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y ABSTRACT

</
Both the cash flow and the timing of a cash flow are
often found to be random variables in economic analysis.

Very few analytical tools exist to handle such problems.

This research develops analytical tools to aid in the analysis

of such problems. A total of sixteen basic models are
developed for impulsive, single cash flows and series cash
flows involving capital investment problems with mutually
exclusive alternatives. Each model is developed under the
assumption of deterministic, constant interest rates. 1In
addition to the development of models where cash fl?w and
timing of cash flow are independent, dependent models are
also presented. The use of these model elements by an
analyst will allow the utilization of available data in a
more realistic and accurate mode. The models are also of
significant worth in verifying simulation output. .

Other areas covered in this regearch are a éﬁanning
set of models found in the literature, the development of
a taxonomic structure for capital investment problems, a

proposed network logic for solving economic problems, and

applications of this research. { Accession For |
NTIS GRAXI
DTIC TAB 0
Unannounced O
Justification . _ |
By.
| Distribution/
iii Availability Codes
{Avail and/or

Dist Special

?‘ _ ] b

N S




MODELING AND SOLUTION TECHNIQUES FOR
ADVANCED ECONOMIC ANALYSIS

by ;

John H. Estes 1V

has been approved

November 1981

APPROVED:

, Chairperson

Lo

Supervisory Committee

ACCEPTED:

—
-
-~

epartment Chairperson

Dean, Gradua%e Collgge




ACKNOWLEDGMENTS

I am indebted to my chairman, Dr. William C. Moor, for
his constant encouragement and for the many hours of critical
discussion. I would also like to thank Dr. D. A. Rollier
for his guidance and help in the verification of several of
the mathematical elements of this research. I am grateful
to Dr. D. D. Bedworth, Dr. W. E. Lewis, and Dr. R. L. Smith
for their help in the preparation of this dissertation and
for their continual counsel, encouragement, and assistance
in my studies.

A very special thanks is offered to the faculty and
staff of the Industrial and Management Systems Engineering
Department for their support during the time that I have
spent at Arizona State University.

It is with deep gratitude that I thank the United
States Air Force and our great nation for the environment,
confidence, and trust given to me during my career.

I express sincere thanks to my wife, Leanne, who always
said "you can” when I had my doubts, and to my children,
Tracy and Johnny, for their many days of patience while
their father worked on this project. My parents deserve a
special thanks for their confidence during my educational

and career endeavors.

iv

re e . . B L.t SIS L TR ™




TABLE OF CONTENTS

Page
LIST OF TA.BLES L] * L] L] L] L] » v [N L] L] L] L L] [ L] L ] L] L] L] L] x
LIST OF FIGIIRES . L] . L] L L L] Ll L] . L] L] L ] L] L] [ . L] . L ] xii

Chapter
1. INTRODUCTION ¢ o« o « o o o o o ¢ o o o o o s o &
Statement of the Problem « ¢« ¢« « ¢ ¢ ¢« « & « &
Approach to the Problem . « o ¢ ¢ o o o o o &
Organization of the Dissertation « « « ¢« ¢ « &

Background for Engineering Economics « « « « .

O W FNN R

SUMMALY ¢ ¢ ¢ ¢ « o + o 5 5 » o o o s o o s o
2. BACKGROUND FOR ANALYSIS MODELS « + « ¢ « o &+ « « 10
MAPI Method + « + & ¢ & ¢« v ¢ &« ¢ « + o o o « 11
Morris Model o « ¢ o o ¢ « o ¢ ¢ o o o o o o o« 13
Bowman and Fetter Models « « ¢ ¢ « ¢ ¢ « & « « 14
Alchian Model ¢« ¢« ¢ ¢ ¢ ¢ ¢« ¢ o o o ¢ o o o o« 15
Reisman Models « ¢« « ¢ o o o o o + o o s o o o 18
Bernhard Model « ¢« o o ¢ o & ¢ ¢ « ¢ o o« & o o 20
Hillier Models « « ¢ ¢ o o ¢ o ¢ o o o o s o o 21
Canada and Wadsworth Model « « « o« & & o o o » 24

SUMMATY ¢ o ¢ ¢ ¢ o 5 o o s o o o o s o s s o 25

R b LA s O TPRE




Chapnter Page
3. TAXG.QLY FOR CAPITAL EQUIPMENT EAPENDITURES - o 27
Cash Flow Classification « « « ¢« ¢ ¢ ¢ o« &« o « 27

Impulsive Cash Flows ¢« « ¢« « ¢ ¢ o ¢ o ¢ o o« 31

Series Cash FIows « ¢« « ¢ &« ¢« ¢ ¢ ¢« =« o« ¢« o 35

Continuous Cash F1ows .« &+ + o« o« & ¢ o o o o U1

Cash Flow Parameters . . +« « « ¢ « s » » o » 43

Time Classification . . .+ « v « o o ¢ « &« « « 45

Interest Rate Classification . + « ¢« « « « « + 48
State-of-the-Art « « ¢« ¢ ¢ ¢« ¢« ¢« o o &+ « ¢« ¢ « 53

Short Form Classification .« « ¢ « « o+ ¢« ¢« « « 57

General Model .« « ¢« 4 « 4 « o o o+ o o o o & « 58
SUMMALYY ¢ o o ¢ ¢ o s s o o o o o o o s s+ « & 60
Lo ANVALYTIC TOOLS & ¢« o « o o o o ¢ o« o o s o o o« o 61
Nomenclature « o ¢ o o o ¢ o o o o o o s ¢ o o 62
Independent Model Elements « « « ¢« « o« o o« o o 63
C;jqTis - Independent Model Element . . « . . 63
CgqTgg -~ Independent Model Element . . . . . 72
CigTijg - Independent liodel Element . . . . . 74
CgsTgg - Independent Model Element » « « . . 78
CisTeq - Independent Model Element . . . . . 80
CgsTeqg - Independent Model Element . . . . . 81

CigTeg - Independent Model Element . . . . . 83

CgsTcs - Independent iiodel Element . . + » « 85

Summary of Indenendent ‘odel Zlements . . . 55

\

vi




Extension for Finite Cash Flow Streams . .

Dependent Model Elements . + « & o o &+ & o &

CiqTig - Dependent lModel Elements . . . .
C;4Tis - Dependent, Ramp Model Element .
CigTis - Dependent, Decay Model Element .
C;43T3;¢ - Dependent,Growth Model Element

CisTig - Dependent Model Elements . . . .
C;sTig - Dependent, Ramp Model Element .
C;sT3g = Dependent, Decay lModel Element
C;.T: - = Dependent,Growth rodel Element

is~1is
C;5Tcg - Dependent Model Elements . . . .

CisTcd - Dependent, Ramp Model Element .

CisTcd

CisTed

- Dependent, Decay iodel Element
- Dependent,Growth Model Element

CisTeg - Dependent Model Elements . . . .

CigTeog - Dependent, Ramp lModel Element .
CisTeg - Dependent, Decay Model Element
CigTeg - Dependent, Growth Model Element

Summary of Impulsive, Dependent Cash
Flow Elements =« « ¢ ¢ o o ¢ o o s ¢ o s

Cgqlgg - Dependent Model Elements . . . .
Cgglgg - Dependent, Ramp Model Element .
CgdTgs - Dependent, Decay Model Element

CsdTsg - Dependent, Crowth Model Element

vii

Fage

67
93
95
95
96
97
98
100
101

EERTTEER RGP S SRR JARRE T SRR ) xR T e, T




Chapter

CgsTgs - Dependent iModel Elements

CggTgg - Dependent, Ramp Model Element .

CssTss - Dependent, Decay Model Element

CgsTss - Dependent, Growth Model Element

CssTed - Dependent Model Elements

CssTed - Dependent, Ramp Model Element .

CgsTeq - Dependent, Decay Model Element

CssTed - Devendent, Growth iodel Element

CgsTes - Dependent liodel Elements

Summary of Series Dependent iiodel Zlements

Extension of CggTgs Dependent Model
Elements for Finite Cash Flow Streams

Expansion of General Model .
5. DISCUSSION OF MODELS « + « « &
Taxonomic Structure . . . .
Independent ilodels « . . . .
Dependent Models . « « + + &

SUMMATY ¢ o ¢ o s « o o o

6. NETWORK REPRESENTATION OF A CAPITAL

INVESTMENT ALTERNATIVE . . .
Present Worth Development .

summary L] L] . L] . . L] Ll L] L]

viii

Fage

113
115
115
116
116
118
118
119
119

[ERN
AV ]
[N

121
121
125
125
126
128
129

136
136
142




Chapter

7. AFPLICATIONS FOR RESEARCH MODELS « ¢ o o + o« o « 143

Extensions to Traditional Engineering
Economic Problems .« « o« « s o o s s o o o o 143

Capitalized-Cost Comparisons . . « « » » o . 144
Example 7.1 &+ o o o o o o o o s o o o o o 144
Replacement Economy =« « « « ¢ o o s o« o » o« 150
Examrle 7¢2 o o o 0 o s s e s s s ¢ o s o 150
Lease OF BUY ¢ ¢ o o o o« ¢ s s o o s o s o 2 153
Example 7¢3 o o o o o ¢ o o o o o s o o o 154

j Validation and Verification of
Simulation MOGE1S ¢ o + « ¢ o s o ¢ o o ¢ « 158

Development of a Simulation Language . « « + » 159

8. SUMMARY, SUGGESTIONS FOR FURTHER
RESEARCH, AND CONCLUSIONS + .+ ¢ ¢ o & +» « « o 161

SUMMALY + « o o o o o o o o o o o o o o o o & 161
Suggestions for Further Research « « . « « « . 162
; Non-constant Interest Rate liodels . « . . « 163
( Alternate Decision Criteria .« . . « « « « o 163
|

Introduction of Additional Parameters . . . 164

Simulation Model . [ ] L] L . L] L] L] L[] [ ] L] . . L] 165

ConclusSion « « ¢ ¢ o« o o o ¢ o o o o o o s « o« 167
BIBLIOGRAPHY o ¢ o o o o o o o s s o s s s o s o o o o » 168
APPENDIX

I. SELECTED MATHEMATICAL PROOFS AND DERIVATIONS . . 176




Tatle
4.7,
L.8.
4.9.

L.10.
h.11.
Lh.12.

5.1,

5424
5.3,
5.4,
5.5,
6.1,

CigTcq Dependent Model Elements . .
CjsTeg Dependent Model Elements . .
CsdTss Dependent Model Elements . .
CgsTgs Dependent Model Elements . .
CgsTcq Dependent Model Elements . .

CssTeq Dependent, Finite n Cash Flow
MOdel Elemen‘ts . . [ . . L] . L] L] L

Taxonomic Structure and Current
State-Of-the-AI‘t . . . . ] . . . »

Mapping of Current Research to Table
Mapping of Current Research to Table
Mapping of Current Research to Table
Mapping of Current Research to Table

Repair Data for Lathe 1 . . . . . .

xi

122

127
130
131
133
134
140




R L B .

Figure
3.1.
3.2,
3.3.
3.4,

3.11.
b1,
4.2,
b.3.
6.1.
6.2,
6.3.
7.1,
7.2,
743,
8.1.

LIST OF FIGURES

Examples of Discrete Cash Flows . « . .
Examples of Continuous Cash Flows .« . .
Heaviside Unit Step Function . . . . . .
Cash Flow Taxonomic Structure . . . . .
Timing of Cash Flow Taxonomic Structure
Constant Interest Rate . . . « « ¢« « &
Stepwise Constant Interest Rate . . . .
Variable Interest Rate . . « . . « . .+ .
Taxonomic Structure for Interest Rate .

Taxonomic Structure for Capital
Equipment Expenditures . . « « ¢« . .

Taxonomic Structure for Research Models
Ramp Function .« « « ¢ ¢ « ¢ ¢ o & &« »+ &
Decay Function « o ¢ ¢ & « o ¢ o « & & &
Growth Function =« + « & + ¢« ¢ « ¢ « o &
Present Worth of a Single Cash Flow . .
Present Worth of a Multiple Cash Flow .
Network for Repair Evaluation . . . . .

Da]n Construction . . . » . . L] * . L [ ] .

Pole Replacement vs. Stubbing . . . . .
Owned VS: Leased TruCk . . . . . . . » .

Simulation Flow Model . « ¢ « o o s o o

xii

iminanihan et e e <. - e w e e — e

Page
29
30
32
Lé
b7
b9
k9
b9
51

52
56
23

o
137
137
1k1
146
152
155
166

ki



Y

Chapter 1
INTRODUCTION

This research is concerned with modeling and solving
specific classes of long-term capital investment problems
in engineering economics involving mutually exclusive
alternatives with deterministic and/or stochastic parameters.
The analysis is based on the net present worth for each
alternative.

Investment decisions are among the most difficult and
important decisions with which management must cope.
There are several reasons as to why a detailed analysis of
possible alternatives has such a significant impact. First,
the decisions involve large capital expenditures. Second,
the decisions normally have long lasting impact. The
concept of irreversibility in the decision can cause a poor
decision to literally destroy the firm. Many capital
acquisitions costing several thousands of dollars may have
only scrap value if they fail to achieve the objectives of
the organization. In addition, the decision may very likely
commit the firm to a plan that will last several years

prior to reaching a point where a new course of action can

T e
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be determined. Third, and the true justification for this
research effort, the alternative actions invariably involve
a high degree of uncertainty. They involve estimates
concerning many different variables. When the variance
and probabilistic characteristics of these variables are
not considered in the decision process, the decisions are
based upon incomplete information, and in some cases, can

be incorrect.

Statement of the Problem

The requirement to which this research is addressed
is the development of solution techniques for solving
complex alternative selection problems in capital investment.
Such techniques must be able to handle a wide variety of
complex discrete and stochastic parameters. The general '
orientation of the research is to define a taxonomy for :
capital investment model elements, to formulate and analyze |
each type of model element, and to establish solution |

procedures to solve complex problems in the area of study.

Approach to the Problem

The approach to the problem of alternative selection
among capital investments will involve three basic phases.
The first phase will be to develop a cetailed classification
for capital investment models. The second phase will be




3
to discuss analytical tools for solutions {to capital invest-
ment problems and the third phase will be the actual solution
procedures to follow in solving a complex problem.

During phase one of the research, representative
models found in the field of economic analysis will be
reviewed. The review is not meant to provide an exhaustive
enumeration of models. It will introduce the reader to the
current state-of-the-art in solving capital investment
problems.

Fleischer and Ward (1977) have developed a multiple-
classification taxonomy for economic analysis which they
claim to embrace all models in the field. The taxonomy is
based upon separate descriptive classifications for cash
flow, interest rate and planning horizon. Using this
taxonomy, a more detailed classification structure will be
proposed. This classification structure will act as a
guide to illuminate those areas where additional research
is required.

Specific models will be developed and selected for
further study during phase one of the research. These
models will be limited to those alternative selection
problems involving deterministic, constant interest rates.
The cash flow and time parameters will be allowed to take

on discrete or continuous and deterministic or stochastic

|
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characteristics. 1In addition, the area of dependence
between cash flow and time will be discussed for those
models using ramp, decay, and growth functions.

The second phase of the research will be to develop
analytic tools to solve capital .investment problems. A
network illustration of a problem will be discussed as
an aid in illustrating the interrelationships between
cash flow, time, and interest rate. The solution procedures
will assume independent parameters.

Phase three of the research will be to solve a complex
alternative selection problem using a general model and to
show how network analysis can be used as a tool in the

solution process.

Organization of the Dissertation

The remainder of Chapter 1 will be devoted to the
background of engineering economics. Chapter 2 contains
a spanning set of models used to solve capital investment
problems.

Due to the wide variety of problems that can be viewed
as capital investment problems, Chapter 3 will present a
taxonomy of such problems and a general model development.
In addition, Chapter 3 contains a discussion of the problems

addressed in this research.




Analytical tools for solving capital investment
selection problems will be discussed in Chapter 4. A
given alternative will be evaluated by calculating a
present worth and variance of present worth. The remainder
of Chapter 4 will be devoted to the development of a
detailed model for solving complex capital investment
problems. Chapter 5 will be a discussion of results.

The development and justification of a network
representation of a capital investment problem will be
given in Chapter 6.

An analysis of a specific group of alternatives is
presented in Chapter 7. This analysis is presented on the
basis of expected present worth and variance of present
worth for each alternative.

Conclusions and recommendations are summarized in
Chapter 8. Selected mathematical proofs and derivations

are given in the Appendices.

Background for Engineering Economics

Representative textbooks by Fabrycky and Thuesen (1964),
Morris (1960), Terborgh (1949), and Taylor (1964) give
general credit to Wellington, Fish, Goldman, Grant, and
Dean for the development of the three basic methods of
engineering economic analysis (Rate-of-return, Present value,

and Annual cost).




Buck (1975:181) attributes the roots of engineering

economics to the economics of railroad building at the end
of the nineteenth century. The initial work in this area
was accomplished by Wellington (1908), a civil engineer,
who was interested in the structural selection aspects of
railroad building. He assumed that railroads, due to their
monopolistic nature, could never be destroyed. Also, he
set forth the principles of compounding in assuming that
railroads were built for future expansion as well as present
requirements. Future traffic was postulated to increase

on a compound interest basis. His book was addressed to
engineers designing railroad systems. The focal point of
his work centered on the selection of structures based upon
capitalized cost.

Another civil engineer, J. C. L. Fish (1923), published
one of the first books on engineering economics. He believed
that the central concern of engineering economy should be
in choice of investment, rather than structure.

Goldman (1923) introduced a comparative value concept
using compound interest calculations similar to those used
in textbooks today (Lesser, 1969). His work leaned heavily
on the use of compound interest calculations to compare
different alternatives.

In 1930, Grant published the first of a series of books
on engineering economy (Grant, 1930). For the first time,
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short-term investments were studied in depth. Grant (1938:
362-363) pointed out several obstacles to engineering
economy including problems with data leading to “"hunches"
and oversimplification. Other problems of bias on the part
of the estimator, impractical alternatives and legal
obrtacles were also pointed out. Despite these warnings,
engineering economy is still largely an exercise in financial
arithmetic with serious omission of the real problems in
analysis. Grant's comments (1938:81) concerning safety are
noteworthy in that they also apply to any risk in the decision
process.
There is no correct way to introduce into an
economy study this requirement for a margin of
;i§:€¥ before undertaking a proposed investment in

His suggestions to include safety in analysis are by: wusing

conservative data; increasing the required interest rate;

using a mandatory payback periodj or recognizing the need
of safety as an irreducible element in the final choice
between alternatives. These suggestions are based upon
deterministic changes in the data. As stated by Arthur
Lesser (1969:111), "Eugene L. Grant can truthfully be

called the father of engineering economy".
Rate-of-return analysis was introduced by Joel Dean (1951).

A great deal of argument has been noted in the literature
over common errors and solution problems with this method;

however, Taylor (1964:1125) notes that it is preferred by top

management.




