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James Anthony Lupo
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We present three numerical models of accretion from radiation

driven stellar winds onto compact objects in massive X-ray binary

systems. The wind is given a velocity profile consistent with a

radiatively driven wind, and a 4negative mass4 " gravitational

potential is derived from this profile to represent the wind driving

force in the hydrodynamic equations. An X-ray heating model is used

which determines the X-ray heating time from the Compton heating time

and the known steady state energies for optically thin gas

illuminated by X-rays. This allows X-ray heating to be included in

the hydrodynamic equations. The X-ray luminosity is held

proportional to the accretion rate, assuming that the gravitational

potential energy released is equivalent to 10% of the infalling

rest-mass energy. A two-dimensional Eulerian computer code is used

to solve the equations of motion. Model estimates of the ionization

structure, accretion rates and flow characteristics, and the effects

of thermal instabilities are discussed. The impact of the X-ray

radiation on the wind driving force is demonstrated. Results

indicate a possible mechanism for slow X-ray flares, such as observed

in 4U1700-37.
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NUMERICAL STUDIES OF GRAVITATIONAL ACCRETION FROM

X-RAY HEATED STELLAR WINDS

I. INTRODUCTION

One category of well studied cosmic X-ray sources are those

found in binary star systems. The most luminous of these objects are

the massive X-ray binary stars. These massive X-ray binaries

typically contain an 0 or B class supergiant primary with a mass of

20 M0 or greater. The secondary is a compact object, such as a white

dwarf, neutron star, or, possibly, a black hole, with a mass of 10 M

or less. The secondary is the source of the X-ray emission with

luminosities ranging from 103 6  to 1038 erg sec -  (see the recent

source compilation by Amnuel, Guseinov, and Rakhamimov 1979, and

references cited therein). Observations of 0 and B supergiants have

shown that these stars often have strong stellar winds with mass loss

rates of up to 10-4 M6 yr
-I and terminal wind velocities on the order

of 103  km sec -1  (see, for example, Weymann 1963; Morton 1967a,b,

1976; Hutchings 1976, 1980; Conti 1978a,b). Such observations have

lent credence to the generally accepted model that the X-ray emission

from these binary systems is powered by gravitational accretion of

material from the stellar wind onto the secondary. This model was

first proposed by Davidson and Ostriker (1973) (see also Lamb,

Pethick and Pines 1973).

Development of our current understanding of gravitational

accretion began with the work of Hoyle and Lyttleton (1939). They

examined the gravitational capture of material by a body moving



supersonically through an intergalactic medium. This study led to

the crude, but useful, analytic line accretion model (see also Bondi

and Hoyle 1944) in which the accretion rate was estimated using the

velocity and density of the flow and the mass of the gravitating

body. Bondi (1952) considered spherically symmetric accretion in

some detail under the assumption that the gas was polytropic. Hunt

(1971, 1979) generated numerical models which examined gravitational

accretion near the transition region between subsonic and supersonic

flows of an adiabatic gas. Hoffman (1979) created a non-radiative

hydrodynamical model of accretion flow in an isothermal gas.

Isothermal flow is much closer to the problem of an X-ray source

accreting material. The X-rays produce signifcant Compton heating

and cooling effects near the secondary. Heating of the gas occurs

faster than the material flow times, negating the assumptions of an

adiabatic gas. Hoffman found a dense, fluctuating wake downstream

from the body. Fluctuations also appeared in the accreting column of

matter falling back to the secondary. This resulted in corresponding

fluctuations in the expected X-ray luminosity.

Numerous authors (Mestel 1954; Shvartsman 1971; Buff and McCray

1974a) have examined cases of ideal spherical accretion under the

influence of radiation. They found that the X-ray radiation could

seriously affect the accretion flow under the combined effects of

radiation pressure and the increases in gas pressure due to heating

of the gas. These increased pressures led to severe reductions in

the amount of material accreted. Carlberg (1978), testing radiation

2



effects analytically in the line accretion model, found that a

turbulent wake was probable, and that strong perturbations of the

accretion flow were possible depending on the physical parameters of

the flow. He concluded that hydrodynamic calculations would be

necessary to determine the actual physical states of the accretion

flow. Cowie, Ostriker, and Stark (1978) performed a time dependent

calculation of spherically symmetric accretion onto compact X-ray

objects. They demonstrated strong modulation of the accretion flow

due to X-ray heating which led to flaring of the X-ray luminosity.

They concluded that their model was of limited application to X-ray

binaries because of the strong asymmetries introduced by the high

wind and orbital velocities.

The effects of X-ray heating and ionization of diffuse gases

were investigated by Tarter, Tucker and Salpeter (1969). More

recently, Buff and McCray (1974a) and Hatchett, Buff, and McCray

(1976) investigated the heating and ionization of diffuse gas by

X-rays including the effects of Compton heating. They pointed out

possible multi-valuedness of the temperature function and the

possible formation of thermal instabilities (Field 1965). In

particular, McCray and Hatchett (1975) considered the effects of

X-ray heating on a wind and deduced that such flows could have

multiple pressure-density states. Alme and Wilson (1975, 1976) have

demonstrated that instabilities will occur in X-ray driven flows.

Hatchett and McCray (1977) examined the ionization structure in the

stellar wind of an X-ray binary assuming an unperturbed wind and

3
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constant luminosity.

The concept of stellar winds driven by radiation pressure was

first formulated by Holzer and Axford (1970) and Lucy and Solomon

(1970). In 1975, Castor, Abbott and Klein produced a detailed model

for a stellar wind which included contributions to the driving force

by line absorption in trace elements (for a review, see Casinelli

1979). They found that the principle contributions to the force were

due to L-shell absorption lines in the CNO series of elements. They

also found a velocity law for the wind which agreed with the earlier

studies. But most significantly, they were able to account for the

wind velocities and huge mass loss rates inferred from the

observations of OB supergiants. The success of this concept raises

the possibility that severe interference may exist between the wind

and the X-ray radiation through the ionization of the elements

responsible for the wind driving force.

Since the accretion model of powering binary X-ray sources is so

widely accepted, we have attempted to develop a model which

simultaneously treats the hydrodynai 'c and radiation effects. The

model is intended to be self-consistent to the extent that the X-ray

luminosity depends directly on the accretion rate. The powering

mechanism assumes gravitational accretion from the stellar wind.

In this study, we present three self-consistent models. By

adopting the stellar wind model presented by Castor, Abbott, and

Klein (1975) we are able to include the force driving the wind as a

"negative mass" gravitational potential added to the gravitational

4



potential of the system. This wind model enables us to account for

the impact of the X-ray ionization on the wind. Hatchett, Buff, and

McCray (1976) were able to determine the ionization equilibrium for

various elements in a gas exposed to X-rays as a function of a single

parameter. We make use of the parameter in our model to determine

the ionization state of the elements primarily responsible for the

wind force. The ionization state in turn determines the

effectiveness of the driving force included in the hydrodynamic

equations. The X-ray luminosity is held proportional to the

accretion rate, thus allowing the luminosity to vary with any

disturbances set up in the flow by the X-rays. X-ray heating rates

are explicitly calculated from the hydrodynamic variables. The

resulting calculations provide an insight into the flow

characteristics and the overall ionization structures of the wind.

In Chapter II, we summarize the observed characteristics of

several well known X-ray binaries, and describe the two broad classes

of such objects. The generally accepted powering mechanism converts

the gravitational potential energy of infalling matter into thermal

energy. We discuss the two most likely means of providing the

necessary matter, namely potential overflow and gravitational

accretion from a stellar wind, with emphasis on the latter method.

The limiting effects of radiation pressure are presented in a

discussion of the Eddington luminosity. We then present a physical

argument due to van den Heuval (1975) which provides a basis for the

existence of the two classes of X-ray binaries.

5



The methods used to model the physical processes in X-ray binary

systems are presented in Chapter III. Here we present the equations

of motion with two terms added for the X-ray heating and the stellar

wind driving force, along with their derivations. The X-ray heating

effects are handled in terms of an X-ray heating time computed from

the Compton heating time and from the known steady state energies of

a gas exposed to X-ray radiation. The wind force term is derived

from the stellar wind model present by Castor, Abbott, and Klein

(1975). We show that their wind velocity law can be used to give an

effective potential for the force acting on the wind. Finally, we

discuss the Lax-Wendroff two-step finite differencing method which is

used to numerically solve the equations of motion.

In Chapter IV, we present the tools required to develop the

physical parameters for our models. Since we require the luminosity

* to be proportional to the accretion rate, we derive relationships

which give the needed accretion rates and primary mass loss rates in

terms of the other binary parameters. We then present the physical

arguments used to determine the acceptability of the derived

parameters.

Three different models were considered in this study, using two

different binary systems as guides for parameter selection. These

two systems were 4U0900-40 (Vela X-1) and 4U1700-37. The parameters

for these systems are given in Table 2.1. The first two models were

designed to provide reasonable continuity between previous

hydrodynamic studies involving constant material flow past an

6
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accreting body and models which allow both variations in wind

ionization and variable material velocities. The X-rays are allowed

to heat the wind material, but no attempt is made to alter the wind

ionization structure and thereby modify the wind driving force.

We present Model 1 in Chapter V. This model is based on the

4U0900-40 system and model parameters are very close to those

observed in the actual system. We find that the accretion rates

obtained are a factor of 2 below those predicted by the line

accretion model. The wind driving force is found to dominate the

secondary's gravitational force beyond a certain distance from the

secondary. We also demonstrate that the flow is dominated by

hydrodynamics rather than X-ray heating effects. The X-ray heating

is shown to introduce a thermal instability into the flow. It also

supresses the formation of an accretion column, causing most of the

accreted material to flow in from the side regions of the wake.

Model 2 is presented in Chapter VI. While this model is also

based on the 4U0900-40 system, the model parameters were adjusted to

place it in a state such that the flow is dominated by the X-ray

heating rather than the hydrodynamics. The resulting model shows a

large deviation from the behavior suggested by the line accretion

model. The accretion rate is severely impaired, and the model

developes a very hot, rarified region in the central core of the

wake. The model also has a thermal instability present in the flow

which is similiar to that found in Model 1.

Prior to generating a model which would allow the wind force to

7



vary, we produce a simplified ballistic model of the wind flow under

the impact of extreme X-ray ionization. The study, presented in

Chapter VII, indicates that even severe modification of the wind

force should not significantly reduce the amount of material

available for accretion by the secondary. It does demonstrate that

severe three-dimensional effects are present in the flow for high

X-ray luminosities. We utilize the study of ionization states in a

wind exposed to X-rays presented by Hatchett, Buff, and McCray (1976)

to estimate a value for our heating parameter at which the wind is

considered turned off. The results of these two studies provide

additional constraints for our Model 3.

In Chapter VIII we develop the parameters for Model 3 and

present the results of our calculation. Due to the restrictions we

develop in Chapter VII, we select 4U1700-37 as our base system. The

model parameters are constrained to be in close agreement with the

observed parameters of the system. Model 3 differs from the previous

two in that we allow the wind force to be affected by the X-ray

radiation. The ability to turn off the wind force sets up a feed

back mechanism in the wind flow. This mechanism leads to large

variations in the wind density. As these density fluctuations pass

by the secondary, they cause peaks in the accretion rate which result

in slow X-ray flares. The flares show a variation of 3 orders of

magnitude over a time scale of about 2 hours. This flaring can be

compared with the slow flares observed in 4U1700-37.

Finally, in Chapter IX, we discuss the results of our model

8



calculations. The scaling of our model parameters to match other

systems is discussed. We perform calculations of the optical depths

in the models and find that the models become optically thick in

regions far from the secondary, particularily in the case of Model 3.

We then discuss the weaknesses of Model 3, and compare our results to

some of the most recent work in the field. In particular, we compare

our models to those produced by Livio, et al (1979) and Hoffman

(1979). We also compare our results to Carlberg's (1978) analytic

study of radiation effects in the line accretion model.

9L_ -0- -2--.--



II. THE X-RAY BINARY STARS

A. Observational Summary

Following Blumenthal and Tucker (1974) we define a compact X-ray

source as one identified with a stellar object, or one which exhibits

variability in its X-ray luminosity by a factor of 2 or more on a

time scale of days or less. One important sub-group is composed of

the X-ray binary stars. In these systems, one of the stars is a

normal star (hereafter referred to as the primary) and the other (the

secondary) is a compact object such as a white dwarf, a neutron star,

,'r a black hole. They typically have luminosities of 1036 to 1038

ergs sec1 in the 2-10 keV portion of the X-ray spectrum. The

characteristics of some of the better studied of these stars are

given in Table 2.1. Except for the X-ray pulsars which have sharply

defined periodic variations in their luminosities, we see that the

luminosities of these objects are erratic in nature showing both slow

and rapid flaring behavior over a large range of luminosities.

By examining the masses of the objects listed in Table 2.1, we

find that they can be put into one of two broad classes. One class

has low mass primaries of around 2 MG or less. The second class

contains 0 and B class supergiant primaries with masses of 20 Me or

more. This second class is referred to as the massive X-ray

binaries. In both classes, the secondary masses are typically 1 or 2

MG. With the recent improvement in X-ray observations, there is

growing evidence for a third class of X-ray binary (Amnuel, Guseinov,

and Rakhamimov 1979). This class has luminosities of 1033 erg sec 1

10
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or less and have indistinct, extended, infra-red sources as their

primaries.

Since the compact objects are the sources of the X-rays in these

systems, the most likely method of powering them is through the

release of gravitational potential energy from material falling onto

the object (for reviews see Blumenthal and Tucker 1974; Giacconi

1976; Gurskey 1976). The amount of energy released in the form of

radiation by the infalling matter was shown classically by Zel'dovich

and Shakura (1969) and relativistically by Alme and Wilson (1973) to

be on the order of 10 to 20 percent of the matter's total

rest-energy. At this rate of energy release, we need only provide an

accretion rate of 10- 10 to 10-8 M0 yr
-1 to achieve the 1036 to 1038

ergs sec 1 luminosities observed. Such mass capture rates can easily

be provided by one of two different mass exchange mechanisms present

in binary systems.

B. Mass Exchange Mechanisms

In 1973, Davidson and Ostriker proposed two models for X-ray

binaries based on the two mass exchange mckanisf. 7igure 2.1 shows

schematically the processes involved. Figure 2.1(a) depicts the

first of these mechanisms, that of potential overflow. The figure-8

shape represents the critical gravitational potential lobe, which is

actually a surface of constant gravitational potential.

Gravitational potentials at greater distances than the critical

potential have surfaces which surround both stars. Potentials closer

than the critical potential have surfaces which surround each star
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Figure 2.1(a). Roche Lobe Overflow. The primary's atmosphere
(cross-hatching) has filled the critical potential lobe and is
overflowing onto the secondary. (Not shown to scale.)
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Figure 2.1(b). Accretion from a Stellar Wind. The primary does not
fill the critical potential lobe. The secondary sweeps up stellar
wind material from its orbit. (Not shown to scale.)
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individually. To express these surfaces analytically, let us take

coordinates x, y, and z such that the z-axis passes through the

center of mass of the system, normal to the orbital plane, and the

x-axis lies on the line-of-centers with the neutron star on the

negative x-axis. The gravitational potential at any point is then

given approximately by (Davidson and Ostriker 1973)

= -G (Mx/rx + Mo/ro - X(x,y)). (2.1)

M and r are the mass of the secondary and the distance from it.x x

Likewise, Mo and ro are the mass of the primary and the distance from

it. X(x,y) is a centrifugal term which accounts for the rotational

characteristics of the binary system. Let us consider the form of

X(x,y) for two limiting situations. If the rotational period of the

primary is synchronized to the secondary's orbital period, we are in

the Roche limit and X(x,y) is given by

2 2 -3
X(x,y) = (M0 + Mx)(X + y ) a- , (2.2)

where a is the binary seperation. The second limit is if the primary

is not rotating at all. This case is called the tidal limit, and

X(x,y) is given by

2
X(x,y) = x Mx/a 2 . (2.3)

An actual binary system most likely lies somewhere between these two

limits.

