49)a) ~(I + b2f)2 )

1

0

=1(2)2 0 ELO6O) - L(2a) (0) + L2) (2a )-

where

L(1O 23 b2pg + 3 b4f,. b 608 + b8Q "'
LO(Go (3 5 7 91-

L,2a) Q sin (2a) 2f0 cos (2afo) 2 sin (2aQo)2a +2 3
(2a) (2a)

L(2a) ((o) = 2b2 1[4(2a)2fl- 241 0o cos (2ago)
2 (2a) 4

+ [(2a)4Q- 12(2a) 208 + 24 sin (2ago)
- (2a)S

00

Ag2 (A,00 ) (n)2b0 f Qlsin2 (aO)dQ (50)
a 01 + b2nl

2 )
x

0

2= ()2 o((o) - W(2a)(0o) + W( ) ()
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where

Wooo ( - 2o+ b4()8 ... )

W(2a) (QO) n0 sin (2aQ o ) +cos (2aQ
= 2a (2a)z ?2a)

2) 2b 3 6 (6 2a6 sin (2ago)>

W 2a) C2 = 2b]CSL (2a2 O ) + F2 -a 2a s2a)

Qo
D( 2_q2b sin2 (aQ)dn (51)

Aga(,Qo) =A93(X,0) a f (I + b 20 2 )

0

= (2n )20 [H 0 620  - H (2a) (00) + H(2 a) (00

where

2 b 2 n8 + 3 b4 - 4 N608 + b g .H°(Q°) Q0 (1 3 b 0

(2a) sin (2ano)
H1I (00 ) -2a

2a os(2

S sin (2a)+_ os (2a) 2 sin (2aQp)i
~C2a (2a) 2 (2a)' J



go
ah1(\,0 ) 2=s 4 n--- s)d4 (52)

(a f ~(I + b202) (2

0

- i Lo(Qo) - 2 L...) L2 (go) +

+ 1 (4a ) - (4a) +
2 2 30

where

L(4a) ( =
-jsin (4aQo) + 2 cos (4a2) _ 2 sin (4aQ O )

- 4al (4a)" (4a)

L (4a) (0) 2b2 [4(4a)2g)A 24] Qli -. os (4apQ)

(4(4a)

+ 4a0- 12(4a) 24] s4i-

- ( 4 Wo(go) - 2[W2a) g - W(2d) MO) +

+ ( 0 W (4a)W) +

where

W(4a)CQ0)) Q _sin (4a )D) + cos (4ao) I
S4a (4a)2  (4a)
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2-k-T__cs(ao+ _4(4a) (0) 22[3" 6 6 6 -- gfo sin (4afro)
W )(Qo) -- 2b2~ (4a o] (4afo) + 6 + (4a4] n

no
0Ah3 ,__) = (54)

f (I + b20
2 )

(L,,)4 - 2 H 2a)(go) H2a)( Qo) +

+ [4) (00) H (4a) (00) +

where

H(4a)(So) _ sin (4a 0 ) -4a

H(4a) (00)= [Q22 sin ( 4 aQO) + 20 0 cos (4aQ2p)_ 2 sin (4aQ_)1
2 ( - 4a (4a)2 (4a)

Type 3 ughness Svct rum
Either the detrended or undetrended procedure can be used for this case.

The integrals defining V and V for the detrended case are (see Figure 2b)

(72-=fP 14-2d) - Cf,(Aj( 1 ) + Df 2 (A,tIo) + Ef 3 (An O ) (55)d  I,

00

(72 = f Ps 2 d = CgI(Ajg°) + Dg 2 (Alk, 0 ) + Eg 3 (AkQ°) (56)

o2 = fPC -2dO = Chl(A,\Q°) + Dh2 (A\,QO) + Eh3(A,O) (57)
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The integrals f-(A,0 0 ), g.(A,\,o) and h.(X,go) are given by

j3 3

-f ) -A(,) Af (A, 0) (58)

f ( 1 + b2 2 )

9 n) 2 0f 03-i sin2 (a(6)0

gj A n° (I + b 2()2 1)7 gj ( ) -Agj (X PoO) (59)

glo

h PT 4( b~ 4 f - _sn'__(a)dQ hjX (A) A0) (0
( (I b2 2 )

(0

Typ__4 Power Spectrum
Either the detrended or undetrended scheme can be used for this case.

The integrals defining Vd' Vs and Vc for this case are (see Figure 2b)

0,

O= J.Pd4-2dQ' Cf1 (A,1}o,,Q1 ) + If 2(A,(2,,) + Ef3(A,00o,Q1 ) (61)

sJ a

00
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G2  P f -t2dQ =Chl(X, 0 1,Q1 ) + Dh2(X,00,021) + Eh3 (A,()0 ,fQ) (63)

The integrals f.(A,020 ,01), g.(XQ 0 ,Qj) and h.i(A,0 0 ,01) are given by

0 t2 -jdl- = Af.(A,0 1) - Af.(AIN?) (64)
-~ ~ J (+ b2 112 ) '-

9 (7l)2) Af si !)I=AG.,Q 1 ) - Ag.(Ak,0 0 ) (65)
d~/ (I + t,202)JJ

ii ) (2n)4~ 1, f 113- S,11 (A,W,) - Ah (A,Q0 ) (66)
a1 I + bI2

Type 5SB Power _Spt rum
The (etrended scheme must be used for this case. The integrals defining

V dtV sand V care (see Figure 2b)

U2 f -2dQ + f p1jqj 2 dQ (67)
0

-C6fl(A,Q 0 ,Qj) +- D6f2(X,(0 ,1Q1) + E6f3(A\,Q,()1 )
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G2  P f P 2 di) + f P 2dQ2 (68)

-C6g 1 (X,Q,Q21 ) + D6g2CA,00,01) + E6g3(XQ 0,C21)

02 P 02dO2 + f P0r2dQ2 (69)

=-~,X0,1 + D6h2(A,f1OIQI) + E6h3 (A,fQ0 ,01)

The integrals 6f.(A,00,01), 6g.A, ,j and 6h .(A, 000 1) are given by

6f(\000) A + f.(Ak,Q,) f (A) + Af (A,,n) - Af (A,u 1) (70)

6g.(A,0 0 ,0 1) iAg.(A,'10) + g.(A,01) g.(A) + Ag.(A\,Q0 ) - Ag.(A\,O,) (71)

6h(AQ,) Ah.(A,Q0)) + h.(A,Q,) h h(A) + Ah.(A\,Q 0) - &~h (\,Ql) (72)
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Three Parameter Model of Undetrended
Terrain Roughness Data

This section considers the use of undetrended nonstationary elevation
profiles to determine the surface roughness power spectrum. If the terrain
roughness power spectrum has E < 0 as in cases Type 3 and Type 4 of Figure 2b
there is a lower cutoff frequency go for the power spectrum and the diffi-
culties associated with for integrals for 0 4 0 do not arise. For this case
undetrended roughness data can be used to determine the power spectrum coef-
ficients C, D and E, and a detrending constant A does not enter into the
calculations. Types 1, 2 and 5 power spectra do not have a lower cutoff fre-
quency and therefore must be obtained from detrended data.

Type 3 Power Spectrum
For a Type 3 roughness power spectrum that exhibits a lower frequency cut-

off, the integrals expressing ,d' 3 and ( for undetrended data in terms
of the power spectrum coefficients are (see Figure 2b)

oY f (CO-2 + I?3+ EQ-4)dQ =Cf 1(Q0) + Df2(Q0 ) + Ef3 (0 0 ) (73)

no

= (2n)2 '(C-2 + DX " a + Etr)4  sin 2 (aQ)dQ (74)

- Cg1 (00 ) + Dg2 (go ) + Eg3(0 O )

= () OD -2 + -3 + EQ-4 sin 4 (aO)dQ (75)

= Chj(n0 ) + Dh2 (go) + Eh3 (0o)

where d' a and a are obtained from undetrended data.
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The integrals to be evaluated are

f 2 MO) dO(77)

f3(% (78)

(QO) i (80

RIMO) (;n)2f sin 2 (a(28dO 79

(2f)2/ sin2 (ag),(I(81

g300 (82)

h 1 00) a fo(82

470



h26 2n = 2~4 /ksin4 (aQ)dO (83)

(o )4 fsin4 (an)dQ (84)

0

The integrals f1 (Oo), f2 (0o), f3
(
00), g2 (00)' and 93 (00 ) diverge in 

the long

wavelength limit Oo 4 0.
The evaluation of these integrals is done in Reference 1 and yields the

following results

f1 (Qo) . o-I 
(85)

= 2(86)

f3 00) = 
(87)

3

g2Q 2n-V2 (i. 2a) (89)

(0 ) =  -a-- io- I

2n2( (2) (89)

?n2( I (2) (90)

g3(0o) = -
(94)

h .MO) 1(42a) + ( ) (91)
a 8 o 2 2 (91)
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h2( W 0) (27R)4 (LI _ ~1 2a+I 134a (92)

(Zlt)4(I I _ I(2a) I 1(93)

where the I's are given by

1(za) cs(aO( 2a) 0cos_( 2a o + 2asi(2ago) (94)

(2a) cos _Q ao)a - sinZql +(2a2Ci

13 a2 Ci(2aQ°) (95)

1(2a) cos (2ag ) - a sin (2a0o) 2a2 cos (2a~o) 4 a3si(2aQo) (96)4 3 306 30o "

12a) cos (4ao) + 4asi(4a0o) (97)

1 (4a) = co4a() 2a sin (4ago) + 8a2Ci(4ao) (98)

4a)_ cos (4aQo) 2a sin (4aQo) 8a2 cos (4a0o) 32314D "3o - a~si(4a0o) (99)
303 3J O -3

and where sine integral and cosine integral functions are given by
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si(t) f sin x dx = - + t - t5  - + (100)
x 2 3!3 5!5 7!7

Ci(t) f cosx dx = y + logt - 2!2 + t4- 616 + (101)

where y = Euler constant = 0.5772157. This completes the analytical evalua-
tion of the integrals f.( 0 ), g.(00) and hj(iO).

Type 4 Power Spectrum
A Type 4 roughness power spectrum exhibits a spectral window having lower

and upper frequency cutoffs go and 01 respectively. The integrals defining

ad' as and Yc are written as (see Figure 2b)

J (Cg-2 + + Ef-4 )dQ = Cfl( 0 ,01) + Df2 (00 ,01 ) + Ef3(?o,2 1) (102)

02= ()2f (C2 + Dg - 3 + EQ - 4 ) sin 2 (aQ)dQ (103)

- Cg1 ((1O,Qj) + Dg2 (QO IQ) + Eg3( 0 ,01)

2= 24f 0(C -2 + DQ-3 + EQ -4 ) sin 4 (aQ)dQ (104)c a) o0

= Ch1(l0,01 ) + Dh2 (00,1) + Eh3 (Q0 ,01 )

where 0d, Gs and c refer to undetrended data, and where the integrals

f. 0 Q 1 ), gj(0o,0 1 ), and hj(Qo,Q1 ) must be evaluated analytically.

By writing the integrals in equations (102), (103) and (104) as

f= f - f , the following values of these integrals are obtained.

o go fl

fj(-o,01) = fj, oo) f.(0 1) (105)
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g (00 ,0 1 ) = gj(0o) - g(0 1 ) (106)

h.( = hj( 0o) - h (01) (107)

where the functions f (0), gj(Q), and h.(Q) are given by equations (85)
through (93). J

Calculations of the Parameters
of the Roughness Power Spectrum

This section gives the procedure for explicitly calculating the power
spectrum coefficients C, D and E, and also the cutoff frequencies 0o and 01
which occur in Type 1 - Type 5 power spectra. The values of the integrals
f. (A), g. (N), h (A), and Afj (A,Q0 ), Ag. (A,0o), and Ah. (A,00 ) for the de-

trended case; f (0o), gj( 0o), and h.(Q0 ) for the Type 3 undetrended case;

and fj(0 0 ,01 ), g.(0o,1), and h.(0o,0 1) for the Type 4 undetrended case have

now been evaluated. These integrals are used to calculate the coefficients
C, D and E (and Qo and 01 where necessary) that describe the power spectrum
of the actual terrain elevation profile.

The detrending proceudre can be applied whether or not there is a lower
cutoff frequency Q0 , and therefore this procedure can be applied to all of the
five power spectrum types shown in Figure 2b. The detrending procedure must
be applied to power spectra of Types 1, 2 and 5 because these cases have pos-
itive values of power spectrum in the limit Q 4 0. For Types 3 and 4 power
spectra either the detrended or the undetrended formalism can be used. First
the calculation of C, D and E for all five types of terrain roughness will be
done using the detrended scheme, and then C, D and E will be calculated for
spectral types 3 and 4 using the undetrended scheme.

Detrended Scheme

Type I (C > 0, D > 0, E > 0), Figure 2b.

The three simultaneous equations (17) - (19) yield

V d f2 Mx f.(\) ff(X) Vd f3 (A)
V g2 (A) g3 (A) g1(A) V5 g3 6k)
V h2 (A) h3(D) h1 (\) V ch 3 ()

DET(A) D = DET(X)
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fl(A) f2 (A) Vd f1 (A) f2 (A) f3 (A)(
giCA I (A ) DET(A) = g1(A) g2(A) g3 A) (109)
h1(X) h2(X) V hi(A) h2 (A) h3(A)

E = DET(A)

which give C, D and E in terms of the measured variances Vd, V and V of
detrended data. S c

Type 2 (C < 0, D < 0, E > 0), Figure 2b.

The solution of the three simultaneous equations (17) - (19) give
the power spectrum coefficients as

Vd Af 2 (A,00 ) Af 3 (A, 0 ) if 2(A, 0 ) Vd Af3 (A,Qo)
V 6g2 (A,00 ) Ag3 (X,00 ) Agl(A,0o) Vd Ag3 (X,Qo)V Ah2(X,0o) Ahs(A,Q o ) AhI(X,Qo) V Ah3 (,oQ0 )

- - DETA(XIQ0 ) = DETA(A,?O) (110)

Afl(\,Q°) Af2 (AQ'0 ) Vd Afh1 (,Q) Af2 (A
' Q0 ) Af3 (N,20 )

(

Agl(A,0o) Ag2 (N,00) V DETA(A,Qo) Agl(X,Qo) Ag2 (X,Qo) Ag3(X,00)

E Ahl(A,(20) Ah2 (A,QO) Vc Ahl(A\,0 0) Ah2(A,00) Aha3(AQ)
DETA(APo) 111)

and the equation for 0o as

-D - 2 - CE (112)90 - 2C

These four equations determine C, D, E and 00 .

Type 3 (C > 0, D > 0, E < 0), Figure 2b.

The solution of the three simultaneous equations (17) - (19) give the
following expressions for the power spectrum coefficients
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d V A~ 0  3 A~ 0  f1 (X, 10) Vd f3(A,()
V g2 A, ~ g(, 0  g1 (A,:00 ) V g 3 (A,0 0 )
V c h2 (,,) h3 (X,(Q0 ) hl(A,0 0 ) V ch 3 (A,Q)

CDET(A,0 0 ) D =- DET(A,12 0 ) (113)

f1 (A,12 0) f2(A,:2 0) Vd fl(NQ 0 ) f2(AQ 0 ) f3(AQ 0 )

g1 (XQ 0 ) 92 (\,Q 0 ) V~ E(, 0  gl(AJ?0 ) g2 (AQ 0 ) g3 (AQ)
h (,,D) h2 (AQ 0) VS E(,o hl(A,00 ) h2(A,0i0 ) h3(AQ 0 )

E DET(X,0 0) (114)

and the following equation for 00

-o D + -4CE (115)
2C

These four equations determine the four unknowns C, D, E and go. The vari-
ances V d'V and V refer to data detrended with the constant A.

Type 4 (C < 0, D > 0, E < 0), Figure 2b.

The three simultaneous equations (17) -(19) yield

V df 2 (AQ 0,Q1 ) f3 (Xk,00 ,()1 ) f1 (A,QO,Q1 ) V df3G(A IgI
V g 2(A,120,Q1 ) g 3 (AC20 ,0 1 ) g1 (A,00,021) Vs g3 (,, 0 ,0?1 )

V5c h2 (A, 0 ,Q1) h3(ACQ0,gI) hl(A,Q0,0?1) V
5c h3(A 201

= D ____c~ '~(116)

DET(A,QQ , 2) =DET(X,2 0 , 21)

f(AQ 0 Q1) f2 (A 0 , 1) Vd
h1 (,, 0, 1) 2 (A,!'20, 21 ) VC

E DET(A\,Q 0 ,Q1 )

(117)

f1 (A, 20,Q1) f2(A, 20,Q1 ) f3 (\,Q0010 1)

DET(\,QoQl) h1 (A, 20,01) h2(\,f) 0, 21) h3C\,O%,i2)
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and the following equations for the bandwidth

00 -D + 4 C- 4CE_ (118)

01 -D -7 -4 (119)
2C

These five equations determine the five unknown power spectrum parameters C,

D, E, Q0 and 01.

Type SB (C > 0, D < 0, E > 0), Figure 2b.

The three simultaneous equations (17) - (19) yield

V d 6f2(X,00,01) 6f3(X,00421) 6fj(A,,Q 0 ,Qj) V d 6342,0,01)
V s6g2(A,(?0,fl1) 6g3(A,Q0,()1 ) 6g1(XIf?0,01) Vs 6g3UX,Q0,O)
V5 ch 2(X40 421) 6ha(A,00,021) 6h,(,,O421) V c6ha(X,00,fl1)

C=DET(A4 004 1) - D -DET(A,0 0 ,0 1 ) (120)

6f,(,Q,0,01) Uf2 0\,0 0,01) Vd
6g,(A,0 0 ,0 1 ) 6g2(A,(20 01 V
6h1 (A,0 421) 6h2(\,Q0,:?1 ) VE

(121)
6f1(,Q 0 1) 6f2(AX,Q0, 1) 6f3(A42042o

DET(A,Q0 ,fQ1 ) = 6g,(A,f0 4201) 692(X,Q0 ,()j) 6g3(X42,(oQj)6h1 (A,00,01) 6h2 (X,S'0421 ) 6h3(A,00,01)

The equations for fl0 and 01 are

00= 2D-~C E (122)

01=-D + 4D7 -4E(123)
2C

These five equations determine C, D, E, 00 and 01.
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For the detrended scheme the values of a a and a are obtained from

data measured at intervals of AL and detrended with a factor A. As such o
a and a represent data that have been conditioned in order that the theoreti-
cal determination of C, D and E can be accomplished by equations (17) - (19).
The expressions for * 2 and sin (aQ)/aQ that occur in the right hand sides of
equations (17) - (19) account for the detrending factor X and the measurement
interval AL, so that in principle the coefficients C, D and E are independent
of the intervals of data measurement or the detrending technique, and reflect
the actual roughness condition of the terrain. It is clear then that, as
written in equation (14) through (16), Pd describes actual surface roughness,
while P and P still contain a factor containing the arbitrarily selected

s c

value of AL. But AL can be set to zero at this point of the calculation to
obtain the values of P and P for the actual terrain.

s c

This concludes the calculation procedure of the power spectrum coeffi-
cients C, D and E from detrended elevation profile data.

Undetrended Scheme
Only Type 3 and Type 4 power spectra can be handled using undetrended

data.

Type 3 (C > 0, D > 0, E < 0), Figure 2b.

For a Type I power spectrum the undetrended elevation profile can be
used, and the power spectrum coefficients are determined by

Vd f2 ((°) f3 (00 ) ff(QO) Vd f3 (QO)
V 9262O) 93(0g0) g1(()0) V g360o)
V c h2 (Q0 ) h3 ( 00) hj( 0 ) V h3 (()

C = DET(Q) D = DETMO) (124)

f1 (()0 ) f2 (0(" Vd fl(nO) f2 (00) f3 (00 )
g1 ((0 ) g 2 (Q0 ) V DET(0o ) = g 1 ((O) g2 (2O) g 3 (0O)

hI( 0O) h 2 ( 00) Vc- hl((O) h2 (0o) ha(0o)
E = (125)DET(Mo)

and the following equation for 00

- -D + 4DZ - 4CE (126)Qo =  2C

These four equations determine the four unknowns C, D, E and Qo that describe
a Type 3 power spectrum. The variances Vd, V and V refer to undetrended
elevation profile data. c
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Type 4 (C < 0, D > 0, E < 0), Figure 2b.

For an undetrended elevation profile with a Type 4 power spectrum of

bandwidth 01 - go, the power spectrum is calculated by

Vf2(gO,Q1) f3(00,01) Ifl(QOQj) V f3(00,01)

V g2(O,gl) g3 (gOQ 1 ) g1 M 0 ,Q1 ) V g3(00O'l)
V h2 (00 ,Q1) h3 (00 ,01 ) h1 ( 0,01) V h3 ((°)0Q).CD = (127)

DET( 0o,Q1) DET(Qo(I)

fg(0o,01) f2 (Qgo, 1 ) Vd

h1 ( 0 ,01) h2 (0 A,1 ) Vc

E = DET(QoQI)

(128)

fl (QO,Q1) f2 (Q0 ,01 ) f3 (00 ,01 )

= 81 ( IQOI) g2 (0 0 ,( 1 ) g 3 (g 0, 1)

DET(QoI) = h 1( 0 ,01) h2 (00 ,01 ) h3 (00 ,01)

and the following equations for the bandwidth

0 -D + VD2 - 4CE (129)
2C

-D - VD2 - 4CE (130)1 =  2C

These five equations determine the five unknowns C, D, E, 0o and 01 that de-

scribe the Type 4 power spectrum. The variances Vd, V and V refer to an

undetrended elevation profile.

Dominant Frequencies of a

Terrain Elevation Profile

Roughness power spectrum Types 3, 4 and 5 have a dominant wavelength for

the undetrended elevation profile that can be calculated from equation (12)

to be

I -3D t ±§gD2- 32CE (131)

AD "D = 4C
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For detrended elevation profile data all five spectral types will have a domi-
nant frequency. An approximate expression that gives the dominant wavelength
of detrended elevation data in terms of Gd and a is

s

1 _ d

D I = 2n s (132)
"D 0D CYs

This expression is affected by the detrending process.

Numerical Analysis of Terrain
Elevation Data

A numerical study was done to determine the types of terrain roughness
power spectra that are associated with actual terrain areas, and to determine
their basic frequency content. Computer program RRFN (Reference 1) was devel-
oped to calculate values of 0 do Gs and c from a measured elevation profile.

The computer program RRFN performs the following specific functions:

a. It detrends the measured elevation profile for some choice of
value of the detrending parameter.

b. It calculates the standard deviations of displacement, slope
and curvature for the detrended and undetrended elevation
profile.

Computer prgram TERR (Reference 1) was developed to calculate the rough-
ness power spectra from the values of ad, as and a that are supplied by com-

puter program RRFN. The computer program TERR contains all the integrals and
mathematical functions that appear in Part II. Computer program TERR performs
the following specific functions:

a. It calculates the power spectrum parameters C, D and E and cutoff
frequencies 0o and 0 1 from detrended values of ad, o and a for
spectral Types 1 through 5, and from undetrended values of Sdo
a and a for spectral Types 3 and 4.
5 c

b. It calculates the frequency dependence of all five types of
terrain roughness power spectra.

The elevation profiles of 100 terrain sites were examined, and values of
ad, o and a were calculated using computer program RRFN with a detrending
constant A =c1O ft. These values of ad, a and ac were used as input for com-

puter program TERR to calculate the values of the power spectrum coefficients
C, D and E and the associated cutoff frequencies 00 and 0 1 that describe the
spectral characteristics of the actual terrain. The results appear in Table 2.
The values of C, D and E that appear in this table were calculated using the
detrended data formalism.
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The results in Table 2 show that the signs of the coefficients C, D and E
can be positive or negative and the terrain sites can be separated into the
five spectral classes described earlier and shown in Figure 2b. The frequency
of occurrence is shown in Figure 2d which indicates that spectral Types 3, 4
and 5 are the most common spectral types.

Figures in Reference I show typical elevation profiles that correspond to
the five types of roughness power spectra. These figures tend to support the
conclusions that can be drawn from Figure 2b, namely: that Types 1 and 2 tend
to contain mainly long wavelengths (20-60 ft) of relatively large amplitude,
Types 3 and 4 tend to have a roughly sinusoidal pattern of medium sized ampli-
tudes with medium sized wavelengths (5-10 ft), while Type 5 contains a high
frequency component (wavelength less than 5 ft) of relatively small amplitude.

The frequency of occurrence of spectral types shown in Figure 2d probably
depends on the type of terrain selected for this study in the sense that all of
the areas selected were test sites used for the operation of vehicles. Other
types of terrain, such as may be encountered in macroroughness studies like
the elevations measured across a valley, may produce a somewhat different
occurrence frequency diagram. The lengths of the elevation profiles used for
this study were generally 300 ft. The selection of different profile lengths
may also change the frequency occurrence diagram.

It was shown that spectral Types 3 and 4 exhibit a lower cutoff frequency
Do and it is therefore possible to calculate the values of the power spectrum
coefficients C, D and E using undetrended elevation profile data. Table 3

gives values of C, D and E calculated for Type 3 power spectra by both the
detrended and the undetrended formalisms. The values of C, D and E pre-
dicted by both methods are essentially equal, as they should be since they
refer to the natural terrain roughness and their values should be independent

of the method of calculation.

The relationship of the values of as and Yc with the values of ad appears

to be different for each of the five classes of terrain roughness. The rela-
tionship is shown in Figures 3a and 3b where it is seen that there is some
tendency for the data to fall into distinct groups. Type 5 has the highest
values of Cs/Gd and ac/Gd due to the high frequency component associated with

this spectral type. Types I and 2 have the lowest values of these ratios be-
cause they contain dominant low frequency components.

Figures 3c through 3e give the dependence of the values of ad, Y and ad' s . C

on the choice of detrending parameter A. The values of d decrease rapidly
with A 1, while the values of 0 and a decrease more slowly. The relatively

s cslow variation of a sand oY with X I indicates that these two quantities are

associated with the higher frequency components of the terrain profile, while
od is associated with the lower frequencies.

The values of the spectral coefficients C, D and E immediately give the
roughness power spectra for the terrain displacement, slope and curvature as
given by equations (14) - (16). The basic forms of Pd(0), P (W) and P C()
are shown in Figures 4a through 6e for spectral Types 1 through 5.
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PART III: GEOMETRY AND KINEMATICS OF THE VEHICLE -

GROUND CONTACT

Introductory Remarks

In the previous parts of this paper, terrain roughness was described in a
manner independent of the geometrical characteristics of an operating vehicle.
But the degree of roughness of a terrain area, as measured by the dynamic re-
sponse of an operating vehicle, will depend on the geometry of the vehicle-
ground contact areas. Therefore the terrain roughness description introduced
earlier in this paper must be generalized to include the effects of the geom-
etry of the ground contact area.

Two kinds of quantities can be distinguished in vehicle dynamics problems--
input and output variables. By input variables are meant all quantities mea-
sured or defined at the soil-vehicle contact points. Output quantities are
all quantities measured or defined at points on the vehicle. A theoretical
prediction of the output dynamical response of a vehicle requires an under-
standing of interaction of the geometry of the vehicle with the geometry of
the ground surface because this interaction will produce a terrain roughness
power spectrum that includes the effects of the terrain-vehicle contact geom-
etry. This terrain-vehicle power spectrum serves as the input for calcula-
tions of the dynamical response of a vehicle. This part of the paper calcu-
lates the input power spectra for realistic vehicle-ground contact geometries.

Input Power Spectra for Single

Point Contact with the Ground

This section derives the power spectra associated with the vertical veloc-
ity and acceleration of a point which is constrained to move along a specified
elevation profile with a constant horizontal speed. This is done by first
calculating the standard deviations of the vertical velocity and acceleration
of the point in terms of the standard deviations of the slope and curvature.

The standard deviations of the vertical velocity and vertical accelera-
tion of a point that follows the contours of the surface displacement profile
are calculated as follows

02 N /Ad.\2  U2N Ad)1 20 13
v NjI 2X2i.lN 0 j \L] S

j=l "=N 12d\ 2 N (,,2d.)2

72 1  
j

1  At2) U4 1 = U4y2(14a N j=I z N~ __J &L?~ uc(14
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where av = standard deviation of vertical velocity of wheel-soil point ofcontact

oa = standard deviation of vertical acceleration of wheel-soil point of
contact

v = vertical velocity of wheel-soil point of contact

a = vertical acceleration of wheel-soil point of contact

u = horizontal velocity of vehicle = A-At

Equations (133) and (134) are valid for both detrended and undetrended
data. However, they are valid only for small values of slope, i.e. for the
case when the curvature is essentially equal to the second derivative.

Therefore the RMS values of the slope and curvature immediately determine
the RMS values of vertical velocity and vertical acceleration experienced by a
point travelling over an elevation profile at a constant horizontal speed.
This is done by

G = u (135)v s

a = u
2 o (136)

If the point travelling along the surface elevation has an associated mass,
the standard deviation of the power delivered to this mass is approximately
given by

U ma = mu3o (37
p a v s c (137)

where a = standard deviation of powerp
m = mass of point

Although the values of a and a are of some interest, they cannot be
used directly to calculate the corresponding RMS values of output velocity and
acceleration. The calculation of these output quantities requires the input
power spectra.

The power spectral density functions for input displacement, slope, cur-
vature, vertical velocity, and vertical acceleration for a point contact will
not be calculated. The PSD functions are expressed in terms of the spatial
frequency Q or the time frequency f that are related as follows

0 =u (138)
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where f = time frequency. The PSD functions are defined as follows

02 C 2
G
2 = P ( )  dO = f Pd(f)o df (139)

0 0

2 0 2
G= f Ps()O dQ = f P'(f) df (140)

o 0

02 0 2
02 = f Pc62)O  dO = f P'(f)o df (141)

o 0

a2 2 Cf 2J = dQ = f P'(f)o df (142)
o 0

2 2oa = f Pa(Q) dQ = f Pa(f)o df (143)
o 0

where P = power spectrum of input velocity and P = power spectrum of input
v a

acceleration. Equations (138) through (143) can be used to determine the
power spectra in terms of the time frequency.

From (133), (134) and (138) through (143) it follows that

P (Q) = u2 P (Q) (144)v s

Pa () = u4 P (M) (145)

Using (138) it is clear that

P(f) = u -1 Pd ( )  (146)

P'(f) = u-1 P (0) (147)
s 

s

P'(f) = u 1 P ( ) (148)
c c
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I
P'(f) = u-1 pV6) = UPs() = U2 P'(f) (149)

P'(f) = u Pa( ) = u3P,(() = u4 P'(f) (150)

A sumnary of the one point power spectra is given as follows. Let

p(Q) = CO-2 +'DQ - 3 + EQ - 4  (151)

j) + D(II) + E(u) (152)

then

Pd(Q) = O(Q) (153)

P'(f) = u -' (f )= u-1 P d (0)  (154)

Ps(0) = (2nQ)2 Pd () (155)

s 2 2 P (f) (156)

Pc (2) = (2i)4 pd( )  (157)

P I(f) P (f) (158)

Pv() = (2nuQ)2 pd () (159)

P'(f) (2nf)2 P (f) (160)

P a() = (2nuD2) 4 pd (0) (161)

P'(f) (2nf)4 P (f) (162)
a

Table 1 gives the units of the various power spectra.
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Input Power Spectra for a Two
Point Contact with the Ground

The power spectra for the case of two contact points with the ground can
be obtained by using the spectral window functions given in equations (15) and
(16). The various kinematic and terrain roughness power spectral are then given
by

2' 4

Pd(Q) = g(Q) (163)

P =(f) = u-U-1 Pd() )  (164)

P ) = (27,,)2 [sin(af)-]2 Pd ( ) (165)

s ~ si (af)

ps(f) = (2nf) 2 [sin a/)] p6(f (166)

(2n )
4  [sin (af))_

4

c ( a lu)]7

~(f 2f)4 [sin (af/u)]

P'f u af/u ] df) (168) ..

P62 = Pd)i) (169)

Pf)=(rf 2  in(af/u)12 p' (f) (170)Pv L af/u j

P (1-) (2nu2)4 [sin (af)1]2
L aQ Pd(Q)  (171)

P'[(f) =(2nf)2 sin (af/u)]4i P.(f) (172)

aL af/u

P'a(f )  = (2nf)4 si (f- uj I f 1 2

where a = nL and L = distance between the two contact points. The one point
power spectra given in equations (153) through (162) are regained by taking
a = 0 in equations (163) through (172), i.e., the spectral window functions
have a unit value for the case of one point of contact.
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Spectral Window Functions for Vehicles

The calculations of the input power spectra for vehicles requires a knowl-
edge of the spectral window functions for vehicles. The slope and curvature
spectral window functions were introduced in the roughness power spectrum cal-
culations to account for the finite interval of measurement of the levation
profile. The same situation arises for a vehicle operating on a terrain site.
When the absorbed power or vertical acceleration is measured at the driver's
seat, the surface roughness is indirectly being measured. But now the sam-
pling of the elevation profile is being done by the wheels of a truck or the
track of a tank, and two physical situations must be considered. First, the
sampling is done with finite contact lengths and second, there may be several
unequal intervals of measurement as in the case of varius distances between
the wheels on one side of a truck running over an elevation profile. Both of
these physical situations must be described to calculate the spectral window
functions for vehicles.

The spectral window functions can be obtained by averaging over all pos-
sible two-point intervals along the areas of contact with the ground. The
two-point contact spectral window functions for the slope and curvature are
given by equations (15) and (16). Single and multiple contact areas must be
considered for the averaging process using equations (15) and (16).

Single Contact Area
For the case of a single contact area, such as produced by one wheel or

by a tank track, the spectral window functions are calculated by integrating
equations (15) and (16) over all two-point contact positions as shown in
Figure 7a with the result that

asw(2)T L  TL  i2j)X

2 _T s [rif(x y
- dx dy (173)Tw f I Y)o 0

TL TfLsi 4 I2(-v)

aSW() L fll - dx dy (174)
0 0

where

asw(2) = slope spectral window function for single contact area

asw(4) = curvature spectral window function for single contact area

TL = length of contact area in the direction of vehicle motion
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These spectral window functions are evaluated in Reference I and have the

following values for small values of O

asw(2) (TbL) = 1 + U2(OT L)2 + 4(QT L)4 + a6(QT L)6 + (175)

asw (4)( LT) I + P2(QT L)2 + 04(QT L)
4 + 06(QT L)6 + .. (176)

where

'Y2  7- (177)

=+ 6754 (178)

(Y6  8820 (179)

820

02 9 (180)

TO (181)

17n6 (12
13230(12

These expressions are valid for QI < I/T Lt and are therefore low frequency

approximations.

For large values of QT L (high frequency) these spectral window functions

have the following asymptotic values

asw (2) 1(183)
OT L

a S W(4) (184)
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The spectral window functions for the case of a single contact area are shown
in Figure 7b.

Multiple Contact Areas
The calculation of the spectral window functions for a multiple contact

area geometry, such as is produced by the wheels of a truck, is accomplished
by integrating equations (15) and (16) over all two-point contact positions
as shown in Figure 7c, with the result that

( TL TL
N 1 sin 2  

1(i- qi)

ASW(2) (N + N!/2)TZ f f (.i i)] d-9 di

Li+T L +T)

N L ' L sin 2 [Q( i - dj(8

+ I( f I TO -j) - drd (185)

ij L. L 4 1
i~j 1 j/

ASW(1) 
J sin n ( i - n )]

S -(N + N!/2)T.(i- fi)] 4  dti dni

N Li+T L+T 1N. i L j sin4 [ni(t. - ri.)]

+[n (ti - - i drj (186)

i~j L. L.

i~j

where
ASW(2) = slope spectral window lunction for a truck

ASW(4) = curvature spectral window function for a truck

N = number of wheels on one side of a truck

L. = position of wheel i1

L. = position of wheel jj

ti, j = integration variables

In equations (185) and (186) it is assumed that all wheels of the truck are
the same size. The truck spectral window functions are normalized by the fac-
tor (N + N!/2)T 2 to give a unit value if the truck dimensions were shrunk to

L
zero size to produce the case of a one point contact.

The truck spectral window functions defined by equations (185) and (186)

are evaluated in Reference I for the three types of wheel geometries shown in
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Figure 7d. For this evaluation it is assumed that the wheel-ground contact
length is equal to the tire radius, T = TR where TR = tire radius.

a. Four wheel truck

ASW(2) - 2asw(2)(T ) + sin M 2 0) (187)
3 g w R) L nL12Q

ASW(4) 1 2as w  (i T ) +rL 2Q (188)

b. Six wheel truck

ASW(2) = 3 asw (2) (T + in (n 1 2 ) 2 + sin (7L,,Q) 2

6 Rswj L , 12 0 7nL1 3Q

[sin (nL2 30)l2(7t23 (189)

~4 r4
ASW() (4) in (nL12Q) + sin (nL 3Q)

6 asw (R) L L12Q J L nL13Q J

+ sin (nL2gQ)(10

c. Eight wheel truck

ASW(2) = 1- 4 asw(2)(TR) + 
J + [sin ( L2 )  2

sin (nL,40 + In L23 sin (nL24 )

[sin (  nL241 0nL 4

+ [sin (nL3 4) (191)
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L4 4

ASW(4) = 1 4 asw(4)(TR) + sin (nL12 f?) + in (nL13Q)0[ nL 12 2 J L 1 3  J

[s (nL, ) +sin <,.o)] + [sin (L2 4o)
L L14( J L nL230 + L L2 4" J

+ sin (nL3 4 ) 1 (192)[ TL34f?

where L.. = distance between wheels i and j. Figure 7e shows typical averaged

slope and curvature spectral window functions for a four wheel truck.

Equations (187) through (192) show that the truck spectral window func-

tions introduce the relevant geometrical characteristics of the wheel-ground
contact, including wheel spacing and tire radius. Equations (175) through

(184) show that the relevant geometrical quantity for track-laying vehicles is

the track length in contact with the ground. All these equations can be easily
generalized to the case of half-track vehicles.

Contact Length Filter

A vehicle will not respond to the high frequency components of a terrain

elevation profile because the finite contact length of a tire or a track with

the ground tends to filter out these frequencies. For instance a track of
length TL will filter out all wavelengths shorter than TL/2 , while on a smaller

scale a tire of radius T will filter- out wavelengths shorter than T R/2. TheRR
situation is shown in Figure 8a.