The early authors such as Wellington, Fish, Goldman,
Grant, and Dean used data from mortality tables or curves.
Rather than using the probabalistic characteristics of
these data sources, deterministic data were used by cal-
culating means and using these figures as if certainty
was assumed. The models also required that the data be
put into a specified format by whatever "appropriate”
methods and the "appropriate" algebraic manipulations be
used as stated. There is very little discussion as to how
to handle risk and uncertainty other than that these
elements must be considered in the decision process.

Modern textbooks have developed some of the finer
deteails of analysis by injecting risk and uncertainty,
utility theory, and mathematical and computer models. The
list of references for this information is voluminous;
however, specific references to some of the more sophisti-
cated works is required. DeGarmo and Canada (1973), Morris
(1977), Raiffa (1970), Bussey (1978), and Reisman and Rao
(1972) are some of the works which provide powerful tools
for analysis.

The work of Reisman and Rao (1972) is perhaps the most
detailed effort to allow for stochastic extension of model
elements. Interest rates and inflation are considered in

both discrete and continuous modes and can take on random




em— »—.'—“

9
patterns (Fleischer, 1975179). The equations for specific

cases are derived and stated in a set of tables.

Summary

A review of literature points to the concern in society
for economic analysis. The models developed to accomplish
the analysis use a large number of parameters. Since one
of the objectives of this research is to develop a general
model for economic analysis, the next chapter will review

a ripresentative set of models and model parameters.




Chapter 2
BACKGROUND FOR ANALYSIS MODELS

There are several well-developed models used in capital
investment decisions. Since one of the objectives of this
research is to developr a general model to evaluate capital
investment problems, a review of representative models is
essential. The selected models are not an exhaustive set,
but research indicates that they are a spanning set of
models used by industry and represent the "current state-of-
the-art"”. The models span analysis based on parameters
which are deterministic to parameters which are stochastic,
from models which have only a few parameters of interest
(less than or equal to five) to models having as many as
thirty-one parameters, and from models which are concerned
with single item analysis to models which consider a string
of replacements for the equipment under analysis.

A review of these models will point out the parameters
which were considered for inclusion in the taxonomy presented
in Chapter 3. The purpose of the review is not to critique
these models, but should orient the reader to the fact that

many gaps are left in the analysis of a problem due to
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inapplicability of a known model or the requirement to make
simplifying assumptions to the data used in the analysis.
The review will also be used for the general model to be
introduced at the end of Chapter 3.

The models selected for review are the Machinery and
Allied Products Institute (MAPI) Method, Morris Model,
Bowman and Fetter Models, Alchian Model, Reisman Models,
Bernhard Model, Hillier Models, and Canada/Wadsworth Model.
Each model is presented with a brief discussion of the
history of the model along with its mathematical formulation.
The applicability of each model and assumptions made from

the parameters are also covered.

MAPI Method

The MAPI Method was first published in 1958 by George
Terborgh (1958). The MAPI procedures produce an "urgency
rating" which is based upon an after-tax rate-of return
analysis of the net project investment (Terborgh, 1958:153).
The basic method is to:

1. Select an ownership period which may or may not
be equivalent to the economic life of the proposed asset.
2. The existing asset takes on a one year life.

The analysis is a one-more-year rate-of-return analysis to
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12
compare cost between keeping the existing asset an additional
year and replacing the existing asset with the proposed
asset.,

3. The formulas capitalize future sums beyond the
first year at 8.25%. There are four formulas used which
vary only by the pattern of equipment "inferiority” used.

By pattern of equipment "inferiority", the MAPI method is
evaluating the rate of accumulation of depreciation and
obsolescence over the service life. This pattern is assumed
to be straight-line, double-~rate declining-balance, sum-of=-
digits, or expensing.

L, An urgency rating is calculated as a percentage
on the extra investment after recovery of all costs of
buying the proposed asset now rather than keeping the
existing asset one additional year.

One of the four formulas is:

¢ = n(@™w?)(a-1)2 - (1-b) P [ (@"-1) - n(a-1)] - (g-1),
nQ™(Q-1) - (Q"-1)

where

P=wn{1 - w+py+ (1-plz} ,
1-b

Q=1+ i -bpy,

n = service life,

s T LT P SR e e ——




13

p = fixed debt ratio,

¥ = fixed interest rate on debt capital,

z = fixed rate-of-return on equity after tax,

b = fixed income tax rate,

i = fixed capitalization rate,
wl = galvage as a decimal of original cost,

w = ratio of salvage in year n+1 to salvage in year n,

C = next-year-capital consumption expressed as a ratio
of investment P.

This formula is for an accumulated depreciation

following the sum-of-the-year's digits tax procedures

(Taylor, 1964:374). The actual solution to the formula is
graphically solved and a set of worksheets is required.
The model is totally deterministic and assumes discrete

} parameters.

Morris Model

William T. Morris (1964:220-221) presents a generalized

equipment replacement model:

1 Cp,s
TC(Nl.Nz,ooo.Nk,coo) = IO + g -—2]—.—
j=1 (1+i)J
S I N
e U S

(1+1)N1 (1+i)N1 =1 (1+i)N1+j

S I N Cy s
NiN2 4 N2 4 ¢2 N2J

(+1)NIPN2  (143)V1HR2  §=1 (144)N1HN2H]
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I, = initial investment in a machine purchased at the
end of period t,

Ctj = operation and maintenance costs for the jth year
of a machine purchased at the end of period t,

St. = salvage value at the end of the jth year of use
J for a machine purchased at the end of period t,

N, = life of the kth machine in the sequence of
replacements.

The model is deterministic and involves only discrete

parameters with single yearly costs.

Bowman and Fetter Models

Powman and Fetter (1957:367-375) present two models.
The first model is for a chain of machines or replacements
using continuous cost and revenue functions with continuous

interest:
r

v

il

T . . . .
JE [R(t) - E(t)]e’ltdt - B + S(T)e'lT} %1+e’lT+e‘21T+...)}.

-

7 . .
vV = f R(t)e'ltdt - B + s(t)e'lT} 1 .
0 _

{-e=-1T
where

V = present worth of the series of investments,
B = constant initial cost for each investment,
T = 1ife of a piece of equipment,

R(t) = revenue function,

E(t) = expense function,

S(T) = salvage value at T,

i = annual interest rate.
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The second model uses the same basic parameters in a

discrete mode.

T Ry-E, s(z) | [ 1 1
V= - B + 1+ T + o7 + see ’
t=1 (1+1)% (1+)7% | (1+1) (1+i)
T Ry-Ey s(r) ][ - (+1)F
V= $ - B+ 7 7
=1 (1+i) (1+1)7) | (1+4i)"-1 |
where ?
R, = revenue for a given period,
Et = expense for a given period.

The two models require that all investments be identical

with respect to all parameters.

Alchian Model

The Alchian Model is composed of an expression for

expenses and an expression for revenues (Alchian, 1952).

n
E = l; [y + B,(1-e7"1,8)] eTPat + (C-coe~d1n)e™™™

O
; :
+ + C(1-ke~dl) ) o=TimeLd)
j=1

fove)
L . ‘ : .
+ E: Jf [Ae'Z(n*JL) + B(1-e'”t)uLJ] e'r(n+JL+T)dT + Co,
= 0

=
]

fon (pe™*)e T tay
oo
2% J;L[:P . Q(1ue.g(n+Lj))J e-sT-r(n*Lj+T)dT,

+
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initial annual rate of operating and main-
tenance costs of new item now available,

current annual rate of operating and main-
tenance costs of incumbent item,

limiting annual rate of operating and main-
tenance costs (deterioration) of new item,

limiting rate for operating and maintenance
costs of incumbent item,

purchase price of new items,
salvage value of currently used item,

coefficient related to rate of decline of
salvage value of new item,

coefficient related to rate of decline of
salvage value of current iten,

coefficient for rate at which P + Q is approached,

percentage of C remaining as salvage value
immediately after purchase (1-k = loss due to
acquisition and installation),

projected replacement period of new equipment,
economic life of currently used equipment,
initial annual rate of revenue of new item,
current annual rate of revenue of current item,
limit approached by initial rate of revenue
(prices of services and technological changes
in new machines) as time passes,

rate of interest,

coefficient for rate at which annual revenue of
a new machine changes with age of a machine,

coefficient related to rate of change of annual
revenue of current item,

LY




Co(t) =
Al(t) =

D(T)

A(t,T)

e-Tt =

t =
j+1=

Vl(t) =

v(t,T)

The goal
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coefficient related to rate at which B changes
because of new technology and prices,

coefficient of rate at which operating and
maintenance costs of any new item approach the
limiting rate (because of deterioration),

coefficient of rate at which A, + B, is
approached (because of deterio%atioﬁ),

coefficient related to the rate at which the
initial operating and maintenance costs, A,
fall as new items are developed,

turn-in value of present machine t years from
now,

rate of operating and maintenance costs of
present machine in year t,

turn-in value of successor machines at age T
as a fraction of C,

rate of operating and maintenance costs, per
year, of a machine purchased at time t for the
Tth year of its age,

present value of one dollar t years hence at
rate of interest r (continuously compounded),

time in year-units,

number of items in series of machines; j = 0
for the current or first machine,

value of annual rate of services in the year t
for an existing machine,

value of annual services in the Tth year of life

of operation of a machine installed n + L(j-1)
years from now.

of this model is to select the combination of

parameters which yields the maximum difference R - E. This

goal is to optimize the present worth of the appropriate

replacement model by use of computer generated tables or

dynamic programming.
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Reisman Models

Arnold Reisman has published detailed models for
capital equipment investments. There are three basic
approaches used. The first approach is to consider the
initial purchase plus installation cost and the salvage
value for each replacement as a discrete event. The expense
and revenue parameters are considered to be continuous and
all discounting is continuous. The model by Reisman (1971:173)
iss

n-1 _ J n-1

J
-ry T : -r Y (Theq!?
P = go |3 L, h] - ;ng [sj(mjﬂ)e h}-;o ht1 ]
1

J T.+1 .
- T J -
- & [e rhgo n f Ry(t)e at |,
L =

where ;

T, = time at which the hth replacement itenm is i
installed,

o
L}

cost of the jth replacement item which is con-
J  sidered to be the total cost of purchase plus
installation,

= salvage value of the jth replacement,

expense function for the jth replacement which
is assumed to be a continuous function of time,

9
Cte

~

ct

~
n
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R:(t) = revenue function for the jth replacement which

J is assumed to be a continuous function of time,
n-1 = total replacements for the study period.

The next model developed by Reisman (1971:76) considers

all cash flows to be discrete, but the compounding remains

continuous.
that the jth replacement can have multiple cash flows.

Both revenue and expense cash flows are allowed to have

He modifies his basic model further by noting

k cash flows within the economic life of the jth replacement.

The model is:

n-1 . n-1 {;( )]
Ty Th T Y (They
LB b [Brvord
rn-l
- - T
+ jzo e rhz Th ( ZE e rq‘é (3+1), q)J
rn-l
‘rZTh rZT( +1), )]
-—jgo e h=0 (ZORJP 'j q

The following model treats all cash flows and dis-

counting as discrete.

T = d U\
P= "JZO Bj (1+i) Z }JJ Lgosj(l‘j..-l)(lﬁ.) [-hgo hHJJ

~n-1

+ Z (1+1) hggh]] [ZE (1+i) qg (j""‘)'q]]
rn-1 j

- Z (141) 'h,o ] [ anp(ui) ['qgo (3+1)4q
L j=0 p=0

I R
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It should be noted that k cash flows are allowed for both
revenue and expense functions for each replacement.

The next set of important work accomplished by Reisman
was published jointly with Arza K. Rao (1973). The mono-
graph is by far too extensive to review in this paper. The
research sets up seven deterministic models, similar in
structure to the before mentioned Reisman models, which are
used frequently in engineering economics: compound amount
of a single payment, present worth of a single payment,
amount of an annuity, periodic deposits to accumulate a
future amount, present worth of an annuity, capital recovery,
and present worth of a deferred annuity. Each of the seven
models is then evaluated for discrete and continuous com-
pounding. The models are further extended by allowing the
cash flows, rates of discounting or compounding, and rate
of inflation to be random variables with specific, known
distributions. In addition, the interest rate and inflation
rate are allowed to be time dependent. The timing between

cash flows are assumed to be deterministic and discrete.

Bernhard Model

Richard H. Bernhard (1962:19) presents a basic model

for a "proposed productive investment".




4_____________________-_-...-..-.----..--...-..-.-....

21
P=Qy+ _Q1 + Q2 + .o Qs
(1+4i9)  (1+1,)(1+i,) (14i4)(2+15) 00 a(24i)
+ cee + Qn .
(1+ig)(1+in) v (1+ip)
where
P = present worth,
Qs = net incremental return to be gained at the end of

period s. (s = 0,1,2,...,n),

[ ad
n

rate of interest on borrowing or lending in any
quantity during period s.

The basic model considers all cash flows as lump sum
end-of-period. The deviation from traditional models for
discrete cash flows is in recognizing that the interest may

véry between periods.

Hillier Models !

The Hillier Models (1963:1449) consider cash flows as
random variables. The specific relationship between the
random variables is assumed to be independent or perfectly
correlated. Fleisher (1975:77) points out that Hillier's
work was the most important contribution to capital budget-
ing in the 1960's. Although specifically designed for
capital budgeting, the basic models handle any random
variable cash flow with known means and standard deviations.

The means and variances for the present worth of the cash
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flow are then handled analytically. The present worth for

an investment is:

P = n Xj
j=0 (1+1i)9
where
Xj = random variable cash flow during period j having
mean/{ j and standard deviation Os»
i = interest rate.,

Assuming that the cash flows are all independent, the

mean for the present worth of the entire cash flow is:

X
Hp = -—'j'—'
=0 (1+1)9d .
The corresponding variance is:
2
g% = § 9
Pj%0 (141)33 7

These observations are fairly straightforward; however,

Hillier next develops the random variable xj ast

xj = Yj + Zj(i) + Zj(z) + e Zj(m).

where
Yd = independent cash flow in period }J,
z.(K) = kth distinct cash flow which is perfectly
J correlated with the corresponding cash flow

in other periods.
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Since Hillier assumes that the random variables are
close to normal, the present worth should be close to

normal with

m
k
E(Yy) + L E(z )

m n < K ) % k=1 '
P %0 le)il =0 (1+1)3
and
n Var (Y.) m n \/;ar (Z.(k)) 2
62 = J )+ J .
P 420 U(1+)ZT | x50\ j50 (1+1)i

There are two deficiencies in the models. First, the
assumption of normality may be questionable in many cash
flow structures. If it is assumed that the number of cash
flows is large, the resulting present worth will still
have an approximate normal distribution; however, if the
number of cash flows is not large, then only limited
statements can be made using the Tchebycheff inequality.

The second questionable assumption is in considering
that the correlated cash flows are perfectly correlated.
The basic concept of cash flows being completely indepen-
dent or perfectly correlated is at best questionable
(Hillier, 1963:449), To consider cash flows which fall
somewhere between mutual independence and complete corre-

lation requires a covariance matrix with proper weighting

e et




factors for each term. From an analytical point of view,
the development might not be too difficult; however, from
a practical standpoint, it would appear to be difficult

enough to obtain good values for means and standard

deviations

type data from investment analysts.

The model proposed by Canada and Wadsworth (1968) is
PV($) = P + D(1-e"TT)/r + se~TT,

where
PV($)
P
S
r
Since

each year,

only in using a uniform series present worth calculation.
The importance of the Canada and Wadsworth work is that
they extended the traditional model for conditions where

two variables such as salvage value and time could be

dependent.

S, Ty D, and P to be dependent. If any two of the variables,

24

and not very realistic to obtain covariance

Canada and Wadsworth Model

= present worth of the cash flow,

initial investment,
= salvage value,

nominal continuous interest.

D is a constant receipt or disbursement for

the basic model differs from classical models

This was accomplished by allowing the variables
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say S and T, are dependent while the remaining variables

are independent, then the variance of PV($) is approximately

equal to
6Pv<$)) 2 v(p) + épvm)z V(D) + [6PV($))2 v(T)
P D : T

+[0Pv(3)

S

2 y(s) + 2(6PV($))(5PV($)) Cov (T,S),
T S

where

V = variance,

6

An additional term is added for each set of dependent

partial derivative operator.

variables.

Summary

The models presented in this chapter illuminate the
large number of intericlated parameters which are considered
to be of importance in economic analysis. Authors have a
rather significant difference of opinion as to which set
of parameters should be used. Although each model is
correct when viewed from the specific assumptions made in
the modeling environment, departures from these assumptions

invalidate the model.




The next chapter will be devoted to examining the

parameters used in economic analysis to develop a taxonomic
structure to classify different problems or models. This
effort will be used to approach the modeling problem by
examining various model components or elements. The taxonomic
structure will represent an orderly method of presenting

models and will also illuminate those areas where additional

research is needed.




Chapter 3
TAXONOMY FOR CAPITAL EQUIPMENT EXPENDITURES

The three basic parameters for all capital equipment
expenditures are cash flow, time, and interest rate. Each
of these parameters can take on a multitude of various
characteristics such as being discrete or continuous,
deterministic or stochastic, independent or dependent, etc.
A review of the literature indicates that the majority of
these parameters, along with their associated characteristics,
have not been researched to the point of model development.
This chapter will be devoted to the design of a taxonomic
structure for capital equipment expenditure problems.

Two major benefits are derived from the taxonomic
structure. First, it is imperative that a classification
scheme be used to point out areas where research is limited
or non-existent. Second, the taxonomic structure presented
in this chapter is used to illustrate various models in a

logical or orderly format.
Cash Flow Classification

The cash flows in a problem are not limited by the

classical approaches to solving engineering economic
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problems. In the classical approach, one considers all

cash flows to be of the same class (e.g. deterministic,
continuous, etc.). However, in the real-world problem,

one might consider some costs such as scheduled maintenance
to be deterministic, lump sum, and independent; whereas,
another cost such as electrical consumption might be
deterministic, continuous, and dependent upon operating time,
while a revenue of salvage value might be stochastic, lump
sum, and time dependent. With this in mind, it appears that
one must first consider a cash flow model as being composed
of different cash flow model elements. Cash flow model
elements can be dependent upon each other, as well as de-
pendent upon time. When one is working with dependent cash
flows, a knowledge of the covariance matrix for the cash
flows is required to calculate the variance of the present
worth. If one can assume that the cash flows are independent,
the computation of an expected present worth and variance of
the present worth is significantly simplified.

It is also important to distinguish between expenses
and revenues. A simple sign convention, as normally used,
takes care of this problem.

