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/ ABSTRACT

Both the cash flow and the timing of a cash flow are

often found to be random variables in economic analysis.

Very few analytical tools exist to handle such problems.

This research develops analytical tools to aid in the analysis

of such problems. A total of sixteen basic models are

developed for impulsive, single cash flows and series cash

flows involving capital investment problems with mutually

exclusive alternatives. Each model is developed under the

assumuption of deterministic, constant interest rates. In

addition to the development of models where cash flow and

timing of cash flow are independent, dependent models are

also presented. The use of these model elements by an

analyst will allow the utilization of available data in a

more realistic and accurate mode. The models are also of

significant worth in verifying simulation output.-

Other areas covered in this repearch are a spanning

set of models found in the literature, the development of

a taxonomic structure for capital investment problems, a

proposed network logic for solving economic problems, and

applications of this research. Aocoessfon For
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Chapter 1

INTRODUCT ION

This research is concerned with modeling and solving

specific classes of long-term capital investment problems

in engineering economics involving mutually exclusive

alternatives with deterministic and/or stochastic parameters.

The analysis is based on the net present worth for each

alternative.

Investment decisions are among the most difficult and

important decisions with which management must cope@

There are several reasons as to why a detailed analysis of

possible alternatives has such a significant impact. First,

the decisions involve large capital expenditures. Second,

the decisions normally have long lasting impact. The

concept of irreversibility in the decision can cause a poor

decision to literally destroy the firm. Many capital

acquisitions, costing several thousands of dollars may have

only scrap value if they fail to achieve the objectives of

the organization. In addition, the decision may very likely

commit the firm to a plan that will last several years

prior to reaching a point where a new course of action can



2

be determined. Third, and the true justification for this

research effort, the alternative actions invariably involve

a high degree of uncertainty. They involve estimates

concerning many different variables. When the variance

anid probabilistic characteristics of these variables are

not considered in the decision process, the decisions are

based upon incomplete information, and in some cases, can

be incorrect.

Statement of the Problem

The requirement to which this research is addressed

is the development of solution techniques for solving

complex alternative selection problems in capital investment.

Such techniques must be able to handle a wide variety of

complex discrete and stochastic parameters. The general

orientation of the research is to define a taxonomy for

capital investment model elements, to formulate and analyze

each type of model element, and to establish solution

procedures to solve complex problems in the area of study.

Approach to the Problem

The approach to the problem of alternative selection

among capital investments will involve three basic phases.

The first phase will be to develop a etailed classification

for capital investment models.* The second phase will be



3

to discuss analytical tools for solutions to capital invest-

ment problems and the third phase will be the actual solution

procedures to follow in solving a complex problem.

During phase one of the research, representative

models found in the field of economic analysis will be

reviewed. The review is not meant to provide an exhaustive

enumeration of models. It will introduce the reader to the

current state-of-the-art in solving capital investment

problems.

Fleischer and-Ward (1977) have developed a multiple-

classification taxonomy for economic analysis which they

claim to embrace all models in the field. The taxonomy is

based upon separate descriptive classifications for cash

flow, interest rate and planning horizon. Using this

taxonomy, a more detailed classification structure will be

proposed. This classification structure will act as a

guide to illuminate those areas where additional research

is required.

Specific models will be developed and selected for

further study during phase one of the research. These

models will be limited to those alternative selection

problems involving deterministic. constant interest rates.

The cash flow and time parameters will be allowed to take

on discrete or continuous and deterministic or stochastic
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characteristics. In addition, the area of dependence

between cash flow and time will be discussed for those

models using ramp, decay, and growth functions.

The second phase of the research will be to develop

analytic tools to solve capital-investment problems. A

network illustration of a problem will be discussed as

an aid in illustrating the interrelationships between

Fcash flow, time, and interest rate. The solution procedures

will assume independent parameters.

Phase three of the research will be to solve a complex

alternative selection problem using a general model and to

show how network analysis can be used as a tool in the

s olution process.

Organization of the Dissertation

The remainder of Chapter 1 will be devoted to the

background of engineering economics. Chapter 2 contains

a spanning set of models used to solve capital investment

problems.

Due to the wide variety of problems that can be viewed

as capital investment problems, Chapter 3 will present a

taxonomy of such problems and a general model development.

In addition, Chapter 3 contains a discussion of the problems

addressed in this research.
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Analytical tools for solving capital investment

selection problems will be discussed in Chapter 4. A

given alternative will be evaluated by calculating a

present worth and variance of present worth. The remainder

of Chapter 4 will be devoted to-the development of a

detailed model for solving complex capital investment

problems. Chapter 5 will be a discussion of results.

The development and justification of a network

representation of a capital investment problem will be

given in Chapter 6.

An analysis of a specific group of alternatives is

presented in Chapter 7. This analysis is presented on the

basis of expected present worth and variance of present

worth for each alternative.

Conclusions and recommendations are summarized in

Chapter 8. Selected mathematical proofs and derivations

are given in the Appendices.

Background for Engineering Economics

Representative textbooks by Fabrycky and Thuesen (1964),

Morris (1960), Terborgh (1949), and Taylor (1964) give

general credit to Wellington, Fish, Goldman, Grant, and

Dean for the development of the three basic methods of

engineering economic analysis (Rate-of-return, Present value,

and Annual cost).
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Buck (1975,81) attributes the roots of engineering

economics to the economics of railroad building at the end

of the nineteenth century. The initial work in this area

was accomplished by Wellington (1908), a civil engineer,

who was interested in the structural selection aspects of

railroad building. He assumed that railroads, due to their

monopolistic nature, could never be destroyed. Also, he

set forth the principles of compounding in assuming that

railroads were built for future expansion as well as present

requirements. Future traffic was postulated to increase

on a compound interest basis. His book was addressed to

engineers designing railroad systems. The focal point of

his work centered on the selection of structures based upon

capitalized cost.

Another civil engineer, J. C. L. Fish (1923), published

one of the first books on engineering economics. He believed

that the central concern of engineering economy should be

in choice of investment, rather than structure.

Goldman (1923) introduced a comparative value concept

using compound interest calculations similar to those used

in textbooks today (Lesser, 1969). His work leaned heavily

on the use of compound interest calculations to compare

different alternatives.

In .1930, Grant published the first of a series of books

on engineering economy (Grant, 1930). For the first time,
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short-term investments were studied in depth. Grant (1938t

362-363) pointed out several obstacles to engineering

economy including problems with data leading to "hunches"

and oversimplification. Other problems of bias on the part

of the estimator, impractical alternatives and legal

obrtacles were also pointed out. Despite these warnings,

engineering economy is still largely an exercise in financial

arithmetic with serious omission of the real problems in

analysis. Grant's comments (1938:81) concerning safety are

noteworthy in that they also apply to any risk in the decision

process.

There is no correct way to introduce into an
economy study this requirement for a margin of
safety before undertaking a proposed investment in
plant.

His suggestions to include safety in analysis are by: using

conservative data; increasing the required interest rate;

using a mandatory payback period; or recognizing the need

of safety as an irreducible element in the final choice

between alternatives. These suggestions are based upon

deterministic changes in the data. As stated by Arthur

Lesser (1969t111), "Eugene L. Grant can truthfully be

called the father of engineering economy".

Rate-of-return analysis was introduced by Joel Dean (1951).

A great deal of argument has been noted in the literature

over common errors and solution problems with this method;

however, Taylor (1964t:125) notes that it is preferred by top

management.



8

The early authors such as Wellington, Fish, Goldman,

Grant, and Dean used data from mortality tables or curves.

Rather than using the probabalistic characteristics of

these data sources, deterministic data were used by cal-

culating means and using these figures as if certainty

was assumed. The models also required that the data be

put into a specified format by whatever "appropriate"

methods and the "appropriate,, algebraic manipulations be

used as stated. There is very little discussion as to how

to handle risk and uncertainty other than that these

elements must be considered in the decision process.

Modern textbooks have developed some of the finer

details of analysis by injecting risk and uncertainty,

utility theory, and mathematical and computer models. The

list of references for this information is voluminous;

however, specific references to some of the more sophisti-

cated works is required. DeGarmo and Canada (1973), Morris

(1977), Raiffa (1970), Bussey (1978), and Reisman and Rao

(19?2) are some of the works which provide powerful tools

for analysis.

The work of Rleisman and Rao (1972) is perhaps the most

detailed effort to allow for stochastic extension of model

elements. Interest rates and inflation are considered in

both discrete and continuous modes and can take on random



patterns (Fleischer, 1975.79). The equations for specific

cases are derived and stated in a set of tables.

Summary

A review of literature points to the concern in society

for economic analysis. The models developed to accomplish

the analysis use a large number of parameters. Since one

of the objectives of this research is to develop a general

model for economic analysis, the next chapter will review

a r, resentative set of models and model parameters.
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BACKGROUND FOR ANALYSIS MODELS

There are several well-developed models used in capital

investment decisions. Since one of the objectives of this

research is to develop a general model to evaluate capital

investment problems, a review of representative models is

essential. The selected models are not an exhaustive set,

but research indicates that they are a spanning set of

models used by industry and represent the "current state-of-

the-art". The models span analysis based on parameters

which are deterministic to parameters which are stochastic,

from models which have only a few parameters of interest

(less than or equal to five) to models having as many as

thirty-one parameters, and from models which are concerned

with single item analysis to models which consider a string

of replacements for the equipment under analysis.

A review of these models will point out the parameters

which were considered for inclusion in the taxonomy presented

in Chapter 3. The purpose of the review is not to critique

these models, but should orient the reader to the fact that

many gaps are left in the analysis of a problem due to
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inapplicability of a known model or the requirement to make

simplifying assumptions to the data used in the analysis.

The review will also be used for the general model to be

introduced at the end of Chapter 3.

The models selected for review are the Machinery and

Allied Products Institute (MAPI) Method, Morris Model,

Bowman and Fetter Models, Alchian Model, Reisman Models,

Bernhard Model, Hillier Models, and Canada/Wadsworth Model.

Each model is presented with a brief discussion of the

history of the model along with its mathematical formulation.

The applicability of each model and assumptions made from

the parameters are also covered.

MAPI Method

The MAPI Method was first published in 1958 by George

Terborgh (1958). The MAPI procedures produce an "urgency

rating" which is based upon an after-tax rate-of return

analysis of the net project investment (Terborgh, 1958,153).

The basic method is to:

1. Select an ownership period which may or may not

be equivalent to the economic life of the proposed asset.

2. The existing asset takes on a one year life.

The analysis is a one-more-year rate-of-return analysis to
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compare cost between keeping the existing asset an additional

year and replacing the existing asset with the proposed

asset.

3. The formulas capitalize future sums beyond the

first year at 8.25%. There are four formulas used which

vary only by the pattern of equipment "inferiority" used.

By pattern of equipment "inferiority", the MAPI method is

evaluating the rate of accumulation of depreciation and

obsolescence over the service life. This pattern is assumed

to be straight-line, double-rate declining-balance, sum-of-

digits, or expensing.

4. An urgency rating is calculated as a percentage

on the extra investment after recovery of all costs of

buying the proposed asset now rather than keeping the

existing asset one additional. year.

One of the four formulas is:

C = n(Qn-wn)(Q-1) 2 - (1-b) P [ (.Qn-1) - n(Q-1)]- (Q-1),

nQnCQ-1) - (Qnlj)

where

p = wn 1 .w+ py + (-p)

Q = I + i -bpy,

n = service life,
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p = fixed debt ratio.

y = fixed interest rate on debt capital,

z = fixed rate-of-return on equity after tax,

b = fixed income tax rate,

i = fixed capitalization rate,

wn = salvage as a decimal of original cost,

w = ratio of salvage in year n+1 to salvage in year n,

C = next-year-capital consumption expressed as a ratio
of investment P.

This formula is for an accumulated depreciation

following the sum-of-the-year's digits tax procedures

(Taylor, 1964:374). The actual solution to the formula is

graphically solved and a set of worksheets is required.

The model is totally deterministic and assumes discrete

parameters.

Morris Model

William T. Morris (1964s220-221) presents a generalized

equipment replacement modelzTC(NjgN"2,...,Nk,...) -1o + O
= +j=1 (1+i)J

_SON1 IN1  +N2 j1C(+~

+ + Oj Nj(,+i)N1 (,+i)NI j=1 (I+i)NI+J

SNIN2  + IN 2  N2  CN2j Soso

( 1+i)N1+N2  (l+i)Nl+142 j=1 (l+i)rl+N2+J

6
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where

it = initial investment in a machine purchased at the
end of period t,

Ctj = operation and maintenance costs for the jth year
of a machine purchased at the end of period t,

Stj = salvage value at the end of the jth year of use
for a machine purchased at the end of period t,

Nk = life of the kth machine in the sequence ofreplacements.

The model is deterministic and involves only discrete

parameters with single yearly costs.

Bowman and Fetter Models

Powman and Fetter (1957;367-375) present two models.

The first model is for a chain of machines or replacements

using continuous cost and revenue functions with continuous

interest:

V= [fT[R(t) - E(t)]e-itdt - B + S(T)e -iT] [(l+eiT+e-2iT+...)

V =Ff R(t)e-itdt - B + S(t)eiTl I

where

V = present worth of the series of investments,

B = constant initial cost for each investment,

T = life of a piece of equipment,

R(t) = revenue function,

E(t) = expense function,

S(T) = salvage value at T,

i - annual interest rate.
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The second model uses the same basic parameters in a

discrete mode.

V T Rt-Et B+S(T) 1+ + 1 + 0
(E3+ (i+i)T ( 1+i) (+i)21

v = [- - B + S(T) _ (1+i)T 3i (1+it 7'1+17 '  (I+i1 -l

where

Rt = revenue for a given period,

Et = expense for a given period.

The two models require that all investments be identical

with respect to all parameters.

Alchian Model

The Alchian Model is composed of an expression for

expenses and an expression for revenues (Alchian, 1952).

E =n [A1 + Bl(1-e-Wlt)] e-rtdt + (CC 0ocdln)e-rn

+ C(1-ke- dL) Z e-r(n+Lj)
j=1

+ Z fL [ Ae-Z(n+jL) + B(l-e-'t)u L j  -r(n+jL+T)dT + C0 ,

R fon (P1 e-X,t )e-rtdt

00

=O Z f P + Q(l e-g(n+Lj)) e-sT-r(n+Lj+T)dT,
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where

A = initial annual rate of operating and main-
tenance costs of new item now available,

A 1 = current annual rate of operating and main-
tenance costs of incumbent item,

A + B = limiting annual rate of operating and main-
tenance costs (deterioration) of new item,

A +B1= limiting rate for operating and maintenance
costs of incumbent item,

C = purchase price of new items,

C0 = salvage value of currently used item.

d = coefficient related to rate of decline of
salvage value of new item,

d= coefficient related to rate of decline of
salvage value of current item,

g = coefficient for rate at which P + Q is approached,

kc = percentage of C remaining as salvage value
immediately after purchase (1-k = loss due to
acquisition and installation),

L = projected replacement period of new equipment,

n = economic life of currently used equipment,

P = initial annual rate of revenue of new item,

P, = current annual rate of revenue of current item,

P + Q = limit approached by initial rate of revenue
(prices of services and technological changes
in new machines) as time passes,

r = rate of interest,

s = coefficient for rate at which annual revenue of
a new machine changes with age of a machine,

9= coefficient related to rate of change of annual
revenue of current item,



17

u = coefficient related to rate at which B changes
because of new technology and prices,

w = coefficient of rate at which operating and
maintenance costs of any new item approach the
limiting rate (because of deterioration),

wI = coefficient of rate at which A + B is
approached (because of deterioatioA),

z = coefficient related to the rate at which the
initial operating and maintenance costs, A,
fall as new items are developed,

Co(t) = turn-in value of present machine t years from
now,

Al(t) = rate of operating and maintenance costs of
present machine in year t,

D(T) = turn-in value of successor machines at age T
as a fraction of C,

A(t,T) = rate of operating and maintenance costs, per
year, of a machine purchased at time t for the
Tth year of its age,

e-rt = present value of one dollar t years hence at

rate of interest r (continuously compounded),

t = time in year-units,

j + 1 = number of items in series of machines; j = 0
for the current or first machine,

V1 (t) = value of annual rate of services in the year t
for an existing machine,

V(t,T) = value of annual services in the Tth year of life
of operation of a machine installed n + L(j-1)
years from now.

The goal of this model is to select the combination of

parameters which yields the maximum difference R - E. This

goal is to optimize the present worth of the appropriate

replacement model by use of computer generated tables or

dynamic programming.

... II I I . . .. . a II Ill . . . . . . - - . . . . .
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Reisman Models

Arnold Reisman has published detailed models for

capital equipment investments. There are three basic

approaches used. The first approach is to consider the

initial purchase plus installation cost and the salvage

value for each replacement as a discrete event. The expense

and revenue parameters are considered to be continuous and

all discounting is continuous. The model by Reisman (197173)

isa

n-1 n-1
[Bje-rhOTh] Z [-r (Th+l)P= E B~e h0 Z [SI(Tj+)eh=O

j=O j=O

+ n r [ h oT h f +Ejt)ertdt]J=O h=O 0

-r [er'h Th )eJrt
eR Wet dt]

J=O I i

where

Th = time at which the hth replacement item is
installed,

B. = cost of the jth replacement item which is con-
J sidered to be the total cost of purchase plus

installation,

S = salvage value of the jth replacement,

Ej(t) = expense function for the jth replacement which
is assumed to be a continuous function of time,
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RM(t) = revenue function for the jth replacement which
is assumed to be a continuous function of time,

n-1 = total replacements for the study period.

The next model developed by Reisman (1971s76) considers

all cash flows to be discrete, but the compounding remains

continuous. He modifies his basic model further by noting

that the jth replacement can have multiple cash flows.

Both revenue and expense cash flows are allowed to have

k cash flows within the economic life of the jth replacement.