A low pass filtering action due to the finite contact length with the

ground is physically plausible and necessary, but a rigorous theoretical deri-
vation of the form of this filter has not been developed. In this report it
is assumed that the filter is of the exponential type

-F(Q ,T 1)
e (193)

where several forms of the filter function F(Q,T,) can be selected.

Two forms of the function F(Q,T1 ) were investigated in this report

c (7c T LF (T= a -- L (194)
F(2 ,TL) = 1  a S -W

4 9F(O'T" =1 0 61TL )2 L)( (195)
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where A =  
1 = spatial wavelength. For the form appearing in equation (194)

which is linear in TL, it was found that a spatial frequency factor a /a

had to be inserted to account for the dominant frequencies of the terrain.

Only in this way was the parameter a found to have a constant value indepen-
dent of terrain site and track length.

The values of a and 0 were determined empirically from experimental ab-

sorbed power data for trucks and track laying vehicles (see Part V) and are
equal a = 118.8 in. (for detrended values of a and a ), a = 123.2 in. for
undetrended values of a and a ) and P = 1.4. The form of the filter func-

tion given by equation (194) appears to describe the absorbed power data some-

what better than does the form in equation (195), so that all further calcula-
tions in this report were done using the filter function represented by

equation (194). Figure 8b shows a typical exponential filter expressed in
terms of QT U

The filter functions can also be written in terms of the time frequency

using equation (138) as

G fT a
F(f) - = c ft (196)

a u a
s s

F(f) = 3 = p (fr) 2  (197)

where T = TL/u = time delay for transit of the vehicle-ground contact length.

Figure 8c shows a typical exponential filter, given by equation (196), ex-
pressed in terms of the time frequency.

INPUT POWER SPECTRA FOR VEHICLES. Taking the spectral window functions
and the low pass contact length filter in account and treating vehicles as

rigid bodies gives the following expressions for the input roughness power

spectra and the input kinematic power spectra for wheeled vehicles:

P di() = e-F Pd() (198)

P si(M) = (2Mf) 2e-F ASW ()Pd () (199)

Pci(0) = (2n) 4e -FASW (4)pd () (200)

P vi () = (2nuQ)2e-F ASW (2)pd(Q) (201)
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P a (0) = (2nuQ )4e-FASW (4) Pd ( 0 )  (202)

where Pdi' Psi' Pci, Pvi and Pa = input vehicle power spectra for displace-

ment, slope, curvature, vertical velocity and vertical acceleration respec-
tively. These equations are valid for track vehicles with ASW(2) and ASW(4)
replaced by asw (2) and asw (4) respectively.

Equations (198) through (202) show that the input kinematic power spectra
for vehicles are related to the terrain roughness power spectrum that has been
adjusted for vehicle geometry. The input kinematic power spectra would de-
scribe the motion of a vehicle if it were totally rigid. The actual vehicle
response is calculated as a joint effect of these input kinematic power spec-
tra and a transmission function which accounts for the impedance of the ve-
hicle. The following Part IV develops the transmission function.
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PART IV: DYNAMIC MODELS FOR MOVING VEHICLES

Introductory Remarks

It is of value to vehicle design engineers to be able to predict the ver-
tical dynamic displacement, velocity and acceleration at a point on a moving
vehicle and ultimately to predict the power absorbed by the driver. To do
this, the dynamic response of a vehicle to rough terrain must be known. The
dynamic response of a vehicle can be described by a transmission function. 14-16

Because vehicles undergo pitching and rolling motions as well as vertical
motion (heave), the power absorbed by the driver will depend critically on his
location relative to the center of mass of the vehicle. It is important to be
able to separate and determine the contributions to the absorbed power due to
the surface roughness, the internal dynamics of the vehicle, and the location
of the driver. The driver location variable appears in the pitching motion
transmission function.

This paper uses simple linear viscoelastic spring models to describe the
dynamic response of a vehicle. It is known that linear viscoelastic models do
not adequately describe the dynamic properties of vehicles because the vehi-
cles contain nonlinear springs and dashpots, and Coulomb damping in addition
to viscoelastic damping. The linear viscoelastic models introduced here serve
as a simple expedient way to evaluate the roughness power spectrum method.

The transmission functions developed will be used in Part V to calculate
the power absorbed by the driver using a power spectrum method. The absorbed
power calculation requires the output acceleration power spectrum at the
drivers seat, and this can be calculated using a transmission function.

Vertical Motion Transmission Functions

Single Mass
Vertical Motion

The output power spectrum of a mechanical or structural system is related
to the input power spectrum through the transmission function for the system,
Figure 8d. The transmission function of a dynamical system is generally a
complex number whose imaginary part is a measure of the damping. For a linear
system the output power spectrum is given by

P'(f) = IT1 2 P'(f) (203)
0 1

where P'(f) = output power spectrum
0

T = transmission function
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ITI = magnitude of transmission function

P'(f) = input power spectrum
1

Mechanical transmission functions generally come in two forms, one relating
output displacement to input force, and the other relating output displacement
to input displacement.

If the input to a linear spring system is a force and the output is a
displacement we have

PO = TdFI' Pk (204)

where P' = power spectrum of the output displacement

TdF = transmission function relating input dynamic
force to the output dynamic displacement

P' = power spectrum of the input forceFi

The transmission function for this case is
4

'rdF 1 - (ffe- i'/ n
=  TF idF (205)T 1/k eiOd

IdF /f_- j I T2 f/ I(d05n n

I T F 2  k -
(206) .11 - (f/f n)21 + [2tf/f n 1

[2 2f/fn z

dF = tan [ - (f/f)Z] (207)

where k = spring constant

f = 4k/-m/2n = natural frequencyn

= C D/(24-1) = damping ratio

m = effective mass

CD = damping constant

f = frequency

For application to vehicle dynamics a more useful transmission function
is that which relates output displacement to input displacement. The output
power spectrum of displacement is then given by

Pdo(f) = ITdd12 Pdi (f) (208)
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where T = transmission function relating the input dynamic displacement

to the output dynamic displacement

Pdi = power spectrum of input displacement

The transmission function for this case is given by4

T = I + iof iaf TleT-idd (209)
dd i - (f/f )X + i if dd2n

Td 2 = I + (210)
d i - (f/f n)27 + a2 f2

'dd tan -1  (211)dd1 (f/f n)2 + UZf
Z

where Y = 2t/f n .  It is easy to show that the velocity-velocity transmission

function and the acceleration-acceleration transmission function satisfy the
following conditions

T dd~ I~v = ITaa (212)

where T = transmission function relating input velocity to output
VV velocity

T = transmission function r(lating input acceleration to
output acceleration

Therefore only the displacement-displacement transmission function needs to
be considered for vehicle dynamics problems.

An important property of the transmission function is its value for zero
frequency

Tdd(f = 0) = 1 (213)

This corresponds to a simple translation of whole dynamic system, so that the
static output displacement equals the static input displacement. Note also
that ITddI 2  f- while ITdF12 

-3 f-4 in the high frequency limit. The trans-

mission function for a vehicle running over rough terrain will depend on the
vehicle speed because of the relation f = uQ. In particular, the value of
I T dd 2 for the single degree of freedom model is obtained from equation (210)

to be
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T + o2 u2 f) 2  (214)I T~j4 (I - u2f2 /f2) + a2u2( 2

Note that for u = 0 the transmission function has the value of ITddl = 1.

Double Maass
Vertical Notion

Vehicles generally exhibit two resonance peaks - one associated with the
vertical motion of the body (%1 Hz) and the other with the vertical motion of
the wheel suspension system (%15 Hz). A displacement-displacement transmis-

sion function for a two-mass system is therefore required to accurately de-

scribe the dynamic response of a vehicle moving over rough terrain. The deri-

vation of the tv-mass transmission function is given in Reference 1, and is

as follows (Yigure 9a)

T A + iB (215)
dd E + iF

) ) : AE • r) +(BE - A)

T d AE + BF)2 + (BE (216)
I 2

(E2  2

where
w2CBCW

A BW (217)kBkw~

B w k (218)

( WMW) (I - B) -w2 ( + B (219)

1 W BBBW WB

F =w ~ i~2 kBk \kBkwJ(20

II
where w = 2nf

CB = damping constant for vehicle body

CW = damping constant for wheel suspension system

KB = mass of vehicle body = WB/g

MW = mass of wheels = Ww/g
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kB = spring constant of vehicle body

kW = spring constant of wheel suspension system

It appears that track laying vehicles can be adequately described by a

single mass transmission function, while wheeled vehicles generally require a

double mass transmission function to describe their vertical motion. Typical
vertical motion transmission functions for tanks and trucks are shown in
Figure 9b. The dynamical parameters for several track laying vehicles are

given in Table 4, and for several trucks in Tables 5 and 6.

Combined Pitching and Vertical Motion
Transmission Function

Because a vehicle operating on rough terrain has a pitching motion, the
values of the power absorbed by the driver are expected to depend on the geo-

metrical location of the driver relative to the center mass. The pitching
motion of a vehicle can be described by a transmission function. This section

calculates the displacement-displacement transmission function for a combined
pitching and vertical mode of motion. The model used for this calculation is
shown in Figure 9c, and consists of a rigid rod representing the vehicle body
that is supported by two damped springs at each end.

The equations of motion for this model are the following coupled linear
differential equations

1 4

mx + klxI + Clx 1 + k2 x2 + C2x2 = k1fl + CJI + k2n 2 + C2 92  (221)

Je - LIlkjxI + CjX1 ] + L2 [k2x2 + C2x2J = -L11klq1

+ C161 1 + L21kq 2 + C2621 (222)

where

m = mass of vehicle

x = vertical acceleration of center of mass

k t = equivalent spring constant. of front support of vehicle

x t = vertical displacement of front support of vehicle

C1 = equivalent damping of front support of vehicle

;I = vertical velocity of front support of vehicle

k2 = equivalent spring constant of rear support of vehicle

X2 = vertical displacement of vehicle body directly above rear wheels
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C2 = equivalent damping constant of rear wheels and suspension

x2 = vertical velocity of truck body directly above rear wheels

n, = elevation of ground surface at front wheels

61 = rate of change of n, due to passing vehicle

12 = elevation of ground surface at rear wheels

'2 = time rate of change of q2 due to moving vehicle

J = moment of inertia about pitch axis through center of mass

L, = distance from front of vehicle to center of mass

L2 = distance from rear of vehicle to center of mass

The solution of the coupled differential equations is given in Refer-

ence 1, and is given in the form of a transmission function. The displacement-

displacement transmission function is given for a point in front of the center

of mass and for a point behind the center of mass as follows

2 2

IT12 = (tF ) + (tF)(2)
2 2

T 12 = (tB) + t B (224)

where

TF = displacement-displacement transmission function for a point
a distance z in front of the center of mass

T B = displacement-displacement transmission function for a point
a distance z behind the vehicle center of mass

z = distance from center of mass at which the motion is to be

calculated

and where

t= R - zS (225)

F 2 T - zU (226)

B
t= R + zS (227)

B = T + zU (228)
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R = (ZW 1 + Z2 W2 )/(W 1 + W2  (229)

(X1U1 + X2U2)/ Ul + U2  (230)

(Z2W1 - Z+2) !  + 2  (231)

(X2U1 - U2XI)/\U 1 + U2  (232)

Z A = A(d - Jw2 ) - wUaBg - b PA + WhPB  (233)

Z2 = fB(d - Jw2 ) + waAg - bPB - whpA (234)

W, = (k - mw2 )(d - Jw2 ) - w2Cg - b2 + w 2h2  (235)

W 2 = wC(d - Jw 2 ) + wg(k - gMW
2 ) - 2wbh (236)

X, = PAW1 - BW2 - bZ1 + whZ2  (237)

X2 = OBW, + pAW2 - bZ 2 - whZ1  (238)

U1 = W1 (d - Jw2 ) - WgW2  (239)

U2 = WgWt + W2 (d - Jw2 ) (240)

aA k, + k2 cos (wL/u) + WC2 sin (wL/u) (241)

a= wC - k2 sin (WL/u) + WC2 cos (wL/u) (242)
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PA = L2 jk 2 cos (wL/u) + UC 2 sin (wL/u)] - L1k1  (243)

PB = L2 1WC 2 cos (wL/tj) - k2 sin (wL/u)J - wCiL, (244)

L L, + L2  (245)

b = k2 L2 - kiLj (246)

d = kllj + k2LJ (247)

h = (2L2 - CIL 1  (248)

g = ('1,2 + C2L (249)

C = C1 + C2  (250)

k = kI + k2  (251)

The derived transmission function can be used to calculate the motion of

a vehicle at any position along the length of the vehicle relative to the cen-
ter of mass. In this way a prediction of the dependence of the power absorbed

by a driver on his location relative to the center of mass can be made. Fig-
ure 9d shows a typical transmission function for the combined vertical and

pitching modes of motion.
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PART V: ABSORBED POWER AND VEHICLE RESPONSE

Introductoly_Remarks

Quantities often measured for a vehicle moving over rough terrain are the
power absorbed by the driver and the vertical acceleration at the drivers seat.
The power absorbed by the driver is the energy dissipated as heat. It repre-
sents the energy lost due to vibration damping in the human body. Absorbed
power is a physiological concept that has been developed as a measure of

driver fatigue on prolonged exposure to vehicle induced vibrations. 7 It has
been found empirically that the maximum power that a driver can absorb and

still function reasonably is six watts. Therefore it is of importance to be
able to estimate the vehicle speed at which six watts of power is being dissi-
pated by the driver. The six watt speed clearly depends on internal vehicle
characteristics, the location of the driver relative to the center of mass of
the vehicle, and the surface roughness.

Two methods are used to obtain the six watt speed. The first is a formal
power s:pectrum method of calculating the power absorbed by the driver which
includes a consideration of vehicle dynamics. The second is a regression
analysis of the six watt speed measured for vehicles operating different types
of terrain. The power spectrum method introduces the terrain roughness and
vehicle geometry through the power spectra described in Parts II and Il, and
the vehicle dynamics through the transmission functions introduced in Part IV.
The regression analysis uses directly the detrended values of ad) a and c to

describe the terrain roughness, the track length or tire radius to describe
the vehicle geometry, and the dimensionless Froude numbers to describe the

dynamical characteristics of vehicles.

Output Power Spectra and Vehicle Response

It will be shown subsequently that the calculation of the absorbed power
and total power of the driver requires the output acceleration and velocity
power spectra. The power spectra of the vertical motion of a point on a ve-
hicle can be obtained from equation (208) and equations (198) through (202) to
be

= I Tddl 2e-FPd()) (252)

Pvo(Q) = (2nu1) 2 ITdd 2 e- ASW(2)Pd (0) (253)

P ao(0) = (2nl) 4 Iddl 2 e-FASW(4)Pd(()) (254)

The vehicle speed enters directly in equations (253) and (254), but the de-
pendence on the vehicle speed is also indirectly introduced through the
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transmission function, as for instance in equation (214). The corresponding
power spectra expressed in terms of the time frequency are obtained using
equation (154) to be

Pdo (f ) = ITdd 2 e- P(f) (255)

P'o(f) = (2nf)21Tdd 2e-FASW(2)Pd(f) (256)

P' (f) = (27nf)4 Tdd 2e-FASW(4)P (f) (257)ao I'd

The standard deviations of the vertical displacement, velocity, accelera-
tion and absorbed power at a point on the vehicle can be calculated from inte-
grals of the output power spectra, given by equations (252) - (254), over the
frequency ranges of the five basic types of roughness power spectra. Equa-
tions (252) - (254) show that Pdo and Pro diverge for f = 0 (or 0 = 0). This

is identically the same problem that was encountered in the roughness models
of Parts I and II where it was shown that Pd (Q) diverge for Q = 0. Therefore
the same difficulties that appear in the roughness models of spectral types 1,
2 and 5 appear in the vehicle response problem. Equations (254) and (257)
show that P (2) and P'o(f) are not divergent for Q = 0, corresponding to the

ao ao
situation that P (Q) is not divergent for Q = 0 as described in Part I1.c

The divergent integrals resulting from the calculation of the RS values
of the output vertical displacement and velocity can be evaluated in inserting
a filter function similar to that defined in equation (6). Thus the following

integration factor can be used

S (2lQ) (258)

[1 + (7y02

where y' = filter constant. This integration factor is not necessary for the
calculation of absorbed power becausc this calculation involves only the ac-
celeration power spectrum.

The standard deviations of the xchicle displacement, velocity and acceler-
ation are given by

0= Pdo(Q)4 -2d? = P'o(f) r 2df (259)

(2= pV o ( Q) -2 do = P'o(f)0' 2 df (260)
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T

G
2 = P (Q)dQ f  Pao (f) df (261)

aoo aoo

The integrals in equation (259) through (261) are evaluated only in the re-
gions for which the power spectra are positive.

Absorbed Power and Six Watt Speed Calculated
byPower Spectrum Method

The absorbed power is related to the vertical acceleration of the driver
(at the drivers seat) and is defined in terms of the vertical acceleration
power spectrum as follows

6

A .(H 2 (f)p' (f')df = A'(f,u)df (262)

where
A = absorbed power (watts)

H a(f) = human factor function [4watts/(ft/sec2)]

P'o(f) = output vertical acceleration power spectrum at the location of
the drivers seat

A'(f,u) = absorbed power spectral function

The human factor function H a (f) is empirically determined and has the form of

a band pass filter. 6 This function appears in Figure 9e.

The frequency dependence of the absorbed power is given by equa-
tions (254), (257) and (262) as

A (O,u) = (2nu) 4 
rjT 

2 eH 2ASW(4)Pd(0) (263)p dd ad

A'(f,u) = (2nf) 4 1T 2e -F HASW(4)Pl(f) (264)
p ddI a d

where Ap (Q,u) = uA'(f,u). Equations (262) and (264) show that five basic

quantities enter into the absorbed power calculation, and these depend on the
vehicle dynamics, vehicle geometry, driver location and terrain roughness:

a. transmission function

b. low pass filter associated with the ground contact length

c. human factor function
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d. curvature spectral window function for vehicle

e. power spectrum of terrain elevation

The roughness power spectrum is given by the three parameter model, and refers
to actual terrain described by the parameters C, D and E of Part II.

Because the functions Tdd and Ha that appear in equations (263) and (264)
-F

are intrinsically functions of the time frequency f, while the functions e

and ASW(4) are intrinsically functions of the spatial frequency Q, it follows
from f = uO that the absorbed power given by equation (262) always depends on
the vehicle speed. The six watt vehicle speed is obtained from the absorbed
power equation (262) by taking A = 6 watts.

p

It should be pointed out that the absorbed power dissipated by the driver
is not the same as the total power associated with the kinetic and potential
energies of the motion of the driver. The RMS value of the total power de-
livered to the driver is given by

W D j f
=r - Po(Q)P (Q)dQ (265)

po g 0 o ao

where

ao = RMS value of total power of driver

WD = weight of driver

A comparison of the experimental values of absorbed power with values
predicted by the numerical integration of equations (262) and (264) are shown
in Figures 10a through lilc for a series of track laying vehicles. Figure lild
gives a comparison between predicted and measured values of the six watt speed
for track laying vehicles. A similar procedure for trucks appears in Fig-
ures 12a through 12d.

Linear Regression Predi(tion of the Six Watt S eed

The six watt speed is the vehicle speed at which the driver is absorb-
ing six watts of power; it is a measure of ride quality. A high value for
the six watt speed means a smooth ride, and a low value means a rough ride.
The value of the six watt speed depends on both terrain and vehicle
characteristics.

For the purpose of the design and testing of vehicles, it is important to

have a simple expression for the six watt speed giving its dependence on ter-

rain roughness parameters and on vehicle parameters. In this way the results
of vehicle tests conducted at different terrain areas with different types of

vehicles can be compared, and an evaluation of design changes can be made.

The vehicle parameters describe the geometry and internal dynamics, while the
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terrain parameters describe the displacement, slope and curvature of an eleva-
tion profile.

Values of the six watt speed for several vehicles have been measured for
a number of terrain sites where elevation profiles have been determined. The
regression analysis given here represents the six watt speed as simple powers
of the terrain roughness parameters and the vehicle parameters. This analysis
is valid only if the six watt speed is a monotonically increasing or decreas-
ing function of the chosen parameters. It was found that the vehicle dynamics
parameters k, m and C could not be successfully brought into the regression
analysis, and therefore only terrain roughness and vehicle geometry were
considered.

A regression analysis incorporating k, m and C could not be accomplished
because the dependence of the six watt speed of these parameters could not be
represented by a simple power law. The dependence on the vehicle weight, for
example, was found to be either direct or inverse depending on the choice of
the resonance frequency or the damping ratio as a basic vehicle dynamics
parameter; both choices gave essentially the same quality of fit to the mea-
sured six watt speeds. This suggests that the dependence of the six watt
speed on the vehicle weight is more complicated than a simple power law. In
fact, the six watt speed is expected to initially increase with the vehicle
weight producing a smoother ride, and then decrease with additional weight
giving a rougher ride due to hitting the bump stops.

It is possible to find a direct correlation between the six watt speed,
the three terrain roughness descriptors (d, s and Gc for detrended data, and

the vehicles parameters. Both wheeled vehicles and track laying vehicles were
considered for this study.

Track Laying Vehicles
Seven mathematical forms were chosen for the regression analysis of the

six watt speed for track laying vehicles. They are as follows:

= AcOd (266)

= AO (267)

u6 = Aa¥  (268)
c

u = AOd TL6 (269)

d ~L
u = Acd ,J0 (270)
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r !r

u Aa TL JL (271)
'd L, L

u= A(d fGO y T6 JL (272)d s cL L

where
u6 = six watt speed of vehicle

ad, s, Yc = RMS values of displacement, slope and curvature, respec-

tively, of a detrended elevation provile (A = 10 ft)

T = track length
L

JL = jounce length

The coefficients in equations (266) through (272) were obtained by fit-
ting these equations to measured six watt speeds. Eight track laying vehicles
were used in this analysis, LEO 2AV, M60 Al, ATR, SM1, AISV, HIMAG-5, MICV and
the M113. The six watt speed was measured for these vehicles for a total of
twenty-four terrain sites. The dimensions of the quantities shown in equa-
tions (266) through (272) are chosen to be as follows: lu6l = mph, tad] = in,

[l s = 1, [ac] = in.
-1 , [TLI = in. and PJLI = in.

This data combined with a library regression computer program gave the
following results for the six watt speed and the coefficient of fit (cf):

23.55
u6 = 2 (266a)

(I

cf = 0.29

u6 = 9.62 (267a)

cf = 0.02

u =  47.2 (268a)

C

cf = 0.04

0.393 T
° 8 74

uC, = O " S L (269a)

cf = 0.70
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3.33 JO .98

u6 = L (270a)
d

cf = 0.82

1.324 T0 28 9 j0 76 1

L L
U6  8 97 (271a)

d

cf = 0.84

0.944 O.708 T. 4 12 j 0 .67 2

U6 - s L L (272a)
d c

cf = 0.86

Equations (266a) through (268a) show that the detrended displacement d
is the relevant terrain roughness parameter for track laying vehicles, while
a and o play secondary roles. Equations (269a) through (271a) show that thes c
jounce length JL is the primary vehicle parameter for track laying vehicles
while the track length TL plays a secondary role. The best fit to the mea-
sured six watt speed data is given by equation (272a) with all parameters in-
cluded, but the fit is not much better than given by equation (270a) with only
the two parameters d and J L". A comparison between the experimental six watt
speed and those predicted by equation (272a) is shown in Figure 13a.

When the vehicle dynamics parameters k, m and C are eventually brought
into the expression for u6 , they should be entered as nondimensional parameters
in the form of the damping ratio and the Froude numbers.'

7

Wheeled Vehicles
Seven mathematical forms were chosen for the analysis of the six watt

speed for wheeled vehicles. They are expressed in terms of the tire radius
(TR) and wheel base length (LwB) as follows:

= Aad (273)

u6= AoY  (274)
c

u6 = AaP  (275)s

u6= Aoa 1 (276)
s WB
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u6 =Au T (279)

s R

The coefficients in equations (273') 'through (279) were obtained by fit-
ting these equations to measured six watt speeds for trucks. Five trucks were
used in this analysis: PAC-CAR, TARADCOM-HMTT, 10 ton (Wx) - Cargo truck A;
DRAGON WAGON, 10 ton (8x8) - Cargo truck B; GERMAN RAN, 10 ton (8x8) - Cargo
truck C; M656, 5 ton (8x8); M520EI GOER, 8 ton (4x4); and the Czeckoslovakian
TATRA 813.

A library regression routine (MULFIT) was used to analyze the six watt
speed data for these five trucks, and gave the following results for the six
watt speed and the coefficient of fit (cf):

U6= 1.44 (273a)
Yd

cf = 0.38

0.0411 (7a
U6 = Ig.V -(24a

cf = 0.51

C = 0.781) (275a)

cf = 0.62

I = -'] 41 (276a)

S WB

cf = 0.76

6= 7 "T442(277a)

cf = 0.80

U6=317.7 (278a)
U 6 7 

0 .996 L 156 Ti 59

cf =0.80
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1099 o.475 a
'

O942

U 6 = L .15s T "5 9  (279a)

cf = 0.82

Equations (273a) through (275a) show that the detrended slope a is the

significant terrain roughness parameter for wheeled vehicles, while ac and Yd
play subordinate roles. The best fit to the measured six watt speeds of
wheeled vehicles is given by equation (279a) with all variables included, but
this fit is not much better than shown in equation (277a) with only two param-
eters as and TR. A comparison between the experimental values of the six watt
speed and those predicted by equation (279a) is given in Figure 13b. The
relatively poor agreement shown in Figure 13b suggests that an alternative ve-
hicle parameter, such as the jounce length, is required to obtain a better
correlation between measured and predicted six watt speeds for wheeled
vehicles.

Dimensional Analysis
Dimensional analysis uses relationships between nondimensional quanti-

ties which remain valid irrespective of the scale of the physical system.
17

The procedure is to calculate a set of relevant dimensionless parameters for a
physical system. For this study the physical system is a vibrating vehicle
moving over rough terrain.

The Froude numbers for a physical system are given by
17

1VF (280)

where , = Froude number, M = characteristic mass, V = characteristic speed,
F = characteristic forces operating in the system, and L = characteristic
length.

The Froude numbers associated with a linear harmonic oscillator are

MV 2  V2  (28
, = -2= (281)

KL fRL R

t V2 
-V (282)

62= CVL -CL(22

where f = resonance frequency of vehicle, K = spring constant of vehicle, and
C damping constant of vehicle. Because the resonance frequency of a vehicle
is a directly measurable quantity, equation (281) is used as the appropriate
Froude number and therefore the appropriate dimensionless parameter for repre-
senting the six-watt speed for vehicles is

510



fu T (283)u6  fRTL

For wheeled vehicles the characteristic lengths would be the tire radius and
wheelbase length. The other dimensionless parameter for a vibrating system is
the damping ratio

(284)

A third parameter that was examined is the ratio of jounce length to ground
contact length

t. = J ./T L (285)

For a vibration problem it is the vehicle mass M = W/g that enters (281)
through (284) not the vehicle weight. Dimensionless parameters such as W/(KL)
and W/(CV) are inappropriate for a vibration problem. The correct dimension-
less parameters equivalcnt to (283) are MV/(CL) and CV/(KL). This can be seen
from the extreme case of zero gravity where g = 0 and W = 0 but M = some fixed
value; in this case vibrations can still occur. On the other hand for a

statics problem, such as deformation of a solid (vehicle) under the action of
gravity, it is the weight and not the mass that enters the appropriate dimen-
sionless parameters.

Terrain roughness has been described by the three parameters 0 ,d G
and 1 . Within this description the terrain roughness dimensionless param-
eterscare

G = (286)
s

tcd G cUd (287)

A combination of these parameters that was examined is

G
- (288)R 0 c ad

A number of dimensionless relationships were developed with corresponding
coefficients of fit from data for eight track laying vehicles, and are as
follows

tus = 0.011 . (289)

cf 0.60
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0.012 tI.21

t = 0'24 (290)

cf = 0.70

0.027 t2.o6
t = (291)

D cd

cf = 0.74

0.025 t2.06

t C.97 t TU (292)

cf 0.74

Equation (292) shows an insignificant dependence on the ratio of jounce
length to track length. A comparison of measured values of u6/(fRTL) with
those values is shown predicted by equation (291) is shown in Figure 13c.
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PART VI: CONCLUSIONS

CONCLUSIONS. This paper generalizes the method of characterizing the
ground surface displacement profile by a one parameter power spectrum of the
form CQ-2 . A three parameter model of the power spectrum of the terrain dis-
placement profile data is introduced in such a manner that the additional
parameters will more accurately describe the contribution of the long wave-
lengths to the surface roughness, and will describe the cases where periodici-
ties are present in the terrain such as in the case of plowed fields.

The three roughness power spectrum parameters are used to calculate the

power spectra and standard deviation values of the vertical displacement, ve-
locity, acceleration and power absorbed by the driver for a vehicle operating
on rough terrain. A comparison of theoretical and experimental results was
made.

The theoretical and experimental studies of terrain roughness and dynamic
vehicle response yields the following conclusions:

a. A three parameter power spectrum model can be used to classify

terrain roughness into five basic types which adequately de-
scribe natural and manmade terrain features including periodici-
ties (Parts I and 1I).

b. The three parameters of the roughness power spectrum can be de-

termined from the standard deviations of the displacement, slope
and curvature of a detrended elevation profile, but in some
cases undetrended data van be used (Part 11).

c. The power absorbed by the driver of a vehicle depends on:
(1) the human factor function relating absorbed power to the

acceleration power spectrum, (2) the vehicle transmission func-
tion that describes the internal dynamics of a vehicle, (3) the
low pass ground contact length filter that describes the filter-

ing effect of a track or wheel, (4) the vehicle spectral window
functions that introduce the geometry of the vehicle-ground con-

tact, and (5) the three parameter roughness power spectrum that
introduces surface roughness (Parts II', IV and V).

d. The six watt speed for track laying vehicles can be related by a
regression analysis to the vehicle geometry and the three rough-
ness descriptors ad' %s and ac for detrended data. The signifi-

cant terrain roughness parameter for track laying vehicles is
ad, while for wheeled vehicles it is Us (Part V).
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Table 1

Units of the Power Spectra

C in.

D dimensionless

E in.-1

pd(1) in.3

P (f) in. 2 sec

P (0) in.3 sec -2

Vp'(f) in. 2 sec - 1

P (1) in. 3 sec -4

P'(f) in.2 sec-3
a
p (1) in.

P'(f) sec-I

p () in.-1

p,(f) in. "2 sec
c
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Table 4

Dynamical Parameters of Track Vehicles

Vehicle Weight Spring Constant Damping Constant Track Length

Type lb lb/in. lb sec/in, in.

M113A1 24,200 6,060 3110 105

MICV 43,000 8,400 720 150

AISV 2,940 300 80 50.25

HIHAG-5 79,910 10,000 400 168

LEO 2AV 111,000 15,750 8000 188.3

M60 Al 106,000 20,000 8000 171
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Table 5

Dynamical Parameters for Trucks

Wheel Assembly
Body Spring Damping

Weight Spring Damping Weight Constant Constant
Vehicle Type lb lb/in. lb sec/in. lb lb/in. lb sec/in.

PAC-CAR
TARADCOM-HMTT
10 ton (8x8) 46,179 4718 830 5131 75,490 830

DRAGON WAGON
10 ton (8x8) 44,136 4509 822 4904 72,150 822

GERMAN MAN
10 ton (8x8) 47,610 4864 887 5290 77,829 887

M656
5 ton (8x8) 23,040 2354 250 2560 37,664 250

M520E1-GOER
8 ton (4x4) 41,400 2500 1000 ......

Table 6

Geometrical Properties of Trucks

Tire ---
Radius L12 L 13  L14 L2 3  L24 L34

Vehicle Type in. in. in. in. in. in. in.

PAC-CAR
TARADCOMI-HMTT
10 ton (8x8) 26 5&-- 190 248 132 190 58

DRAGON WAGON
10 ton (8x8) 26 58 202 260 144 202 58

GERMAN MAN
10 ton (8x8) 23.75 65.5 209.5 275 144 209.5 65.5

M656
5 ton (8x8) 22 56.25 147.75 204 91.5 147.75 56.25

M520EI-GOER
8 ton (4x4) 34.5 235 .. .. ....
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AN ASYMPTOTIC THEORY OF DEFLAGRATIONS AND DETONATIONS

A. K. Kapila
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT. Combustion waves propagating through a reactive
gas are studied in the plane, one-dimensional geometry. An
asymptotic theory is developed which yields the steady structures
of the waves in a simple, analytical form. The theory, based on
the limits of small heat release and large activation energy,
covers all possible deflagrations and detonations except those
strong detonations that are far removed from the Chapman-Jouguet
point.

I. INTRODUCTION A satisfactory mathematical treatment of
the deflagration-to-detonation transition (DDT) is not yet
available, not even for the planar, one-dimensional situation.
In order to study the transient process, it would be particular-
ly convenient if the steady wave structures were available in a
simple, analytical form, amenable to further analysis. The
object of this paper is to construct such a steady description
of the plane waves by means of an asymptotic analysis of the
governing equations.

The subject of steady, plane combustion waves is an old one
[1]. Previous work most relevant to the present study is that
of Bush and Fendell, who employed large activation-energy asymp-
totics to compute the structure of slow deflagrations [2] and
Chapman-Jouguet detonations [3]. In contrast, we present wave
structures for arbitrary Mach numbers. Since our aim is to
obtain analytical results, potentially useful for the DDT anal-
ysis, we employ the additional approximation of low exothermicity.
It restricts the study to low-amplitude or weakly nonlinear waves,
but produces explicit analytical solutions for all possible de-
flagrations and detonations, except strong detonations far from
the CJ point.

II. EQUATIONS OF MOTION. In a reference frame attached to
the wave, the equations of reactive gas dynamics, for plane one-
dimensional flow, are

v' v - - 0 ,(la)

yM2

T,,_ ' + 1 + v)p' + (y - 2 ' 2 + -w 0 ,(b)

y 0

+ vM- T+ p V= 0 , (Ic)
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f- Y,, _ y w = 0 , (id)Le

w = V exp E J(le)
M2w-M2 1 + v 1 + T

0

+ V + P v = 0.(if)

This dimensionless system has been obtained by choosing, as char-
acteristic quantities, the diffusion length, the wave speed, and
the upstream (cold-boundary) values of pressure, temperatureand
density. The dimensional pressure is given by p = o(1 + p),

0f
where po is the upstream pressure, so that p measures the dimen-

sionless deviation from upstream Eressure. Similar remarks apply
to p, the density deviation, and T, the temperature deviation.
The gas velocity is given by v, while Y is the reactant mass
fraction. The dimensionless parameters appearing in the equations
are Mo , the mach number of the wave; Le, the Lewis number; a, the

heat of reaction; D, the Damkohler number and E, the activation
energy. Prime denotes differentiation with respect to the spatial
coordinate . Equation (if) will henceforth be eliminated from
explicit consideration since it merely defines p. The remaining
equations are to be solved for p, T, v and Y under the boundary
conditions

= T = v = 0, Y = 1 at = -w (2a)

dp/dr = 0 for = p, T, v and Y, at = (2b)

The mach number M is also to be determined. The cold-boundaryo

difficulty is dealt with by invoking the notion of a flame holder,
which may be assumed to supply the gas at a prescribed temperature
T (>0) at the location C = 0. However, we prefer to retain the
1

doubly infinite domain -c < < -, but introduce the mathematical
essentials of a flame holder by specifying that

w H 0 for c < 0 , T(0) = . > 0 , (3)

and that p, , , Y and their first derivatives are continuous at
=0.
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One might have expected the cold-boundary difficulty to
have been obviated in the face of the limit E - . However,
that happens only when the limit E - - serves to limit the
reaction to a thin zone. Such is not the case here, as we
shall see.

III. HUGONIOT RELATIONS. Evaluation of eqns. l(a-e) at
yields the Hugoniot relations which specify the final

state of the system for a given M [1]. The final state cor-o
responds to a deflagration or a detonation. Provided that M0
satisfies

(U - M2 ) > 2ax(Y + I)M 2  (4)

0 0

each M0 corresponds to two final states, given by

PC 1-lM~[ 2ot(Y+l)M~v M 2 i M2  i+ 1i (5)

0 (1-M 0

Here the + (-) sign corresponds to strong (weak) waves. In (4),
equality corresponds to the CJ (Chapman-Jouguet) points. At these
points,

M± ((+(6)
~2 2'(61+ (y+l) I +1 1 ,

where the upper (lower) sign corresponds to the upper (lower) CJ
point. For deflagrations, (4) implies 0 < M < M while for

detonations, 1 < M+ < M.

IV. THE LIMITS E - , a - 0. We characterize the largeness
of activation energy by setting

E = 1/c , E - 0, (7)

and consider a distinguished limit in which

a = Eg , g = O(i). (8)

The terms weak and strong refer to the strength of the wave rela-
tive to its strength at the corresponding CJ point. Both weak and
strong waves can have low amplitudes.
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For M2 - 1 O(), (8) reduces (5), for the weak waves, to

V 2'
yM -M 0o o

implying that the wave strength, measured by, say p, (pressure
jump across the wave) is O(c). For strong waves, (5) reduces
to

P.') 2(1-M2= 0 o C 9 (10)
M2  (y+l)M -M2 ' (1

o 0 0

i.e. the wave strength is 0(l). At the CJ points, (6) becomes

M e1 [ sg (y + i)] (11)
0+

whence (5) assumes the form

v = -+ '(c7) (12)

0

showing that the CJ wave strength is 0()

The above reduction implies that the only waves not access-
ible to a small amplitude theory are those strong deflagrations
and strong detonations that are far away from the CJ points.
However, strong deflaarations are disallowed by structure consid-
erations [1]. Therefore, the near-CJ waves and all weak waves
are within the realm of the weakly nonlinear theory although
different analyses are required to describe them since the wave
strengths are O(e)in one case and O(/V) in the other.

For the sake of brevity, calculations are presented only for
deflagrations away from the CJ point, and even then, most of the
details are omitted. For additional details and computations for
other waves, the reader is referred to [4].

V. DEFLAGRATIONS AWAY FROM THE CJ POINT: 1 - M = 0(i)

Since the weak waves have O(i) strengths, it is convenient to
introduce new variables as follows:

= ep, v =v, T = eT (13)
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while Y remains unchanged. We also let

T. = T . (14)i i

We shall find that the wave structure consists of three main

zones: an induction zone RI in which T undergoes an o(l) change,

an explosion zone RE in which T changes by an O(1) amount, and a

completion zone Rc in which T again undergoes an o(i) change to

approach its final, downstream value. We shall also find that in
most of the wave, the dominant balance is convective-reactive.
We now discuss each zone, in turn.