For simplicity, one might consider cash flows as being
either continuous or discrete. Figure 3.1 is a representation
of possible discrete cash flows and Figure 3.2 represents

possible continuous cash flows. A continuous cash flow as

a o
sesitentitesfiuse, R R I WS PPN P PSR
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Figure 3.1

Examples of Discrete Cash Flows
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Cash Flow (C)
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Time (t)

Figure 3.2

—

Examples of Continuous Cash Flows
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used in this research, includes piecewise continuous cash

flow functions. By piecewise continuous, it is meant that
within a time interval there are a finite number of dis-

continuities and that the right and left limits for each

cash flow within a subinterval exists. For example, Figures

3.2(b) and 3.2(d) represent piecewise continuous cash flows.

When discussing discrete cash flows, it seems relevant
from a mathematical standpoint to distinguish an impulsive

cash flow from a series cash flow. An impulsive cash flow

is essentially a cash flow which is not related to any other

cash flow (e.g. independent). Examples of impulsive cash
flows might be the initial purchase cost or the salvage
value of a piece of equipment. Obviously, any series type
cash flow composed of n elements could be handled as n
impulse functions. However, the ease of mathematically
handling series cash flows justifies the additional effort

in developing both models.

Impulsive Cash Flows

Several authors such as Fleischer and Ward (1977:14)
and Reisman (1971) argue that continuous cash flows and
continuous discounting should be used for analysis. The
concept of continuous cash flow and continuous discounting
arises from the argument that expenses and earnings are
created every second, minute, hour and day of plant oper-

ations.
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Using continuous cash flows and continuous discounting
requires that discrete cash flows be treated as impulse
functions. As developed by Spiegel (1967:1255-258), the unit
impulse function (t-ty) is defined by its integral property;

oo .
J[%(t) & (t-a)dt = F(a), (3.1)
~ 00
where F(t) is any function that is continuous at t = a.

If P(t) is set equal to 1, then

[o%)
[(S(t—a)dt = H(t-a) (3.2)
-0 [1, t=a

- 0, t<a,

where H(t-a) is the step at t = a as illustrated in
Figure 3.3 and is referred to as the Heaviside unit step

function.

H(t-a)

v
ct

—
!
|
'
!
a

Figure 3.3
Heaviside Unit Step Function
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One can now look at the Laplace transform of O(t-a) as

being equal to

00
fe-rt O(t-a)dt = T2, (3.3)
0]

By Equation (3.1), one can formally derive an expression

using a cash flow (C):

oo
fcfrt O(t-a)at = ce~T2, (3.4)
0

Equation (3.4) is the familiar form for the present worth

of a single future cash flow occurring at time = a and with

continuous interest rate r.
Table 3.1 shows a variety of selected functions and

their associated present worth formulas. These functions
have been used by Hill and Buck (1974:121) and other authors
due to their common occurrence in cash flow problems. The
step function is found commonly in operating costs, the
ramp function is typically used with maintenance and deter-
joration, the decay function can be associated with startup
and learning costs, and the growth function is commonly
found in wear-in maintenance costs. These formulas are
developed under the assumption of continuous compounding.
They may be derived for discrete compounding by denoting i
to be the effaective interest rate and deriving:

i= eF-1

1 - -t & ( .5)
oot e 3
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Table 3.1
Selected Single Cash Flows and Transforms
for Continuous Compounding

Type F(t) Present Worth (Laplace Transform)
Step c Ce-Tt

Ramp ct Cte-rt

Decay Ce-at Ce-(a+r)t

Growth  C(1-e-at) Ce~Tt(1-o-at)

Legend:

C is the scale factor
t is the time interval
r is the continuous interest rate

a is a constant
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A simple substitution of Equation 3.5 allows the develop-

ment of the pregsent worth with discrete interest as pre-
sented in Table 3.2.

The procedure for handling impulse functions is
rather simple. Select the appropriate type of cash flow
which is representative of the expense or revenue being

considered and multiply by e=T¥ or _ 1 . The justification
(1+1)t
for this effort will be further developed under continuous

cash flows.

Series Cash Flows

As pointed out by Taylor (1964:31), disbursements
for some equipment increase with the life of that equipment.
By similar logic, other disbursements and/or revenues may
increase or decrease during the life of the equipment.
Typically, the cash flows are placed into partitions with
signed components and multiplied by the appropriate series
factor. These series factors require single calculations
for each time series rather than by treating each point in
time as a separate calculation. This analytic advantage
increases with the number of points considered. Traditional
approaches consider cash flows which are uniform, arith-

metic, or geometric series starting at time equal to zero.
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Table 3.2

Selected Single Cash Flows and Transforms
for Discrete Compounding

Type F(t) Present Worth
Step c c
(1+41)7®
Ramp C+t ct
(1+i)*
Decay ce~2at ce-at
(1+1)%
Growth C(1-e-2%) C(1-e-2%)
(1+i)®
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Hill and Buck (1974:120-125) have expanded the traditional

analytic tools by using Zeta transforms which serve
engineering economic analysis of discrete time series much
in the same manner as the Laplace transforms do those with
continuous cash flow functions.

‘ Consider a function F(n) which describes a cash flow
at time n. The present worth of this cash flow at an
effective interest rate i is:

F(n)(1+i)-n,
This assumes that i has been adjusted or that n is a
multiple of the interest compounding period. Given that
F(n) is a series of end-of-period cash flows, the present
worth would be:

% F(n)(1+i)-1,

n=0
where F(N) is the last cash flow. Hill and Buck (1974:83)
note that this looks like the Zeta transform

o
F(nT)(1+27)" "

n=0

after one replaces i with z, considers T=1,and assumes an

infinite series of cash flows. One notes that Zeta trans-

forms can be used directly to obtain present worth

calculations for any series having a Zeta transform. Since
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Zeta transforms are not commonly found in mest handbooks,
the Z transform tables can be used by noting that

Z = 1+2T.
Table 3.3 is generated by using Z transforms and then
converting to the appropriate Zeta transformation (letting
i=2). To illustrate this procedure the Z transform for
F(nT) = CnT is

CTZ

(2-1)2,
which is equal to the Zeta transform

CT(1+iT) = CT(1+iT)

(1+4i7-1)2  (a7)2 .

Authors, such as Taylor (1964:26), develop series cash
flows which start at time equal to one rather than zero.
To convert Table 3.3 to formulas for cash flows starting
at time equal one, the cash flow function need be only
evaluated at n=0 and subtracted from the appropriate Zeta
transform entry.

For discrete, series cash flows which do not start at
time equal to zero and do not continue infinitely, adjust-
ments have been derived by Hill and Buck (1974:123).

Table 3.4 represents series cash flows which are translated
forward b time units, start at time h (where hZb), and
stop at time k-1 (where k=>h).
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Table 3.3
Zeta Transforms for Discrete Series
Cash Flows at Interest Rate i
Type of
Series F(nt) .Y 2eta Transform
, ¥
P
Step c -~ C(1+iT)
M
ir
Ramp Cnr C(1+iT)T
—
(iT)<
Decay Ce~ar? C(1+iT)
iT+1.e-aT 1
Growth C(1-e-arT) - 1
C{1+3 — TT—
DT e
Source:
Thomas W. Hill and James R, Buck. nzeta Transforms,
Present Value, ang Economic Analysis." AIIE Transactiong,

6' NOO 2 (1974)1

21.

e 2 N
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Table 3.4

Present Value of Shifted/Translated Series
Cash Flows with Discrete Interest i

Type of
Series F(nT) Zeta Transform
c .\1-h <11-k
Step c 1 ((1+1) - (1+1)1-
Ramp Cn c
iz[(1+i)1'h - (1+i)1'k]
c 1-h c 1-k
+ 3 (h-b)(1+i) - 3 (k-b)(1+i)
Decay ce™aR C(1+i)1‘b-[ e-ha _ g-ka ]
1+i-e”2 [ (1+1)h  (143)k

Growth  C(1-e-2n) C(1+i)1‘b[1+i-e'a~ie'hi
1+i-e~2 | i(1+i)h
- 1+i-e‘a+ie'ka]
1(1+1)K

Source:

Thomas W. Hill and James R. Buck. "Zeta Transforms,
Present Value, and Economic Analysis." AIIE Transactions,
6. No. 2 (197"“). 1230
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The logical extension of the material in Table 3.4 is
to develop the same discrete series cash flows under
conditions of continuous compounding. By observing the
relationship between i and r in Equation 3.5, the results

displayed in Table 3.5 can be easily derived.

Continuous Cash Flows

The derivations for continuous cash flows can be
theoretically derived with both continuous and discrete
compounding of interest. However, when discrete interest
is used, the model is really a subset of discrete cash |
flow with discrete interest since the integration of the
cash flow function can be treated as a single lump sum
element. For this reason, discrete compounding is part
of the taxonomy only for the need of completeness. In
application, one would simply integrate the cash flow
function over time and multiply by

1
(1+1)%.

A continuous cash flow starting at time h and con-
tinuing to time k is a function of time, C(t). This
function is then multiplied by et to discount the cash

flow to the present and integrated over the time period

to develop an equivalent present value as:

X
f c(t) e~Tt at. (3.6)
n




Table 3.5

Present Value of Shifted/Translated Series
Cash Flows with Continuous Interest r

L2

Type of
Series F(nT) Zeta Transform
Step c c [er(l-h) - er(1-k)}
ez-l
Ramp Cn ¢ [er(1_h) - er(l-k)]
(eT-1)2
+ S -[(h-b)(ar(l-hh}
ef-1
+ C [( k_b)er(l-k)]
el-1
Decay Ce™-an cer(1-b) [e-h(a-r) - e-k(a-rﬂ
ef-e™2 :
Growth C(1-e~3R)

cer(1i-pb) [er_e-a-(er-1)e-ha

ef-e-2 (eT-1)erh
- _er_e-a+(er_1)e-ka]
(er,l)erk
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Buck (1975:81) and other authors give credit to
Grubbstrom (1967) for recognizing Equation 3.6 as a Laplace
transform. This is a significant realization since a
table of Laplace transforms found in many mathematical
handbooks such as Selby (1975:506-515) can be used to
convert many continuous cash flow functions to a present
value equivalent. Table 3.6 is an extension of Table 3.5
for continuous cash flow functions with continuous com-
pounding.

The use of Laplace, Z, and Zeta transforms in analysis
have two important properties when available for use in
modeling engineering economic problems. One of the two
properties is the linearity under addition and multipli-
cation by a constant which allows one to take transforms
of component cash flows, scale each, and then sum them.
Another useful property is the ability to shift the time
pattern forward. A number of transforms have been derived
and are available in several references. Vhen these
transforms do not exist, they must be either derived or

more involved calculations must be made.

Cash Flow Parameters

In addition to classifying each flow as impulsive,

series, or continuous one must also look at the parameters
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Table 3.6

Present Value of Shifted/Translated Continuous
Cash Flow with Continuous Interest r

Type of
Cash Flow c(t) Present Value (Laplace) Transform
Step c C(e-Th.e-Tk)
r
Ramp Cct C(e-Th_e-rk)
r2
c .
+ 7 | (h-b)e~Th . (k-b)e-Tk
-at -br
Decay Ce Ce [e-(a+r)h _e-(a+r)k]
at+j
Growth C(1-e~at)

% (e-rh - e-Tk)

-rb
Ce [e-(a+r)h - e-(a+r)k}
a+r
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associated with the actual cash flow. In the model elements
presented prior to this point, deterministic cash flows have

been assumed. This assumption is usually made in traditional

analysis; however, the actual cash flows can also be random |
processes. The assumption that cash flows can be random |
variables has been incorporated into the cash flow taxonomic
structure illustrated in Figure 3.4.

When a specific cash flow is studied, the timing of
that cash flow must also be studied. The timing of a cash

flow is the next subject of consideration.

Time Classification

Once a cash flow has occurred, the duration or time
of occurrence is known. However, prior to occurrence, the
timing of the cash flow may be either deterministic or
stochastic. Once again, discrete timing is divided into
impulsive timing for a single time element or series timing
for a number of time periods. Figure 3.5 represents the
time classification.

After the cash flow and the timing of that cash flow
have been determined, the decision must be made for an
appropriate discount rate. This is the third element to

be clagsified.
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Interest Rate Classification

Three basic interest rate classes are considered by
Fleisher and Ward (1977:121). These are constant, stepwise
constant, and variable constant interest rates. Three
examples of possible interest rates are illustrated in
Figures 3.6, 3.7, and 3.8.

The interest rate is defined over the entire time
interval of a specific cash flow. The actual discounting
takes place at the end of a unit of time or continuously
throughout the period. In addition, the interest rate can
be either deterministic or stochastic. In the deterministic
constant case, the interest rate (i) is fixed over the
entire discounting period. In the stochastic constant
case, the interest rate (i) is a random variable that,
once deiermined, is constant over the entire discounting
period. In the deterministic stepwise constant case, the
rate is constant between each of a finite number of dis-
continuities. The end points may not agree with the
discounting time period which will require an adjustment of
the discount rate. The stochastic stepwise constant case
has a constant mean for each time interval and each random

variable i, 12. oo in may be independent or correlated

with one another. In the deterministic variable case,
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one discounts the cash flow by multiplying by

:@t r(t)dt.

e
This is a continuous time process. A similar expression is
used for the stochastic variablé case. Figure 3.9 illustrates
the taxonomic structure for the interest rate.

Inflation has been considered by several authors as a
factor which must be considered within an analysis. The work
of Reisman and Rao (1973) develops both the justification
and procedures for handling inflation. For the purpose of the
taxonomic structure, it is assumed that the discount rate must
be appropriately modified to reflect inflationary factors
and does not have inflation as a separate classification.

The taxonomies in Figures 3.4, 3.5, and 3.9 must be
combined to visually depict the taxonomy for capital
eguipment expenditures. This has been accomplished in
Figure 3.10. A particular calculation for present worth

would be formulated by taking three paths through the

network. As an example, a traditional engineering economic
problem is:
Cash Flow - expense, impulsive, deterministic,
Time - impulsive, deterministic,

Interest Rate - constant, deterministic.
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Note that a classification distinction has not been

made for continuous versus discrete interest since it has
been shown that this involves a simple mathematical
substitution. In addition, the subject of dependence among
the elements of cash flow, time, and/or interest rate has
not been visually depicted. Rather than redrawing Figure
3.10, note that a heavy dashed line could be placed between
any of the three basic parameters to signify dependence.
The path through the impulsive/series classification must

agree for both cash flow and time.

State-of-the-Art

The current state-of-the-art for economic analysis
problems is reviewed by Fleischer and Ward (1977:24, exhibit
3). Their work is reproduced in Table 3.7. An extensive
review of the literature since 1677 does not indicate any
additional entries. As can be noted from Table 3.7, a great
deal of research is still open in the field of engineering
economics. Expected values for some decision criterion

such as present worth (Young and Contreras, 1975) have been

developed for some of the missing entries in Table 3.7;
however, the corresponding variances have not been developed.
In addition, only the works of Hillier (1963, 1966) develop

dependent models.
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Table 3.7

Taxonomic Structure and Current
State-of-the~Art

H Cash Flow Intere: : Rate
Stepwise
Amount Timing Constant|Constant |Variable
How | Cert When |Cert Det Sto| Det | Sto| Det| Sto
. Det Cla 1 Cla 1 Cla
. Disc Sto
g 2 Det | Cla Cla Cla
E Cont Sto 2
3 Det | 4,3,2| 1 1
B 8 Disc Sto ;
0
Det
Cont [ Sto
Det Cla Cla Cla
. 4:, Disc Sto
3 g QA Det Cla Cla Cla
§ Cont Sto
B Det | 2
o Disc
o 3 Sto
n
Det 2
Cont Sto
1-Reisman and Rao (1973) Cert-Certainty
2-Ward (1975) Det-Deterministic
g- Hillier (1969) : Sto-Stochastic
| -Hillier (1963) Cla-Classical
i . Cont-Continuous
Disc-Discrete
i Source:

G. A. Fleischer and T, L. Ward. "Classification of i
1 Compound Interest Models in Econonic Analysis." Engineering
i Economist, (Fall, 1977),24.
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Any one of the missing entries in Table 3.7 is worthy
of research. The wide use of minimum attractive rate of
return (MARR) in economic analysis indicates that the area
for initial research should be restricted to the missing
entries in Table 3.7 under constant, deterministic interest.

Grant, Ireson, and Leavenworth (1976:97-100,189-195) pointed

out the value in using MARR in that the purpose of an
economic study is to determine if an investment should be
made. They suggested that this be done on the basis of
k determining whether the investment can be recovered with

at least a stipulated MARR. For these reasons, the models
selected for research in this paper were restricted to the
missing entries in the impulsive cash flow section of
Table 3.7 under constant, deterministic interest. Normally,
an impulsive cash flow is considered to be a single payment
or expense such as salvage value or initial purchase cost.
i This research expands impulsive cash flow research to in-

clude series (multiple impulsive) cash flows.

In view of the developed taxonomy, the models for
Table 3.7 are illustrated in Figure 3.11 by taking one
branch through cash flow and one through time. The path
through the impulsive/series level must agree for both

cash flow and time. The dashed line indicates dependence

between time and cash flow. The lack of a dashed line
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would indicate independence. If we assume that revenue
and expense can be treated with an appropriate sign con-
vention, the specific models can be enumerated with a

short form classification.

P Short Form Cléssification

The concepts for the classification scheme have been
addressed in prior sections. A short form classification
scheme is developed in this section to enumerate those

models studied in the research. The proposed form is:
CxyTzy,
where

Cash Flow j

Q
]

T = Time
i impulsive cash flow
* [s series cash flow
d deterministic
[s stochastic

i impulsive time

Z = |s series time
¢ continuous time
A bar placed over C and T indicates dependence between

cash flow and time. Notice that interest rate is not
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included since each model assumes deterministic, constant
interest. Using this classification, the specific models
to be researched are presented in Table 3.8 for independent
cases. Since these models are repeated for dependent
cases, a total of 16 models are -developed. It is important
to note that each model is a cash flow entity where a
nodel for the actual present worth of a particular alter-
native could be composed of a large number of independent
models for each cash flow entity. Each of these models

are developed in the next chapter.

General Model

The general model for a present worth analysis is
stated as:
E(PV) = E(P) + E(E) - E(R) - E(S),

where

Expected value operator
Purchase price

Expenses

b+ B & B v B
]

= Revenues

S

Salvage value.

Any one of the elements (P, E, R, S) may or may not
contain multiple cash flows. This general model is
expanded in the next chapter to offer more detail to the
analyst.
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Table 3.8
Independent Parameter Research Problenms
Model Cash Flow Time
CiaTlis impulsive impulsive
deterministic stochastic
Csdes series series
deterministic stochastic
CisTis impulsive impulsive
stochastic stochastic
CssTss series series
stochastic stochastic
CisTeq impulsive eontinuous
stochastic deterministic
CssTcd series continuous
stochastic deterministic
CisTles impulsive continuous
stochastic stochastic
CssTes series continuous
stochastic stochastic
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Summary

The taxonomic structure for capital equipment expen-
ditures illustrated in Figure 3.10 represents an orderly
and logical format to present models in the following
chapter. Several characteristiés of the parameters have
been left out. A more detailed structure might include the
actual functions being used for each parameter and con-
siderations for inflation. As pointed out by Fleischer and
Ward (1977:28), "A truly comprehensive classification
scheme would be so extraordinarily complex that it would
be virtually without utility."