The model ist

1j

P =[ Bje hOh - [ =Sj(Tj+)e h=O

r[ n -I ir Z k pq )

-r Th  -r T(
ehO Ejpe q=)tJ=O P=

-r E Th  -r)
-e h=O = L(R q),q .

The following model treats all cash flows and dis-

counting as discrete.

n-i n

+ [ Bj(I+i) h= Z [j[(i)T(j+i [hO

O=O

(J+i) = p( .
in-I j X[kp (+ t

J-- .. =-
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It should be noted that k cash flows are allowed for both

revenue and expense functions for each replacement.

The next set of important work accomplished by Reisman

was published jointly with Arza K. Rao (1973). The mono-

graph is by far too extensive to review in this paper. The

research sets up seven deterministic models, similar in

structure to the before mentioned Reisman models, which are

used frequently in engineering economics: compound amount

of a single payment, present worth of a single paym~ent,

amount of an annuity, periodic deposits to accumulate a

future amount, present worth of an annuity, capital recovery,

and present worth of a deferred annuity. Each of the seven

models is then evaluated for discrete and continuous com-

pounding. The models are further extended by allowing the

cash flows, rates of discounting or compounding, and rate

of inflation to be random variables with specific, known

distributions. In addition, the interest rate and inflation

rate are allowed to be time dependent. The timing between

cash flows are assumed to be deterministic and discrete.

Bernhard Model

Richard H. Bernhard (1962: 19) presents a basic model

for a "proposed productive investment".
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P = Q0 +  Q1 + Q2 +... Qs
(1+iI) (I+il) ( 1+i) (1+il) (1+12) ... ( 1+is)

+ *o. +, 9a ,

(1+il)(1+i 2 ) .. (+in)

where

P = present worth,

Qs = net incremental return to be gained at the end of
period s. (s = 0,1,2,...,n),

is = rate of interest on borrowing or lending in any
quantity during period s.

The basic model considers all cash flows as lump sum

end-of-period. The deviation from traditional models for

discrete cash flows is in recognizing that the interest may

vary between periods.

Hillier Models

The Hillier Models (1963s449) consider cash flows as

random variables. The specific relationship between the

random variables is assumed to be independent or perfectly

correlated. Fleisher (1975t77) points out that Hillier's

work was the most important contribution to capital budget-

ing in the 1960's. Although specifically designed for

capital budgeting, the basic models handle any random

variable cash flow with known means and standard deviations.

The means and variances for the present worth of the cash
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flow are then handled analytically. The present worth for

an investment is:

= n Xj

j=o (i+i)3

where

Xj = random variable cash flow during period j having
mean/Ij and standard deviation

i = interest rate.

Assuming that the cash flows are all independent, the

mean for the present worth of the entire cash flow is:

n Xj

j=O (1+i)J

The corresponding variance ist
=n

j=o (1+i) 2 j

These observations are fairly straightforward; however,

Hillier next develops the random variable Xj as:

X= Yj + Z + z ( 2 ) + ... zj ( in),

where

Y =independent cash flow in period J,

Z(k) = kth distinct cash flow which is perfectly
correlated with the corresponding cash flow
in other periods.
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Since Hillier assumes that the random variables are

close to normal, the present worth should be close to

normal with m

E(Y.) + E(z. (k )
nl k=Ij--oj

p J=O( 1+0~) j=O (i.+i)i

and

02~ n Var (Yj) m n ar (Z.(k)) 1~
p 0 (ii-i) 2j k=-~~ L =0 ... j 1

There are two deficiencies in the models. First, the

assumption of normality may be questionable in many cash

flow structures. If it is assumed that the number of cash

flows is large, the resulting present worth will still

have an approximate normal distribution- however, if the

number of cash flows is not large, then only limited

statements can be made using the Tchebycheff inequality.

The second questionable assumption is in considering

that the correlated cash flows are perfectly correlated.

The basic concept of cash flows being completely indepen-

dent or perfectly correlated is at best questionable

(Hillier, 1963:449). To consider cash flows which fall

somewhere between mutual independence and complete corre-

lation requires a covariance matrix with proper weighting
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factors for each term. From an analytical point of view.

the development might not be too difficult: however, from

a practical standpoint, it would appear to be difficult

enough to obtain good values for means and standard

deviations and not very realistic to obtain covariance

type data from investment analysts.

Canada and Wadsworth Model

The model proposed by Canada and Wadsworth (1968) is

PV($) = P + D(l-e-rT)/r + Se - r T ,

where

PV($) = present worth of the cash flow,

P = initial investment,

S = salvage value,

r = nominal continuous interest.

Since D is a constant receipt or disbursement for

each year, the basic model differs from classical models

only in using a uniform series present worth calculation.

The importance of the Canada and Wadsworth work is that

they extended the traditional model for conditions where

two variables such as salvage value and time could be

dependent. This was accomplished by allowing the variables

S, T, D, and P to be dependent. If any two of the variables,
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say S and T, are dependent while the remaining var.ables

are independent, then the variance of PV($) is appr%.ximately

equal to

(6pvcs) 2v(P) + (6vc) 2 V(D) .+ (6 Pyv)2 V(T)

2__ V(S) + 2(PC)(V$) Coy (T,S),

where

V = variance,

6 = partial derivative operator.
An additional term is added for each set of dependent

variables.

The models presented in this chapter illuminate the

large number of interidlated parameters which are considered

to be of importance in economic analysis. Authors have a

rather significant difference of opinion as to which set

of parameters should be used. Although each model is

correct when viewed from the specific assumptions made in

the modeling environment, departures from these assumptions

invalidate the model.

k .. ........



26

The next chapter will be devoted to examining the

parameters used in economic analysis to develop a taxonomic

structure to classify different problems or models. This

effort will be used to approach the modeling problem by

examining various model components or elements. The taxonomic

structure will represent an orderly method of presenting

models and will also illuminate those areas where additional

research is needed.



Chapter 3

TAXONOMY FOR CAPITAL EQUIPMENT EXPENDITURES

The three basic parameters for all capital equipment

expenditures are cash flow, time, and interest rate.* Each

of these parameters can take on a multitude of various

characteristics such as being discrete or continuous,

deterministic or stochastic, independent or dependent, etc.

A review of the literature indicates that the majority of

these parameters, along with their associated characteristics,

have not been researched to the point of model development.

This chapter will be devoted to the design of a taxonom~ic

structure for capital equipment expenditure problems.

Two major benefits are derived from the taxonomic

structure. F~irst, it is imperative that a classification

scheme be used to point out areas where research is limited

or non-existent. Second, the taxonomic structure presented

in this chapter is used to illustrate various models in a

logical or orderly format.-

Cash Flow Classification

The cash flows in a problem are not limited by the

classical approaches to solving engineering economic
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problems. In the classical approach, one considers all

cash flows to be of the same class (e.g. deterministic,

continuous, etc.). However, in the real-world problem,

one might consider some costs such as scheduled maintenance

to be deterministic, lump sum, and independent; whereas,

another cost such as electrical consumption might be

deterministic, continuous, and dependent upon operating time,

while a revenue of salvage value might be stochastic, lump

sum, and time dependent. With this in mind, it appears that

one must first consider a cash flow model as being composed

of different cash flow model elements. Cash flow model

elements can be dependent upon each other, as well as de-

pendent upon time. When one is working with dependent cash

flows, a knowledge of the covariance matrix for the cash

flows is required to calculate the variance of the present

worth. If one can assume that the cash flows are independent,

the computation of an expected present worth and variance of

the present worth is significantly simplified.

It is also important to distinguish between expenses

and revenues. A simple sign convention, as normally used,

takes care of this problem.

For simplicity, one might consider cash flows as being

either continuous or discrete. Figure 3.1 is a representation

of possible discrete cash flows and Figure 3.2 represents

possible continuous cash flows. A continuous cash flow as
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Ca)

-J(b) b
0

H (c)

Cd)

Time (t)

Figure 3.1

E~xamples of Discrete Cash Flows
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(a)

(b)

U Ip

Time Mt

Figure 3. 2

Examples of Continuous Cash Flows
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used in this research, includes piecewise continuous cash

flow functions. By piecewise continuous, it is meant that

within a time interval there are a finite number of dis-

continuities and that the right and left limits for each

cash flow within a subinterval exists. For example, Figures

3-2(b) and 3.2(d) represent piecewise continuous cash flows.

When discussing discrete cash flows, it seems relevant

from a mathematical standpoint to distinguish an impulsive

cash flow from a series cash flow. An impulsive cash flow

is essentially a cash flow which is not related to any other

cash flow (e.g. independent). Examples of impulsive cash

flows might be the initial purchase cost or the salvage

value of a piece of equipment. Obviously, any series type

cash flow composed of n elements could be handled as n

impulse functions. However, the ease of mathematically

handling series cash flows justifies the additional effort

in developing both models.

Impulsive Cash Flows

Several authors such as Fleischer and Ward (1977:14)

and Reisman (1971) argue that continuous cash flows and

continuous discounting should be used for analysis. The

concept of continuous cash flow and continuous discounting

arises from the argument that expenses and earnings are

created every second, minute, hour and day of plant oper-

at ions.
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Using continuous cash flows and continuous discounting

requires that discrete cash flows be treated as impulse

functions. As developed by Spiegel (19671255-258), the unit

impulse function (t-t0 ) is defined by its integral property;

T~t) 6 (t-a)dt = F(a), (3.1)

where F(t) is any function that is continuous at t = a.

If F(t) is set equal to 1, then00
=(t-a)dt H(t-a) (3.2)

-01, t -a

0, t -a,

where H(t-a) is the step at t = a as illustrated in

Figure 3.3 and is referred to as the Heaviside unit step

function.

H(t-a)

a

Figure 3.3

Heaviside Unit Step Function
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One can now look at the Laplace transform of (t-a) as

being equal to

J;rt ~(t-a)dt = e-ra. (3.3)

By Equation (3.1), one can formally derive an expression

using a cash flow (C)s

Cert~(t-a)dt - Ce-ra .  (3.4)

Equation (3.4) is the familiar form for the present worth

of a single future cash flow occurring at time - a and with

continuous interest rate r.

Table 3.1 shows a variety of selected functions and

their associated present worth formulas. These functions

have been used by Hill and Buck (1974,121) and other authors

due to their common occurrence in cash flow problems. The

step function is found commonly in operating costs, the

ramp function is typically used with maintenance and deter-

ioration, the decay function can be associated with startup

and learning costs, and the growth function is commonly

found in wear-in maintenance costs. These formulas are

developed under the assumption of continuous compounding.

They may be derived for discrete compounding by denoting i

to be the effective interest rate and deriving,

i er-I

1 *e-rt. (3.5)
(i+ 1)

a
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Table 3. 1

Selected Single Cash Flows and Transforms
for Continuous Compounding

Type F(t) Present Worth (Laplace Transform)

Step C Ce-rt

Ramp Ct Cte-rt

Decay Ce-at Ce-(a+r)t

Growth C(1-e- at) Ce-rt(1-e-at)

Legend:

C is the scale factor

t is the time interval

r is the continuous interest rate

a is a constant
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A simple substitution of Equation 3.5 allows the develop-

ment of the present worth with discrete interest as pre-

sented in Table 3.2.

The procedure for handling impulse functions is

rather simple. Select the appropriate type of cash flow

which is representative of the expense or revenue being

considered and multiply by e-rt or 1 *The justification
(1+i )t

for this effort will be further developed under continuous

cash flows.

Series Cash Flows

As pointed out by Taylor (1964f:31). disbursements

for some equipment increase with the life of that equipment.

By similar logic, other disbursements and/or revenues may

increase or decrease during the life of the equipment.

Typically, the cash flows are placed into partitions with

signed components and multiplied by the appropriate series

factor. These series factors require single calculations

for each time series rather than by treating each point in

time as a separate calculation. This analytic advantage

increases with the number of points considered. Traditional

approaches consider cash flows which are uniform, arith-

metic, or geometric series starting at time equal to zero.
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Table 3.2

Selected Single Cash Flows and Transforms
for Discrete Compounding

Type F(t) Present Worth

Step C C
(1+i)t

Ramp Ct Ct

(l+i)t

Decay Ce-at Ce-at
(1+/) t

(l+i)t

. .. .. .... ... .Gr.. wth. CC1a .... .. &......... ... . C(1- ' - ie l . . . . .. .
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Hill and Buck (1974s120-125) have expanded the traditional

analytic tools by using Zeta transforms which serve

engineering economic analysis of discrete time series much

in the same manner as the Laplace transforms do those with

continuous cash flow functions.

Consider a function F(n) which describes a cash flow

at time n. The present worth of this cash flow at an

effective interest rate i is:

F(n) (l+i)-n.

This assumes that i has been adjusted or that n is a

multiple of the interest compounding period. Given that

F(n) is a series of end-of-period cash flows, the present

worth would bet

NE F(n) (l+i)-n,
nmO

where P(N) is the last cash flow. Hill and Buck (1974s83)

note that this looks like the Zeta transform

00
E. F(nT)(,+ZT) - n

n'=O

after one replaces i with z, considers T=l, and assumes an

infinite series of cash flows. One notes that Zeta trans-

forms can be used directly to obtain present worth

calculations for any series having a Zeta transform. Since
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Zeta transforms are not commonly found in most handbooks,

the Z transform tables can be used by noting that

Z = I+zT.

Table 3.3 is generated by using Z transforms and then

converting to the appropriate Zeta transformation (letting

i-z). To illustrate this procedure the Z transform for

P(riT) - CnT is

CTZ
(Z-1) 2

which is equal to the Zeta transform

CT(1+iT) = CT(I+iT)

(i+iT-1)2  (iT)2

Authors, such as Taylor (1964s2 6 ), develop series cash

flows which start at time equal to one rather than zero.

To convert Table 3.3 to formulas for cash flows starting

at time equal one, the cash flow function need be only

evaluated at n-O and subtracted from the appropriate Zeta

transform entry.

For discrete, series cash flows which do not start at

time equal to zero and do not continue infinitely, adjust-

ments have been derived by Hill and Buck (1974t12 3).

Table 3.4 represents series cash flows which are translated

forward b time units, start at time h (where h-tb), and

stop at time k-1 (where k -h).

L
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Table 3.3
Zeta Transforms for Discrete SeriesCash Flows at Interest Rate i

Type ofSeries F(nt) Zeta Transform

Step C C(l+iT)
iT

Ramp CnT C(l+iT)T

(iT )2
Decay Ce-arT C(1+iT)

iT+le-aTGrowth C(1-e-arT) C(1+iT) L_/ - i T

Source:

Thomas W. Hill and James R. Buck. "Zeta Transforms,
Present Value, and Economic Analysis., AIIE Transactions,6, No. 2 (1974.)t 121.
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Table 3.4

Present Value of Shifted/Translated Series
Cash Flows with Discrete Interest i

Type of
Series F(nT) Zeta Transform

Step C [(l+i)1-h _ (l+i)1-k

Ramp Cn C2[(i)Ih- (l+i)lk]

Fl(l-hi (k )

+ . (h-b)(1+i l- (kb(yil

Decay Ce a n  C(l+i) l - b - [ e-ha -_e k a

l+i-e' a  (1+i-;h  (1+i) k

Growth C(l-e-an) C(l+i)1-b F1+ie-a-iehi
1+i-e -a  i(l+i)h ,

- i+i-e'a+ie-ka]

i(l+i)k

Sources

Thomas W. Hill and James R. Buck. "Zeta Transforms,
Present Value, and Economic Analysis." AIIE Transactions,
6, No. 2 (1974), 123.



41

The logical extension of the material in Table 3.14 is

to develop the same discrete series cash flows under

conditions of continuous compounding. By observing the

relationship between i and r in Equation 3. the results

displayed in Table 3.5 can be easily derived.

Continuous Cash Flows

The derivations for continuous cash flows can be

theoretically derived with both continuous and discrete

compounding of interest. However, when discrete interest

is used, the model is really a subset of discrete cash

flow with discrete interest since the integration of the

cash flow function can be treated as a single lump sum

element. For this reason, discrete compounding is part

of the taxonomy only for the need of completeness. In

application, one would simply integrate the cash flow

function over time and multiply by

1

(1+i)t.

A continuous cash flow starting at time h and con-

tinuing to time k is a function of time, C(t). This

function is then multiplied by e-rt to discount the cash

flow to the present and integrated over the time period

to develop an equivalent present value ass

fn k C(t) e-rt dt. (3.6)
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Table 3.5

Present Value of Shifted/Translated Series
Cash Flows with Continuous Interest r

Type of
Series F(nT) Zeta Transform

Step C C er(1-h) - er(lk)]

Ramp Cn C [er(1-h) - er(1-k)]
(er-1)2 L
+ C .[(h-b)(er(l-h))]

er 1 I
4

+ C [(kb)er( l-k)]

erl 1L

Decay Ce-an Cer(l-b) fe-h(a-r) - e-k(a-r)]
er_e - a L I

Growth C(1-e-an) Cer(lb) [ere-a(er - 1)e-ha

ere -a L (er1)erh

-er-e-a+(er-1)e-ka

(er-l)erk
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Buck (1975t81) and other authors give credit to

Grubbstrom (1967) for recognizing Equation 3.6 as a Laplace

transform. This is a significant realization since a

table of Laplace transforms found in many mathematical

handbooks such as Selby (1975:506-515) can be used to

convert many continuous cash flow functions to a present

value equivalent. Table 3.6 is an extension of Table 3.5

for continuous cash flow functions with continuous com-

pounding.

The use of Laplace, Z, and Zeta transforms in analysis

have two important properties when available for use in

modeling engineering economic problems. One of the two

properties is the linearity under addition and multipli-

cation by a constant which allows one to take transforms

of component cash flows, scale each, and then sum them.

Another useful property is the ability to shift the time

pattern forward. A number of transforms have been derived

and are available in several references. When these

transforms do not exist,* they must be either derived or

more involved calculations must be made.