Induction Zone RI

This zone is found to consist of two parts. In the first, =0(l).
Eqn. (le) shows that the reaction term w is exponentially small,

since D/M is 0(l). Therefore, we employ the expansions
0

T 6T1 + ... ' p= 6pl + ... v+ + ... , Y= 1 + 6Y + ... (15)

where

6 e - /£ 2  (16)

We also take the ignition temperature to be

T. = 6 Tli. (17)

When the above expansions are substituted into (la-e) and the
boundary conditions (2a) applied, we obtain the solution

0, < 0

(18)
P,

S e > 0(19)

C + _1 r. :- g/ D e -8B

1  + 2 Y 2 ( + )M >0

00
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Vl -T - P (20)

D Le C

LeM2

0Y1 (21)
D 2 (l+Le r) , > 0

LeM

where

1-M 2
_ 2 0  > 0 , C1 (T 1 + Y- -

yM 0  M3

l 2  (22)

D1 o {T I+ g1 2 } T 0 - g 
1c 1(1+0) ' TIH M2

0 0

In obtaining the above solution we have disallowed exponential
growth as - +-, anticipating such behavior to be unmatchable
with the regions beyond. The wave speed M is determined by

applying the flame holder condition T1 (0) = Tli to (19). The

result is

-l+{l + 4--(y l),

M2  i (23)o 2(y-l)

This result is a crucial one; it shows that M is determined
0

uniquely in terms of the parameters g and D, and in particular,
T li.

The linear growth in the formulas (18), (19) and (21) indi-
cates a breakdown of the above expansion when C becomes exponen-
tially large. In order to proceed further, we let

= (e/6) x (24)

and recognize that for x = 0(l), the diffusive terms in the set
(la-e) become exponentially small when compared with the convective
terms. The dominant balance is convective-reactive and the appro-
priate expansions are
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T= T .... ,' P- Pl + .. ' V= v 1  + ... 1+ EY1 + (25)

These expansions, when substituted into (la-e) and subjected to
matching with the solution (18-21), lead to the solution

-T1 - = TI0 Y1 = n (1-Ax), vI 
= T l - p , (26)

where

A D T (27)M2  I

0

From (22) we recall that T and therefore X, is positive if

0< M2< 1/y and negative if 1/y < 1. Therefore, the above0 0

solution becomes singular at x = 1/X for X > 0 and at x
for X < 0. This singularity is reminiscent of thermal runaway
in ignition problems, and is therefore dealt with in much the
same way as the explosion analysis employed there [5,61.

Explosion Zone RE

The new spatial coordinate a appropriate for this zone is defined
by the nonlinear scaling

a c - n (1-Ax), u ><0 for X >< 0, (28)

and we seek the expansions

T= T + T1 +..., p=p +p+..., = 0 + &Vl + "'' .Y= Y o +Y ..

(29)

Substitution into (la-e) followed by matching with region RI yields
the solution

T = a, p = o vo = T - po' Y =-1 (30)
o 'Po T 0 0 0 T1

Also, we get
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T I = 02 - £n (1- T (31)
1OI

with similar expressions for pl, v, and YI. As a - TlD, eqns.

(30) show that

gym
2

T - T p , V g 1 0O TIw IM2 O Vl _2 '1 0
0l0,PP0 -M 2l0 -M

0 0

i.e. the leading terms in the expansions (29) approach the down-
stream values specified by the Hugoniot conditions. However,
(31) shows that T1 (and similarly, pI' v1 and Y1 ) is logarith-

mically singular at a = T1 . This singularity is smoothed out

in the completion zone, discussed below.

Completion Zone Rc

The cases TI > 0 and TI. < 0 need to be treated separately; we

shall only consider the former. We employ the transformation

o = TI - Z £n (-n/c)

and observe that the new variable n - -w as c - 0, a < T1 0 fixed.
Also, we seek the expansions

T=TIO+ ET 2 + ... ,p = pl O + + " + Ev +..., Y=cY 2 +

The by-now-familiar procedure yields

T = T2 + T

yM
2

_M 0O
P2 (T + Pic Vl + )yM-1 2 1 1w

0

= -I

v 2  2 (T2 + V +T)

1
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where T is given inplicitly by

-X -T T

- x l

o being an integration constant. It can be shown that as n .
T - 0 exponentially, so that T2 , P2' v2 and Y2 approach their

downstream values.

This completes the analysis of deflagrations away from the
lower CJ point. The corresponding profiles for T, p, v and Y

are displayed in Fig. 1 (for M2 < 1/y) and Fig. 2 (for M2 > l/y)
0 0

on the (exponentially large) x-scale. The profiles are all mono-
tonic in Fig. 1, and the net temperature change across the wave
is positive. The deflagrations displayed in Fig. 2 exhibit a net
temperature drop across the wave. The temperature now decreases
monotonically, except in the first part of the induction region
where it has an exponentially small maximum.

VI. OTHER WAVES. Weak detonations, weak and strong detona-
tions near the upper CJ point, and deflagrations near the lower
CJ point can all be analyzed in an analogous manner. We only
present the corresponding profiles here, referring the reader to
[4] for details. Away from the CJ point, the profiles of a weak
detonation are shown in Fig. 3. Our analysis also yields an
explicit formula for the weak-deflagration wave speed. Near-CJ
weak detonations resemble Fig. 3, except that the wave strength
is now O( T). Similarly, near-CJ deflagrations resemble Fig. 2.
Fig. 4 shows the temperature profile of a near-CJ strong detona-
tion. We observe the familiar ZND structure, consisting of an
adiabatic shock followed by a fast deflagration.

VII. FINAL REMARKS. A final remark regarding the structure
of deflagrations needs to be made. Our analysis is based on the
assumption that M. = O(i). Then, the deflagrations are not

isobaric, and their structure is essentially convective-reactive,
as obtained here. By contrast, the reactive-diffusive structure,
obtained for example in [21, rests on the assumption the M0 < < ,

i.e. the waves are essentially isobaric. In our terminology, the
wave-speed formula computed in [2] reduces to

M _ 2c 2Le E (32)D exp [- i+---1. 2
g~f
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By contrast, our formula (23), in the limit M 0, takes the
form

M 2 _-g D exp(-E)
0 T-I

1

where T. is now the actual, dimensionless temperature of the
1

flame holder (rather than an c perturbation of the upstream
temperature). In order to compare the above two results, it
is necessary to interpret T. as the 0(l) flame temperature.1

We then observe that M decreases as T. increases, as it should,
0 1

and that with T. - 1 taken to be 0(l), both (32) and (33) yield

the same leading-order result

M
2

n 0 E.D
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COMPARISON TECHNIQUES FOR SOME COMBUSTION MODELS

Jagdish Chandra
U. S. Army Research Office

Research Triangle Park, NC 27709

and

Paul Wn. Davis

Worcester Polytechnic Institute
Worcester, MA 01609

In this paper we present a brief survey of applications of the theory of
differential inequalities to several problems arising in combustion theory. A
main tool employed is a comparison theorem for systems of nonlinear parabolic
differential equations [2]. Another analytical approach which is exploited in a
significant way is a constructive procedure for solution of nonlinear initial
boundary value problems associated with such systems of partial differential
equations. In this "system doubling" technique [5], the solution to the non-
linear problem is constructed by a monotone iterative scheme. The iterates in
this scheme are obtained by solving a linear system of partial differential
equations twice the size of the original problem. The initial iterates are
upper and lower solutions (in some appropriate sense) of the original problem
and are shown to be bounds themselves on the solutions constructed by the mono-
tone iterations.

Both approaches are intuitively appealing because the mathematical arguments
have convincing physical parallels. Consider, for example, the consumption of a
reactant at dimensionless concentration and temperature c(x,t) and , (x,t)
respectively:

(1) ct = kAc - cmf(o)

(2) 0()t = AO + 6cmf(e)

(3) (e(x,t) = o c (x,t) : 0 , xC o

(4) t(x,o) = o , c(x,o) = 1 , xC.

Here k is the material diffusion (inverse Lewis number), m>o the order of the
reaction, - the characteristic thermal diffusion time (DamkJhler number), 6 the
chemical heat release rate (Frank-Kamenetskii parameter), . inverse activation

energy, and the Arrhenius kinetics f(()) = exp(+ ,, ). A is the Laplacian opera-

tor on the region s2, containing the reactant and the subscript v denotes dif-
ferentiation normal to the boundary s of .
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Consuming reactant at the zero temperature rate should yield upper bounds on
both reactant concentration and temperature (because excess reactant is
available). Indeed, it is shown in [3]that any solution (E,5) of

(5) ct kAc - m

(6) et kW + 6mf(5)

(7) (x,t) 0 , Z V(x,t) 2! o , xe

(8) (x,o) > o , E(x,o) > 1 , xC

is an upper bound on the exact solution (c,()) of (1)-(4). For example, we
obtain rigorously from one such solution of (5)-(8) that

0(x,t) (6/)el/E

(Finite activation energy guarantees finite maximum temperature.)

Further application of the comparison ideas of [2] also show relationships
among important parameters in the complete model (1)-(4), the Semenov approxima-
tion (no spatial dependence; k=o in (1), Ao replaced by -0(t) in (2) and (3)
eliminated), and the Frank-Kamenetskii approximation (stationary approximation
given by o = AO + 6f(O), e(x) = o on DQ and neglect the consumption of the
reactant). The temperatures and (reasonably defined) critical values of the
heat release parameter 6 are ordered from smallest to largest as:
Frank-Kameneskii approximation at infinite activation energy (E=o, the classical
F-K value 6crit) , Frank-Kameneskii approximation at finite activation energy,

the complete model (1)-(4). In particular cases, these relations have been
observed previously in numerical and asymptotic calculations. The infinite
activation energy induction times of both the complete model (1)-(4) and the
Semenov approximation are bounded below by the adiabatic induction time a/6.

One may also obtain decay rates and global nonlinear stability estimates
[4]. To illustrate the results obtained in [41 , consider, for the sake of
simplicity, m=1. We then have

o < c(x,t) e- t

o : n(x,t) 0 i(x)e- t/ 0

where o min(,iwl), il is the smallest eigenvalue of the Laplacian on Q2
subject to the temperature boundary condition, and 0 solves

^ + i4, = -6f()

subject to the temperature boundary condition as well. These bounds illustrate
the interaction between thermal diffusion and reactant vessel geometry through
the ratio a/a as well as the global asymptotic stability of the burned state
c=o, O=o without unnecessary restrictions on parameters like 6 [1]. Other

548



bounds in [4] show the role of the order of reaction, for example, reactant is
consumed in finite time when o<m<1.

Finally, some work in progress indicates that the "system doubling" tech-
nique introduced in [5] may be coupled with multi-scale asymptotic methods to
provide rigorous analyses of certain oscillatory flame phenomena. For example,
an isothermal, autocatalytic scheme with a long history [6,7,9],

external diffusion - Akl

A+X B+2X

X+Y k2 B+ 2Y
k3

A+Y B

exhibits oscillations in the intermediates X and Y. Here A is the initial
reactant, B is the final product and ki, i=1,2,3 are the reaction rate
constants. One choice of scales yields the model

(9) a'(t) = -E(x+y)a + cn(1-a)

(10) x-(t) = k(a-y)x
(11) y'(t) = k-1(x-a)y, =dt

where c = kik 2 /k2 <l, k = (kl/k 3 )
1/2=O(l) and the diffusion parameter n=O(l).

An asymptotic analysis of equations (9)-(11) shows a,x,y decaying to steady-
state values determined by ri at 0(1) and oscillations in x, y at 0(E). The fre-
quency of these oscillations increases as a decreases to its 0(1) steady-state
value; the x and y oscillations are 900 out of phase (with y leading) with mean
values and amplitudes determined by k and the value of a to O(E). Oscillation
in a appear at O(E ); their phase and amplitude relative to those of x and y are
determined soley by k.

Preliminary calculations suggest that the equations defining the terms in
the asymptotic expansions for a, x, and y which are obtained from the usual
solvability conditions of the multi-scale formalisms, can be recast as a
"doubled system" to provide the necessary bounds that rigorously confirm the
asymptotic character of the formal series. What is more interesting is that
these ideas appear to be equally well suited for treatng a class of physically
more significant thermokinetic models associated with hydrocarbon autoignition
[8]. These results will be presented elsewhere.
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A GENERALIZED BURGERS EQUATION FOR PLANE WAVES

IN A COMBUSTIBLE ATMOSPHERE

J. F. Clarke

Aerodynamics, Cranfleld Institute of Technology
Bedford, MK43 OAL, England

ABSTRACT. When small amplitude plane waves propogaie through an ambient combustible

atmosphere that is undergoing a spatially homogeneous adiabatic thermal-explosive event their first-order

behaviour is shown to bc governed fo; early times by a lluigers equation with ,omine addit imnal terms.

These terms specifically describe clects due to atmospheric hleating and. most siglificamily. to perturbation

of the Arrhenius chemical reaction rate factor. This latter influence is responsible for amplification of the
wave system. Some approximate analytical solutions are found for two cases: (i) it is shown how this

phenomenon interacts with both classical acoustic damping due to diffusion and modulations due to

progressive ambient heating in acoustic-amplitude signals: (ii) for larger amplitude signals the fitting of

discontinuous frozen shock waves by a modulated equal areas rule allows for the assessment of non-linear

wave behaviour in the presence of chemical amplification.

Finally it is shown that when chemical amplification rates become large the wave system becomes

dispersive in character, is still amplified, and almost certainly propagates signals in both spatial directions.

The general situation described in the paper is relevant to studies ofdeflagration-to-detonation.wave

transition.

I. INTRODU(TION. Burgers eqmaton was originally conIstructed to display in the most

direct possible way the balance between non-linc.ir convection and diffusion in plane wave systems in

certain types of atmosphere. Subsequently lighthill (19.56) showed that its utility as a model equation is

strongly reinforced by the fact of Its proving to be a piopcr first approximation in a scheme of rational

approximations for problems of plane wave evohtion.

The transition from deflagration to detonation in combustible mixtures must involve strong

coupling between gas dynamics and exothermic chemical processes and it is therefore interesting to

enquire if there is not some equation that, in the spirit of the original Burgers equation, incorporates all

of the simplest elements of the crucial physical proceess in such a way as to reveal the esbence of their

interactions in some well set, first-order fashion.

It will be assumed that the ambient atnmosphlvei is spatially uniform and undergoing a single n-th

order irreversible combustion reaction with Arrhehoi actiatiorn-energy kineti.s. Thus atinopshere's flow
velocity is uniformly equal to zero and its density is therelore fixed at the constant value pi In view of the

ambient chemical activity and the usually large values ol activation energy the atmosphere will be under.
going a self-heating process that will be initially slow but which will, after an induction time interval tly run
away into a rapid explosive event that raises the initial ambient pressure, pot asymptotically close to a final

value p "e in a very brief interval of time. The mass fIr.ction of the ambient reactant material will diminish

from its initial value of q,. the value of q(t) when t o. towards zero; i.e. the reactant is ultimately all

consumed.
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'li. adiabatic Il iinial-exphsivc eve n Itiiiha , just been described is now prcsutied to be spaliall)

p.rtirlcd by the nuovcmcnt oI a piston. beginning ! II iueI to fron I It% initial position at x " o. There will he
a value a o(f) of the sound speed in the am hient er that t-h:ingis with time as the aic ni-exphosiVc

events proceed. The subscript f denotes the important fact thi it is thefrozen sound speed (e.g. Clarke &

McChesney. 1976) that is required here. The disturbances produced by movement of the piston will not

only create velocities u = u(x, 1) in the gas itself hut will also perturb a to so that its local value becomes

af = a (x,t). The characteristic curves in the x,t plane for a 1 of"diffusion-free" and hence first-order

conservation equations are well known to be given by

lax = u iat

at

In particulai. those undiffused wavelets ihat propagate im the diiection ot x-positive will be labelled

with the parameter fi, whose precise definition can await subsequzent development,. For the present it is

sufficient to note that

= u 4 a.

It is advantageous to non-dimensionalise the sy,,tem of coitervation alid other equations, using

Pi - Pi 'afG , afoi and 4., as measures of densities. pressues,. velocities and iass-tractions, respectively: tI is the

natural scale for the time and af,. t performs the same service fto distanec. It the activation energy parameter

c is defined so that

where L A is the Arrlieni|s activation energy, the indunction time I cn bc writlen in the I-oriA

(PC) I .111
)III 1 i l

where W is the molecular weight of the reactant and p is the pie-expoinctnial factor (with dimensions of

IcL'iprtical t ine).

olr various reasonS ii is slightly in re conveniell ti use -1 , where -Y is the ratio of the frozen

,pecifl heats of the gas mixture, rather than tI itself (note that -t is assumed conslant) in the non-dinensional-

isatmris described above. All of the diffusive, that is to say, viscous, hcat-conduction and mass-diffusion, terms

in the set o dimensionless conservation equations now appear with I/Re as a multiplier, where Re is a

Reynolds number, defined by

Re yt a 4  4.
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wl c s IS 1he initial at ihicnt value ol the dynalirc viscosity coelicient. The proup of termns -1i/YP a:oi / lfoi

that appears in (4) is roughly of flile order of the mean molecular colhson inlerval. It is a fair estimate for

simple reactions to say that this time is compatahle with 1 ) , the reciprocal of the pre-exponcotial factor,

whence a guide to the size of Re is provided by tIhe elation

Re - tp = e(ec)/i WI(p./P ) -I11 5.

The last result in (5) follows from (3) and the decision to examine only the first-order reaction case, n = 1.

Table I gives some typical values of the quantities Re and tI for three c values; the numbers in parentheses give

the appropriate power of 10

Table I

1/f 25 30 35

Re 2.4(7) 3.0(0) 3.8(11)

tisec 2.4(- 2) 3.0(0) 3.8(2)

by which to multiply the number that precedes them.

The piston speed is given in the form

= oDY(T/o) 6.

so that the boundary condition is

0(o2 D(T/o), J) oD'(T/a) 7.

where D is the piston displacement function anti D' is its derivative, the piston speed function. I' is the

dimensionless time, 6 is the dimensionless gas velocity (6 = fili. 1 ) in general) and a is an amplitude and

"frequency" parameter. It will subsequently he supposed that

o' . 8.

It is useful to define a dimensionless wavelet-like coordinate . as follows"

T--i 9.

Equations (I) & (9) translate into

° T) = I -- i- , ' = -O"T ,  O

3T -i- I ;0 10.
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wiele A is the dimensionless perlurhation to tile dimensionless ambient flo/en sound speed. Note that

T

The derivative t can usefully be chosen to be of order unity, at least in the neighbourhood of the

piston face. Indeed, integration of (10) followed by the decision to make

= T/o when i - o2 D(T/o) Ila.

gives

o( - +oD3)) + f1C-- if,(i- 5'f ai" I lb.

where i' a are functions of a and " and the integration is taken at fixed a. Then

0 4f + ' 12.

On the piston face the integral vanishe,: it will be presumed that a -deriatives of .f and fi are well behaved

and O(o);then t is indeed of order unity there, because 5fo is ot this order and the perturbation af is

small in view of (8). Note that rm nwv vanish locally when the integral in ( 12) is positive and 0(o).

2. PERTURBATION EQUATIONS. If all of the appropriate dimensionless conservation

equattons, including proper accounl of the diffusive effects, are transformed into versions which have

a & T as the independent variables one can now propose the asymptotic developments

-P o '(0. u. p, P, at 13.

2 q(l 14.

in the limit as o - o with 0.1 fixed. Note that 4 is the dimensionless perturbation to the ambient

dimensionless reactant mass fraction q) The system of equations contains other parameters than o, of
course, notably c and Re. as well as local dependent variable factors such as :, and " The complete

problem is quite complicated; fullei details, as well as discussion of .vcral items outside the scope of the

present paper, have bcen given by Clarke (I 48 ). I-or the present it is adequate to observe that, on the
general supposition that tp and c-' p01 do not behave in an extreme way (tile meaning of "extreme'" will

shortly become clear) the proposed limit leads it) the following equations for pt1l p iM) q(i t and u( ),

provided that

% - o(1) 15.
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qt) 4~U' ab

where I('un/i) 1 : l7b.

UT 10 A(T) -1 A u + (5 /2o Re )(u )/t 18.
T to foT 0

where 6.~ + AO-) 19.

and o.\are thc dimensionlcs% dynamic viscosity anid thermal conductiviiN in the ambient atmosphere-.

Pr is the Piaindl number,

Pr = 4 17 C 20.

and C pris the frozen specific heat at constant pressure (assumed constant here). Also

2 -5to + afo C oT >021.

Note that in the ambient atmosphere

-p = expi-l - 2

Thu,, A(T) at least begins fromt the value unity at time I 0 . sine it is necessary to have

y(0)l (o)= 23.

Observing that 60 is the classical diffusivity of sound it is also important to note the role of the scale factor

in the last, diffusive, termn in ( 18). Since, as remarked at the end of the Introduction, can become small as
time progresses it is clear that the diffusive effects mat' become large for any values of the product a Re. The
vanishing, or near-vanishing, of is a purely local effect that is associated with the existence of shock waves and

it will he convenient to deal with this behaviour in a particular approximate way, as will he outlined below in
Section 4.

Meanwhile, it is evident that when a 2is small enough to make a 2Re of order unity, the diffusive terms
must he retained in ( 18) under all circumtstancs. In terms of the coordinate ~.defined by

a- a + fif (i)di'-T =fiAf (l)d7( -- x24
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and sigtifying by its v'due the location ot any purely acuustic (zcro-a:mpliludc) wavelet in, thc imic-depcttdcnt

ambient atmosphere, (18) cal be written in the forin
t,) I ti I) " I /In It Ii( )' )  5

u - I-(+ )u u. = { A(T)- !(ini -(U + W

where

A(T) 26.
2 u

t~i

and uT in (25) signifies the derivative taken at fixed -. as opliosed to fixed 0 in (18).

Equation (25) is the augmented version of Burgers equation that we have been seeking, albeit tinder the

strict observance of the ordering in (15). When the anihient atmosph're is chemically inert the coefficient of ut

vanishes and A(T) becomes a constant; the result is the original Burgers equation. The existence of chemical

activity in the atmosphere iniroduces the term in u which. via its dependence on A(T), displays the direct

significance of perturbation of the (Arrhenius) chemical rate, as well the effect ot atmospheric heating through

the term - /I(na )
2 fo)T

Unlike the original Burgcrs equation, (25) does not seem to have a lincarising, Cole-Hopf type of

transformation. Sonic approximate analytical solutions will he sought in the sections to follow that provide

reasonably compact illustrations of the physical pricesses that the equation describes. The case e = Ofo) has

been examined by both Blythe (1978) and Clarke (1978, 1979, 1981 ) but will not be dealt with here.

3. ACOUSTIC WAVES. With the assumption that the amplitude of the input from the piston is

small by an amount additional to the O(o) scale rcqucd by (6) it is possible to linearise (25). For example, if

one makes

D''t/o) MCx(iw']/o) 27.

where M is a constant such that

M< 1 28.

equation (25) can he approximated by

0)s 111 P 1 1t . (1)2q

UT 4 i 1 0 (1 )u A(I)'41 4 o(hu'
t 

tX u" i . .

That is to say the non-linear tern in (25) is formally banished by replacing the original o-o limit by o-o and

M -o together. Note that (21) ) is now written in terms of differentiations at fixed i and fixed T, which aWe not

individually 00 ) optations. It is not hard to see that they are in fact 00 1 ) operations whence, recognising

this and defining a pair of'fast' variables 'rx ( via
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'o 1 iix. 30.

equation (29) becomes

f to ( f =fa 31.

where the terms in brackets are now 0(!) in the limits o -o, M "-o. It is now sensible to propose a solution of

(31) in the form

n expl 0(i )$~oaA (9j) 32.
iwo n

that will be valid away from the wavehead at .= I. The amplitude and phase functions. An and e, depend upon

the 'slow' variables iT and allow for the initially slow changes due to self-heating that take place in the adiabatic

themial-explosive atmosphere. Substitution of(.32) into (29) shows that A and A must satisfy (he equations

S i - (T) A 0 33.

' - + 5 A(T)O A + A + i )A

SA( T) o' Tr) A 34.

1i follows after a few manipulations that a good approximation for ift) suitably far behind the wavehead (e.g.

<1 - 0(a)) is

u W) Mp [to to)/ 511f(olTll 'x2 C iwo)/O

T d2
.exp~ fAi ~~ - Iw~.to ( AtT) d 35

where o is defined by

-T
/ ~ di .36.= to(T 73,

Furthermore the phase H must he given by wo whence the local wavenunber k and local trequency w are given

by

() k 37.
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a 1"( I )/a I(0) IX

respectively.

For the given harmonic, constant amplitude, input froth the piston at i = 0 the consequent situation is

now clear. The self-heating of the ambient explosive atmosphere makes i ;? 1 o(01, sinec 0<T, and there is a

small amplitude reduction of u as a result (see the I I bracket term in (35); note from ( ]6a,b) that p (1 has a

related term [if( ).f(l] and p(0 a term Iiih(OV2/o (T) ). The hnes of conant phase on an i - T
to 150t

diagram follow paths dictated by the time-varyi|ng ambient sound speed 5 fo(I ), since (a ,/aI) has this value
2

(see (36)). The diffusive effects lead to the classical type of amplil ode reduction, that goes like exp( -k x) where

k2 is defined in (37) and i is a weighted average distance, as can he wen from the lasi term mn (35) together with

(36). Finally there is the chemically-induced term, involving the function A(I ) (sec (35) and (21)), which leads

to an amplification of the input disturbance. It can be shown that this term may easily overwhelm the diffusive

damping and the atmospheric heating effect, so that the whole disturbance grows with dis!ance from the input

piston at least for sufficiently small local wavenumbers or, more crudel), values ot w. The local wavenumher k

decreases from one wavelet to another (see (37))but rentains fixed on a given wavelet, while the local frequency

also changes with time (see (38) ). These results should be compared with those found by Toong and his co-

workers. The most recent of their papers is by Abousieft & Toong (I 981 ) and contains references to numerous

earlier works; briefly, the amplification cffect is broadly confirmed, partly lhrough a rather different theory that

postulates k = constant at the outset and looks for growth or decas of ,avc implitude with tite and partly, and

most importantly, by a series of ingenious experiments in a reacting ntliture (i hdrogern and chlorine that is very

like the theoretical model considered here.

4. NONLINEAR SMALL DISTURBANCES. When i, large enough to make o2 Re-oo in the

limit as o -o the diffusive terms in (18) become negligible away fron regions where is small. The latter

condition only occurs in association with the appearance of shock waves and one can allow for the latter in a

satisfactory approximate way by fitting an appropriate froen (i.e. fixed - q) Rankmne-lugoniot shock wave into

the field, as will be described below. The solution of(18) minus its diffusive terms is

u f (()f(T) 34.

where

g(O) D'(0/ft10) 40.

T
f(T) 5-1/ (T)expl f A(T)dTrf 41.to

the solution (39) -(41) satisfies conditiorn (6), since ( is equal to f/o on the piston path. It then also follows

front (9) & (I Ib) that
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to 0x 1IM O ) I .f .: oS~ds -4 o l ') 4 1 q o t dhC

00

where

luJ) f a :ts~ds + o(y + I ).qU). fiscads -- o lXfl) .43.

0 0

and these last two formulae give the proper first estimate of the fixed --- wavelet shape on the i. i plane.

Any fixed - q shock discoituinities that may he required to make the field described by (39) 143)

single-valued in R, T %,pace will be weak and therefore will bisect the angle between att, pair of fixed - a wavelets

that meet on the shock path k = is(T). I1 A,. are the relevant values of 0 ahead of. and downstream of, the

shock respectively the bisection condition can be written as

(X - ) 0 (- - I o 44.

where x is the titme derivative of x and Is lound fIn (42) with 3 fixed (at either 91ot o2 of course).5 s 1
Substitution of (42) inlto (441 leads io a relationship bet ween P (i) and 0, (1 Ihal can be integrated to give

1B(O) B(3 )ll I9 ) + g(O, 1

2 f q ts)l's)ds 45.

which is an "equal areas" rule (e.g. Whitham, 1474 Section 2-8 ) modulated to take account of the fact that the

piston launches disturbances into an atmosphere whose character is changing steadily with time. It is proper to

neglect the last two, (N02 ). terms on the right hand side of (43) in general. When the atmosphere is inert,
P 5 = I. A 0 0 and f = I - then l(g) = oa, gfi) = D'(0) and (45) reduces io the classical equal areas rule. The

sanie is approximately true if the piston launches, say, a single short pulse of disturbance into the explosive

atmosphere: e.g.

D'(0) Msin . 0 - 0 - ir/w 46.

-0. 3 0 , rr/w < /3

-,here M and w ate both 0( I ) quantities now. The shock strength in terms ,,l tic valuc of ui k dowrstrcasn of

the wave. nramely it 2 can he shown to be given by

i (1 ut

f M fr I -- 2( + fm ds) 47.2 -Y + 1)Mw.rds"I
0
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( Rciirhubcr that u 0 (Pi. I). 0 by virtue (it 06.) Since f( I ) extceds unity for I - () in lie explosive

atm insphere the shock forms at the leading edge of Ihc pulse slightly earlier than the classical incrt atmosphere

frirmation time of (see (47))

Tsa b 2/(? i I)Mw 49.

If the pulse duration in real time is very shon compared with oMirtI then a shock will form before the ambient

explosive event takes place.

The xistence of the term fiTt in the nuicratoi in (4 7) is significant and points directly to the strong

amplification of the shock that can arise frotm perturh 3 ion of the ambient reaction rate. The direct sensitivity

of fo) to activation energy is evident thiough (21 ). (22) and (41) the larger the Nalue of F.A the smaller is the

valut of ( and the larger is the value of AiT) in gcueral. Oilier illustriions of the present and related results have

heen given by the writer (Clarke. 1978, 1979 also I for more details of the pieent analysis).

The results of this and the previous Section 1make it cleai that small dimt urhances ofi acoustic or greater

amplitudes will, in a general way, be at least sustained by their influence on the ambient reaction rate and, more

piobably Ihan not. will aclually giov. significantly in auphiiude, at least during the early stages ol ambient

ex tlhcrilic acti t. :or tines closer tI ambient thernalI runaway thIan those imphcit in fItN decision to treat

A(T). or equivalently, oT/ as O I ) in the a o limit (see Section , prior to ( 151) the analsis must he

modified, as shown in the next Section.

5 THE BREAKI)OWN OF UINI)IRECTIONAL PROPAGATION. Still under the general

requitrement that oa/ is ol I I it is evident I from (31)) (41 ), lot example, for the taiger amphtude waves) that

(au" )',/1 ) will cease to be ( I ) when A(T) moves out ot this order class. Breakdown ol the ass mptott

scheme for the estimationm of u1 ioccurs otly through this fact. since it can easily he shown that tau(t i/ao)] will

not hhave in the .tie way.

I)etails of the necessary re% islios oft tile tleor, are rather length), and will not be lls described here.

Sill'e iI to say that ole r111 nolw use

U - ou 10 (T. 49.e

together with

ii) ii) 1i)P oP a p ~op .q- oq 50a, b,c

(all functions with a subscript -- e are functions of r and 01, where T is a new time variable, namely

or T-7 51
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and 1 is a fixed time defined in the following way. Writingb

B I - I/-Y 52.

the factor A(T can be exprcsed in the form (see (21 )and (22) and drop Ihe term proportional to C 5111)

AMt = .- ,xl gB ncp 53.

Then, with

- -elno + B :b+ BU 54.

AtTi is (I/a) because b is roughly il the range 0.3 Io 0.4 for typical t and o values. B(t Ois hypothesised to be

0( I as a -o. The time Tb is now given by the relation

Ib)- i - 5/ = b .

b

with x defined by

T - = = T + o(7 - X) 5.h

and p defined so that

P . U - 57a. b
C 11 ( 7

it can he shown that the potential satisfics the equation

TT i, 1 I z k

b I/QU' <) flI  Ik -
I  b) N 60.

and Bm is the value of B when P is equal to ,  The particular form of SZ arises Irom the fact that if B has

the form (54) then C-o as 0-0 is essential if h is to be 0(I ). evaluation of 1l) under thes, circumstances

shows that it is equal to - In (I hT) and the particular form of SZ in (59) is a consequence. There is an
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implicatioIia ha solutions of" (58) may Iicak down .is i I iI lot io oi lie r icisnI It i Ilic fact i -atId hct

p%%ill not be properly described in Such circumstances.

The matching conditions for Fi require

C I) 7- ~ p o ) f 61.

where thre last result follows from (3(1)). AS T -- - o, and (58) ievets to thec wave equation for propagation

at the fixed frozen isentropic sound Speed g,, F Ti Thus tlic *early' stages of motion in the r time scale are

simpis an acoustic-like contitnuation of thc wave sysem at time T Since T like intervals of time are relatively

brief, nion-linear correction is relegated ito %ecomid-oder sigtiificaiice within them, AS 7 increases, Ri becomes

positive and thre right-hand side of (58) begins to assume signiicaice- L~smdentlN, 58) is describing a simple

hierarchical wave system (Wlmtham., 1974. ch. I I). The~ motion v, dtspcrsivc. with wave speeds between the frozen

isenitropic value 1i fband thre frt,/cn V isohemal Value 3~V Hecaus' the relaxation frequency S2 in (58) &

(591) is positive, the wave system is unstable and thec waves will be aimplified tryou the source-like character oif

the right-hand side of (58) and the need to obey conditions like (61 ) for all 0 (or. equivalently, x) at some

'fixed* r(- -- -) it is highly probable that waves of h 'th families, propagating along i > o and x <0, are

getierated. It is very significant that pecrturbations in ZI have been promoted in the present 7 time intervals to

first order Size (see (50: )~ froly the Second order site that they had origmalk, (see ( 14f ).

Thus ( 58 is deCScibing iIIC %%I IF) 'in h f m nIirsi-om der chenmical act mvii s is pi tticipat ing in the wave-

propigation processes. and (lueMIA hear release canmol prefer to) gvei-ric waves of oine particular class, it muist

produce waves of both classes
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DEFLAGRATION TO DETONATION TRANSITION

G.S.S. Ludford and D.S. Stewart**
Department of Theoretical and Applied Mechanics

Cornell University, Ithaca, N.Y. 14853

ABSTRACT. Transition from plane steady deflagration to plane steady
detonation is examined in one particular case, related to the ignition of a
combustible mixture at the closed end of a tube. Two conjectures are made:
a deflagration of strength 0(B), where 0 is the heat release, requires a
disturbance 0(1) to make it evolve into a detonation; and the outcome of
a shock overtaking a deflagration is an overall steady detonation with oscill-
atory structure. Some doubt is cast on the first conjecture.

I. INTRODUCTION. In spite of the long history of deflagrations and
detonations, the transition of the former into the latter (DDT) still lacks
a theory. Progress has foundered on such questions as the adequacy of a lam-
inar description, which have only complicated the issues. In dealing with
detonation structure perse, Oppenheim & Rosciszewski [5] dismissed these
questions by asserting that "only a thorough understanding of the so-called
"laminar" wave structure can provide proper basis for the assessment of the

effects of turbulence and other time dependent and multidimensional phenomena
that may accompany the detonation process".

The first steps in the case of DDT are simple descriptions of steady
plane deflagrations and detonations, the emphasis being on simple. Detonations
have now been treated by Lu & l.udford 141 and deflagrations by Stewart & Ludford
19]. (The deflagrations concerned are "fast", not just those obtained by the
so-called combustion approyimation (9] where the Mach number is vaninhingly
small). Here we move on to the transition question and immediately find that
the subject is too general to treat in its entirety. The object of this paper
is to isolate the mathematical problem involved in one particular plane tran-
sit ion.

II. HUGONIOT DIACRAM FOR e << 1. The most promising line of attack
assumes that the heat release is small: for steady deflagrations and detona-
tions the formulas are then particularly simple [61, involving no more than
exponential functions. One is immediately led to a conjecture about transitions
in general, suggested by a simple property of the llugoniot diagram (Fig. 1) to
be derived next.

The density p, velocity u and p.essure p on the two sides of a defla-
gration or detonation (treated as a discontinuity) must satisfy

*Work supported by the U.S. Army Research Office

**Present address: Department of Theoretical and Applied Mechanics, University

of Illinois, Urbana-Champaign, IT. 61801
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P(U - u) = P2 (U - u2 ), P(U - u) + p1 = P2 (U - u 2) + P2, (1)

2 22 + 2

(U - U? 2/2 + ypl/(y - l)pI + B = (U - u2 ) 2/2 + yp2 /(y - l)p2  (2)

Here U is the velocity of the discontinuity and JBI is the heat released

by the reaction there; if the mass flux is from side 1 to side 2, as we shall

assume, then 0 is positive. When the velocities are eliminated from these

three equations, a relation between plPlp 2,p2  is obtained, namely

y (l P2 1 1 _ - P2) + 0 =. (3)
y-I P ) - 2 p P2 1 2

For given state 1, the locus of the state 2 in the l/p, p-plane is a hyper-

bola, known as the Hugoniot diagram.

2t

B

E

... F
w 1/p

Figure 1. Hugoniot diagram for P << 1
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Not all of the hyperbola is physically acceptable. Those parts on which
density or pressure is negative must be excluded, as must that part to the
right of the vertical and above the horizontal through the point 1 (since vel-
ocities are imaginary). The discontinuities corresponding to the remaining
parts AC and DF are detonations and deflagrations, respectively. The point B
divides the detonations into strong (above) and weak (below), while E divides
the deflagrations in the same way (right and left). Analysis of the reaction

zone within the discontinuity shows that strong deflagrations do not exist and
that weak detonations, unlike strong ones, only exist for special reaction rates;
accordingly BC and EF are drawn dashed to indicate their exclusion from the

subsequent discussion.

We are left then with the strong detonations, together with the so-called
Chapman-Jouget (C-J) detonation corresponding to the point B, and the weak
deflagrations, together with the so-called C-J deflagration corresponding
to the point E. At both the upper and lower C-J points (B and E) the vel-

ocity of the discontinuity relative to the burnt gas is equal to the speed of
sound there. As A is approached, the velocity of the discontinuity becomes
infinite while at D it is zero. For 0 << 1, the hyperbola comes to a dis-
tance 0(0) from the point 1; hence, both the upper and lower C-J points are
0(0 ) away, the simple property of the Hugoniot diagram mentioned earlier.