Chapter 4 presents models for the selected taxons in
Table 3.8 and concludes with a more detailed model for

analysis of capital equipment expenditure problems.




Chapter 4
ANALYTIC TOOLS

The models proposed for study during this research
assume lump sum cash flow elements which are either impulsive
(single cash flow) or series. Analytic tools for indepen-
dent and dependent models are presented in this chapter
with a concluding section on a general model development
for a capital investment alternative selection problem.

A complete model for a specific investment alternative
may contain multiple impulsive or series cash flows,
however, each cash flow element is assumed to be independent
of all other cash flow elements. This assumption is
required if one is to consider time as a random variable.
The interest rate is assumed to be independent of both
cash flow and time. In addition, the interest rate is
agssumed to be constant over the time horizon and determin-
istic in nature for all model elements. Although models
are developed where cash flow is dependent on time, the
nature of this dependency is restricted to ramp, decay,
and growth functions.

Expected value of present worth and variance of

present worth are developed for all of the independent
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model elements, and expected value of present worth and
variance of present worth are developed for all impulsive,
dependent model elements. The variance for the Cedlss
dependent, ramp model element is also derived. The complexity
of the expression degrades the use of it as an analytical
tool. For this reason, the remaining series, dependent
models do not have a variance expression; however, the
expected present worth is derived for all of the series,
dependent model elements.

Due to the large number of discrete and continuous
distributions, a complete listing of analytical tools for
all distributions would be too extensive. The approach
ﬁsed in this research is to develop general formulas and

then show applications with commonly used distributions.

Nomenclature

The short form classification system developed in
Chapter 3 is used to introduce each model. The symbol T
is used for time, and t is used for a specific numerical
value of time. Similarly, C is used for a cash flow
designation, and ¢ as a specific value. The symbols /[ and
crz are used for mean and variance respectively and are

subscripted with ¢ or t for time or cash flow. The symbols

1 R R TGN e L LT . Lo = St
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E and V are used for the expected wvalue operator and
variance operator respectively. Present worth is denoted
by PW. Due to the extensive use of moment generating
functions, My and Mc are used for the moment generating
functions for the time and cash ‘flow distridutions.

The independent models are presented by first deriving
the impulsive model elements and then extending
that model for series model elements. This format was
selected as a logical development for the independent
models. Since variance expressions are not developed for
the series, dependent model elements, all of the impulsive,
dependent model elements are presented prior to the series,
dependent model elements.

The last section in this chapter contains a more
detailed general model which extends the general model
presented in Chapter 3 to include the model elements

presented in this chapter.

Independent Model Elements

Cash flow elements in this section assume all cash
flows are independent of time. As is normally done, the

present is considered to be at time equal to zero.

C;4Tig - Independent Model Element

The first model discussed is when the cash flow

is impulsive and deterministic, such as with an
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overhaul, and time is impulsive and stochastic. If one
designates C as some future cash flow (impulsive and
deterministic) then the present worth of C is

PW = C-e~TT,
and the expected present worth, .due to independence of
cash flow and time, is

E(PW) = C- E(e~TT)., . (4.1)

Since T is a random variable with a given probability law,

the solution to Equation 4.1 is easily found by

o0
C-E(e=fT) = ¢ -y e-Tip(%) (4.2)
=0
where
t = (0'1.2|3’ .0.),
P(t) = probability of T taking on a specific wvalue t.
Since
(o o]
Y eTtp(t)
] t=0

is the moment generating furiction for P(t), Equation 4.2

can be written as

E(PW) = CMy(-r), (4.3)

where M.(-r) designates the moment generating function of

P(t). The derivation of the expected present worth for

this model was derived by Young and Contreras (1975).
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Table 4.1 represents some common discrete distributions
and their respective moment generating functions. To find
the expected present worth for a C;4T;s model element, one
merely multiplies the cash flow, C, by the appropriate
moment generating function for the time distribution.
Before proceeding to the development for the variance
of the present worth for this model, an important property

for present worth analysis is required:

E(e-rr):e-rE(T). (4.4)
The vast majority of engineering economic analysis assumes
that Equation 4.4 holds as a strict equality, as an
approximate equality, or simply ignores the effects of
random variables. Obviously, in those cases where the
data is completely deterministic, Equation 4.4 does hold
as a strict equality.

The proof of Equation 4.4 is derived by a Taylor
series for e-IrT expanded about the point T =[l, and is
found in Appendix I (1). Ignoring the subject of variance,
Equation 4.4 points out where a present worth analysis can
be in error. When one of the following conditions exist,
the present worth analysis of a group of mutually exclusive

alternatives could lead to an incorrect selection.
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Table "" o1

Discrete Probability Laws and Their
Moment Generating Functions

66

Distribution Probability Law Mg (-r)
Binomial P(t) = (i‘)ptqn-t. t=0,1,...,n (pe~T+q)R
: - %-1 - -r
Geometric P(t) = pq”™", t=1,2,3,¢.. pe
0, otherwise 1-ge~T
- t -
Poisson P(t) = & A‘A.. t=0,1,2,3,00. e'Ue ~1)

+!
0, otherwise

o
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1. One or more of the alternatives involve
random variables. Since the present worth is underestimated
for an alternative involving time as a random variable, an
incorrect selection is possible.

2. A budget limit for the selection of alter-
natives is required. Ignoring the idea that time is a
random variable may place the least cost item under the
budget limit when it is in fact over the budget limit.

The significance of this error is important and must
be evaluated. As an example, let us assume that the time
between major breakdowns for a capital investment follows
the Poisson distribution with mean = A= 1 year. Further-
ﬁore. let us assume that the repair cost is independent of
the time before a breakdown and is equal to $10,000. The
nominal interest rate is 10%. The expected present worth
by Equation 4.3 is:

E(PW)

C-Mt(-r)
-.10
$10,000 e(e -1):: $9,092.25.
Using E(PW) = C - e'nut. leads to a solution of $9048.37.

This is a .483% error. Obviously, this is a very small
error and should not significantly effect the selection

process if this alternative was among other similar capital

investment alternatives. Now let us assume that the
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nominal interest is allowed to increase. The percent
error can be obtained from:

oMy (-r) - Ce-THE
CM¢(-r)

For the Poisson distribution, the error is

4 1000

ele-T _  A(1-r)

ele"r

*100.

Table 4.2 illustrates the error as the nominal interest .
rate increases. The question of what is a significant
error is rather academic; however, the error does increase
rapidly as one uses nominal interest rates over 10%. The
current use of interest rates well in excess of 10% would
support the requirement that random variables should be

taken into consideration for a present worth analysis.

The variance for the present worth of the CjqT;¢

independent model can be derived from

v(PW) = E(PW2) - [E(PW)] 2

c? [E(e'rT)2 - [E(e‘rT)] 2’] .

The derivation is given in Appendix I (2) and is shown to

reduce tos i
V(PW) = cz[ My(-2r) - M (-r)] 2].
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Table 4.2

Error for CjqTljg Independent Model

(Time Poisson Distributed
With A\ = 1 year)

r e T ele7F-1) % Error

0 1 i 0

.10 <9048 <9092 483

.20 .8187 .8342 1.856 |
.30 .7408 . <7717 4.000 }
40 6703 .7192 6.790
.50 .6065 6747 10.105 ;

.60 . 5438 6369 13.823

i
i
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In the example problem, the variance for the present

worth would be:

CZ[Mt(-Zr) - [my(-r)] 2]
($10,000)2[ o672 200-2) _ [(em10-1)) 2J
$752,043.94,

The standard deviation is:

O = $867.20.

V(PW)

Without the use of moment generating functions, Poisson
tables (PARZEN, 1960: 4i44) must be used. A series of 17
calculations are required to obtain the expected present
worth and a series of 9 calculations are required to obtain
the variance.

As stated earlier, one must allow for more than one
cash flow (all independent) for a given alternative. For
alternatives which involve C;4T; model elements exclusively,

the expected present worth for the kP alternative iss

)
& Cjk Mtjk(-r)'

number of gmpulsive. deterministic cash flows
for the k®R alternative,

where

ny

Cy = the j%h impulsive, deterministic cash flow for
the kth alternative,

Mi., (-r) = the moment generating function for the time
J parameter associated with the jth cash flow of
the kth alternative.

e —— TSR T R MU T e S el




The selection model (based on mean present worth) is:

nk
Alderfer and Bierman (1970:341) suggest the logical
argument that selection among alternatives with tied mean
present worths should be based on which of the tied alter-
natives has a smaller variance and is used for the tie-
breaker in this research. Variance is also discussed in
Chapter 7 for making probability statements concerning the

present worth of an alternative.

The variance for the present worth of the kth alter-

native is:

Nk
- 2
V(Pwk) = j; Cjk [Mtjk(-Zr) - [Mtjk(-r)]z] o

In the event that the moment generating function for
a distribution does not exist, calculations using Equation
4.2 must be used to find the expected present worth. The

variance of the present worth must be found by:

o oo
vipw) = c2 | L o2t p(y) .| L o Tt p(1)]?] .
t=0

t=0
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However, this would be a rather unusual calculation in
that fhe moment generating functions for most distributions
do exist and are found in a multitude of handbooks and
textbooks. The appropriate interrelationships between the
Z, Zeta, Laplace transforms, and moment generating functions
demonstrated in Chapter 3 allow for a large number of
distributions to be handled without lengthy calculations.
The remainder of this research assumes that the moment
generating function, or an appropriate transform, does
exist.

Alternative selection models for the remainder of the
model elements are discussed in the final section of this
chapter. The introduction of the alternative selection
model for C;4T;g model elements was presented at this point
to orient the reader with respect to a decision choice
methodology of minimum expected present worth among
alternatives.

The next model developed is an extension of the Cy4Tjgq
model for cash flow elements which are impulsive and series

in nature.

CgaT

gg - Independent Model Element

If one now considers a series type cash flow which is

deterministic in nature and has an impulsive, stochastic
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time of occurrence for each cash flow, the present worth is
calculated by:
PW = cqe~TP1 & cze‘r(t1+t2) + c3e‘r(t1+t2+t3)

+ oo + cne'r(t1+t2+t3+"'tn) + eas

If the ¢j's are different in magnitude, then one must solve
for the present worth by considering each cash flow as a
C44Tjg model element. However, if the cj's are a constant
function(denoted as C), then the expected present worth can
be shown to be equal to:
E(PW) = C Mg (-r)
1-My(-r) , (4.5)
and the corresponding variance can be shown to be equal to:
v(PW) = C2 [ My(-2r) - (My(-r)|?]
1My (-2r)] [t-Mg(-r)]Z

The derivations for Equations 4.5 and 4.6 are quite

(k.6)

lengthy and are presented in Appendix I (3).

As an example of the use of Equations 4.5 and 4.6,
let one assume that a preventive maintenance program costs
$100. each time maintenance is done. The time between
maintenance is assumed to be a function of running time,
which in turn is a function of demand, the time between
maintenance requirements is assumed to be Poisson distributed

with a mean =) = 1 month. The nominal interest rate is 24%

(2% per month).
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By Equation 4.5, the expected present worth is:

-o02
100 (el® 02-1) _ $5,000.33,
(e(e-.02_1)

E(PW)

(100)2 [e(e"qu-l) - (e(e"oz-l))z]
[1 _ e(e-.oh_l)] [1 _ e(e-.OZ_l)]z

$255,008.66 ,

vV(PW)

R
L}

and the standard deviation is
G = 504.98.
Using the traditional formulas (Taylor, 1964:26) with

ﬁ the timing assumed to be deterministic (one month intervals)
result in a present worth of $5,000. The insignificant
error of 33 cents is expected with the low monthly interest
rates; however, having the variance gives one more infor-

mation for a decision. This is illustrated in Chapter 7.

Cc Tis - Independent Model Element

is

When both cash flow and time are impulsive and
stochastic, one can calculate the expected present worth
(assuming independence) from:

PW = C e F%

E(PW) = E(C) * E(e”TY), (4.7)
Since C is not limited %o being discrete, one must

develop formulas for continuous cash flow. Table 4.1
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suffices for discrete cash flows by merely substituting
M, (-r) for Mi(-r). Table 4.3 represents the moment gener-
ating functions for a few common continuous distributions.
The mean and variance, as developed by Whitehouse
(1973:124), for continuous distributions are:

E(C) =uc = nd(~r)

d(-r) |-r=0
E(C?) = d2 M (-r)
a(-r)2 |-r=0
0.% = E (e44)% = E(e?) - [E(c)] 2
= a2 (-r) _ nd(-r))2
d(-r)2 d(-r) -r=0

In terms of moment generating functions, Equation 4.7

can be expressed asi

E(PW) = {dmc(-r)

]Mt(-r) . (4.8)
d(-r)

-r=0

§ Equation 4.8 can be written simply as
E(P‘V) =uc Mt(—r) . (409)
| The variance for the present worth follows directly
from the classical variance of the product of two inde-
pendent random variables (Duncan, 1965:194);
) 2 2 2 _2 2 .2
V(PY) =1 Oport” * WUg-rt) Oy + (Opopt) O + (.10
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Table 4.3
Continuous Probability Laws and Their
Moment Generating Functions
Distribution Probability Law My (-r)
Exponential £(t) = ae~2%, t=0 a
0, t=<0 a+r
Gamma £(t) = _a (at)b-leat, t=o a \P
I (b) 0, t=<0 a+r
-1 [¢-L)2 2
Normal £7(t) = 1/t _
0 (t) 1 e (-éf} . . zﬂﬂ%rztfc
Ov2T1T
-00< t < OQ
h . -rb -ra
Uniform f(t) = 1 , a<t<Db e - e
b-a -r(b-a)
0, otherwise
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MU, = Mean cost or revenue
fle-rt = Mean of (e7TF)
O;-rtz = Variance of (,-rt)

O;z = Variance of the cost or revenue distribution.

As previously noted,

/J.e..rt = E(e'rt) = Mt(-r),

and
O/e-rtz = Mt(-2r) - [Mt(-r)] 2 .

Equation 4.10 can now be written asg
V(PW) =,uc2[Mt(-2r)-(Mt(=-r)) 2 4 (Mt(-r))z O’cz

+ [Mt(-Zr)-(Mt('r))z} C)/cz ) (4o11)

Equation 4.11 reduces to:

V(PW) =/,Lc2[Mt(-2r)-(Mt(-r))2] + M-2r) 02 (4.12)

Equation 4.9 and 4.12 are used to calculate the mean
present worth and variance of present worth for the CisTis
model elements.

As an example, let one assume that the cost of a
major breakdown is normally distributed with a mean of
$10,000 and a standard deviation of $100. Furthermore, the

time between major breakdowns is poisson distributed with

a mean of 1 year. The nominal interest rate is 10%.




—

The expected present worth is

E(PW) = "M, (-r)
10_1)

10,000-e1(e”"
$9092.25 .

The variance of the present worth is calculated from

Equation 4.10 as
($10,000)2 [e(e"zo-l)_ (e(e--lo_l))ZJ

V(PW) =
+ [efe+29-1)[(100)2
= $760.386-05 .
and
dpw = $8?2.00 .

The expected present worth has not changed from the
cid?is independent model; however, the variance has increased

due to the cash flow being a random variable.

CssTss - Independent lModel Element

When the independent parameters of cash flow and time
are both series and stochastic, the expected value of the

present worth is derived from:

PW = Cle'rtl . cze-r(t1+t2) + Cje-r(t1+t2*t3) 4o,
o0
E(PW) = E(C) -j}: [E(e-Tt)] 3
=]

In terms of moment generating functions, the expected

present worth can be written as

E(PW) = timc(s) [ My(r) (4.13)
ds [s=0/|1-My(-r)/ .
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Since the mean cash flow element would normally be
given rather than its corresponding moment generating
function,
E(PW) = I, [ My(-r) ] (4. 14)
1-M¢(-r) .

The derivation of the variance for the present worth is
included in Appendix I(4) and is: i

V(PW) =cf02 Mg(-2r) +[1c2 [ Mt(-Zr)-(Mt(-r)}2 1 (4.15)
1-M,(-2r) [t-my(-2r)) [1-my(-x)) 2

Equation 4.14 and 4.15 are used to calculate the
expected present worth and variance of present worth for i
the CggT g model elements.

As an example problem, let us .assume that the damage
to a bridge during a flood season is exponentially dis-
tributed with a mean of 32,800,000 and variance of $200,000,
The time between major floods, which cause this damage, is
poisson distributed with a mean of 20 years and variance of
10 years. The nominal interest rate is 25%.

By Equation 4.14 the expected present worth is cal-
culated as:

E(PW) =L, _Mt-(r)
1-Mt( -1‘)
20(e=25.-1)
2,800,000 €& -
1-e 20( e~25.1 )

$33,969.03 .




and the variance is calculated using Equation 4.15 as:

V(PW) = $1n9320 278' 896'

The standard deviation is $43,957.71. Using totally
deterministic data, the expected present worth could be

calculated from:

CcO
PW = U nZ1 [e-x(200]" He ————‘;:z?zoz.

e-20(.25)

2,800,000
1.o-20(+25)

2,800,000 |.00678)
$18,994.23
The error in the expected present worth is:

33,969.03 - 18,994.23
33,969.03

x 100 = 44.1% .,

C;sTcq - Independent Model Element

The cash flow model elements which are impulsive and
stochastic, with time being continuous and determiristic,
can be found in examples of monthly receipts or revenues

where the cash flow per month is expressed as a random

variable. The expected present worth is developed by once
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again looking at:

PW = Ce TV
Since t, in this case, is known; then

E(PW) = E(C) e”T% = [L e-Tt (4.16)
One should note that this is the first model developed
where common techniques of using the mean of a random
variable in a deterministic manner yields a correct
solution.

Since t is a constant, the variance for the present

worth is expressed as:
V(PW) = 0,2 e-%t

CssTcd - Independent Model Element

When the cash flow is series, stochastic and the time
is continuous, deterministic, then the present worth is

expressed as:
PU = Cqe-T1 4+ gue T(t1¥%2) | c3e'r(t1+‘°2+t3)

If one considers that each time interval is equal, then

Equation 4.17 reduces to

E: c; (e-Tt)d | (4,18)
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When one takes the expected value of both sides of Equation
k.18, while realizing that E(Cj) = E(Ck) = E(C) for all j

and k, then one has:

oo
E(PW) = 2 E(C) (e-Tt)J
j=1 .
where e'rt is a constant, the expected present worth can

then be expressed as:
-rt

E(PW) = U, ?e_?‘% . (4.19)
-a"

Letting t = 1, then

" = e-r
E(PW) ILLC o7

or
He

i

E(PW)

9

which is the traditional expression for the present worth
of an infinite stream of equal end-of-period cash flows at
effective interest i.