Cash Flow Parameters

In addition to classifying each flow as impulsive,

series, or continuous one must also look at the parameters
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Table 3.6

Present Value of Shifted/Translated 
Continuous

Cash Flow with Continuous Interest 
r

Type of

Cash Flow C(t) Present Value (Laplace) Transform

Step C C(e-rh-rk)
r

Ramp Ct C(e-rh-e-rk)

r 2

+ r (h-b)e-rh" (k-b)e-rk]

Decay Ce-at Ce-br E r

a+j e '-(a+r)h e-(a+r)k,

Growth C(1-e-at ) C(e-r -
r

ce-rb [e- (a+r )h  e-(a+r)k]

a6



45

associated with the actual cash flow. In the model elements

presented prior to this point, deterministic cash flows have

been assumed. This assumption is usually made in traditional

analysis; however, the actual cash flows can also be random

processes. The assumption that cash flows can be random

variables has been incorporated into the cash flow taxonomic

structure illustrated in Figure 3.4.

When a specific cash flow is studied, the timing of

that cash flow must also be studied. The timing of a cash

flow is the next subject of consideration.

Time Classification

Once a cash flow has occurred, the duration or time

of occurrence is known. H~owever, prior to occurrence, the

timing of the cash flow may be either deterministic or

stochastic. Once again, discrete timing is divided into

impulsive timing for a single time element or series timing

for a number of time periods. Figure 3.5 represents the

time classification.

After the cash flow and the timing of that cash flow

have been determined, the decision must be made for an

appropriate discount rate. This is the third element to

be classified.



4+6

Continuousic

Stochastic

Cash Flw TaxooSiccSructur
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Deterministic

Stochastic

Timing of Cash Flow Taxonomic Structure
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Interest Rate Classification

Three basic interest rate classes are considered by

Fleisher and Ward (1977t21). These are constant, stepwise

constant, and variable constant interest rates. Three

examples of possible interest rates are illustrated in

Figures 3.6, 3.7, and 3.8.

The interest rate is defined over the entire time

interval of a specific cash flow. The actual discounting

takes place at the end of a unit of time or continuously

throughout the period. In addition, the interest rate can

be either deterministic or stochastic. In the deterministic

constant case, the interest rate (i) is fixed over the

entire discounting period. In the stochastic constant

case, the interest rate (M is a random variable that,

once ciecex-ined, is constant over the entire discounting

period. In the deterministic stepwise constant case, the

rate is constant between each of a finite number of dis-

continuities. The end points may not agree with the

discounting time period which will require an adjustment of

the discount rate. The stochastic stepwise constant case

has a constant mean for each time interval and each random

variable il, .i may be independent or correlated21 ' n

with one another. In the deterministic variable case,
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one discounts the cash flow by multiplying by

t-fO ~~t
e

This is a continuous time process. A similar expression is

used for the stochastic variable case. Figure 3.9 illustrates

the taxonomic structure for the interest rate.

Inflation has been considered by several authors as a

factor which must be considered within an analysis. The work

of Reisman and Rao (1973) develops both the justification

and procedures for handling inflation. For the purpose of the

taXonomic structure, it is assumed that the discount rate must

be appropriately modified to reflect inflationary factors

and does not have inflation as a separate classification.

The taxonomies in Figures 3.4, 3.5, and 3.9 must be

combined to visually depict the taxonomy for capital

equipment expenditures. This has been accomplished in

Figure 3.10. A particular calculation for present worth

would be formulated by taking three paths through the

network* As an example, a traditional engineering economic

problem is:

Cash Flow - expense, impulsive, deterministic,

Time - impulsive, deterministic,

Interest Rate -constant, deterministic.
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Note that a classification distinction has not been

made for continuous versus discrete interest since it has

been shown that this involves a simple mathematical

substitution. In addition, the subject of dependence among

the elements of cash flow, time. and/or interest rate has

not been visually depicted. Rather than redrawing Figure

3.10, note that a heavy dashed line could be placed between

any of the three basic parameters to signify dependence.

The path through the impulsive/series classification must

agree for both cash flow and time.

State-of-the-Art

The current state-of-the-art for economic analysis

problems is reviewed by Fleischer and Ward (1977t24, exhibit

3). Their work is reproduced in Table 3.7. An extensive

review of the literature since 1977 does not indicate any

additional entries. As can be noted from Table 3.7, a great

deal of research is still open in the field of engineering

economics. Expected values for some decision criterion

such as present worth (Young and Contreras, 1975) have been

developed for some of the missing entries in Table 3.7;

however, the corresponding variances have not been developed.

In addition, only the works of Hillier (1963, 1966) develop

dependent models.
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Table 3.7

Taxonomic Structure and Current
State-of-the-Art

Cash Flow Inte."ez: Rate

Stepwise
Amount Timing Constant Constant Variable

How Cert When Cert Det Sto Det Sto Det Sto

Det Cla 1 Cla 1 Cla
Disc Sto

+1
0 00 Det Cla Cla Cla• 4 Cont "Cot Sto 2

Det 4,3,2 1 1
a 0 Disc Sto

Det
Cont -Sto ___"__

Det Cla Cla Cla
Disc Sto

Det Cla Cla Cla0
z Cont.9 Sto

o Disc Sto

Det 2

Cont Sto

1-Reisman and Rao (1973) Cert-Certainty
2-Ward (1975) Det-Deterministic
- Hillier (1969) Sto-Stochastic
-Hillier (1963) Cla-Classical

Cont-Continuous
Disc -Discrete

Sources

G. A. Fleischer and T. L. Ward. "Classification of
Compound Interest Models in Econonic Analysis.- Engineering
Economist, (Fall, 1977),24.
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Any one of. the missing entries in Table 3.7 is worthy

of research. The wide use of minimum attractive rate of

return (MARR) in economic analysis indicates that the area

for initial research should be restricted to the missing

entries in Table 3.7 under constant, deterministic interest.

Grant, Ireson, and Leavenworth (1976:97-100,189-195) pointed

out the value in using rOARR in that the purpose of an

economic study is to determine if an investment should be

made. They suggested that this be done on the basis of

determining whether the investment can be recovered with

at least a stipulated MARR. For these reasons, the models

selected for research in this paper were restricted to the

m issing entries in the impulsive cash flow section of

Table 3.7 under constant, deterministic interest. Normally,

an impulsive cash flow is considered to be a single payment

or expense such as salvage value or initial purchase cost.

This research expands impulsive cash flow research to in-

clude series (multiple impulsive) cash flows.

In view of the developed taxonomy, the models for

Table 3.7 are illustrated in Figure 3.11 by taking one

branch through cash flow and one through time. The path

through the impulsive/series level must agree for both

cash flow and time. The dashed line Indicates dependence

between time and cash flow. The lack of a dashed line
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would indicate independence. If we assume that revenue

and expense can be treated with an appropriate sign con-

vention, the specific models can be enumerated with a

short form classification.

Short Form Classification

The concepts for the classification scheme have been

addressed in prior sections. A short form classification

scheme is developed in this section to enumerate those

models studied in the research. The proposed form is:

CXYTZy'

where

C = Cash Flow

T = Time

Simpulsive cash flow
x =

Is series cash flow

rd deterministic
Y s stochastic

-impulsive time

Z = sseries time

A c continuous time

Abar placed over C axid T indicates dependence between

cash flow and time. N~otice that Interest rate is not
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included since each model a~sumes deterministic, constant

interest. Using this classification, the specific models

to be researched are presented in Table 3.8 for independent

cases. Since these models are repeated for dependent

cases, a total of 16 models are-developed. It is important

to note that each model is a cash flow entity where a

model for the actual present worth of a particular alter-

native could be composed of a large number of independent

models for each cash flow entity. Each of these models

are developed in the next chapter.

General Model

The general model for a present worth analysis is

stated ass

E(PV) = E(P) + E(E) - E(R) - E(S)t

where

E = Expected value operator

P = Purchase price

E = Expenses

R = Revenues

S = Salvage value.

Any one of the elements (P, E, Rt S) may or may not

contain multiple cash flows. This general model is

expanded in the next chapter to offer more detail to the

analyst.
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Table 3.8

Independent Parameter Research Problems

Model Cash Flow Time

CidTis impulsive impulsive
deterministic stochastic

CsdTss series series
deterministic stochastic

CisTis impulsive impulsive
stochastic stochastic

CssTss series series
stochastic stochastic

CisTcd impulsive continuousstochastic deterministic

CssTcd series continuous
stochastic deterministic

CisTcs impulsive continuous
stochastic stochastic

CssTcs series continuous
stochastic stochastic

L4
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Summary

The taxonomic structure for capital equipment expen-

ditures illustrated in Figure 3.10 represents an orderly

and logical format to present models in the following

chapter. Several characteristics of the parameters have

been left out. A more detailed structure might include the

actual functions being used for each parameter and con-

siderations for inflation. As pointed out by Fleisoher arid

Ward (19??: 28), "A truly comprehensive classification

scheme would be so extraordinarily complex that it would

be virtually without utility."

Chapter 14 presents models for the selected taxona in

Table 3.8 and concludes with a more detailed model for

analysis of capital equipment expenditure problems.



Chapter 4j

ANALYTIC TOOLS

The models proposed for study during this research

assume lump sum cash flow elements which are either impulsive

(single cash flow) or series. Analytic tools for indepen-

dent and dependent models are presented in this chapter

with a concluding section on a general model development

for a capital investment alternative selection problem.

A complete model for a specific investment alternative

may contain multiple impulsive or series cash flows,

however, each cash flow element is assumed to be independent

of all other cash flow elements. This assumption is

required if one is to consider time as a random variable.

The interest rate is assumed to be independent of both

cash flow and time. In addition, the interest rate is

assumed to be constant over the time horizon and determin-

istic in nature for all model elements. Although models

are developed where cash flow is dependent on time, the

nature of this dependenc~y is restricted to ramp, decay,

and growth functions.

Expected value of present worth and variance of

present worth are developed for all of the independent
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model elements, and expected value of present worth and

variance of present worth are developed for all impulsive,

dependent model elements. The variance for the CsdTss

dependent, ramp model element is also derived. The complexity

of the expression degrades the use of it as an analytical

tool. For this reason, the remaining series, dependent

models do not have a variance expressionj however, the

erpected present worth is derived for all of the series,

dependent model elements.

Due to the large number of discrete and continuous

distributions, a complete listing of analytical tools for

all distributions would be too extensive. The approach

used in this research is to develop general formulas and

then show applications with commonly used distributions.

Nomenclature

The short form classification system developed in

Chapter 3 is used to introduce each model. The symbol T

is used for time, and t is used for a specific numerical

value of time. Similarly, C is used for a cash flow

designation, and c as a specific value. The symbols A and
2 are used for mean and variance respectively and are

subscripted with c or t for time or cash flow. The symbols



E and V are used for the expected value operator and

variance operator respectively. Present worth is denoted

by PW. Due to the extensive use of moment generating

functions, Mt and M. are used for the moment generating

functions for the time and cash-flow distributions.

The independent models are presented by first deriving

the impulsive model elements and then extending

that model for series model elements. This format was

selected as a logical development for the independent

models. Since variance expressions are not developed for

the series, dependent model elements, -all of the impulsive,

dependent model elements are presented prior to the series,

dependent model elements.

The last section in this chapter contains a more

detailed general model which extends the general model

presented in Chapter 3 to include the model elements

presented in this chapter.

Independent Model Elements

Cash flow elements in this section assume all cash

flows are independent of time. As is normally done, the

present is considered to be at time equal to zero.

CidTiS - Independent Model Element

The first model discussed is when the cash flow

is impulsive and deterministic, such as with an



64

overhaul, and time is impulsive and stochastic. If one

designates C as some future cash flow (impulsive and

deterministic) then the present worth of C is

PW = C-e - r r ,

and the expected present worth, .due to independence of

cash flow and time, is

E(PW) = C. E(e'rT). (4.1)

Since T is a random variable with a given probability law,

the solution to Equation 4.1 is easily found by

00

C-E(e-rT ) = C Z e-rtp(t) (4.2)
t=0

where

t = (0,1,2,3, ... ),

P(t) = probability of T taking on a specific value t.

Since

00

Z e-rtp(t)
t=0

is the moment generating function for P(t), Equation 4.2

can be written as

E(PW) = Cft(-r), (4.3)

where Mt(-r) designates the moment generating function of

P(t). The derivation of the expected present worth for

this model was derived by Young and Contreras (1975).
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Table 4.1 represents some common discrete distributions

and their respective moment generating functions. To find

the expected present worth for a CidTis model element, one

merely multiplies the cash flow, C, by the appropriate

moment generating function for the time distribution.

Before proceeding to the development for the variance

of the present worth for this model, an important property

for present worth analysis is required:

The vast majority of engineering economic analysis assumes

that Equation 4.4 holds as a strict equality, as an

approximate equality, or simply ignores the effects of

random variables. Obviously, in those cases where the

data Is completely deterministic, Equation 4.4 does hold

as a strict equality.

The proof of Equation 4.4 is derived by a Taylor

series for e-r expanded about the point T -tand is

found in Appendix I (1). Ignoring the subject of variance,

Equation 4.4 points out where a present worth analysis can

be in error. When one of the following conditions exist,

the present worth analysis of a group of mutually exclusive

alternatives could lead to an incorrect selection.
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Table J4.1

Discrete Probability Laws and Their
Moment Generating Functions

Distribution Probability Law MtC-r)

Binomial P(t) = (n)ptqn-t . t=Oel1,.*.r (pe-r+q)n
t-

Geometric P(t) = pqt- p t'=1v2p3#.. -pe-r

0, otherwise 1-,,er

Poisson P(t) = e v t--Olppt

ti
0, otherwise
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1. One or more of the alternatives involve

random variables. Since the present worth is underestimated

for an alternative involving time as a random variable, an

incorrect selection is possible.

2. A budget limit for the selection of alter-

natives is required. Ignoring the idea that time is a

random variable may place the least cost item under the

budget limit when it is in fact over the budget limit.

The significance of this error is important and must

be evaluated. As an example, let us assume that the time

between major breakdowns for a capital investment follows

the Poisson distribution with mean = I= 1 year. Further-

more, let us assume that the repair cost is independent of

the time before a breakdown and is equal to $10,000. The

nominal interest rate is 10%. The expected present worth

by Equation 4.3 is:

E(PW) = C-Mt(-r)

= $10,000 e(e-' 10-1)= $9 ,092.25.

Using E(PW) = C • e-r , leads to a solution of $9048.37.

This is a .483% error. Obviously, this is a very small

error and should not significantly effect the selection

process if this alternative was among other similar capital

investment alternatives. Now let us assume that the
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nominal interest is allowed to increase. The percent

error can be obtained from:

CMt(-r) - Ce-r I t .100.

C;(-r)

For the Poisson distribution, the error is

e er - (1r)e

2 100.
Tle-r

Table 4.2 illustrates the error as the nominal interest

rate increases. The question of what is a significant

error is rather academic; however, the error does increase

rapidly as one uses nominal interest rates over 10%. The

current use of interest rates well in excess of 10% would

support the requirement that random variables should be

taken into consideration for a present worth analysis.

The variance for the present worth of the CidTis

independent model can be derived from

v(Pw) = E(pW2 ) - [E(Pw)] 2

= C2 [E(e-rT )2 _ [Ece-rT)] J
The derivation is given in Appendix I (2) and is shown to

reduce tot

V(PW) ,_C 2 [ Mt(_2r) . .Mt(-r)] 2].
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Table 4.2

Error for CidTis Independent Model
(Time Poisson Distributed

With A= I year)

r e-r e(er1) % Error

0 1 1 0

.10 .9o48 .9092 .483

.20 .8187 .8342 1.856

.30 .7408 .7717 4.ooo

.40 .6703 •7192 6.790

.50 .6065 .6747 10.105

.60 •5488 .6369 13.823

. .. .
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In the example problem, the variance for the present

worth would bet

V(PW) = C2[MtC 2r) - EMt(-r)j 2]

= ($10,000)2 [e~e 2(.1OX. 1) - [e(e-.lo_)] 2]

= $752,o43.94.

The standard deviation is:

C = $86 7.20.

Without the use of moment generating functions, Poisson

tables (PARZEN, 19601 444) must be used. A series of 17

calculations are required to obtain the expected present

worth and a series of 9 calculations are required to obtain

the variance.

As stated earlier, one must allow for more than one

cash flow (all independent) for a given alternative. For

alternatives which involve CidTis model elements exclusively,

the expected present worth for the kth alternative ist

j jk Mtjk(-r),

where

nk = number of tmpulsive, deterministic cash flows
for the kth alternative,

Cjk = the jth impulsive, deterministic cash flow for
the kth alternative,

Mtjk(-r) = the moment generating function for the time
parameter associated with the jth cash flow of
the kth alternative.
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The selection model (based on mean present worth) ist

nk

Min Y jk Mtjk (-r).k j=1

Alderfer and Bierman (1970:341) suggest the logical

argument that selection among alternatives with tied mean

present worths should be based on which of the tied alter-

natives has a smaller variance and is used for the tie-

breaker in this research. Variance is also discussed in

Chapter 7 for making probability statements concerning the

present worth of an alternative.

The variance for the present worth of the kth alter-

native is:

nk

VCPWk) = * jk 2 [Mtjk(-2r) - [Mtjk(-r)]2]

In the event that the moment generating function for

a distribution does not exist, calculations using Equation

4.2 must be used to find the expected present worth. The

variance of the present worth must be found by:

V(PW) = C2  e 2rt P(t) -( e ert P(t)) 2
t=0 t=O

iL nH i l -l a
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However, this would be a rather unusual calculation in

that the moment generating functions for most distributions

do exist and are found in a multitude of handbooks and

textbooks. The appropriate interrelationships between the

Z, Zeta, Laplace transforms, and-moment generating functions

demonstrated in Chapter 3 allow for a large number of

distributions to be handled without lengthy calculations.

The remainder of this research assumes that the moment

generating function, or an appropriate transform, does

exist.