In Fig. 2.1(a), the cross-hatching represents material in the

atmosphere of the primary. The atmosphere has expanded to completely

fill the critical potential lobe. Under these conditions, material

can now flow onto the secondary, since it is at the same potential as

18
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the primary. Angular momentum causes the material to spiral in

around the secondary, creating an accretion disk. Material

transferring from the inner edge of the disk to the surface of the

secondary releases gravitational potential energy, thus powering the

X-ray luminosity. A shocked region may also contribute to the

radiation at the point where the inflowing stream joins the outer

edge of the accretion disk.

Evolutionary senarios developed to explain the formation of

massive binary stars (not necessarily X-ray binaries) have shown that

the necessary mass-exchange rates are quite easily obtained (Kopal

1959; Paczynski 1971). Potential overflow, however, presents us with

the major problem of too rapid an exchange of the material. The

exchange rate tends to speed up as the primary loses mass and the

secondary gains it. In a very short period of time, the material

flow can completely smother the secondary in a X-ray opaque cloud.

The second mechanism is gravitational capture of material from

the primary's stellar wind. Hoyle and Lyttleton (1939) developed the

analytical line accretion model to explain how a galaxy moving

through the intergalactic medium could gain matter. They argued that

the mass accretion rate is dependent only on the density of the

passing material, its velocity, and the mass of the gravitating body.

An accretion radius is defined by

R a= 2 G M v2 , (2.4)

where G is the gravitational constant, M is the mass of the

gravitating body, and v is the velocity the material would have if
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the gravitating body were not present. The unperturbed kinetic

energy of material within this radius is less than the gravitational

potential energy. Under such conditions, we have a simple criterion

for determining whether or not the material can be gravitationally

captured. Since material within this radius is energetically favored

to be captured, the capture rate is dependent only on the mass flux

through the cross section defined by Ra and some efficiency factor.

So, we find the accretion rate to be given by

dM/dt = n R2 p va , (2.5)a

where p is the unperturbed density of the wind near the body, and a

is an efficiency parameter lying between 0.5 and 1. Hunt (1971,

1979) performed numerical calculations of gravitating bodies moving

through an interstellar gas at various Mach flow numbers. He

demonstrated that a tends to increase with increasing Mach number.

This increase is attributable to the fact that proportionately more

energy is dissipated in the shock at high Mach numbers than at lower

ones. Thus material which has passed through a highly supersonic

shock is easier to capture gravitationally. Davidson and Ostriker

combined this theory with the observations that 0 and B class stars

have high mass-loss rates on the order of 10-7 to 10-4 M8 yr
-1

(Weymann 1963; Morton 1967a,b, 1976; Conti and Cowley 1975; Hutchings

1976; Conti 1978a, Conti and Germany 1980). They then noted that

these mass loss rates can provide winds of suitable density and

velocity near the secondary so as to allow the line-accretion model

to support the observed luminosity. They therefore concluded that
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gravitational accretion from a stellar wind could be one workable

method of powering the binary X-ray stars. This mechanism is

depicted in Fig. 2.1(b).

Gravitational accretion is also the most likely method for

powering the possible third class of X-ray binary. In these systems,

the secondary is pictured as orbiting within the extended tenuous

atmosphere of the primary (Amnuel, Guseinov, and Rakhamimov 1979 and

sources therein). At the present time there is insufficient

observational data on these systems to determine the actual powering

mechanism. Binary system parameters are needed to determine the

velocities of the secondaries and the density of the atmospheres in

their orbits.

In either of the two methods discussed above, there is a limit

to the maximum attainable X-ray luminosity. This is the so called

Eddington luminosity, or Eddington limit, at which the radiation

pressure due to the emergent X-rays balances the force of gravity.

In the case of spherically symmetric accretion in which Thompson

scattering is the dominant opacity, this limiting luminosity for

material of cosmic abundances is given by (Eddington 1926)

L 4 w G M c 1  (2.6)
edd e

or,

Ledd 2 1.3x1038 M/Ma ergs sec " , (2.7)

where Ke is the electron scattering opacity. Any excess material in

the accretion flow is blown off by the radiation pressure. Detailed

one-dimensional models of spherical accretion near the Eddington

21
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limit have been presented by Vitello (1978). He verified that sharp

cut-offs near the Eddington limit existed for several types of flow.

He also speculated that any instabilities introduced into the flow

may result in luminosities higher than the Eddington limit. Two

dimensional instabilities, such as the Rayleigh-Taylor instability,

or the creation of photon bubbles as suggested by Prendergast and

Spiegel (1973), may provide the necessary instabilities in the flow.

C. System Life Time Considerations

We are now faced with the problem that both of these mechanisms

are restricted in their applicability. The potential overflow

mechanism appears to be too effective at providing material, while

accretion from a stellar wind does not work well for primaries with

masses less than 19 Mg. Van den Heuval (1975) demonstrated the

limits of applicability for each of these mechanisms by considering

the lifetimes of various binary systems as a function of their

masses. His argument proceeds as follows.

The time scale over which the primary will lose 80% of its mass

is given by

T = 3x10 7 (Mo/Me)2 RG/Ro L /Lo , (2.8)

with T given in years. From this mass loss rate, Van den Heuval

arrived at an average accretion rate given by

dMx/dt = 2.66x10 "8 R0/R9 L0/L( Mo/MG , (2.9)

with the accretion rate given in M. yr- 1. If the accretion rate onto

the secondary exceeds about 10'6 M yr"1 , then the secondary will

become engulfed in an optically thick cloud, allowing no X-rays to
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escape. However, there is a period at the onset of the overflow

during which the mass loss rate and the consequent accretion rate of

Eq. 2.9 is much lower. This period exists for approximately 1% of

the total exchange time given by Eq. 2.8.

From Eq. 2.8 and 2.9, Van den Hueval argued that systems with a

primary more massive than 2.1 M@ would produce an overflow rate

sufficient to smoother the X-ray source. In addition, the brief

start-up period from Eq. 2.8 would be on the order of 1000 years or

less. This brief period would make it highly unlikely that such a

source could be observed (see also Savonije 1979; Thomas 1977).

The case for systems with primaries less massive than 2.1 Me is

different. The peak accretion rates given by Eq. 2.9 are less than

10-6  Me yr- . Thus the X-ray radiation is not likely to be

smoothered, and the mass-exchange period is very long. Hence, it's

much more probable that such a system could be observed.

As for accretion from a stellar wind, van den Heuvel argued that

primaries less massive than 20 Me would have wind densities too low

to supply the needed accretion material. However, those more massive

than 20 Me would have sufficient wind density. In addition, such

stars could be expected to sustain these winds well in excess of 106

years. This "life time" criterion for X-ray binaries appears to

agree well with the binaries for which we have sufficient system

data. So far, all X-ray binaries meet one of these two criterea.

Thus, one of the constraints on designing a model driven by accretion

from a stellar wind is to require the primary to have a mass of 20 Me
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or greater. This is in addition to the goal of attempting to model

the X-ray production so as to be in reasonable agreement with the

observations.

There are recent optical observations of the massive X-ray

binaries (Hutchings 1976, Conti 1978b) which appear to indicate that

the primaries fill or nearly fill their potential lobes. This fact

could be troublesome if the primaries do indeed fill the lobes, for

as noted, there is no way to prevent the onset of run-away overflow.

If the primaries only approach filling their lobes, there may be a

much more complicated accretion process going on. Alme and Wilson

(1976) have shown that X-ray heating of the atmosphere of a primary

which is within 80% of filling its lobe can cause an outflow of

material sufficient to power the X-ray source. The massive binaries

may therefore be utilizing both accretion from the primaries, massive

winds and X-ray induced overflow. If the wind in a given system is

sufficient for powering the X-ray source, there may then be a new

problem of limiting the total accretion rates obtained from several

exchange processes operating simultaneously. Such circumstances are

not examined in this study.
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III. THE MODELING METHOD

One of the major difficulties encountered in modeling

hydrodynamic and radiation effects is the large difference in the

time scales over which the two processes occur. The hydrodynamic

time scale is governed by the typical scale lengths of the problem

and the flow velocities (or the sound velocities if the flow is

subsonic). In the region of the model near the secondary, a typical

cell dimension is on the order of 109 cm. Here the flow reaches its

highest velocities of about 108 cm sec -1 . This requires that the

model be able to resolve events in the fluid flow which occur on a

time scale of about 10 seconds. Conversely, the X-ray heating times

are dominated by the Compton heating time for the high temperatures

expected near the secondary. Since the Compton heating time will be

discussed more fully in Section C of this Chapter, we will simply

note that from Eq. 3.26, we have a typical Compton heating time on

the order of 10-3 sec. To explicitly follow the X-ray heating, we

would require time resolution of less than 10- 3 seconds. Since

material requires about 25000 seconds to move through the problem

mesh, such a small time resolution would be prohibitively expensive

in terms of computational resources. In the developments which

follow, we describe a method by which the model can utilize a time

resolution suitable for the fluid flow and still approximate the

X-ray heating effects.

A. The Equations of Motion

We begin our discussion of the development of our model systems
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with a presentation of the fluid equations. These were taken in

conservative form (Potter 1973) with two additional terms

incorporated to account for X-ray heating and the stellar wind

driving force. For the conservation of mass, we have

ap/at + V.pv = 0 , (3.1)

and for the conservation of energy

3E/at + V*Ev = -P(V.v) + Q(V.v) + (E - E)t I , (3.2)
ss x

while the conservation of momentum is given by

39/t + V.pv PVDg + PVWw VP - VQ . (3.3)

where

p = mass density,

p = momentum density,

E = energy density,

P = pressure,

v= velocity,

Q = Richtmyer-von Neumann artifical viscosity,

' = gravitational potential,g

O = effective wind potential,

tx = effective X-ray heating time,

E = steady-state energy of the gas.
ss

The Richtmyer-von Neumann artifical viscosity is a numerical aid

required by the finite difference equations used in the computer

simulation (see Richtmyer and Morton 1967, or Potter 1973). It

serves to smooth out shocks which form in the flow over several zones

of the model mesh, thus allowing the code to approximate the
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discontinuity presented by the shock. This will be discussed in

greater detail, along with the differencing method, in Section D.

B. The Wind Force Term

Models aimed at explaining the huge mass losses observed in 0

and B class supergiants have been presented by Lucy and Solomon

(1970) and Castor, Abbott, and Klein (1975). Castor, Abbott and

Klein demonstrated that the source of the forces driving the mass

loss was line-absorption in CNO series elements, primarily the UV

lines produced by the L-shell electrons. The photons absorbed by the

atoms are primarily traveling radially outward from the star. The

excited atoms then re-emit photons isotropically as they return to

their unexcited state. This results in a net outward momentum gain

for the atoms.

Castor, Abbott and Klein took the force to be expressed by

f = M(t) F ae c (3.4)

where ae  is the electron scattering coefficient, F is the total

radiant flux, and M(t) is a force multiplier dependent on atomic

populations, oscillator strengths, and optical depth. They then set

up the fluid equations, assuming spherically symmetric outflow, and

specifically accounted for gravity, gas pressure, continuum radiation

pressure, and line radiation pressure. They found a solution which

yields a nearly constant ratio of wind acceleration to gravitational

acceleration. The forces were also found to be sufficient to support

both the high mass loss rates and the terminal wind velocities

observed in supergiants. In particular, they were able to determine
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an approximate relationship for the velocity of the wind as a

function of its distance from the primary. This velocity law is

given by

v = v. (1 - R/r) , (3.5)

where v is the wind velocity at an infinite distance from the

primary, R0 is the wind initiation radius on the order of the primary

radius, and r is the radius of interest. The success of their model

indicates that the gravitational accretion driven binary X-ray source

model contains a serious complication. McCray (1974) and McCray and

Hatchett (1975) speculated that if the X-ray luminosity was high

enough, the atoms responsible for the wind force would be fully

stripped of their L-shell electrons, suppressing the wind in those

regions so illuminated. They believed that if the velocity was

reduced, accretion may be facilitated, but also indicated that the

exact effect was uncertain.

We note here that they also claimed that the orbital periods

were comparable with the time it takes the wind to move from the

primary surface to the secondary's orbit, indicating that there would

be strong azimuthal asymmetry in the wind with respect to the

secondary's position. A simplified ballistic analysis presented in

Chapter VII found that the time it takes the wind to move from the

surface of the primary to the orbit of the secondary is actually on

the order of 10% of the orbital period. Our Model 3, which is

presented in Chapter VIII, directly addresses the question of what

impact the X-rays have on the structure of the wind.
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To account for the stellar wind and its driving force, we use

Eq. 3.5 to derive a potential for the driving force. We first apply

the chain rule to Eq. 3.5, yielding

3v/3t = 3v/3r ar/at . (3.6)

Since ar/at is just v, we can differentiate Eq. 3.5 with respect to r

and substitute the result into Eq. 3.6, giving us

av/at = v RO  / r2 . (3.7)

To get the potential, we now set Eq. 3.7 equal to the negative

gradient of the potential so that integrating with respect to r gives

the desired

w v 2 Ro/r. (3.8)

This is in effect a "negative mass" gravitational potential and can

thus be directly incorporated into the conservation of momentum

equation (Eq. 3.3).

C. The X-ray Heating Term

Of more importance is the last term of Eq. 3.2, representing the

X-ray heating effect. Several previous works (Tarter, Tucker, and

Salpeter 1969; Hatchett, Buff, and McCray 1976) have shown that the

ionization and temperature structure of an optically thin gas with

cosmic abundances can be completely described in terms of a single

parameter, , for a given spectral shape, where

=L x / n r 2 (3.9)

Here, Lx  is the X-ray luminosity, n the number density and rx the

distance from the X-ray source.

Using as the independent parameter, Tarter (see reference in
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Alme and Wilson (1974)) and Alme and Wilson (1974) calculated the

resultant equilibrium temperatures for an optically thin gas exposed

to X-rays. Since the results are dependent on the spectrum of the

X-rays, they both used a 22-keV exponential spectrum representative

of cosmic X-ray sources. The results of their calculations are

displayed as curves 1 and 2 in Fig. 3.1. Figure 3.1 thus allows the

equilibrium temperature of a gas to be specified for any given E.

Curves 3 and 4 serve as analytical fits for just this purpose and

will be utilized later in the determination of the X-ray heating

contribution to the hydrodynamic equations.

For compatibility with the computer code adapted for the models,

we have defined C to be

Pr2 / Lx (3.10)

We can relate Eqs. 3.9 and 3.10 through p and n by first noting that

(Clayton 1968)

P = nP/N , (3.11)

where N is Avogadro's number and P is the mean atomic weight. Now,

ii is given by

= I f , (3.12)

where fz is the fraction by weight of atomic element Z, nz is the

number of particals contributed by element Z, and A is the atomic

weight of element Z. For an un-ionized gas of cosmic abundances, we

have

= Z fz/Az = 1.16198 . (3.13)

Thus, we find that p and n are related through Eq. 3.12 by

30



104

.f3

10 3

10

E
w%

101 2

~~0
I u°3 a

I0 0 1 %n -

10-29 10-28 10-27 10-26 10-25 10- 24
-sec 3  cm- 3

Figure 3.1. Steady State Temperature vs . Steady state temperature
as a function of E is displayed here for an optically thin gas
exposed to a 22 keV exponential X-ray source. Curve 1 was produced
by Tarter (see Alme and Wilson 1974), while Curve 2 was produced by
Alme and Wilson (1974). Curve 3 is an analytical fit to the upper
portion and is given by Eq. 19. Curve 4 is a fit to the tail and is
given by Eq. 20. is not a dimensionless constant, but rather has
units of sec cm- 3.
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P = 1.9294xi0 -24 n. (3.14)

The X-ray heating rate, including photoionization and Compton

scattering, is given by:

(3E/at) = (Ess - E) t I . (3.15)
r ss x

Here, tx  is the X-ray heating time, and Ess is the steady state

(equilibrium) energy of the gas. Ess is computed using

E =P C T , (3.16)
ss v ss

with Tss taken from Fig. 3.1 for a given .