If the time periods are not equal, then
o9
E(PW) = U Z e Tigrti |

and this calculation can be accomplished by finding the
mean and variance of the distribution of times and using

equations for the CssTsg model elements. Since the model
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would then be a Cg  Tog model, the CosTea model must assume
constant, equal time periods.

The variance for the present worth of a CssTcd model
element can be derived in a lengthy manner as was accomplished
for the CssTss variance, or one can simply note that the
moment generating function for a constant is

M‘t(’r) = e-Ft

Using the expression for variance of present worth in

the CgqgTqg model (Equation 4.15), and substituting
Mt(-Zr) = e=2rt ang My(-r) = e-Tt |
leads to the expression for the variance of the present

worth for the CSSTcd model element:

em2rt [ % {e-Zrt_<e-rt)2} .

v(PW) = G2 (4.20)
¢ 1-e-2rt (1-e-2rt)(1-e-Tt)2
Equation 4.20 reduces to:
_ 2 e-2rt
V(PW) = o’c T (4,21)

An example of the CssTcd model element is dispersments

for operating expenses which are received at random points

during a month and paid at the end of each month.

C; T -~ Independent Model Element

is*¢s

When the cash flow elements are impulsive and series in

nature with the time between occurrences being continuous
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and stochastic, one should immediately note the parallel
with the CisTis model. The only difference is time being
treated as a continuous element. When dealing with moment
generating functions, the distinction between discrete and
continuous time is not required in the model. The expected
present worth and variance of present worth are (from
Equations 4.9 and 4.12):

E(PW) M My (-r)

and

V(PW)

Ue? [ugl-2r) = [m.(-0))3] + m (-2r) - O’c2

respectively. Table 4.3 can be used for the moment generating
function for the time variables by simply substituting

My(-r) for M,(-r) in the table. When the moment generating
functions for a specific time distribution are not available,
then one must calculate the expected present worth as:

E(PW) = U Ie‘” £(t)at .

The summation sign in the C; T; model has been replaced
with an integral sign since one now has a continuous
distribution to deal with. A similar substitution is
required to calculate variance. Once again, it should be
pointed out that this research assumes the distributions
of interest (both continucus and discrete) have moment

generating functions.
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C§STcs - Independent Model Element

When cash flow is series and stochastic and time is
continuous and stochastic, the model is the same as the one

developed for C_.T.. and from Equations 4.14 and 4.15:

Ss8”SsSs
E(PW) = Mp(-r)
He 1-My(-r)
V(PW) =

0,2 Mpl-2r) /icz[ Mt(-Zr)-(Mt(-r))z

1-Mg(-2r) [1-mg(-2r)] [2-(Mg-r)] ©
Once again, it is assumed that the moment generating

functions for the continuous time distributions exist.

Summary of Independent Model Elements

Table 4.4 is a summary of the independent model
elements. Although each model has been derived separately
with infinite cash flow streams, one should note that all
models are special cases of one of two general models.

The CjgTigs CigTedr and C;35T.g are all special cases of the
C;sTig model. Also CgqTgge CggTegr and CggTeg are special
cases of the CgqTgg model. The Cg T, model is extended

ss*ss
in the next section for cases where cash flow streams are

finite.

.
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Extension for Finite Cash Flow Streams

The series, independent model elements assume an
infinite number of cash flows. Although these formulas may
be fairly accurate when per forming analysis on long-life
items and/or analysis with high -interest rates, these
formulas would not be valid for analysis on shorter-life
items and/or analysis with low interest rates.

Rather than developing four separate models for finite

cash flow streams for the CguTgg CssTeqr CssTcs’ and
CggTgg model elements, only the C_.T,, model element for

finite cash flows is developed. This is due to the fact
that the remaining three model elements are special cases

of this model element.

The present worth for the Cg . Toy finite cash flow model
elements can be expressed as:
PW = Cq e-"t1 4 Co e-r(t1+t2) {
+ Cyq o-rltattrts) o Cp e-T(ti+ttt3+.aty)
J

Since both the Cj's and t;'s are each independent, identically

distributed random variables,

E(PW) = E(C) ° iz [E(e"r")]k
k=

. e v
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Letting X = E(e'rt). the summation term can be expressed

asi
n
Sn=z xk=x+x2+x3+...xn.
k=1
Multiply Sp by X and then subtracting from S, leads to
Sp(1-X) = x-x7*1 |
Hence,

n+1
Sp = X=X
1-X

Substituting X = E(e~T?) leads to

2o = 5(0) -+ BT e ) T E
1-E(e-TY) !

Using E(C) = U

c
and
E(e”T%) = my(-r)
i leads to the expected present worth for the CosTss finite
% cash flow stream model element:
' n+1
P E(Pw) = M My (-7)- ()] (4.22)
1-Mt(-r)

To develop the variance of present worth for the model,

‘ one must first find an expression for E(PW2).
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(PW2) = 42 e-2rt1 + 022 e-2r(t1+t2)

+ 032 e-2r(t1+t2+t3) 4 ., 4 ¢ 2 o-2r(t1+tottste. tn)
+ 2C4C» e-2rti1-rtz 4 2C4C4 e-2rtg-rtz-ri3 , |

+ 20,04 e-2rb1-2rta-ri3 4

+ 20,_1Cp e~2Ft1-2riz-2rt3—...-2rtn-1-rin

Taking the expected value of (Pw2) and usings
E(Ci°cj) = E(C) 2 for all i and j,

E(e~Tti) = E(e~TYj) = E(e~TF) = v,
and
E(e~Zti) = E(e-2Ttj) = E(e~FY) = ¥,
leads to
n-1 n-k
E(PW2) = )ZxJ + 2 E(C) Z Z xkyd,
j=1 k=1 j=1
Using V(C) = E(C?)- [E(C)] 2
leads to
n n-1 n-k
E(PW?) =[V(C)+(E(C)) 2} 2. x3 + 2(E(c)) 2% ) xkd
j=1 k=1 j=1
Now using

n

j - 2 n

Sp = Zx-’-x+x + X34 co0 + X
j=1
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n+l
Sn(1~X) =X - X
n+l
Sn =X-X .
1 -X

n=1 n= .
G = E yd = xlyl o+ xty2 4 s R
£ x2y1 & sz2 + x2¥3 Fooot szn'?'

+ 33! o+ 132+ x4t xHn-3

o o o +

M2y 4 X2
+ Xy

o = X2+ X% + XAYZ% 4.4 &2

<
o

s x3 4 %3y + X324+ xHOD

-4
P N S LGt Y
+
+ xn-z + xn'?*f + xn-ZYZ
+ x4 Ly
+ Xn




X = x2 3 b n
G (g - 1) = X5+ X7+ X7 +...+ X
- [XlYl + X024 xy3 sl e xiyn?
n n-1
= ZXJ - X ZyJ
j=2 j=1
n n-1
ZXJ' X Zy.]
6, = J=2 =1
X - 1)
Y
leads to

1
E(PW2) = (V(c) + [E(C)]Z).(Llc_-—ﬁi )

n n-1 ]
SN
j=2 j=1

X
(§ -1)

ixj _ [Mt(-Zr)]z - [y(-2r)] n+1
J=2 1- Mt(-Zr)

X E:Yj = My(-2r) Mt('r)[i- Mt(-r)]n'1

j=1 1- Mt('r)

91




Hence:
B(ew?) = [v(e)+[5(c) 2] [Mt(-Zr)-(Mt(-Zr))n+1]
1 - Mg(-2r)
[ [Me(-2r)] 2 - (my(-2r))n*?
+ 2[E(0)] 2 1 - M (=2r)
M¢(-2r) -1
Mg(-r)
[ My(-2r) ¥ (-r)(1-(My(-r))P D) ]
- 2[E(C)] 2 1 - M (-r)
M, (-2r) .
M, (-r) d

V(PW) is found by subtracting [E(PW{)]2 and simplifying:
Mt(-Zr)—htt(-2r)) n+1

1 - My(-2r)
1 (-2r)] 2- [, (-2r)] 71 - My(-r)

+ 2,uc2. [I

V(PW) = (0 %+ Ue?)

1 - Mt(-Zr). ' Mt(—Zr)-Mt(-r)

2 Mt(-zr)[mt(-rﬂ 2[1-(Mt(-r)rrl]
c (1-Mt(-r)}(Mt(-zr)-Mt(-rﬂ

2 [Mt(-r)—(mt(_r)]n+1]2

-2MU

92

o (1 - Mt(-r))z (4.23)

|
|
|
J
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Expressions for finite cash flow streams for the ramp,

decay, and growth are developed later in this chapter.

Dependent lodel Elements

Cash flow elements in this section assume dependence
with time. The common ramp, decay, and growth functions are
used as dependence models. These functions are widely used
in economic analysis (ramp functions for maintenance and
deterioration, decay functions for startup and learning
costs, and growth functions for wearin maintenance costs).
Figure 4.1, 4.2, and 4.3 illustrate sample ramp, decay,
and growth functions.
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Figure 4.1
Ramp Function
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Growth Function
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C:

;dTis - Dependent l'odel Elements

The models for dependence between cash flow and time
where cash flow is impulsive, deterministic and time is
impulsive, stochastic are presented for ramp, decay, and
growth functions.

C:

jaTig - Dependent, Ramp Model Element. The present

worth for this model is:

PW = Ct e TP (4.2%)

The expected present worth can be stated as:
E(PW) = E(C) * E(t e TF). (4.25)
In this case, the cash flow (C) is deterministic, and

E(C) = C. Also;

E(t e~Tt) = E[’i% e'rt] = -Mt'(-r).
Hence, Equation 4.25 can be reduced to:
E(PW) = -CMy' (-r)
for the expected present worth.
To derive the expression for the variance of the

C;4T3g dependent, ramp model element one must first derive

an expression for E(sz):
E(PW2) = E (Cte~Tt)2 = E(c242e-2Tt) (4.26)




However, one notes:

Mg(-2r) = E(e”?%Y),

Mg '(-2r) = E(-2te~2Tt),

and

E(4t%e-2Tt),

Mt”(-ZI‘)

As a result, Equation 4.26 can be expressed as

E(sz) = Cth"(-ZI')
L
and the variance for the model can then be expressed as
v(PW) = Cz[mt (-2r) _ fug'(-r) 2] : (4.27)
: J

CidTis - Dependent, Decay liodel Element. The present

worth for the CidTis dependent decay model element is:

PW = C 730 -1t

= ¢ e-(a+r)t (4.28)

Recognizing that
E(e~(atr)ty _ Mt(-(a+r)) '

and taking the expected value of both sides of Equation 4.26
leads to the expected present worth for the model element:

E(PW) = C My (-(a+r)) .
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The variarce for the model element can be derived by

noting that

py2 =[C(e-(a+r)t)]2

E(Pw?) = E|[c2 e-2(a+r)t)
= 02 My [-2(a+r)) .
Hence,
V(PW) = E(ﬁyz)-[ﬁ(Pwﬂ 2

' ) i

{

—

]
ce ! Mt(-z(a+r)) - th(-(a+r)“2]
. ‘J

CiqTig ~ Dependent, Growth lodel Element. The present

worth for the C;4T;5 dependent growth model element is
composed of two previously mentioned model elements (step

and decay):

PW = C e F¥ - ¢ o78% -1t |

The term C e~T% is the step function and C e 3% =Tt 55 the
decay function. When these two terms are subtracted, they

become the growth function:

PW = C(1-e~2%) ¢ TF (4.29)
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The expected present worth is found by taking the expected
value of both sides of Equation 4.29 and solving in terms
of moment generating functions: )
E(PW) = C [Mt(-r) - Mt(-(a+r)”
The variance is calculated as previously done by first
calculating E(PW2):
PW = C| e-Tt - e—(a+r)t]
P2 = 02[ e=2rt _ po-(at2r)t | e-2(a+r)t]

E(PW2)

c? |my(-2r) - 2ug|-(ar2r)] + Mt(—z(aﬂ')}] .
E(pw2) - [B(PW)]2

c? [my(-2r) - 2m[-(at2r)] + Me(-2(atr))
- [1y(-x) = my [-(avr)) ) %]

Table 4.5 is a summary of the C;4Tig dependent model

V(PW)

elements.

C;isTjs —- Dependent Model Elements

The model for the present worth of the C; Tj5 dependent
model elements assumes cash flow as an impulsive, stochastic
element (expressed as a function of time). The time para-
meter for the model elements is assumed to be impulsive,
stochastic. The means and variances for the cash flow and
time parameters are considered as kXnown and from known

distributions.
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C:.T - Dependent, Ramp Model Element. The C; _T.

is*is is*is

dependent, ramp model element has a present worth which is

expressed as

PW = Ct e—rtv

where C and t are both random variables.

The expected present worth is then:
E(PW) = E(Ct eT?) ,
By the mathematical statement in Equation 4.24 for the

CidTis dependent, ramp model element,

E(PW) = E(C) * E(t e TY)
=flg .+ (Mg (1))

= -/J.c M.t'(-r) -
To derive the E(sz) term in the variance expression
for the CiSTiS

E(PW2) = E [(Ct e‘rt)z] ' (4.30)

dependent, ramp model element:

one must first rewrite Equation 4.30 as:
E(PW2) = E(C2) + E(t2 e~2Ft) ,
By definition of variance,
0.2 = E(c?) - [E(0)]2 .
Also,

E(12 e~2Tt) o My (-2r)
L




Hence

As a result,

—
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E(sz) - (o’cz.‘_#cz) Mt'(_zr) .
m

v(PW) = E(PW2) - [E(PW)]2
2 ] - ,
= ( 0;2_’_/10 ) Mt: 2r) _ [,u~c M, (_r)]z
= 2| ¥y (-2r) My () 2| + 0.2 M, ' (-2r)
- (o) —— - Mt -I‘)) + () —_— . ®
L 4
CisTis - Dependent, Decay Model Element. The present

value for the C._T._ dependent, decay model element is

187 1s

expressed as:

PW = C e~at o-rt |

and the expected present worth is expressed as:

E(Pw)

E(C) * Efe-(a*r)%)

Me ® Mtl-(a+r)).

The expression for E(sz) in the variance for the model

element is

Hence, the

V(PW)

£(pw?) = E|c? o-2(a+r)t] |

= E(c?) - le-2(atr)Y]

= (0% U 2) * myl-2(aer)]
variance for the model is

(O 212wy (-2(avr)) = U 2wy (-(atr)))?
/icz[mt(-Z(a+r)) - (Mt(-(a+r)))2] + <j;2Mt(-2(a+r)).
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C;jgTjs - Dependent, Growth Model Element. The present

1

worth for the CisTis dependent, growth model element

(impulsive, stochastic cash flow and impulsive, stochastic
timing) can be represented as:

PW = C(1-e-at) 7Tt | ' (4.31)
The expected present worth can be calculated by reformulating
Equation &4.31:

PW = C(e-Tt - e-(a+r)t) ,
and then taking expected values to yield:
E(C)[E(e‘rt - e-(a+r)tﬂ
E(C)[ E(e-Ft) - E(e-(a+r)t)]
U [My(-2) = my|-(arm)]] . (4.32)

Using the standard definition of variance, one must

E(PW)

now obtain a term for PWZ,
pu2 = 02 [o-2rt | pom(at2r)t o-2(atr)t]

: The expected present worth is then,

E(PW2) = E(C2) [E(e=2FY) - 2E(e-(at2r)t) 4, g(e-2(a+r)t)],
This expression can be transformed into

E(PW2) = (O 2 [ 2) [My(-2r) - 2My(~(ater) + My(-2(asr))] .
The variance follows as:

“ V(PW) = (o’2+licz)[Mt(-2r) - 28 (-(at+2r) + Mt(-z(a+r))]

- ALCZ[Mt(-r) - Mt(-(a+r))]2 .

Table 4.6 is a summary of the expected present worth

and variance of present worth for the C3gTig dependent

model elements.
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C;gTeq - Dependent Model Elements

The presentation for the C; T,y dependent model elements
will follow the same format as presented in the CigTig

dependent model elements. In the C;gT.q model, the time is
continuous, deterministic. Since the cash flow remains
impulsive, stochastici one must only determine the differences
between the two models where the time parameter is deter-
ministic.

CisTcd - Dependent, Ramp Model Element. The present

worth for the Cj T.q dependent, ramp model element is:

PW = Ct e-Tt |

rt

where t e~ is a constant.

From Equation 4.25 of the Cj4T;, dependent, ramp model

element, the expected present worth of the C; T., dependent,

ramp model element is
E(C)+(t e-Tt)
= uc t e-rt [

E(PW)

Since t e-I't is a constant, the variance for the

C;4Tcq dependent, ramp model element is
0;2 (t e-Tt)2

602 tz e-2rt .

V(PW)
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C;sTeq - Dependent, Decay Model Element. The present

worth for the CjgT.q dependent, decay model element is

]
Q
o

J
[
t

o

1
H
ot

PW

I
Q
(v

]
—~

2

2]

purd

The expected present worth is then

E(PW) = I, * E e-(a*r)t

Mc . e-(a+r)'t: .

since e-{a*r)t i a constant,
- =2(a+r)t
V(PW) = O 2 e .

CjgTeq - Dependent, Growth Model Element. The present

w3rth for the C; T.; dependent, growth model element is
is*ed

C(1-e-2%) (e TY)
= C(e-Tt - e-(a+r)t) ,

PW

where r, t, and a are constants.
Since C is the only random variable, the expected
present worth follows as:
E(C) ° E(e~Tt _ e-(a+r)t)
T [e-rt _ e-(a+r)t] .

E(PW)

The variance for the model is
2
V(PW) = Cfcz [e-rt _ e-(a,-o-r)t]

= 0,2 [em2rt | pe-(avarit, o-2(a+r)t]

Table 4.7 is a summary of the expected present worth

and variance of present worth for the cis'rcd dependent

model element.




Table 4.7
CisTcd Dependent Model Elements
Model E(PW) V(PW)
Ramp M, t e-rt O‘c2 t2 g-2rt
Decay 'uc e-(a-!»r‘)t O—CZ o-2(atr)t
Growth /.Lc-[e-rt - e-(a+r)1:] Ucz[e‘zrt - 2e-(at2r)¥

+ e-2(a+r)t]




107

CisTeg - Dependent Model Elements

As previously noted in this research, treating time as
continuous or discrete does not alter the mathematical
development. This was due to the use of moment generating
functions which are assumed to be known for both discrete
and continuous distributions. The expected present worth

and variance of present worth for each of the C; T.q

dependent model elements will be the same as for the C;4Tjig

dependent model elements.