If the initial deflagration is steady, corresponding to the point 2 f,
and the final detonation is also steady, corresponding to 2t, then the tran-
sition involves a change O(B' ). It is, therefore, natural to conjecture that,
to effect the transition from a steady deflagration to a steady detonation, at
least a threshold disturbance 0(6 ) must be applied. This conjecture, which
Matkowsky claims to have made first, will be examined later; here we merely
note that it explains why no detonation was produced in the quasi-steady theory
of Stewart & Ludford i0)].

III. SHOCK-INDUCED TRAYSITION. The object is to focus current discussion
of transitions by considering a specific problem in which a deflagration evolves
into a detonation under the action of an external disturbance. The problem is
derived from a standard example of DDT which, in its original mathematical

form, has the transition process suppressed. We refer to the ignition of a
reaction mixture In a tube closed at one end. When ignition is supposed to

occur at the end wall itself, a C-J wave propagates away, immediately fol-
lowed by a centered rarefaction wave (Courant & Friedrichs (31). The transi-
tion is eliminated by this mathematical idealization.

To obtain a transition problem without introducing complications associ-
ated with a more realistic description of the ignition process, the mixture is
supposed to be ignited with the end opened, so that a steady deflagration wave
propagates down the tube. The end is subsequently closed or, more generally,
moved with constant velocity. The (uniform) backward motion of the burnt gas
behind the deflagration is incompatible with the motion of the end wall; the
resultant shock wave overtakes the deflagration wave and produces transition
(Fig. 2).
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X

Figure 2. Outcome of a sufficiently strong shock -'
overtaking a deflagratione4tAk The
lines*AA ,end,%- - represent a detonation
and contact discontinuity, respectively.

Figure 2 applies if the wall velocity is sufficiently large, from the
collison emerge-, a detonation wave together with a contact discontinuity and
a back shock. More precisely, we assert that such a collection of disconti-
nuities forms a consistent description: the detonation wave satisfies the
equations (I,2), with P2 > p , the hack shock satisfies the same conditions
with R - 0, and the contact discontinuity has velocity and pressure continuous
across it. The consistency of the description does not mean it is correct, how-
ever: the transition question, i.e., whether the collision results in the con-
figuration shown, remains.

The transition problem associated with such a collision can now be posed
(cf. Fig. 3a): given initial conditions corresponding to a shock wave approach-
ing a steady deflagration wave, determine the ultimate conditions. The appro-
priate distance and time scales for analyzing the problem are not, of course,
those used in Figure 2 but the much smaller ones based on thermal diffusivity
(blowing up the region ringed In that figure). Before making a second conjecture,
about these ultimate conditions, we shall examine the configuration in Figure 2
more carefully, with a view to shedding more light on the first conjecture.
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t-~

Tf

(b) X-Uf t

Figure 3. Collision process for 0 << 1: (a) initially
shock overtakes deflagration; (b) ultimate
oscillatory structure of detonation (conjectured)

Numerical calculations were made for S = .5; the results are believed
to be typical. Instead of prescribing the reaction properties of the mixture
and calculating the Mach number M of the deflagration discontinuity, M was
taken to be .2 (which is less than the Chapman-Jouget value for the 0 as-
sumed). The main result is shown in Figure 4, where the das):oe curve (corre-
sponding to weak detonations) Is to he discarded. The configt-ation of Figure
2 then leads only to the curve QP, s o that there is a minimum wall velocity,
corresponding to a C-J detonation, for its validity. Also shown in Figure 4 is
the curve for 0 - 0, obtained analytically.
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For wall velocities smaller than the minimum, the (discarded) weak detona-
tions produce lower pressures than the limiting C-J detonation, which suggests

inserting a centered rarefaction wave immediately behind this detonation. The

resulting modification is shown in Figure 5. Numerical calculations confirm the
configuration, producing the horizontal extension PQ in Figure 4. At P the
wall velocity is equal to that of the burnt gas behind the deflagration, i.e.,

the wall is being withdrawn just fast enough for no shock wave to be produced.

t

x

Figure 5. Modification of Figure 2 for weaker shock
strengths. The detonation is now C-J with
a centered rarefaction lying immediately behind.

This limiting case is important: unless contradicted by the solution
of the transition problem, it shows that an arbitrarily small disturbance
will induce a deflagrat ion to change into a detonation. (The fact that the
system of discontinuities after thLe collision in Figure 5 can solve the same
initial-value problem as a single deflagration has been noted by Cherny 121,
but without reference to DDT. For B <1 i, when the withdrawn velocity is
zero, the conclusion amounts to a counterexample of the first conjecture

(Sec. IT): a vanishingly small disturbance, on the scale S , produces tran-
sition. In fact, counterexamples are also obtained for certain positive wall
velocities, because the distanice between B and D in Figure 1, on the basis
of the conjecture, Is a definite multiple of B .
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IV. CONDITIONS FOR STEADY DEFLAGRATIONS AND DETONATIONS. A discussion
of the collision process is clearly needed; for vanishingly small disturbance
the question reduces to the stability of deflagration waves. Before coming to
the second conjecture, about the ultimate conditions in the transition prob-
lem, we shall show that the configurations cannot be exactly as implied by

Figures 2 and 5: the detonation wave that emerges from the collision is not
necessarily steady.

The argument depends on the theory of steady plane deflagrations and
detonations presented in 191 and [4]. The theory involves an ignition temper-
ature T, which, as a property of the fresh mixture ahead of both the defla-
gration and detonation waves, applies to the reaction (at flame sheets) inside
both. Stewart and Ludford [9] show that a structure exists for a steady plane
deflagration only if the ignition temperature lies in a certain interval, say

.,(B) < T, < T,(B; (4)

the corresponding restriction for detonations, say

V ATk(O,M) < T* < T,(6,M), (5)

was obtained by Lu & Ludford [4 ]. Here M(T,) is the Mach number of the
detonation in Figure 2 or 5 when the deflagration corresponds to T*. Except
for T*, which is the adiabatic flame temperature of the mixture, the limits

these inequalities must, in general, be obtaine- numericlly. The limit
T, corresponds to the C-J deflagration, while T, and T, correspond,
respectively to the DNZ detonation and a weak detonation/shock combination.

The question i" whether the T. selected in the interval (4) leads to
values of T, and T* lying above and below it; if not, the mixture cannot
support the steady detonation. (We ensure that T. lies in the interval (4)
by merely choosing a deflagration velocity less than the C-J value for the
B concerned). The implication would be that the detonation could not be
steady. The answer for general 6 will be available soon; here we note that
it it not so when 8 is small enough, because the value

T= 1 + 0(F"2) Tf (6)

found by Stewart, Kapila & Ludford [6] lies above

T, = (1 + 'Y)Tf. (7)

Here the function O(B ) is positive and Tf is the temperature of the
fresh mixture.
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V. THE SECOND CONJECTURE. Consider 8<< 1. Since a steady detonation
cannot emerge from the collision, we are left with the question of what does
emerge. The question can only be settled by considering the transition prob-
lem itself; and there is one way in which Figures 2 and 5 would still be correct.

The essential requirement is that conditions far upstream and downstream in the
ultimate structure (Fig. 3b) should be fixed. Such a requirement would be met
by a structure that was steady on the 8 -scale but had an unsteady perturbation
O(M) that died out at infinity in both directions.

Such a structure is sketched in Figure 3b. Since an ignition temperature
O(8 ) above Tf is required for a steady detonation, the flame sheet is unable
to assume a steady final position. On the other hand, reaction takes place as
soon as the temperature reaches the flame temperature in Figure 3a, which is
0(0) above T . The conjecture is that ultimately the flame sheet oscillates
at the front of a shock-like disturbance, forming an overall steady detonation
with a pulsating structure.

This conjecture highlights the need for a study of the transition problem.
For general 6, numerical methods will undoubtedly be needed; but, for B << 1,
experience [91, [6], [10] suggests that analysis will prevail, and the conjecture
indicates how.
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NUMERICAL SIMULATION OF THE GAS DYNAMIC CYCLE
OF COMPLEX, LARGE-SCALE SHOCK TUBES

Andrew Mark
Terminal Ballistics Division
Ballistic Research Laboratory

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. The quasi-one-dimensional Euler equations are applied to a
geometrically complicated shock tube and integrated by an implicit numerical
technique. The driver section consists of many contractions so that rare-
faction waves generated there catch up to the main shock and mitigate it
progressively to the point where it has the appearance of an exponentially
decaying wave of the type generated by a free air blast. The computational
capability is tested to an extreme because of the severe area contractions
and high initial diaphragm pressures. The shock capturing numerical tech-
nique used for these cases employs coordinate stretching and clustering for
sharp shock definition. Operation of a rarefaction wave eliminator is
computationally exercised and is shown to well define a blast-type waveform
if its closure rate is selected judiciously.

I. INTRODUCTION. The ban on open-air nuclear testing forces the blast
community to seek alternate means of generating pressure signatures capable
of simulating the blast from tactical and strategic nuclear weapons. The
pressures generated by these simulations can then be applied to model or
real targets to assess their vulnerability. There are commonly two methods
for experimentally simulating pressures from nuclear devices: first, deto-
nation of large quantities of high explosives; or, second, creating the
appropriate waveform in specialized shock tubes. Although both methods are
currently employed, the former is becoming prohibitively expensive and
large-scale blast simulators appear as increasingly attractive alternatives.
These simulators (shock tubes) are physically large enough to accomodate full
sized tanks, helicopters, tactical aircraft, etc. A number of moderate size
such devices exist in the U.S. and abroad with the largest and newest in
Gramat, France. This device is schematically illustrated in Fig. 1. Several
prominent features are evident in this Figure. The first is the driver sec-
tion consisting of seven large pressure vessels which discharge through
conical nozzles into the driven section. The driver lengths for this blast
simulator are about 44 m and the driven section is 105 m. Items to be
tested are placed from 60 to 75 m into the driven tube. The cross section
diameter is nominally 12 m. The third distinguishing feature is the rare-
faction wave eliminator (RWE) which consists basically of a louvered wall at
the end of the driven section. The RWE is shown removed from the driven
section in Fig. 1. Its purpose is to regulate the outflow as a function of
time so that signals generated at the end of the tube do not propagate up-
stream into the subsonic flow following shock exit. It allows the simula-
tion of very long duration blast waves and provides a substantial cost
savings in construction since, with a RWE, the same waveforms are obtained
in tubes a fraction of the length.
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The U.S. Army and other government agencies are looking into developing
a simulator designed primarily for tactical nuclear blast simulation. An
additional feature in its design concept will be to incorporate a thermal
irradiation capability of the magnitudes associated with tactical nuclear
devices. One then has the capability for studying blast/thermal synergism in
a controlled environment. The focus of this work, however, is to make pre-
liminary computational designs and predict the performance of the gas
dynamic operating cycle of this complex shock tube by: (a) requiring the
computations to simulate 3-D above ground bursts by shaping the waveform;
(b) simulating a long driven section (or long duration pulse) by incor-
porating an active rarefaction wave eliminator; and (c) obtaining long
flowing times by requiring severe area contractions and high diaphragm
pressures.-

The computational technique employed in this study is that due to Beam
and Warming2 ,5,6 . The one-dimensional application in this work is a step-
ping stone for extensions to 2- and 3-dimensional blast problems.

If. THEORETICAL CONSIDERATIONS. Application of the implicit finite-
difference scheme described by Warming and Beam 2 is most elegant in multi-
dimensions where one can take advantage of all its attributes. Yet even in
the quasi-one-dimensional application most of the essential qualities are
retained. The governing equations, for our problem, written in weak conser-
vation form, retain that generality when transformed to a uniformly spaced
computational space. Central spatial differencing casts the difference
equation into a block tridiagonal structure which is solved for the incre-
ments in the dependent variables at each successive time step without
iteration.

A. Governing Equations. The differential Euler equations which
describe one-dimensional flow with variable area may be written in the
following form:

(NA)+ (FA) + fl = 0, (1)

where the vectors q, F, and H1 are:

Pu
a A (2)q = , F = P (1 2 + p), and F = P x" 2

u e + p) 0

This set of three scalar equations represent the conservation of mass,
momentuin, and energy, per unit volume, with the usual notation of p as
density, u as velocity, e as total energy, and p as pressure. A represents
the cross-sectional area of interest which may vary with coordinates x
and/or t, where x is a linear dimension and t is time. As written, the
equations are in weak conservation form because of the vector H. If
A # f(x), the H vanishes and the equations revert to their strong

574



conservation form. Either form is shown by Peyret and Viviand 3 to locate
(capture) shocks accurately in the grid.

The physical, independent variables (x,t) are transformed into a uni-
formly spaced computational grid by a general transformation of the form

= f(x,t)
(3)

T=t

The resulting transformed version of equation (1) is then

3- * = (4)

where it is noted that the weak conservation form is retained. In equation
(4) we define

r~~pA + puAC
II X t XI

LeA t + u(e + p)A x (

[+1)h = -p a

where subscripts x and t mean differentiation and A = A/Ex . The system of
equations (4), together with the ideal gas equation of state

p = (y - 1) (e - pu2 ), (6)

where y is the ratio of specific heats, constitutes the governing set of
one-dimensional Euler equations with arbitrary geometry. These equations
will be numerically applied to a variable area shock tube problem with the
implicit delta formulation of Warming and Beam

2 .

B. Implicit Numerical Scheme. Euler implicit time differencing and
central spacial differences are employed for the derivative terms in
equation (4) while the source term, F, is evaluated explicitly. Equation (4)
then becomes

-n+l _n AT ( .+1 . 1
j 2 j+l - j-1) + ATE = 0

(7)
+ O(AT,A4 2)

where the subscript "j" refers to a spacial grid point and superscript "n" to
a time step. The terms containing the vector E are nonlinear functions of
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the conserved flow variables Q and the system of equations (7) can be
solved by an iterative scheme. However, as suggested by Lomax 4 , when these
terms are locally linearized the equation set (7) can be solved directly
(non-iteratively) with onl one inversion. This can be shown to be equiva-
lent to one iterative stepK, and retains the formal accuracy of equation (7).
Performing local linearization and defining the increment in the variable Q
by

- -n+l f 8

AQ=Q. - Q8

one obtains the "delta" form of the algorithm in matrix notation as

I + AT6 (A) (AQ)= AT6(E)n -A (h) (9)
J

where the double bar indicates a k x k matrix and 6 implies central spacial

differencing. The above notation is favored by Beam and Warming 2 '5'6 and
clearly points to the solution in terms of the flow variable increment Aq.
The solution of the dependent variables at the next time step, therefore, is

-n+l -nl _ -nQ. Q. + AQ (10)

In equation (9) I is the identity matrix and A is the Jacobian of the convec-
tive terms with respect to the flow variables, 3E/aQ. The notation in
equation (9) requires the dot product to be carried out prior to the spacial
differencing. Although the "delta" formulation leads to numerical efficienc'
and analytical simplicity, it should be pointed out that Briley and McDonald
were first to extensively apply the local linearization concept and implement
the algorithm in its "non-delta" form. Finally, the actual implementation of
equation (9) finds the left-hand term in brackets to be a tridiagonal system
which allows for easy application of a solution algorithm.

C. Dissipation. To control phase errors associated with the highest
frequencies, a fourth order dissipation term is explicitly added to equa-
tion (9). This is of the form

4Q Q5+2 -4Qj+l + 6Q - 4Qj-2 = (11)

(1)4

where A and V represent forward and backward difference operators respect-
ively. The final form of the computational algorithm which has been pro-
grammed is

rI + AT6 (A)l (AQ) - AT6 (P). AT n + AAQn(12)
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Since the order of this term is higher than the order of the truncation )
error, formal accuracy is maisitained. At boundary mesh points the dissipa-
tion is of second ordor.

D. Grids. For most situations computed in this paper the algorithm
of equation (12) remained stable and a uniform grid spacing was adequate.
Under conditions of a large initial pressure ratio and severe area constric-
tions, portions of the flow would experience density undershoots. This was
usually resolved by clustering about a point with a hyperbolic relationship
of the form

= a sinh-1 a(x-x0 ) (13)

or

= a tanh (x-x 0) (14)

In these equations xo is the point about which one clusters and B paramet-
rically adjusts the density of grid points about xo . The coefficient a
stretches the ordinate such that A& 1.

E. Initial and Boundary Conditions. The variables in the governing
equation were nondimnensionalized by the following (where signifies a non-
dimensional variable)

= ta/L

p = pp
(15)

= u/a1

= p/P a 2

= e/p 4al 2

The subscripts 1 and 4 refer to the initial atmospheric and driver conditions,
L is the length of the shock tube, and a is the sound speed. To initialize
the computation

T T41 T41 T A T 4 1o4 =1$1 = =
=

P4  = e4  (y)y-I' ' =l P4 ' Pi YP'41

(16)
= 1

e (y)(y-l)P
41
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where T and P are the initial temperature and pressure ratio across the

diaphragm. Under the severe conditions mentioned in the previous section it
was sometimes necessary to spread the diaphragm over several grid points so
as to "soften" the starting process. After several time steps this initial
diffusion would not be evident when compared to a control case without the
distribution.

The reflective boundary at the left-hand side was computed by means of
image points, such that

Pl = 3

u I  -u 3

(17)

U2 = 0

and the outflow boundary was computed from backward differences at the exit
plane formulated such that it did not violate domain of dependence. The
variable specified here was the absolute static pressure. Inflow was not
considered.

III. RESULTS.

A. General Considerations. This section shows how the computational
results obtained with the algorithm of equation (9) can be combined to model
geometrically complicated blast simulators in a quasi-one-dimensional sense.
The schematics depicted on the left hand side of Figure 2 represent various
ways in which the waveform in a particular shock tube may be shaped to
eventually achieve a desired result. In every case the dotted line repre-
sents the location of the diaphragm. The dots in the tube schematics are
meant to correspond roughly to the test station and represent the location of
the respective static overpressure waveform in the right hand side of the
Figure. The term overpressure is the excess pressure over atmospheric
(ambient) and is preferred by the blast community to absolute pressure. This
term will be used consistently throughout and is to be construed as such
wherever "p" appears. The waveforms are time varying functions and are ob-
tained by continually sampling the flow at the location of the dot.

Part (a) of Figure 2 represents a conventional shock tube. At the test
station, the pressure rises instantaneously to a plateau value and remains
there until it is destroyed by a rarefaction wave. In this particular case
the rarefaction wave is the result of the shock exiting the tube and initia-
ting a left traveling rarefaction wave. Had the sampling station been far-
ther to the left, the left traveling rarefaction wave generated by the start-
ing process (bursting of the diaphragm) would have reflected from the closed
end and caused the decay. In either case the result is essentially the same.
Of course, this basic configuration does not approach the desired result
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depicted in 2(f) of the same Figure. This waveform is meant to represent
the ideal, classical exponentially decaying wave that results from a surface
burst and it is ths waveform that we try to generate with our mathematical
shock tube. The shock tube that generates this type of waveform is there-
fore called a "blast simulator".

Figures 2(b) and 2(c) are alternate ways of achieving similar results.
The essential feature of the waveform is that the plateau no longer exists
but rather a decay is present. In 2(b) the driver contains a number of
baffles (area constrictions) and in 2(c) the driver is in the shape of a
cone. The left traveling rarefaction wave in 2(b) caused by the bursting of
the diaphragm encounters a baffle, partially reflects from it and travels to
the right; partially passes through until it, encounters the next baffle and
reflects to the right; etc. This process could theoretically be continued
with a large number of baffles. The right traveling rarefaction waves that
reflect from the baffles catch the main shock and progressively weaken it.
This weakening is depicted by the overall decay in the first half of the
pressure waveform. The detail in the decay (undulations) depends on the
number of baffles, their relative placement and the size of opening. The
driver in Figure 2(c) can be thought of as the limiting case of a large rnum-
ber of baffles that progressively decrease in hole diameter as we move to the
left from the diaphragm. The result is that the undulations depicted in 2(b)
disappear to produce a smoothly varying exponential-like decay.

Figure 2(d) depicts a shock tube with a contraction at the diaphragm and
a divergent nozzle. There are two prominent features associated with the
pressure history for this configuration. First, a decaying pressure spike is
evident. This is caused by the expansion process of the divergent section
and the fact that the nozzle is operated in the choked mode. Second, the
mass flow into the divergence and the driven section is restricted by the
throat area and although when the process is started the flow initially re-
acts as if the situation were that of 2(a) it quickly adjusts to a mass flux
dictated by the throat. Realizing it can't keep up the mass flux demanded
in 2(a) the pressure plateau accomodates the lesser mass flux. These fea-
tures permit control of the initial wave decay rate and, because of low
driver mass emission, prolong the blowing times required for long duration
waveforms. Eventually, the waveforms in Figures 2(b), (c), and (d) suffer
the consequence of the rarefaction the same as in Figure 2(a). This brings
us to our last important feature in the design of blast simulators; namely:
the rarefaction wave eliminator (RWE).

Figure 2(e) shows the RWE at the end of a simple shock tube. Its pur-
pose, as the name implies, is to negate the detrimental effects caused by
the rarefaction wave from the open end. Besides having no business in a
waveform that tries to mimic a blast wave, it poses several other problems.
It produces a flow acceleration and subjects items to be tested to unrealis-
tically high dynamic loads. This is especially troublesome when an item is
to be tested near the limit of its survivability. The rarefaction wave can
potentially destroy the test item. The RWE is computationally modeled as a
contraction or baffle placed at the end of the tube. The effects for a
straight tube are shown in the right hand side of 2(e). The dotted line in
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the pressure trace represents the result without a RWE (i.e., the condition
depicted in 2(a)). The extension of the plateau comes about when the shock
wave exits the end of the tube; partially reflects as a shock from the closed
portion of the RWE; partially generates a rarefaction wave from the open por-
tion of a strength so as to cancel the shock. The resulting extended plateau
is then only destroyed by the diaphragm generated rarefaction wave and its
reflection from the closed end.

The general features described in Figure 2 can be combined and parame-
trized such that the operational gas dynamic cycle of the resultant shock
tube would, in waveform, approach that of Figure 2(f). The remainder of this
paper will show how this is accomplished by using the French facility de-
scribed in Reference 1 as an example.

B. A Blast Simulator Model. The Gramat Facility in France1 consists of
a driven tube with a nominal diameter of 12 m. In order to accommodate some
aircraft a 20 m diameter facility would be required for the U.S. In planning
for the driver design for such a facility we are faced with engineering a
pressure vessel 20 m in diameter by roughly 50 m long if we adopt the model
of Figure 2(b). This is, of course, impractical and the French have resorted
to a technique devised jointly by them and the Germans 7 . The technique in-
volves using a number of "small" diameter rechargeable pressure vessels with
the nozzle end directed into the driven tube (as seen schematically in Figure
1). This allows one to build driver pressure vessels that are of manageable
size and facilitates installation of diaphragms. If one adds the divergent
cone feature of 2(d) one evolves a schematic of the Gramat Facility as shown
in Figure 3. Although only four tubes are shown, Gramat actually has seven 1.

The decaying wave in this facility is produced by using variable length
driver tubes. The effect of this is to approach the configuration of Figure
2(c). The diaphragms for all the drivers are at the throat and when they
burst simultaneously, generate left-traveling rarefaction waves which reflect
from their respective closed ends at different times and therefore alter the
main shock progressively.

The quasi-one-dimensional computational model is shown in Figure 4. In
the driver, the cross-sectional areas at any given location are simply lumped
into a single area and the stair-stepped driver results. One can now better
see that this approach to driver design is in the spirit of a conical driver
(Figure 2(c)). The RWE, which in reality is a series of louvers, is modeled
computationally as a single lumped opening.

C. Waveforms Without RWE. For the purpose of conciseness, let us des-
ignate the configuration of Figure 1 as "standard". Let us also designate a
sampling station for the pressure-time history at 67.5 m into the driven sec-
tion (from the left). If we normalize by the total length this corresponds
to a test position of x = .75. A waveform produced at this location for an
initial pressure ratio across the diaphragm of 24.4 atmospheres is shown in
Figure 5. This initial pressure ratio is used for all subsequent computa-
tions. It represents a moderate pressure in the test section appropriate for
testing trucks, electronic shelters, etc. For armored vehicles, such as
tanks and personnel carriers, pressures four or five times as great are
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in order. On the other end of the scale, light-skinned vehicles such as air-
craft seldom get exposed to more than 10-15 kPa (several psi). The waveform
in this Figu (Figure 5) exhibits all the features talked bout earlier; a
sharp rise across the shock the divergence expansion 2 , the decay due
to the various length drivers 3 , and the sudden relief by the rarefaction
wave 4 . It is often debatepow best to approach the elimination of the
rarefaction wave. There are two schools of thought. One proposes the use of
a RWE while the other simply advocates extending the driven section. Ulti-
mately, costs will dictate. So that one can make a comparison, three graphs
are presented in Figure 6 for the same initial conditions and sampled at the
same location (x = 67.5 m from the left end) of the driven section. The
graphs represent pressure-time histories for driven sections that are 25,
SO, and 100% longer than the standard. In the computations, the number of
mesh points was increased proportionately so as to maintain the same grid
spacing. It is therefore evident that even doubling the driven end still
produces a rarefaction wave of significance. The situation becomes worse
for higher initial pressure ratios. The rarefaction wave arrives sooner and
becomes stronger. It therefore appears as though if we want to do without
the complication of a RWE, we have to build a driven section about three
times as long as the standard. This does not seem practical both from a
cost cGnstraint and from its shear physical length. Therefore we turn our
attention to modeling the operation of the RWE. Let us preface that topic
by stating that the French standard configuration (i.e., 105 m long driver,

12 m diameter) is nearly as short as it can be. It takes about 5 diameters
for the flow to settle into a one dimensional state and about that much dis-
tance to prevent the contact surface from reaching the test section. Then we
have about a 15 m test section and the final 30 meters or so serves to allow
test items to slide without damaging the RWE.

D. Waveforms With RWE. An account of how the French RWE is intended
to operate is given in Reference 1. Physically it consists of banks of
louvers which pivot about an axis much like a venetian blind. The open area
could theoretically be varied according to a feedback system since we know
we must maintain a closure rate to generate compression waves of a magni-
tude to negate the rarefaction waves traveling up the tube. This is thought
to be unnecessarily complicated1 and a simple pre-programmed A = f(t) varia-
tion is used to control the louvers. In particular Reference 1 advocates a
linear time variation. We shall qualitatively compare the results from a
computation and a record from the Gramat facility. Such a record is depicted
in Figure 78. Its comparison computation is given in Figure 8. The dotted
line in Figure 8 represents the operation of the RWE. It is set to an ini-
tial value (.34) and remains motionless for a preset delay, until the shock
wave reaches the end of the tube. Then it begins to close linearly as
shown, dwells for a short time at some minimum opening, and subsequently it
is allowed to open. The resultant pressure-time history is shown with the
solid line. The initial setting for the open area of the RWE is that recom-
mended in Reference 1. Actually, if one were to set it to match the shock
strength when it reaches the exit, it would be - .48. The value of .34 is a
compromise based on the "average" pressure-time history. No matter what one
does, however, the rarefaction wave at about .4 s will always be present.
This wave comes fro the decay of the initial peak due to the divergence.
Its duration is only about .020 s and any closure slower than this will
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produce an effect like that in the figure. The difference will be that for
an initial opening larger than .34 the hump (reflected wave) at = .38 s will
be smaller and for a smaller initial opening it will be larger. It is in-
teresting to note that almost all the corresponding features exist in the
computation the way they do in the experimental record. In addition the
computation shows rarefaction waves at about .6, .85, 1.05, etc. These come
from the diaphragm bursting and the rarefaction wave reflecting from the
stepped driver configuration. In the experimental record, this effect is
washed out. The effects of these rarefactions are also seen in the computa-
tions without the RWE, especially in the 100% version (see Figure 6). There
it is also evident that the first of these waves arrive at the test station
coincidentally with the arrival of the stronger rarefaction from the open
end (t -. 4 s).

Fianlly, the idea of the more rapid closure of the RWE to negate the
rarefaction wave at t % .4 s can be tested very simply by performing the
computation with a bi-linear closure function. The resulting pressure-time
history is given by the solid line in Figure 9. The area closure function
is shown with the dotted line. One can see the favorable effect and overall
smooth approach toward the abscissa.

E. Waveform With Thermal Radiation Source (TRS). Thus far, we have
discussed the blast-only modeling aspects of large-scale shock tubes. In
order for these shock tubes to be more realistic in simulating nuclear
bursts, a thermal source should also be considered. This is true both for
the physical and computational shock tube models.

The thermal pulse from a nuclear device precedes the air blast. For
distances of interest for tactical equipment from ground zero, the time
between the thermal and blast pulses is of the order of 1 second. Adding
the capability of thermally irradiating a target and then applying a blast
loading is a step closer to a real simulation. This can be done physically
by incorporating a thermal radiation source in front of the target. The
drawback in the physical shock tube is that the hot thermal products will
still be in the target area when the shock arrives. As the shock passes
through the hot gases its wave characteristics are altered. This section
points to the fact that, in attempting to reproduce both the thermal and
blast characteristics of a nuclear device in a physical shock tube (large
thermal/blast simulator), we need to concern ourselves with the thermal
radiation products confined within the tube.

One can obtain a qualitative insight into this thermal-blast interaction
process by computationally modeling the Gramat facility, including a region
of remnant thermal radiation products. Such a model is depicted in Figure 10
where the shaded area represents the distribution of hot products and point
"A" is the measuring station in the test section. The solid line in Figure
11 represents the predicted static overpressure (as in Figure 9) for the
blast-only test, while the dashed line represents a combined thermal/blast
test. The hot products were modeled with air, having a sound speed 1.73
times tha ambient value. The shock wave which arrives at the measuring sta-
tion is attenuated by about 25% in amplitude and arrives somewhat sooner
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since it traveled for some distance through higher sound speed air. The
perturbation on the thermal/blast wave at t ; .35 s occurs because the rare-
faction wave elimiiator is now "detuned" for this type of wave. All these
anomalies point to the fact that a venting mechanism needs to be incorporated
into the design of a large thermal/blast simulator if realistic combined
testing is to be e~pected.

IV. CONCLUSIONS. Based on this computational study it is certainly
feasible to parame,-erize a number of different important functions of a
Large Blast Simulaz:or. In general it is not advisable to build a long tube
as opposed to one with a RWE. The quality of the wave one obtains com.-ita-
tionally depends to a large degree on the proper functioning of the RWE. The
waveform resulting from the bi-linear operation of the RWE appears very ade-
quate for most experimental purposes. It may be possible to shorten or
lengthen the waveform by adjusting the closure rate in the latter stages of
the closing cycle. For combined thermal/blast testing, the hot thermal radi-
ation products need to be eliminated prior to the arrival of the blast wave
so that realistic simulation of nuclear bursts are realized.
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AN ADAPTIVE FINITE ELEMENT METHOD FOR
INITIAL-BOUNDARY VALUE PROBLEMS

Stephen F. Davis
Computational Interior Ballistics Branch

Interior Ballistics Division
Ballistic Research Laboratory, USA ARRADCOM
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. A finLte element method is developed to solve initial-boundary
value problems for vector systems of partial differential equations in one space
dimension and time. The method automatically adapts the computational mesh as
the solution progresses in time and is, thus, able to follow and resolve relatively
sharp L~ansitions, such as mild boundary layers, shock layers, or wave fronts. This
permits an accurate solution to be calculated with fewer mesh points than would be
necessary with a uniform mesh.

The overall method contains two parts, a solution algorithm and a mesh selec-
tion algorithm. The solution algorithm is a finite element-Galerkin method on
trapezoidal space-time elements, using either piecewise linear or cubic polynomial
approximations and the mesh selection algorithm builds upon similar work for var-
iable knot spline interpolation.

A computer code implementing these algorithms has been written and applied to
a number of problems. These computations confirm that the theoretical error esti-
mates are attained and demonstrate the utility of variable mesh methods for partial
differential equations.

1. INTRODUCTION. In this paper we construct an adaptive grid finite element
procedure to find numerical solutions to M-dimensional vector systems of partial
differential equations of the form.

u + t, -u [D(x, t, = 0

(1)

o < x < a, t > o

Subject to the initial and linear separated boundary conditions

u(x, o) - u°(x), o < x < a (2)

A (t) u(o, t) + A (t) u (o, t) b (t)
11 f~ 12 -.1

(3)

A2 1(t) (a, t) + A 2 2(t) ux(a, t) - 2 (t), t > o
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There are kI boundary conditions at x = o and k2 boundary conditions at x = a.

We are primarily concerned with solving diffusion problems where D is positive

definite and kI + k2 = 2M; however, we will not restrict ourselves to this case,

but instead we assume that conditions are specified so that problem (1)-(3) has an

isolated solution.

Our goal is to construct a general purpose computer code which will solve

(l)-(3) when the solution (x,t) contains sharp transitions such as boundary layers,

shock layers, or wave fronts. In order to resolve such nonuniformities with a

minimum number of mesh points, it is desirable to concentrate the mesh within the

transition layers. Since these transition layers can move, it is necessary for

the mesh to adapt itself to the evolving solution. Our approach involves (i) the

accurate discretization of (1)-(3) on a nonuniform mesh and (ii) the determination

of the proper mesh point locations.

The problem (1)-(3) is discretized using a finite element-Galerkin method on

trapezoidal space-time elements. This approach is similar to that of Jamet and

Bonnerot [3, 14] and it was chosen because it is generally easier to generate high

order approximations to partial differential equations on a nonuniform mesh with

finite element methods than with finite difference methods. The accuracy and order

of convergence of these methods are analyzed in Davis [6] and are demonstrated ex-

perimentally in Section 4 of this paper.

Adaptive mesh selection strategies typically involve some recomputation of

the solution. That is, an initial solution is computed on a coarse mesh and this

is used to determine whether to accept the result, redo the calculation using more

mesh points in some portion of the domain, redo the calculation using a more accur-

ate method, or redo the calculation using some combination of more mesh points and

a more accurate method. Algorithms of this type have been successfully applied

in many areas of numerical computation but the expense involved in recomputing

the solution of partial differential equations at possibly every time step elimin-

ated these methods from consideration in this case.

Instead, we developed an algorithm which initially places a fixed number of

mesh points in optimal locations and then attempts to move them so that their

locations remain optimal. This type of algorithm has been used by Lawson [171,

deBoor [7, 8], and Jupp [15] for variable knot spline interpolation. Their work

motivated our mesh selection algorithms.

A different approach to this problem was proposed by Miller and Miller [18]

and later extended by GaLinas, et al. [10]. They approximated the solution of a

parabolic partial differential equation by piecewise linear polynomials where

both the polynomial coefficients and the mesh on which they were defined were

unknown functions of time. These functions were determined by minimizing the

residuals in a least squares sense. They found that the mesh points tended to

coalesce in certain situations. To avoid this, they added a number of spring

and damping terms to their discrete equations.
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An advantage of the above approach is that it readily extends to higher dimen-
sional problems. However, it couples the mesh selection method to the solution
method and we do not believe that this is necessary or desirable. This coupling
can dramatically increase the size of the discrete system without a corresponding
increase in order of accuracy. Furthermore, the entire solution procedure fails
if an acceptable mesh cannot be calculated. Under the same circumstances, our
method continues to compute a solution on a suboptimal mesh. To date, detailed
comparisons of the two methods have not been carried out but we hope to do this in
a future paper.

In Section 2 of this paper, we sketch the derivation of a finite element-
Galerkin approximation to (1)-(3) using trapezoidal space-time elements. In Sec-
tion 3, we describe a practical and efficient mesh selection procedure that approx-
imately minimizes the L2 error of the computed solution. Readers desiring a more
detailed derivation are referred to Ref. [5j. In Section 4, we apply the method
to a number of problems and discuss the computed results. Finally, in Section 5,
we present an overall discussion of this effort and some possible future efforts.

2. FINITE ELEMENT SOLUTION PROCEDURE. Problem (l)-(3) is discretized using a
finite element-Galerkin on the strip S defined as follows:n

S n:=f I(x, t)o < x < a, t n< t < t n+1 (4)

We choose a set of k linearly independent "test" or "weight" functions
vi(x,t) E C0 (Sn), i = 1,2,...,k and a set of k linearly independent "trial" func-
tions 4i(x,t) c C0 (Sn), i = 1,2,...,k. The solution (x,t) to problem (1)-(3) is
approximated by M(x,t) defined by

k

(X, t) =0 (-x, t) (5)

The coefficients C (t) are chosen so that M(x,t) satisfies
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.3

i ) l-i- i

v,): f '- t + (X , Mx) vi
t 0

a tn+1
+ D(x, t, M) Mx vi'x dxdt + f M vidx 1 (6)

0 t-t
n

tn+l a

- D(x, t, v x vi dt I = 0

xf=fOn

i = 1, , . ,

n ff 0,1,2,....

PM(x, a) P *(X) (7)

Ai(tn+l) (, +l) + A 12(tn+l) x(O, tn+l) = kl(tn+l)

(8)

A2 1(tn+l) M(a, tn+l) + A2 2(tnl) Mx(a, tn+l) = (2(tn+l)

where P is an interpolation operator. With appropriate modifications at the
boundaries, Equations (6) and (8) define an MK dimensional nonlinear algebraic
system for determining the Galerkin coordinates Ci(tn+l), i = 1,...,k in terms of
Citn), i = 1,2,...,k. Since i(o), i = 1,...,k are determined by the initial
conditions (7), Equations (5) and (8) define a marching algorithm for determining
M(x,t) in successive strips Sn, n = 0,1 ....

It is apparent that both the accuracy of the computed solution and the ease
with which it can be computed are strongly dependent on the choice of functions
¢i(xt), i l 1,...,k, and vi(x,t), i - 1,...,k. How these functions are chosen
is an active area of research. For this study, we choose

v i(z, t) " ¢(x, t), t - 1,2,...k (9)

and define the functions *i(x,t), i - 1,2,...k, by the following prescription.
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We introduce a mesh n = ... < = a) at t = t_ and a different
mesh (0 = n+l < xa+ l < ... n+1 = a} at t = tn+l. If the corresponding points
xi and x I  are connected by a sraight line denoted by xi(t), the strip Sn is
divided into a set of N-i trapezoids. We let T1 denote the trapezoid with vertices
(x, tn) , (XY+i,tn), (x 1,tn+l), and (xY+l,tn+l) (cf. Figure 1).