Alternative selection models for the remainder of the

model elements are discussed in the final section of this

chapter. The introduction of the alternative selection

model for CidTis model elements was presented at this point

to orient the reader with respect to a decision choice

methodology of minimum expected present worth among

alternatives.

The next model developed is an extension of the CidTis

model for cash flow elements which are impulsive and series

in nature.

CsdTss - Independent Model Element

If one now considers a series type cash flow which is

deterministic in nature and has an impulsive, stochastic
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time of occurrence for each cash flow, the present worth is

calculated by:

PW = cle-rtl + c2e-r(tl+t2) + c3e-r(tl+t2+t3)

+ ... + Cne-r(tl+t2+t3+'"tn) + ....

If the ci's are different in magnitude, then one must solve

for the present worth by considering each cash flow as a

CidTis model element. However, if the ci's are a constant

function(denoted as C), then the expected present worth can

be shown to be equal to:

E(PW) = C Mt(-r)
1- t(-r) , (4.5)

and the corresponding variance can be shown to be equal to:

V(Pw) = C2 [Mt(_2r) -(Mt(-r))]
2 ]146

[-Mt(-2r [1-Mt(-r) *(4.6)

The derivations for Equations 4.5 and 4.6 are quite

lengthy and are presented in Appendix I (3).

As an example of the use of Equations 4.5 and 4.6,

let one assume that a preventive maintenance program costs

$100. each time maintenance is done. The time between

maintenance is assumed to be a function of running time,

which in turn is a function of demand, the time between

maintenance requirements is assumed to be Poisson distributed

with a mean =,k= 1 month. The nominal interest rate is 24%

(2% per month).

. ............................- .~.

-- - I II I I I Ill lid" II
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By Equation 4.5, the expected present worth is,

E(PW) - 100 (e(e' .0 2-1) = $5,000.33,

((e.02_1)

V(Pw) = (10 0 )2[e(e-. 04 1 ) - (e(e - 02-1)) 2 ]

[i -) eeO4 ] (e

$255,008.66 e

and the standard deviation is

c"= 5o4.98.

Using the traditional formulas (Taylor. 1964s26) with

the timing assumed to be deterministic (one month intervals)

result in a present worth of $5,000. The insignificant

error of 33 cents is expected with the low monthly interest

rates; however, having the variance gives one more infor-

mation for a decision. This is illustrated in Chapter 7.

CisTis - Independent Model Element

When both cash flow and time are impulsive and

stochastic, one can calculate the expected present worth

(assuming independence) from:

- rtPW=Ce

E(PW) = E(C) " E(e-rt). (4.7)

Since C is not limited to being discrete, one must

develop formulas for continuous cash flow. Table 4.1

___ _ -_1
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suffices for discrete cash flows by merely substituting

Mc(-r) for Mt(-r). Table 4.3 represents the moment gener-

ating functions for a few common continuous distributions.

The mean and variance, as developed by Whitehouse

(19731 24), for continuous distributions are,

E(C) =/J c = ddc(-r)

d(-r) r=_O

E(C 2 ) = d2 Mc(-r)

d(-r) 2 -r=O

C2 = E (CG-J) 2 = E(Q 2 ) - [E(C)] 2

- d2rc(-r) (dc(r)\
2

E(PW) = dM (-r) (4.8)

d(-r) .-r-=O I

Equation 4.8 can be written simply as

E(PW) =jLc Mt(-r) . (4.9)

The variance for the present worth follows directly

from the classical variance of the product of two inde-

pendent random variables (Duncan, 1965,94),

V(PW) 2  2 + e 2  2 + (-r 2  2 (4.1o)
-- r _ + -t) rt) . .o
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Table 4.3

Continuous Probability Laws and Their
Moment Generating Functions

Distribution Probability Law Mc (-r)

Exponential f(t) = ae-at, t-!O a

O, t O a+r

Gamma f(t) = a (at)b-leat, t ,o (a )b

( b) 0, - ~

Normal f(t) = I e-( { )2 -r 2

_ ooC t - 00

Uniform f(t) = 1 , a-t-b e - e

b-a -r(b-a)

0, otherwise
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0= Mean cost or revenue

I e - r t = Mean of (e-rt)

e-rt2 = Variance of (ert)

c2 = Variance of the cost or revenue distribution.

As previously noted,

ge-rt = E(e-rt) = Mt(-r).

and

Cre-rt 2 = Mt(-2r) - [Mt(-r)] 2 .

Equation 4.10 can now be written as:

V(Pw) =Ic2 Mt(-2r)(Mt(r))2] + (Mt(-r)) 2 c2

+ EMt2r)(Mt(r))2 c 2  (411)

Equation 4.11 reduces toe

V(PW) =/ Lc2[Mt(-2r (r4t(-r))2] + [Mt(-2r)](c2 (4.12)

Equation 4.9 and 4.12 are used to calculate the mean

present worth and variance of present worth for the CisTis

model elements.

As an example, let one assume that the cost of a

major breakdown is normally distributed with a mean of

$10,000 and a standard deviation of $100. Furthermore, the

time between major breakdowns is poisson distributed with

a mean of 1 year. The nominal interest rate is 10%.
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The expected present worth is

E(PW) = C.Mt( r)

= 10,000.e1(e " -0-1)

= $9092.25 •

The variance of the present worth is calculated from

Equation 4.10 as

V(PW) -($10,000)2 [e(e ' 2 0 _1)_ (e(e-10-1)) 2 ]

[e(e-20_1)](100)2

= $760,386.05

and

C_ = $872.00 .-pW

The expected present worth has not changed from the

CiTis independent modell however, the variance has increased

due to the cash flow being a random variable.

CssTss - Independent Model Element

When the independent parameters of cash flow and time

are both series and stochastic, the expected value of the

present worth is derived from:

PW = C 1e - rtl + C2e-r(tl+t2) + C 3e-r(tl+2+t3) + soot
00

E(PW) = E(c)" E [E(e'rt)]i-iJj=%

In terms of moment generating functions, the expected

present worth can be written as

E(W) d MCS) S= Mt(.r )  (4.13

d.... s . . .. • . . .. ... ..r.
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Since the mean cash flow element would normally be

given rather than its corresponding moment generating

function,

E(PW) =/c [Mt(-r)] (4.14)

The derivation of the variance for the present worth is

included in Appendix 1(4) and is:

V(pW) = 2 r,(-2r) +gc2 Mt(-2r)-(Mt(-r)1 2  (c (4.15)
1-Y4t(-2r) (1-Mt(-2r)) (1-Mt(-r) •

Equation 4.14 and 4.15 are used to calculate the

expected present worth and variance of present worth for

the CsT model elements.

As an example problem, let us assume that the damage

to a bridge during a flood season is exponentially dis-

tributed with a mean of $2,800,000 and variance of $200,000.

The time between major floods, which cause this damage, is

poisson distributed with a mean of 20 years and variance of

10 years. The nominal interest rate is 25%.

By Equation 4.14 the expected present worth is cal-

culated ass

E(PW) .4c Mt- (r)
1-Mt(-r)

= 2,800,000 e

ie2(e-25-1)

= $33,969.03
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and the variance is calculated using Equation 4.15 as:

V(PW) = $1,932,278,896.

The standard deviation is $43,957.71. Using totally

deterministic data, the expected present worth could be

calculated from,
00

PW = Ac Z [e- r(2 0 )] n = 4c e 2 0 r
n==1 1_e- 2 0r

= 2,800,000 e20(.25)

1-e 20 (.25

= 2,800,000 (.00678)

= $18,994-23

The error in the expected present worth ist

33,969-.03 - 18,994.23

33,969.03

CisTcd - Independent Model Element

The cash flow model elements which are impulsive and

stochastic, with time being continuous and determiistic,

can be found in examples of monthly receipts or revenues

where the cash flow per month is expressed as a random

variable. The expected present worth is developed by once

'_ _ __ _ __
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again looking at:

PW = Ce-
r t

Since t, in this case, is known; then

E(PW) = E(C) ert = jc e -rt (4.16)

One should note that this is the first model developed

where common techniques of using the mean of a random

variable in a deterministic manner yields a correct

solution.

Since t is a constant, the variance for the present

worth is expressed as:

v(Pw) = 6c 2 e-2rt

CssTcd - Independent Model Element

When the cash flow is series, stochastic and the time

is continuous, deterministic, then the present worth is

expressed as:

PW = Cie'rt + C2e-r(t l+t2) + C 3e-r(tl+t2+t3)

+ C4 e-r(tl+t2+t3+t4) + ..... (4.17)

If one considers that each time interval is equal, then

Equation 4.17 reduces to
00

PW = Z Cj (e-rt)j . (4.1.8)
j=1
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When one takes the expected value of both sides of Equation

4.18, while realizing that E(Cj) = E(Ck) = E(C) for all j

and k, then one has,
00

E(PW) = Z E(C) (e-rt)j

j=l

where e-rt is a constant, the expected present worth can

then be expressed ass

E(PW)-- eft (4.19)

Letting t = 1, then

E(PW') = /jc e-r
l-e-r,

or

E(PW) = ACi

which is the traditional expression for the present worth

of an infinite stream of equal end-of-period cash flows at

effective interest i.

If the time periods are not equal, then

E(PW) = )Uc Z e-rilti

j=1

and this calculation can be accomplished by finding the

mean and variance of the distribution of times and using

equations for the CssT5s model elements. Since the model

. . . . .,m 11 _ IL - . ... . . . . .. . I l ... ... . . . . . . .
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would then be a CssTss model, the CssTcd model must assume

constant, equal time periods.

The variance for the present worth of a COsTcd model

element can be derived in a lengthy manner as was accomplished

for the CssTss variance, or one can simply note that the

moment generating function for a constant is

Mt(-r) = e- rt

Using the expression for variance of present worth in

the CssTss model (Equation 4.15), and substituting

Mt(-2r) = e-2rt and Mt(-r) = e-rt ,

leads to the expression for the variance of the present

worth for the CssTcd model element:

V(PW) = c 2 e-2rt /j c 2 - e - 2 r t - r t ) 2 )
+ I-2rtc+ . le -t(ert 2 (4.20)V(~ (--2rt (1_e-2rt)(1_e-rt)2

Equation 4.20 reduces to:

V(Pw) = 2 e- 2 rt • -- 2~ (4.21)

An example of the CssTcd model element is dispersments

for operating expenses which are received at random points

during a month and paid at the end of each month.

CisTcs - Independent Model Element

When the cash flow elements are impulsive and series in

nature with the time between occurrences being continuous

.. . . . . . .. -__ . . . . . . ii I . . . , ... -- . . . ._ _ _ _ _ __- _ _.. . . . . m .. .
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and stochastic, one should immediately note the parallel

with the Ci sTis model. The only difference is time being

treated as a continuous element. When dealing with moment

generating functions, the distinction between discrete and

continuous time is not required in the model. The expected

present worth and variance of present worth are (from

Equations 4.9 and 4.12):

E(PW) = 4crt(-r)

and

V(PW) = A c 2  t(-2r) - (rt(-r))2] + Mt(_2r) c 2

respectiv,.Ay. Table 4o 3 can be used for the moment generating

function for the time variables by simply substituting

Mt(-r) for Mc(-r) in the table. When the moment generating

functions for a specific time distribution are not available,

then one must calculate the expected present worth as:

E(PW) = /c f e -rt f(t)dt .

The summation sign in the CisTis model has been replaced

with an integral sign since one now has a continuous

distribution to deal with. A similar substitution is

required to calculate variance. Once again, it should be

pointed out that this research assumes the distributions

of interest (both continuous and discrete) have moment

generating functions.
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C sTcs - Independent Model Element

When cash flow is series and stochastic and time is

continuous and stochastic, the model is the same as the one

developed for CssTss and from Equations 4.14 and 4.15t

ECpW) = /1Mt(-r)
c i-Mt(-r)

V(PW) = 2 1l1+(-2r) + /g c 2 FMt(-2r)-IMt(-r)) 2 1
i-DMt(-2r) Li (iMt (-2r)) H1-(Mt-r))

Once again, it is assumed that the moment generating

functions for the continuous time distributions exist.

Summary of Independent Model Elements

Table 4.4 is a summary of the independent model

elements. Although each model. has been derived separately

with infinite cash flow streams, one should note that all

models are special cases of one of two general models.

The CidTis, CisTed, and CisTcs are all special cases of the

CisTis model. Also CsdTss, CssTcd, and CssTcs are special

cases of the CssTss model. The CssTss model is extended

in the next section for cases where cash flow streams are

finite.
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Extension for Finite Cash Flow Streams

The series, independent model elements assume an

infinite number of cash flows. Although these formulas may

be fairly accurate when performing analysis on long-life

items and/or analysis with high -interest rates, these

formulas would not be valid for analysis on shorter-life

items and/or analysis with low interest rates.

Rather than developing four separate models for finite

cash flow streams for the CsdTss, CssTcd, CssTcs, and

CssTss model elements, only the CssTss model element for

finite cash flows is developed. This is due to the fact

that the remaining three model elements are special cases

of this model element.

The present worth for the CssTss finite cash flow model

elements can be expressed as:

PW= C1 e-'tl + C2 er(tl+t2)

+ C3 er(tl+t2+t3) + + cn e-r(t1+t2+t3 +( ''tn)

n Z-rti

= Z c ei~l  •
j=1

Since both the Ca's and ti's are each independent, identically

distributed random variables,

E(PW) E(C) Z [E(e -rt)] k

k=1
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Letting X = E(ert), the summation term can be expressed

as &

n
Sn= L Xk = X + X2 + X3 + ... Xn

k= 1

lultiply Sn by X and then subtracting from Sn leads to

Sn(I-X) = X-;' + 1

Hence,

Sn = X-Xn+l
l-x

Substituting X = E(e-rt) leads to

E(PW) = E(C) E(e-rt)-(E(e-rt))n+l

1-E(e-rt)

Using E(C) = A c

and

E(e-rt) = Mt(-r)

leads to the expected present worth for the CssTss finite

cash flow stream model element:

E(PW) = Ac [mt(-r)(Mt(-r)1 3 (4.22)
I-Mt (-r) I

To develop the variance of present worth for the model,

one must first find an expression for E(pW2 ).

Wan"
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(pW2) = C12 e-2 rtl + C2 2 e-2r(tl+t2)

"+ c32 e-2r(ti+t2+t3) + 00+ Cn2 e -2r(tl+t2+t3+e-t1)

" 2CIC 2 e-2rtl-rt2 + 2C 1C3 e-2rtl-rt2-rt3 +

+ 2C20, e-2rtl-2rt2-rt3 + ..

" 2Cn...Cn e-2rtl12rt2-2rt 3 - .. 2t-rn

Taking the expected value of (PW2 ) and using:

E(Ci*Cj) = IE(C) 2for all i and j.

E(erti) = E(ertj) =E(,rt) =Y

a d E (e -2ti) = E (e 2 rtJ) = E (e -2t) = X

leads to

n n-i n-k

E(PI 2) =E(C i 2 ) ZXj + 2[E(c)].2 Z kyj.
j=1 k=1 j=1

Using V(C) = (2-[EC]2

ea to2 VCC)+(JE(C)) 2] Z X + 2(jE(C))2 Xkyi

j=1 k--1 j=1

Now using
n

Sn Z x = x + x2 + . +

J=1
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sn(i-x) =X -r"

n+ 1n
Sn

1 -x

and

n-1 yj X 1 2 13 1n-i

k~ l j ~ l+ x ~ l + X ~ + X 2 3  + . . . + x ZY n 2

+ X~y + x3y2 + X3y3 +...+ Xy-

+ n-2 y + X-y

X + X + x3y +- X3y
2 +...+ Xy-

"+X3+ X"y+ X~y +.. + x~y

" X4 + Xf lY2+. Xn4

j n2 + e- 2 + X-2

+ nl+ n4

L-.-w
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G~( 1) X2 + X3+ X4 .. Xn

- xly1 + x~Y + xi Y3 +... n-

n n-i

- ZXi - x y

j=2 j1j

n n-i

Zx - x y
=j=2 j=i

-1)
y

leads to

E(PW2) -(V(c) + [()2.
1 *X

+2 [E(C)] 2[)7Xj - X Z i]
[j=2 j=i

(x-1)
y

Now,

Zx -j [Mt(-2r)] [Mt(-2r)]~~

j=2 1 -Mt(-2r)

and

x Z = MtC-2r) Mt(-r)[i- mt(-r)] 1

j=1 1 -Mt(-r)
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Henc e:

E(PW2) -[V(c)+[E(C)] 2] [Mt(-2r)-(Mt(-2r))fl+l]

[Mt(-2r)]2 _ (Mt(-2r))n~'

+ 2L[E(C)] 2  1 - Mt(-;2r)

Mt(-2r) -

Mt(-r)

- 2[()21 - Mt(-r)

M t(-2r)-1

M t(-r)

V(PW) is found by subtracting [E(pW)] 2 and simplifying:

v(PW = ~~+1c)Mt(-2r)-t 4t(-2,r)) n+1
V(PW) ()e 2+42) -1 - - t(-2r)

+ 2/I2 [Mt(2r)] 2- [Mtp2r)]n+1 Mt(-r)
1 - Dt(-2r) - Mt(-2r)-Mt(-r)

-2.L
2 Mt(-2r)[1MtC-r)] 2 [1-Mr)f*1

2 L1Mt(-r)11t(r) -Mt(-J

2 [M(r- M,.t(-r)) n+ 2 (4.23)
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Expressions for finite cash flow streams for the ramp,

decay, and growth are developed later in this chapter.

Dependent Model Elements

Cash flow elements in this-.section assume dependence

with time. The common ramp, decay, and growth functions are

used as dependence models. These functions are widely used

in economic analysis (ramp functions for maintenance and

deterioration, decay functions for startup and learning

costs, and growth functions for wearmn maintenance costs)*

Figure 41.1, 4~.2, and 4.3 illustrate sample ramp, decay,

and growth functions.