C:T - Dependent, Ramp Model Element. The expected

is*cs

present worth is

E(PW) = ~U, My (-7) ,
and the variance of present worth is

M. (-2r)
t - [Mt'(-r)] 2] + 602

4

M;"(-2r)

V(pw) = #cz[ m

CisTe g - Dependent, Decay Model Element. The expected

present worth is

E(PW) = ,LLc ‘ Mt("(a"'r)) v

and the variance of present worth is

V(PW) = U2 [ Myl -2(arr)) - [1y( - (avr)) ]3]

+ 0% m(~2(a41)) .
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Cis% g - Dependent, Growth Model Element. The expected

present worth is

E(PW) = U, [Mt(-r) - My (-(atr) )] '

and the variance of present worth is

V(PW) = (02U 2)[My(-2r) - 2Uy (-(atr) ) + My (-2(a+r))]

- U2 [mg-r) - by (are)) ]2
For consistency in the presentation of models, Table 4.8

contains the C;sTog dependent model elements.

Summary of Impulsive, Dependent Cash Flow Elements

The CjqT3gs CigTeqgr and C;4T.g models presented in this

research under the dependent model elements are all special
cases of the C;4Tj+ dependent model elements. This con-
clusion parallels the findings for the independent model
elements.

The expected present worth will be derived for all of
the dependent, series models in the next section. The

variance will be derived for the Cg4Tss dependent, ramp

funétion.

PO




N
2
m L [¢ (a+e)) qm- () u ] 00 |
[(asm)z-) 3+ (ave)-) Fg-(2-) ] ("1 +;°0 ) [(Cave)=) - (x=)*u ] °rf y3noxn |
( (a+e)2-) H Nob + U.
[2[C @] - ((aemiz)tu] 7o (2+2)- 7] feosq
. \ )
. +
A.HNIV:PE 2 \O
[(a-) ] - - 2 (2-),*n °nf - durey |
c ' (z2-) Hu : ]
| (Md)A (hd)= ToPOoN
| squaweTd TopoN 3uspusdag S°15%) _

g4 dTqByL
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CSdTSS - Dependent Model Elements

The models for dependence between cash flow and time
when the cash flow is series, deterministic and the time
is series, stochastic are presented in this section for

ramp, decay, and growth functions.

CgqlTss - Dependent, Ramp Model Element. The present

worth for this model is
PW = CYHy e‘rtl + C(t +tp) e-T (% +t2)

+ooet Ct+tpteeetty) e-T(ty+toteeetty)

+oot ')
where

t;

is a random variable,

C is a constant.

The present worth is reformulated as:

PW = Ct, e‘rt'[l + e T2 4 o-T(B27E3) | -r(tartytiy) +...]
+ Ctp T2 e'rt'[1+e'rt3+e'r(t3+t4)+e'r(t2+t3+t4)+...]

+ Ctje‘rtBe'rtZe'rtl [1+e-rtu+e'r(t4+t5)+e'r(t4+t5+t6)+...]

+... L]

The expected present worth can now be written as
o0

o0
C E(te-Tt) ZO[E(e'“)]“-Z [E(e-TH)] ™
n=

E(PW)

-CM. ' (=
oty (-r) (4.33)

[1-Mt( -r)] <
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This is proven by noting
E(e~Fti) = E(e"Tti) for all i
and

E(t;e™"") = E(t5e7"%)) for all i,j.

Analytically, Equation 4.33'13 not too difficult to
use; however, the expression for the variance of present

worth for the C 4 Ty, dependent, ramp model element is a

great deal more detailed. As before, to calculate the
variance, one must first generate PW2 and then calculate
E(PW2). This calculation is contained in Appendix I (5)
and the resulting variance for the model is:
] * 2
M, (-2r) Mt (-2r) ][1+2Mt(_r) ]

V(PW) = 02“ +
4[1-Mt(-2r)]2. ‘ [1.4.Mt(-2r)]3

I-Mt( -.r)

L My (=20)M (-r) o em)? }
[t-tg(-2m)] [1-tp(-r)] 7 [-mg(or)] ™ Jo (B39

Although this variance expression can be frther

simplified, it is complete enough at tnis point to draw a
conclusion as to the usefulness of such an expression. The
original intent of the analytical solution approach was to
develop models which were mathematically correct and
realistic to use. Without the use of simulation, it would

appear that calculating variance for dependent, series
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models is not of significant value. The remainder of the

Cgglss dependent models and the remainder of the series,
dependent models will be limited to the development of

expected present worths.

Csd?ss -~ Dependent, Decay Model Element. The present

worth for the Cg4T., dependent, decay model element can be

represented as:
Py = ce-(atr)il 4 CS-(a+r)(t1+t2) + Ce-(a+r)(t1+t2+t3)+'“
Noting that
g(e-(a¥0)8:) | g~ (a*T)E5) por 2914 ana j,
and
em(atrity 4o independent of e-(8¥r)t5 £or 211 3
and J, .
one can express
E[e»(a+r)(t1+t2+...tnq

as

E[e-(a+r)t]11

R R

Hence: {
oo

2(PW) = Zi c[p(e~(2*T)%)n
n=

E(e-(a+r)t)

l_E(e~(a+r)t)

=C

M. (-(a+r))
ot a+r

1-Mg(-(atr))

o]
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Csdrss - Dependent, Growth !‘odel Element. The present

worth for the Cgqlgg dependent, growth model element can be

represented as:
PW = Cl}-rt - e-(a+r)t] + C[e-r(t1+t2) - e-(a+r)(t1+t2)]

+ C[e-r(t1+t2+t3) - e-(a+r)(t1+tg+t3)] P
As pointed out earlier in the research, the growth function
is the sumn of a step function and a decay function. As a

result, the expected present worth can be expressed as:

E(PW) cZ [E(eTE)] ™ Z[ e~(a*))[n

[Mt(-r) (- (a+r)) }
C -
1-My(-r)  1-Mi(-(atr))

The expected present worth for the CsqTggs dependent

model elements are presented in Table 4.9.

CggTsg - Dependent Model Elements

The models for dependence between cash flow and time
when the cash flow is series, stochastic and the timing of
that cash flow is series, stochastic are presented in this
section. Only the expected present worth for the ramp,
decay, and growth models are derived.
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Table 4.9
CgqTgs Dependent Model Elements
Model E(PW)
- ¢ My (-r)
Ramp >
(1-My(-r))
Decay

1-M-t(-(a+r) )

M (-r) M, (-
Growth c[ t{-7)  My(-(avr)) ]

1-My(-r)  1-My(-(atr))
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CggTsg - Dependent, Ramp Model Element. The present

worth for the Cg4gTgg dependent, ramp model element can be
represented as
PW = Cq(t1e~Ft1) + C,(ty+t,)e Tt1¥E2)
+ C3(t1+t2+t3)e'r(t1+té+t3) + eee . (4.35)

The expected present worth is derived in Appendix I (6)

and is shown to be:

-1, " (~r)
E(PW) = ,LLC[ t 7" }

[1-11,(-r)] 2

CgsTgg - Dependent, Decay Model Element. The present

worth for the Cg T s dependent, decay model element is

PW = Cl e-(a-i-r)tl + CZ e-(a+r)(t1+‘t2) +

e ¢ &

+Cn + s .

Since the t;'s and C;'s are independent and identically

distributed random variables,

oo
‘Lc 2;; [E(e-(a+r)t)Jn

My(-(a+r))
I—Mt(-(a+r)) .

E(PW)

- (o]
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CssTss - Dependent, Growth Model Element. The present

worth for the C T, dependent, growth model element is:
PW = Cy(1-e"2%1)(e7TF1) 4 ¢ (1-e-2(t1¥t2) ) F(tavt2) o |
+ Cp(1-ema(B1+izbe ety or(Bttahe e o¥ty)
= Cl(e-rt1_e-(a+r)t1) . Cz(e-r(t1+t2)_e—(a+r)(t1+t2))

+ oe e + Cn(e-r(t1+'t2+...+tn)_e-(a+r)(t1+t2+...+tn)) + -

Taking expected values, while noting that

E(Ci)= E(CJ) = ll.

c
and
E(e™T%) = E(e™"%J) = M (-r) for all i and j ,
leads to
oo co
E(PW) = U, [Z (M.t(-r))n - Z [(Mt(-(a+r))]n]
n=1 n=1 .

[Mt<-r) _ My(~(a+r)) }
= U,
1-My(-r)  1-Mg(-(at+r)) ] .

The expected present worth for the C . To, dependent model

elements are presented in Table 4.10.

c - Dependent Model Elements

ssTcd

The models for dependence between cash flow and time

when the cash flow is series, stochastic and the time is

continuous, deterministic are presented in this section
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Table 4.10

Css'l‘Ss Dependent Model Elements

Model E(PW)
‘th.( r) ]
. _
amp H c[ [1-11(-2)] 2] |
| ) M (~(a+r))
| ecay U °L.,Mt(-(a+r)J

[Mt(-r) _ My(~(atr)) i‘
Growth
i He 1-Mg(-r)  1-Mi(-(atr))
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for ramp, decay, and growth functions. Working from the

previous C g* dependent model elements, one need not

SSTS

derive these models directly.

c - Dependent, Ramp Model Element. The CgqTng

ssTcd

dependent, ramp model element is indirectly derived from

the Css’l‘ss dependent, ramp model element. Recalling that

the expected present worth for the C4 Toq dependent, ramp

model element is

-Mt'(-r) ]
[1-tig(-)] 2]

E(PW) = Mc[

one need only recognize that constants do have moment

generating functions (e.g. for time as a constant):

My(-r) = e~Tt |

' - -rt
-My (-r) =t e .
Hence, the expected present worth for the Cg T.4 dependent,

ramp model element is

Ut e
(1-e~TT) .
CggTeq - Dependent, Decay Model Element. The CggTeoq

dependent, decay model element is also derived from the

CggTgs dependent, decay model element.
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Using time (t) as a constant,

My(-(atr)) = e-(atr)t

Hence, the expected present worth for the C  T.4 dependent,

decay model element is

e My(=(atr))

E(PW) =
1-Mt(-(a+r))
- U e-(a+r)t
CSS'I‘cd - Dependent, Growth Model Element. The CggTaqg

dependent, growth model element is derived from the CggTgg

dependent, growth model element as follows:

[ My (-r) Mi(-(a+r))
E(PW) = U, -
[ 1My (-r)  1-Mg(-(atr))
[ o-Tt o-(atr)t ]
= KU 1.e-Tt 7 4 _g-{atr)t,

The expected present worth for the CgqTngq dependent model

elements are presented in Table 4.11.

CgsTesg - Dependent lodel Elements

When cash flow is series and stochastic and time is

continuous and stochastic, the models are the same as those
presented under the C4gTgy dependent model elements (see

Table 4.10).




Table 4.11

CsgTcq Dependent Model Elements

120

Model E(PVW)
e e-r*t:
Ramp 71 1 o-Tt\2
(1-t e~TY)
e-(a+r)t
Decay c ;:;:TEI;Tg
Growth ]

-rt -(a+r)t
uc[e t_e

1-e7 TP j_e-(atT)t
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Summary of Series Dependent Model Elements

The series, dependent model elements are all special
cases of the Cg T4y dependent model elements presented in
Table 4.10. The CgqTgg dependent model elements are extended
in the next section for cases where cash flow streams are

finite.

xtension of Cq Toy Dependent Model Elements

for Finite Cash Flow Streams

The Cg Ty dependent model élement for finite cash
flow streams are presented in Table 4.12. The derivation

of the models are found in Appendix I (7), (8), and (9).

Expansion of General [odel

The general model for a present value analysis was

presented in Chapter 3 as:

E(PV) = E(P) + E(E) - E(R) - E(S) , (4.36)
where

E = Expected value operator

P = Purchase price

E = Expense

R = Revenue

S = Salvage.
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Table 4.12

CqsTgs Dependent, Finite n Cash Flow
Model Elements

lodel Expected Present Worth
[ nf.. 11
, 1+ v (-1) mt(-r)n-n-1
Ramp - U g “r)[ L™ ] [t JJ
Mt(-(a+r)) - [Mt(-(a"’r))] n+1
Decay M.
1-Mt(-(a+r))_
Growth -

y [mt(-r)-[mt(~r>]n*1 My (-(a+r))-[; (~(a+r)) ] “*1}
C

1-mt(-r) 1-My(-(atr))
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Let us now assume that there are i independent alter-
natives and each of the alternatives can have up to k model
elements associated with P, E, R, and S. The expected

+th

present worth of the i alternative is then:

k k-
E(PV;) = 2. E(Py) + ) E(Ey)
j=1 j=1

k

f
- E(R,) -~ E(S,.)
=1 k Jj=1 k

The analyst must now identify the type of casnh flow
model element and compute the expected present worth for
that model element using Tables 4.9 through 4.12. Once
this has been accomplished, the expected present worth
would be added to the appropriate category of purchase price,
expense, revenue, or salvage value. Equation 4.36 can then
be used to calculate the expected present value for that
alternative.

The variance can be calculated in a similiar manner

and is equal to
k { k k
V(PWi) = Y V(Py) + 2L V(E) + 2 V(R + Y v(Sy) «
j=1 =1 j=1 j=1

Many additional model element types, not discussed in
this research, can also be included in the general model

for the calculation of expected present value. The general
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model for the variance of present value would also be valid
as long as the cash flows were considered to be independent.
Dependent cash flow elements could be handled with an
expanded model as long as time is not a random wvariable.

If time is a random variable, it is not worthwhile to develop
a covariance matrix for the cash flows because of the
difficulty involved.

The actual selection among alternatives would normally
be based upon minimum expected present value. There are
two possible cases where variance of present value would
enter the selection procedure. First, the expected present
values of two alternatives could be either tied or too close
for the analyst to be positive which was the better choice.
In this case, the alternative with the smaller wvariance
would be selected. The second case is where the variance of

the cheapest alternative is greater than the variance of an

alternative close to the expected present value of the
cheapest alternative. Although more research is required

to justify this viewpoint, there is some intuitive appeal

to minimize uncertainty even if a slightly higher cost is
involved.

The next chapter contains an indepth discussion of the

contributions of this research.




Chapter 5

DISCUSSION OF MODELS

This research has extended the present knowledge of
capital investment problems in several ways. A detailed
taxonomic structure has been developed which is utilized in
this research as an outline for mecdel development. The
taxonomic structure also serves as a set of designations
for new models which should aid in organization, storage,
retrieval, and research of these models. Many specific
models have also been developed. These models should de
useful to the practitioner and of motivational wvalue to
structuring realistic classroom presentations. Each of

these areas are addressed in this chapter.

Taxonomic Structure

There is a definite requirement for a taxonomic structure
for capital investment problems and economic analysis prob-
lems. Fleischer and Ward (1977:24) developed such a taxonomic
structure and their work is presented in Table 3.7. The
intent of their work was three-fold. First,the taxonomic
structure serves as a "road map" for locating and selecting
appropriate models. Second, the taxonomic structure serves

as a method of organization, storage, and retrieval of
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models. Third, the taxonomy permits enumeration of simpler
models. As part of their research effort, a literature
search was accomplished to designate which areas of economic
analysis had been researched and to determine where addition-
al research was required. Table 3.7 is reproduced in Table
5.1 with additional entries for the contributions of this
research. The entries 5a, 5b, 5¢, and 54 in the table
highlight where the researci was accomplished.

The taxonomic structure developed by Fleischer and
Ward (1977) was not detailed enough to permit the type of
enumeration of models described in this research. Additional
detail was added to facilitate the research. A review of
Table 3.7 and Figure 3.11 highlights the additions to the
taxonomic structure. The cash flow has been subdivided into
expenses and revenues. An additional category has been
made for independent and dependent models. The impulsive
cash flow has been subdivided into those types of cash flows
which only occur once (designated as impulsive) and those
cash flows which are repeated with some type of frequency
(designated as series). Additional models have been developed
for series cash flows, both independent and dependent, where

the cash flow streams are finite.

Independent Models

Independent models are developed in Chapter 4 with a

summary in Table 4.4. The Cj4Tjg» CjgTcqr and C; Ty models

- - G A e - ek - Y
]
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Table 5.1 ‘
Taxonomic Structure and Current
State-of-the-Art
Cash Flow Interest Rate
Stepwise
Amount Timing Constant{Constant {Variable
How | Cert When |Cert Det Sto| Det | Sto| Det| Sto
) Det Cla 1 Cla 1 Cla
. Disc Msto | sa
g 3 Det | Cla Cla Cla
@ Cont | st0 | 2
3, Det | 4,3,2| 1 1
E § Disc Sto 5b ’
Det sc
Cont Sto 5d ]
Det Cla Cla Cla
- Disc Sto
47] ]
g A Det Cla Cla Cla
Cont
§ Sto
= Det 2
o Disc
&) 5 Sto
Det 2
Cont Sto
1-Reisman and Rao (1973) Cert-Certainty
2-Ward (1975) Det-Deterministic
2- Hillier (1969) Sto-Stochastic
-Hillier (1963) Cla-Classical
s-Estes (current research) Cont-Continuous
Disc-Discrete
Source:

G. A. Fleischer and T. L. Ward. ~Classification of
Compound Interest Models jin Economic Analysis." Zngineering
Economist, (Fall, 1977),24.
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are shown to be special cases of the CisTis model which
3 assumes that cash flow and timing of cash flow are impulsive
and stochastic in nature. The Csdes’ CssTcd' and CSSTcs

models are special cases of the CSS’I'SS model which assumes
that the cash flows, and associated timing of the cash flows,
are series in nature with stochastic parameters. Expected
present worth and variance of present worth are derived for
each model. An extension for the Cg Tg5 model is presented
next for models which have a finite cash flow stream. The
expected present worth and variance of present worth for
the finite cash flow C4 T o model are presented in Equations
k.22 and 4.23 respectively.

These models are of intergst in that they handle data
for capital investment where such variables as initial cost,

cost and timing of breakdowns, and salvage values must be

considered as random variables.

Dependent Models

Dependent models are also developed in Chapter 4. The
assumption made in these models is dependence between cash
flow and time. The ramp, decay, and growth functions are
developed for each of the eight basic model elements

previously derived for the independent models. The C; T;g¢
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models are presented in Table 4.6. The remaining impulsive
models are all special cases of this model.

The series, dependent models (CggTggs CysTegr CssTcs)

are special cases of the C dependent models presented

ssTss
in Table 4.10. Variance of present worth is developed for

the C 4T dependent, ramp model. As can be seen in

ss
Equation 4.34, the complexity of the variance expression

makes it of little value as an analytical tool. 1In addition,

attempts to derive a general form for the CggT . variance

were not successful. Expressions for the expected present

worth for the CggT. . finite cash flow dependent model

elements are presented in Table 4.12. The development of

dependent series models is considered to be of relevance

due to the use of ramp functions with maintenance and ;
deterioration costs, decay functions with start up and

learning costs, and growth functions with wearin maintenance

costs.

Summary

A total of nine independent models are developed with
expected present worth and variance of present worth. In
addition, twelve dependent models are presented with expected

present worth and variance of present worth for impulsive
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dependent models. For the series, dependent models, only
expected present worth is presented for eleven models and
the finite cash flow stream model. A total of 36 models
have been presented in Chapter 4 with the majority having
both expected present worth and the variance of present worth
developed.