The functions 4i(x,t) are choosen to have small support. In particular, we
construct i in such a way that i is nonzero only on Tn_ UTn. To do this we map
each trapezoid Ti into the rectangle 

i i

i

R = r l ! < E < , o < t r 1 (1 0 )

and choose the 41(xt) to be a function only of F, on Tj, j = i-l,i. Currently,
we allow qi(x,t) to be either a piecewise linear or a piecewise Hermite cubic
polynomial in I on Tn

J,

This construction permits us to write F(,v) as the sum of contributions from
each trapezoid. Thus,

EQv ff J({ Vt + t(x, t, g, vx)v + D (x, t, J )Uvjdxdt

P4i

(11)

N-1 V i+(t) tn+l n+l DUa

= ?i xt vdt - t= 0
i(t) -t=t n  ft n  Ix=o

The integrals in Equation (11) are transformed into integrals over R and evaluated
numerically. We use the Trapezoidal rule to evaluate the i in integrals and a
three-point Guass-Legendre rule (cf. Abramowitz and Stegun [1], Chap. 25) to evaluate
the F, integrals. The resulting system of nonlinear algebraic equations is solved
by the Newton-Raphson method.

3. ADAPTIVE MESH SELECTION STRATEGY. In Section 2, we developed a finite
element method which computes solutions to systems of partial differential equations
on nonuniform trapezoidal grids. In this section, we construct an algorithm which
selects a grid at t=tn+l so that the L2 norm of the error at tn+l is approximately
minimized. This algorithm is based on the variable knot spline interpolation work
of deBoor [7, 8], Lawson [17], and Jupp [15].

It is well known (cf. [21, 221) that errors in finite element-Galerkin methods
for problems like (l)-(3) satisfy estimates of the form

ilu U U11L2 < Ci u  -PU11L 2 (12)

2 2
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where PU interpolates u in the trial space. Thus, the error in the computed
solution to the partial differential equation can be bounded by an interpolation
error. The following result (cf. eg., Pereyra and Sewell [20]) indicates how this
interpolation error can be minimized for piecewise polynomial interpolants.

Lemma Let HN: = {o = xl < x2 < ... < xN = a) be a partition of [o,a] into
N-i subintervals and let u(x) E Ck+ifo,a]. The piecewise polynomial of degree Z
on (xi, xi+l), i 1,2,...,N-1, that interpolates u on flN2 has minimal L2 error when
the knots xi, i = 1,2,...,N-1 are chosen so that

h +l Iu(i+l)( i)I = E, i = 1,2,...,N-1 (13)1

where u ) is the £th derivative of u with respect to x, I k (xI x 1+l), E Is a
constant and hi = xi+ - x i .

This Lemma states that the interpolation ertor s minimized by selecting the
partition in such a way that the quantity hZ+l u('+l)(Fi)j is equidistributed.
Since the constant E is not known a priori, we follow Lawson [17] and Jupp [15] and
rewrite Equation (13) in the form

Pi: hi+l/hi ()( (14)

i = 1,2,...,N-2

This gives us N-2 equations for the N-1 unknown h.'s. The remaining equation is
obtained by noting that 1

h1 + h2 + ... + hN-1 = N - (15)

This can be expressed in terms of the p1 's by defining

Z: = I + p1 + (p1p2 ) + (plP2p3) + "'" + (p lP2P3"PN-2) (16)

and observing that

Z =(h + h2 + h3 + + hNi)/hI

(17)
= (xn -5
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To obtain a new mesh, we choose Ci = xi+l. Numerical experiments have shown
that other choices of E i do not much change the final grid point locations.

We compute U(+l) (&i) at t-tn by finite differences and assume that U(W+)(M
is linear between data points. In addition, to prevent pi from becoming infinite
or indeterminate, we impose a lower bound on IU(X+i)( )J. If IU(P+l)(C) < T for

some small, empirically chosen number T, then IU(t+1)(E)i = T.

The grid point locations are determined by successive approximation with
relaxation as follows:

1. Set v = 0, Q = 1, x(o) =Xn i

2. Calculate

p V+l) . U(1+I) (x(V)1 /1U (z+ I ) " (v). 1/(Z+1)

i = 1,2,...,N-2

(v) ,(v) (V) (V)(v) (v),Z~v  1 1 p P 2 1 +  ' P 2 "PN-2 )

h(V) = (v-i) - X(V-1) )/Z(V)

and set

x(V)= (V-i) ,(v) = (v-l)

3. If v>l and

O(v) - Z(V-1)i >Z (V- l) - Z(v-2)I, compute a new

4. For i - 1,2,...,N-2, calculate

x(V) -(V) +.(V)
+= xi +n

(V) (V) (V)

+1 i

(V-l)t +1 SI i+Xt +l x +1

597



5. Calculate

Z(V) 0)(() - X(v))/(x(v) (v))

6. If iZ(V) - Z(v_)I < c, the error tolerance,

Then stop.

else set

v =v + 1 and go to 2.

The choice of relaxation factor is discussed in Isaacson and Keller [13,
Chapter 3].

The algorithm just described computes an optimal grid at a time level tn where
the solution Un is known. To obtain an estimate of the optimal grid at time level
tn+l prior to computing the solution there, it is necessary to extrapolate the opti-
mal grids from previous time levels. It was somewhat surprizing to us that numer-
ical experiments seemed to favor zero order extrapolation; i.e., the optimal grid
computed at time level tn is used at time level tn+l. Multi-level extrapolation

consistently overestimated the distance that a mesh point should move in one time
step and then overcorrected this error in the next time step. In some cases, this
caused the mesh to oscillate wildly when, in fact, the solution changed very little.
On the other hand, the optimal mesh, determined at the previous time level, tended
to follow the solution even when it contained rapidly moving fronts.

Under some circumstances, our mesh selection strategy could create severely
distorted trapezoidal elements. This would cause an unacceptable degradation in
the accuracy of the finite element method (cf. eg. [21, [41). To prevent this, we
modified the mesh selection scheme in such a way that element distortion is limited.
Details can be found in Ref. 15].

4. COMPUTED RESULTS. In this section, we examine the performance of the
previously described method on three test problems. These problems were chosen to
exercise various facets of the method and illustrate how the method might be expected
to perform on more difficult problems.

Example 1

We solve a simple linear heat equation

ut = Uxx + f(x) , 0 < x < 1, t > 0 (18)

with initial conditions, boundary conditions, and source f chosen so that the
exact solution is
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u(x, t) = tanh (r1(x-1) + r 2 t) (19)

The solution (19) is a wave that travels in the negative x direction when rI
and r2 are positive. The values rl and r2 determine the steepness of the wave and
its speed of propagation. We created this problem to study how effectively the
adaptive grid algorithm concentrates grid points in transition regions, follows
moving fronts, and reduces errors below those of fixed grid methods.

Figure 2 shows the mesh computed by our adaptive mesh algorithm when applied
to this problem with rI = r2 = 5, uniform time step of At = .01, 10 elements per
time step and linear approximations. Note that the grid points are concentrated
in the region of maximum curvature and that they move to the left with the wave.
As the wave front passes out of the domain, lUxxI becomes small compared to i
and the grid points move toward a uniform distribution. It is clear that the grid
adapts to the solution and follows its progress as expected.

For all of the calculations presented here, the parameter T was chosen a& an
approximation to the truncation error in u(k+l). Numerical experiments showed that
this was small enough to permit the grid to concentrate where it should, but not so
small that the grid oscillated wildly in an attempt to adapt itself to small ran-
domly distributed errors. In general, it seems that T should be chosen as small as
possible but not so small that the grid oscillates when the solution is smooth.

Figure 3 shows the local error vs. x at t = 1.0, when our scheme is applied
to this problem wiLu rI = r2 = 100, uniform time steps of At = .01, 20 elements per
time step and linear approximations. Note that the mesh selection scheme concen-
trates points within the wave front and, thus, computes the wave accurately. Compu-
tations using a fixed, uniform grid experience large errors at the wave front.
Note also that the mesh selection scheme attempts to distribute the local error
evenly over the domain and, thus, as indicated in Section 3, approximately minimize
the error in L2.

Table i presents comparisons at t = 1.0 of computations with rI = r2 = 100,
using cubic approximations on uniform and variably spaced grids. Note that the
variable grid computations are consistently more accurate than the uniform grid
computations.

Example 2 (Burgers' Equation)

ut = - UUx + C Uxx , 0 < x < I, t > 0

u(x, o) = sinnx, u(o, t) = u(l, t) = 0

(20)

and

L =5 x l0- 3.
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It is well known that the solution to this problem is a wave that steepens
and moves to the right until a shock layer forms at x = 1. After a time of 0(1/c)
the wave dissipates and the solution decays to zero. Figures 4 and 5 show the
results of computations on this problem using linear approximations on a uniform
mesh and a variable mesh with a constant time step At = 0.1 and 10 elements per
time step. The results in Figure 4 are typical of finite difference or finite
element calculations for this problem. Spurious oscillations develop in the com-
puted solution unless the mesh width is of the same order as the width of the
shock layer, O(VC) in this example. The variable mesh results in Figure 5 largely
surpress these oscillations by automatically concentrating the mesh in the shock
region as the wave steepens.

When this example is solved using cubic approximations on a uniform mesh we
find that the solution UY is computed accurately at the nodes but there are large
errors in the slope of the solution Uni when the mesh is not suitably fine in the
shock region. This effect is exhibited in Figure 6 where the solution at t = 0.6
is 3hown for a calculation performed with At = 0.1 and N = 10. The cubic Hermite
trial functions were used to calculate the solution between mesh points.

Once again these problems are corrected when the mesh adapts with the solution.
Figure 7 shows the results of a similar computation using cubic approximations on
a variable mesh. Both the function values and slope values are computed accurately
at the nodes.

Example 3

bt = [p(s)bx] - [bX(s)sx] x

(21)

s = -k(s)b
t

o < x < 5, t > o

This two component nonlinear system was studied by Kelle- and Ode'! [16] as a model
for the chemotactic motion of bacteria. The quantity I- j) denu'-_ bacterial den-
sity and s(x,t) denotes the concentration of critical i )strate (bacterial food).
If the functions p, x, and k satisfy conditions derived by Keller and Odell [16],
Equations (21) have traveling wave solutions. These solutions have been computed
by Odell and Keller [19] and are interpreted as traveling bands of bacteria. For
our study we chose k(s) = 1, p(s) = vo, and x(s) = 60/s where wo and 4o are constants.
The initial conditions are shown in Figure 8a and the boundary conditions are

b(o, t) = b(5, t) = 0, S(o, t) = 1

We solved this problem for 60/110 = 2 using cubic approximations, uniform time
steps of At = .005 and 50 elements per time step. The compuited solutions at t = 0,
0.1, 0.5, and 1.0 are shown in Figures 8a, b, c, and d, respectively.
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This example was chosen to show that, with appropriate modification, our adap-
tive grid algorithm may be applied to vector systems of equations. Details of these
modifications can be found in Ref. [5].

5. DISCUSSION AND CONCLUSIONS. The computations presented in the last section
show that it is possible to construct an accurate and stable adaptive finite element
method for nonlinear systems of partial differential equations and that such techni-
ques offer advantages over fixed grid methods. In particular, we have shown that the
error estimates obtained by Davis [6] are actually realized in practice and that
the adaptive mesh algorithm correctly concentrates the mesh in a sharp transition
and is able to follow moving fronts. Examples 2 and 3 of Section 4 indicate that
this method is also useful for nonlinear equations and vector systems of equations.

In the present study, we used piecewise polynomial functions for both the trial
and test spaces. However, recent work of Flaherty and Mathon [91, Heinrich, et al. [il1,
and Hemker [12] indicates that exponential and "upwinded" polynomial functions may
give superior test spaces for singularly perturbed problems. We plan to incorporate
these functions into our methods.

All of our calculations were performed with a constant time step. Examples 2
and 3 of Section 4 indicate that it would be most desirable to be able to vary the
time step during the calculation. Our code presently allows for this, but as yet,
we have not implemented an algorithm to adaptively alter the time step. We plan to
add this feature to our code shortly.

Other areas for future study include free boundary problems and higher dimen-
sional problems. The present work has shown that it is possible to construct a
proactical adaptive finite element method. Future work must refine this method and
test it on a greater variety of problems.
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TABLE I

Results of Computations at t = 1 for Example 1 with rI  r2  100 using Cubic

Approximations on Uniform and Variably Spaced Grids.

Uniform Spacing Variable Spacing

N bt Ilell.L Ilell. Ilel IL 1 lel I.

10 0.01 0.607 E-1 0.801 E-1 0.130 E-1 0.232 E-1

14 0.005 0.319 E-1 0.257 E-1 0.332 E-2 0.602 E-2

20 0.01 0.214 E-1 0.394 E-1 0.167 E-1 0.951 E-1

0.005 0.185 E-I 0.309 E-1 0.483 E-2 0.950 E-2

0.0025 0.138 E-1 0.405 E-2 0.353 E-3 0.170 E-2
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Figure 2: Mesh selected for Example 1 with r1 - r 2 -5, uniform time steps of

At -0.1, N -10, and linear approximations.
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Figure 3: Local error at t -1.0 for Example 1 with rl - r2- 100, uniform time
steps of At - 0.01, N - 20, and linear approximations. The solid curve was com-

puted on a fixed uinform mesh, the broken curve on a variable mesh.
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Figure 4: Solution of Example 2 for various values of t using linear approximations

on a uniform mesh with At - 0.1 and N w 10.
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Figure 5: Solution of Example 2 for various values of t using linear approxima-

tions, uniform time steps of A~t - 0.1, and a variable mesh with N -10 elements

per time step.
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Figure 6: Solution of Example 2 at t - 0.6 using cubic approximations on a uniform

mesh with At , 0.01 and N - 10.
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Figure 7: Solution of Example 2 for various values of t using cubic approximations

uniform time steps of At - 0.01, and a variable mesh with N 1 10 elements per time

step.
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Figure 8: Computational results for Example 3 with 6 0/V' 2.0 using uniform time

steps of At - 0.005, N 50, and cubic approximations at t -0, 0.1, 0.5, and 1.0.
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Ann Arbor, MI 48109

ABSTRACT. Detonation phenomena in which the stricture of the
reaction zone affects the behavior of the detonation are considered. Various
theories for predicting the energy needed for the high explosive or direct
initiation of detonations in gaseous media and in sprays are described. The
determination of the critical iritiation energy appears to be associated with
a singularity of the governing equations. The structure of spray detonations
is described for liquid fuel sprays with both a high and low vapor pressure.
Single fluid, two fluid, and explosion theories which have been used for
modeling spray detonations are outlined. It is shown that the droplet breakup
process and the ignition of the microspray which is formed during drop dis-
integration are the central phenomena governing the behavior of spray
detonations. Attempts at modeling these basic processes are discussed.
It is remarkable that complex combustion processes often lead back to the
very basic problem of ignition.

I. INTRODUCTION. A number of interesting mathematical problems
arise in modeling the phenomena which are involved in the initiation and
propagation of gaseous and two-phase detonations. The objective of this
paper is to point out and isolate some of these problems. Modeling of
combustion phenomena is generally successful only if done in close concert
with experimental measurements. Therefore, the physical phenomena
of interest will first be described, at least qualitatively using experimental
data where it is available; then, various attempts at analytical modeling
and some of the mathematical problems that arise as a result will be
presented.

Deflagrations and detonations are the main types of reaction fronts
encountered in nature. On the surface it appears that the mathematics of
such .reaction fronts is thoroughly understood, and certainly there is an
extensive discussion of the conditions governing their propagation in the
well known monograph by Courant and Friedrichs [ 1J . A key result is
that the propagation of subsonic deflagrations is governed by the actual
structure of the reaction front, and the structure of such laminar flames
or deflagrations has been the subject of intense analytical and numerical
research during the past decade. Detonations can be treated as supersonic

*Partial support for the preparation of this paper has been provided by the
U. S. Army Research Office under grant DAAG29-80-K-0040.
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exothermic discontinuities and the ve!ocity of a steadily propagating
detonation is structure independL.et. Self-supporting detonations generally
propagate at the Chapman Jouguet (C-J) velocity determined by the condition
that the fluid velocity is sonic with respect to the detonation front at the end
of the reaction zone. Computation of the propagation velocity and the
pressure, density and temperature ratios across such C-J waves requires
a tedious calculation of the chemical equilibrium at the end of the reaction
zone; however, in the all gaseous case standard computer codes are
available for computing these C-J conditions [ 21 , [ 3 1 .

Even in the standard case of steadily propagating detonations, the
situation is no longer straighforward when the fuel and oxidizer exist as
different phases. Then changes of phase within the detonation front must be
taken into account in establishing the C-J conditions [4 ] . The many
possibilities with regard to phase are indicated in Table I below.

Single Phase Two Phase

Fuel gas solid liquid solid liquid

Oxidizer gas solid liquid gas gas

Table I: Phase Classification of detonations.

Only gaseous and two phase detonations will be considered here. The
literature dealing with solid and liquid explosives, especially with regard
to military applications, is extensive and this area represents a separate
field in itself.

Consideration of unsteady flame and detonation propagation opens a
completely new mathematical problem area. Starting with the basic work
of Sedov [51 , and exemplified by more recent studies [61 [ 71 , a series
of self similar solutions dealing with unsteady propagation of deflagrations,
detonations and shock waves have been explored. The generation of blast
waves and detonations by deflagration waves [8 ],[ 9 1 is perhaps of special
interest since it demonstrates the coupling between the two types of com-
bustion fronts.

The processes described above can be modeled without considering
the detailed structure of the detonation front. There are, however, a
number of important detonation phenomena which cannot be understood with-
out considering the detailed structure of the detonation front, and these are
the focus of the present paper. Spin detonations and the diameter dependence
of the propagation velocity in tubes are among the earliest known structure
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dependent detonation properties. Some of the earliest observations of
spin detonations are discussed by Lewis and von Elbe [ 10 ] ; a more
recent example is provided by the observation of CH 4 -air detonations by
Wolanski et al [II] . Figures I and 2 from Ref. [11] show a spark
Schliern photo and schematic sketch of such a wave. The effect of tube
diameter is closely related to the well-known diameter effect in the case
of unconfined solid explosives and is discussed extensively in the mile-
stone paper of Wood and Kirkwood [ 12 ] . The influence of tube diameter
upon gaseous detonations velocity depends on the interaction between the
wall boundary layer and the structure as shown in the pioneering analysis
of Fay [ 13] which has provided the basic model for most subsequent
analyses of this problem. Detonability limits as well as the quenching
diameter of detonations propagating through tubes also are intimately
related to the structure as indicated by the kinetic analysis of Belles [ 14 ]
and the detailed study of wall effects by Tsuge [ 15 J .

Detonations can be induced or initiated in a combustible material
by a deflagration as already mentioned above or by the sudden release of
a finite amount of energy as by a high explosive. This latter mode of
initiation is sometimes called direct initiation and is intimately coupled to
the behavior of the reaction zone. This interdependence was recognized by
Zel'dovitch et al[ 16 ] in formulating a qualitative criterion for estimating
the minimum high explosive charge needed to induce a detonation in a
combustible medium. These authors stated that the direct initiation of
spherical detonations requires that when the pressure behind the initiating
blast has decayed to the C-J value, the shock radius must be at least of
the order of the reaction zone thickness of the mixture.

The reaction zones of steadily propagating detonations are not
necessarily one dimensional but frequently are made up of a series of cells
generated by transverse waves. This phenomenon is also intimately related
to the structure of the wave as discussed by Strehlow [ 17] and by Fickett
and Davis [ 18 ] . Under some conditions detonations may propagate in an
oscillatory fashion as in the case of a blunt body propagating through a
combustible mixture. This behavior is illustrated by the striking herring-
bone pattern behind a blunt projectile moving through a hydrogen-air
mixture shown in Figure 3 which is taken from [ 19] . This oscillatory
behavior is also intimately related to the structure of the reaction front.

It is in the interaction of the structure and propagation that some
of the most interesting problems in detonation theory arise. In gaseous
detonations it is necessary to consider the interaction between the kinetics
of the combustion reaction and the fluid dynamics of propagation. In two
phase detonations, there is the added complication of the droplet or particle
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combustion mechanisms. Before proceeding to a more detailed consider-
ation of these problems, it appears appropriate to briefly discuss some of
the models which have been proposed for the structure of a detonaiion front.

The simplest model for the structure is that of Zel'dovitch,
von Neumann, and Doering [ 18 J in which the detonation is treated as a
shock discontinuity followed by a reaction zone in which the heat of
combustion is released. The reaction zone is terminated by the C-J
plane where the velocity relative to the detonation becomes sonic. Either
an exact or approximate kinetic scheme for the combustion reaction is
needed to determine the extent and structure of this reaction zone. A
qualitative sketch of the variation of reaction zone pressure and temperature
compiled using this model is shown in Figure 4(a). The complexity and
uncertainity of the kinetics of most combustion reactions has led to the use
of approximate reaction zone models in many cases. Two of the most
common which are discussed in detail by Korobeinikov et al ( 201 are the
two front and the combined induction-reaction zone models. In the two
front model an induction zone of length I in which there are no measurable
chemical changes, is followed by a discontinuous reaction front in which all
the heat release takes place as shown in Figure 4(b). In the combined
induction-reaction zone model, an induction zone of length I is followed

by a reaction zone of length I R where the combustion heat release occurs

as shown in Figure 4(c).

The models described above are steady and one dimensional; how-
ever, the unstable waves (Fig. 3) and the waves with cellular structure [ 17 J
are anything but steady and one dimensional. Nevertheless, the local
structure of the wave generally is treated using models like those discussed
above and in the case of overdriven detonations, the steady structure appears
to provide a reasonable description. Thus, Figure 5 taken from [ 21 ]
shows the structure of an overdriven detonation induced is an H 2-o 2 mix-
ture by a sphere traveling at a velocity above the C-J value.

The structure of detonations propagating through clouds of fuel
droplets suspended in a gaseous oxidizer is governed by the mechanism
of droplet breakup as well as by the kinetics of the fuel-oxidizer reactions
[ 22 , [ 23 ] . The resultant structure differs drastically from that of a
pure gaseous detonation, and depends upon the average droplet diameter,
the droplet size distribution, the vapor pressure of the liquid fuel and a
host of other parameters. If the droplets are very small or have a high
enough vapor pressure, the behavior of such spray detonations may also
revert to that of a purely gaseous detonation. An illustration of the com-
plexities involved Ls provided by the Schlieren photograph of a detonation
propagating through a row of Z600R droplets of diethylcyclohexane shown
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in Figure 6(a). Figure 6(b) is a schematic sketch explaining some of the
phenomena shown in Figure 6(a). Right after passage of the leading shock,
the droplet is subject to the supersonic flow induced by this shock wave so
that a bow shock immediately forms upstream of the droplet. As a result
of this induced flow, the droplet begins to broaden and a micromist which
is stripped from the forward surface of the droplet is entrained in the
droplet wake. This behavior is particularly well illustrated in Figure 7
which shows a nonburning 2700t drop 14R. sec after the passage of a Mach
3. 5 shock. In the case of burning droplets, the wake explodes after
sufficient time has elapsed as shown in Figure 6(a).

A number of dust air and dust oxygen mixtures have also been
found to be highly detonable [ 24 ] , [ 25 ] , and, in fact, grain dust has been
found to be a highly explosive material. A laser photograph of an oats-
oxygen and oats-air detonation is shown in Figure 8. The phenomena which
govern the structure of dust detonations are quite different from those
involved in spray detonations. The particles are again accelerated by the
supersonic flow induced by the leading shock, but now do not shatter. The
ignition or induction mechanism now depends mainly upon the convective
heating of the particle, the heterogeneous reactions which can occur both
on the surface and within the porous interior of the particle, and upon the
reaction of the volatiles which are evolved as the particle temperature
increases. Radiation which is generally ignored in gaseous and spray
detonations, appears to play an important role in dust detonations. The
difference between the droplet or dust and gas velocities can also have a
significant effect upon the structure of two phase detonation and in some
cases, appears to result in unstable behavior [ 26] .

Some of the many phenomena touched by the discussion above will
now be described in greater detail starting with the problem of the direct
initiation of gaseous detonations. This will be followed by a discussion of
the propagation of detonations through sprays.

II. THE DIRECT INITIATION OF GASEOUS DETONATIONS. The
sudden release of energy in a gaseous combustible fuel oxidizer mixture
causes a decaying blast wave to propagate into the mixture. The high
temperature behind this wave results in a combustion front at some
induction distance I behind the leading shock. Depending on the amount
of energy which is re-eased, the induction length f I continually increases
until the blast wave has completely decayed, or the length I I reaches
some limiting value as transition from a blast wave to a detonation occurs.
This process is referred to as "direct initiation" and the key problem is
to establish the minimum or critical energy release Ec for which such
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initiation will occur. Both a decaying wave and one in which transition
to a detonation occurs are shown in Figure 9 taken from the review by
Lee [ 271. It appears clear that the magnitude of Ec will depend upon
the interaction between the decaying blast wave and the growth of the

induction length I I.

The modeling problem of direct initiation is to develop a theory
of the a priori calculation of the critical energy E c . The Zel'dovitch
criterion [ 16] , which has already been described, provides a qualitative
means of estimating E c . Bach et al [ Z8 ] dealt with this problem by
still treating the combustion front as a discontinuity; however, with a

reduced heat release Qe which is only a fraction F( n, z) of the total
heat release 0 per unit mass of fuel-oxidizer mixture. Here -n = M s
with M s the wave Mach number and z = Rs/ R o where R s is the wave
radius and R o is the explosion radius. F(i, z) is an empirical function
based on physical considerations of the induction process. Approximate
analytical solutions due to Sakurai [ 29 1 are used to describe the flow
between the blast center and the decaying shock front where conditions
are determined using the Rankine-Hugoniot conditions and the modified heat
release Qe

Overall energy conservation as described by Eq. 1 below, is used

t6 determine the shock motion
R

E 0 [p/( + (PU k. dr
0o 0 3

R p Q k. dr (1)

0 0

Here Eo = the energy instantaneously deposited at the center of the blast
wave; j = 0, 1, 2 and k. = 1, 2n , 41 for planar, cylindrical and spherical
symmetry; p, p , and u are pressure, density, and particle velocity
respectively, and the subscript zero refers to the undistrubed conditions
ahead of the wave front. The problem is then reduced to the solution of
the following two ordinary differential equations

- z=,e d T 1/Z

dz z dZ = 1

where T = C0 t/ R 0 and C 0 is the speed of sound in the unburned explosive.

The relation between the acceleration parameter 0, which is'defined as

R 8 / , and the other variables in Eq. (2) is determined by the

energy conservation equation (1).
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The resultant system of nonlinear equations, which also depends
upon the empirical function F( 1 , z), can only be integrated numerically
after some further simplifying assumptions are introduced. The computed
wave traj tctory is found to depend upon the parameter 6 = A/ Ro where

A is the experimentally observed induction distance for plane C-J
detonations. Mach number profiles calculated for MCj = 8, which is an
average value for stoichiometric and equimolar acetylene oxygen mixtures,
and an auto ignition shock strength of Mc = 2. 8 were computed by Bach
et al [ 28 ] for various values of 6, and are shown in Figure 10. Smaller
values of 6 correspond to higher initiation energies.

When 6 exceeds a certain critical value 6 c (0. 091 in the present
case), which implies that E < E , the initial blast wave decays to an

o oc
acoustic wave. When 6 < 6 (or E > E ) the blast wave first decaysc 0 OC

and then re-accelerates to a self-sustaining C-J detonation. Especially

when 6 is only slightly less than 6 , there may be an extensive region

where the propagation Mach number is substantially below the Chapman-
Jouguet value M 0 3 . Near the critical condition 6 6c the solution

appears to be inherently unstable and tends to become oscillatory. The
re-establishment of a detonation in these cases appears to involve the
formation of an unsteady or transverse wave structure as shown in Figure
9(c). The behavior shown in Figure 10 appears to agree with experimental
observations.

Since the explosion length R is given by0

R j+l = E /p o C o k (3)

the critical initiation energy E follows from the definition of 6 and
is given by oc

2 j+lE k.PC (A/6) (4)
oc o o c

The behavior described above can, in a sense, be tied to the

chosen behavior of the heat release function F( 1 , z) which is designed to
cut off all combustion heat release when M < M . Thus F(n, z) = 0

s c
for z > 6, I >1 . But the behavior described above also suggests that
the critical value of the initiation energy E or 6 is associated withoc c
a mathematical singularity in the equations describing the direct initiation
phenomenon. The numerical studies of direct initiation by Chernyi [30 J
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and by Boni and Wilson [ 31] , [ 32 ] provide further evidence for the
existence of such a singularity. Chernyi [ 30 1 used the combined induction-
reaction zone model for the reaction zone and then carried out numerical
calculations for two different values of the initiation energy. The tra-
jectories of the leading shock, i. e. , r s and of the flame front rf are
shown in Figures 11(a) and (b) for values of E below and above E .

o oc

The drastic separation of the deflagration from the shock front in
Figure 11(a) is especially significant. At the higher energy the deflagration
and shock remain coupled together although the deflagration is observed
to oscillate with respect to the leading shock at large values of the dimension-
less time as shown in magnified form in the second part of Figure 11(b). Boni
and Wilson [ 31] used a finite difference code to study the direct initiation
of spherical detonations in methane-air mixtures. Their computations
started with the detonation of a spherical tetryl charge. They did not use
the simplified reaction zone structure described above, but used a grossly
simplified kinetic scheme to represent the CH -air reaction. Figure 12
shows the trajectories of the flame front behintd the leading shock for
several different tetryl charge sizes, and once again a drastic transition
from a coupled to an uncoupled reaction front is evident. It is almost as
if the solution trajectories encounter a saddle-point like singularity when
the E lies below the critical value.

0

A very simple analysis which starts from the energy equation (1)
can be used to demonstrate the connections between E and a singularityoc

in the governing equations [ 33 ] . Neglecting the energy of the undisturbed
medium and using the dimensionless variables

S/Po 0, u/R f= plPo R , =r/R0S 0 S '

this equation can be reduced to the following expression for the Mach number
of propagation M :

J E [ Q l_(1 I/R)]Ms = j +l +  f 6Jd} (5)

P 0< 2

where I is the integral

1 2 Y-1

The detailed behavior of the dimensionless density 4, velocity 4,, and
pressure f between the leading shock and the blast center r = t = 0 is
required before the integrals in (5) and (6) can be evaluated. In addition
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the variation of I with the wave Mach number must also be known. At

this point the following rather drastic assumptions will be adopted:

2 2
(a) I = const = Q/ (j+l) Mcj Co

(b) I IR << 1Is

(c) The density p in the induction zone is constant and equal
to the value at the shock.

While these assumptions should not affect the qualitative behavior
of Eq. (5), they will, of course, affect the quantitative accuracy of any
initiation parameters derived from Eq. (5). The choice of I in (a)
ensures that M -b M as I /R -* 0.

Equation (5) can now be reduced to the following rather simple
expression for the propagation Mach number M :

5

22 R *j+lp
= M - (j+l) - (7)

s PO

R * is what is called the critical radius and is that value of R where
s 5

the combustion and blast energies are equal so that

R * = j+l) E 0/ kj p Q /Q (8)

The second term on the right of (7) represents the effect of the initiating
blast while the third term measures the influence of the induction length
I . Equation (7) reproduces, at least qualitatively, the behavior shown

in Figure 10, that is, Ms drops to a minimum below M and then
gradually accelerates back to M Ci when initiation does occur.

The possibility of singular behavior becomes evident when the
derivative dM / dR is evaluated from (7). The crucial step is taking

the variation of the induction length I with Mach number M into account.
The result is: I 5

dM p s R aj+l 2M s 9 t d(I nI
dR pR2 j+ ] 2 p R dM

S 0 R ? R j+l)Mc0

-N/D (9)
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The numerator N < 0 for very small values of R but changes sign and
becomes positive when s

p R * /j
R = - (5)l/. R* (10)s P s t

Thus, M s passes through a mininium at this value of R as do the
S 5

trajectories shown in Figure 10. All this presupposes that the denominator
D> 0 in Eq. (10). However, while [ ZMs/ (j+l) MCj'I > 0 always, the

derivative d(1 n I I)/ dMs < 0 so that the denominator D may also vanish.

In fact, when the critical radius R * decreases to a value R *, N and
s sc

D vanish simultaneously so that the minimum point of the trajectory is
replaced by a singularity. For R * < R * the slope dMs / dR -4.- 00S sc 5

as R -. R * . This suggests that the value E associated with R *

corresponds to the critical initiation energy E .
oc

The condition D = N = 0 is sufficient to determine both M the
sc

Mach number at the critical point and the associated value of R * and
Sc

hence E . The condition D = 0 leads to the following equation for M :

___ 2 2 [ " (n1 1 )]2M + 4 -M 2) = 0 (11)sc j i sc dM s

M =M
s sc

and Eq. (11) demonstrates the intimate relation between the singularity
and the behavior of the induction zone I . A qualitative sketch of the

Mach number trajectories for E > E and E < E is shown in

Figure 13. The detailed computation of E for a simplified relationoc

between I and M is described in Ref. [ 33]

The fact that usually I I/ R << I and that most induction reactions
s

have a very high activation energy suggests the possibility of applying
asymptotic methods [ 34 ] . Nicholls et al [ 35 1 , and Oza [ 36] developed
an analysis of the direct initiation problem on this basis which provides
some interesting insights into the physics and mathematics of this process.
A two front mode of the reaction zone is used. There are two length
scales: the radius R forms a global or outer scale while induction

5

length I I represents an inner scale. For the outer or global problem

the detonation front is treated as a discontinuity; however, the jump from
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the conditions in the undistrubed fuel oxidizer mixture to the conditions
behind the front depend upon the structure of the reaction zone. The
treatment of the global or hydrodynamic problem then is quite similar
to that of Bach et al [ 28] except for replacement of the empirical heat
release function F(-, z) by a detailed analysis of the induction region.

Arrhenius kinetics for a single second order irreversible reaction
is used in the induction zone. Thus with

aA + bB -* cC (12)

(A-fuel, B-oxiditer, C-combustion products), the species conservation
equation becomes

8Y A  8Y A -/

- A - A aa. ab a (3p - +u - Y AaY B e (13)

where Y and Y are the mass fractions of A and B, and barred
A B

quantities and the pre-exponential factor 8 are dimensional. T is the
a

activation temperature T/ , and Ea and are the activation energy

and universal gas constant. A system with high activation energy so that
T /T << 1, is considered, where T is the temperature of the gas

s a s
immediately behind the shock. On the basis of the second order reaction

it now is possible to also define the chemical time

c YAo YBo ] (14)

and an associated chemical length

I t a M e a s (15)
c c 0 S

The following dimensionless stretched variables are now introduced with
shock fixed coordinates:

p /p hh/C T Y.=Y Y/Y

opo T 0 i H io

p= p/p w =(R - u)/R = t / B
0 8 sB

T T/T0 ( r)/ I -- = Rs/R (16)

When these variables are substituted into the equations for one dimensional
unsteady flow without transport effects or body forces, the small para-
meters (I / R s ) and 0 appear. This suggests the use of a double expan-

C s
sion of the form

f =f + pfI + (f / R ) f() ..... (17)
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for the parameters of the flow.

The first term in the expansion (17) represents the effect of the
high activation energy upon the induction process while the second term
of 0(1 / R ) reflects the influence of the wave curvature. The question

C s

of how these effects interact will depend upon the relative magnitudes of
P and i / R . Nicholls et al[ 35] assumed that I / R << which

appears to be in accord with physical reality. Then to order p the
conservation equations are steady, and the mass momentum and energy
equations reduce to the following simple set of algebraic equations:

Plw s + w 1P s = 0

Pws + 2WIwsPs + pl 0M/(yMs) = 0

2
T 1 + [ (Yo-)/2] Ms 2W1Ws " Q Y = 0 (18)

with Q = Q/ C T
po 0

The species equation becomes

ws [ d YAl/ddn) = e (19)

This system of equations is readily solved for the temperature coefficient
T1 with the result

T1 = -T In[l- ( /w sA 1) ] (20)

where
2 /[ +)( 22A1  (T / Q)[ (y+l)(M -1) [ (1+))(M- l)-2(y-l)(+ ) ]

The solution for T diverges as w w A1 and this value of n, denoted

as ?I is chosen as the dimensionless induction distance so that

I = I c ws A1 (21)

It is interesting that this definition of induction distance is similar to
that introduced by Hermance [ 37 ] in his study of adiabatic ignition.

Combining this treatment of the induction zone with the solution for
the hydrodynamic flow between the detonation front and blast center makes
it possible to compute Mach Number-radius trajectories for different values
of the initiation energy. A set of such trajectories computed for

626



stoichiometric acetylene oxygen mixture is shown in Fig. 14 taken from
Ref. 36. The parameter ty is the ratio of a characteristic chemical
time to a characteristic explosion time and varies inversely with the
energy of the initiating blast wave. The singular nature of the transition
from initiation of a detonation to a decaying wave with decreasing initiator
energy is once again evident.

The asymptotic analysis described here indicates that the direct
initiation of a detonation bears a very close relation to the classical problem
of the adiabatic ignition of a fuel-oxidizer mixture. It is no surprise that
with (I /R ) << p << 1, the flow behind the shock reduces to a quasi steadyc 8

one in which induction occurs as the fluid moves downstream of the leading
shock. The novel feature is now that the starting conditions T , p a etc.

depend upon the variation of I at preceding times which in turn depends

on the size of the exploding charge. These features depend upon the solution
of the outer problem. The asymptotic analysis described here is unfortunately
incomplete. Thus, to treat the end of the induction zone would require a
detailed analysis similar to that of Kassoy [ 38 1 , which takes the consumption
of the fuel into account.