Ct

4-') 1-0

0

Time

Figure 4.1

Ramp Function
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Ceat

0

0° Ii' P
Time

Figure 4.2

Decay Function

- C(1- e- at)

5-

o /_ __ I

Time

Figure 4.3

Growth Function
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CidTis - Dependent M"odel Elements

The models for dependence between cash flow and time

where cash flow is impulsive, deterministic and time is

impulsive, stochastic are presented for ramp, decay, and

growth functions.

CidTis - Dependent, Ramp Model Element. The present

worth for this model iss

PW = Ct e-rt (4.24)

The expected present worth can be stated as:

E(PW) = E(C) 0 E(t e-rt). (4.25)

In this case, the cash flow (C) is deterministic, and

E(C) = C. Also,

E(t ert) = E[ - d e - rt = -Vt' (-r).

Hence, Equation 4.25 can be reduced to:

E(PW) = -CMt' (-r)

for the expected present worth.

To derive the expression for the variance of the

CidTis dependent, ramp model element one must first derive

2an expression for E(PW )I

E(PW2 ) - E (Cte-rt)2 E(C2t2 e"2r t) • (4.26)
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However, one notess

it-t(-2r) = E(e- 2 rt),

Mt'(-2r) - E(-2te- 2rt),

and

Mt (-2r) = E(4t 2e-2rt).

As a result, Equation 4.26 can be expressed as

E(PW 2 ) = C2Mt(-2r)

4

and the variance for the model can then be expressed as

V(PW) = C2 [Mt'(-2r) Mt'(-r))2 ] • (4.27)

CidTis - Dependent, Decay Model Element. The present

worth for the CidTis dependent decay model element ist

PW = C e - at e - rt

C e-(a+r)t (4.28)

Recognizing that

E(e-(a+r)t) = Mt(-(a+r))

and taking the expected value of both sides of Equation 4.26

leads to the expected present worth for the model element a

E(PW) C Mt (-(a+r))
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The variance for the model element can be derived by

noting that

pW2 =[C(e-(a+r)t)] 2

E(PA12 ) = E(C2 e-2(a+r)t)

= C2 Mt (-2(a+r))

Hence,

V(PW') =E(PW 2 )_ [E(pW)] 2

C2 i Mt(-2(a+r)j - (a+r))2, 'j

CidTis - Dependent, Growth rlodel Element. The present

worth for the CidTis dependent growth model element is

composed of two previously mentioned model elements (step

and decay):

PW = C e-rt - C e- at e-rt

The term C e-rt is the step function and C e-at e-rt is the

decay function. When these two terms are subtracted, they

become the growth function:

PW = C(1-e - a t ) e- r t (4.29)
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The expected present worth is found by taking the expected

value of both sides of Equation 4.29 and solving in terms

of moment generating functions&

E(PW) = C [rt(-r) - Lt(-(a+r))1

The variance is calculated as previously done by first

calculating E(PW 2 ) ,

PW = C[ ert - e - (a+r)t]

p2 = CI2[ e- 2rt - 2e-(a+2r)t + e-2(a+r)t

B(pW42 ) = C2 [~Ivt(2r) - 2NMt(-(a+2r)) + Mt(-2(a+r))]
v(pW) = E(pW2 ) _ [E(PW)]2

= C2 [t(-2r) - 2TMtj-(a+2r) + Mt(-2(a+r))

- Mt (-r) - Mt - (a+r)) ]2]

Table 4-.5 is a summary of the CidTis dependent model

elements.

CisTis - Dependent Model Elements

The model for the present worth of the CisTis dependent

model elements assumes cash flow as an impulsive, stochastic

element (expressed as a function of time). The time para-

meter for the model elements is assumed to be impulsive,

stochastic. The means and variances for the cash flow and

time parameters are considered as known and from known

distributions.

t wI
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CisTis- Dependent, Ramp Model Element. The CisTis

dependent, ramp model element has a present worth which is

expressed as

PW = Ct e- rt

where C and t are both random variables.

The expected present worth is thent

E(PW) = E(Ct e-rt) .

By the mathematical statement in Equation 4.24 for the

CidTis dependent, ramp model element,

E(PW) -E(C) * E(t e-rt)

=/ * •(-Mr (-r))

= c Mt'C-r)

To derive the E(PW 2) term in the variance expression

for the CisTis dependent, ramp model element:

E(PW 2 ) = E [(Ct e-rt)2] , (4.30)

one must first rewrite Equation 4.30 ass

E(PW 2 ) = E(C2 ) - E(t2 e- 2rt)

By definition of variance,

02 = E(C2 ) - [E(C)]2

Also,

E(t2 e-2rt) = Mt(-2r)
4

'I
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Hence

E(PW2 ) = (6,c2+g2) Mt" (-2r)

4

As a result,

V(PW) - E(PW 2 ) - [E(PW)] 2

1.
2+ g.2 Mt <(-2r) _-r _)]2

- c2 I2[ t( -2r - (Mtr(r))2 + -2 Mt'(-2r)
4 14

CisTis - Dependent, Decay Model Element. The present

value for the CisTis dependent, decay model element is

expressed as:

PW = C e-at e-rt

and the expected present worth is expressed as:

E(PW) = E(C) I E(e
- (a+r)t

= 6i MtI-(a+r)').

The expression for E(PW2 ) in the variance for the model

element is

E(PW 2) = EfC 2 e-2(a+r)t)

= E(C2 ) • E.e-2(a+r)t)

= ("c 2+ g 2 ) . Mt(-2(a+r).

Hence, the variance for the model is

V(PW) = ((c2+ c2) * itl-2(a+r)) - [4Lc2Ic  tC(a+r))) 2

= .. 2[. .(-2(a+r)) - (Mt(-(a+r)j) 2 ] + OC2 MtL2(a+r)V
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CisTis - Dependent, Growth Model Element. The present

worth for the CisTis dependent, growth model element

(impulsive, stochastic cash flow and impulsive, stochastic

timing) can be represented ass

PW = C(1-e-at) e -rt (4.31)

The expected present worth can be calculated by reformulating

aEquation 4.31:

PW = C(e-r t - e- (a+r)t)

and then taking expected values to yields

E(PW) = E(C)[E(e-rt - e-(a+r)

= E(C) [ E(e-rt) - Eje-(a+r)t)]

= A~c [mtP-r) - Mt(-(a4r))] . (4.32)

Using the standard definition of variance, one must

now obtain a term for PW2,

pw2 = C2[e-2rt - 2e-(a+2r)t + e-2(a+r)t].

The expected present worth is then,

E(pW 2 ) = E(C2 ) [E(e- 2rt) - 2E(e-(a+2r)t) + E(e-2(a+r)t)].

This expression can be transformed into

E(PW2 ) - (O' 2+gc 2 )[Mt(-2r) - 2t(-(a+2r)) + Mt(-2(a+r))].

The variance follows as:

V(pW) = (-: 2+gc2)[Mt(-2r) - t(-(a+2r)) + Mt(-2(a+r))]

A gC 2 [mt(-r) - Mt(-(a+r))1I

Table 4.6 is a summary of the expected present worth

and variance of present worth for the CisTis dependent

model elements.
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CisTcd - Dependent Model Elements

The presentation for the CisTcd dependent model elements

will follow the same format as presented in the CidTis

dependent model elements. In the CisTcd model, the time is

continuous, deterministic. Since the cash flow remains

impulsive, stochastic! one must only determine the differences

between the two models where the time parameter is deter-

ministic.

CisTcd - Dependent, Ramp Model Element. The present

worth for the CisTcd dependent, ramp model element is:

PW = Ct e - rt ,

where t e-rt is a constant.

From Equation 4.25 of the CidTis dependent ramp model

element, the expected present worth of the CisTcd dependent,

ramp model element is

E(PW) - E(C)(t e-rt)

= c t e-rt .

Since t e-rt is a constant, the variance for the

CidTcd dependent, ramp model element is

V(PW) = 2 (t e-rt)
2

= Oc2 t2 e-2rt

!4
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CisTcd - Dependent, Decay Model Element. The present

worth for the CisTcd dependent, decay model element is

PW = C e-at e-rt

= C e- (a+r)t

The expected present worth is then

E(PW) = c - E e ( a + r ) t

= c a e-(a+r)t .

Since e- (a+r)t is a constant,

V(PW) = Cc2 e- 2(a+r)t .

%.isTcd - Dependent, Growth Model Element. The present

wrth for the CisTcd dependent, growth model element is

PW = C(l-e-at)(e -rt)

= C(e -rt - e-(a+r)t)

where r, t, and a are constants.

Since C is the only random variable, the expected

present worth follows as:

E(PW) = E(C) • E(e-rt - e- (a+r)t)

= Ac e-rt - e (a+r)t

The variance for the model is

V(PW) = 6c2 [e-rt - e(a+r)t]
2

= cr 2 [e - 2rt - 2 e-(a+2r)t+ e-2(a+r)t]

Table 4.7 is a summary of the expected present worth

and variance of present worth for the C isTcd dependent

model element.
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Table 4.7

CisTcd Dependent Model Elements

Model E(PW) V(PW)

Ramp Ac t e-rt C 2 t2 e- 2rt

Decay /. e - ( a + r ) t  6o 2 e-2(a+r)t

Growth jc" [e - r - e(a+r)t] (c2[e-2rt 2 e-(a+2 r)t

+ e-2(a+r)t]
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CisTcs - Dependent Model Elements

As previously noted in this research, treating time as

continuous or discrete does not alter the mathematical

development. This was due to the use of moment generating

functions which are assumed to be known for both discrete

and continuous distributions. The expected present worth

and variance of present worth for each of the CisTcs

dependent model elements will be the same as for the CisTis

dependent model elements.

CisTcs - Dependent, Ramp Model Element. The expected

present worth is

E(PW) = Mt'(-r)

and the variance of present worth is[to M..( -2r)M
V~W =P 2  

' M'(r]2] + 6c 2  t-r

CisTes - Dependent, Decay Model Element. The expected

present worth is

E(PW) = c" Mt(-(a+r))

and the variance of present worth is

V(PW) = -c 2 [I t(-2(a+r)) [t(-Ca+r))]2]

+ C- 2 -(r)
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cis; s - Dependent, Growth Model Element. The expected

present worth is

E(PW) ; , [r&t(-r) - DIt (-(a+r) )]
and the variance of present worth is

V(PW) = (6c 2+Ic 2 ) Ic(-2r) - 2Mt (-(a+r) ) + Mt (-2(a+r))]

_ P 2 [ t(-r) - Ivit (-(a+r))]2

For consistency in the presentation of models, Table 4.8

contains the CisTcs dependent model elements.

Summary of Impulsive, Dependent Cash Flow Elements

The CidTis, CisTcd, and CisTcs models presented in this

research under the dependent model elements are all special

cases of the CisTis dependent model elements. This con-

clusion parallels the findings for the independent model

elements.

The expected present worth will be derived for all of

the dependent, series models in the next section. The

variance will be derived for the CsdTss dependent, ramp

function.

Ii
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CsdTss - Dependent Model Elements

The models for dependence between cash flow and time

when the cash flow is series, deterministic and the time

is series, stochastic are presented in this section for

ramp, decay, and growth functions.

CsdTss - Dependent, Ramp Model Element. The present

worth for this model is

PW = Ct1 e-rt1 + C(tl+t 2 ) e-r(tN+t 2 )

+...+ C(kl+t 2+•..+tn) e-r(tl+t2+'''+tn)

where

ti is a random variable,

C is a constant.

The present worth is reformulated ass

PW = Ct, e-rt[11 + e-rt2 + e-r(t2+t3) + e-r(t2+t3+t4) +...]

+ Ct2 e-rt 2 e-rt, [l+e-rt3+e-r(t3+t4)+e-r(t2+t3+t4)+...]

+ Ct3e-rt3e-rt2e-rtl [1+e-rt4+e-r(t4+t 5 )+ e -r(t4+tS+t6)+ .. ]

+ .0 •

The expected present worth can now be written as
00 00

E(PW) = C E(te-rt) Z [E(e-rt)]n.n: [E(e-rt)]n

- (-r) 4 )
[1-Mt(-r)] 2
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This is proven by noting

E(e-rti) = E(e-rtj) for all i,j

and
E(tie -rti) = E(tje-rtj) for all i,j.

Analytically, Equation 4.33 is not too difficult to

use; however, the expression for the variance of present

worth for the CsdTss dependent, ramp model element is a

great deal more detailed. As before, to calculate the

variance, one must first generate PW2 and then calculate

E(PW2 ). This calculation is contained in Appendix I (5)

and the resulting variance for the model is:

' [rrit(-2r) M to(-2r) 2 r2Yt(-r)

v(PW) = C2[ [Mt(_2r)]2 + i+--3__

+ Mt (-2r)Mt(-r) 
_ [Mt'(-r)]

2

[1-Mt(-2r) [1-rt(-r)]3 [1-Mt(-r)] 4 ]. (4.34)

Although this variance expression can be Pirther

simplified, it is complete enough at tqis point to draw a

conclusion as to the usefulness of such an expression. The

original intent of the analytical solution approach was to

develop models which were mathematically correct and

realistic to use. Without the use of simulation, it would

appear that calculating variance for dependent, series
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models is not of significant value. The remainder of the

CsdTss dependent models and the remainder of the series,

dependent models will be limited to the development of

expected present worths.

CsdTss - Dependent, Decay Model Element. The present

worth for the CsdTss dependent, decay model element can be

represented as:

PW = Ce "(a+r)tl + Ce-(ar)(ti+t 2) + Ce(a+r)(tl+t2+tJ)+...

Noting that

E(e-(a+r)ti) = E(e-(a+r)tj ) for all i and j,

and

e-(a+ r)ti is independent of e-(a+r)tj for all i

and j,

one can express

E [,-(a+r)(tl4t2+.. tn]
as

4 e(a+r)t] n

Hence%

e e(a+r)t)]n

E(e-(a+r)t)

mt(-(a+r))
=C

- 1-t(-(~)

A I
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Csd~ss - Dependent, Growth Lodel Element. The present

worth for the CsdT ss dependent, growth model element can be

represented as:

PW = C[e-rt - e- (a+r)t] + C[e-r(tl+t2) - e-(a+r)(tl+t 2 )]

+ C[e-r(tl+t2+t3) - e-(a+r)(tl+t2+t3)] + ....

As pointed out earlier in the research, the growth function

is the sin of a step function and a decay function. As a

result, the expected present worth can be expressed ass

E(PW; = C Z [E(e-rt)]n - C [E(e-(a+r))] n

C ~~ [E"eIa(-r))in
F1Mt ( - r )  r,:t(- (a+r)) 1

The expected present worth for the CsdTss, dependent

model elements are presented in Table 4.9.

CssTss - Dependent Model Elements

The models for dependence between cash flow and time

when the cash flow is series, stochastic and the timing of

that cash flow is series, stochastic are presented in this

section. Only the expected present worth for the ramp,

decay, and growth models are derived.
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Table 4.9

CsdTss Dependent Model Elements

Model E(PW)

Ramp 
- C

(1-Mt(-r)) 2

C Mit (- (a+r)
Decay

1-Mt(-(a+r))

Growth C IMt ( -r) Mt(-(a+r) )

1-Mt(-r) 1-Mt(-(a+r))_
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CssTss - Dependent, Ramp Model Element. The present

worth for the CssTss dependent, ramp model element can be

represented as

PW = Cj(tj e - rtl) + C2 (tl+t 2 )e-r(tl+t2)

+ C 3 (tl+t 2+t 3 )er(tl+t2+t3) + .... (4.35)

The expected present worth is derived in Appendix I (6)

and is shown to be:

E (PW)

CssTss - Dependent, Decay Model Element. The present

worth for the CssTss dependent, decay model element is

PW = C1 e
- (a+r)tl + C2 e - (a+r) (t l+t2) + ...

+ C. e-(a+r)(tl+t2+''-+tn) + ....

Since the ti's and Ci's are independent and identically

distributed random variables,
0o

E(PW) = gC Z [E(e - (a+r)t)]n
n-- 1

Mt(-(a+r))

1-Mt(-(a+r))

I
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CssTss - Dependent, Growth Model Element. The present

worth for the CssTss dependent, growth model element ist

PW = Cl(1-e-at1)(e - rt l ) + C2(1-e-a(tl+t2))e-r(tl+t2) + ...

+ Cn(l1 e-a(tl+t2+.. +t )e-r(tl+t2+ .. +tn) +

= Cj(e-rt1_e-(a+r)tl) + C2 (e-r(tl+t2)_e-(a+r)(tl+t2))

+ ... + Cn(e-r(tl+t2+"' +tn)_e-(a+rXtl+t2+..+tn)) + ..

Taking expected values, while noting that

E(Ci) = E(Cj) A c

and
E(e-rti) = E(e-rtJ) = Mt(-r) for all i and j

leads to
00 00

E(PW) = _(.t(r))n Z(Mt(-(a+r))
n= 71 n-- 1-

_I
Mt( - r )  Mt(-(a+r))

A cLl-rt -r) 1-Mt(-(a+r)) I
The expected present worth for the CssTss, dependent model

elements are presented in Table 4.10.

CssTcd - Dependent Model Elements

The models for dependence between cash flow and time

when the cash flow is series, stochastic and the time is

continuous, deterministic are presented in this section
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Table 4. 10

CST S Dependent Model Elements

Model E(PW)

llM(-r)1

Decayc

Growth Ac [LiYIr) -1Mt(-(a+r))]
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for ramp, decay, and growth functions. Working from the

previous CssTss, dependent model elements, one need not

derive these models directly.