Two analytical fits were developed to give the steady state

temperature as a function of . The upper portion of the curve is

fitted with the dashed line (curve 3) specified by (T in ev)

T = 5000 (3.17)
1 + 7.716x1054  2"

The roll-off region of the tail is fitted with the straight line

(curve 4) specified by (T in ev)

T = 1.5689x10 9  (3.18)

From Eq. 3.15, we see that if the gas is below its steady state

temperature, heating will occur, while if it is above its steady

state temperature, then cooling will occur. The time over which this

can occur is called the X-ray heating time. We can estimate the

X-ray heating time by first calculating the Compton heating time.

This time can be given by

tc = E (dE/dt)c, (3.19)

where (dE/dt) is the Compton heating rate.c
The Compton heating rate in an optically thin gas can be derived

from one term of the radiation diffusion equation in the form (Alme
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and Wilson 1974)

(aE/t)c = P/meC Ke{kT (v 8E /8v - 3Ev) + hvE.} dv , (3.20)

where induced scattering has been neglected. We have assumed an

exponential spectrum for our models, so we have

EV = A e'V/Vo , (3.21)

where A is chosen so as to give the magnitude of the spectrum and vo

is the characteristic frequency of the spectrum. In this case, hv0

is 22 keV.

Substituting Eq. 3.21 into 3.20 and integrating yields

(aE/3t)c = (hv0 - 4kT) p Ke Vo A / me 4. . (3.22)

Since the integral of Eq. 3.21 over all v gives the total energy in

the spectrum, we must have V0 A equal to the radiation energy density,

Er.  Equation 3.22 specifies the conditions under which the material

will come into equilibrium with the radiation. We are now able to

define a characteristic Compton heating time by

(3E/3t)c = Er P Ke <hv> / c me (3.23)

where <hv> is now the characteristic equilibrium energy due to the

X-ray spectrum.

The internal energy of the gas can be given by

E = P C T . (3.24)

We also have the radiation energy density due to the X-ray luminosity

given by

Er =L / v4 r2 c. (3.25)

Dividing Eq. 3.24 by Eq. 3.23 and substituting Eq. 3.25 for Er, we

arrive at a characteristic Compton heating time given by
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4 7 r2 meCv T
c Lx Ke <hv> (3.26)

For gas of low temperature, the photoelectric effect dominates

the X-ray's interaction with the gas. The ionization of atoms in the

gas effectively absorbs energy from the incident radiation. Above

some transition energy Et. Compton scattering becomes the dominate

energy transfer process between the radiation and the gas. The gas

has become highly ionized and the atoms are no longer able to absorb

energy by the photoelectric effect. The X-ray heating time is

therefore approximated by

tc
tx = (3.27)

1 + (Et/E)2

Equation 3.27 allows the X-ray heating time to approach the Compton

time whenever E is greater that Et, and strongly magnifies the X-ray

heating effects for E less than Et.

The material in the stellar wind is assumed to be optically

thin. This is based on the fact that the wind density in the region

of the secondary is found to be on the order of 10-12 g cm-3 for mass

loss rates required to support the observed X-ray luminosities.

Further, with the aid of Fig. 3.1 and Eq. 3.10, we note that strong

X-ray heating will occur only close to the secondary. Thus our X-ray

heating model will retain its validity even if the material becomes

optically thick far from the region of strong heating. Optical

depths were calculated through various regions of the models after

they were run to determine the validity of this assumption. The
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resultant optical depths, to be discussed in Chapter IX, show that

the models are in fact optically thin near the secondary, but became

progressively thicker in the outer regions.

D. The Numerical Method

The equations of motion (Eqs. 3.1-3) are solved utilizing the

Lax-Wendroff two-step method for finite-difference equations

(Richtmyer and Morton 1967; Potter 1973). This method defines the

dependent variables on alternate mesh points from the corresponding

fluxes. With respect to Fig. 3.2, this can be visualized by defining

the dependent variables at the center of each cell and the fluxes at

the center of each face of the cell. The two-step method first

computes the new fluxes from the old dependent variables:
un +1.-2 = 312Un + un +1 Fn n
+ u + ) - (F 1 - Fj) At / 2 Ax (3.28)

This is then used to give the fluxes from

Fn+ F(un+ )
j+ = +2) (3.29)

Here, n refers to the n-th time step while j refers to the j-th

spacial increment. The new dependent variables are then given by

these fluxes as

u n+ l  un _ (Fn + n -1-

= - F+ - Fj_ ) At/Ax . (3.30)

We are now in a better position to discuss the requirement for

the Richtmyer-von Neumann artificial viscosity, Q, introduced in Eqs.

3.2 and 3.3. From the finite dimensions utilized by the differencing

scheme described above, it is apparent that only phenomena with

wavelengths greater than the dimensions of the cells will be

accurately described. In a compressible fluid, large amplitude
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Figure 3.2. The Lax-Wendroff Mesh. Shown here is the mesh used for
the Lax-Wendroff two-step finite differencing scheme. The dependent
variables p and E are defined on the "'main"~ mesh (dashed lines),
while the momenta and other fluxes are defined on the auxiliary mesh
(solid lines). The two meshes are most easily pictured as one set of
cells with variables defined as zone-centered or face-centered.
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disturbances tend to gain energy and steepen into discontinuities or

shocks in the flow. In an actual physical shock, the thickness is a

function of the viscosity, which acts to transform the kinetic energy

of the short wavelength phenomena into thermal energy. If the shock

thickness becomes less than the cell dimensions, spurious

oscillations are produced by finite differencing methods (Potter

1973). To avoid this problem, Q is introduced to artificially

dissipate the kinetic energy of the shock into thermal energy. Q is

adjusted so as to spread the shock over several mesh cells. This

eliminates the spurious oscillations for the mesh is again able to

resolve the features of the shock. The over-all effect is to gain a

more physically accurate description of the flow at the expense of

losing spatial resolution on the location of the shock. Q is clearly

not needed if the natural viscosity of the fluid being modeled is

great enough to provide shocks resolvable by the differencing method.

If such is the case, the normal viscosity term is used in place of Q

in Eqs. 3.2-3.

Cylindrical coordinates are used for the spatial mesh with the

axis lying along the line of centers of the primary and secondary

(Fig. 3.3). The wind from the primary is approximated as planar flow

past the secondary. This is considered acceptable since in the

region where the wind is most strongly affected by the secondary's

gravity, a radial flow diverges from a planar flow on the order of 10

degrees. The mesh is dimensioned 120 cells along the z-axis by 60

cells radially. Variable zoning is used to give both a fine
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resolution near the secondary and a large mesh size with a limited

number of zones. A minimum cell dimension of 2.5x10 9 cm represents a

compromise between resolution needed near the accretion region of the

secondary and computational time available. Since the primary thrust

of this study is to examine the flow characteristics and not just the

details of accretion we do not feel that this lack of detail close to

the secondary is significant.

While the wind flow is more correctly described as a plasma

rather than as a gas, magnetic effects have been omitted in these

models. One reason is that the minimum dimension of our models is

well outside the 107 to 108 cm magnetospheric radii of neutron stars

(Lamb, Fabian and Pringle 1973). Another is that there is little

information as to the effects of OB supergiant magnetic fields on

their massive winds. In addition, Parker (1972) has presented a

mechanism by which such fields, if entrained in the wind, could be

dissipated. The final reason is that treatment of the magnetic

fields would increase the difficulty of the problem to the point

where it could not be handled with the computational resources

available.

We have limited the models to two dimensions for several reason.

The first is a practical one, namely the lack of the computational

resources necessary for a full three dimensional model of this type.

We also feel, however, that it is desirable to maintain a link

between previous two-dimensional models that did not include

radiation effects and the present one. A second consideration is
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that the time-scales for the flows near the accretion region are an

order of magnitude faster than the orbital motion time scales, so

that the exclusion of the orbital motion does not significantly

impact on the accretion flow. The lack of orbital motion does

prevent any possible formation of an accretion disk around the

secondary since the angular momentum of the wind is ignored. In

Chapter VII, we discuss some of the consequences brought on by the

three-dimensional nature of the actual flows.
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IV. GENERATING MODEL PARAMETERS

In the previous chapter, we outlined the modeling method to be

used. The next step is to establish the parameters for our model

binary systems. The parameters are selected to enforce

self-consistency between the accretion rate and the desired model

luminosity. To achieve this goal, we need to determine how the wind

density and velocity vary at the orbit of the secondary with changes

in the other system parameters.

We begin our analysis by deriving a relationship for the

luminosity as a function of the stellar wind density and velocity.

Let us again take the wind velocity to be given by Eq. 3.5 as

v =v , (1-R 0 /r) . (4.1)

We also adopt the results of Zel'dovich and Shakura (1969), Shakura

and Sunyaev (1973), and Alme and Wilson (1973) and assume that the

gravitational potential energy released by the infalling matter is

equivalent to 10% of the matter's rest mass energy. The luminosity

in terms of the accretion rate is then given by

Lx = 0.1 dMx/dt c
2 . (4.2)

Since the secondary's accretion rate is given from Eq. 2.5 as

dM/d - it R 2 P v a(43
d : a x x (4.3)

we find the luminosity to be
2 c2

Lx = 0.1 1R a Px V cx a (4.4)

where P and vx are, respectively, the unperturbed wind density and

velocity at the orbit of the secondary. We can now se Eq. 2.4 to

specify the accretion radius of the secondary:

41



Ra = 2 G Mx Vx2  (4.5)

Substituting Eq. 4.5 into Eq. 4.4 we arrive at the desired equation

giving the luminosity as a function of the wind density, wind

velocity, accretion efficiency, and the mass of the secondary:

Lx = 0.4 v Px (cGMx 2 v-3  (4.6)

Equation 4.6 points out the strong dependence of the X-ray luminosity

on the mass of the secondary and the velocity of the wind.

The accretion rates found in the models are compared to those

predicted by Eq. 4.3. This defines a ratio between the predicted

accretion rate and the resulting rate. The accretion efficiency in

Eq. 4.3 is initially estimated from Hunt's (1971) work.

We can estimate the variation in the wind density and velocity

with the binary system parameters. To do this, we assume that the

wind is unperturbed as it passes the secondary and that the X-ray

luminosity is held constant. We also assume that the primary's mass

loss rate is constant. This gives the density in the wind as a

function of the distance from the primary as

dM0/dt

4 n r2 v (4.7)

We now substitute Eq. 4.1 into Eq. 4.7 and take r to be the binary

separation. This gives us the wind density at the orbit of the

secondary as a function of the primary's mass loss rate and the

terminal wind velocity:

dM0/dt
P 4ira v~(1-R /a) (4.8)
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In our later discussions, it will prove useful to have an expression

for as a function of distance from the primary and secondary. From

Eq. 3.10 we have

2 / Lx (4.9)

We can now incorporate Eqs. 4.1 and 4.7 into Eq. 4.9 to obtain

dMo/dt r
2

(

4 1TrL v. (1-R0/r0 )2

where r0 is the distance from the primary.

One of the more critical determinations to be made is the

primary mass loss rate needed to support the secondary's required

accretion rate. We derive this from Eq. 4.8 using Eqs. 4.3 and 4.5.

This yields

dM /dt v (a-Ro)2

dM /dt = 2 (4.11)a (GMx)2

And lastly the wind initiation radius as a function of the terminal

wind velocity, the primary's mass loss rate, and the secondary's

accretion rate are found from Eq. 4.11 as

Ro = a - (GMx/V2) (a dMo/dt / dM . (4.12)

Equations 4.11 and 4.12 determine our model parameters for they

include the major variables describing a binary system.

In establishing our model parameters, we desire reasonably close

agreement with the observed systems. However, our self-consistency

constraint may require some adjustment of the model parameters away

from their observed values. The three system parameters with the

highest observational uncertainty are the most reasonable choices.
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They are dM /dt (or equivalently, L ), Ro, and v.. To a lesser

extent, Mx  could be varied, but observations place tighter

constraints on it. R and v. both affect the wind velocity through

Eq. 4.1, and the sensitivity of the X-ray luminosity to the wind

velocity is plainly evident from Eq. 4.6.

In addition to observational constrains, there are theoretical

limitations to be considered in parameter selection. R has limits

imposed on it by the theory of Castor, Abbott and Klein (1975). The

initiation radius is essentially the photospheric radius of the

primary, although it may be as much as 25% greater.

Constraints are also set on acceptable values of the primary's

mass loss rate from energy and momentum arguments (for review, see

Cassinelli 1979). First, assume that a photon is emitted in the

photosphere of the primary with a frequency larger than some strong

line. If the atmosphere is expanding radially outward and

accelerating, then it may eventually reach a velocity at which the

photon is Doppler shifted into resonance with the line. This

velocity is given by

v = c(v-vo)/v o , (4.13)

where v is the line central frequency. For a single line, we can
0

equate the final mass momentum flux, v, dMo/dt, to the photon

momentum that is transferred by scattering all the radiation between

V0 and v0 plus v 0 v/c. This gives us

v. dMo/dt = L0  C2 . (4.14)

If the entire spectrum is covered by non-overlapping lines such that
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each adjacent line is seperated by a displacement corresponding to

the Doppler shift at v,, the maximum mass loss rate can be related to

the total momentum flux of the luminosity giving

(dMo/dt)max = L/vc . (4.15)

Note that the kinetic energy of the mass loss is given by

dMo/dt V
2 = L v. c-  (4.16)

Typical values of v. are 1-2x10 3km sec "1, so the mass loss carries

away about 0.5% of the radiative luminosity of the star. Castor (see

reference in Casinelli 1979) has shown that if multiple scattering of

the photons occurs, the mass loss given by Eq. 4.15 will be raised by

not more than a factor of two or three.

A model is generated by starting with the observed values for

the parameters of the desired binary system. Using these values, we

then calculate the required accretion rate using Eq. 4.2. Equation

4.11 is then used to calculate the required mass loss rate from the

primary. This is checked against the maximum rate given by Eq. 4.15

to determine its acceptability. If the required value is not

acceptable, one or more of the parameters are adjusted and the above

process is repeated until we arrive at an acceptable value for the

mass loss rate. At this point, the resulting set of parameter values

gives us our desired self-consistent model.
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V. MODEL ONE

The primary purpose of Model 1 is to provide a link between the

two-dimensional hydrodynamic studies of the past and the

hydrodynamics with radiation and wind ionization effects of Model 3.

Thus, Model 1 does not account for X-ray ionization effects on the

wind force. It does, however, include the X-ray heating and wind

force models discussed in Chapter III. Modification of the wind

force due to X-ray ionization will be left for Model 3.

A. Initializing Model 1

As a basis for Model 1, we select Vela X-1 (4U0900-40). This

system is commonly assumed to be powered predominantly by wind

accretion (Petterson 1978). It also has one of the largest X-ray

binary separations known. The large separation serves both as a

dominant factor in determining the mode of powering the system and as

an aid in establishing our model. The zoning scheme for Model 1 does

not provide sufficient spatial resolution to accurately represent the

strong wind acceleration near the primary. Yet at the same time, we

require a large area about the secondary in order to minimize

boundary effects. The Vela X-1 system is best suited to the

satisfaction of these conditions.

The model parameters for this system (and the 4U1700-37 system

of Model 3) are adjusted to be in reasonable agreement with the

observations reported by Avni and Bahcall 1975; Becker, et al 1978;

Greenstein and McClintock 1976; McClintock, et al 1976; Petterson

1978; Pravdo, et al 1976; Rappaport, Joss and McClintock 1976;
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Bahcall 1978; Hutchings 1974; and Ulmer, et al 1972 (re. Table 2.1).

At the same time, we also seek to achieve the desired

self-consistency between the accretion rate and the luminosity.