Several approaches to modeling the direct initiation of gaseous
detonations have been described, and all indicate that E is governed by

oc

the relationship between the growth of an induction length I and the decay

of the initiating blast wave. The critical energy E appears to be associ-oc

ated with a singularity in the governing equations but the precise character
of this singularity remains to be determined. The asymptotic analysis
described above, depends upon the condition I T/R << P << 1. The analysis

raises the interesting question of how to deal with the cases when I I/Rs - O(p)

or P < I I /R << 1 . In the former case, the changes within the reaction zone

due to wave curvature will be important. The role of higher order terms
like those of order P (I R s ) remains to be established. When the initiating

energy E only slightly exceeds E oscillatory behavi-r not unlike that
o oc

discussed in the Introduction is observed. Various aspects of detonation
stability have been discussed by Fickett and Davis [ 18] and the numerical
computation of an oscillating detonation front by Fickett and Wood [ 39 ] is
especially noteworthy. However, the precise relation of this oscillatory
behavior to direct initiation remains to be determined. Invariably, the
initiation of detonations, especially with E close to E is associated

with the formation of transverse waves. This is evident from Figure 9.
While the relationship between transverse cell formation and initiation
is discussed by Bach et al[28] , its precise relation to the initiation
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process remains to be determined. Consideration of the direct initiation
of gaseous detonations has thus raised a number of subsidiary problems,
many of which are mathematical in nature. A consideration of spray
detonations introduces a whole new set of questions and these are discussed
in Section III below.

II. DETONATIONS THROUGH SPRAYS. As already mentioned
in the introduction, the initiation and propagation of detonations through
sprays introduces an entirely new set of physical phenomena because the
ignition of the fuel depends crucially upon the droplet shattering process.
Certain key features of the structure and propagations of spray detonations
have been established [ 40] ,[ 41] . The breakup of the fuel usually dominates
the detonations structure so that the reaction zone is much longer than in
the gaseous case; however, the kinetics of the reaction between the vaporized
fuel and the oxidizer can also play a very important role [ 42 ] , [43] . In
addition, the volatility of the fuel may have major effects on the character

of the structure.

Detonations in non-volatile droplet clouds of diethylcyclohexane
were studied by Dabora et al [44 ] while Bar Or et al [45 ] made detailed
studies of mono-dispersed clouds of decane in a sectored shock tube designed
to simulate cylindrical detonations. Certain key features of non-volatile
detonations have been established by these studies. After passage of the
leading shock the droplets are in a region of supersonic flow so that a bow
shock forms ahead of the droplet. The droplets are accelerated and deformed
by this convected flow while a microspray, formed by boundary layer stripping
is usually entrapped in the wake. Because of Taylor Instability the droplet
may then shatter into a group of much smaller droplets [46] . After a
certain ignition time , tig , the combustible mixture sometimes explodes

so that a weak blast wave propagates toward the leading shock and into the
region downstream of the detonation. The remaining fuel is then consumed
smoothly until droplet burning is complete at time t . Whether or not

cc
the wake explosions, which are such a distinct characteristic of some
spray detonations, occur seems to depend on the properties of the fuel and
oxidizer and the size of the fuel droplets [431

Many features of this process are illustrated in Figures 6 and 7,
which have already been discussed. A typical Schlieren streak record of
a detonating mono disperse spray of 400± decane droplets in oxygen
recorded by Bar Or et al [45 ] is shown in Figure 15, and a sketch explaining
the main features of this record is shown in Figure 16. The wake generated
blast waves are an especially notable feature. The wave shown in Figure 15
was initiated by an explosive charge placed at the vertex of the sectored
shock tube mentioned above and the streak records were photographed through
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windows about halfway along the 140cm radius sectored shock tube.
During the direct initiation of detonations in non-volatile sprays the velocity
of the wave drops below the C-J value and then slowly appears to reacceler-
ate to the C-J value. This behavior is evident from Figure 17 which shows

Mach number trajectories for 4 0 0p. decane droplets in oxygen for different
values of the energy Eo of the high explosive initiator. The similarity of

these curves to the trajectories shown in Figure 10 for the direct initiation

of gaseous detonations should be noted. The fact that the wave velocity is
appreciably below the C-J value seems to characterize most non-volatile
spray detonations.

The situation will be quite different for a volatile spray. A typical

Schlieren streak record of a detonating spray of 400 k heptane droplets in

oxygen is shown in Figure 18. Now a detonation front propagating at the
C-J velocity corresponding to the equilibrium vapor pressure is observed.

The droplets break up and explode as before but apparently have no
influence upon the propagation of the main detonation front. In a related

experiment, Pierce and Nicholls [ 47 ] found that in systems consisting of

non-volatile diethyl cyclohexane droplets in an atmosphere of hydrogen
and oxygen, the detonation velocity was unaffected by the combustion of the

droplets behind the reaction zone of the H 2-O 2 detonation.

Modeling of the direct initiation and propagation of spray detonations

is possible at several different levels of complexity. Perhaps the simplest

approach is to use Eq. (7), discussed in Section II above, to describe the
wave trajectory of a detonations initiated by a high explosive charge. Then

the questions which arises immediately is how to define the induction length

I for a spray detonation. A relatively simple model of droplet combustion
based on empirical results for droplet breakup can be used for this purpose.

A single droplet which has crossed a shock wave at time t = 0 is

shown in Figure 19. During interval t the droplet will move a distance x
while the shock moves a distance u t . The distance S between thes

shock and the particle will then be S u t - x. The particle breakup will

be complete after a certain interval ts when x = xs and S I B the

breakup distance. Measurements show that at breakup [48] , [49 ] a

dimensionless time

Ts = (ts u2/D)(P2/p)/2 (23)

always has the same constant value while the distance x can be determined
from

x
X s = AT (24)

s D s
0
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where D is the initial particle diameter, and A is an empirical
0

constant. Fishburn [ 46 ] has pointed out that the dimensionless time
T defined in Eq. (23) also characterizes the time required for the droplets5

to deform after shock passage and can be derived by balancing the gas
dynamic pressure on the liquid droplet against the liquid inertia in the
radial direction. From Eqs. (22)-(24) it now follows that

Po 1 o)/2 Pe 1/2 2B = [ (I-o)- (- (-) T - AT D =FD
P 2  P 2  Po s s o 0(25)

-l

where the relation (Us/U2) = [ 1 - (p ° / p 9) between shock velocity

and density has been used. For hydrocarbon detonations (p /p 2) is almost

independentof M "; thusIB will be proportional to the initial droplet

diameter D for a given fuel and a fixed ambient density. Waldman et al0

[48 ] have suggested values of 3. 5 and 0. 8 for T and A while Rangers

and Nicholls [49 ] suggest values of 5.0 and 1. 1 respectively and these
values are certainly comparable.

In the two front model of gaseous detonation structure I I is

usually taken as the induction length of the reactions behind the shock. An
equivalent definition of induction length can be developed for spray
detonations by recognizing that the main effect of I I is a deficit in the

combustion energy release behind the leading shock [45 ] . (This concept
is also used by Bach et al [ 28 ] to define the heat release function F(i 1 , z)).
On the basis of the discussion above a typical heat release pattern from an
individual fuel droplet might be like that shown in Figure 20(a). Here m 00

is the initial droplet mass and q is the combustion heat release per unit
mass of fuel so that m q is the combustion energy of each droplet.

Figure 20(a) illustrates a typical case where the microspray of mass
Am which starts to form right after shock passage, ignites explosively

at a distance ig behind the shock. After that burning is continuous and

equal to the droplet breakup rate until breakup and burning are complete
at a distance I B behind the shock. The area above the curve in Figure 20(a)

is now the energy deficit due the finite duration of droplet breakup and
combustion. A two phase induction length I I will now be defined as the

induction length of an equivalent two front wave which has the same energy
deficit but with all the combustion energy released at distance I behind the
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shock as shown in Figure 20(b). From this definition, it follows directly
that

I ig + f mod (26)
B B ig/IB 0 B

where x is the distance from the shock.

Experiments have shown [50 ] that during the shock induced
breakup of water drops:

in = 1 " c si (t_}] (27)
m "- [ + Cos V tB(7

0 B

where t B is the droplet breakup time. Assuming that (t/tB) (x/I B)

it then follows from Eq. (26) that

1. sin(Ii I B)

B B

If I ig I B so that combustion occurs only after complete breakup, it

follows from Eq. (26) that I I= I B as is to be expected.

Although this model may appear overly simplified, it accounts for
the most important features of droplet shattering and burning. The
shattering process is introduced through the empirical expression (25) for
IB and breakup rate (27). The kinetics of the wake explosions enters

through the ignition length f ig" This model also highlights some of the

additional difficulties involved in analyzing spray detonations. Only a
mono-disperse spray is considered. The effect of micromist burning on
the breakup process is ignored although this may be important (44 ] . The
effect of the blast waves from the exploding droplets treated by Dabora [ 51)
and Pierce [52 is not considered.

Wave trajectories computed using M from Eq. (7) with I
computed using Eq. (28) are compared to experimentally measured
trajectories in Figure 21 taken from [45] . The induction and breakup

lengths were, in this case, taken from corresponding streak photos of the
detonation, and the corresponding I I was taken constant at 4cm. Agree-

ment is quite good at large values of R consistent with the asymptotic
a 5

character of the theory used to derive Eq. (7).
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When D , the droplet diameter, is below a certain size, the
0

behavior of the spray detonation reverts to that of a gaseous detonation
as indicated by the experiments of Lu et al [43 ] who used a nebulizer

to produce a very fine spray. The ultra simple theory discussed above

can provide an estimate of the droplet diameter D = D where thiso oc

transition in behavior occurs. As already indicated by Eq. (25), the

breakup distance I B varies almost linearly with the droplet diameter

D so that for sufficiently small droplets the distance behind the lead
0

shock where breakup is essentially complete will be much smaller than
the chemical induction length I . In this limit, when (f B' / ) << I ,

c

the droplet breakup will be so rapid that it has a negligible effect on the
induction process. On the other hand, with I B/ f >> 1, the droplet

breakup will be the determining factor. These considerations suggest
that the droplet diameter D for which f = I be chosen as the criticalo c B

or transition value D . If T is the chemical induction time of the fuel
oc s

of interest and I / R << 1 it follows that
c s

I U (p /p )T (29)c s 0 2s

so that

D =1/ F
oc c

with F defined by Eq. (25). For stoichiometric methane, propane and decane
air mixtures respectively, this criterion leads to D = 36, 1I, and 4. 6A re-
spectively [ 53] oc

The simple theory described above completely ignores the details of
the two phase flow in the reaction zone which will depend upon the inter-
action between the gas flow and the accelerating and deforming droplets.

Borisov et al [ 54 ] have developed what are essentially single fluid equations

to deal with this problem and these have been used by Gubin and Sichel [ 55]
to compute the structure and velocity of a steadily propagating spray
detonation. The equations of continuity, momentum, and energy in the
reaction zone are as follows:

Su+ p u+T W = Pu +a- W (30)

2 2 2 2 2a~ + u~.W p u +o- W +p (31

a' u(CT+ Q - ') + PU (-+h) +o-W(CT +0+o
2

u W 2oo
- 0U (- + h) + W(CT +o + 2 (32)

o0 2 0 0 0 to 0
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Here W is the droplet velocity, a- is the concentration of the micro-

mist which has been stripped from the droplet and (r is the droplet mass
per unit mixture volume. The subscript zero denotes the start of the
reaction zone and Q is the heat of reaction of the fuel.

A number of subsidiary relations had to be introduced before this
system of equations could be solved. The empirial relation of Ranger
and Nicholls [49 ] was used for the variation of W with time and Eq. (27)
was used for the droplet mass. Finally, a modified version of
the two front reaction zone model was used to determine the propagation
velocity. Thus, it was assumed that only that micromist generated by
droplet stripping during ignition time tI contributed to the propagation

velocity. At t = t the combustion of this micromist is assumed to occur
in a very narrow front. The calculation of tI was based on the empirical
expression

t -- 101  - 1
t 10 p exp (-E/\ T) (33)

due to Mullins [56 3 . In order to take the variation of temperature T into
account, the total reaction time was subdivided into a number of time steps
At. and an ignition time t. was calculated for each step using Eq. (33).
j ig

The ignition time delay was then determined from the condition

t.. = 1(34)

Ij

The precise basis for this procedure is not entirely clear although Eq. (34)
has also been used by other investigators studying reactive systems.

Profiles of dimensionlesspressure, P, temperature T, particle

mass m and particle velocity W are shown in Figure 22. The increase
in pressure and temperature is particularly significant and is typical of
two phase systems. The increase arises because in shock fixed coordinates,
the particles are moving with a higher velocity than the gas immediately
behind the shock. As the particles decelerate, they cause an increase in
the gas temperature and pressure. The variation of detonation velocity
with droplet size is shown in Figure 23 for a kerosene-oxygen mixture.
For large droplets (> 1004) the detonation velocity is appreciably less than
the ideal C-J value, and the results appear in good agreement with
measurements. For D < 20R the behavior becomes indistinguishable

0

from that of a gaseous detonation, a result which supports the development
of the transition diameter D presented above.

oc
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Spray detonations are observed to propagate at velocities appreciably
below the C-J value. There is, however, considerable disagreement about
the cause of this behavior. Two explanations for sub C-J velocities have
been presented so far; one associated with the initiation process and the
influence of the large induction zone, a second related to incomplete
combustion of the fuel droplets. Since most of the data used by Gubin and
Sichel [ 55 ] came from experiments in which the detonation was initiated by
a hydrogen oxygen detonation tube, the observed velocity deficits could well
be associated with the initiation process. A third explanation based on losses
to the walls of the detonation tube can also be justified in some cases [ 57]

Another basic approach often used in two phase flow problems is
to treat the spray and the surrounding gas as two separate fluids which
interact with each other through source terms in the conservation equations
of each fluid. This approach was applied by Eidelmann and Burcat [ 58]
and by Mitrofanov et al [ 59 1 who investigated the direct initiation of
cylindrical [ 59] , and spherical [ 58 ] spray detonations. For spherical
symmetry the equations of mass, momentum and energy conservation of
the gaseous phase used by Eidelman and Burcat [ 58 ] are:

8p 1  1 8(r 2V 1 p 1)

at +  r = 6p 2 (35).
r

at 1 a (r2plV 2) + = -P 2 M + 6p 2 (V2 -V 1) (36)at 2 77 18r 2 2 r

ra

at[ LP1 V 2  + 1 ar[ + o 2 L V
at -y-i 2z p1 1 J+-2 -[ Vr2  2 p1 1  1 ]

+ L -L (r 2 pV -P 2 V1 M- 6 p 2  1 V 2 ) 6 Q
2 11 2 Q

r
(37)

where the subscript 1 here denotes the gas phase. The left hand sides
of Eqs. (35)-(37) are quite standard. It is the source terms which are the
distinguishing feature of the two fluid approach and also are the major
cause of uncertainty in the validity of the final results. The interpretation
of these terms is as follows:

6 p2 rate of mass addition due to droplet evaporation

p 2 M momentum loss due to particle drag

6 p Z(V2°Vl) F momentum change due to evaporation from droplets
moving at a velocity different from the gas velocity

P V1M a work due to particle drag
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(VlZ- vz2)

6 p 2 2 = change in kinetic energy because of difference
between particle and gas velocity

p2 6Q combustion energy release

The detailed formulation of these terms is described in references
[58 ] and [ 59 ] . It is assumed that the fuel vapor burns at the instant of

evaporation so that these models fail to account for the influence of
chemical kinetics. The source terms, of course, also appear in the
equation for the liquid phase which are as follows:

1' a (r2 6P (38)
a 2 (rp 2V 2) -

r

8(p 2 V )t 2 - (rp 2 V 2 ) = p 2 M- 6P 2 V2at +2 Tr 22 2

r

The internal energy of the fuel droplets is neglected so that the energy
equation is replaced by the droplet conservation equation:

0N + 1 8 (r 2 NV2 ) = 0 (39)
r

Here, the subscript 2 refers to the droplets and N is the droplet number
density. If p I is the density of the liquid p 2 = ( r /6) D3 p I N where D

is the instantaneous droplet diameter.

Eidelman and Burcat [ 58 1 solved this set of two fluid equations
numerically for a stochiometric mixture of 100 L heptane droplets in
oxygen. The resultant variation of the shock front velocity with radius
is shown in Figure 24 for different values of the initiation energy E.

These curves again demonstrate the decay to sub C-J velocities followed
by re-acceleration to the C-J value. Because of the absence of any
kinetics in the formulation the complete decay or quenching and the singular
behavior associated with the critical energy E does not appear to ariseoc

in these two fluid numerical studies. Mitrofanov [ 59 ] obtained similar
results; however, he did in some cases incorporate a chemical kinetic
ignition delay time into his calculations. Then he did find that initiation
failed when E is below a certain critical value.

0

The wake explosions described above are not considered in either
the single fluid or two fluid models. Nevertheless, Eidelman and Burcat
[ 58 ] did observe the appearance of secondary shock waves within the
reaction zone. One of these shocks is shown in Figure 25 taken from
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Ref. [ 26] which shows reaction zone profiles for a detonation in a
mixture of 300k decane droplets and oxygen. The precise origin of these
secondary waves is not clear, although it does appear certain that the
waves represent a physical phenomenon rather than a numerical instability.
The waves appear to arise in very thick reaction zones and may be associ-
ated with the region of near sonic flow toward the end of the reaction zone.
Because of the dominant role of secondary explosions is so many observed
heterogeneous detonations a number of models based entirely on this
explosion phenomenon have been developed. Perhaps one of the earliest
of these "Shock models" is due to Cherepanov [ 60 ] who computed the
propagation velocity assuming that combustion occurs through a series
of periodic explosions at the C-J plane. Since half the energy is carried
downstream beyond the C-J plane by this mechanism, U / U , the5 50

ratio of the propagation velocity U to the premixed detonation velocitys

U has the value of i/v- = 0. 71. This result is not too far from a numberso
of experimental observations.

A far more detailed shock theory for the propagation of spray
detonations was developed by Pierce [ 52] . The mono-disperse spray is
assumed to be arranged in a succession of sheets. The droplet wakes in
each sheet explode after an induction time t I has elapsed from the instant

of passage through the leading shock. The resultant blast waves coalesce
to form two plane blast waves, one moving downstream and one moving
upstream toward the leading shock. The interaction of the upstream
moving wave with the leading shock causes this shock to accelerate. The
continual blast wave-shock interactions result in wave oscillations similar
to those also observed experimentally by Pierce [ 61] . A schematic
sketch depicting the behavior of the droplets behind the wave is shown in
Figure 26, and the blast wave coalescence process is shown in Figure 27.
After ignition the remainder of the droplets are assumed to burn at a
constant rate. In some ways this model is thus similar to the simplified
model used above to develop an equivalent induction length. The major
features of this analytical model are shown in the x-t diagram in Figure
28 which is centered on the explosion center at a distance x, (ignition
length) behind the cloud. Numerical methods and various approximations
were used to obtain solutions based upon this complex model as described
in detail by Pierce [ 52 1 . A typical pressure distribution within a
detonations computed on this basis is shown in Figure 29. When this
pressure variation is translated into a pressure transducer response the
resultant traces are very similar to those observed experimentally.
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A much simpler "shock theory" was developed by Dabora [ 51]
in order to estimate the critical initiation energy E . The criticaloc

energy E is determined by requiring the accelerating effect of the
blast wavelrom the exploding droplet wake to balance the decay of the
initiating blast wave at the critical radius R *. It is assumed that thes

combustion energy of the complete droplet is fed into the blast wave.
As in the simplified theory, a key parameter which arises in Dabora's
theory is tI/tB - 'I / I B ' i.e., the ratio of the ignition time to the

droplet breakup time.

A consideration of the models described above leads to the
conclusion that there are really two fundamental processes which govern
the initiation and propagation of detonations through sprays. These are:

1. The mechanism of droplet breakup

2. The chemical reactions and micromist evaporation which
determine the delay between the onset of droplet shattering
and either the wake explosion or the start smooth combustion.

Each of these problems represents a subject in itself. It is especially
interesting that, as in the direct initiation of gaseous detonations described
above, the ignition delay problem plays a central role in spray detonations
as well. All of the spray detonation models described above depend
crucially upon the inputs derived from analytical models or empirical
descriptions of these two processes.

A detailed analysis of the droplet breakup process which is
applicable to spray detonations has been developed by Fishburn [ 46]
The parameter which governs the mode of droplet breakup is the dimension-

less group W R where W is the Weber number defined bye e e

pU ZD

w = (40)
e T

where p and U are the gas density and velocity relative to the drop
g g

and o is the surface tension of the fluid. R is, of course, the Reynolds
number U D / v . For spray detonations W eR -1/2>> 1 and then

go g e e

boundary layer stripping becomes an important part of the breakup process.
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Experiments [ 46 ] j 48] 49] ,[ 62 1 indicate that breakup starts with
the deformation of the droplet and the formulation of interacting liquid
and gaseous boundary layers on the liquid surface. Because of this
boundary layer a micromist starts to be stripped away from the outer
edge of the deformed droplet. At some stage the droplet becomes unstable
and breaks up into smaller droplets which again are atomized by boundary
layer stripping. Most of this sequence is illustrated in Figure 30 taken
from Ref. [49 ] , which shows the breakup of 750 water droplets behind
a shock of the relatively low Mach number, M = 2. 0 .

5

Fishburn's work [ 46] illustrates the many physical phenomena
which must be modeled in order to analyze this complex breakup process.
The first step is to determine the droplet deformation rate. A number of
studies of this problem have been carried out in connection with rain drop
deformation for instance. The potential flow analysis of Burgers [46] is
used to describe the initial stages of deformation. The further progress
of deformation is then determined using an approximate analysis of
Reinecke and Waldman [ 63 ] . The key result is that the maximum defor-
mation occurs when the dimensionless time

T = (t U 2 /D)(p 2/ P t 1 1 2  (41)

is approximately 1. 0. As already noted, a fixed value of T = T also
s

characterizes the total droplet breakup time. A very simple argument
can be used to develop this important result. Right after shock passage
the total aerodynamic force on a particle of diameter D will be of the

01 2 2

order 1 p ?U 2 (D 2/4). This force results in droplet deformation

which involves the acceleration of liquid in a direction transverse to
the velocity u2 of the gas. If it is assumed that during deformation

time t the droplet mass is moved a transverse distance D , then

equating the aerodynamic force to the transverse acceleration yields
the relation:

1 2 D 2  nD 3  D
p ZUz7r ( = P 1 6 0 (42)

td

from which it immediately follows that

T = d ( L2 --- 1.16 (43)
d D0 (- I .. 6(3

This result is remarkably close to that determined analytically by
Fishburn.
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Boundary layer stripping occurs near the periphery of the de.
formed droplet. Ranger and Nicholls [ 49] estimated the stripping rate
by using an integral analysis of the coupled laminar air-liquid boundary
layer on the droplet surface. A more detailed analysis using the Blasius
series was made by Fishburn [ 46 ] . The significant result is that
stripping cannot account for the observed droplet breakup rates.

To explain this difficulty, Fishburn [ 46 ] noted that the windward
surface flow will be unstable to small disturbances due to the acceleration
of the droplet. Taylor [ 64 ] investigated this type of instability and
provided the starting point of Fishburn's analysis. Because of this
instability waves on the windward surface are amplified and ultimately
cause the droplet to breakup into a series of smaller droplets. Estimates
of this highly nonlinear process are carried out by Fishburn [ 461 . The
smaller droplets once again are broken up by boundary layer stripping.
On the basis of this model, Fishburn obtained results in excellent agree-
ment with the empirical breakup rate expression of Reineke and Waldman
[ 50 j (Eq. (27)) which has already been introduced in connection with the
approximate spray detonation analysis.

The droplet wake ignition problem is an extended form of the
classical problem of thermal ignition first considered by Semenov [651
and Frank-Kamenetskii [ 66 ]. In the basic problem a semi-infinite slab
of reactive material with constant and equal boundary temperatures is
considered. Essentially this is a heat conduction problem with a heat
source driven by a reaction governed by Arrhenius Kinetics. It is found
that steady solutions fail to exist when a parameter 6. which depends
on the conditions of the problem exceeds a certain minimum value. Many
extensions of the original problem have been considered and both asymptotic
and numerical techniques have been used to obtain improved solutions ( 67]
In terms of a normalized temperature variable 0 and a displacement
variable e the basic problem is governed by the differential equation

dZO N dO -1/0
d + N - -e (44)
dE 2 E dE

with

d(0) = 0 , (L) 0
de

and with N = 0, 1, 2 for plane, cylindrical, and spherical geometry.
The major difficulty in all thermal ignition problems arises from the non-
linear Arrhenius term on the right side of Eq. (44).

Actually, of course, ignition is an unsteady phenomenon so that
a complete treatment requires consideration of an equation of the form
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Be a2e N BO -l1/e
at 80+ N -) )+ e (45)

S8EZ E

where T is a suitably defined normalized time variable. A discussion of

problems of this type has been presented by Merzhanov and Averson [ 68 J
In all of these problems the density is taken to be constant. Compressibility

introduces further complications since the reactive heat release may gen-
erate shocks and acoustic waves. Some of these problems have been

considered by Kassoy [ 69] .

The droplet wake ignition problem is even more complex. A
schematic view of the wake of an accelerating deforming fuel droplet
is shown in Fig. 31. In the classical problem the concentration of fuel
is fixed at the beginning. Now the amount of fuel vapor will depend on the
rate at which the micromist is generated and evaporates into the wake. If
only the vapor in the wake region is considered, there is not only a chemically
driven heat source but also a mass source governed by droplet stripping and
micromist evaporation. The size of the wake region and the boundary con-
ditions at the edge of the wake now will depend on the droplet deformation
and trajectory. Attempts at solving the wake ignition problem have been
made by Pierce [ 52 ] and by Pierce et al [23 ] . The numerous approxima-
tions and empirical parameters which had to be used made it difficult to
identify the main governing parameters. There is thus a need for the
formulation and study of relatively simple model problems which, however,
include the main physical phenomena.

IV. DISCUSSION. The present review has been limited to a

discussion of the direct initiation and propagation of gaseous and heterogeneous

detonations. Consideration of some of the experimental results shows that
the physical phenomena involved can be quite complex. Modeling of these

phenomena, in which the reaction zone of the detonation plays a key role,
can lead to problems of considerable mathematical interest.

The direct initiation of gaseous detonations can be tied to the classical

problem of the adiabatic ignition of a fuel oxidizer mixture. The novel
feature is that the initial conditions for each element of the combustible

mixture as it crosses the leading shock wave depends on the variation of the

induction length I I at preceding times.

Two basic processes are found to govern the behavior of spray
detonations: the mechanism of droplet breakup, and the ignition of the droplet

wake. This ignition problem is an extended version of the classical Semenov,

Frank-Kamenetskii problem of thermal ignition of a reactive medium.
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Fig. 5 Overdriven detonation induced by a
sphere moving into an H2 -O 2 mixture at a speed

above the C-J detonation velocity. [From Ref. 21 .

Fig. 6(a) Schlieren photograph of a detonation propagating
through a row of 2600 R droplets of

diethylcyclohexane in 02 . [ Photo by E. K. Dabora)
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Fig. 18 Streak- Schlieren record of a detonating 400 ±

droplet heptane-oxygen spray. [~ From Ref. 45]
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Fig. 19 Droplet break-up distance. [From Ref. 53]
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Fig. 26 Exploding fuel droplets behind
the leading shock of a spray detonation.
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[From Ref. 5Z
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TRANSLATION, INTERACTION AND SCATTERING OF
EULER EQUATION V-STATES VIA

CONTOUR DYNAMICS

Edward A. Overman, II and Norman J. Zabusky
Institute for Computational Mathematics and Applications

Department of Mathematics and Statistics
University of Pittsburgh

Pittsburgh, PA 15261

Abstract. To understand the transport of energy and mass by localized
states of realistic unbounded fluid systems, we have undertaken a simulation
study of the Euler equations in two spatial dimensions. For our localized
states, we use the translating V-states discovered by Deem and Zabusky.
These piecewise-constant dipolar regions of vorticity are stationary states
in an appropriate frame of reference. We use an improved contour dynamical
algorithm, again based on the Green's function of the Poisson equation, to
advance the location of the boundaries of the regions of vorticity. The
scattering geometry has zero "impact parameter" (coaxial V-states) and we
perform head-on and head-tail interactions. We readily observe the exci-
tation of internal degrees of freedom, by observing contour parameters in-
cluding curvature and perimeter variation. For "weak" interactions we
observe phase shifts and the near recurrence to initial states. For "strong"
interactions we observe phase shifts, "breaking" (filament formation) and,
for head-tail interactions, merger of like-signed vorticity regions. We are
attempting to elucidate this rich panorama of phenomena with point vortex
models.

I. INTRODUCTION. It is now well-known that solitary (nonlinear-
dispersive) waves can transport energy over long distances and deposit them
in small inhomogeneous spatial regions. Some of these systems can be de-
scribed by nondissipative temporal plus one-space dimensional equations
whose solitary waves are solitons. These systems are "integrable" and the
solitons can interact with each other and preserve themselves through an
interaction. If small amounts of dissipation are added to some of these
systems they become nonintegrable or "near-integrable" and the soliton
becomes a slowly decaying solitary entity. However, in many cases the
essential features of the solitons are preserved through interaction.
Some aspects of this subject are discussed in a review paper by one of the
authors [11.

We now ask: Can one find localized stationary entities in two sace
dimensions that can transport energy (and mass) and deposit it locally?
Furthermore, how robust are these entities when interacting? Nuclear
physicists have begun to study these nonlinear dynamical problems [2,31
with finite-difference simulations of particle-like entities characterized
by "confinement potentials." McWillianms and"abusky [41 have examined
"modon" interactions by finite-difference simulations. These modons are
stationary solutions of the geostrophic 8-plane equations [51 that have
continuous distributions of vorticity in localized regions. In the pre-
sent paper we will apply a recently improved contour dynamical algorithm
[61 to study the interaction of translating V-states of the two-dimensional
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Euler equations, the generic equations of nondissipative fluid dynamics.
This is an unbounded-domain Green's function approach and we are not
constrained by an underlying lattice. We will study parameter regions
where the interactions lead to: the formation of new stationary states;
the near-recurrence of initial states; or the strong deformation and
breaking of initial states.

The translating V-states, discovered by Deem and Zabusky [7], are
localized dipolar regions of piecewise-constant vorticity. They are
stationary states of the two-dimensional Euler equations in a frame of
reference translating with velocity U. They can be thought of as a
simple piecewise-constant "desingularization" of two oppositely-signed
point vortices. From Kelvin's theorem, one is only concerned with the
motion of their boundaries. Figure 1 [8] shows the contours bounding
a sequence of typical states. We use No. 8 (between No. 7 and No. 9)
in all the studies presented below.

In Section II we discuss an improved contour dynamical algorithm
and a key diagnostic, the contour curvature. In Section III we discuss
the results obtained from various simulations. In Section IV we in-
dicate possible directions for future research.

135 7 9 10 11

Fig. 1. Translating V-states of the 2D Euler equations. The lower-half
plane contours are symmetric.
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II. EULER EQUATIONS, ROTATING V-STATES, CONTOUR DYNAMICAL ALGORITHM
AND DIAGNOSTICS. The Euler equations in two space dimensions can be written
in vorticity-stream function form as

Wt + = O, A -xx + yy = -W, (la,b)

where

U 1 y, v =-qjx .  (10)

If the vorticity is composed of a set of piecewise-constant finite-area-
vortex regions (or FAVR's), that is, each member of the set is a characteristic
function xi of magnitude wi and boundary ri , or w(x,y,t) = E w. i xi(xy't)'
then i

(x,y) E-(2 -l . i xi G(x-t, y-n)d~dn, (2)
1f

where we use the two-dimensional Green's function

G = (l/2)log [(x-0)2 + (y-n)2 = (l/2)log r2  (3)

for flow in an unbounded domain. Eq. (la) says that every point of the
fluid including the boundary is convected with the flow. The evolution
equation for boundary points is the area-preserving mapping

(Xt,yt) (u(xy,t),v(x,y,t)) = (2fr-I E iI log r(d&,dn), (4)
i 3D

where (x,y) E aD1  and (&,n) E aDi. We have used Green's theorem to re-

place the area integral over the domain of Xi by the line integral over

its boundary, aDi , thus reducing the dimension by one.

It is well known that two point (singular) vortices of opposite
circulation + r and separation 2i translate parallel to one another
with speed

U*= jrj/4wi.
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To find a symmetric uniformly translating doubly-connected region of
finite-area and piecewise-constant vorticity, we apply the boundary
condition

-Yparticle -9 " Yboundary' (6)

or

as + U(dy/ds) = 0, (7)

and integrate once to obtain

(x,y) + Uy = ci,  (x,y) C ri, (8)

where i = 1,2 corresponds to the contours, and i is obtained from
(2) as a line integral over both contours. Since the location of the
boundary is unknown, Eq. (7) is a nonlinear integral equation. It has
been solved by Pierrehumbert and Landau and Zabusky [8]. Results from
the latter that we called "V-states" are illustrated in Fig. 1. We
used state No. 8 (between Nos. 7 and 9) which had the following properties:

x2 = 0.2; x = 0.5873; a = 1.346

A = 0.68135; P = 3.0976;

U = 0.088193; U/U* = 0.95526;

where

x2 = vertical distance from the x-axis to the closest contour
point;

1.0 = vertical distance from the x-axis to the furthest contour
point;

a = maximum horizontal "diameter"/(l-x 2);

A = area within one contour;
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P - perimeter of the contour;

- distance from the x-axis to the center-of-area;

U = translation velocity (the bifurcation parameter);

U/U* = normalized translation velocity ratio with U* given in
(5).

The contour dynamics algorithm is obtained by discretizing Eq. (4),
[6) i.e.,

N.I
(XY) Aum,n (cos en ' sin e) (9)

m in=l mn

where the i-sum is over all the contours. We assume that nodes n and
n+l are connected by a straight line segment of length hn at an angle

en  (from node t. to n+l). Carrying out the integration in Eq. (4)

exactly we obtain

hn

n  I (l+An)In rmn+l - An 1n rmu - I + 
1 n arctan (2Bn/Cn ) + wIBnI H(-Cn)],

(10)

where rmn is the straight line distance between nodes m and n,

A n xm)(Xn+l1Xn) + (Yn'Ym) (Yn+l-Yn)
h2

An", (lib)
n

(Xn' Xm) (Yn+l "Yn) - (Yn'Ym)( Xn+l- Xn d)Ib

hn

2 2n mh22r,n + r 2 ~~ 1
n  mn~r n+l I, (lic)

hn

and H is the Heaviside step function, i.e.,
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1 if z> 0

0 if z < 0

If n m, Eq. (10) simplifies to

AUm [in r I ] ( 2a)Aur, m  21 m,m+l ,

since Am = Bm =O, while if n =m- 1

Au = 2 1 [in rmm - I (12b)A~mmim-l

since Am_, = -i and BM- l = 0.

Eq. (10) differs from the previously given value (Ref. 6, Eq.18)
in the last term. This term appears only when Cn < 0 or, equivalently,

if the angle between the lines from node m to node n and from node
m to node n+l is > 1/2. This may occur if a contour breaks and forms
filaments whose sides approach or if two different contours approach close
to one another in a merger, because the node-insertion-and-removal
algorithm maintains hn> hmin an apriori prescribed value. The velocities

in (9) are used to move the contour node (xnYn) with an Euler-predictor

and a trapezoidal-corrector algorithm.

The time step At is determined by the maximum change in area (or
angular momentum) to be allowed per unit time. (Since we are solving a
Lagrangian system of equations, we do not have a Courant condition to
determine the time step.) In all the runs shown here the relative area
change per step is AA/A = 0.84375 x 10-6 and At is readjusted every
20 time steps. We find that .015 < At _< .02 for all the runs.

In the improved node insertion-and-removal algorithm we insert and
remove nodes using oth local (91 and global adaptive methods. Locally,
we attempt to set the internodal distance hk to

t k = clIKkI, (13)

which is inversely proportional to the local curvature but we require it
to satisfy two constraints

h( g ) > hk > h(14a)
max - k- min'
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and

(l-r)hkl < h < (l+r)hk. (1 4b)

In all the runs c 1 0.1 (which places -20w nodes on a circle of

unit radius), hmin = 0.01 and r--0.3. Globally, we choose h(g)
max

to take into account the possibility that one part of a contour may
approach another part or that two contours may approach each other.
This is done by setting

h(g ) = max [min{hmax,C2 dminl, h (15)max mx i i

where dmin, obtained by a search algorithm, is the minimum distance

from node k to a point on a neighboring contour or a "nonadjacent"

point on the same contour. Usually, h(g) will be the minimum of hmx,maxMa
the maximum allowed distance between nodes, or c2 d min  (in all our

runs hmax = 0.20 and c2 = 0.50).

As diagnostics we monitor the perimeter, P, area, A, (a quantity
conserved in the continuum representation) and contour curvature,
K(S) = XsYss - XssY x . The vertical scale has a geometric variation

(2, 22, 32 ,42 52) and the curves are "clipped" at + 52. The cur-
vature is computed numerically by differentiating a perTodic cubic
spline that is fit to the nodes (as described in Ref. 9, Appendix C).
If contours "sharpen" and "break", as observed below, this differentiation
can give rise to small-scale oscillations because the cubic spline has
difficulty fitting such distributions. These oscillations do not affect
our velocities since the curvature is not used explicitly in (10).

III. DYNAMICAL EVO11TION OF PAIRS OF TRANSLATING V-STATES. In this
first study of translating V-state interactions, we simplify 'the parameter
space by choosing zero "impact-parameter" (or coaxial) collisions. The
resulting symmetry allows us to reduce the computational load by a factor
of 4. We use state No. 8 throughout and obtain different areas by rescaling
all distances linearly. It is obvious that one can always find parameter
regions where the interactions can be characterized asttnear-integrable.
That is, if we replace the V-state by oppositely-signed point vortices,
then we can integrate the system exactly, as Love [101 did for overtakina
(head-tail) interactions. Table 1 gives parameters for the cases dis-
cussed below.

We will observe that the head-on or "approaching" interactions tend
to be "weaker" than the head-tail or "overtaking" interactions. That is,
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in the former case the final states although perturbed, seem to have a
smaller tendency to break. In particular, Fig. 2 (Case 1) is a com-
posite which shows two approaching V-states with rI/r 2 = -1.0 and un-

like area reform into an outgoing asymmetric apparently stationary con-
figuration. It is travelling in a north-easterly direction with a ve-
locity intermediate between those of the incoming V-states, and is un-
doubtedly an asymmetric translating V-state. At t = 0 they are maxi-
mally separated (icO = 4.0) and the highest state shown is at t = 60.

The time increment between states is At = 12. The unconnected circles
indicate the discretization used. The number of nodes on contours (1,2)
increased from (64,66) at t = 0 to (77,115) at t = 60, respectively.
(The large number on the nearly circular small V-state (No. 2) arises
because of its larger curvature.) Note the lower half plane contains a
symmetrical result. The "x" marks the centroids of the figures. The
numbers on the contours label the same node and give one a feeling for
the rotation. This case is repeated in panel a of Fig. 3.