CssTcd - Dependent, Ramp Model Element. The CssTcd

dependent, ramp model element is indirectly derived from

the CssTss dependent, ramp model element. Recalling that

the expected present worth for the CssTss dependent, ramp

model element is

E(PW)t 
(-r)

one need only recognize that constants do have moment

generating functions (e.g. for time as a constant)s

Mt(-r) = e-rt ,

-Mt'(-r) = t e-rt

Hence, the expected present worth for the CssTcd dependent,

ramp model element is

= A c(t e
-rt)

E(P) =(1-e-rt)2

CssTcd - Dependent, Decay Model Element. The CssTcd

dependent, decay model element is also derived from the

CssTss dependent, decay model element.
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Using time (t) as a constant,

Mt(-(a+r)) = e-(a+r)t .

Hence, the expected present worth for the CssTcd dependent,

decay model element is

E(PW) P c Mt(-(a+r))
1-m t (-(a+r) )

e-(a+r)t
l-e-(a+r)t

CSSTcd - Dependent, Growth Model Element. The CssTcd

dependent, growth model element is derived from the CssTss

dependent, growth model element as follows:
IMt ( - r )  Mt(-(a+r))

E(PW) = ic {_t---() lrt_(r)

= cle-t le-(a+r)t

The expected present worth for the CssTcd dependent model

elements are presented in Table 4.11.

CssTcs - Dependent Model Elements

When cash flow is series and stochastic and time is

continuous and stochastic, the models are the same as those

presented under the CssTss dependent model elements (see

Table 4.10).



120

Table 4.11

CssTcd Dependent Model Elements

Model E(PW)

-rt

Ramp 
c t e r

(1-t e-rt)
2

Decay - (a+r)t
Dec ay ce

i-e-(a+r)t

Fe-rt e-(a+r)t 1
Growth 

tc [e -rt - e-(ar)J

I-- 1e(p ~
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Summary of Series Dependent Model Elements

The series, dependent model elements are all special

cases of the CssTss dependent model elements presented in

Table 4.10. The CssTss dependent model elements are extended

in the next section for cases where cash flow streams are

finite.

Extension of CssTss Dependent Model Elements

for Finite Cash Flow Streams

The CssTss dependent model element for finite cash

flow streams are presented in Table 4.12. The derivation

of the models are found in Appendix I (7), (8). and (9).

Expansion of General Model

The general model for a present value analysis was

presented in Chapter 3 ass

E(PV) = E(P) + E(E) - E(R) - E(S) , (4.36)

where

E = Expected value operator

P = Purchase price

E = Expense

R = Revenue

S = Salvage.

L-
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Table 4.12

CssTss Dependent, Finite n Cash Flow

Model Elements

Model Expected Present Worth

1+r w nit (-,) n [vit (-r) n-n- I
Ramp -Pct' (-r) L+-t-r)] 1

Decay g t(-(a+r))- [t(-(a+r))]nl1
I . - t(-(a+r))l -

Growth "Lrtt (r)] 1 _Mt(- (a+r))

. . .-- I- - _ I I Il . . - - | . . . ... . ._
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Let us now assume that there are i independent alter-

natives and each of the alternatives can have up to k model

elements associated with P, E, R, and S. The expected

present worth of the ith alternative is then:

k k

E(Pvi) L E(Pk) + L E(Ek)
j=1 j=1

k k

-LZ E(Rk) - Z E(Sk )
j=1  j=1

The analyst must now identify the type of cash flow

model element and compute the expected present worth for

that model element using Tables 4.9 through 4.12. Once

this has been accomplished, the expected present worth

would be added to the appropriate category of purchase price,

expense, revenue, or salvage value. Equation 4.36 can then

be used to calculate the expected present value for that

alternative.

The variance can be calculated in a similiar manner

and is equal to

kc k k
v(P;'li) = Z v(Pi) + +- j + v(Rk) + Z v(sk) •

j=1 j=1 j=1

Many additional model element types, not discussed in

this research, can also be included in the general model

for the calculation of expected present value. The general

4i
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model for the variance of present value would also be valid

as long as the cash flows were considered to be independent.

Dependent cash flow elements could be handled with an

expanded model as long as time is not a random variable.

If time is a random variable, it is not worthwhile to develop

a covariance matrix for the cash flows because of the

difficulty involved.

The actual selection among alternatives would normally

be based upon minimum expected present value. There are

two possible cases where variance of present value would

enter the selection procedure. First, the expected present

values of two alternatives could be either tied or too close

for the analyst to be positive which was the better choice.

In this case, the alternative with the smaller variance

would be selected. The second case is where the variance of

the cheapest alternative is greater than the variance of an

alternative close to the expected present value of the

cheapest alternative. Although more research is required

to justify this viewpoint, there is some intuitive appeal

to minimize uncertainty even if a slightly higher cost is

involved.

The next chapter contains an indepth discussion of the

contributions of this research.



Chapter .5

DISCUSSION OF MODELS

This research has extended the present knowledge of

capital investment problems in several ways. A detailed

taxonomic structure has been developed which is utilized in

this research as an outline for model development. The

taxonomic structure also serves as a set of designations

for new models which should aid in organization, storage,

retrieval, and research of these models. Many specific

models have also been developed. These models should be

useful to the practitioner and of motivational value to

structuring realistic classroom presentations. Each of

these areas are addressed in this chapter.

Taxonomic Structure

There is a definite requirement for a taxonomic structure

for capital investment problems and economic analysis prob-

lems. Fleischer and Ward (1977:24) developed such a taxonomic

structure and their work is presented in Table 3.7. The

intent of their work was three-fold. First, the taxonomic

structure serves as a "road map,, for locating and selecting

appropriate models. Second, the taxonomic structure serves

as a method of organization. storage, and retrieval of
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models. Third, the taxonomy permits enumeration of simpler

models. As part of' their research effort, a literature

search was accomplished to designate which areas of economic

analysis had been researched and to determine where addition-

al research was required. Table 3.7 is reproduced in Table

5.1 with additional entries for the contributions of this

research. The entries 5a, 5b, 5c, and 5d in the table

highlight where the researchi was accomplished.

The taxonomic structure developed by Fleischer and

Ward (1977) was not detailed enough to permit the type of'

enumeration of' models described in this research. Additional

detail was added to facilitate the research. A review of

Table 3.7 and Figure 3.11 highlights the additions to the

taxonomic structure. The cash flow has been subdivided into

expenses and revenues. An additional category has been

made for independent and dependent models. The impulsive

cash flow has been subdivided into those types of cash flows

which only occur once (designated as impulsive) and those

cash flows which are repeated with some type of frequency

(designated as series). Additional models have been developed

for series cash flows, both independent and dependent, where

the cash flow streams are finite.

Independent Models

Independent models are developed in Chapter 4 with a

summary in Table 4.4. The CidTis, CisTcd, and Ci5 Ti3 models



127
Table 5.1

Taxonomic Structure and Current
State-of-the-Art

Cash Flow Interest Rate

Stepwise
Amount Timing Constant Constant Variable

How Cert When Cert Det Sto Det Sto Det Sto

Det Cla 1 Cla 1 Cla_
Disc Sto 5a

Det Cla Cla Cla
•Cont

Sto 2
Det 4,3,2 1 1

E Disc Sto 5b___- __

Det 5c
Cont Sto 5d

Det Cla Cla Cla
Disc St~Sto

Det Cla Cla Claz Cont
Sto

z Det 2
0 Disc

D ic Sto

Det 2
Cont Sto I

1-Reisman and Rao (1973) Cert-Certainty
2-Ward (1975) Det-Deterministic

- Hillier (1969) Sto-Stochastic
h-Hillier (1963) Cla-Classical
5-Estes (current research) Cont-Continuous

Disc -Discrete

Source:

G. A. Fleischer and T. L. Ward. "Classification of
Compound Interest Models i.n Economic Analysis." Engineering
Economist, (Fall, 1977),24.
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are shown to be special cases of the CisTis model which

assumes that cash flow and timing of cash flow are impulsive

and stochastic in nature. The CsdTss, CssTcd, and C ssTcs

models are special cases of the CssTss model which assumes

that the cash flows, and associated timing of the cash flows,

are series in nature with stochastic parameters. Expected

present worth and variance of present worth are derived for

each model. An extension for the CssTss model is presented

next for models which have a finite cash flow stream. The

expected present worth and variance of present worth for

the finite cash flow CssTss model are presented in Equations

4.22 and 4.23 respectively.

These models are of interest in that they handle data

for capital investment where such variables as initial cost,

cost and timing of breakdowns, and salvage values must be

considered as random variables.

Dependent Models

Dependent models are also developed in Chapter 4. The

assumption made in these models is dependence between cash

flow and time. The ramp, decay, and growth functions are

developed for each of the eight basic model elements

previously derived for the independent models. The CisTis
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models are presented in Table 4.6. The remaining impulsive

models are all special cases of this model.

The series, dependent models (CsdTss, CssTcd, CssTcs)

are special cases of the CssTss dependent models presented

in Table 4.10. Variance of present worth is developed for

the CsdTss dependent, ramp model. As can be seen in

Equation 4.34, the complexity of the variance expression

makes it of little value as an analytical tool. In addition,

attempts to derive a general form for the CssTss variance

were not successful. Expressions for the expected present

worth for the CssTss finite cash flow dependent model

elements are presented in Table 4.12. The development of

dependent series models is considered to be of relevance

due to the use of ramp functions with maintenance and

deterioration costs, decay functions with start up and

learning costs, and growth functions with wearin maintenance

costs.

Summary

A total of nine independent models are developed with

expected present worth and variance of present worth. In

addition, twelve dependent models are presented with expected

present worth and variance of present worth for impulsive

4 -i
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dependent models. For the series, dependent models, only

expected present worth is presented for eleven models and
the finite cash flow stream model. A total of 36 models

have been presented in Chapter 4 with the majority having
both expected present worth and the variance of present worth

developed.

In order to clarify the specific areas of comparison

between the taxonomic structure accomplished by Fleischer

and Ward (1977:24) with this research, Table 5.1 should be

compared to Tables 5.2 through 5.5.
The next chapter contains a development and justification

for a network logic to solving problems which utilize the

analytical tools developed in this research.



Chapter 6

NETWORK REPRESENTATION OF A CAPITAL
INVESTMENT ALTERNATIVE

All textbooks which discuss alternative selection

models for engineering economics develop rate-of-return

formulas. These formulas are developed by the use of both

mathematical equations and visual depictions of the process.

As stated by A. AlIan B. Pritsker (1979:1),

The modeling of a system is made easier if:
1) physical laws are available that pertain to the
system; 2) a pictorial or graphical representation
can be made of the system; and 3) the variability
of system inputs, elements and outputs is manageable.

This research has attempted to improve upon models for

capital investment problems by providing useful tools to

accomplish the modeling of an economic process. The research

is expanded in this chapter to offer suggestions as to how

a pictorial representation can be made of the process.

Present Worth Development

Given a future sum E, a continuous interest rate r,

and time of occurrence t, the present worth PW is E e-r

Figure 6.1 represents a network configuration of the

problem. The nodes of the network can be used to generate
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and collect dollar values. The branches are used to

designate time between nodes. The symbol E was chosen to

designate an expense.

E

Figure 6.1

Present Worth of a Single Cash Flow

Let us now extend this pictorial network by allowing

an initial expense P occurring at t=O and a series of

n expenses (E 1, , E2 # E 3 , ... E n ) Figure 6.2 illustrates this

cash flow.

P El E 2  En
P En

Figure 6.2

Present Worth of a Multiple Cash Flow

The present worth is

n

PW = P + Z Ei e-rti

i=

S
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Ift one were to assume that all of the expenses and the

time between expenses are random variables, Figure 6.2 is

still valid. Only the method used to calculate the present

worth has changed. obviously for simple cash flows, such as

those discussed to this point, a picture is probably not

required to aid the analyst in solving the problem at hand.

Now let us expand upon the nature of the expenses involved.

The following example problem is presented as a more

realistic real-world problem: A manufacturing firm has

decided to expand their plant to produce a new product.

A lathe is required in one area of the production line.

Several lathes which have passed an initial screening to

insure that they can meet or exceed minimum production

standards have been suggested and are now ready for economic

evaluation. The data for the first lathe to be considered

has been accumulated from the producer of the lathe and

in-house estimates. The initial cost of the lathe is $50,000.

The installation cost is dependent upon suspected electrical

problems and is estimated to be from a triangular distri-

bution with a mean of $10,000 and the endpoints of $2,000

and $15,000. The salvage value for the lathe is normally

distributed with a mean of $5,000 and a variance of $750.

This particular lathe has been extensively used in industrial
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applications and Table 6.1 is a summary of the repair data

provided by the manufacturer. Time to failure is normally

distributed with a mean of 60 days and a variance of 10

days. The cost of down-time is a constant $500 per day.

Monthly operational costs for preventive maintenance and

electrical consumption is $600. The compounding period is

daily and the rate of return is 20%. Service life is 5

years.

Figure 6 .3 represents a possible network type con-

figuration for the problem. The nodes, designated as

0
(where k stands for the node number) is where any expenses

generated at that time are introduced, Transactions passing

thru the network would collect present worth for all

expenses up to that point in time. The symbol

0
is used as a decision node to designate that some parameters

must be tested prior to determination of branching. The

use of a triangle on the output portion of a node is used

to designate probabilistic branching. The absence of a

time specification on a branch assumes that zero time is

associated with that branch. The actual present worth for
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Table 6.1

Repair Data for Lathe 1

Type of Probability Down-time

Failure Probability Cost ($) of Repair (days)

Major .1 N(1K, 100) .90 4

Normal .5 U(100, 500) .75 2

Minor .4 E(100) .50 1

Legend:

N is normal distribution

U is uniform distribution

E is exponential distribution

LL
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one realization of the network could be carried along with

cash transaction by an attribute.

The approach suggested to solve this problem is by

using simulation; however, many analytical tools (including

those introduced in this research) could be used as actual

nodes in the network.

The example problem could be extended further to

approach the real-world more closely by adding taxes,

revenues, depreciation, etc. As the complexity of the

problem increases, the need for a pictorial representation

is justified.

Preliminary research indicates that QGERTS, developed

by A. Alan B. Pritsker is adaptable to performing the analysis.

It would be a major undertaking, requiring extensive re-

writing and additions to the current program; however, it

is suggested in Chapter 8 of this work that this task be

undertaken. Other possible simulation programs which

appear to have potential are SLAM and GPSS.

Summary

The intent of this chapter is not to design a simulation

language to be used in solving capital investment problems.

The chapter does layout a network procedure to use in

solving problems. The next chapter introduces some ap-

plications using the results of this research and the

network logic will be used as an illustrative tool.



Chapter 7

APPLICATIONS FOR RESEARCH MODELS

There are three basic areas where this research is

useful. The first area is in adding more realistic

analytical tools to those already used in traditional or

classical engineering economic problems, the second area

is in the validation and verification of simulation models,

and the third area is in the direct use of this research

in the development of a simulation language for engineering

economics. Each of these areas are addressed in this

chapter.

Extensions to Traditional Engineering
Economic Problems

This section of applications is concerned with adding

this research to the set of analytical tools used to solve

traditional engineering economic problems. Areas covered

are capitalized ccst comparisons, replacement economy, and

lease or buy decisions. The research is not limited in

application to these areas; however, these areas were

selected to show the value of the research in a traditional

type problem.
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Capitalized-Cost Comparisons

Capitalized-cost comparisons are present worth analysis

where the comparison period is assumed to be infinitely

long. Taylor (19641 95) points out that capitalized cost

predominated in the early days of railroad construction

and expansion due to the viewpoint that roadbeds, tracks,

and bridges were considered to have the *mathematical

equivalent of perpetual lives". This is due to the very

small error introduced in using discounting factors with

infinite lives versus long life. This error is decreased

even more with higher interest rates. Capitalized costs

comparisons are valid for many analysis problems such as

tunnels, dams, aqueducts, bridges, and interstate highways.

A few typical analysis problems are illustrated in the

followinjg examples.

Example 7.1 The following example is modified

from Taylor (1964: 95, ex. 7.8).

A dam costing $100,000 to construct will cost $15,500

a year to operate and maintain. Another design costing

$150,000 to build will cost $10,000 a year to operate and

maintain. Both installations are felt to be permanent.

The annual dispersments are assumed to be lump sum, year

end payments and the interest is continuous at 25%.
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Taylor's solution would be to calculate the present

worth of the first design as:

$100,000 + $15,500 • 1 = $154,572.58

and the second design as:

$120,000 + $10,000 1 - $155,208.12

The first design is, in terms of present dollars, $635.54

better. Now, let one assume that the annual dispersments

are dependent upon funding by the government and that this

funding is normally distributed with a mean of one year

and a variance of 6 months. The first cost of both designs

is assumed to be, as before, a constant.

Figure 7 .1 illustrates a network for the decision

process. The CsdTss model element is used to calculate

the present worth of the first design as:

$100,000 + $15,500Fmt(-25)

Mt(-.25) for the normal distribution with mean 1 and variance

of .5 is e(- .25)+1 (- .25)2 (.5). Hence, the first design

will have a present worth of

e-.25+ 2(-.25 )2(.5)

$100,000 + $15,500 e = $158,685.79
,25+-1(-.25)2(.5)
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First Design

N(1,.707)

Second Design
120,000

~N(I,.707)

Figure 7.1

Dam Construction
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and the second design will have a present worth of

$120,000 + $10,000 e = $157,861.80

I-e-25+-(-'25)2 ( 5)

Considering the funding as taking place at random

points, the advantage has changed to the second design.

The wrong alternative has been selected by using deter-

ministic data. In addition, if one assumes that the

expected true cost of the first design is $158,685.79,

using the estimated cost of $154,572.58 yields an error of

$4113.21. Obviously, this data was selected to make the

point that both incorrect selections and incorrect estimates

can be made when data is used in a deterministic manner

even though the data is known to be random variables;

The variance for the present worth is found by using

only the variances of the CsdTss model element.