In Chapter IV, we presented the tools required to generate the

model parameters. For Model 1, we begin with the observed luminosity

of 1037 erg sec -I . Since we have the luminosity given in terms of

the accretion rate by Eq. 4.2, it is a simple matter to rewrite it in

a form giving the accretion rate in terms of the desired luminosity:

dMx/dt = 10 Lx/c2 . (5.1)

For the observed luminosity, Eq. 5.1 yields a required accretion rate
of 1.1x10 17 g sec-1

In order to estimate the accretion efficiency, we note that far

from the X-ray source the gas can be expected to be highly

supersonic, while closer in it may become subsonic. For the purposes

of Model 1, we fix a at 0.75, which corresponds to a flow of Mach 2

and is the median value of a between subsonic and highly supersonic

flow. Later analysis of the flow will show that this is a reasonable

value.

Referring back to Table 2.1, we see that the wind velocity at

infinity is 1430 km sec 1 , the luminosity of the primary is 1.5x0 39

-1ergs sec the binary separation is 52 R., and the radius of the

primary is 33 R0. Now, the required primary mass loss rate is given

by Eq. 4.11 as

dM /dt v. (a-Ro)2
dM0/dt = a (GM )2 (5.2)
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With the values cited this yields

dM0/dt = 2.49x10
5 MG yr-1 . (5.3)

To check the feasibility of this value, we recall that Eq. 4.16

and the discussion of Chapter IV set an upper limit on the mass loss

rate of

(dM0 /dt) max 3 L/v c . (5.4)

Based on the parameters for the Vela X-1 primary, Eq. 5.4 gives an

upper limit of

(dMo/dt)max = 1.66x10-5 M yr-1 . (5.5)

Hence, our required mass loss rate based initially on the observed

parameters is larger than the theoretical maximum by a factor of

1.48. We elected to use this value and not pursue parameter

modifications further. The model parameters are summarized in Table

5.1. Note that the mass loss rate is a factor of 1.78 higher than

the upper limits set by the observations of Hutchings (1976).

We use these values for several reasons. First, a 48% increase

in the luminosity of the primary could account for the additional

mass loss required. The primary mass loss rate was also designated

as one of the primary candidates for modification if changes were

necessary. Second, due to the close initial match, we feel it more

advisable to leave the majority of the parameters at their accepted

values rather than modify them further. Third, we are artificially

forcing the luminosity to be sustained at its observed maximum.

Model 1 is not expected to show any fluctuation in its accretion

rates or X-ray luminosity. Sustaining the maximum luminosity
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TABLE 5.1. Parameters for Model 1

Base System: 4U0900-40 (Vela X-1)

Observed Model

a (R.) 52 52

R0 (RO) 33 33

v. (km sec - ) 1430 1430

Mx (Me) 2 2

Lx (ergs sec
- 1) 1x1037  1x10 37

L0 (ergs sec
- ) 1.5x10 39  2.2x10 39

dM0 /dt (M9 yr
-1) 3.5-14.0x10-6  2.4886x10 5

M --- 0.75

Table 5.1. i.e parameters used for Model 1 are summarized here. The
observed values are taken from Table 2.1. Note that the only
difference in the model parameters is the value selected for the
primary's luminosity. The selection of this value is discussed in
the text.
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therefore provides for the largest possible X-ray heating impact, and

avoids the selection of some other arbitrary value.

We initialize the model by first establishing within the problem

mesh an unperturbed wind flow with velocities given by Eq. 4.1 as

v = v. (1 - R0 /r0 ), (5.6)

and densities given from Eq. 4.7 as

dMo/dt
P = 2  "/ (5.7)4 iT r2 vx

0

The X-ray luminosity is fixed at the observed value. Equations 3.10,

17, and 18 are then used to set the material in each cell to its

steady state state temperature.

We can now examine the conditions within the initialized flow.

Equation 2.4 for the accretion radius was

Ra = 2 G M Vx2  (5.8)

Using the parameters for Model 1, Eq. 5.8 yields

R = 7.09x1010cm. (5.9)
a

At any given point in the wind, we can calculate the local sound

speed and compare it with the local wind velocity. We find that at

one R the flow is subsonic with a Mach number of about 0.87. At the

maximum distance (8 R ) from the secondary perpendicular to the

line-of-centers, we find the flow to be highly supersonic with a Mach

number of 24. The flow first changes from subsonic to supersonic at

a distance of about 1.4 Ra. This is in agreement with our initial

arguments on the selection of 0.75 as the accretion efficiency,

although it is still apparent that this value is somewhat arbitrary.
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The model is then followed in time until material has flowed

completely through the spatial mesh several times. We note that no

major changes occur in the characteristics of the flow after this

time. The flow settles into a quasi-steady state such that only very

slight fluctuations, on the order of 0.1%, are evident in the

accretion rate and luminosity. At this point the calculation is

terminated.

B. Calculation Results

Upon re-examining the conditions within the gas, we find that

the supersonic region of the flow has moved inwards toward the

secondary. The flow remains highly supersonic, nearly Mach 4.6,

along the line-of-centers up to a point 5x109 cm from the secondary.

To the sides of the secondary, the flow stays supersonic within R a.

However, to the rear of the secondary, in the region of the wake, the

flow is highly subsonic. This behavior is related to the temperature

structure of the gas as presented later in this chapter. The flow

becomes more supersonic than the initial state indicated. This

should have resulted in a higher accretion ratio since the efficiency

increases with the Mach number. However, we find that the accretion

ratio actually decreases.

In Chapter IV, we noted that Eq. 4.3 can be used to define an

accretion ratio. This ratio, represented by 8, is given by

dM /dt
8=IT 2  (5.10)R2

a px vx a

The final values for the luminosity and the accretion ratio reached
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by Model 1 are

Lx = 5.21x1036 erg sec -1

and

3 = 0.523

These results are a factor of 2 lower than those expected for

gravitational accretion from a planar flow as predicted by the line

accretion model.

We attribute the lower efficiency to the fact that the wind

force is allowed to operate unaffected by the X-rays. It is

therefore providing an additional force acting to blow the wind away

from the secondary. This force is not included in the line accretion

model. To see this, let us consider the force acting on the wind

along the line-of-centers at some distance r, which is greater than

a. The expression for the force is then

F = v 2R /r 2 - GMx/r 2 . (5.11)

Equation 5.11 goes to zero at a distance of 3.8x1011 cm from the

secondary. This is about 5.4 R a. The wind force is greater than the

secondary's gravitational force farther out. Off the line of

centers, the wind force accelerates the flow outwards, providing an

acceleration component not present in the planar flow of the line

accretion model. Thus, it appears that the wind force significantly

affects the accretion flow in this model.

We have produced a series of figures which show contours of

constant material density, energy density, temperature and . There

are several features in common among these figures. The scales show
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distance from the secondary, with the location of the secondary

marked by a small x. In all cases, the wind material is flowing in

from the right and exiting to the left, corresponding to the primary

lying off the right side of the figure. The phenomena occurring near

the upper and lower edges of the figures are boundary effects. These

are the result of the spatial mesh being too small. The side

boundaries are not able to supply material fast enough as the flow is

drawn in by the secondary's gravity. Hence, these regions become

artificially rarified. This has no effect on the model since the

regions are still well outside the main accretion flows.

Figure 5.1 shows contours of constant material density. The

phenomenon occuring immediately to the right of the secondary is the

result of a thermal instability in the wind flow. To get at the

nature of this instability, we first note that the energy contours

(Fig. 5.2) are very smooth except near the wake region to the left of

the secondary. Since the energy density is directly proportional to

the pressure, the smooth contours indicate that the temperature and

density are varying in a manner which maintains a constant pressure.

The fluctuations are wildly evident in Fig. 5.1, but are not as clear

in the temperature contours of Fig. 5.3. This is due to the small

variation in density over the mesh, as compared with a large

variation in temperature.

McCray and Hatchett (1975) demonstrated that a gas exposed to

X-ray heating would exhibit multiple density-temperature states. A

gas under these conditions can change states discontinuously
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Figure 5.1. Material Density Contours for Model 1. In this and all
other contour plots, we have the secondary located at the small x
near the center of the figure. The primary lies off the right side
of the plot, which is taken as the "front" of the secondary. The
material flow is thus from right to left through the plot. In front
of the secondary lies a region of thermal instability as described in
the text. The densely packed contours are at level 3. The contours
near the top and bottom of the frame are the result of boundary
effects in the simulation. The contour values in 10-13 g cm 3 are:
(1) 0.5; (2) 1.0; (3) 1.6; (4) 2.6; (5) 4.1; (6) 6.6; (7) 10.0.
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Figure 5.2. Energy Density Contours for Model 1. This figure can
also be used to give the pressure of the gas through the use of Eq.
5.12. The opening of Contour 1 near the top and bottom is the result
of boundary effects in the simulation. The contour values in ergs
cm-3  are: (1) 3.; (2) 9.; (3) 27.; (4) 81.; (5) 243.; (6) 729.; (7)
2187.
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Figure 5.3. Temperature Contours for Model 1. This plot clearly
shows the formation of a hot wake behind the secondary. Its regions
of instability are not as evident in this figure as in Fig. 5.1
because of the much larger variation in temperatures. Contours along
the upper and lower edges are the result of boundary effects in the
simulation. The contour values in keV are: (1) 0.020; (2) 0.045; (3)
0.100; (4) 0.224; (5) 0.500; (6) 1.110; (7) 2.500.
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depending on its current state and previous history. In particular,

hot gases undergoing cooling may jump from a thin, high temperature

state to a dense, low temperature state, while staying at constant

pressure. Conversely, a cool gas heating may undergo an opposite

transition.

Following their work, we have produced a plot of P/F versus p/F

for each cell of the problem, where F, the X-ray flux, is given by

L
F - xr2  (5.12)

and P, the gas pressure, is given in terms of the energy density of

the gas by

P = E(y-l) . (5.13)

Figure 5.4 clearly demonstrates the behavior predicted by McCray and

Hatchett. Two different populations of gas are evident. The upper

portion of the curve corresponds to hot gas which is moving away from

the secondary and beginning to cool. The lower portion shows cool

gas which is being heated as it approaches the secondary. The sharp

corner in the lower right area of the curve is an artifact of the

match between Eqs. 3.20 and 3.21 that were used to fit the steady

state temperature curve. The gas attempts to change states

erratically in the central region of the plot. Lines of constant

temperature drawn through the plot serve as references for the

multi-valued region between p/F = 10-25 and 10-2. The broken

contours in front (to the right) of the secondary in Fig. 5.3

represent gas which falls into this region of the curve. As a final
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note, the small line dropping out of the lower portion of the curve

is from the boundary region of the problem and is not physically

real.

We do not believe that this instability is an artifact of our

model alone. Prior to producing Model 1, we used the hydrodynamic

portions of our code to repeat Hunt's (1971) problems for the Mach

1.4 and Mach 2.4 cases. Our results were in very good agreement with

his, and the code did not show any of the instability behavior found

in Model 1.

We have followed the values of material density, energy density

and temperature in time within the instability region and find them

to be very dynamic. Figure 5.5 displays these values at two

different instances. Note that they are plotted as a function of

zone rather than distance to help determine the source of the

instability. We see that the density varies inversely with the

temperature, and that the energy density remains relatively smooth.

The onset of the instability occurs at about zone 96 and dies out at

about zone 70. The variations propagate in a wave like motion from

right to left. Since the secondary is located at zone 60, these

variations have long since died out and fluctuations in accretion

rate or luminosity never appear. We also see that the variations are

spread out over several zones, so that the instability is not

inherently numerical.

In 1977, Hatchett and McCray preformed detailed calculations on

the transfer of X-rays through a stellar wind by assuming either a
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Figure 5.5. Material Density, Temperature, and Energy Density Values
in the Instability Region. The density, temperature, and energy
density are plotted as a function of zone along the line of centers
through the region of instability. Plotted at two different times,
the wave like progression from right to left can be seen. The minima
and maxima propagate with the flow velocity.
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constant wind velocity or a wind obeying Eq. 5.6, and determined

contours of constant ionization plotted in terms of the parameter .

They found these contours to be roughly spherical, with their centers

displaced from the source of the X-rays. For comparison, we have

produced contours as shown in Fig. 5.6. The shock severely

distorts the trailing sections of these contours, showing the effects

of including hydrodynamics. The right hand sections are very nearly

spherical, with the inner contours more closely centered about the

secondary than the outer ones. The scale of our model does not allow

direct comparison with their results beyond the general agreement in

the shape of the contours.

However, we can use Fig. 5.6 to measure the impact of the X-ray

heating on the flow. The contours were selected such that the

steady-state temperatures they give correspond to the values on the

temperature contours of Fig. 5.3. By comparing the two plots, we

find that as we approach the secondary, the actual temperatures are

not reached until much closer in than their steady-state

counterparts. This is an indication that the X-ray heating effects

are dominated by the hydrodynamic flow.

We can examine the impact of the X-ray heating in another way.

Let us compare the gravitational potential energy with the thermal

energy of the gas. If the thermal energy rapidly approaches the

gravitational energy, capture of the material becomes less possible.

To compare the two energies, we require that

GMxP/r= PCvT. (5.14)
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Figure 5.6. Contours for Model 1. The circular shapes of these
contours outside of the wake region are similar to those found by
Hatchett and McCray (1977). The location of the shock is best seen
here where it lies along the dips in the contours just to the left of
the secondary. The contours along the upper and lower edges of the
plot are again the result of boundary effects. The contour values in
units of 10- 27 sec3 cm"3 are: (1) 5.7; (2) 3.6; (3) 2.5; (4) 1.7; (5)
1.1; (6) 0.67.
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Thus, RG for a given temperature is given by

RG = GMx/CvT . (5.15)

At a temperature of 5 keV, RG = 2.41x1010 cm, while at 1 keV, RG is

five times greater. Re-examining Fig. 5.3 shows that for the

spherical regions to the right of the secondary, the 1.1 keV contour

lies inside the 1 keV RG' while the 2.5 keV contour lies inside the 5

kev RG. The drawn out tails in the wake pass outside these radii.

This behavior indicates that the flow is dominated by the

hydrodynamics rather than the X-ray heating in the region between the

primary and the secondary. However, the X-ray heating begins to

dominate in the trailing regions of the wake.

Let us consider the time it takes material to flow from RG of 1

keV to 5 keV, and compare this to the time it would take to heat the

gas from 1 keV to 5 keV over the same distances. We developed Eqs.

3.19 and 3.20 to give us the X-ray heating time. At 1 keV, we are in

the Compton dominated heating region, so we can use Eq. 3.19 to

estimate the heating time directly from the Compton time as:
4 i r2 Cv Tine

tx Lx Ke n e (5.16)

Let us approximate the heating time by taking the average of the

heating times found between RG of 1 keV and 5 keV. Since at 5 keV,

RG is 2.41x1010  cm, we find from Eq. 5.16 that the average heating

time is 1790 seconds.

The flow velocity along the line of centers is about 950 km

sec 1. The distance between RG of 1 keV and 5 keV is 9.64x1010 cm.
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Thus the flow crosses this distance in 1014 seconds. Along the line

of centers at least, the hydrodynamics time scale is shorter than the

heating time by a factor of 1.8. If the distance the flow must cover

increases, by say, curving in around behind the secondary, the flow

time will increase and quickly become comparable with the heating

time. When this occurs, the gas will be able to heat at the same

rate it is losing gravitational potential energy and capture will

become exceedingly difficult. From the temperature structure in the

wake, we see that this is in fact what is happening.

The line accretion model pictures the bulk of the material being

accreted along the line of centers from downwind of the secondary.

The combination of the wind force and the X-ray heating are acting to

reduce accretion from this region. To better appreciate the flow

near the secondary, plots of the velocity field and mass-flux field

are shown in Figs. 5.7 and 5.8. Both figures show a pronounced

reduction in the flow to the left of the secondary, which corresponds

to the downwind wake region. Figure 5.8 was created by plotting the

momentum vectors multiplied by their distance from the axis. Since

we are using cylindrical coordinates, this gives us the contribution

to the flux integral at that particular distance. Vectors of

constant length signify constant mass flux contributions to the

accretion rate. In effect, we are looking at the amount of material

entering each cylindrical shell about the secondary. Equal vectors

imply that the same amount of material has entered a given shell.