In order to clarify the specific areas of comparison
between the taxonomic structure accomplished by Fleischer
and Ward (1977:24) with this research, Table 5.1 should be
compared to Tables 5.2 through 5.5.

The next chapter contains a development and Justification
for a network logic to solving problems which utilize the

analytical tools developed in this research.
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Chapter 6

NETWORK REPRESENTATION OF A CAPITAL
INVESTMENT ALTERNATIVE

A1l textbooks which discuss alternative selection
models for engineering economics develop rate-of-return
formulas. These formulas are developed by the use of both
mathematical equations and visual depictions of the process.
As stated by A. Alan B. Pritsker (1979:1),

The modeling of a system is made easier if:

1) physical laws are available that pertain to the

system; 2) a pictorial or graphical representation

can be made of the system; and 3) the variability

of system inputs, elements and outputs is manageable.

This research has attempted to improve upon models for
capital investment problems by providing useful tools to
accomplish the modeling of an economic process. The research

is expanded in this chapter to offer suggestions as to how

a pictorial representation can be made of the process.

Present Worth Development

Given a future sum E, a continuous interest rate r,
. -rt
and time of occurrence t, the present worth PW is E e .
Figure 6.1 represents a network configuration of the

problem. The nodes of the network can be used tn generate




and collect dollar values. The branches are used to

designate time between nodes. The symbol E was chosen to

designate an expense.

E

O——0O

Figure 6.1

Present Worth of a Single Cash Flow

Let us now extend this pictorial network by allowing
an initial expense P occurring at t=0 and a series of

n expenses (El' E2. E |aocEn)c Figure 6.2 illustrates this

3

cash flow.

Figure 6.2
Present Worth of a Multiple Cash Flow

The present worth is

n
PW = P + Z Ej e-Tti |
i=1
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If one were to assume that all of the expenses and the
time between expenses are random variables, Figure 6.2 is
still valid. Only the method used to calculate the present
worth has changed. Obviously for simple cash flows, such as
those discussed to this point, a picture is probably not
required to aid the analyst in solving the problem at hand.
Now let us expand upon the nature of the expenses involved.

The following example problem is presented as a more
realistic real-world problem: A manufacturing firm has
decided to expand their plant to produce a new product.

A lathe is required in one area of the production line.
Several lathes which have passed an initial screening to
insure that they can meet or exceed minimum production
standards have been suggested and are now ready for economic
evaluation. The data for the first lathe to be considered
has been accumulated from the producer of the lathe and
in-house estimates. The initial cost of the lathe is $50,000.
The installation cost is dependent upon suspected electrical
problems and is estimated to be from a triangular distri-
bution with a mean of $10,000 and the endpoints of $2,000
and $15,000., The salvage value for the lathe is normally

distributed with a mean of $5,000 and a variance of $750.

This particular lathe has been extensively used in industrial
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applications and Table 6.1 is a summary of the repair data
provided by the manufacturer. Time to failure is normally
distributed with a mean of 60 days and a variance of 10
days. The cost of down-time is a constant $500 per day.
Monthly operational costs for preventive maintenance and
electrical consumption is $600. The compounding period is
daily and the rate of return is 20%. Service life is 5
years.

Figure 5.3 represents a possible network type con-

figuration for the problem. The nodes, designated as

©

(where k stands for the node number) is where any expenses
generated at that time are introduced. Transactions passing
thru the network would collect present worth for all

expenses up to that point in time. The symbol

&

is used as a decision node to designate that some parameters
must be tested prior to determination of branching. The

use of a triangle on the output portion of a node is used

to designate probabilistic branching. The absence of a

time specification on a branch assumes that zero time is

associated with that branch. The actual present worth for
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Table 6.1
Repair Data for Lathe 1
Type of Probability Down-time
Failure Probability Cost ($) of Repair (days)

Major o1 N(1K, 100) .90 4

Normal 5 U(100, 500) 75 2

Minor A E(100) .50 1
Legend:

N is normal distribution
U is uniform distribution

E is exponential distribution
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one realization of the network could be carried along with
cash transaction by an attribute.

The approach suggested to solve this problem is by
using simulation; however, many analytical tools (including
those introduced in this research) could be used as actual
nodes in the netiwork.

The example problem could be extended further to
approach the real-world more closely by adding taxes,
revenues, depreciation, etc. As the complexity of the
problem increases, the need for a pictorial representation
is justified.

Preliminary research indicates that QGERTS, developed

by A. Alan B. Pritsker is adaptable to performing the analysis.

It would be a major undertaking, requiring extensive re-

writing and additions to the current program; however, it
is suggested in Chapter 8 of this work that this task be

undertaken. Other possible simulation programs which

appear to have potential are SLAM and GPSS.

Summary

The intent of this chapter is not to design a simulation
language to be used in solving capital investment problems.
The chapter does layout a network procedure to use in
solving problems. The next chapter introduces some ap-
plications using the results of this research and the

network logic will be used as an illustrative tool.




Chapter 7

APPLICATIONS FOR RESEARCH MODELS

There are three basic areas where this research is
useful. The first area is in adding more realistic
analytical tools to those already used in traditional or
classical engineering economic problems, the second area
is in the validation and verification of simulation models,
and the third area is in the direct use of this research
in the development of a simulation language for engineering
economics. Each of these areas are addressed in this
chapter.

Extensions to Traditional Engineering
Economic Problems

This section of applications is concerned with adding
this research to the set of analytical tools used to solve
traditional engineering economic problems. Areas covered
are capitalized cost comparisons, replacement economy, and
lease or buy decisions. The research is not limited in
application to these areas; however, these areas were
selected to show the value of the research in a traditional

type problem.

|
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Capitalized-~-Cost Comparisons
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Capitalized-cost comparisons are present worth analysis
where the comparison period is assumed to be infinitely
long. Taylor (1964: 95) points out that capitalized cost
predominated in the early days of railroad construction
and expansion due to the viewpoint that roadbeds, tracks,
and bridges were considered to have the "mathematical
equivalent of perpetual lives". This is due to the very
small error introduced in using discounting factors with
infinite lives versus long life. This error is decreased
even more with higher interest rates. Capitalized costs
comparisons are valid for many analysis problems such as
tunnels, dams, aqueducts, bridges, and interstate highways.
A few typical analysis problems are illustrated in the

following examples.,

Example 7.1 The following example is modified

from Taylor (1964: 95, ex. 7.8).

A dam costing $100,000 to construct will cost $15, 500
a year to operate and maintain. Another design costing
$150,000 to build will cost $10,000 a year to operate and
maintain. Both installations are felt to be permanent.
The annual dispersments are assumed to be lump sum, year

end payments and the interest is continuous at 25%.
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Taylor's solution would be to calculate the present

worth of the first design as:

$100,000 + $15, 500 -__323__ = $154,572.58 ,
e "““.1

and the second design as:

$120,000 + $10,000 - = $155,208.12

1
e-25_1

The first design is, in terms of present dollars, $635.54
better. Now, let one assume that the annual dispersments
are dependent upon funding by the government and that this
funding is normally distributed with a mean of one year
and a variance of 6 months. The first cost of both designs
is assumed to be, as before, a constant.

Figure 7 .1 illustrates a network for the decision

process. The Cg4T model element is used to calculate

ss
the present worth of the first design as:

$100,000 + $15,500{#t(--25) ]
1-My(-.25)

Mt(-.25) for the normal distribution with mean 1 and variance
1 2
of .5 is e("25)+2("25) (.5), Hence, the first design

will have a present worth of

-.25+%(~.25)2(, 5)
$100,000 + $15,500 & = $158,685.79

1-e-+25+3(-.25)2(, 5)




R

First Design

100,000
N(1,.707)
¥
Second Design
10,000
120,000
N(1,.707) ‘
Figure 7.1

Dam Construction
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and the second design will have a present worth of J

$120,000 + $10,000 e"25+%(_'25)2('5) = $157,861.80 .
1o+ 25+3(-.25)2(. 5)

Considering the funding as taking place at random
points, the advantage has changed to the second design.
The wrong alternative has been selected by using deter-
ministic data. In addition, if one assumes that the
expected true cost of the first design is $158,685.79,
using the estimated cost of $154,572.58 yields an error of
$4113.21. Obviously, this data was selected to make the
point that both incorrect selections and incorrect estimates
can be made when data is used in a deterministic manner
even though the data is known to be random variables:

The variance for the present worth is found by using

only the variances of the CsdT model element.

Ss
ypw) = o2 [g(-20)-(n(-r)?]
[1-m,(-20) ] i-m, (-2)] 2
where C = $10,000

Mt('zr) - e’z(’25)+2(7'25)2(-5)

6456

Mi(-r) = e'('25)+%("25)2(-5)

V(PW) = $128,416,795,60
Opw = $11,332.11 )
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It should be noted that in finding the expected value

and variance of the cash flow a specific distribution of
cash flow has been assumed. As a result, the distribution
of the present value can be assumed to be normally dis-
tributed. Since the variance of the present value is known,
more information is known than by the first method.

To illustrate this, let us assume that the analyst
used the data in a deterministic manner and selected the
first design. Since the true expected present worth of the
first design is $158,685.79, one question might be, what
is the probability that the actual cost will be less than
or equal to the present worth of $154,572.58 calculated by
the analyst? Assuming present worth is normally distributed

with mean $158,685.79 and variance of $128,416,795.60,

_ X- 154,572.58 - 158,685.79 _.
2= Mo 15%,572.5 56:095 = _,36.
g 11,332.11

Hence, from normal tables (Miller and Freund, 1965:398)

O(=+359. As a result, there is only a 35.9 percent chance
that the first design will have an actual cost less than or
equal to the cost estimated.

In many applications of this research, multiple cash

flows will be seen in the models. As a result, it is possible

that no distributional assﬁmptions concerning the random
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variable of present worth can be made. In such cases it is
still possible for certain probability statements to be
made via the Chebyshev inequality. Using the Chebyshev
inequality for this example, the probability of realizing
an actual cost within two standard deviations from the

mean is

P (|PW-E(PW)| =20 ) = 1-%2 = 75%.

Another way of stating this is that the probability of
being within 20 ($22,664.22) of the expected present worth
is greater than 75%.

The strength of Chebyshev's theorem is that it only needs
the mean and standard deviation of the distribution. It is
] also its greatest weakness in that it only provides an
upper bound for the probability.

Other tests could be made if we made distributional
assumptions; however, the actual distribution is not avail-
able to test our assumptions. The suggestion is to then
Y generate the distribution via computer simulation, validate

the expected present worth and variance of present worth

via the analytical tools given in this research, and then
make probability statements after analysis of the distri-
bution of present worth.

The next example is a replacement problem first

introduced by Grant (1938:208). The problem is revised to

introduce random variables into the problem.
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Replacement Economy

In replacement economy, an in-service piece of equip-
ment is considered for either replacement c:r improvement.
The factors which govern the need for thi: mnzlysis is
obsolescence, inadequate capacity, deterioration, improved
equipment availability, etc.

The following example is a decision process in extending

the 1life of an item versus immediate replacement.

Example 7.2 A wooden telephone pole has decayed to

the point that the pole must be either removed or "stubbed”.
A stub costs $8.00 with an installation cost which is
exponentially distributed with a mean of $20.00. The
inspector notes that the upper section of the pole should
be good for about 5 years. He estimates that this estimate
is normally distributed with a mean of 5 years and a
standard deviation of 1 year. A new pole will cost $25.00
with an installation cost which is exponentially distributed
with a mean of $40.00. A new pole has a normally distri-
buted life of 20 years with a standard deviation of 4 years.
The company has an existing contract to buy all used tele-
phone poles at the rate of $5.00 per pole. The minimum

required rate of return is 23 percent.

1
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Figure 7 .2 illustrates the decision process. Several
model elements are used in the analysis. The initial
procurement costs of the stub or new pole is a constant
and is simply added to the present worth. To calculate
present worth due to installation costs and the salvage
value, two models presented in this research are required.
Calculating present worth due to installation costs will
require the use of the CisTeq model element. The CidTis
model element is required to calculate the present worth

due to the salvage value.

The expected present worth of the stubbed pole is:

1 2 2
E(PWg) = 8 + 5 + 20(1) - s(e=r230 5)+3(-23)%(1)%,

$31.37 .

and the expected present worth of the new pole is:

H

1 2 2
B(PYHy) = 25 + bo(1) - s(e”+23(20+2(-.23)%(k)

[t}

$64.92 .

It will apparently pay to stud the old pole. The
difference in expected value was really determined by the
high cost of installing a new pole. Using the means of
this data in a totally deterministic manner would result
in the same conclusion with very close figures to those

calculated when using the data as random variables. The




Stubbed Pole

$8
¥ -5
E(20)
N(5,1)
New Pole
$25
* -5
E(40)
N(20,4)
Figure 7.2

Pole Replacement vs. Stubbing
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main advantage in using random variables, in this case,
is that one can now calculate a variance and standard

deviation for the estimated present worth of the stubbed

pole:
V(PWg) = (20)2 + 5% [e-z(-23)5+%(-2(.23))2(1)2]
3 2,,4y2)2
- [enC 2251323 ]
= 400.14
PWg = $20.00

Having the standard deviation does give one a great

deal more information. If one uses deterministic data,
the present worth of the stubbed pole is $31.42. 1In this
case, the advantage in using this research is in being able
to obtain variance and standard deviation data.

The next example is a lease or own problem taken from
Taylor (1964:210). The problem is revised to introduce

1 random variables.

Lease or Buy

To own or lease equipment is a common problem in
economic analysis. The obvious advantages of leasing is
in avoiding many of the costs of ownership such as obsole-

scence, repair maintenance, and replacement. The following

example is applied to machinery; however, the concepts are

applicable to many investments in capital equipment.
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Example 7.3 A 2-year-o0ld truck has a net realizable

value of $3,000 and is expected to have a salvage value of
$900 after its remaining 3-year life. The actual salvage
value is normally distributed N(900,450). Its operating
disbursements for taxes, insurance, and registration are
$160 a year. Annual inspection, maintenance, and repair
costs are estimated to be composed of two costs. The first
cost is for preventive maintenance and is estimated to be
normally distributed with a mean of $100 and variance of
$900. The second cost is a ramp function which is expected
to increase at a rate of $50 per year. The $50 rate is
exponentially distributed with a mean of $50. This second
cost is primarily due to¢ breakdowns with the seriousness
of each breakdown increasing with time. The time between
these breakdowns is poisson distributed with a mean of one
year. An equivalent truck can be leased for 20 cents a
mile plus 3.5 a day for every day that the customer keeps
it, whether it is driven or not. The annual utilization
cost, based upon past records, is expected to be normally
distributed with a mean of $1,050 and a standard deviation
of $500. Minimum required rate of return is 15%.

Figure 7.3 illustrates the network for owning the
truck and the network for leasing a truck. At node 2, in

both networks, the variable N is increased by the constant 1
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Owned Truck

N(900,450)

Leased Truck

No

N(1050,500) ‘\:>

;4//6;;;\\ Yes > 3
1 2 ) \7

Figure 7.3

Owned vs. Leased Truck
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to designate the period of "current" analysis. The input
of "R(E(50))" at node 5 designates a ramp function with a
cost parameter which is exponentially distributed with a
mean of $50. The method of branching is tested after node 3
and 5 in the "owned truck" ilLustration and after node 2 in the
"leased truck” illustration. This test is on the "current"
time for the alternative. The actual network arrangement
is discussed in more detail under Suggestions for Further
Research in the next chapter.

The analysis for expected present worth for the owned

truck is:

Mtl(-r)-[Mtl(-r)]”]

E(PWO) = 3,000 +(100+160) [
1-Mt1(-r)

+

50 [-M%z(-r) {1+Mt2<'r)3 [(Mtz('r))3'”]]}
[1-Mt2(-r)]2

900 [Mta('r)]'

where M, (-r) = e 12
Myo(-r) = e(e"15-1)
Mo(-r) = _eleTrP-1-015)
Myy(-r) = &5,
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The resulting calculation yields a present worth of
$3,195.90. The analysis for the expected present worth for

the leased truck is

. m
E(pW) = 1050 | Me(-T) - [y (-r)] J,
I—Mt( —r)

where M;(-r) = e"15 .

The resulting calculation yields a present worth of $2,351.11.
In this case, present worth is dealing with costs and the
leased truck is the cheaper alternative.

These examples have shown the usefulness of this research
in extending traditional or classical engineering economic
problems. These are two primary benefits that are seen by
the author in this effort. First, it is rare that one can
forecast costs or profits with certainty. This research
enables one to use a more realistic approach to using the
known data in a problem. The second benefit is to the

student in that there should be an increased motivation in

dealing with analytical tools which approach real-world

problems with fewer assumptions and/or simplifications.
The next area of discussion for the use of this re-

search material is for the validation and verification of

simulation models.
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Validation and Verification of
Simulation Models

One of the drawbacks in attempting to solve real-world
problems is the complexity of the available mathematical
tools. Another drawback is that appropriate mathematical
tools may not be available. An approach which can be used
to address both of these problems is simulation. Also,
simulation of an alternative can produce results beyond
the analytical calculations of mean and variance. As
pointed out earilier, using Chebyshev's inequality to make
probability statements can at best produce weak probability
statements. Making other assumptions such as normality
will produce errors if the present worth distribution is
abnormally skewed or peaked. In using simulation, the
actual distribution of present worth is available to make
probability statements.

To have any faith in the output results of a simulation
program, one must be able to validate and verify the model.
The analytical tools presented in this research should aid
the model builder in both of these efforts by allowing
validation and verification of expected value and variance
data.

The next area where this research could be put to
practical use is in the development of a simulation language

for engineering economic problems.
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Development of a Simulation Language

Simulation is a relatively new technique in solving
capital investment problems. Hess and Quigley (1963) were
among the first to use Monte Carlo simulation techniques
for the construction of output distributions for present
worth. Other authors which have used simulation include
Hertz (1964), Bussey and Stevens (1971), and Whitehouse
(1974).

When dealing with series type cash flows, there are
two basic approaches which are used in the literature. One
approach is rather brute force in repeating a node for the
number of times required for the series. An alternate
method would be to "loop" back to the node. Both of these
methods are time consuming as far as computer time is con-
cerned. An alternate approach using this research is to
use a single node to calculate the present worth of a series
of cash flows. As an example, let us assume that both the
cash flows and the time between cash flows are random
variables. For a specific run of the simulation program,
which would generate one value for present worth, two
random number generators take a sample from the cash flow
and time distributions. The present worth for this specific

realization would then be:

n
PW = C Z e~Tt |
t=1

—_—
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The variable n represents the total number of cash flows
allowed, and it could be determined by dividing the economic
life by the time parameter. Si' e this would generate a
real number in most cases, a simple procedure would be to
truncate n to an integer. For example, if the time parameter
was .3 years and the economic life was 10 years, n could be
33. Repeated runs through this node would produce the same
expected value of present worth and variance of present
worth as calculated using formulas from this research.
Using this type of a node will allow the analyst to validate
segments of the model. Since the actual distribution of
present worth would not be available, the actual use of
these nodes would be in building a model. Once the model
is "correct”, these nodes would be replaced with appropriate
nodes to collect data.