V(Pw) =- C2 [Mt(-2r)-(Mt(-r))2]

where C = $10,000

Mt(-2r) = e-2(.25)+(-.25 )2(.5)

= .6456

mt(-) = -( .25)+12(-.25)2 (.5)Mt(-r) e

= .7911

V(PW) = $128,416,795.60

G pw = $11,332.11
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It should be noted that in finding the expected value

and variance of the cash flow a specific distribution of

cash flow has been assumed. As a result, the distribution

of the present value can be assumed to be normally dis-

tributed. Since the variance of the present value is known,

more information is known than by the first method.

To illustrate this, let us assume that the analyst

used the data in a deterministic manner and selected the

first design. Since the true expected present worth of the

first design is $158,685.79, one question might be, what

is the probability that the actual cost will be less than

or equal to the present worth of $154,572.58 calculated by

the analyst? Assuming present worth is normally distributed

with mean $158,685.79 and variance of $128,416,795.60,

z -x- 154,572.58 - 158,685.79 -36

0' 11,332.11

Hence, from normal tables (Miller and Freund, 1965t398)

(X =359. As a result, there is only a 35.9 percent chance

that the first design will have an actual cost less than or

equal to the cost estimated.

In many applications of this research, multiple cash

flows will be seen in the models. As a result, it is possible

that no distributional assumptions concerning the random
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variable of present worth can be made. In such cases it is

still possible for certain probability statements to be

made via the Chebyshev inequality. Using the Chebyshev

inequality for this example, the probability of realizing

an actual cost within two standard deviations from the

mean is

P ( jPW-E(PW)j - 2 - = 75%.

Another way of stating this is that the probability of

being within 2(S($22,664.22) of the expected present worth

is greater than 75%.

The strength of Chebyshev's theorem is that it only needs

the mean and standard deviation of the distribution. It is

also its greatest weakness in that it only provides an

upper bound for the probability.

Other tests could be made if we made distributional

assumptions; however, the actual distribution is not avail-

able to test our assumptions. The suggestion is to then

generate the distribution via computer simulation, validate

the expected present worth and variance of present worth

via the analytical tools given in this research, and then

make probability statements after analysis of the distri-

bution of present worth.

The next example is a replacement problem first

introduced by Grant (1938s208). The problem is revised to

introduce random variables into the problem.

... ..6. . . J .. . . . . . . I I~
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Replacement Economy

In replacement economy, an in-service piece of equip-

ment is considered for either replacement az- improvement.

The factors which govern the need for th.i- na.lysis is

obsolescence, inadequate capacity, deterioration, improved

equipment availability, etc.

The following example is a decision process in extending

the life of an item versus immediate replacement.

Example 7.2 A wooden telephone pole has decayed to

the point that the pole must be either removed or "stubbed".

A stub costs $8.00 with an installation cost which is

exponentially distributed with a mean of $20.00. The

inspector notes that the upper section of the pole should

be good for about 5 years. He estimates that this estimate

is normally distributed with a mean of 5 years and a

standard deviation of 1 year. A new pole will cost $25.00

with an installation cost which is exponentially distributed

with a mean of $40.00. A new pole has a normally distri- *

buted life of 20 years with a standard deviation of 4j years.

The company has an existing contract to buy all used tele-

phone poles at the rate Of $5.00 per pole. The minimum

required rate of return is 23 percent.
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Figure 7.2 illustrates the decision process. Several

model elements are used in the analysis. The initial

procurement costs of the stub oi new pole is a constant

and is simply added to the present worth. To calculate

present worth due to installation costs and the salvage

value, two models presented in this research are required.

Calculating present worth due to installation costs will

require the use of the C isTcd model element. The CidTis

model element is required to calculate the present worth

due to the salvage value.

The expected present worth of the stubbed pole is:

E(PWS) 8 + 5 + 20(1) - 5(e 23( 5)+1 (-.23)2(1)2

$31.37 •

and the expected present worth of the new pole is:

E(PWN) = 25 + 40(1) - 5(e- '23(2 0 )+!(- .23) (4)2

= $64.92

It will apparently pay to stub the old pole. The

difference in expected value was really determined by the

high cost of installing a new pole. Using the means of

this data in a totally deterministic manner would result

in the same conclusion with very close figures to those

calculated when using the data as random variables. The
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Stubbed Pole

$8 -
+

E(20)

N5.1)

New Pole

$25
+ -5

E(40)N(20,4 )

Figure 7.2

Pole Replacement vs. Stubbing
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main advantage in using random variables, in this case,

is that one can now calculate a variance and standard

deviation for the estimated present worth of the stubbed

poles

V(PWs) = (20)2 + 52 [e-2(23)5+1(-2(.23))
2 (1) 2 ]

- [e-(.23)5±1(-.23 )
2(1)2]2

= 4oo.14

PwS = $20.00

Having the standard deviation does give one a great

deal more information. If one uses deterministic data,

the present worth of the stubbed pole is $31.42. In this

case, the advantage in using this research is in being able

to obtain variance and standard deviation data.

The next example is a lease or own problem taken from

Taylor (196 4 %210). The problem is revised to introduce

random variables.

Lease or Buy

To own or lease equipment is a common problem in

economic analysis. The obvious advantages of leasing is

in avoiding many of the costs of ownership such as obsole-

scence, repair maintenance, and replacement. The following

example is applied to machinery; however, the concepts are

applicable to many investments in capital equipment.
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Example 7.3 A 2-year-old truck has a net realizable

value of $3,000 and is expected to have a salvage value of

$900 after its remaining 3-year life. The actual salvage

value is normally distributed N(900,450). Its operating

disbursements for taxes, insurance, and registration are

$160 a year. Annual inspection, maintenance, and repair

costs are estimated to be composed of two costs. The first

cost is for preventive maintenance and is estimated to be

normally distributed with a mean of $100 and variance of

$900. The second cost is a ramp function which is expected

to increase at a rate of $50 per year. The $50 rate is

exponentially distributed with a mean of $50. This second

cost is primarily due to breakdowns with the seriousness

of each breakdown increasing with time. The time between

these breakdowns is poisson distributed with a mean of one

year. An equi.valent truck can be leased for 20 cents a

mile Plus $L5 a day for every day that the customer keeps

it, whether it is driven or not. The annual utilization

cost, based upon past records, is expected to be normally

distributed with a mean of $1,050 and a standard deviation

of $500. Minimum required rate of return is 15%.

Figure 7.3 illustrates the network for owning the

truck and the network for leasing a truck. At node 2, in

both networks, the variable N is increased by the constant 1
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Owned Truck

3K / 160 N(100,30) N(900,450)

Leased Truck

Figure 7.3

Owned vs. Leased Truck

• -3

I~~~~~~~~~ 1) mI .. lll l . ... . . I ..
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to designate the period of "current" analysis. The input

of "R(E(50))" at node 5 designates a ramp function with a

cost parameter which is exponentially distributed with a

mean of $50. The method of branching is tested after node 3

and 5 in the "owned truck" illustration and after node 2 in the

"leased truck" illustration. This test is on the "current"

time for the alternative. The actual network arrangement

is discussed in more detail under Suggestions for Further

Research in the next chapter.

The analysis for expected present worth for the owned

truck is:

[Mt 1(-r) -[Mti(-r)] 4 ]
E(PW0 ) = 3,000 +(i00+160) 1 Mt(-r) -

1-Mt( ( -r)

I- 50 Ir 1-Mt2(-r) ] 2

- 900 [Mt 3 (-r) ] ,

-.15

where Mt(-r) = e

Mt2 (-r) =e

Mt2(-r) = -e(e "15-1-.15)

Mt 3 (-r) =e 
45
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The resulting calculation yields a present worth of

$3,195.90. The analysis for the expected present worth for

the leased truck is

E(PWL) = 1050 t(-r) -mt(r)

I -t(-r) J

where Mt(-r) =e-15 .

The resulting calculation yields a present worth of $2,351.11.

In this case, present worth is dealing with costs and the

leased truck is the cheaper alternative.

These examples have shown the usefulness of this research

in extending traditional or classical engineering economic

problems. These are two primary benefits that are seen by

the author in this effort. First, it is rare that one can

forecast costs or profits with certainty. This research

enables one to use a more realistic approach to using the

known data in a problem. The second benefit is to the

student in that there should be an increased motivation in

dealing with analytical tools which approach real-world

problems with fewer assumptions and/or simplifications.

The next area of discussion for the use of this re-

search material is for the validation and verification of

simulation models.

*l
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Validation and Verification of

Simulation Mo-dels

One of the drawbacks in attempting to solve real-world

problems is the complexity of the available mathematical

tools. Another drawback is that appropriate mathematical

tools may not be available. An approach which can be used

to address both of these problems is simulation. Also,

simulation of an alternative can produce results beyond

the analytical calculations of mean arnd variance. As

pointed out earilier, using Chebyshev's inequality to make

probability statements can at best produce weak probability

statements. Making other assumptions such as normality

will produce errors if the present worth distribution is

abnormally skewed or peaked. In using simulation, the

actual distribution of present worth is available to make

probability statements.

To have any faith in the output results of a simulation

program, one must be able to validate and verify the model.

The analytical tools presented in this research should aid

the model builder in both of these efforts by allowing

validation and verification of expected value and variance

data.

The next area where this research could be put to

practical use is in the development of a simulation language

for engineering economic problems.
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Development of' a Simulation Language

Simulation is a relatively new technique in solving

capital investment problems. Hess anid Quigley (1963) were

among the first to use Monte Carlo simulation techniques

for the construction of output distributions for present

worth. Other authors which have used simulation include

Hertz (1964), Bussey and Stevens (1971), and Whitehouse

(1974).

When dealing with series type cash flows, there are

two basic approaches which are used in the literature. One

approach is rather brute force in repeating a node for the

number of times required for the series. An alternate

method would be to "loop", back to the node. Both of these

methods are time consuming as far as computer time is con-

cerned. An alternate approach using this research is to

use a single node to calculate the present worth of a series

of cash flows. As an example, let us assume that both the

cash flows and the time between cash flows are random

variables. For a specific run of the simulation program,

which would generate one value for present worth, two

random number generators take a sample from the cash flow

and time distributions. The present worth for this specific

realization would then be%

n

PW=C Z e-rt
t= 1
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The variable n represents the total number of cash flows

allowed, and it could be determined by dividing the economic

life by the time parameter. Si' a. this would generate a

real number in most cases, a simple procedure would be to

truncate n to an integer. For example, if the time parameter

was .3 years and the economic life was 10 years, n could be

33. Repeated runs through this node would produce the same

expected value of present worth and variance of present

worth as calculated using formulas from this research.

Using this type of a node will allow the analyst to validate

segments of the model. Since the actual distribution of

present worth would not be available, the actual use of

these nodes would be in building a model. Once the model

is ,correct", these nodes would be replaced with appropriate

nodes to collect data.

In this chapter the main objective was to examine

applications for this research. Two basic areas were

discussed, one area being the direct use of this research to

analyze problems and the other area being the indirect use

of this research in additional research areas. The next

chapter is a summary of this research and includes suggestions

for further research.



Chapter 8

SUMMARY, SUJGESTIONS FOR FURTHER
RESEARCH, AND CONCLUSION

The objective of this research was to develop analytical

tools to solve specific classes of capital investment

problems in engineering economics involving mutually

exclusive alternatives. A total of 16 basic models were

developed for impulsive and series cash flow model elements

under the assumption of deterministic, constant interest

rates. A review of Table 3.7 indicates a great deal

additional research is required. This chapter summarizes

the research and makes suggestions for further research.

Summary

The first phase of this research was to develop a

detailed classification for capital investment models. A

spanning set of models found in the literature were rev'.wed

to determine types of models and required parameters.

Next, a taxonomic structure for capital investment problems

was developed. This area of the research extended Fleischer

and Ward's work (1977) to include a distinction between
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models involving one-time cash flows (impulsive) and series

cash flows. A further extension in the taxonomnic structure

was made by looking at independent and dependent models.

A short form classification was also developed in Chapter 3.

A total of sixteen basic models were developed for impulsive

and series cash flow model elements under the assumption of

deterministic, constant interest rates (see Tables 4.4-4.11).

Dependent model elements were extended to allow for a finite

number of cash flows (see Table 4.12). In addition, a

general model for analysis was developed in Chapter 3 and

expandied in Chapter 4. Chapter 5 is an indepth discussion

of the contribution of this research. Chapter 6 introduced

a network logic to modeling economic problems and Chapter 7

discussed application of the research.

This research has highlighted various areas where

additional research is required. The next section of this

chapter is a review of these suggestions and the introduction

of other research areas not covered in this research.

Suggestions for Further Research

Although a great deal of work has been accomplished

by many authors in the areas of simulation, risk analysis,

utility theory, etc., a large void still exists for many

of the basic models which are required in analysis of

economic problems. Further research is required in the

development of these models and the use of these models.
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Non-constant Interest Rate Models

As pointed out in this research, with the exception of

Reisman and Rao (1973), stochastic interest rate models

have not been developed. The argument for considering the

interest rate as a constant is founded upon the concept of

a minimum attractive rate-of-return. Currently, interest

rates are changing rapidly. There is reason to believe

that management may not be able to either determine a

minimum attractive rate-o2-return or must use a very high

rate to cover risk in the analysis process.

It would seem that an area for additional research

would be to develop models for stepwise constant and variable

interest rates with stochastic parameters. As models

become more and more complex, simulation becomes an impor-

tant tool; however, analytical tools are still required to

validate and verify the simulation output.

Alternate Decision Criteria

The decision as to the best alternative has been

assumed to be based upon the alternative with the minimum

expected present worth. Other decision criteria need to

be researched. Annual cost analysis is commonly found in

economic analysis. It would not be too difficult to

extend this research to introduce this decision criterion.
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Other criteria such as the aspiration level principle and

the most probable future principle should also be explored

for use in the analysis of data generated by the use of the

analytical tools developed in this research.

Introduction of Additional Parameters

The basic parameters used in this research were first

cost (P), revenue (R), expense (E), and salvage value (S).

Other parameters such as costs due to taxes and profits

due to depreciation could also be introduced. One method

to introduce these parameters is to look at expenses and

costs which appear in a given year and calculate an expected

net cash flow and variance of net cash flow for each year.

These data calculations could then be used to calculate

the expected present worth for the alternatives. The data

calculations would have to be handled as n impulsive cash

flows. The suggested formulas for calculating expected

net cash flow and variance for net cash flow are:

j kE(NCF I ) =(1-04)( i I Rj- ilEk) + (X(D)

and

j k
V(NCFl ) = (_-2) ( v(R.) - Z V(Ek)) + O V(D)i=k i=+ (

L ..
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where:i

E(NCF) = expanded value of net cash flow in year 1

= tax rate

D = depreciation

V(NCF,) = variance of net cash flow in year 1.

Simulation Model

Several areas have been pointed out in this research

where simulation could be used as an aid in the analysis

of an economic problem. The complexity of many engineering

economic analysis problems appear to require the use of

simulation.

A suggested computer flow diagram is illustrated in

Figure 8.1. Blocks such as "compute a gross revenue", and

"compute a gross expense" could contain complex networks.

If discrete time units are used in the simulation, the

dependence between different cash flows could be introduced

into the program. The blocks such as "generate a set of

initial costs" and "generate a salvage value", are areas

where impulsive models developed in this research could be

useful. The block titled "perform analysis" would contain

programs to evaluate the data under selected criteria and

print out selected information.
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Conclusion

This research has expanded the analytical tools avail-

able to accomplish the analysis of economic models involving

mutually exclusive alternatives with impulsive and series

cash flows under the assumption of' deterministic, constant

interest rates. The use of these tools allows the analyst

to use available data in a more realistic mode and calculate

a more accurate and, in some cases, more correct solution.



BIBLIOGRAPHY



BIBLIOGRAPHY

Alchian, A. Economic Replacement Policy. Santa Monica, CA.,
Rand Corporation, Report R-224, Rm. 2153, 1952.

Alderfer, Clayton P. and Harold Bierman, Jr. "Choices
with Risk: Beyond the Mean and Variance." The Journal
of Business, 43, No. 3 (1970), 341-53.

American National Standard, Industrial Engineering Ter-
minology, Engineering Economy, ANSI Z94.5-1972.
New York: The American Society of Mechanical Engineers,
(1973).

Apostol, Tom M. .Mathematical Analysis, A Modern Approach
to Advanced Calculus. Reading: Addison-Wesley, 1957.

Archer, Earnest R. "A Decision Making Model." Industrial
Engineering, 7, No. 4 (1975), 27-29.

Barish, N. N. Economic Analysis for Engineering and
Managerial Decision Making, A Book of Readings.
New York: McGraw-Hill, 1962.

Bernhard, Richard H. "Discount Methods of Expenditure
Evaluation-A Classification of their Assumptions."
The Journal of Industrial Engineering, 13, No. 1 (1962),
19-27.

Bierman. H. J. and W. H. Hausman. "The Resolution of
Investment Uncertainty Through Time." Management
Science, 18, No. 8 (1972), 654-662.

Bierman, Harold, Jr. and Seymour Smidt. The Capital
Budgeting Decision. 3rd ed. New Yorks Macmillan,
1971.

Bobillier, P. A., B. C. Kahan, and A. R. Probst. Simulation
with GPSS and GPSS V. Englewood Cliffs: Prentice-Hall,
1976.

Bowman, E. H. and R. Fetter. Analxsis of Production
Management. Homewood, Richard D. Irwin, 1957.



170

Buck, James R. "Practical Considerations of New Cash Flow
Techniques." Proceedings of the 1975 Spring Annual
Conference, AIIE, 81-86.

Bussey, Lynn E. The Economic Analysis of Industrial
Projects. Englewood Cliffs: Prentice-Hall, 1978.

, and G. T. Stevens, Jr. "Net Present Value from
Complex Cash Flow Streams by Simulation." AIIE
Transactions, 3, No. 1 (1971), 81-89.

Canada, John R. "Decision Flow Networks." Journal of
American Institute of Industrial Engineers, C, No. 1
(1974), 30-37.