Thus low flux over a large area contributes as much material as a
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Figure 5.7. Velocity Field for Model 1. This is a plot of the
material velocity near the central accreting region of the problem.
The lengths are proportional to a maximum velocity of 2.894x106 cm
sec -'. The tail of each vector marks the point at which the velocity
was taken. Note the formation of a stagnation region near the rear
of the secondary.
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Figure 5.8. Weighted Momentum Vectors for Model 1. This is a plot
of weighted momentum vectors near the central accretion region of
Model 1. The momentum density vectors are weighted by their distance
off axis to highlight the accretion mass flow. Vectors of constant
length imply constant mass flux. Note that the maximum amount of
material captured is from the sides, rather than from the left. All
vectors are scaled to a maximum vector of 8.68xi05 g cm1 sec-.
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large flux over a small area. We note that most of the material is

captured from the side, in contradiction with the line accretion

model, but in agreement with the suspected behavior discussed above.
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VI. MODEL TWO

In Chapter 5, we presented a model for which the stellar wind

force and the X-ray heating combined to have a major effect on the

accretion flow, but a relatively minor impact on the total accretion

rate and resultant luminosity. We found that the X-ray heating

effects were not strong enough to significantly modify the

hydrodynamics of the flow. We showed that the temperatures reached

by the gas were, for the most part, well below the corresponding

steady state temperatures of the gas. We also found that the

internal energy of the gas was below the gravitational energy of the

gas.

A., X-ray Pre-heating Analysis

Alme and Wilson (1975) had previously found that material flow

could be significantly affected if the X-ray heating was able to

dominate the hydrodynamics of the flow. The same results were

reached analytically by Carlberg (1978), and in one dimensional

models of spherical accretion by Cowie, Ostriker and Stark (1978).

In particular, if the X-ray heating raised the energy of the gas

above its gravitational potential energy, the accretion flow was

disrupted and the material was blown away from the secondary. We

therefore decided to create a second model which would show the

effects of X-ray heating much more strongly. The model would also

correct the boundary problems which appeared in Model 1.

To get an idea of the parameters we need, we first reconsider

the unperturbed initial state of Model 1 in terms of the steady state
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temperatures and gravitational energies. The radius, RG, at which

the gravitational potential energy equals the thermal energy of a gas

at some temperature, T, is given by Eq. 5.18 as

RG = GMx/CvT (6.1)

Equation 4.9 can be rearranged to give the distance from the

secondary, RT, for which a C corresponding to a desired steady state

temperature is reached:

RT = (Lxl p) (6.2)

Using these two equations, we then plot the locations of the steady

state temperatures and their corresponding gravitational potentials

for temperatures of 1 keV and 5 keV. The results are shown in Fig.

6.1. We see that at 5 keV, RT lies just outside the corresponding

RG, with RT averaging 1.32 RG. For the 1 keV case, we have RT

occuring much farther out then RG, averaging 2.17 RG'

Following the analysis presented in Chapter 5, we calculate the

flow time and X-ray heating time for the initial conditions. We find

that the flow time is 1125 seconds, while the X-ray heating time is

932 seconds. Since the final conditions of Model 1 have flow times

less than the X-ray heating time, we desire to construct Model 2 such

that the heating times dominate the flow times even after the problem

has relaxed to a steady-state. There appears to be no forthright way

of predicting the values, so we must create a rather extreme set of

initial conditions.

To determine which way we need to vary the system parameters to

reach the desired results, let us begin by considering again Eq. 3.19
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Figure 6.1. Initial Gravitational Potential and Steady State
Temperature Contours for Model 1. Plotted here are the steady state
temperature and gravitational potential contours for the unperturbed
initialized state of Model 1. The contours were plotted at 1 and 5
keV. At 5 keV, RT is 1.32 times RG, while at 1 keV, RT is 2.17 times
RG-
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ng the X-ray heating time when in the Compton dominated regime:

4 T r2 me C v T
x= L n (6.3)

x e

most rapid way of decreasing the heating time is clearly to

ease the distance to the secondary. Since these distances are

g calculated for various values of the gravitational potential,

2asing the mass of the secondary will have the desired effect.

naintain self-consistency, the wind velocity near the secondary

have to decrease, the wind density will have to increase, or a

ination of both. At this point, the method developed in Chapter

brought into full use.

Initializing Model 2

We can use the results of Model 1 to help establish the

neters. First, since the accretion ratio was 0.523, we use 0.392

the accretion efficiency rather than 0.75. We also use the X-ray

nosity from Model 1, 5.212x103 6  ergs sec -1 , as the base

,1osity. Recalling that the required accretion rate for a given

:iosity is given by Eq. 5.1 as

dMx/dt = 10 Lx /c2, (6.4)

find that the desired luminosity requires an accretion rate of

LxlO 16  g sec-1. We now need to compute the primary mass loss

with the aid of Eq. 4.11:
A

dM/dt v4 (a-R2

dM0/dt x (GMx)2 . (6.5)

;tart with the parameters used in Model 1, and vary them until we
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have a self-consistent system. The values as finally selected differ

significantly from the observed values of the Vela X-1 system. They

are summarized in Table 6.1.

Comparing dM0 /dt with the limit set by Eq. 5.5, we find that

this mass loss rate is a factor of 4 below the maximum available to

the primary, based on its luminosity from Table 1 of 1.5x103 9 ergs
-1

sec . We also note that the required primary mass loss rate lies in

the middle of the range of probable values established by the

observations of Hutchings (1976). In this case the match only

demonstrates the reasonableness of the value since all of the other

parameters differ from the observed. What we have established is an

arbitrary, but self-consistent, set of parameters.

We now examine the characteristic time scales given by these

parameters for a model initialized as in Chapter 5. That is, the

wind is given a velocity structure according to Eq. 3.5 of

v = v (1 - R/r) . (6.6)

The secondary's gravity initially has no effect, and the gas

temperatures are again set at the appropriate steady state

temperatures. The wind velocity near the orbit of the secondary is

-1427 km sec - , and RG at 5 keV (re. Eq. 6.1) is just one half that

found for Model 1, or 1.2x10 10 cm.

With the above values, we find that the time for the flow to

cross from RG at 1 keV to RG at 5 keV is 1124 seconds. The average

X-ray heating time computed from Eq. 6.3 is 44.35 seconds. The X-ray

heating time is 25 times greater than the flow time, so in fact this
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TABLE 6.1. Parameters for Model 2

Base System: 4U0900-40 (Vela X-1)

Observed Model

a (R0 ) 52 60

R0 (R) 33 41.05

v. (km sec -1) 1430 750

Mx (Me) 2 1

Lx (ergs sec
- 1 ) x10 3 7  5.12x10 37

L (ergs sec - ) 1.5x1039  3.8x10 38

0

dM0/dt (M0 yr
"I) 3.5-14.0xi0- 6  7.418xi0 -5

a 0.4

Table 6.1. The parameters used for Model 2 are summarized here. The
observed values are taken from Table 2.1. The values selected for
the model differ greatly from the observed values. The reasons for
this are discussed in the text.
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model should be dominated by the X-ray heating rather than the

hydrodynamics.

As one final preliminary analysis, we calculate the point at

which the wind force dominates the secondary's gravity, along the

line of centers, and in the region of the wake (re. Eq. 5.14). We

find this point to be 6.13x1011 cm from the secondary, which is about

4.1 Ra, This distance is greater than that found in Model 1, but is

closer in terms of Ra. Considering the increased scale of Model 2,

the wind force will be active over a much larger region of the wake.

Figure 6.2 shows a plot of the steady state temperatures and the

gravitational potentials at the 1 and 5 keV level. We find that at 5

keV, the steady state contour is pushed to 3 RG, while at 1 keV, the

contour is out to 4.6 RG. Thus, the initial state configuration is

significantly different from that seen in Model 1.

On examining the velocity structure of the intial state we find

it to be supersonic inside the accretion radius, where the accretion

radius for this model is 1.488x10 II cm or nearly a factor of two

larger than Model 1. The flow reaches Mach 2 at 1.03 Ra, and is Mach

28.1 at the outer side boundary which is 53 Ra. The velocity
a

structure is thus similar to that seen in Model 1.

C. Calculation Results

Model 2 is turned on and followed in time until it too reaches a

quasi-steady state. The basic results confirm our suspicions that

the X-rays have a much larger effect than they did in Model 1. For

the luminosity and the accretion ratio we have
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Figure 6.2. Initial Gravitational Potential and Steady State
Temperature Contours for Model 2. Shown here are the steady state
temperature and gravitational potential contours for the unperturbed
initialized state of Model 2. For this model at 5 keV, RT is 3 times
RG , while at 1 keV, RT is 4.6 times RG.
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Lx = 1.28x1036 erg sec -1

a = 0.235 .

We note that these values are significantly lower than expected, this

time dropping by a factor of 5.

With the interest of this model placed on the X-ray heating

effects, let us first examine the temperature contours shown in Fig.

6.3, and the contours of Fig. 6.4. We have again selected the

values of the contours such that the steady state temperatures they

corresponded to matched the temperature contour values. We first

notice that the fall off from the steady state levels to the actual

levels are not nearly as drastic as seen in Model 1. When we compare

the gravitational potentials with the temperature contours, we find

that they essentially match up at the 2.048 keV level. X-ray heating

is apparently still much faster than the hydrodynamic flow times. We

also see that the boundary flow is better behaved, and that there is

now an extended wake behind the secondary.

We recalculate the flow and heating times for Model 2 in its

final state. The flow velocity between RG of 1 keV to 5 keV averages

700 km sec , giving a flow time of 686 seconds. The corresponding

X-ray heating time calculated from Eq. 6.3 is found to be 181.72

seconds. Thus while the magnitude of the difference has dropped from

that of the initial state, the X-ray heating time is still greater

than the flow time by a factor of 3.8.

One effect of this high heating rate can be seen immediately in

the temperature contours of Fig. 6.3. Extremely high tempe -atures
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Figure 6.3. Temperature Contours for Model 2. As the Model I
contour plots, material is flowing in from the right and exiting to
the left. The secondary is marked by the small x. We note here the
high temperatures reached at the tip of the wake where the thin gas
finally mixes with the ambient material. The temperatures in keV
are: (1) .0005; (2) 0.002; (3) 0.008; (4) 0.032; (5) 0.064; (6)
0.512; (7) 2.048.
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Figure 6.4. C Contours for Model 2. The C contour values were again
selected o give steady state temperatures which correspond to the
values of the temperature contours of Fig. 6.3. We find that the
contours lie much closer to the temperature contours, and match up at
the 2.048 keV level of contour 7. The contour values in 10-6 sec
cm are: (1) 350.0; (2) 7.90; (3) 0.9; (4) 0.45; (5) 0.22; (6) 0.11;
(7) 0.043.
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are found in the wake, apparently the result of heated, uncaptured

material flowing past the secondary and into the wake region.

Examination of the velocity structure of the gas shows an interesting

effect. The material in the high temperature core of the wake is

moving supersonically away from the secondary at a distance of

1.6x101 1  cm. This is approximately at the sharp tip of contour 7 in

Fig. 6.3. The gas continues to heat in the wake, with the heating

primarily due to compressional and viscous effects. The core of the

wake reaches velocities of 1200 km sec - 1 and is supersonic with a

Mach number of about 2. The low density in the wake keeps it in the

Compton dominated domain so that X-ray cooling is not effective at

lowering its temperature. The tip of the wake apparently is a second

shock region, where the flow changes from a high velocity, low

density, high temperature region, to the lower velocity, high

density, low temperature regions of the surrounding material.

The low density at the inner core of the wake is easily seen in

the density contour plots of Fig. 6.5. Figure 6.6 again plots the

energy density contours, which are equivalent to pressure contours.

Again, regions of instability appear as in Model 1. The cause of the

onset of the thermal instability is more questionable in Model 2 than

it was in Model 1. The requirement to extend the problem mesh leads

to the creation of cells with very high aspect ratios both on the

axis and perpendicular to the secondary at distances far from the

secondary. Such cells may have a ratio of side dimensions on the

order of 100. This causes a more severe loss of resolution for one
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Figure 6.5. Material Density Contours for Model 2. Regions of
thermal instability are again noticable to the right, top and bottom
of the secondary. Their origin are discussed in the text. Note the
formation of an extended wake with a rarified core and high densities
on it's boundaries. The contour values in 10" 1 g cm-3 are: (1)
0.25; (2) 0.50; (3) 1.00; (4) 2.0; (5) 4.0; (6) 8.0; (7) 16.0.
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Figure 6.6. Energy Density Contours for Model 2. The energy density
contours -'are equivalent to pressure contours. The contour values in
ergs cm3  are: (1) 1.0; (2) 3.0; (3) 9.0; (4) 27.0- (5) 81.0; (6)
243.0; (7) 729.0.
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dimension in those cells as can be seen by the disturbances

introduced into the energy contours. This may have provided the

perturbations needed in the flow to start up the instabilities.

In Fig. 6.7, we plot P/F versus p/F for Model 2 as we did in

Model 1. Again the essential correctness of the thermal instability

assumption is verified. We note that there are two populations of

gas, one the cool gas approaching the secondary along the lower

portion of the curve, and the second the hot gas which is moving away

from the secondary along the upper portion of it. The conspicuous

wisp rising off the curve along the 107 oK line corresponds to the

hot thin material in the wake behind the secondary. As noted above,

this material is hot gas which the secondary could not capture, and

is expanding away from the secondary while undergoing hydrodynamic

heating. This is supplying sufficient heating to keep the gas hot

and thin as it moves away. Remaining thin, X-ray cooling is not

efficient, further supporting its high temperature. The high

temperatures and pressures reached relative to the X-ray flux place

the gas in the wisp seen in the figure.

This feature is not present in the results of Model 1. Its

absence may be due to the smaller spatial scale which does not

include as large a segment of the wake. Looking back at Fig. 5.1, we

see that the wake does appear to be forming a low density, high

temperature core, with a high density boundary. Expanding Model 1

may lead to the same effect that we see here.

We did repeat a time elapsed analysis of the temperature,
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Figure 6.7. P/F vs p/F for Model 2. This is a plot of the gas
pressure divided by the X-ray flux versus the gas density divided by
the X-ray flux. It demonstrates the multi-valuedness of the
pressure-temperature states of the gas. Lines of constant
temperature are included for reference purposes. The sharpness of
the corner in the lower right of the plot is a result of the
equations used to fit the steady state temperature curves. Gas
moving from left to right along the upper edge is undergoing cooling,
while gas moving from right to left along the bottom is gas
undergoing heating. The thin wisp rising above the curve along the
107 oK line represents the hot, low density material moving in the
core of the wake. This feature is not seen in Model 1 since the
problem did not include as much of the wake.
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density, and energy density through the region of instability similar

to that done in Model 1. The same type of wave-like behavior was

found present. The instabilities again propagated with the velocity

of the flow.

Figures 6.8 and 6.9 show the velocity and mass-flux fields for

Model 2. On comparing Fig. 6.8 with Fig. 5.7, we note that the

stagnation point behind the secondary is closer by a factor of two.

In Fig. 6.9, we see that the accretion flow is again predominately

from the sides of the secondary and there is essentially no accretion

column formed.
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Figure 6.8. Velocity Field for Model 2. This is a plot of the
velocity field near the central accretion region of model 2. The
vectors are scaled to a maximum vector of 1.371xi08 cm sec - 1. The
tail of each vector marks the point at which the velocity was taken.
Note again the formation of a stagnation point near the left side of
the secondary.
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Figure 6.9. Weighted Momentum Vectors for Model 2. Plotted here are
the momentum density vectors near the central accretion region of
Model 2. Each momentum density vector was weighted by its distance
off axis to highlight the mass flux into the central region. Vectors
of constant length imply constant mass flux. Note again that the
majority of the material accreted is captured from the sides. The
vectors are scaled to a maximum vector of 2.51x105 g cm-' sec "'.