In this chapter the main objective was to examine
applications for this research. Two basic areas were
discussed, one area being the direct use of this research to

analyze problems and the other area being the indirect use

of this research in additional research areas. The next

chapter is a summary of this research and includes suggestions

for further research.
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Chapter 8

SUMMARY, SU.GESTIONS FOR FURTHER
RESEARCH, AND CONCLUSION

The objective of this research was to develop analytical
tools to solve specific classes of capital investment
problems in engineering economics involving mutually
exclusive alternatives. A total of 16 basic models were
developed for impulsive and series cash flow model elements
under the assumption of deterministic, constant interest
rates. A review of Table 3.7 indicates a great deal
additional research is required. This chapter summarizes

the research and makes suggestions for further research.

Summary

The first phase of this research was to develop a
detailed classification for capital investment models. A
spanning set of models found in the literature were reviswed
to determine types of models and required parameters.

Next, a taxonomic structure for capital investment problems
was developed. This area of the research extended Fleischer

and Ward's work (1977) to include a distinction between
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models involving one-time cash flows (impulsive) and series
cash flows. A further extension in the taxonomiec structure
was made by looking at independent and dependent models.

A short form classification was also developed in Chapter 3.
A total of sixteen basic models were developed for impulsive
and series cash flow model elements under the assumption of
deterministic, constant interest rates (see Tables L.4-4.11).
Dependent model elements were extended to allow for a finite
number of cash flows (see Table 4.12). In addition, a
general model for analysis was developed in Chapter 3 and
expanded in Chapter 4. Chapter 5 is an indepth discussion
of the contribution of this research. Chapter 6 introduced
a network logic to modeling economic problems and Chapter ?

discussed application of the research.

This research has highlighted various areas where
additional research is required. The next section of this
chapter is a review of these suggestions and the introduction

of other research areas not covered in this research.

Suggestions for Further Research

Although a great deal of work has been accomplished
by many authors in the areas of simulation, risk analysis,
utility theory, etc., a large void still exists for many
of the basic models which are required in analysis of
economic problems. Further research is required in the

development of these models and the use of these models.
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Non-constant Interest Rate Models

As pointed out in this research, with the exception of
Reisman and Rao (1973), stochastic interest rate models
have not been developed. The argument for considering the
interest rate as a constant is founded upon the concept of
a minimum attractive rate-of-return. Currently, interest
rates are changing rapidly. There is reason to believe
that management may not be able to either determine a
minimum attractive rate-ol-return or must use a very high
rate to cover risk in the analysis process.

It would seem that an area for additional research
would be to develop models for stepwise constant and variable
interest rates with stochastic parameters. As models
become more and more complex, simulation becomes an impor-
tant tool; however, analytical tools are still required to

validate and verify the simulation output.

Alternate Decision Criteria

The decision as to the best alternative has been

assumed to be based upon the alternative with the minimum

expected present worth. Other decision criteria need to

be researched. Annual cost analysis is commonly found in

economic analysis. It would not be too difficult to

extend this research to introduce this decision criterion.
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Other criteria such as the aspiration level principle and
the most probable future principle should also be explored
for use in the analysis of data generated by the use of the

analytical tools developed in this research.

Introduction of Additional Parameters

The basic parameters used in this research were first
cost (P), revenue (R), expense (E), and salvage value (S).
Other parameters such as costs due to taxes and profits
due to depreciation could also be introduced. One method
to introduce these parameters is to look at expenses and
costs which appear in a given year and calculate an expected
net cash flow and variance of net cash flow for each year.
These data calculations could then be used to calculate
the expected present worth for the alternatives. The data
calculations would have to be handled as n impulsive cash
flows. The suggested formulas for calculating expected

net cash flow and variance for net cash flow are:

n

J k
E(NCF1) = (1-CO( Y, Ry Y Eg) + &X(D)
i=1 i=1

and

j k
(1-00% ¢ T v(ry) - L V(E) + o®v(p)
i=

V(NCFl)
i=1




——d

where:

E(NCF) = expanded value of net cash flow in year 1
X = tax rate
D = depreciation

V(NCF,) = variance of net cash flow in year 1.

Simulation Model

Several areas have been pointed out in this research !
where simulation could be used as an aid in the analysis

of an economic problem. The complexity of many engineering

economic analysis problems appear to require the use of
simulation.

A suggested computer flow diagram is illustrated in
Figure 8.1. Blocks such as "compute a gross revenue" and
"compute a gross expense" could contain complex networks.
If discrete time units are used in the simulation, the
dependence between different cash flows could be introduced
into the program. The blocks such as "generate a set of
initial costs" and "generate a salvage value" are areas
where impulsive models developed in this research could be
useful. The block titled "perform analysis" would contain
programs to evaluate the data under selected criteria and

print out selected information.




START

(

Generate a
set of initial
costs

4

Generate an
economic life
t

\ 4

Generate a
salvage value
S

4

Generate a
depreciation
schedule

Set life = t

No

Print out
results
r

Perform analysis

3

Yes

Compute as
gross revenue
R

4

Generate a
gross expense

Ey

4

Determine one
sample of
present value

Generate a
tax rate

Calculate net
cash flow
NCFy

Figure 8.1

Simulation Flow Model
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Conclusion

This research has expanded the analytical tools avail-
able to accomplish the analysis of economic models involving
mutually exclusive alternatives with impulsive and series
cash flows under the assumption of deterministic, constant
interest rates. The use of these tools allows the analyst
to use available data in a more realistic mode and calculate

4 a more accurate and, in some cases, more correct solution.
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APPENDIX I

SELECTED MATHEMATICAL PROOFS
AND DERIVATIONS




(1) Proof that E(e-Tt) = T E(%)
Given: T is a random variable
To prove: E(e~TT)Ze~T E(T)

Solution: The Taylor series expansion for e~IT about the
point T = MU, iss
r2(T- /.Lt)z e"r'u't

e~IT = e-r,L(t - r('l‘-,ut)e"r'u‘t + + eos
21
Taking the expected value of both sides of the previous
equation leads to:
2
E(e-TT) = e THt & B(1-LUy)re THE + E(T-My) ...

2!
Recognizing that
E(P-Uy) = 0
and
B(r-U )2 = 042

2 2
E(e™TT) = e'ru't[ 1+ Tt + ...}
2

Since all terms in the expansion are greater than or
equal to O, the right side of this equation is greater than
e-r,LL t.

Since
e-r E(T) = e-r,LLt ,

E(e-TT) = ¢~TE(T) |
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(2) Derivation of the variance of present worth for Cj;Ti¢

Independent Model

Given: PW = e

T is an independently distributed random variable

‘ C is a constant
V(PW) E(PWZ)-[E(PW)]Z
To find: V(PW)

Solutions

(PW)? = ¢2(e-TT)2 = 2 o-2rT

E(pw2) = (C2)+E(e~?FT)

E(PW) = (C)*B(e~TT

(E(PW))2 = c2.(E(e-TT))? ,
Hence:

V(PW) = C% E(e-er)-cz(E(e“rT))2

= g2 [E(e-Zrt)_(E(e-rt))z] )

Since

E(e”™%) = my(-r) ,
(E(e™™%))2 = (my(-r))?,

And
oo

Y (e=Tt)2 p()
t=0

E(e-rT)Z

o0
E: (e~2F%) p(t)
t=0

My(-2r) ,




N ,
—
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Then
V(PW) = cz[ Mt(—Zr)-(Mt(-r))z]
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(3) Derivation for the mean and variance for the present

worth for a Csdes model element.

E(PW) derivation

J
co
Z oLt
Given: PW=2C e"ti=1
j=1
t;: are independent, identically distributed

i
random variables

C is a constant
To find: E(PW)

Solutions
Pw =2C

00
E(PW) = E(C_Z e~Tiz1 7) .
Since C is independent of t; ,

2 t
- i
E(PW) = E(C) *E( Z e TiF1 7y
j=1
Since C is a constant,
oo J
el b
E(PW) = C'E(}E e i=l ),
j=1

By expanding,
B(PW) = C[E(e ¥ ar(e N TP Y2) ) g (o (124 L]
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For all i and k,
E(e~Tti) = E(e"T¥k) = E(e~TT) .

Setting E(e~TT) = X,
00

E(PW) = C z xn .,
n=1

Since |e'rT|<1.for all T<0, X 1, and this geometric series

converges to

¢ [-.1_- ,].._ cx
1-X 1-X
Hence,
-rT
E(PW) = c * Ble ),
1-E(e~TT)
Using

E(e”*T) = My (-r) ,

E(pw) = ¢ » Ml-T)
1-My(-r)
To find: V(PW)
By definition of variance,
v(pw) = E(PW2)- [E(PW)] 2 .

By squaring PW,
J
oo
-r zti 2
e (c 2 o A%t 1 )
J=1

AR ][g o]

k=1
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. 02(o Tt 4 o T(t1482) | -F(Tyetyet,y)

+ oe0)
*(e-Tt1 4 ¢~F(t1tty) , -r(tyetartsy) o | )
= C2(e-T2% 4 .-r(thtz) . .-(Zt;ﬂztt;) * 0ee)
+ C2(a-T(2tyetp) 4 ¢-F(2tpe2ty) , goF(2tat2tzety)

+ C2(o-T(28q4t0t3) 4 o-T(28ge2trty) , o-T(2t142t2020y)
s o-T(28ge2tr2tyety)
Taking the expected value of both sides and letting
X = B(e"Zt) and ¥ = E(e~Tt) leads to:
B(P¥2) = cz[[x s+ xr2exdente o]
+ [xx+x2+xzr+x2¥2+x?13+xz!"+ ...]
s (02 x e 13 e xH e xNI e O . L]
+ (xx3+x2!2+x3r+x“+x“¥+x"x2+x"v3+ ...]

+[...]]. . o
-okaofrh-zx“ Ly

k=i  j=0 k=1 d=1

.cz[x 1 o+ X Y
TX " 1Y X" 1Y

xmt - g2 X(1+Y)
(1-x)(1-¥) (1-X)(1-Y)

A
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Now, substituting X = Ee-Zt) and ¥ = l(o'"’l

E(pw2) = €2 Ble~Z)  (148(e°T%))
(1-Ble"&%))(1-Ble™T"))

Noting E(e" %) = my(-2r) and B(e~Tt) = My(-r),

pipwzy  c2 RIE AL
(30 (-20) )1 (-E))

Since (from p. 181)
n(-r)
'(”’ - c.‘“ [ ]

1% (-r)

(8(r))2 = ¢ [—.
l~1a:‘(~r)

Hence,
vipw) = B(Pv)-(B(PV))2
.2 l‘(-Zr)( 1eity . -r))
(1-%g(-2rW1=Re(-r))

e Re(-r) 72
i czil-xg(-r)l ’

which can de reduced to

virv) = C2[ xyl-2r)-(my(-r))? J
WD ISR |

18)
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(3) Derivation for the variance for the present worth for a
CoeTss P00l element.

Given: o IR G"'"‘ * ef”(“'tz’ ¢ ‘).'r(“*‘rt), * e

t; are independent. idertically disuributed
random wvarisdles
€5 are independent. iaentizally disirivtuied

randos wveriabdbles.
t; and ¢; Are indepengent for all 1.

To find: V(W)
Solutions
8y definition
vire) = mirwdy- fmipng T .

By squaring Pw.
e o 2. eepe TEUSID . ey Uyl o
- g‘e‘."‘ulﬂﬂ’ . ellt'ﬂnl'nl’
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.r‘”"ur‘), L2 0,"'ﬁ“"af'ﬂ3) 8 00

L Q‘Q,Q
Taking the expected value of bLoth sides and letting
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n - - - -
v [? (2’ E(te 2rt) " Blre ) (E(e 2rt))n 2]
n=2

, o0 i ]
. [2 o4 ) (BeTTEINE,
1=} v

whizn is equal to:

{. ®, (-2r)7.{ . “z.("’z' [ 1 ]

;

2 3 I-M,‘(-l‘)
- - [ 4
* 3 ! 1; ! . Zfl 1 ]
L ;.}L‘(-Zr).t . ).M‘&-r)j l-xt(-r)

n-xz(-r)*4

2% YO fz- @E M!(-r)'fI.
. ¢

& Ty ) P . 2rt ne2
ve O gk T mie T ate TR

¥
e k
ass ®
=

The wapropsion Ior A CAN fnow te wrillen ass

-z ', : = -4 - % 02
s (e 30.{;) (ECe™275 )2
e

Lt

| Ry =2 fa
}, {;I (Rl 1™ can be solved using the following
2

Ar RN LE)
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and
§f 2
-2
(D) = n(n-1)p " = _—
P n=2 P (1-0)
Since
5? n n-2
n=2 (2)p
can be written as
n(n-1) n-2
n= P ’
§f 2 2
n -2rt, n-
(E( )) = .
=2 2} (=te (1-E(e~27T))”

A can then pe written as:

(E(te™ 5 %))2 . 2

(1_E(e-2rt))3

and can be solved using moment generating functions as:

' 2
‘- [- M, (-2r)} . 2
2 (1-Mt(-2r))3 ’

Combining both sets of terms (ti2 and titj) simply leads tos

)

B(sz M, (-2r) 1 4+ 2My(-r)
c2

4(1-Mt-(2r))2. 1-My(-r)

M. ' (~2r) M (-r)

(1-biy(-2r) ) (1-My(-r)7

, (" (-2r))? .P . th(-r)J
I-Mt(-r)

(1-M(-2r))°
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Hence

E(PW?) = czl:[ My'(-2r) (Mt'('zr))ZH1 T ]
b(1-my(-2e))%  (1-m(-2r))3 1-M(-1)

. Mg'(-2r)em (-r) ]

(1-M,(-2r)) (1-M,(-r))?
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(6) Derivation of the expected present worth for the Coslss

dependent ramp model element.

-r(ty+t,)

. -rt
Given: PW = cltle 14 cz(t1+t2) e + e

-r(t1+t2+' . ctn)

cn(t1+t2+...tn) e + ees o

cs and ti are independent and identically distributed

random variables.
To find: E(PW)

Solution:

Since cy is independent of tj,
E(PW) = E(c,)°E(tye™7%) + E(cz)'E(tle'r(t1+t2)+tze'r(t1+t2))
+ eee + E(cn)cE(tle—r(t1+tZ+o.a+tn)+t2e-r(t1+t2+oo.+tn)

-r(t1+t2+o L] o+tn)

+...tne )+ LA

Since E(ci) = E(cj) = LLC for all i and j,

-r(ty+i,) -r(ty+t,)

E(PW)

Mo [E(t e )em(t e J+E(t e Moo

e-r('t1+'t2+ooo+tn) -r(t1+t2+oo-+tn)

+

E(t, J+E(t,e oo

+ Bt e T(tartate e ttn)y, ],

Since the ti's are independently distributed random variables,

-r(t2+t3)

E(PW) = U _'E(tye™"1) [1 + E(e™"*2)4E(e J+eod)
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+ ;LC'E(tze'rtz)'E(e'rtl)[ 1+ B(e Tt 3)em(e T4 ) )e, ]
booot ucE(tne'"“)'E(e"‘ti)-E(e'r“Z)...z(e"“n’“)
1+ r(e”" et )+E(e'r(tn+1+tn+2) YOO
+ s 00

However, E(tie°rti) = E(tje'rtj) = - My (-r)
and E(e”T¥) = E(e’rti) = M (-r) for all i and j.

Hence:

(g

o0
E(PW) = M -M,c -r) Zo Mt(-r) ” [Mt(-r)]k
n=

M (mg'(e0)) .« 2 .1
1-Mi(-r) 1-My(-r)

- chMt.('r)
[1‘Mt('r)] 2
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(7) Derivation of CggTgs Dependent ramp, finite n cash flow

model element

-rt -r(ty+t
PW = cyt,e 1, cz(t1+t2)e (ty+t2)

+ c3(t1+t2+t3)e'r(t1*t2*t3) +e0e

+ cn(t1+t2+t3+...+tn)e

- - +
r(t1+t2) +c !‘(tlﬂ'tz tj)

-rt

-r(t1+t2+t3+...+tn)

-r(t +t,)
+.o0t cpt e + ¢ty 17"2

+ ot e T(trtarty) “r(tyttttatecctty)

32

+eoet cnt2°

- - +o0 0t
+ cqtqe r(ty+tty) Lo entye r(ty+ttty t,)

Fooot cntne'r(t1+t2+t3+"'+tn)

c; and t; are independent and identically distributed random

variables.
Solving in terms of expected values:

E(PW) = E(C)*E(te"T%) + 2B(C)'E(teTt)'E(e"T")

+ 3°E(C) B(te™"t) [E(e™™™)] 2
#eeut n B(C)*B(te”T%). [R(e7TH)) ™!
n

= E(C)'E(te"T%): ) k[E(e
k=1

-rt)]k-I

Let

X = E(Q-rt) .




Then

2\ K(E(e=Ft1EY « 20 ¢ 2x) ¢ 32 vuiie mx™Y

- 4 ixk .
4x k=1
Now,
t X = x - a1
1 -X
k=1
4 | (X0 (ne)X7) (x-x"1)
ax °n (1-x)2
o 1K - (ne1)X® » X(nel)X” + X - !
(1-%)2
W1 M (-n-14nkeX-X)
(1-X)2
. 1+ X"k -n-1)
(1-X)2

{: « | e "t]* ! .[1 » {x(o"")]"ins(.“")-n-d]
= (1-8(0"‘))2

since:s B(te‘ﬂ) - -lt'(-r) .

B(e™™) = w(-T) j

and E(C) = Mc

* n - .
B(PW) = ‘le(-ut'(_r))[l M [lt(~r)] lnlg( r)-n 1]]

{}'“t‘ ‘r)] 2
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(3 Derivazion of CSG?SS Dependent decay, firite n casn Flow

noael elément

-(a.f}&, '35'751‘3'139

Ncc‘e . Cc.L

>

3
Cenas cﬂe*ﬁ&'fﬁﬁ!‘v!:t...'!zy

Taxingz exyected values, shile f01ine 1hEl 8¢ €5 and 1,8

are ingerengent, (dentically disiriduted rardon varistoes,

fleads t¢ {k
v 1 «{Ber ) &
giisl = R, O |Ele :
o et
Setzine Bie V¥ TIY L g,
29
p . - 3
Lﬁ((e‘q:”r}‘b‘ = /. . X ’i-] - ‘I = i']
k=l Kx 3&3 L3k
Hence
L -
E(sw) = M me”t Y L a0 ,L,,.’}
2 " L]
‘i 1 - B(e-te*ri%)
and in termst of moment cereraling funcliong.
PR (- (aerd) o Xy (=Caee)y ™ ]
EBibw) « U, K .

L 1 - B {-lasr))
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