Case 2, given in panel b of Fig. 3 is the result of increasing the
circulation ratio Jrl/r 21 by 2.0. Hence, the approaching V-states

undergo a complicated interaction where No. 1 passes below No. 2. Fig.
(4a) shows the trajectories on the (x,y) plane and Fig.-(-b) shows an
(x,t) "phase-shift" diagram. There is no apparent velocity change.

Case 3, given in Fig. 3c is the result of decreasing the circulation
Ir1/r2 1 to 2/3 compared to Case 1. During the interaction, No. 1 passes

above No. 2 and No. I is left in an excited (distorted) state as it trans-
lates to the right. A careful perusal shows the perimeter to be oscil-
lating in time.

Fig. 5 shows two head-on cases where the area of the vortex regions
are the same but the cTlrculition ratio Jr1/r2l is now 1/4 (panel a)

and 1/6 (panel b) compared to Case 1. This causes No. 1 to loop above
No. 2, consistent with Case 3, but now No. 1 shows a tendency to break.
Had we continued to decrease the circulation ratio, it is reasonable
that a piece of No. I would have been elongated around No. 2, before it
escaped to the right.

Fig. 6 (a,b,c,d) shows four head-tail cases (6,7,8,9), where the
area ratio is 4:1 and the circulatlo ra-tTos (r1/r2) are (1/16, 1/8,
3/16, 3/8). As one increases the circulation ratio toward unity, the
"wrap-around" tendency becomes stronger. Finally, capture is observed
in panel d.

Fig. 7 (a,b,c) shows three head-tail cases (10,11,12), where the
area ratio is 1:1 and the circulation ratios (rI/r 2) are (1.0, 2.0,

3.0). Aside from the difference in areas, cases 9, 10 and 11 (Figs.
6d, 7a and 7b, respectively) bear a resemblance. Thus, in the range
3/8 < rl/r 2 _< 8/3 one expects merging to occur for head-tail inter-
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actions. As the circulation ratio increases beyond 2.0, there is less
of a tendency toward capture, but both contours have high-curvature
regions. Note Figs. 8b and 8c show the initial and final curvatures
of case 12. The circumferences have increased from (2.985,2.985) at
t = 0 to (6.033,4.113) at t = 20 and the number of nodes has in-
creased from (64,64) to (252,157), respectively.

IV. DISCUSSION. Certain qualitative features of our contour
dynamical results are consistent with the coaxial modon scattering
finite-difference results of McWilliams and Zabusky [4], for example,
phase shifts and trajectories. The modons are continuous dipolar dis-
tributions of vorticity that satisfy the quasigeostrophic g-plane
equations and weak radiation effects are operative during the close
encounters. Thus, not only can velocity changes be found, but it is
possible for the monopolar components of an incoming modon to separate
permanently. However, the precise character of the excitations and the
"breaking" (or "enstrophy" cascade) is more clearly seen with contour
dynamical methods. To understand the details behind this panorama of
new information will require more analytical and computational studies.
For distant interactions, where contours are weakly perturbed it is
possible that we may obtain insight by replacing the V-states by several
point vortices. However, for close interactions of realistic vorticity
distributions, we will require V-states containing several nested contours.
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Table 1: Parameters for Coaxial Translating V-State Interactions

(wI = 1.0, r, = 1.0, Vlo - +0.088 , A1 = 0.6846, P1  2.985;

A2 = At, P2 = P1  or A2 = 0.1711, P2 = 1.493)

Case w2 r, rI/P2  AI/A 2 Y10/Y20 Xc0  V20  V10 /V20  Run

1 -4.0 -0.6846 -1.0 4 2 4 -0.176 -1/2 XS 2S02

2 -2.0 -0.3422 -2.0 4 2 8 -0.88 -1. XS 2S03

3 -6.0 -1.0266 -2/3 4 2 4 -0.264 -1/3 XS 2S04

4 -4.0 -2.7384 -1/4 1 1 4 -0.352 -1/4 XS 2S07

5 -6.0 -4.1076 -1/6 1 1 4 -0.528 -1/6 XS 2S08

6 0.25 0.042775 -1/16 4 2 4 0.011 8.0 XS 2009

7 0.5 0.08555 1/8 4 2 4 0.022 4.0 XS 2008

8 0.75 0.25665 3/16 4 2 4 0.033 8/3 XS 2003

9 1.5 0.12833 3/8 4 2 4 0.066 4/3 XS 2007

10 1.0 0.6846 1.0 1 1 -3 0.088 1.0 XS 2004

11 2.0 1.3692 2.0 1 1 -4 0.176 1/2 XS 2V0l

12 3.0 2.0538 3.0 1 1 -4 0.264 1/3 XS 2006

*) Xco i20 " lO
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GASDYNAMIC ASPECTS OF THERMAL EXPLOSIONS

J. Bebernes and D. R. Kassoy
University of Colorado
Boulder, Colorado 80309

Abstract. A mathematical model is developed for the induction period of a

thermal explosion in a confined reacting, compressible gas mixture. A high

activation energy asymptotic analysis is used as the method of solution devel-

opment. Very early in the process, on the acoustic time scale of the vessel,

an acoustic field is generated by spatially variable thermal expansion in the

gas. The familiar induction period process is shown to develop on the con-

duction time scale of the vessel. Unlike previous theories for rigid materials

the describing equations include effects of compressibility and deformation.

The former effect is shown to cause a gaseous system to have a thermal runaway

sooner than an equivalent rigid system. The effect of deformation is observed

in the form of a rapidly expanding hot spu- Typical numerical solutions are

presented along with theoretical considerations of the integrodifferential

equation which describes the energy balance. A final-value analysis descibes

the thermal runaway singularity. The nonuniforaity In the asymptotic expansions

is shown to imply that a sequence of dramatic gas dynamic events will follow

the induction period process.

Department of Mathematics

Mechanical Engineering Department

WM PI UAhhKA-NOT nUA
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1. Introduction

The mathematical theory of thermal explosions has been developed for both

spatially homogeneous and spatially distributed systems. Asymptotic methods

based on a high activation energy approximation were used first to develop solu-

tions for the homogeneous problem (Kassoy (1976]). More recently there have

been several studies of the high activation energy thermal explosion in a con-

fined rigid combustible material (Kapila [1980]), Kassoy and Poland [1980, 1981],

Bebernes and Kassoy [19811. During an induction period, with a duration measured

by the conduction time scale of the vessel, heat released by chemical reaction is

redistributed by thermal conduction. As the temperature in the container in-

creases the reaction rate grows dramatically. Eventually the characteristic time

for heat release becomes significantly smaller than the conduction time in a well

defined hot spot embedded in the system. Thereafter the heat released is used

almost entirely to increase the hot spot temperature, further accelerating the

reaction rate, because the time-scale is too short to permit heat to be conducted

away. During this rapid explosion period the hot spot evolves into a fireball

of great intensity. Meanwhile beyond the boundary of the fireball, the system is

nearly invarient because the energy balance is controlled by the much slower con-

duction process. The rapid fireball reaction process slows down only when the

fuel in the fireball is almost entirely consumed. Eventually the fireball heats

the cooler, nearly unreacted material around it by conductive transfer. Under

the appropriate circumstances a deflagration then propagates toward the container

wall.

The rigid combustible thermal explosion model is limited in applicability

relative to physical reality. In particular a consistent model includes neither

mass diffusion nor material deformation. The latter is particularly important

during the evolution of the fireball. A real material will expand in proportion
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to the local increase in temperature. As a result stress waves will propagate

into the surrounding medium. In some cases the waves will destroy the physical

integrity of the confined explosive.

In an attempt to overcome the limitations of the rigid model we describe

here a model for the thermal explosion occurring in a confined compressible,

perfect, reactive gas mixture. The problem is described by the complete equation

of motion for a compressible, ideal, reactive gas mixture. All transport proper-

ties are included. Simplifications are confined to the details of the chemical

reaction and material properties.

The inclusion of material compressibility in the model means that one must

consider physical processes on the acoustic time scale as well as those occurring

on the conduction and reaction time scales. In particular, material expansion

associated with localfzed heating causes mechanical disturbances in the gas.

These are propagated as acoustic waves at the local speed of sound. Under appro-

priate circumstances the initially linear acoustic processes can become nonlinear

leading to the formation of shock waves. The interaction of the shock with re-

active gas introduces an entirely new set of combustion processes into the confined

thermal reaction system.

In the present paper we summarize some of the significant developments in

our work on gaseous thermal explosions, citing where appropriate, more detailed

descriptions of the phenomena and mathematics of interest. The complete mathemat-

ical model is given along with the assumptions that have been invoked. We then

describe the essential characteristics of processes on the early, short acoustic

time scale, and the mathematical analysis of the induction period process. The

nonuniformities in the asymptotic expansions are examined in order to rationalize

the next step in the solution development process. We then explain how the
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expanding hot spot generates a benign acoustic field when the characteristic

reaction time and the acoustic time are comparable. The possibility of shock

wave formation is considered from the physical viewpoint. A discussion of

consequences follows.

2. Modelling Assumptions and Describing Equations

The reactive mixture of ideal gases has been modelled with a single molec-

ular weight and a single constant diffusion coefficient. In addition the

thermal conductivity, viscosity and specific heat are assumed to be constants.

The chemical reaction is defined by a single-step irreversible mechanism with

Arrhenius-type kinetic parameters. The initial reactant mixture is assumed to

be stoichiometric, at rest and a temperature T 0 and a fuel mass fraction YFo

throughout (Primes denote dimensional quantities). The gas is bounded by two

infinite parallel plates which are rigid, impermeable, and separated by a

distance of 2Z'. The gas temperature at the plates is assumed to be main-

tained at T
0

The non-dimensional describing equations for this problem are

p + up = -pu (la)

0[ u + uu - + A mP u (3b)
t x Y 3 r xx

o [Tt + u T ] y n  exp ((T-I)/ET)

(1c)+ M T - (y-i) P u
xx x

+4A M y (y-l) p (u )2
r x
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P [Y + UY I = - y M y 6 pn ynr exp ((T-l/ T) + ( ) (ld)t x Le x x

p = pT (Ie)

p = T =Y= , u = 0 , t = 0 , 0 < x < I (if)

Px Tx Yx  u = 0 , x = 0 (Ig)

=x 0 T = 1, x = 1 (lh)

The conditions in (ig) imply symmetry along the center line of the slot.

The energy equation (ic) has been written in internal energy form because

the process occurs at constant volume. The variables and parameters are

defined by

P, t U" X

0 0

P, IC

P0 ___ or = ]B'(P

vo 0 0 0

TT T- C 0 B&OP'Fo) kT 0 o 2 exp(-l/E)

YF k" 6 T 0"
0o0 C

SP D Y h
Fo o po0o Fo 0

k"

K 0 C c YR'T0 0 o% 0 0K° Po O'p A o

where the subscript o denotes a value at time t 0. The five dependent
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variables p, u, p, T, and Y represent density, velocity, pressure, tempera-

ture, and fuel mass fraction respectively. The independent variable x is

the spatial coordinate. In the definition of t, c 0is the speed of sound ino

the gas initially. The specific heats at constant pressure and constant volume

are denoted by C 0 and C v respectively. The parameter M is the ratio of

the acoustic to conduction times in the vessel, where K 0 represents theo

initial thermal diffusivity. In the Prandtl number, Pr, and the Lewis number,

Le, u0 , k 0, and D 0 are the dynamic viscosity, thermal conductivity, and

diffusion coefficient respectively. In the non-dimensional activation energy,

E, and the Frank-Kamenetskii parameter, 6, R-, E, h o, and W' are the universal

gas constant, activation energy, heat of reaction, and molecular weight respec-

tively. The term B' is the pre-exponential factor of the Arrhenius-type rate

law. The exponent n is the overall reaction order; the sum of the individual

reaction orders for fuel and oxidizer.

The parameter r is a measure of the thermal energy in the system relative

to the maximum heat generated by the chemical reaction.

A typical laboratory experiment might start with the reactive gas at

P 0 5kPa and T 0 = 5750K. The reactions of interest have activation energies
0 0

E ' of 40 k.al/mole or higher. Under these conditions with the plates separated

by a distance of 10 cm., it is found that Y, Pr, 6 , Le, and r are 0(1) quan-

-4
tities while e < 0.03 and ' = 0(10-). The two parameters M and c are

considered independent since c reflects the chemistry of the system and H

does not. The solution to the system (1) is sought when c and M << 1 for

specified 0(1)- values of y, Pr, 6, Le, and r.
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3. Acoustic-Time Solution

Poland [1979] and Poland and Kassoy [19811 have described the solution of

the acoustic time-scale when t = 0(1). In the core of the vessel, -1 <x< l,

one finds a spatially homogeneous increase in T and p of O(cM), relative to

the initial values, caused by the chemical heat release in the system. In

order to accommodate the wall condition on T in (lh) a conductive wall boundary

layer of thickness 0(M) must exist adjacent to the boundary. Relative to the

warm core the gas in the boundary layer contracts as it cools to the wall value.

As a result the outer edge of the boundary layer behaves like a piston being
3/2

withdrawn from a gas filled region. This disturbance of 0 (e M ) causes an

acoustic wave system to be propagated into the core. As an example the core

pressure solution has the form

3/2 Z 3/2 (CM2)
p -1+ CMYt- M yKL 3t f- E (_l)m pM )  o Jx"m=l m Sm 3/2

in n(2)

P (z m) = C2 Qm ) sin e.,-S2(c,o! s ; - m = mnt,K = 2y6/f

where C2(Q ) and S2(. ) represe'v- Fres:,ei integrals (Abramowitz and Stegun

[19641). The first part of the O(rMCI/2) term represents an accumulated pressure

relief due to the continuous generation of expansion waves by the contracting

boundary layer. The second term which is bounded for all t represents the

momentary acoustic field. When t = 0(1/M), which means that- r = yMt = 0(l),

we observe a nonuniformity in the asymptotic expansion for p. This difficulty

occurs because the conduction boundary layer grows to an 0(l)-- thickness

when the conduction time scale (T = 0(l)) is reached. If (2) is written in

terms of the limit c - 0, t fixed, then we obtain the matching form of the

pressure variab]es which is employed as an initial condition for the conduction-

time solution;
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-+r- (2/3) YZ t 3/2 +0( 2)J+ O(rM )  (3)

The last term is explicitly dependent on both t and T. Similar results

can be obtained for each of the variables. These terms are used to define

the asymptotic expansions and scaling required in the subsequent induction

period analysis. Details are given in Poland and Kassoy (19811.

4. The Induction Period Solutions

The asymptotic expansions for the induction period take the form

3/2

- + C EF, (r,x) + M 3 A (t,t,x) + ... 3+ O(c2 ) (4)

where = p, T, p or Y , - yM t and

u = CM [Yua(TX) + M uA(,tx) + ... 3 + 0(c2M) (5)

The Ell ul terms represent variables that change on the long conductive

time scale T , while the PA f A variables change on the much shorter

acoustic time scale t as well. In fact the latter variables represent

the further evolution of the acoustic disturbances during the induction

period. The presence of two explicit time scales implies that a uoultiple

time scale analysis will be required.

If (4) and (5) are substituted into (1) then the describing equations

for the conduction controlled solution can be found in the form

PIT + ix = 0 ' p = p ( T ) p p + T, (6a,b,c)
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TT 6 e T  + Tx - (Y-l) Ux (7)

yLe (8)
T

S U = 0 < x_ , < I 0 (9)

j x  = , =0 X 0 , T > 0 (10)

u I , Ylx= 0 x I > 0 (11)

If (6) is used in (7) then we obtain

YT, = 6eTl + TI + (y-1) dpl  (12)
xx dt

Furthermore if mass conservation is invoked then the integral of (6c)

across the slot can be reduced to

P1 () = f Tl(t,x)dx (13)

0

Eqs. (12) and (13) can be combined to produce an Integro-differential

equation for T . The integral form of the last term in (12) describes

heating of the gas in the slot due to spatially homogeneous compression.
A

If the transformation a = x/y is employed, then we obtain the standard

form
1

TIA eTI + Tx+x TjA dx (14)
Cy xx Y

0
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Once a solution of (14) and (9)-(11) is obtained the remaining variables

can be obtained from (6a,c) and (8). Numerical solutions obtained by the

method of lines for the case 6 = 2, r = 0.4, Le = 1, are shown in Figs. (1-3)

for T, YI and uI. In particular we note that each of the variables is

growing rapidly as the escape or runaway time T C 0.7463+ is approached.C

A formal analysis of the properties of (14) is given in section 5.

A final-value analysis of (6a,b), (8), (13) and (14) has been developed

to describe the detailed nature of the thermal runaway process. As in the

case of the thermal explosion in a rigid combustible (Kassoy and Poland

[1980]) the study is concerned with a conduction controlled region, 0< x < 1,

and a hot spot region, x = no; where n - 0(l) in the limit a = (r - T)-+O.e

For example, in the former we find that pl, TI, Pl, and Y1 approach a well-

defined value obtained from the numerical solution as a - 0. However,

U, - (l-x)o . This implies that as a - 0 u itself becomes larger than

O(cM). In the hot-spot events are more singular. The temperature and the

velocity are described by

T 1 +E (in + g CN) + 0(o)) + . . (15)

u EMy ['L (n)a + 0(M)] + . . . (16)

where go(q) and UI(n) are well-defined functions. The expanison in (15) is

nonuniform where :2 n o = 0(l), which represents the usual. thermal runaway

singularity (Kassoy and Poland [1981]). In addition one may observe from (16)

that at the hot spot edge, where U1 (n- ) is finite, there is significant

growth in the local Mach number as o 0 due to the accelerating temperature

rise and associated gas expansion. The acoustic disturbance field represented
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by CA' UA in (4) and (5) can be reduced to the classical linear wave equation

for uA9 with homogeneous boundary conditions. The initial condition, derived

from the appropriate form of (5) is

uA (--O,t>>l,x) = (K/l) E (- 1)m sin ml1x C (17)
m=l 3/2

m

Eq. (17), which represents the form of the disturbance generated during the

acoustic time period, is also the exact solution. There is no further evolu-

tion of the acoustic field because the waves propagate basically in the

uniform, invarient background field represented by the initial state of

the system.

S. A Qualitative Analysis of the Induction Model

If we begin with the nonclimensional model analagous to (1) for a reactive

ideal gas in an arbitrary open bounded container 9 cIRn without making any

symmetry assumptions as in 52 for the special slot container geometry, carry

out the same asymptotic analysis as described in §§3 and 4, then we obtain,

analagous to (14), the following induction period model for the thermal explo-

sion process of a reactive gas confined to 2

0 A06 e0  + y-l 1 ( (y,t) dy (18)
t y vol e t

0 (, 0) = 00 (x) , x

0 (x,t) = 0 , xe t>0 (19)

where O(x,t) (= T1 in (14)) is the temperature perturbation, 0o (x) is the

initial temperature perturbation, y is the gas constant, and 6 is the
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Frank-Kamenetskii parameter.

We would like to address the following questions. 1) Can we describe

the time-history of 0 (x,t)? 2) What happens as 6,y vary? 3) Can we

distinguish between explosive and nonexplosive events? 4) How does a

gaseous fuel compare with a solid fuel in identical bounded containers?

The implicit integro-partial differential equation (18) can be put in

more tractable form by integrating it over 2 and then observing that

If dy=f [A 0+ 6 e0 ] dy (20)

From this, we have that (18) - (19) is the same problem as (21) - (19) which

in turn is equivalent to (22) - (19) where (21) and (22) are given by

e0 + -1 [e[A + + 6 e] dy (21)

t vol f0 9

and

- 0 + 1 do = e + Y-i 6je0 dy (22)

where u is the exterior unit normal to 3SQ and do is the element of

surface area on a. The equivalence of (21) and (22) follows from the

divergence theorem.

Using these equivalent formulations of the induction model (Bebernes-

Bressan [1982]), the following results can be proven.
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1) For any 6 > 0, y • 1, and 0 0L 2 (SI), sup 0o(x) < , problem (18)-(19)

has a unique solution O(x,t) on x(O,t), on nx[O,a), a > 0, where either

a) o or b) o <- and lim sup C(x,t)

If - is a ball B of radius 1 in R7 and 0(x) 0 0, the following is

also true.

2) For 6 > 0, y > 1, the solution O(x,t) of (18)-(19) is nonnegative,

radially sy-metric, and nondecreasing on [0,j). Thus, one need not assume

a fortiori that the temperature perturbation has a symmetric spatial profile.

Formially when y = 1, problem (18)-(19) reduces the classical ignition

model for a solid fuel

Xt - AX =  6eX (23)

with

Y.(%,0) =x 0x W : 0 , XES124

(24)

X(X,t) = 0 , xr , P>0

The associated steady state problem is:

-Y Se 
(25)

Y(x) =0 (26)

It is known (Bebernes-Kassoy [1981]) that: a) for any 6 > 0,

(23)-(24) has a unique nonnegative nondecreasing solution X(xt) on

Qx [0,t ,t >0, where either t + - or t < c and lir sup X(x,t)

b) there is a critical value 6 FK 0 such that for 6 < 6FK the solution
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X(x,t) of (23)-(24) exists on Q x [o,-) so t = + and x(x,t) < Y (x)

where Y(x) is the minimal solution of (25)-(26); c) there is a

6 > 6 FKsuch that for 6 > 6 t < + - and the solution X(x,t) of

(23)-(24) blows up in finite time. In addition 6 is precisely known

and good error bounds on t are known.

3) For 6>0, y>l, the solution O(x,t) of (18)-(19) satisfies

x(xt) < o (x,t) < 0 (x,t)

for all x c B, t > 0 on their common interval of existence where X

is the solution of (23)-(24) and O(x,t) is the solution of (27)-(24) where

4t -A =6 e + v- 6 e dy (27)

From this result we can conclude that the temperature for an ideal gas

is always greater than that for a solid fuel in identical bounded containers

and hence a gas explodes sooner than a solid fuel. Physically, this can be

explained by the additional generation of heat due to the compression of the

gas.

6. Further Developments

The final value analysis of the hot spot development in section 4

showed that as the explosion time t is approached (o 40) the hot spote

temperature perturbation increases like 9n o and the speed like a-

Given the definition of a we can write

(te - t ) = 0 (28)
t A M
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where te' is the dimensional explosion time and tA = R -/Co. is the

acoustic time in the vessel. When a > > 0 (M', the hot spot development
/

occurs on a time scale long compared to tA However, when a = 0 (M),

the hot spot time scale and tA' are commensurate. This means in effect

that the reaction time is now as short as tA In this case T- I + O(EknM)

and u = 0( M ) as may be observed from (15) and (16). The edge of the

hot spot now acts as a localized piston which drives an acoustic disturbance

into the adjacent conduction-controlled zone. The time scale of the process,

O(tA') is long enough to permit the waves to traverse the container many times.

In this sense the expanding spot generates a noise field in the container. The

basic pressure field is essentially spatially uniform because the acoustic waves

facilitate pressure relief. During this period the hot spot temperature is

O(EnM) different from the initial state.

Eventually the accelerating reaction in the hot spot causes the reaction

time to be shorter than the acoustic time. This occurs when sfn(I/o) s=0(l)

which implies that the temperature is now fundamentally different from the

initial value. Given the definition of a one can write

ss

(t e  -Vt)e
e A- N < <1 (29)

for s fixed c - 0. The local Mach number in the hot spot u = O(rMeS).

One may observe that this latter value can be.a significant fraction of

one for appropriate values of e and M. It can be shown that this vigorous

expansion rate can lead to the generation of a nonlinear acoustic signal
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whic'h "reaks", thus forming a shock at a distance from the center of the

hot spot which is small relative to the container size. The analysis of

this process is similar to Cole's [1968] study of the shock wave generated

by an accelerating piston. Of fundamental interest is the shock wave strength

as a function of the physico-chemical parameters of the reacting system. The

details of this dependence remain to be carried out.

It is useful to speculate on the possibility that shock generation by

the developing hot spot can lead to direct initiation of a detonation. If

the shock is sufficiently strong the induced temperature rise will initiate

a rigorous chemical reaction just behind the wave. Should the local reaction

time be co..ensurate with the local transit time of the shock, then the re-

action zone will move with the shock. And uo a detonation is initiated.
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TRANSITION FROM TRAVELING TO STATIONARY LOADS IN A HOLLOW CYLINDER

Alexander S. Elder

U.S. Army Armament Research and Development Command
Ballistic Research Laboratory

Aberdeen Proving Ground, MD 21005

ABSTRACT. In this paper we formulate the equations for elastic strains
for internal loads moving with constant velocity in a hollow cylinder.
The Green-Lame' potentials given by Hermmann and his associates are
modified for moving loads according to ideas set forth by Ian Sneddon,
using sin s(z-ct) and cos s(z-ct) as separation factors in the wave equations.
The remaining separation factors involve sin(nO), cos(nO), and combinations
of Bessel functions. In these expressions, s is a parameter, z the distance
from the origin along the z axis, c the velocity of travel, and t the time.
Six linearly independent solutions are obtained which are sufficient to
satisfy three boundary conditions at each of the two cylindrical surfaces.
Response to a step function is formulated in terms of Fourier integrals,

using the Cauchy discontinuous factor.

At zero velocity, which corresponds to static loading, the six linearly
independent solutions reduce to four. The displacements for static loading
and the corresponding biharmonic potentials are obtained by a limiting process,
thus recovering the six independent solutions required for an infinite
hollow cylinder. In the limit, the wave functions tend to harmonic
functions as the velocity of travel tends to zero, the four solutions
described above are derived from these potentials. Biharmonic potentials
of the form

x = r ,r

where 0 and i are harmonic potentials, give rise to the same displacement
as obtained above by a limiting process. This analysis shows that the transition
from moving to stationary loads is continuous and that no abrupt changes
in calculated values should occur.

The author of this paper presented it at the 26th Conference of Army Mathematicians.
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1. I1NTRODUCTION

In this paper we derive formulas for calculating the response of a
hollow cylinder to internal loads moving with uiiform velocity. T~is
analysis is based on the historic Green-Lame theory of wave motion and recent
work on free vibrations of a hollow cylinder2 . Only steady state conditions
are considered; transients which may arise at the beginning of motion are
ignored. Formulas for moving sinusoidal loads are discussed in detail. The
response to a moving step function can be obtained by using Cauchyts discontinuous
factor.

The transition from traveling to stationary loads is obtained by a
limiting process. 1he biharmonic functions required for the stationary load
arise from the confluence of the displacements due to the vector and scalar wave
functions at zero velocity. This solution is also derived independently from

appropriate elastic potentials. This analysis shows that the calculated
displacements for moving loads approach the calculated values for stationary
loads as the velocity of travel approaches zero. Physically, this requirement
is obvious. Hence computations for low velocities will serve as a critical
test of the analysis and computations.

The results are required to interpret strain measurements obtained
with an instrumented gun tube in which arrays of strain gages and pressure
gages were mounted in close proximity along the length of the tube. Tube
strains based on the measured pressures were calculated according to thick
walled cylinder theory 3 , using appropriate mechanical properties for the gun
steel. At low velocities the measured and calculated strains agreed reasonably
well, but at high projectile velocities the calculated strain distribution
profiles were significantly different from the measured strain histories.

This effect is well known in the theory of moving loads4 . Prof. Ian Sneddon
of Glasgow University, a pioneer in the field, suggested this problem to the
author during a recent visit.

1Gurtin, M.E., Elasticity, Encylcopedia of Physics, Volume VI a/2,
Mechanics II, Springer Verlag, New York, 1972. See pages 212-214.

2Armenakas, A.E., Hermmann, G., and Gazis, D.C. Free Vibrations of Circular
Cylindrical Shells, Pergamman Press, New York, 1969.

3Elder, A.S. and Zimmerman, K.L., Stresses in a Gun Tube produced by Internal
Pressure and Shear, BRL Memorandum Report No. 2495, June 1975. AD #A012765.

4Fryba, L., Vibrations of Solids and Structures under Moving Loads, Noordhoff
International Publishing, Gronigen The Netherlands, 1972. See Chapter 17
and Reference 203.
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The analysis is given in considerable detail to facilitate verifica-
tion of formulas required for programming. Formulation is limited to
subsonic velocities which occur in practice; analysis of the moving load
problem for supersonic velocities is quite uifficult and will not be
considered at the present time.

I1. FORMULAS FOR WAVE MOTION IN CYLINDRICAL COORDINATES

In the absense of body forces the equation of motion may be written
in the form

(X+2).)VV.u - u V x (Vxu) = -- (1)

where X and u are the Lame constants. The speed of the dilatational
wave is

2

c1 = (X+2i4/p (2)

and the velocity of the shear wave is

cj = 1.l/ , (3)

where p is the density of the elastic material. The equation of motion
becomes

2 
2

VVu - c2  V x(Vxu) =

The Green-Lame solution is

u + x ()

in which the potentials @ and zP satisfy the equations

c " 2o $ (6)

and
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C" 7-

In cylindrical coordinates we have

2 + +30 1 + 30 (8)
2 r 2

ar" ar r- 38

The vector potential is given in terms of three components

0= e r 4r + eeoPe + e : (9)

mS

where e, ee, and e are unit vectors in cylindrical coordinates

V2  2 23r rr 2(10)

r z

2-- e 2 a(
\re r r 2 ee

1P( 0 2 a r

+-I 27 (0)
r r)

+ e ?z

The following scalar partial differential equations are finally obtained:

at'-

2 (2 'Pr '9

c r r r 2 eat2 r

c0 - 2P C9- * 13)

-r " e 3t-2

%'hzou, P.C. a " n aganc. , -7,ast'ciru: -ensor, zjadi.-, an, Engineering
Approaches, .;an :ics: ,ad 'or.7pFanp, inc. Prineton, !967, pages 245-265.
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a2  (142

Four components of the displacement vector are obtained from solutions of
these equations. Since only three components are required, we can specify
one additional condition. We choose a relation between * r and 4) which will

facilitate separation of variables, following the ideas outlined in Reference

III. SEPARATION OF VARIABLES FOR SINUSOIDAL LOADS MOVING WITH CONSTANT
VELOCITY

The scalar potential can be obtained directly by separation of variables.
For brevity let

H, = cos(ne)sin[s(z - ct)] (15)

H, = cos(ne)cos[s(z - ct)] (16)

H3 = sin(ne)sin[s(z - ct)] (17)

H4 = sin(ne)cos[s(z - ct)] (18)

and

H. f(r), i = 1,2,3,4. (19)

In these equations n is an integer since the stresses must be periodic in
a complete cylinder. The constant c is the velocity of travel. We assume

0 < < c < c- , (20)

where

0 < C < < 1 (21)

Let
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2 1 2 (23)

Then

f f n a2 S 2 O (24)
r

and

f A AI ( 1sr) + A2K81  sr) (25)

The axial component of the vector potential can be treated in a similar
manner. We let

(.gjr), i = 1,2,3,4 (26)

a,- =c /7/c (27)

26, a 2 (28)

then

g, A3 In(a2 sr) + A4 Kn(52 sr) (29)

The radial and tangential components of the vector potential are

coupled. The following four combinations lead to separable solutions:

'r Hlg1r 6= " H g9  (30)

Hr =H~gr' ="H 4 g (31)
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r = H 3gr' 'p =  HlIge (32)

r = H4gr' e = H2 ge (33)

The combination given in Eq. (32) is discussed in Reference 2; the
remaining combinations are introduced to satisfy a variety of boundary
conditions on the inner radius. We note that

a
H, = - nH3  

(34)

H nH, (36)

-e H4 = nH2  (37)

On referring to Eqs. (12) and (13) we find

r 2g" + rg; - (n2  1 + B.2 s r)g + 2ng+ = 0 (38)
rr -r n 8  0()

g 2 62222g
r g + rg' - (n 2 + + s )g - 2ng, = 0 (39)r 8

If we let

= - gr (40)

we find

r rg' " [(n 1) 8,s r )g 0 (41)
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and

gr ($,sr) (2sr) (.42)

Sr n~l - A2 K(8sr

If on the other hand we let

9= gr (43)

then

r 2gr + rg' - ((n - 1)2 22s2r2]g r  0 (44)

and

gr = ATI n($ 2sr) + AsKn-(8 2 sr) (45)

In this paper the radial and tangential components are based on Eqs. (40),
(41) and (42).

As mentioned previously, a complete solution to a specified boundary
value problem may be obtained if one of, the components of the vector potential
is set equal to zero. Hence, although unique solutions for the displacements
are expected, the choice of potentials leading to a solution is not unique.

6
Pao and Mow use vector potentials L, M, and N, which are derived from

scalar functions a, ip, and X in their analysis of diffraction wave in an
elastic solid. The relation between this solution and the solution of Hermann
and Gazis may be obtained by equating foimulas for the displacements.

IV. COMPONENTS OF THE VECTOR DISPLACEMENT

Each component of the vector displacement consists of one term from
the scalar potential and two terms from the vector displacement, according
to Eq. (5). These terms must have the same trignometric factor. In addition,
the signs of gr and g8 are chosen so these functions involve Bessel functions

of order n+l when g, = - gr" The sign of gz is chosen so the divergence can

be written in the form

V. H h(r), i 1,2,3,4 (46)

6Pao, Y and Mow, C, Diffraction of E'astic Waves and Dyncic Stress Concen-
trations, Crane Russak, Pblishers, 1.7. See pages 218 ff

714 a



where

1 a n
h(r) a (rip n 99 +- (47)

r Dr r r g

We consider four cases, as shown in the table below.

TABLE 1. TRIGNOMETRIC FACTORS FOR SCALAR AND VECTOR POTENTIALS

Function f(r) (r) g8 (r) g(r) h(r)

Case I H1 H4  H4 H 3  H4

I-I H, H H -H4  H.
3 1 H

III H H2  -H4  H H,
41-

IV H4  H1  -H3  -H, H
413 1

The displacement components for each case are obtained from the
potentials.

Case I

ru = [rf' + srg, + ng.] H, (48)

rv = [-nf - srgr - rg'] H 3 (49)

rw= [srf+- rg - ng,] H2  (50)

Case II

ru = [rf' + srg, - ngz] H, (51)

rv = [nf srg r  rgj H4  (52)

r
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rw = [- srf + L- - ngr H, (53)

3r 0 er '

Case III

ru = [rf' + srg, - ng.] H (54)

rv = [nf - srgr - rg ] H1  (55)

rw = [srf - -r rg, ngr] H4  (56)

Case IV

ru = [rf' + srg, + ng.] H4 (7)

rv = [nf + srg r + rg'] H, (58)

rw = [-srf + 2- rg6 + ngr] H- (59)

Next, we express the displacements and divergence for Case I in terms
of Bessel functions of order n and n+l. The following identities are used
to eliminate derivatives:

Xln '(X) = nI n(X) + XI l(X) (60)

XK n(X) = nKn (X) - XK n+(X) (61)

Xl' n+(X) = - (n + 1)I n+lX) + XI n(X) (62)

XK' nI(X) = - (n * 1)K n+l(X) - XK n(X) (63)

On carrying out details of the analysis we find
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ru =A [nIn(8,sr) 1sr ln+ 1 blsrJ]

SA 2 (n Kn(81sr) - 81 srKn+1 (Olsr)]

(64)

+ AnI n(62 sr) + A4 nKn(52 sr)

- AsrIn 1 (62 sr) - A S2srKni (S2 sr) cos(ne)sin[S(Z ct)]

rv A 1nn(a1 sr) - A2 nKn(aIsr)

+ A3 [- nIn ($2sr) + 
8
2srln+l(8 2 sr)]

(65)

+ A4 [- nKn(B2sr) - 82srKn(a sr) ]

" A.srln (8,sr) - A6 srK (6,sr) sin(ne)sin(s(z - ct],
Z + n+l

rw = Alsrl n(61 sr) + A2srKn(Bisr)

(66)

- AsSln (B2ir) A682srKn(2sr) cos(nG)cos~s(z - ct)]

The divergence of the vector potential is

[(A 3 + A5S 2 )SI n( 2 sr) + (A4 - As82)sKn(B.8sr)Isin(ne)cos[s(z - ct))

(67)

Formulas for the displacement and divergence corresponding to Cases II,
III, and IV can be written down by inspection.

The divergence of the vector potential enters into calculations of the

rotation vector. The analysis prior to Part IX of this report follows
reference 2 in using a vector potential with non-solenoidal divergence, as
this approach considerably simplifies the analysis. In Part IX a solenoidal
vector potential, for which the divergence is zero, is derived by separation

of variables. Formulas the vector displacement and its deriatives remain
unchanged, but a simpler formula for the rotation vector is obtained. The
usual approach by means of the Newtonian potential is not appropriate since
the hollow cylinder is a multiply connected region.
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V. STRAINS, ROTA1ION \ECTOR, AN. STRESSES

The strains are obtained from the displacements by means of the formulas

au(68)
r r

Ee ) (69)

a - (70)S a=

au 3v v
~r6 ae +r -r (1

au aw ( 2
'rz z (72

av w(73)
:0 z ra

We calculate the strains in terms of Bessel functions for Case I. The
remaining three cases can be treated in a similar manner. Let

6

r'E = H. AIR (74)r .

2 6

r e, = H, AiR3,i (i6)

62 31 AR (76)

r Yr H,i

6

r-Y r = H2 L AiRSi (78)
1
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~b
r 'y z = H4  AiR 6 ,i (79)

The Ri'j functions depend on the radius, and can be expressed in terms

of Bessel functions of orders n and n+l.