86

----. . - - .------ ,



VII. PRELIMINARY ANALYSIS OF WIND SHUT DOWN EFFECTS

Models 1 and 2 were created to examine the effects of X-ray

heating and the wind force on accretion from a stellar wind. Since

they did not allow the X-ray radiation to impact on the forces

driving the wind, the behavior of the gas in the wake is unrealistic.

The densities and X-ray radiation are such that the atoms responsible

for the wind force are heavily ionized near the secondary. Thus, we

should not see the wind force dominating the secondary's gravity

through the major portion of the wake.

Our basic goal in this study is to create a model in which the

X-rays modify the forces driving the wind. With the behavior of

Models 1 and 2 established, we can begin to formulate the necessary

parameters for a system under which the X-rays ionize the L-shell

electrons responsible for the wind force. To do this, we first need

to get some idea of the impact that full wind ionization would have

on system modeling requirements. This information will then provide

restrictions on our model parameters.

A. Ballistic Particle Model

To handle this analysis without explicitly solving the

differential equations for the system, we make the following

assumptions to create a worst-case situation:

(a). Ionization and wind turn-off occur on a time scale

much smaller than the time it takes the wind to cross

from the surface of the primary to the orbit of the

secondary. As a corollary, the wind force is assumed
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to rapidly turn back on as it is shadowed from the

X-rays.

(b). The X-ray luminosity is sufficient to strip the

L-shell electrons responsible for the wind force

everywhere outside of the X-ray shadow zone.

(c). The wind is approximated as ballistic particles free

to move under the wind force and the force of

gravity. Hydrodynamical effects are neglected.

(d). The effect of the secondary's gravity is ignored.

That these are ,qorst-case assumptions can be seen by examining

the effects of each assumption in more detail. For assumption (a),

we first note that the wind crossing times (the time it takes for the

wind to move from the primary's surface to the orbit of the

secondary) are on the order of 104 seconds, and the orbital periods

are on the order of 105 seconds. If the ionization times are on the

order of the crossing time, then the wind will flow with little

modification from its unionized state, and recovery upon entering the

X-ray shadow will still occur before re-exposure. Rapid ionization

thus has the most detrimental effect on the total wind flow.

There is an observational basis for assumption (a). Conti and

Cowley (1975) performed optical spectroscopic observations of

4U1700-37. They found that absorption lines were strongly disturbed

in the region trailing the secondary. This behavior was attributed

to the wake produced by the secondary as it moved through the

primary's wind. This disturbance was phase dependent and never
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appeared ahead of the secondary. For this system, then, we have an

actual case of the wind flow recovering before the secondary

reappears.

The effects of relaxing assumption (b) are more difficult to

visualize. If the wind is not ionized everywhere that it is exposed

to the X-rays, then normal wind flow will occur progressively closer

to the secondary as the X-ray luminosity is decreased. One of the

purposes of Model 3 is to determine the location of the wind

shut-down.

As for assumption (c), inclusion of hydrodynamical effects would

add the supportive effects of gas pressure, resulting in a smoothing

of the flow and reduction of any velocity changes. Finally, from

assumption (d), if the effects of the secondary's gravity are

included, the material would be attracted towards the secondary,

increasing the likelihood of the material being accreted by the

secondary.

The variables needed for our ballistic analysis are shown in

Fig. 7.1. Region A is the X-ray shadow zone and Region B is the

X-ray illuminated zone. The binary separation is given by a. R0 is

the primary's radius. R is the distance to the outer edge of the

shadow zone. 0 is the angle between the line-of-sight tangent point

and the line-of-centers for the system. Finally, T is the angle

between the line-of-centers and R.

When the wind is shut down, there are two possible conditions

under which material will still be present in the orbit of the
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Figure 7.1. Variables for Ballistic Analysis. Assuming the stellar
wind is shut-off everywhere it is exposed to the secondarys X-rays,
we have Region A as the shadow zone and Region B as the illuminated
zone. a is the binary separation. $ is the angle to the
line-of-sight tangent point at the primary surface. Yi is the angle
at which the wind enters Region B at some radius R above from the
primary. Ro is the primary radius.
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secondary for the secondary to accrete. Let us define the crossing

time tc as the time it takes the wind to cross from the surface of

the primary at R to the orbit of the secondary at a, and the

intercept time ti as the time it takes the secondary to move from T =

0 to T = 'i. The first condition is then simply that tc = ti. In

other words, the secondary directly intercepts material as it leaves

the primary.

During the period tc the wind spends some time being driven by

the wind force through region A and then time free-falling as the

wind force is shut down in Region B. Therefore, the second condition

is to allow the material to continue free-falling past the

secondary's orbit to some radius Rf and then free-fall back to the

orbit. The material thus spends additional time in free-fall before

crossing the orbit for the second time. For this case, we also

require that tc = ti, but tc may now be substantially longer.

It is clear that material reaching escape velocity before

shutdown will never be captured unless condition 1 is met. Also,

material with insufficient energy to reach the secondary's orbit will

not be captured. This last situation is improved if assumption (d)

is relaxed, resulting in a form of potential lobe overflow.

With the limits of escape velocity and minimum energy

established, we can constrain ourselves to considering only material

leaving between some "min and "max- The radius at which the wind

attains the minimum energy required to reach the secondary's orbit

can be found from
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v2 - GM/Rmin = -GM/a (7.1)

Now, the wind velocity at Rmin is specified from Eq. 3.5 as

v = v. (1 - Ro/Rmin) (7.2)

Equations 7.1 and 7.2 are now used to yield an expression for Rmin:

2 R + GMR . -( 0 (7.3)
mln v. + GM/a

Consequently, for "min' we have

T min = Arccos(Ro/Rmin) + . (7.4)

Now, to find %max' we have the escape velocity given by

vesc = (2GM/Ro)1. (75)

But again from the wind velocity relation of Eq. 7.1 we have

Vesc =v, ( - Ro/Resc) , (7.6)

hence,

Resc = Ro (1 - Vesc . (7.7)

Therefore, T max is given by

'max = Arccos(Ro/Resc) + 0 " (7.8)

With T min and "max established to limit our search range, we can

now proceed to calculate the required times. ti is given simply by

ti = T T / 360, (7.9)

where T is the orbital period. Under the requirements of condition

1, we first have the wind moving under the wind force from R to some

radius R. The time to cross this distance is then

= fR (v. (1- R0/r) dr (7.10)

The test particles then free-fall from R to a, so this time is given

by
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t= f (2(E+GM/r))' dr , (7.11)

where

E v2 (1 - Ro/R) - GM/R . (7.12)EO 
0

Finally, the total crossing time is given by

tc = tI + t2 . (7.13)

An iterative search is made for all values of R allowed between "min

and "max attempting to enforce tc = ti. If no match is possible, we

then invoke condition 2. Here, we again have tI given by Eq. 7.10

but now t2 is the time to move from R to Rf under free fall:

t2 = .Rf(2(E + GM/r)) "  dr , (7.14)

with E given again by Eq. 7.12. We now need to include the free-fall

time from Rf back to a. Calling this t3, we have

t = faf (2(GM/r - GM/Rf) -  dr (7.15)

Hence, the total crossing time is now

tc = t1 + t2 + t3 . (7.16)

Since we are able to compute the wind velocity from the above,

it is possible to estimate the wind's density in the vicinity of the

secondary. Assuming the primary's mass loss rate is constant, we

have

dMo/dt = 4 7 r p v . (7.17)
0 0

Thus, at the point the wind is shut down, we will have a density of:

dMo/dt

P1 = r2 0 , (7.18)

or, after including Eq. 7.1,
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dMo/dt

47R 2  (7.19)

As this material expands on its way to the secondary's orbit, the

density times the area remains constant, requiring

4rr 2 Pl = 47rr 2 P2" (7.20)

Equation 7.20 reduces to

P2 = p, r2 / a 2 (7.21)

Therefore, the density at the position of the secondary can be

roughly approximated by

dMo/dt

P2 - 2 o (7.22)
47ra v(1-R s/a)di

This analysis is applied to five of the better studied massive

X-ray binary systems and to Model 2. The results are summarized in

Table 7.1. In every case, intercept condition 2 must be invoked. It

is found that material is always present in the orbit of the

secondary and at slower velocities and higher densities than

unimpeded wind flow. This would allow much higher accretion rates so

that the observed luminosities could be supported with much lower

mass loss rates from the primary. However, since the stellar wind

model of Castor, Abbott and Klein (1975) assumes that the wind is

spherically symmetric, the effects of the strong asymmetry introduced

by shutting off part of the wind and of material falling back into

the primary's atmosphere are presently unknown.

Strongly shutting down the wind near the shadow zone clearly

introduces major three-dimensional effects. Within the limits of our
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two-dimensional model, we have to limit the distance of the shutdown

region from the secondary. If the wind is shut down too far away, we

will not be able to adequately account for the wind flow prior to the

intercept of the secondary. This is because the two-dimensional

model does not allow the wind to diverge as it moves radially from

the primary, so the lateral extent of the problem mesh must remain

small enough to keep the flow reasonably planar. For Models 1 and 2

we were not overly concerned with the wind behavior far outside the

accretion radius for there were no processes included in the models

to affect the wind flow along the side boundaries other than the

secondary's gravity. We made the decision to find system parameters

which would cause the wind shut-down point to fall between 1/4 and

3/4 of the distance between the secondary and the primary's surface

for the initialized state of the model.

B. X-ray Ionization

We now need some way of determining the ionizing effects of the

X-ray radiation. With that determined, we can estimate the impact of

the ionization on the wind force. The work of Hatchett, Buff and

McCray (1976) (cf. Tarter, Tucker and Salpeter 1969) is well suited

for this purpose. They examined the ion population levels in a gas

exposed to X-rays. They found that the ionization populations could

be specified as a function of the parameter E, given a source

spectrum of X-rays. Figure 7.2 is adapted from their results for

oxygen under the assumptions of an optically thin gas and a blackbody

spectrum with a temperature of 2.5 keV. The behavior shown for
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Figure 7.2. Ionization Equilibria for Oxygen. A sample ion
population distribution is shown here for oxygen in an optically thin
gas exposed to a blackbody X-ray spectrum with a color temperature of
2.5 keV. This figure was adapted from the results of Hatchett, Buff
and McCray (1976).
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oxygen is typical of the other elements as well, although the exact

features vary. There is also a considerable change in the behavior

of the ionization states if the gas is optically thick. Oxygen, for

instance, goes from neutral to fully ionized between E's of 10-24 to

10- 2 7 if optically thick.

Recall from Chapter III that carbon, nitrogen, and oxygen are

the main contributers of lines responsible for the wind force

(Castor, Abbott and Klein 1975). Our model code does not have the

capability to explicitly determine the ionization equilibria of the

elements, so we made the approximation that the wind is turned off at

the point at which 50% of the oxygen L-shell electrons are stripped.

Oxygen is used primarily because it is the only element for which

data is given for optically thin conditions. Using this as an

overall indicator of the wind ionization state is not too

unreasonable, for carbon and nitrogen ionize at slightly larger

values of . A larger source of error here is the fact that our code

assumes a 22 keV exponential X-ray spectrum. Such a spectrum is

richer in low energy photons than a blackbody spectrum. The point is

that the model will show the main features of wind shutdown under

X-ray illumination, even though the exact details vary.

Let off be the value of F for which 50% of the oxygen L-shell

electrons are stripped. The value of &off is estimated from Fig. 7.2

as 1.212x10-2 5  sec 3  cm"3 . With this value of &off and the desired

location of the shutdown point relative to the secondary established,

we are ready to construct our final model.
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VIII. MODEL 3

We are now in a position to establish the parameters for Model

3. The self-consistency constraints of the first two models are

still to hold in Model 3. In Chapter VII, we discussed the selection

of the value of off at which the wind would be shut off. This value

was choosen to be 1.212x10 25 sec3 cm3 . The wind shut-down point

must also fall between 1/4 and 3/4 of the distance between the

primary's surface and the secondary.

A. Initializing Model 3

There is an additional requirement on the size of the binary

system that must be considered. The wind undergoes very stong

acceleration close to the surface of the primary. This is evident

from the acceleration found in the derivation of the wind potential

(Eq. 3.7):

av/at = v Ro / r
2 . (8.1)

The wind velocity will change rapidly. Consequently, to achieve

reasonable resolution of the velocity, we have to have fine spatial

resolution near the primary's surface. Numerical accuracy in our

model makes it desirable to change cell dimensions no more than 10%

from one cell to its neighbor. With a maximum of 120 cells available

in the z direction (re. Fig. 3.3), there is a maximum dimension which

can be simulated accurately. It turns out that Vela X-1 is not a

suitable choice because of this limitation.

A second reason exists for not using the Vela X-1 system. The

off contour occurs extremely close to the surface of the primary
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causing it to approximate the worst case conditions explored in

Chapter VII. It is clearly apparent that a new system is required as

a basis for our model.

The most obvious candidate to examine first is the 4U1700-37

system. The parameters for this system are given in Table 2.1. It

has a massive, high luminosity primary combined with a small

separation distance and modest X-ray luminosity. We therefore begin

the process of enforcing self-consistency using this system as a

basis for model parameter selection.

We anticipate that the system will be initially similiar to

Model 1 due to the higher densities in the wind. Higher densities

have the effect of moving the contours of steady state temperatures

closer to the secondary. From Model 1, we again assume an accretion

efficiency of 0.4. With the required accretion rate given by Eq. 5.1

as

dMx/dt = 10 L x/c2  (8.2)

the accretion rate needed to support the luminosity of 8x10 36 ergs

sec -I  (re. Table 2.1) is 8.89x1016 g sec "1 . Recall that Eq. 4.11

giving the primary mass loss rate as a function of the accretion rate

had the form

dMx/dt v4 (a-Ro) 2

dMo/dt x (8.3)
0 a (GMx)2 (

Using the observed parameters from Table 2.1, Eq. 8.3 yields a mass

loss rate of 6.7951x10"5 Ma yr"1.

We can now find the location of the wind cut-off point. In
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Chapter VII we selected a value of 1.212x10"25 sec3 cm 3 for {off'

Since rx along the line of centers is simply a-r0, we can determine r

with the aid of Eq. 4.10 in the form

dM0/dt (a-r0 )2 (8.4)

4 n r2 Lx v (1-Ro/ro)

Doing a fast iterative search for r between R and a locates the

shutdown point at about 22.05 R, or just 1 R. above the surface of

the primary. This is entirely too close for our model. The spatial

mesh is not able to adequately resolve velocities so near the

primary's surface.

Our next step is to modify the system parameters in an attempt

to move the shutdown point farther above the surface. To do this, we

elect to reduce R from 21 R to 19 Re without changing the other

system parameters. With this value for Ro, Eq. 8.3 yields a required

mass loss rate of 1.0151x10-4 M0 yr
-1. This mass loss rate is 3.3

times the maximum mass loss rate established by Eq. 5.4, implying

that the primary for this model must be 3.3 times more luminous than

that of the observed system. The required primary mass loss rate is

also a factor of 3.4 above the maximum probable value from the

observations of Hutchings (1976). Recall that we are artifically

enforcing self-consistency using the maximum X-ray luminosity. We

again use Eq. 8.4 to determine that the wind shutdown point occurs at

about 21.8 Re, or 2.8 R9 above the surface of the primary. This

location is adequately far above the surface of the primary.

Increasing the distance would require more severe modifications of
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the system parameters.

The minimum spatial resolution obtainable at the surface of the

primary is 5.0x10 9 cm. This yields a velocity resolution of 40.6 km

sec - . We can compare this to the escape velocity from the primary's

surface of 775 km sec "1 and to the wind velocity at the orbit of the

-1secondary of 1266 km sec- . Our resolution is about 5% of the escape

velocity, giving us good division between gravitationally bound and

unbound material.