, and Harrison M. Wadsworth. "Methods for Qualifying
Risk in Economic Analysis of Capital Projects." The
Journal of Industrial Engineering, 19, No. 1 (196Z,
32-37.

Coprath, David W. "From Statistical Decision Theory to
Practice: Some Problems with the Transition."
Management Science, 19, No. 8 (1973), 873-883.

Dean, Joel. Capital Budgeting. New York: Columbia University
Press, 1951.

DeFaro, Clovis. "A Sufficient Condition for a Unique
Nonnegative Internal Rate of Return: Further Comments."
Journal of Financial and Quantitative Analysis, 13,
No. 3 (1978), 577.

DeGarmo, Paul E. and John R. Canada. Engineering Economy.
5th ed. New York: Macmillan, 1973.

Dreyfus, S. E. "A Generalized Equipment Replacement Study."
Journal of the Society of Industrial and Applied
Mathematics, 8, No. 3 (1960), 425-435.

Duncan, J. Acheson. Quality Control and Industrial Statistics.
Homewood: Richard D. Irwin, 1965.

Fabrycky, W. J. and H. G. Thuesen. En ineering Economy.
Englewood Cliffs: Prentice-Hall, 1964.

Fish, John C. L. Engineering Economics. New York: McGraw-
Hill, 1923.



171

Fishborn, Peter C. "Decision Under Uncertainty: An
Introductory Exposition.,, The Journal of Industrial
Engineering, 17, No. 7 (1966), 341-353.

Fisher, Irving. The Theory of Interest. New York:
Macmillan, 1930; reprinted, New York: Kelly and Milan,
1954.

Fleischer, Gerald A., ed. Risk and Uncertainty: Non-
Deterministic Decision Making in Engineering Economyo
Norcross: Engineering Economy Division, American
Society of Industrial Engineers, Monograph Series
No. 2, (1975).

a "Two Major Issues Associated with the Rate of
Return Method for Capital Allocation: The 'Ranking
Error, and 'Preliminary Selection'." The Journal of
Industrial Engineering, 17, No. 4 (1966), 202-8.

, and T. L. Ward. "Classification of Compound
Interest Models in Economic Analysis." Engineering
Economist, (Fall, 1977), 13-20.

Gibbons, Jean Dickinson. Nonparametric Methods for
Quantitative Analysis. New York: Holt, Rinehart and
Winston, 1976.

Goldman, 0. B. Financial Engineering. New York: John Wiley
and Sons, 1920.

Grant, Eugene L. Principles of Engineering Economy. 3rd ed.
New York: Ronald Press, 1950.

. Principles of Engineering Economy. revised ed.
New York: Ronald Press, 1938.

W. Grant Ireson, and Richard S. Leavenworth.
Principles of Engineering Economy. 6th ed. New York:
John Wiley and Sons, 1976.

Grubbstrom, R. W. "On the Application of the Laplace
Transform to Certain Economic Problems." Management
Science, 13, No. 7 (1967), 558-567.

Henry, Claude. "Investment Decisions Under Uncertainty
The 'Irreversability Effect'." American Economics
Review, 64, No. 6 (1974), 1006-1012.



172

Henry, Claude. "Investment Decisions Under Uncertainty:
The 'Irreversability Effect'." American Economics
Review, 64, No. 6 (1974), 1006-1012.

Hertz, David B. "Investment Policies that Pay Off."
Harvard Business Review, (January-February, 1968),
96-108.

• "Risk Analysis in Capital Investment." Harvard
Business Review, (January-February, 1964), 95-106.

Hespos, Richard F. and Paul A. Strassman. "Stochastic
Decision Trees for the Analysis of Investment Decision."
Management Science, 11, No. 10 (1965), 244-259.

Hess, Sidney W. and Harry A. Quigley. "Analysis of Risk
in Investments Using Monte Carlo Techniques." Chemical
Engineering Progress Symposium Series 42: Statistics
and Numerical Methods in Chemical Engineering, New York:
American Institute of Chemical Engineers, 1963.

Hill, Thomas W. and James R. Buck. "Zeta Transforms, Present
Value, and Economic Analysis." AIIE Transactions, 6,
No. 2 (1974), 120-125.

Hillier, Frederick S. The Evaluation of Risky Interrelated
Investments. Amsterdam, North-Holland, 1969.

"Supplement to 'The Derivation of Probabilistic
Information for the Evaluation of Risky Investments'."
Management Science, 11, No. 3 (1966), 485-487.

s "The Derivation of Probabilistic Information for
the Evaluation of Risky Investment." Management Science,
9, No. 4 (1963), 443-457.

' and Gerald J. Lieberman. Operations Research.
SEE Francisco: Holden Day, 1974.

Hirshleifer, J. Price Theory and Applications. Englewood
Cliffs: Prentice-Hall, 1976.

Kaplan, S. "Computer Algorithms for Finding Exact Rates
of Return." Journal of Business, 40, No. 4 (1967),
389-392.

' "A Note on a Method for Precisely Determining
the Uniqueness of Non-uniqueness of the Internal Rate
of Return for a Proposed Investment." Journal of
Industrial Engineering, 16, No. 1 (1965), 70-71.



173

Knight, Donald Orlin. "Application of GERT to Contingent
Decisions." PHD Dissertation, Arizona State University,
(1969).

Lesser, Arthur. "Engineering Economy in the United States
in Retrospect-An Analysis." Engineering Economist, 14,
No. 2 (1969), 109-115.

Luce, R. D. and H. Raiffa. Games and Decisions. New York,
John Wiley and Sons, 1957.

Mallik, Arup K. Engineerina Economy with Computer Appli-
cations. Mahomets Engineering Technology, 1979.

Mantell, Edmund H. "A Central Limit Theorem for Present
Values of Discounted Cash Flows." Management Science,
19, No. 3 (1972), 314-318.

Mao, James C. T. "The Internal Rate of Return as a Ranking
Criterion." The Engineering Economist, 11, No. 4
(1966), 1-13.

Miller, Irwin and John E. Freund. Probability and Statistics

for Engineers. Englewood Cliffs: Prentice-Hall, 1965.

Morris, William T. Decision Analysis. Columbus: Grid, 1977.

• The Analysis of Management Decisions. Homewood:
Richard D. Irwin, 1964.

• Engineering Economics. Homewood: Richard D.
Irwin, 1960.

Naddor, Eliezer. Inventory Systems. New York: John Wiley
and Sons, 1966.

Norstrom, Carl L. "A Sufficient Condition for a Unique
Nonnegative Internal Rate of Return." Journal of
Financial and Quantitative Analysis, 7, No. 6 (1973),
1835-1839.

Oakford R. V., Arturo Salazar, and H. A. DiGiulio. "The
Long Term Effectiveness of Expected Net Present Value
Maximization." Proceedings of the 1979 Fall Annual
Conference, AIIE_, 71-84.

.. . . . . .. . . , . . . . - i i i i . . . -- . . . . . . . . . . .. . .. . ... . . . | . . .



174

Park, C. S. and G. J. Thuesen. "The Effectiveness of Using
Uncertainty Resolution to Measure Investment Flexibility
in Sequential Capital Rationing." AIIE Transactions,
11, No. 3 (1979), 207-219.

Pazner, Elisha A. and Assaf Razin. "On Expected Value Vs.
Expected Future Value." The Journal of Finance, 30,
No. 3 (1975), 875-877.

Perrakis, Stylianos and Claude Henin. "The Evaluation of
Risky Investments with Random Timing of Cash Returns."
'Mariagement Science, 21, No. 1 (1974), 79-86.

Pritsker, A. Alan B. Modeling and Analysis Using R-Gert
Networks. New York, John Wiley and Sons, 1979.

Raiffa, Howard. Decision Analysis-Introductory Lectures
on Choices Under Uncertainty. Readingo Addison-Wesley,
1970.

__ Decision Analysis. Reading: Addison Wesley, 1968.

Reisman, Arnold. Managerial and Engineering Economics.
Boston, Allyn and Bacon, 1971.

, and Arza K. Rao. Discounted Cash Flow Analysist
Stochastic Extensions. Norcross, Engineering Division,
American Institute of Industrial Engineers, Monograph
Series No. 1, (1973).

., and Arza K. Rao. "Stochastic Cash Flow Formulas
Under Conditions of Inflation." The Engineering
Economist, 18, No. 1 (1972), 49-69.

Selby, Samuel M., ed. Standard Mathematical Tables.
Cleveland, CRC Press, 1973.

Settles, Frank Stanley, Jr. "GERT Network Models of
Production Economics." PHD Dissertation, Arizona
State University, (1969).

Sivazlian, B. D. "On a Discounted Replacement Problem with
Arbitrary Repair Time Distribution." Management Science,
19, No. 11 (1973), 1301-1309.

44



175

Spiegel, Murray R. Applied Differential Equations. 2nd ed.
Englewood Cliffs: Prentice-Hall, 1967.

Taylor, George A. Managerial and Engineering Economy.
Princeton: D. Van Nostrand, 1964.

Terborgh, George. Business Investment Management.
Washington D. C.: Machinery and Allied Product Institute,
1967.

• Business Investment Policy. Washington D. C.:
Machinery and Allied Product Institute, 1958.

19_9. Dynamic Equipment Policy. New York: McGraw Hill,
1949.

Ward, Thomas L. "Discovered Stochastic Cash Flow Analysis."
PHD Dissertation, University of Southern California,
(1975).

Wellington, Arthur M. The Economic Theory of the Location
of Railways. New York: John Wiley and Sons, 1908.

Whitehouse, G. W. "Extensions, New Developments, and
Applications of GERT: Graphical Evaluation and Review
Technique." PHD Dissertation, Arizona State University,
(1966).

Whitehouse, Gary E. "Using Decision Flow Networks."
Industrial Engineering, 6, No. 7 (1974), 18-25.

. System Analysis and Design Using Network
Techniques. Englewood Cliffs: Prentice-Hall, 1973.

Young, Donovan and Luis E. Contreras. "Expected Present
Worths of Cash Flows Under Uncertain Timing."
Engineering Economist, 20, No. 4 (1975), 257-268.



APPENDIX I

SELECTED MATH MATICAL PROOFS
AND DERIVATIONS



(1) Proof that E(e - rt) - e - r E(t)

Given: T is a random variable

To prove: E(e-rT)-e-r E(T)

Solution The Taylor series expansion for e-
r T about the

point T = It is$

e-rT = e-r~t - r(T_ t)e-r)Ut + r2(T-At ) 2 er4t+
21

Taking the expected value of both sides of the previous

equation leads tot

E(e r T ) = e-r~t + E(T-At)re
- r gt + E(T-Ait

) 2

21

Recognizing that

E(T-/t) 0

and
E(T- 4t) 2 = 2

E(e'rT) = e-r t[ 1+ r 2t + .0.]
2

Since all terms in the expansion are greater than or

equal to 0, the right side of this equation is greater than

Since

-r E(T) te = e o
E(e-rT) _ e-rE(T).

t0
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(2) Derivation of the variance of present worth for CidTis

Independent Model

Given: PW = C e-rT

T is an independently distributed random variable

C is a constant

V(PW) = E(PW2)-[E(PW)]2

To find: V(PW)

Solution:

(pW)2 = C2(e-rT)2 = C2 e-r

E(PW 2) = (C2)E(e-2r)

E(PW) = (C)@E(er

(E(PW))2 = 02. CE~e-rT). 2

Hence:

V(pW) = C2 E(e-2 rT)_C 2(E(e-rT))2

= C2 [E(e-2rt)-(E(e-rt))2]

Since

E(e-r) = M~t(-r)

(E(e-r ))2 = (~(r)

And

E~erT = E (e-rt)2 p(t)
t= 0

00

E (,G2rt) p(t)
t-- 0

11t(-2r)



1 79

Then

v(Pw) =C
2 [ MtC-2r)-(Mt(-r))2J
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()Derivation for the mean and variance for the present

worth for a C sdTss model element.

E(PW) derivation

Givens PW = C Z eri
j=1

tare independent, identically distributed

random variables

C is a constant

To find: E(PIV)

Solution:

0.0 Zti
PW = C Z eri

j=1
00

E(PW) = E(C z e&ri=1t
j=1

Since C is independent of ti

E(PW) = E(C),E( Z eri1
j=1

Since C is a constant,

00

(P)= COVEZ e-ril )
j=1

By expanding,

E(PW) =C LE~e rt, )+E(eIrt1+t2) +E(er(t+t2+t 3))+...]
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For all i and k,

E(e-rti) _ E(-rtk) E(e-rT)

Setting E(e-rT ) = X.
00

E(PW) - C .

Since le'rTI-1 for all T -.0, X 1, and this geometric series

converges to

I-x I-X

Hence,

R(PW) =C * E(e-rT)

1-,(e
r T)

Using

E(e-rT ) = Mt(-r)

E(PW) = C • Mt(-r)

1-Mt(.-r).

To finds V(PW)

By definition of variance,

V(Pw) , E(pW2 )- [E(PW)] 2

By squaring PW,

.-riEti 2

PW2 = (C Z e J
ik-1

02Z r ~i] lZItiI



. C20-rj 4 r~t~t2)+ -~tl~g~t),+182

* C(etl + -r(tlt 2 ) + -r(tt+t,) , ..

a C2(,O-r~t + * -r(2t1 4.t2 ) . *..(2tlet 2 4t3 ) +

" C2(0-r(2t14t 2 ) + *-r(2tl'+2t 2 ) + ,-r(2tl2t+t3) +*

" C2(-r(2t4.t2+t3) , .- r(2tl+2t 2 +t3 ) + .. r(2tl+2t2 +2t3)

" *-r(2tj+r2t 2 +2t3 .W4 . ... ).

Taking the expected value of both sides and letting

X -E(.- 2rt) and Y = V~ert) leads too

g(pW2 ) a C2 [[ x + XY X 2 + 1!' * .0.)+

". [Xy + X:2+ X2y + X2y2 + . y + X2 i. + .J

" [y2 ( x2y + x3 + Xy+ X3y2 + X~r 3 * Xz) +

+ [Xy3 + X2y2 + X .+ q XI +Xy *XIy2, X"'r +

+ [... 1].

- E 1 : yj + yj1
-i 1 JOO k-i Jul

.C2[A.I+ x ]

r 2 fX4.XY 1 2 X(l4.Y)
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* (2 4 4 e'r ) '1. *qA to

Whil-n 13 equal too

0t GIL •

2

211
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and
00

f(P) = Z n(n-l)p n-2 2
n=2 (1-p)3

Since

]n-2

ca.n be written as
2 ni)pn-2n(n-l) -

0 'n) (E(e 2rt n-2 2
Z 2_E e2rt 3

n=2 (1-E(e-

A can then be written as:

(E(te-2rt))2 2
(1.E(e-2rt))3

and can be solved using moment generating functions ast

Mt (-2r) 2 2
2 ] (1-Mt(-2r))3

CombininC both sets of terms (ti2 and tit.) simply leads to:

E(PW 2 -Mt"PF(-2r) [1+ 2Mt(-r)

C2- 4(1_Mt_(2r))2 ' _t-r)

+I
* Mt'(-2r) "Mt (-r)

+ (,At (-2r))2 +

(1-Mt(_ 2r))3 L -Mt(-r)j
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Hence

E(PW2 ) = C2 [ Mt" (-2r) (Mt'(-2r))21[ + MtrJ

+ Mt'(-2r)-M t(-r) 3
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(6) Derivation of the expected present worth for the CssTs

dependent ramp model element.

Givn: W =cl1 1 e-tI+c2 1t+t 2) e r(tl+t2) +

c (t t ) e-r(tl+t2+.. *tn)+

c. and t. are independent and identically distributed

random variables.

To find: E(PW)

Solutions

Since ci is independent ofti

E(PW) = E(c1)'E(tle rtl) + E(c2 )E(te12~t~ 2)+ ter~tl+t2))

+ ... + E(cn)OE(tle-r(tl+t2+--+tn)+t 2e-r(tl+t2+..+tn)

Since E(c1 ) = E(cj Q= A c for all iand j,

E(PW) = Puc [E(t 1 ertl )+E(t 1 er(ti+-;2-) )+E(t2e-r(ti+t2))+...

+ E(t e-r(tl+t2+.-+tn))+E(t2e r(tl+t2 +-I-+tn))+4 .

+ E(tne-r(t1+t2+e@+tn) )+...]*

Since the ti's are independently distributed random variables,

E(PW) = PcE(tie-rtl) [1 + E(e rt2)+E(e -r( t2+t3) )+...]
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+ A*E~~e-rt2 )-e -rl 11+Eert ),,rt+4)..

++ E(te _t)E(e rt) 1 +E(et).Lertn)

[i + E(e r(tn+1))+E (e r(tn~l1 n+2)+*]

However. E(tie-rti) = E(t ..ertj) = Nt'(-r)

and E(e-rti) =E(e 3t) = Mi t(-r) for all i and j.

Hencei

F.(PW) A c' (-M to(-r)] - M(-) " ,[t-)

11-M -r)] 2
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(7) Derivation of C85Tss Dependent ramp* finite n cash flow

model element

PWU 1 - ~rtl * c2(ti+t 2),er(tit2)

+ c(t +t 2+t3 )e-ro+t,+t 312 +tn)

+ c n tlet .. ct e -r(tlt2  ,..t.

C1* cietit 3..+t2) + -r(tlt 2t)

+0*. c t 1 r(t t t +t0. n)+ ct2 tit 2 mrtIe+t)

"9 c 3t 2er(ti1tgt,3 +.+ c -r( tlet 2 4t3+.. e+tn)

cj and tiare independent and identically distributed random

variables.

Solving in terms of expected values:

E(PW) - E(C)-E(te-r ) + 2E(C)E(te-rt )E(e )t

+ 30E(C)E(te' ' )[E(e rt,] 2

+...+ n E(C)3E(te-r ).rEe-tj-

=E(C)'E(te-rt Ex k[c(e-rtIk-1
k-i

Let

X E~ert



dx w

Now*

kul

di
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