2212 2
R s r ,(n -n)]I n(8 sr)- 1srn15 r)(0R1,1 = 82~ 2 *42 nI4sr - 81srIln~l(8lsr) (80)

2 2,2  [aIs2nr2 + (n2-n)]K n(81sr) + 81srKnl (81 sr) (81)

R = n2-n)I (8sr) + 82 srln(a 2 sr) (82)1,3 n- ~

R, 4 = n -n)K n-(Ss )  82SrK n+(02 sr) (83)

R s 82s rIn(a2sr) + (n+l)srl (8 sr) (84)

22R1, 6  82s r Kn (,sr) + (n+l)srK n+(2 sr) (85)

R2, (n2- n) nB1sr) + 1lrn+1(6lsr) (86)

R = - (n2-n)Kn(81sr) 81srKn+(Olsr)  (87)

R - (n 2-n)K (8sr) - 8 nsr Kn (B2sr) (89)

R.,4 = n-)n(s) f2ns n~l f2s)89

R2, 5 =1 1(n+l)Srl n sr) (90)

R) =- (nl)SrKn (82 sr) (91)

22
R = - s rn Is(8 2sr) (90)R 3 - ( a sr(8) (91)
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R - 0 (94)

R =0 (9S)

R 3, a 2s
2 r1n(02sr) (96)

R3,6 -_ 2 s2 r 2Kn(Bnsr) (97)

R4,1 . 2(n2 _ n)In (01sr) - 81nsrIn+l(olsr) (98)

R4 ,2 = - 2(n 2 _ n)K n(51sr) + 81nsrKn+ 1 (81sr) (99)

R4, = - [2(n 2  n) + Bs 2r2]1(5,sr) + 282srI (a sr) (100)

R, n - 822 2~

R = - [2(n 2 - n) + 2s2r 21K (B sr) - 2,srln (a2 sr) (101)
4n 2

R 82sIr I(B2 sr) + 2(n + I)srl (8 sr) (102)

R 4 , 2r K (B sr) + 2(n + 1)srKn(O2sr) (103)
4p6 . n 2 (103

R 5,1 snrl n(a1S) + s 2 r2 1nl( sr) (104)

R5,2 snrKn(8 1sr) - 81 s2 r 2K n+l( sr) (105)

R 5,3 = nsrin(s2sr) (106)

R5,4 = nSrgn(B2sr )  (107)

R5 82nsrIn(a2 sr) 82 1)s-r- l($2 sr) (108)

2 2
R 5 nsrKn(8 sr) + (82 I)s r2K (s sr) (109)
5,6 2n 2 n+1 2

R6,1 = 2nsrln (8 sr) (110)
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R6 ,2 = - 2nsrKn (B1 sr) (111)

R6 ,3 = - nsrIn (S2sr) 82 s2r 'n1 l( 1 sr) (112)

22

R6, 4 = - nsrln (8 2sr) + a2s2r -K n(8,sr) (113)

R6,5 = 82nsrln (8,sr) - s2 r1 n+1(,sr) (114)

R6,6 = - 82nsrKn(82 sr) - s2 r 2K (8 sr) (115)

The dilatation e is the sum of the principle strains.

e = r + + Z (116)

We write

2 2
r e = R, i (117)

1

where

R7, 1 = - a12sr1 n (a1sr) (118)

R7, 2 = - a s2r 2K n( sr) (119)

We note that

CL 0 as c - 0

Hence

e 0 as c - 0

In general, therefore, the solution in terms of wave functions does not
yield a valid solution in the limit as the velocity of travel approaches
zero. Pure torsion is an exception, as shear strains only are involved,
and the dilatation is zero under both static and dynamic loading conditions.
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The rotations are given by the formulas

2w =1 u av C120)
r e -r

2w u w (121)e =3:

2w = I arv 1 au (122)
2 r Yr r e

We set

10
2rwz = H3  AiR8 , i  (123)

8
2 10

2r W, = 12 E AiR 9 ,i (124)

8
-, 10

2rw r = H4 1 AiRI0, (12S)

8

for Case I.
,J

R8,3 = nsrIn(a 2 sr) + 82s-r'In (S2 sr) (126)

.1 2

R = nsrK (8,sr) - ,s 2r K (B2sr) (127)
8,4 n -- n.1

2 2R = B nsrl (6,sr) s r I (Ssr) (128)
8,5 2 n - I,(B5) 18

R 8 - sr 3Ss)+s2'r2 (0 sr) (129)
8,6 2 n+1 2

R = nsrl (Bsr) (130)

R9,4 = nsrKn(B 2sr) (131)
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R9,5 = B2nsrln (2sr) - a 2 s-Inl(8 2 sr) (132)

R9,6 = - a nsrKn(82 sr) - a2s-Knl(a2 sr) (133)

RO = - Bsrn1 ( 2 sr) (134)
10,3 n C

R 04=- a'2 rK n (8sr) (135)

R =as2'r21(~r (136)
2R10,5 82s rIn(B2 sr) (137)

10O,6 = Bsr2Kn(82 sr). 17

The stresses are derived from the strains by means of generalized Hookes'
law.

ar = Xe + 2ie r  (138)

a9 = Xe + 2pe (139)

az = Ae + 2pe (140)

Tre = WYrO (141)

T = rz (142)

Yez = UY z (143)

For case I we write

2 b
r ar H 1  AiSl, i  (144)
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" c. = H, AiS (145

8 6
r' a = HI AiS- (146)

2~ 6

"rT re = H3 6AiS4,i (147)

1
26

r2Trz = H, AS 5'i (149)

6,
" z=H 4 lAi S6, i  (149)

Then

S i : +7,1 + 2R ji, j : 1,2,3; i : 1,3,5 (150a)

S. XR., 2iRi - 1,2,3; = 2,4,6 (i50b)

Sj i :Rj, i  j = 4,5,6; i - 1,2,3,4,5,6 (151)

Stresses and strains for Cases I, I1, and I' can be obtained in a similar
manner. The R. functions must be calculated for each case to determine the

1,j
correct algebraic signs in Eqs. (80) - (115) and Eqs. (118) - (119). A
similar remark applies to the formulas for the rotations.

VI. RESPONSE TO AIN INTERNAL TRAVELING PRESSURE PULSE

First we consider a sinusoidal pressure pulse traveling with velocity
c. The boundary conditions are

a a cos(ne)sin s(z ct], r a (152)or  0

Tre =0, r a (153)

T r: 0,r a 14)
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r =0,r=b (155)

T r 0, r = b (156)

T 0, r = b C157)
rz

These boundary conditions lead to a set of six linear equations for the
A. coefficients.1

6
FAiS li(a) = aa 0  (1S8)
1

6
_AiS ,i(a) = 0 '(159)

1

6
AiSs i(b) = 0 (161)

6

A SS4 ,i(b) 0 (162)
1

6
AiS 5 ,i (b) = 0 (163)

These equations can be solved for the A. provided c is greater than zero

and less than the velocity of the shear wave, according to Eq. (20). It
is convenient to write the final results in terms of determinants, using
Cramer's rule and then combining the separate terms. Let D(s) be the
determinant for Eqs. (158) - (163):
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SII(a) Sl,2(a) S1,3 (a) S1 ,4(a) Sl,S(a) S,6 (a)

4 ,i(a) S4 2 (a) S4,3(a) S4, 4 (a) S4 ,5 (a) S4,6(aJ

DLs $ 1 (a) SS a) S ) S(a) a )  S5 (a) S5 6 (a)
(164)

S 4ll(b) S1, 2 (b) S 4 ,3 (b) Si,4(b) Ss 5 (b) SI,6(b)

$4,1(b )  $4,2(3 ( S 43b) S4,5(b) Si,6(b)

S 5  (1(b) $,3(b) $5 4 (b) S (b )  S,6 (b

The remaining determinants use the appropriate R 
or for the first

row; the remaining five rows are identical with the corresponding rows of

D(s). We have for instance

S rz = R,(r) Si,2[r) R,3(r) S ,4(r) RS(r) Sl,6(r) (165)

. . . .. . . . . . . . . . ..
(S r 4,(r) S4 3 (r) S,4 4 (r) S,4 5 r (r) S (r) (166)

I ... ......... .

Sr2 JR1  (r) R,,2 (r) R 1,3(r) R 1,4(r) R I'S(r) R 1,6(r) (167)

Determinates for the remaining stresses and strains 
can be written down

by inspection. The stresses for Case I are given by

r 
(168)

r H1 Sa/D~s) 
(169)

r c- _ H1S D(s) 
(170)

r r HS re/D(s) (171)

r =r2
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r = H: S r : /Ds) (

r T = H S /D(s) (173)
ez 4 ez

Formulas for the strains are obtained in a similar manner.

*cr= HIR r/D(s) (174)

2 E 0 HIR/D(s) (175)

* z H1R /D(s) (176)

*r2yrr = H3Rre/D(s) (177)

r r, = HR r/D(s) (178)

r yez = H 4R D(s) (179)

We can also solve problems specified by the boundary conditions

a r 0 , r = a (180)

T r6 7oc s(no )sin s(z - ct), r a (181)

T rz =0, r =a (182)

and

0r 0, r =a (183)

Tr 0, r =a (184)

rz T0oS(ne)sin[S(Z ct)1
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1e IT csflf sDflsi)j ds (193)

Co sD~s)
0

1 si~e sin[s(z-ct)]5  ds(15

1 cos(n) s (s- l ds(16r: s~s J
0

1 si e~n csif[s(zct)]s d 17
z IT sD (s.) e:ds(1

0

I os(nB)f sin~s(zct)], s(18
Cor sD(s) r:d(1)

0

=1 oSn osi[s(z-ct)] R ds (199)
'0 1T f sD(s) e:

0

The corsoin formuls or t stais are0

C r f o~e sD(s) rd 18
0

T 1 sin~nO sin~s(:-ct)IR d 21
r9 s ()J sD(s) ds(20

0
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Tr= C oos ne sinj(L s- ctRR ds (202)

Cr: 7 D(s r:(02

T 2 sin(nO So/ coss(z ct)]Re ds (203)a IF )I sD (s) :

The total value of the stresses and strains is obtained by adding solutions
to the problem defined by Eq. (174).

Solutions to problems involving other boundary conditions may be
obtained in a similar manner. In certain cases the Fourier integrals will
be divergent. -In these cases the limits of integration should be taken
between - - and + -, and the Cauchy principal value calculated. The factor
2/1 must be replaced by I/i,

VII. HARMONIC AND BIHARMONIC FUNCTIONS AS LIMITS OF WAVE FUNCTIONS

As the velocity of travel approaches zero, the wave functions tend
to harmonic functions in the limit, as shown below. However, in general,
a static problem requires biharmonic functions as well as harmonic functions
for a complete solution*. A second limiting process involving an
indeterminate quotient is required to extract the biharmonic functions
from the wave functions.

We recall the basic equations of Part II.

u V40 + x )

2 2 a_
cI  V i = 1 (7)

We find from Eqs. (19), (29), (30), (31). (32), and (23) that

*Problems involving pure shear, such as torsion of an axisyimetric solid,
are exceptions. A scalar biharmonic function is required in problems
involving a change in volume, since dilatation derived from a scalar
harmonic function is :ero.
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c S (204)

-- - c S (205)

On letting c - 0 we find

v'2 = 0 (206)

=? 0 (207)

where

= [A I n(sr) + AKn (sr))cos(ne)sin(sz) (208)

= e r[Al n+ (sr) + AK n+l(sr)]cos(nB)cos(sz) (209)

- e[AsI +sr) A6 Kn1 (sr)]cot(ne) sin(sz)

+ e[A 31n (sr) + A4 Kn(sr)Jsin(ne)sinjsz)

The corresponding displacements are foufid by setting c 0, B 1, a

in Eqs. (64) - (66). We can eliminate two of the A. coefficients in the
result by writing

A- = A, + A, (210)

A8  A, + A6  (211)

A9 zA AS (212)
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AIO =A 4 A6  (213)

Then

ru = [A 7nIn(sr) + A8 nkn(sr) + A9srln+l (sr) - A 10 srKn+1 Csr)Jcos(ne)cos z

(214)

rv = [-A7nIn(sr) - A8nK n(sr) - A9srI nl (sr) + A10 srK nl (sr)]sin(ne)sin z

(215)

rw = [(A- - A )srl (sr) - (A8 + A10)srK (sr)]cos(ne)cos z (216)

We note that the six independent solutions for the displacements for the
wave equation reduce to four when the velocity of travel becomes zero.
Moreover, the displacements vanish if

Ai = 0, i = 7,8,9,10. (217)

To obtain additional solutions, let

A i = 1/81 - , i 1,2 (218)

in Eqs. (21'), (218), and (219). We define the functions

F1 = [nIn (B1sr) - nIn (B2 sr)]/(8 1 - 82) (219)

F2  [nKn(Slsr) - nK (Ssr)]/(81 - 82) (220)

F3 = [e srI nl(sr) - srIn+(sr)(B - sr)]/(] - 81) (221)

F4 = [81srK nl (81sr) - srK n+(,sr))/(S I S') (222)
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FS = [67 srI n"Bsr) - srI ($2sr)]/(81- - B1) (223)

F = [52srKnl(a2 sr) - srKn l(62 sr)]/(B I - B2) (224)

F, = [srI (Bsr) - B2srI (B2sr)]/(O1  8,) (225)

F8 = [srKn( ilsr) - BsrKn(Bsr)]/(81 -2) (226)

On referring to Eqs. (64), (65), and (66) we find

ru = [B1(F1 + F ) + 82(F2 - F4)]cos(nB)sin [S(z - ct)] (227)

rv = [- 1 (F1 + F3) + a2(F 2 + F6)]sin(ne)sin s(z - ct)] (228)

rw = [a1F1 - B2F8 cos(n)coss(z - ct)] (229)

Each of the F. functions has the indeterminate form 0/0 when c = 0,
1

B 1 = 1, B, = 1; this is obviously true also for the displacements. The limits

of these indeterminate forms can be found by the ordinary rules of calculus.
When the velocity c is small we have

1 2 1 2 ,1 - 1  ' 1- B =2(230)
1 2 1

and

1-B61  u__

lim (231)

on referring to Eqs. (2), (3), (22), (23), (27), and (28). The limits of
the F. functions can be found by using two terms of Taylor's series:I

nl sr) = In(sr) + (2i " 1)srI;(sr) 6(s, - 1) (32)
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9

Krn (61 sr)^Kn (sr) *( I - 1)srKn'(sr) + 6 (BI - 1J- (233)

(8 sr) = I (sr) + (S - l)Srln(sr ) + 6(6 - (234)

n+1 1 n+l I8 n)r~r) 6 8  1)

Kn (asr) = K (sr) + (6 - I ~srKn(sr) + 6($- 1) (235)

Additional formulas are obtained by substituting 82 for 8I.

As c approaches zero we find

lim F = nsrl'(sr) (236)

lim F, = nsrK'C(sr) (237)

lim F = - P srI (sr) + srI' (sr) (238)
X + U n~l n+l

li F = - -U srKn (sr) + srKn (sr) (239)
4i F - X + U srnlnlsr ;+40

lmF =-X + 2u srl (s) (240) --
lir X6 = + U n n+

lira F. X + 2U srI (sr) + r's)(241)6 -+u nn

X +2

lim F = sri (sr) + srlnsr) (240)

7 X~ + I

lir F + 21 sr (sr) + sr(sr) (242)+nn

The derivatives may be eliminated by means of Eqs. (60) - (63). The
displacements corresponding to these limits are

ru = Uim I8(F 1 + F3) + 8,(F2 - F4 )]cos(ne)sin[s(: - ct)] (244)
c-O
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rv im- B1(F1 + F) * 82 (F, Fb )sin(ne)sin(s(: - ct)] (245)

rw = im [86F7 - B2FB]cos(ne)cos[s(z - ct)] (246)
c-0

The total displacements due to static loading are obtained by adding these
displacements to the displacements obtained from the harmonic potentials,
Eqs. (217) - (219). We now have a total of six linearly independent
solutions for the displacements. The strains can be derived from the displacements
and the stresses follow immediately from Eqs. (156) and (151). Thus six
independent stress formulas are obtained for meeting six boundary conditions
of the type given by Eqs. (152) - (157) with c=O.

VIII. BIHARMONIC SCALAR AND VECTOR POTENTIALS FOR
STATIONARY LOADS

It is possible to derive the displacements given by Eqs. (250)
(252) from vector and scalar potentials according to Eq. (5). Harmonic
scalar and vector potentials are given by Eqs. (211) and (212). We now
derive the additional biharmonic potentials required for Eqs. (250) - (252).

For the scalar potential, assume

S= r 3- (247)

Then

-- = r ;0 (247a)
;r2  ;r

or

ax 1 2€ _
=-- r 3 (247b)

r r ae2  :

since t is a scalar harmonic function it follows, after some routine
analysis, that'

Love, A.E.H., i treatise or the :arhematicaz Theory of E.asticity, Dover
icatiofs, Yew Yc'rk, . See rages (274)- 27,, espa*ciaZly Eqs.

.6) and ,
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a2
2 , 2 (248)

3z

and

V 4X =0 (249)

Other scalar biharmonic functions are given by the Eqs. (8), (9), and (10)

X = r (250)

= (r sinO)4 (251)

× = (r cose)q. (252)

X = zO (253)

However, the biharmonic functions given by Eqs. (250) - (251) seem to be
most closely related to scalar potentials for wave motion, as they can
also be derived from a scalar wave function by a limiting process. We
have for instance

= 1-c2/c 1 2 
(254)

€1
t AlI (e sr) +A 2K 081sr)][sin s(z + ct) + sinis(:-ct)1 (2SSa)

x cos(nO)
or

8Fung, G.C., Foundations of Solid Mechanics, Prentice Hall, Inc., Englewood
Cliffs, NJ., Page 208.

9Neuber, H. Theory of Notch Stresses: Principles for Exact Stress
Calculation. David Taylor Model Basin, Washington, D.C. Translation 74,
Novermber 1945. See pages (2.5) and (128).

* Elder, A.S., Traveling and Stationary Loads on the Half Space, BRL Report,
to be published. See section titled "Biharmonic Functions as Limits of
Wave Functions."
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1 [AlI (alsr) + A2K (alsr) ] sin(sz)cos(sct)cos(n0) (2S5b)

This scalar potential represents two equal loads traveling with the same
speed in opposite directions.

(A 1 [ lA'rI (Bsr) + A2 1rK'(u3sr)][sin[s(z+ct)I + sin[s(z - ct)]cos(n0)

(256)

* I [A1l ( isr) + A2 K (0 sr)]

* [(z + ct)cos s(z + ct) + (z - ct)cos[(z + ct)]cos(ne)

= [Al( lrln(I 1 sr) + A2SlrKn (Blsr)] sin(sz)cos(sct)cos(nO)

+ [A1 l n(lsr) + A2 K n(B1sr)][z cos(sz)] cos(sct)cos(ne) (256a)

+ [AlI n(sr) + A2K n(lsr)][ct sin (sz)] sin(sct)cos(ne)

On allowing c to approach zero, we find

- [AlrI'(sr) + A 2 rK(sr))sin(sz)(n9)

+ [A1 ZI n(sr) + A2 zKn(sr)]sin(sz)cos(n)

we also have

X : r ~-~[A I (sr) + A2Kn(sr)Jsin(szcos(ne) (257a)

or

X = [A srI (sr) + A2srK (sr)]sin(sz)cos(ne) (257b)
1 n(r

which yields two terms in Eq. (256b) except for a factor s. The remaining
two terms of (256b) corresponds to Eq. (253).

The biharmonic vector potential can be derived in a similar manner. We

assume
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w r =- (58)

or

where

r ee e w (2S9)S r r 0 z

Then

Wr  r (260)

= r - a (261)

= ry *z (262)

We find as before

= r + * Y-r (263);r r ;r-" y

with similar equations for w and wz. The second derivations are eliminated

by using the three equations which result when the dcrivatives with respect
to time are set equal to :ero in Eqs. (I1), (12), and (13). On referring to
Eq. (8) we find

r r r a r (264)wr r 7 r + F Dr r r r :

ar we F _ -r rP e r To (26)

and
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We finally obtain
.2

=-2 w 1 (267)

r r )z

and

~22
V 2 = - 2 -- (269)

3z
2

Consequently -

-2 4)(270)
az

2

and

4-7 =0 (271)

The biharmonic scalar and vector potentials are not independent,

but are coupled through Naviers equation.

(X + 2u)V + iVxw = 0 (272)

or

a2

[(A + 2U)V + UVxP) = 0 (273)

This equation is satisfied if

(X + 2u) V + WVx4, ' 0 (274)

or, in scalar form,
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(A+2) + ilr T z - ) 0  (275)

(A + 2p) r + pr 0 (276)

( ar a
(X+2pi) + T (1 ar = 0 (277)

We use Case I as an example.

S= [A 1l n(sr) + A2Kn(sr))cos(nB)sin(sz) (278)

= [A5 I n(sr) + A K (sr)]sin(no)cos(sz) (279)

= - [As I (sr) + A6Kn+ l (sr)]cos(no)cos(sz) (280)

z= [A31 (sr) + A4 K n(Sr)]sin(nO)sin(sz) (281)

Relations among the Ai components are obtained by substituting these
scalar components into Eqs. (11) - (14) and carrying out the indicated
analysis.

We finally obtain

L [ + a (sr)Kn(sr)]cos(nO)sin(:;r) (282)X =  +2 i [11 rn sr + 1S2(rn

1

r = i [ 11srIn(sr) - B]2srKn+l(sr)]sin(n0)cos(sz) (283)

= 1  !;rIn 1 (sr) + 61 srK+ 1 ,(sr)]cos(ne)cos(sz) (284)

1[-f srln(sr) + BsrKn(sr)]sin(e)sin(sz) (285)
z =  n'1 12 n

where a11 and B1 2 are related linearly to the Ai coefficients. The

derivatives may be eliminated by using standard formulas, so that
the final result can be expressed in terms of trigonometric factors and
Bessel functions of order n and n+l.
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Thus we have a complete solution for static loading in terms of scalar
and vector potentials. By contrast, Love's strain function uses a single
biharmonic -,,alar pot.ntial based on th,. (alerkin vector. The discplacements
in our analysis are given in terms of first partial derivatives of the potential
functions, consistent with the Green-Lame formulation of wave motion, whereas
Love's strain function expresses displacements as second derivatives of a
scalar potential. The present analysis illustrates a logical connection
between static and dynamic problems for the elastic deformation of a hollow
cylinder.

IX. HELMOLTZ THEORY

Helmholtz's theorem concerning resolution of a vector consists of two
parts:

u = VP + VXX (286)

V X = 0 (287)

The vector potential i of Eq. (5), as derived in the previous analysis, is
generally not solenoid, as required by Eq. (287). A solenoidal vector is
obtained by a gauge transformation, as outlined by McQuistan (11). In the
course of McQuistan's analysis a Newtonian potential is used to solve Poisson's
partial differential equation, and the proof is restricted to simply connected
regions. Unfortunately a hollow cylinder is multiply connected and this proof
does not apply. We solve Poisson's equation by separation of variables. We
have three cases to consider:

1) -p is a harmonic vector potential

2) p is a biharmonic vector poteniial

3) is a vector wavefunction.

In each case we assume

X 0 7n (288)

where n is a scalar. Then

i£e Uisttan, Richmond 3, ScaLar and Vector Fields., A PhysiaZ Inepretation,

JChn Wiley and Sons, inc. ;ew York, 1965. See nages 256-264.
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. X p + V* •n (289)

which, in view of Eq. (287), reduces to

2 (290)

Since the vector potential V has been calculated previously, Eq. (290)
is Poisson's equation for the scalar n. In each case we have

r Dr r r3--e e +  z (291)

where

ere r  + e +1 + e (292)r r eezi z

and er e6, and ez are the unit vectors in cylindrical coordinates. For

Case 1 we have

1r [AI 1n+l(sr) + A6K nl(sr)]sin(n6)cos(sz) (293)

0Pe [ASln+l (sr) + A6K nl(sr~cos(ne)cos (sz) (294)

= [A3 1 (Sr) + A4Kn(sr)]sin(ne)sin(sz) (295)

After some routine analysis we find

7 • w = [(A 3 + A )sI n(sr) + (A4 -A6)sKn(sr)]sin(nO)cos(sz) (296)

We use the semi-inverse method to solve Eq. (290), as a lucky guess may
save considerable analysis. Assume

n - C [(A3 + A5)In(sr) + (A4 - A 6)K'(sr)]sin(nO)cos(sz) C297)

where C is an unknown constant.
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Then

- 2 C si[(A + A )In(sr) - (A A6 )K n (sr)]sin(ne)cos(sz)(298)

On referring to Eqs. (290) and (291) we see that

C = - 1/2s (299)

and consequently

n = - -[(A + A)I'nsr) + A - A)K (sr)]sin(nelcos z )  (300)
2s 4  6  n

The biharmonic vector, Case 2, may be treated in a similar manner.
We have

s= [lsrIl (sr) - a2srK' 1(sr)]sin(ne)cos (sz) (301)

= - [a1 srl' 1 (sr) 62 srK l+(sr)]cos(ne)cos (sz) (302)

= 1srn(sr) + ,srKn(sr) ]sifi(ne)sin(sz) (303)

We find

[ 6 n s (sr) + 62sKnsr)]sin(n6)cos(sz) (304)

Hence

1- 1S (sr) + 62sK (sr)]sin(ne)cos(sz) (30S)

On preceeding as in the previous case, we find

=- I 1rI (sr) + SrK;(sr)]sin(ne)cos(sz) (306)

This result is well known. If the right hand side of Poisson's equation is a
harmonic function, biharmonic functions can be used to solve Poisson's Equation.
For instance, if
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2= , (307)

and

- r (308)
2 ar

then

V2n = 72 a309)
2

and we can readily prove that n is biharmonic.

For the wave function, Case 3, we have

r [AsIn+l U 2sr) + A6 K n+( 2sr)jsin(n6- cosis(z - ct)] (310)

= - [AsIn (O2 sr) + A6K ( 2sr)]cos(nO)cosls(z - ct)] (311)

A I 2sr) + A4K (O2sr)]sin(ne)sin[s(z - ct)] (312)

where r , and iz are components of the vector potential. We have

shown that

V [ p =(A 3 + a2A5 )SIn(n 2sr) + (A4  B 2A6 )sKn ( 2sr)]sin(n6)cos[s(z - ct)]

(67)

Assume

n = C [(A + 6,A )Sln(Ssr) + (A - 02A6)SK (Bsr)]sin(ne)cos[s(z -ct)]
. 5 ~ n 2 4 .6 n

(313)

where the constant C is unknown. Then

V2n - C{(82 - l)s2 (A3 + 02As)Sln (0sr) + (A4 - 82A6 )K (02 sr) }

x sin(nO)cos[s(z - ct)] (314)

But

744



2 2

2 2 2 so that

C = - (315)

and

n 2 [(A3 + g2AS)I n 2 sr) + (A4 - 82A6 )K,($ 2sr)]sin(nO)cos s(z-ct)
sa2  (316)

This result is not valid for a2  0, corresponding to zero velocity of
travel.

Next we recompute the vector displacement by substituting X from
Eq. (288) into Eq. (286). We find

u = V4 + Vxi+VxVn (317)

The third term on the right hand side of this equation is zero, so we
recover Eq. (S) in the formula for the vector displacement.

U = Vc + v× (S)

Formulas for the stresses and strain, which involve partial derivatives

of u, remain unchanged.

The vector potential is given by

1VXu (318)

or

=W V x Vo + V X V X (319)

But

V x O= 0 (320)

and
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V X V x V (V. ) (321)

Hence

1 v2
= V1 (322)

An analogous formula is found for the dilatation

e Vu (323)

e = V-VO + V-Vx (324)

But

V- Vx* = 0 (325)

So that

e =V2 (326)

The results obtained by using X in place of t conform to all the require-
ments of Helmholtz theory provided the z axis is excluded from the region
under consideration. The scalar potential n is determined so that Eq. (287)
is satisfied and X is solenoidal. The potential X is a single valued function
of 6 since sin(nO) and cos(nO) are periodic.

The modified Bessel functions of the second kind, which occur in the
analysis, have a logarithmic branch point at the origin of the complex s plane.
However, this logarithm is eliminated from the integrands of the Fourier
integrals, and the singularity at the origin is a pole. The integrands
become single valued functions of the complex variable s, thus simplfying the
application of residue theory. The proof requires additional analysis, and
is given in Appendix A for dynamic problems.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have formulated the equations governing elastic strains
in a hollow cylinder due to stationary loads and loads moving with constant
subsonic velocity. In addition, scalar and vector potentials are derived for
stationary loads, showing the connection between static loading and the Green-
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Lame formulation of wave motion. Six linearly independent solutions are
obtained for the moving solutions, corresponding to the six boundary conditions
on the cylindrical surfaces. However, when the velocity of travel is set equal
to zero, two solutions are lost by confluence of the solutions and only four
linearly independent solutions remain. Two additional solutions are obtained
by a limiting method, so a total of six linearly independent solutions is
available. Biharmonic scalar and vector potentials are also derived from
which these two additional solutions can be calculated.

The distribution of characteristic roots is not yet determined. We
speculate the roots in the first quadrant of the complex s plane lie between
the imaginary axis* and a smooth curve passing through the complex eigenvalues
for static loading. To verify this, the characteristic roots for a traveling
load on a solid rod will be calculated first, as the calculations should be
relatively simple, before investigating the eigenvalues for a hollow cylinder.

The planned programming will follow the general pattern developed for
static loading-of a hollow cylinder, but simplified and streamlined to
expedite the calculations. Each type of loading will be considered separately.
Axisymmetric loading will be considered first as an extention of our thick
walled cylinder analysis.

The analysis in Parts I - VIII is based on the work of Herrmann and
his associates, in which the vector potential 0 is not required to be solenoidal.
In order to conform to the classical Helmholt: theory, a new vector solenoidal
potential X is derived. The previously derived forniulas for the displacements,
strains, and stresses are not changed. The formula for the vector rotation is
simplified, and becomes the vector counterpart of the scalar formula for the
dilatation.

*Free vibrations of a hollow culinder lead to real values of w, the circular_

frequency, and real eigenvalues when the eigenvalues are expressed in Besasel
functions of the first kind, provided w is not too large. Pure imaginary
eigenvalues arise when modified Bessel functions are used.
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APPENDIX A

QUASI-STATIC SOLUTIONS OF THE WAVE EQUATION

Stresses given in Part V of this report have the generic form

a = G(e, r, z) + F(e, r, z) (All

where G(8, r, :) is the limiting form of the stress at a great distance from
the discontinuity in loading and F(e, r, z) is a Fourier integral giving the
local effects of this discontinuity. Both solutions can be obtained from
scalar and vector wave functions. However, G(e, r, z) is of a simpler type,
and can be obtained from a scalar harmonic function in the independent
variables 6, r, (z-ct)/8 1 and a vector harmonic function in the variables e, r,

(z-ct)/B,. These solutions can be expanded in power series in the variable
(z-ct); logarithmic solutions may also occur. Exponentially decaying terms
do not occur, so the stresses given by G(e, r, :) persist at considerable
distances.

The scalar wave function is a solution of

c- - -'3 (A2)
at-

where c1 is the dilatational wave speed. If [9, r, (:-ct)/8 1 ] is a scalar

wave function, then O[e, r, :/Bl] is a scalar harmonic function. We have in
expanded form

2 1' I B 1 a'¢ B- ~
c1 [ - + + + ] = (A2b)

r rar- r Me a:- at-

We note that

2 2
= c (A3)

so that

c + [c._c ]= 0 (A4)
1 r r 3r 1

But
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S(C"-c')/C 1 > We define

41 z/B 1  (AS)

Then

_ + 30 o (A6)

r ar r2 a2 o 1i2

Analysis of the vector potential yields similar results. If *[8, r, (:-ct)/S,]

is a solution of the vector wave equation

c 27 I (A7)

then P(e, r, z/B.,] is a solution of the vector harmonic equation

0 (A8)

where c 2 is the velocity of the shear wave and B.2 "  (c 2 -cc2)22

We assume that

0 < c < C, (A9)

in the preceeding analysis.

The finite series for G(e, r, z-ct) can be derived from harmonic scalar

potentials in the variables e, r, z/6 and the vector harmonic potentials

in the variables in the e, r, z/B2. It is sufficient to consider scalar and

vector harmonic functions in the variables 8, r, :, as the required potentials
in terms of 8, r,.:-ct) can be obtained by appropriate changes in the
independent variable z.

We consider the scalar form of Laplaces equation in detail. We have
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D2 B2€ 2 0

r2  r ar r2 ae2 0 z

We assume

0 F sin ne CAl1)

then

a2 1 aF n F 0  (Al2)
Zr2 r r 2  az2

The function

F° = (A0 + A1 log r)(l + 0z) (A13)

is an obvious solution when n = 0. For r>0 we have solutions of the type

F = (Aor-n + AIrn)(l*a1Z) (A14)

The general separable solutions involve Bessel and trignometric functions.
We require non separable solutions in ascending powers of z. Both positive
and negative powers of r are required in order to satisfy boundary conditions

at the inner and outer cylindrical surfaces. The required harmonic function
can be obtained by expressing spherical harmonic in terms of cylindrical
coordinates and rearranging terms in ascending powers of z, references (Al)
and (A2),

These potentials can be obtained in an elementrary manner by assuming

AIHobson, E.W., The Theory of SphericaZ and EZlipsoidaZ Harmonics, University
Dress, Cambridge, 1931. See Chapter IV.

A 2 :timos henko, S. and Goodier, J.N., Theory of EZasticity, '4Graw HiZZ Book

Company, 1951. The fourth order harmonic *u given on page 348 occurs in
rhe torsion probZem. OeraiZs wiZZ be described in a forthcoming BRL Report.
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F =G0 + z2GI + z4G+ (Al4a)

or

Fk+l = zG1 + z3G3 + z5G (Al4b)

where

G. = Ark + Br -k , i = 0, 1 (AIS)
I

The remaining G. functions, which are also functions of r alone, can be1

obtained recursively from the formula

2G 2
Si 1 3Gi n l -- (AI6)r2 r r 2Gi = (i+2)(i+l) Gi+2

which is obtained by substituting the preceding expressions for Fk into Eq.

(AlO), carrying out the indicated operations, and equating the successive

powers of z to zero.

As an example, set-

n = 0, k = 4, A = 3, B 3 (Al7)

We find

F = 3r 4-24r 2z2 +8z4 + 3r-4-24r -6 z2 + 8r-8 z4 (A18)

The potential given by the first line can be used in the analysis of torsional
loads and differs only by a constant from the potential 4 given in reference

12, page 348.

Next we consider the contribution of the Fourier integral to the total
solution. We have either

( No(r,s)
F (6, z) sin nO sin[s(z-ct)]
s r, D(s) s
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or

N a(r,s) sins s(z-ct)

F (6, r, z) cos nO (s) ds (A19b)
c f D(s) ds

for stresses which are odd in z. The cosine replaces the sine under the
integral sign if the stress is even in z. For values of z which are not too
small we calculate F or F by the theory of residues, which is validated ins c

cases of interest by Jordan's lemma. If z>ct we use a contour in the upper
half plane, indented at the origin of the complex s plane. If z<ct we use
the corresponding contour in the lower half plane. The complex variable
theory follows suggestions in a landmark paper by Dougall (A2). Dougall
uses an entirely different set of potentials to calculate the displacements
and strains, however, his remarks on the nature and distribution of the
characteristic roots are still valid.

It is obvious the characteristic functions for the solid rod do not
have a branch point at the origin of the complex s plane, since only ordinary
or modified Bessel functions of the first kind, are involved. These functions
are analytic in the entire complex plane with the exception of essential
singularities of exponential type at infinity. A detailed analysis is
required for the hollow cylinder, since functions of the first and second
kind are both required in order to satisfy boundary conditions at the inner
and outer cylindrical surfaces. Bessel functions of the second kind have a
logarithmic singularity at the origin, plus a finite Laurent series in the
case of functions of integral orders greater than zero. We must show the
characteristic functions do not have a branch point at the origin; multiple
poles will in general occur due to the reciproical powers in the Laurent series.

To this end, we write D(s) in extended form. We have from Eq. (164)

S1,1 (a) S 1,2 (a) S 1,3 (a) S 1,4 (a) S1,5S(a) S 1,6 (a)

S4 ,1(a) S4,2(a) S4,3(a) S4,4(a) S4,5(a) S4,6(a)

D(s) = $ 5 ,(a) S 5 2 a) S5 3 (a) S5 4 (a) S 5 5 (a) S5 6 (a)

(164)
Sll(b) S1 ,2(b) S1 ,3(b) S1,4(b) S1 ,5 (b) S1,6(b)

S4,1 (b) $4,2 (b) S4,3(b) S4,4(b) S4,5(b) S4,6(b)

3 5  (b) S5 2 (b) S5 3 (b) S, 4 (b) S5 5 (b) S5 6 (b)

ADougal, John, An lialytical Theory of the Equilibrium of an Isotropic
Elastic Rod cf Circu7.ar Cross Section, Transactions of the Royal Society of
Edinburg, Vol XLTX, Part IV, (No. 17), pages 895-978. (1913).
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To eliminate the apparant branch point from the determinant D(s) we manipulate
the columns in pairs. The entries in D(s) are given in detail in Figures Al and
A2. The entries in Al are analytic functions of s. The enteries in A2 contain
a logarithmic singularity at the origin, which we eliminate algebraically. For
convenience assume that n is even. Then (A3)

K n(sr) = Zn(s)I n(sr) + Zn(r)I n(sr) + Ln(sr) + P n(sr) (A19)

where Ln(sr) is a Laurent series having a pole of order n at the origin in the
complex s plane and Pn(sr) is a power series in ascending powers of (sr), with
zero and positive powers only. Similarly

K n+l(sr) = - Zn(s)l n(sr) - Zn(r)I n(sr) - Ln+l (sr) - P n+(sr) (A20)

Now multiply columns 1, 3, and 5 by Zn(s) and subtract the results from columns
2, 4, and 6 respectively. We find the logarithm of s is eliminated. If n is
an odd integer we add instead of subtracting. In either case, we find D(s) is
an analytic function of s except for poles. A multiple pole generally occurs
at the origin.

It is believed the characterisitic roots are simple except at the origin.
Asymptotic methods may be used for characteristic roots of large modulus.
The smallest non zero root can be examined by expanding D(s) in a Laurent
series. Extensive calculations have shown the characteristic equations arising
from axisvmmetric loading are simple for a large range of wall ratios (A4).
Moreover, a double zero leads to functions of the type R(r)x
[s(z-ct) sin s(z-ct) + cos s(z-ct)], which do not satisfy the wave equations.
Classical methods of determining the multiplicity of characteristic roots are
forbiddingly difficult when applied to the determinant D(s); hence detailed
analylis will be reserved for specific types of loading under consideration.

A,rmowitz, M, and ';, .,7,z, .A., Editwrs. Handbook of Mathematical Functions,

w-h Firmulas, Jraphs, and Mathematical Tables. U.S. Z epartment of Commerce,
Applied Mathematic JLcrios No. 5, 1964. See Eq. (9.6.11), page 375.

AElder, A.S. and irm,an, K.L., "Stresses in a Gun Tube Produced by Internal

Pressure and Shear". BRL Memorandum Report No. 2495, June 1975.
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