The parameters finally established for this model are given in

Table 8.1. Using them, we again initialize Model 3 as we have done

with Models 1 and 2. The accretion radius for this model is found to

be 2.48x1010  cm. Figure 8.1 can be used to estimate the initial

effects of X-ray heating. As one can see, at 5 keV RT (re. Eqs.

6.1-2) actually lies inside RG while at 1 keV RT lies at an average

distance of 1.36 RG. In this case, RT and RG show an even closer

match than was found in Model 1 (re. Fig. 6.1). At 5 keV, the value

of RG is 1.81x10 10  cm, and, of course, at 1 keV, RG is 5 times

larger.

As we did with Models 1 and 2, we examine the velocity

structures in the initialized gas. We find that the gas is

supersonic inside the accretion radius, unlike Models I and 2 which

were subsonic inside the accretion radius. We can also calculate the

point at which the wind force exceeds the secondary's gravity along

the line-of-centers on the downwind side of the secondary (re. Eq.

5.13). This point turns out to be 1.88x101 1 cm from the secondary,
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TABLE 8.1. Parameters for Model 3

Base System: 4U1700-37

Observed Model

a (Re) 30 30

Ro(Re) 21 19

v. (km sec " ) 2090 2090

M x (Me) 1.5 1.5

Lx (ergs sec
1) 8X10 36  8x10 36

L0 (ergs sec-1 ) 4x10 39  1.33x1040

dM0 /dt (Me yr
1) 7.3-30.Ox10 -6  1.012x10 4

--- 0.4

Table 8.1. The parameters used for Model 3 are summarized here. The
observed values are taken from Table 2.1. The values selected for
this model differ from the observed values only in the radius and
luminosity of the primary.
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Gravitational Potential - Steady State Temperature

SkeVkeV

Secondary

1011 cmI I

Figure 8.1. Initial Gravitational Potential and Steady State
Temperature Contours for Model 3. The steady state temperature and
gravitational potential contours for the 1 and 5 keV levels are
plotted here for the initialized state of Model 3. The 5 keV
temperature contour lies inside its gravitational counterpart, while
the I keV temperature contour lies an average of 1.36 times the
distance of its counterpart.

104

Li...



or about 7.62 Ra. This is nearly twice as far in terms of Ra's as

was found in Models 1 and 2.

B. Calculation Results

We start the calculation and again trace the model's behavior in

time. Only in this case, the model never approachs the quasi-steady

state of the previous two models. Instead, the accretion ratio and

luminosity fluctuate on a time scale of about 2 hours. The behavior

of the luminosity is shown in Fig. 8.2.

Features related to the model startup period cover the interval

from 0 hours to about 13 hours. This is the time needed for the

initial material to clear the central portion of the spatial mesh.

After the startup period, we note that sharp peaks occur in the

x138  -luminosity. The maximum luminosities are 4 to 540 ergs sec

8036  -1while the minimum luminosity is 8xi6 ergs sec 1

Referring back to Eq. 2.7, we find that Ledd for this model is

2x1038 ergs sec -1 . Examining the duration of the peaks, we note that

they exceed Ledd for periods of about 22 minutes. We will address

this problem of exceeding the Eddington luminosity in Chapter IX.

However, we note here that the model did not incorporate a treatment

of radiation pressure, hence it could not be expected to properly

account for the limiting effects of the Eddington luminosity.

Because of the variations occuring in the luminosity, the

contour and vector plots for this model represent only one instant in

time. All of these plots are made at 24.29 hours into the model run.

This time represents a period of decreasing luminosity immediately
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following the last peak in Fig. 8.2. It also corresponds to the time

at which we terminated our calculation. To examine the time

variations, we produced several movies of the density contours

evolving in time. Analysis of these movies is used in the

interpretation of the plots presented here.

The density contour plot, shown in Fig. 8.3, exhibits very

complicated structure. The closing of the contours to the right of

the secondary is a direct result of the action of the varying X-ray

luminosity on the wind force. A feedback mechanism is evidently in

action. The varying density in the wind as it passes the secondary

causes a variation in the luminosity. Increasing luminosity causes

the wind shutdown point to move closer to the primary's surface, and

vice versa. This in turn introduces new fluctuations in the wind

density.

To better visualize the enhancement process, let us follow a

packet of wind material as it travels from the surface of the primary

to the secondary. As this packet leaves the surface of the primary,

it reaches a state at which is less than &off* At this point it

begins to decelerate under the influence of the primary's gravity.

Other packets are able to catch up to it from behind, causing the

density of the packet to increase. As a consequence now increases

above Coff and the packet can move again under the wind force until

the force is shut off again.

This effect causes waves of enhanced density to be created. As

these sweep by the secondary, they provide additional material for

107



1.64
4 3 4

1.23 4

3a 5

0.82 a

c' 0.0

0.410.822

1.4123

1l.64

9 C9 L9 C J 09 L9 C\J 1 r-

(10 12 cm)

Figure 8.3. Density Contours for Model 3. As in the previous
models, the secondary is marked by the small x. The surface of the
primary now lies essentially on the right hand border. The material
flows from right to left. Model 3 exhibited strong oscillations, and
thus the contours changed with time. Those presented for Model 3
were taken at 24.29 hours of simulation time into the problem. We
note in particular the build up of enhanced density regions between
the secondary and the right hand side, and the strong turbulence
introduced in the wake. These enhanced density regions are both
caused by, and result from, the fluctuating luminosity. The contour
values in units of 10"11 g cm-' are: (1) 0.1; (2) 0.22; (3) 0.46; (4)
1.0; (5) 2.2; (6) 4.6; (7) 10.0
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accretion, causing an increase in the luminosity. The increased

luminosity in turn affects the location where the wind is shut off.

This feed-back mechanism causes the luminosity to fluctuate on the

same time scale as the wind-crossing time. The effects seen in an

actual system will be modified by the effects of orbital motion and

any material storage time introduced by formation of an accretion

disk around the secondary. Since these enhanced density waves are

propelled by the wind potential, it is not suprising that the major

flaring is occurring on the same time scale as the wind crossing

time.

The energy density contours are displayed in Fig. 8.4. When

followed in time, the energy density contours display the behavior

expected in light of the fluctuations observed. As the luminosity

increases, the energy density, hence the pressure, is seen to

increase. This inhibits the flow of incoming material, causing a

drop in the accretion rate. As the accretion flow is shut off, the

luminosity drops, the gas cools, and the accretion rate picks up

again.

Figures 8.5 and 8.6 display the temperature and C contours. As

in the previous two models, the values of the C contours were

selected such that the steady state temperatures they represent

correspond to the values of the temperature contours. For the time

shown, we find that the two sets of contours essentially match up,

except near the inner contours which represent the maximum

temperatures. On examining plots made during a period of increasing
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Figure 8.4. Energy Density Contours for Model 3. The contour values
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luminosity, we find that the steady state temperatures fall well

within the actual temperatures of the gas. This indicates that X-ray

heating dominates the flow as the luminosity approaches its peak

values.

Figure 8.7 is a P/F versus p/F plot. We again find two gas

populations present. The extent of the problem mesh provides a

larger range of p/F values than was found in the earlier models. We

note that the gas is well behaved in its very hot and cool states,

but that the two gas populations are again limited to the region

between p/F = 10- 27 and p/F = 10-25. Tracing this plot in time shows

an interesting behavior. As the luminosity begins to rise after a

minimum, the distinction between the two populations becomes blurred.

However, as the luminosity approaches its peak, material begins to

jump sharply upwards until the two gas populations are

re-established. This creation of two populations within the gas is

again the cause of the instability regions seen in Figs. 8.4-6 lying

to the right of the secondary.

Finally, in Figs. 8.8 and 8.9, we display the velocity field and

weighted momentum vectors near the secondary. Taking into account

the fact that the luminosity has just passed a peak, we are not

surprised to see the extended stagnation regions behind the

secondary. The scale of these plots is essentially the same as that

used for Models 1 and 2 (re. Figs. 5.7, 5.8, 6.8, and 6.9). While

difficult to see on the velocity plots, the momentum plot (Fig. 8.9),

shows a pronounced outward flow of material. This was not observed
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velocities are those computed at the location of the tail of the
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Figure 8.9. Weighted Momentum Vectors for Model 3. The momentum
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by the distance off axis. This serves to emphasize the mass flux
into the accretion region. Vectors of equal length signify equal
mass flow. Note that most of the accreted material is captured from
the sides in agreement with the line accretion model. The vectors
are scaled to a maximum vector of 6.942x10 s g cm'* sec -'.
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in Models 1 and 2. The outward flow material to the left of the

secondary could be responsible for the clumping of material off the

line of centers to the left of the secondary as see in Fig. 8.3.

The most recent series of observations on the 4U1700-37 system

were presented by Pietsch (1980), and Dolan (1980). Pietsch found

that the 4U1700-37 system exhibits flares in its luminosity of

magnitude on the order of 25, with time scales varying from minutes

36-1to hours. The maximum luminosity observed was 5.0x1036 erg sec-

We compare this to the flares exhibited by Model 3 which vary in

luminosity by factors of 30 to 100, and on similar time scales.

Although the peak luminosity after the start-up period is 5.0x10
38

-1
ergs sec , this is related to the fact that the maximum luminosity

was used to establish the model parameter set. In the discussion

which follows in Chapter IX, we will address how Model 3 can be

adjusted to bring it closer in line with observations.
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IX. DISCUSSION

The purpose of this study was to combine recent results in three

areas pertaining to X-ray binary star systems: first, hydrodynamic

studies of mass exchange mechanisms; second, X-ray radiation

transport through optically thin gases; and third, new models for

radiation driven stellar winds in early type supergiant stars. In

Chapter III, we presented methods for incorporating X-ray heating

effects and the stellar wind force into the hydrodynamic equations.

Models 1 and 2 were presented in Chapters V and VI. Both models

included X-ray heating and the stellar wind force. However, in

neither model was ionization of the wind by the X-rays allowed to

modify the strength of the wind force. From these models we have

learned that X-ray heating and the wind force can cause reductions in

the accretion rates and resulting luminosities as compared to

predictions of previous numerical hydrodynamic models and Hoyle and

Lyttleton's (1939) analytic line accretion model. The anticipated

impact of significant X-ray pre-heating of the gas was specifically

verified in Model 2.

In Chapter VII we developed a simplified model which

demonstrated some of the characteristics of a stellar wind flowing

under the influence of intense X-ray radiation. This led to Model 3

which was discussed in Chapter VIII. Model 3 represents a step

beyond previous calculations in that the strength of the wind force

was allowed to be modified by X-ray ionization. The work of

Hatchett, Buff and McCray (1976) allowed us to estimate the
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ionization state of the wind. They determined the ionization state

of a gas of cosmic abundance as a function of the same variable, E,

which we used for our heating parameter. This enabled us to estimate

the point at which the wind force was shut off. The substantial

effects on the flow led to periodic flaring of the X-ray luminosity.

The shapes of the ionization regions were also strongly modified as a

result of the varying wind densities. The peak luminosities

resulting from Model 3 are artifically high. The model was

formulated to be self-consistent using the peak luminosity. The

unexpected strong variations in the wind density led to the large

luminosity fluctuations.

A. Model Scaling Analysis

At this point we can consider how the results of Model 3 would

scale with changes in system parameters under steady state

conditions. We first note that the wind density is directly

proportional to the mass loss rate from Eq. 4.7:

dM0/dt
P 4 r2 v (9.1)

Since the accretion rate is proportional to the wind density from Eq.

4.3:

dMx/dt = RaPx VXZ, (9.2)

the X-ray luminosity can be expected to be proportional to the mass

loss rate. Additionally, the heating parameter, , is directly

proportional to the density, and inversely proportional to the X-ray

luminosity from Eq. 3.10:
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=p r2  L (9.3)x x
Thus, { would remain constant at any given point as the mass loss

rate was varied. Since E is constant, we expect no differences in

the wind ionization structure as the mass loss varies. The steady

state temperatures in the wind will also remain unchanged. However,

since the X-ray luminosity enters into the calculation of the X-ray

heating time, we need to examine the impact of a varying mass loss

rate on the X-ray heating rate in more detail.

To estimate the changes in the X-ray heating rate, recall that

the X-ray heating time was given by Eq. 3.20 as

1 = -tc 2 (94)

x 1 + (Et/E)2

where the Compton heating time is given by Eq. 3.19 as

4 7 r2 me C v T

tc Lx Ke n (9.5)

The rate of change in energy due to X-ray heating is given by Eq.

3.21 as

(E/at)r = (Ess - E)/tx (9.6)

We see from Eqs. 9.4 and 9.5 that the X-ray heating time is inversely

proportional to the X-ray luminosity, and, therefore also inversely

proportional to the primary's mass loss rate. If the X-ray heating

time increases, *Eq. 9.6 indicates a corresponding decrease in the

rate of change in energy. Apparently, decreasing the mass loss rate

while maintaining self-consistency in the luminosity, will have the

effect of decreasing the impact of X-ray heating.

120



The above analysis has been applied to steady state conditions.

To extend this analysis to dynamic conditions such as found in Model

3, we begin by noting that if remains constant at any point, the

same flare producing process will be present. The wind force

shut-down will occur at the same locations in the flow, leading to

similar regions of material density enhancements. This leads us to

conclude that flaring of Model 3 should continue to be present with

the same general features as the primary's mass loss is decreased.

Being able to scale the luminosity with the primary's mass loss

rate allows us to consider the effects of such a reduction on Model

3. If we reduce the mass loss rate by a factor of 100, the peak

luminosities come into agreement with the observations of the base

system, 4U1700-37. The duration of the flares, and the behavior in

the wake, which are dominated by X-ray heating, can not be

determined. A reduction by a factor of 100 in the primary's mass

loss rate results in a rate that is a factor of 30 below the maximum

mass loss rate available to the primary.

The lowering of the maximum luminosity also alleviates the

problem of exceeding the Eddington luminosity, Ledd* After the

initial start up period, Model 3 exceeds Ledd by factors of about 3

on three occasions for periods of 22 minutes. Since radiation

pressure is not accounted for in our hydrodynamic equations, Model 3

can not properly limit accretion as Ledd is reached. However, the

durations of the X-ray luminosity peaks are short enough that they

may be observed even if radiation pressure is included. This will
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depend on how smooth the flow is by the time it reaches the neutron

star's surface. If the flow is greatly disrupted from spherically

symmetric flow, brief outbursts exceeding Ledd may occur as was

discussed by Vitello (1978).

B. Observational Comparisons with Model 3

The most recent observational work on 4U1700-37 was done by

Pietsch et al. (1980) and is summarized in Table 2.1. They found

slowly varying X-ray flaring time scales of about 0.5 to 1.0 hour.

This flaring did not appear to be periodic in time. They also found

that the X-ray spectrum could be fit by a 28 keV thermal

bremsstrahlung spectrum in the 20-180 keV energy range.

Model 3 predicted periodic X-ray flaring on a time scale of

about 3.5 hours. Since this period is about equal to the wind

crossing time, it may be related to the way the wind force is

disrupted. The high luminosity peaks are able to turn the wind force

off very close to the primary's surface. This requires the regions

of enhanced density to travel the full distance from the primary to

the secondary. A more accurate model of the wind ionization

structure would allow the wind force to turn off gradually. The

density enhancements would then form closer to the secondary and have

higher velocities than our model predicts. The regions would also

tend to have longer density scale lengths, making the actual impact

on the flaring behavior difficult to predict.

The observed spectrum is harder than the 22 keV exponential

spectrum which was assumed for our steady-state temperature curve
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(Fig. 3.1). This would cause the wind to be ionized farther from the

secondary than in our model. Again the character of the density

enhancements would be changed.

C. Weaknesses of Model 3

There are three major weaknesses in Model 3. The first is the

restriction of the model to two dimensions, as was discussed in

Chapter III. The second is the lack of any orbital motion. The

synmetry invoked for the two dimensional models made it impractical

to include such motion. This latter omission impacts most heavily on

the dynamics of the wake, while the features found near the accretion

region are not likely to be seriously affected. The ballistic model

of Chapter VII addressed the three dimensional nature of the actual

wind flow. It is apparent that a three dimensional model capable of

handling the extended wind structure, along with the orbital motion,

would be required for a complete modeling of the processes in X-ray

binary systems.

The final weakness lies in our method of selecting a

representative value of our heating parameter, off' at which the

wind force is assumed to be shut off. As noted in Chapter VIII,

covers a large range of ionizations states, going from neutral to

fully ionized as varies by about 1000. Hence, the wind force is

gradually weakened rather than being switched off suddenly. In

particular, estimates made from the results of Hatchett and McCray

(1977) indicate that L-shell ionization would begin at the surface of

the primary and be complete near the secondary.
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The effect of suddenly switching off the wind force is to create

a sharp density variation in the wind which passes the secondary at a

velocity lower than the normal wind vilocity. Gradually weakening

the wind force would produce a smoother density variation in the

wind, but it would be moving at a higher velocity. These two

processes can produce the same flaring characteristics. The flaring

behavior is dependent on the maximum density reached in the enhanced

density region and on the time it takes this region to pass the

secondary. In other words, the flaring is the same if the density

pulse seen by the secondary is the same.

D. Validity of the Optically Thin Assumption

It is now appropriate to discuss the validity of our assumption

that the wind flows are optically thin. We can check this assumption

by calculating the optical depth for Compton scattering along 3 paths

through the models. We can then compute an adjustment factor to give

the total opacity as a function of frequency relative to the Compton

optical depth. The Compton optical depth gives an indication as to

the validity of the optically thin assumption and the accuracy of the

heating model in various regions of the problem mesh. The adjusted

depth determines the degree to which the X-ray spectrum is modified

from the assumed 22 keV exponential shape. This will allow a

judgement to be made concerning the accuracy of the ionization

structure predicted for the wind.

We estimate the Compton optical depth using the relation

T = K e f p dx , (9.7)
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where K is the Thompson electron scattering opacity. For cosmic
e

abudanesK i 0.3 c 2  -1abundances, K is 0.33 cm 9- To estimate the frequency dependence

of the opacity, we use the analytical fits given by Basko and Sunyaev

(1973). These fits smooth over the absorption edges of the L and K

shells, but are satisfactory for our purposes. Basko and Sunyaev

found that for photon energies below 0.87 keV, the opacity was given

by

K(V) = 7.3x1023 (V /V)3 NO A
-1 , (9.8)

where N is Advogadro's number, A is the atomic weight of the
0

material, and v is equal to 1 keV. For cosmic abundances, A is

equal to 1.16198, so Eq. 9.7 can be expressed as

K(v) = 114.65 (No/b) ) e " (9.9)

For photon energies above 0.87 keV, Basko and Sunyaev give

K(\) = 2.5xi0 -22 (NON)2 4 NO A-  (9.10)

or,

K(V) = 130 (vo/v) 2.4 Ke (9.11)

Equations 9.9 and 9.11 are plotted in Fig. 9.1.

The Compton optical depths are computed for each model along

three different paths. Path 1 is from the secondary to the primary

along the line-of-centers. Path 2 is from the secondary along a path

perpendicular to the line-of-centers. Finally, path 3 is away from

the primary along the line-of-centers, moving out through the wake

,agion. The resulting optical depths are plotted in Figs. 9.2, 9.3,

and 9.4 for Models 1, 2 and 3, respectively.

On examining Fig. 9.2, we see that Model I is very thin to
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Figure 9.1. Optical Depth Factor vs. Photon Energy. This graph
provides a means for estimating the frequency dependence of the
optical depth. The Optical Depth Factor represents the increase in
depth a photon of given energy experiences over the Compton
Scattering Depth.
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Figure 9.2. Compton Optical Depths for Model 1. Compton optical
depths are plotted along three paths with the secondary as the
starting point. Path 1 is along the line-of-centers towards the
secondary. Path 2 is perpendicular to the line-of-centers. Path
three is along the line-of-centers away from the primary. The arrow
marks the distance at which the material temperature along each path
drops below 0.1 keV.
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Figure 9.3. Compton Optical Depths for Model 2. Compton optical
depths are plotted along three paths with the secondary as the
starting point. Path 1 is along the line-of-centers towards the
secondary. Path 2 is perpendicular to the line-of-centers. Path
three is along the line-of-centers away from the primary. The arrows
mark the points along the paths at which the material temiperatures
drops below 0.1 keV.

128

_f;(.--

uK

----------------------------------------------.-



+5

+4

0- Path 1

.- -

4J X - Path 2
cm0 -Path 3

0

E0-

-2

10 11 12 13

Log Distance from Secondary (cm)

Figure 9.4. Compton Optical Depths for Model 3. Compton optical
depths are plotted along three paths with the secondary as the
starting point. Path 1 is along the line-of-centers towards the
secondary. Path 2 is perpendicular to the line-of-centers. Path
three is along the line-of-centers away from the primary. The arrow
marks the point along each path at which the material temperature
drops below 0.1 keV.
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Compton scattering. The maximum depth is 0.033 Compton

mean-free-paths. Referring back to Fig. 9.1, we see that the

increase in optical depth by the factor of 100 needed to make the

material optically thick is obtained for photons with energies of I

keV or less. Thus our optically thin assumption holds reasonably

well in all regions of Model 1.

The Model 2 results are shown in Fig. 9.3. We find that the

model becomes optically thick along the paths 1 and 2 for distances

greater than about 1011 cm. There is a drastic change in the optical

depth of the wake, as indicated by the sudden jump occurring at 1012

cm along path 3. This corresponds to the very tip of the hot central

wake. Beyond this point the cool, dense material has finally

collapsed onto the axis, causing the very rapid increase in optical

depth from that point outward. This behavior is limited to the dense

material on the axis. Material outside the wake has densities

similar to that found along the path 2.

The far wake is optically thick not only to Compton scattering,

but also to photons with energy well above 10 keV. The material

along path 3 shows a Compton depth of 0.32 mean-free-paths. From

Fig. 9.1, we see that this material becomes optically thick to

photons with energies of 4.5 keV or less. Since the densities in

Model 2 are not that different from those of Model 1, Model 1 would

have the same cut-off. Model 1 therefore predicts a spectral cut-off

very similiar to the 2.2-4.4 keV cut-off actually observed in the

Vela X-1 system (re. Table 2.1).
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To judge the impact on the heating model caused by the high

optical depths, we have indicated on Fig. 9.3 the distances along

each path at which the temperatures drop below 0.1 keV. At the

distances marked, the steady state temperatures are very low, so that

very little X-ray heating occurs. Thus, X-ray heating does not

significantly effect the flow beyond the region of the model where

the optically thin assumption holds.

Finally, Fig. 9.4 shows the behavior of the optical depths in

Model 3. The behavior is nearly identical to that seen in Model 2,

except that the higher densities encountered in Model 3 have shifted

the features upward by an order of magnitude. We again see a sharp

jump in the optical depth along the wake (path 3), while the other

two paths show a smooth increase. We have also marked with an arrow

the distance at which the temperatures along the three paths drop

below 0.1 keV. At this point, the flow has become optically thick to

photons of about 3 keV. Thus, our optically thin assumption breaks

down much more rapidly for Model 3 than for the first two models.

The region of strong X-ray heating near the secondary is still

reasonably optically thin. However, beyond a distance of 2x10 11 cm

the flow is decidedly optically thick. This implies that the

ionization structures given by Model 3 are not entirely accurate in

this region. In particular, the wind shut-down region is found to

move into and out of the optically thin region as the X-ray

luminosity varies.

Utilizing Fig. 9.1, we find a spectral cut-off of about 7.5 keV
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for regions lying outside of the wake. A 2.2-5.5 keV cut-off was

noted in Table 2.1 for the 4U1700-37 system. This is another

indication that the densities in Model 3 are higher than the

densities of the base system. This is not suprising, since the

primary's mass loss rate was artificially high to enforce

self-consistency at the maximum observed luminosity. Hence the

artificially high wind densities are expected.

Some care must be exercised in comparing the optical depths of

these models with the real systems. In the actual systems, the wind

flow is spherically symmetric with respect to the primary. Our

models used planar flows which do not exhibit radial divergence.

Thus, the wind density in our models remains constant along paths

perpendicular to the line of centers. Spherical flow would yield

continually decreasing densities along similar paths. This causes

our models to predict optical depths higher than those expected in

the actual star systems.

While all three models show a tendency to become optically thick

far from the secondary, we note that the temperature of the material,

where it becomes optically thick, is on the order of a few eV. Thus,

the regions near the secondary where the flow is most strongly heated

by the X-rays are still optically thin, so that our X-ray heating

model holds rather well. However, the description of the ionization

. I structure of the gas beyond this region becomes progressively more

inaccurate with increasing optical depth. This is due to absorption

of the lower energy photons which changes the characteristics of the
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X-ray spectrum until it no longer accurately matches the assumed 22

keV exponential spectrum. The ionization and heating effects become

progressively more inaccurate as the material becomes optically

thick.

This presents a problem when dealing with the wind force

shut-down of Model 3. The modified spectrum will not ionize the

oxygen L-shells under the same conditions assumed for our model. The

50% ionization state will occur closer to the secondary than in our

model. There is a compensating factor which must also be taken into

account. Hatchett, Buff and McCray (1976) computed the ion

populations for oxygen in an optically thick gas. As noted

previously, the oxygen goes from neutral to fully ionized over a much

smaller range of than in the optically thin case. This would cause

the wind force to turn off faster and more closely approximate the

sudden turn off of our Model 3.

Reconsidering the question of scaling, recall that E will remain

constant as the mass loss rate and the X-ray luminosity are dropped.

Decreasing the density will also have the effect of decreasing the

optical depths in the model. This would place us firmly in the realm

of our optically thin assumption. We conclude that Model 3 does a

fair job of representing the physical processes which occur in the

real system, but the details of these processes are limited by the

assumptions necessary to produce the model.

E. Comparisons with Previous Works

As discussed in Chapter I, Livio, Shara, and Shaviv (1979)
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(hereafter refered to a LSS) presented a model of Cen X-3 (4U1118-60)

which attempted to handle the hydrodynamics and X-ray heating in a

manner similar to ours. The differences between the two models

involves the method in which the X-ray heating is accounted for. LSS

assumed a constant wind velocity with v = v everywhere, with no

provision being made for a force driving the wind. Most importantly,

they kept the X-ray luminosity fixed instead of basing it on the

accretion rate.

LSS cast their X-ray heating term in the form A(T-T eq), where A

is a numerically adjusted parameter serving the same function as our

tx1, and the T-Teq is equivalent to our E-Ess (re. Eq. 9.6). The

parameter A was adjusted numerically until thermal balance is reached

in the gas and is then allowed to remain fixed. It seems that their

method of fixing the parameter A, and not basing the X-ray luminosity

on the accretion rate, would produce an artificially smooth problem

with no means of supporting the thermal instabilities which we

observed. For their heating method to work, they had to assume that

the flow would go to a steady state. Their model could be compared

with our Model 1 since their model parameters put it in a state in

which little effect on the accretion rate due to X-ray heating would

be expected. They in fact predicted no instabilities in the wind

flows.

The velocity plot presented by LSS shows a large region around

the primary. It seems to indicate that the wind has almost no

velocity in the region perpendicular to the line-of-centers near the
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secondary. The velocity of the wind should not be affected far from

the secondary if radiation effects on the wind force are not

considered. In fact, the velocity at the side boundaries should be

the unperturbed velocity of the wind at the secondary's orbit. It

appears that their boundary conditions are not properly supporting

the wind velocities.

Ignoring the wind velocity structure also adversely impacts on

the qualitive features of their results. The density contours

produced by LSS do not show the pronounced wake which we found.

Their temperature contours should be nearly spherical in front of the

shock, but in fact are very irregular. This may be related as much

to their method of X-ray heating as to their wind structure.

Another difference between the two models is the treatment used

at the boundary of the secondary. We accreted material through the

boundary while LSS replaced the secondary with a solid boundary.

This caused the flow to build up to hydrostatic equilibrium about the

secondary. LSS argued that this approximates the case where the mass

flow through the magnetosphere of the secondary is slow enough so as

not to perturb the flow in the immediate vicinity. It is not clear

how this slow mass flux onto the secondary produces the observed

luminosity and still does not perturb the incoming flow. To support

the luminosity, the material must flow to the surface of the neutron

star at essentially the same rate that it is accreted.

We can also compare our results to those found by Hoffman

(1979). Hoffman's isothermal model developed variations in the mass
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accretion rate. These variations were a result of modulating the

mass flow down the accretion column in the wake of the secondary.

Our Models 1 and 2 did not develop such flow. In fact, noticable

accretion columns did not form in these models. Instead, we found

the bulk of the accretion flow to enter from the sides of the wake.

Hoffmah's models did not include the stellar wind driving force.

This additional force appears to be the reason for the decrease in

the accretion flow directly behind the secondary as discussed in

Chapter V. His models also did not show the formation of a hot

central region in the core of the wake.

Carlberg (1978) did an analytical study of accretion based on

the line accretion model which included arguments concerning the

effects of X-ray heating. On a graph of the wind velocity versus

wind density, he showed regions where X-ray heating would and would

not affect the accretion flow (re. his Fig. 3.). Since he assumed a

constant wind velocity, we can assume the velocity and the density to

be the wind velocity and density at the orbit of the secondary. On

plotting the three points corresponding to our models, we found that

all three models lay very close to the boundary between the two

regions. Model 1 lay just marginally below the boundary in the

region of low X-ray impact. Models 2 and 3 lay just above the

boundary, predicting significant X-ray impact on the flows.

Comparison of Model 3 is difficult in light of the variations set up

in the wind. However, Models 1 and 2 appear to agree with his

predictions. The drastic change in accretion rates between Models 1
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and 2 does not appear to be justified by their very slight difference

in position relative to the boundary. This may again be the result

of adding the wind force term to the model.

F. Sumary

This study of X-ray heating in models of accretion from a

stellar wind in massive X-ray binary stars has led to several

conclusions. From Models 1 and 2 we learned that the analytic line

accretion model of Hoyle and Lyttleton (1939) comes within a factor

of 10 of describing the accretion rates in these systems. The degree

to which the line accretion model agrees with the X-ray heated models

was shown to be dependent on the X-ray heating rates in the gas. If

the X-ray heating is sufficient to dominate the hydrodynamics of the

flow, then the accretion rate will be significantly lower than that

predicted by the analytic model.

Our ballistic analysis in Chapter VII suggested that the wind

accretion model could function even under extreme impairment of the

wind force due to X-ray ionization. The wind is severely disrupted

from the normal spherical outflow. A large range of material

velocities was found. The wind flows normally outward within the

X-ray shadow region. Once exposed to the X-rays, the wind will

free-fall under the influence of the primary's gravity. Lower

velocity regions will begin to flow back in towards the primary. The

analysis suggests that sufficient material will be wresent in the

secondary's vicinity and at low enough velocity to allow for

efficient accretion, thus easily supporting the observed luminosity.
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Material flowing inward, however, severely distorts the spherically

symmetric outflow assumed by the radiation driven wind model. The

impact on the wind model is not known at this time.

In Model 3 we found that a striking feedback mechanism was

created in a flow whose wind force could be modified by the X-ray

radiation. We found that as the wind was turned on and off,

variations in density were created which caused fluctuations in the

X-ray luminosity. The fluctuating luminosity led to variations in

the wind density. The characteristics of the resultant X-ray flaring

were very similiar to the slow X-ray flares observed in 4U1700-37.

These results pave the way for future work in this area. A

method is needed to simulate three dimensional effects efficiently

and accurately. A more detailed radiation treatment is also

necessary. This would permit a more accurate determination of the

X-ray impact on the wind, and would make it possible to more

accurately predict light curves for the binary systems. Such

light-curves would provide a closer observational check of the

models.
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