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ABSTRACT

The purpose of this thesis is to analyze the verti-

cal pullout capacity of a horizontal circular anchor plate

embedded in soil, using the plasticity theory as developed

by Sokolovskii (1960).

A mathematical model for soil-structure interaction

was used to generate slip line fields compatible with the

boundary conditions of the anchor pullout problem. To see

if the solution for a given set of boundary conditions was

physically admissible, computer-generated plots of slip line

fields were obtained. If the slip line field was permissible,

i.e., no overlapping of characteristic lines. The pullout

capacity was then calculated. A conventional Coulomb sli-

ding wedge graphical solution was performed. The results

of the hand solution closely approximate the computer

results.

The theoretically determined pullout capacities were/

found to be less than experimental results of others. In

loose sand, at small depth to anchor plate diameter (D/B)

ratios, the predicted values were approximately 81 percent

of experimental results, while in dense sand they were

approximately 50 percent of experimental results.

viii



CHAPTER 1

INTRODUCTION

The purpose of this thesis is to study the anchor

pullout problem using the theory of plasticity and the

Coulomb failure criteria for soils in the analysis.

The Problem

The problem is to determine the pullout capacity of

a circular plate embedded below a horizontal ground surface

and centrally loaded by an upward vertical force. Pullout

capacity is defined as the maximum vertical load or pull

required to remove the anchor from the soil.

Earth anchors are used to provide uplift resistance

for transmission towers, submerged pipelines and tunnels,

mobile homes, aircraft and ocean mooring systems, and to

develop tieback forces required to eliminate external brac-

ing from retaining structures and sheeting walls.

Previous anchor pullout determinations are based on

semi-empirical methods and/or theoretical methods that make

some limiting assumptions. Therefore, there is a need for

study to find a reliable method of determining the anchor

pullout capacity.

1M
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Scope

This thesis presents a theoretical, computer deter-

mination of the pullout capacity and associated slip line

field for anchors having various depth of embedment to anchor

diameter (D/B) ratios, for both loose and dense sand. A

description of the theory applicable to the problem is pre-

sented first, followed by a literature review of anchor

pullout studies, the solution procedure, a presentation and

discussion of results, and finally, conclusions and recom-

mendations for future studies.



CHAPTER 2

PLASTICITY THEORY APPLICABLE TO PROBLEM

The initial applications of the plasticity theory

were mainly in the field of metallurgy. Calculations based

on limiting stress fields for soils were first reported in

detail by Sokolovskii (1960 and 1965). He used the method

of characteristics to derive the stress fields for materials

possessing cohesion or friction or both. It is Sokolovskii's

method, as outlined by Harr (1966) and Karafiath and Nowatzki

(1978) that was used in this study. To understand the

author's solution procedure better, a brief description of

Sokolovskii's method is presented in this chapter.

Fundamental to analyses by plasticity theory is the

assumption that the soil acts as a rigid-perfectly plastic

material. This means that under load, the soil behaves as

illustrated by the solid line in Figure 1. The material

does not deform, regardless of loading sequence, stress

history, rate of loading, etc., until it reaches failure.

This differs from elastic-plastic material behavior illus-

trated by the dashed line in Figure 1. Here the soil under-

goes recoverable deformation before reaching failure. In

3
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both cases, deformation at failure takes place at a con-

stant rate without change in stress.

Un
U)
4) Rigid-Perfectly Plastic

U /
/

/ Elastic-Plastic

/
Strain

Figure 1. Material behavior (after Karafiath
and Nowatzki, 1978).

Fundamental Concepts and Relationships

The stress condition at a point, A, within a semi-

infinite homogeneous soil mass under a state of loading, with

horizontal x-axis and vertical z-axis, is shown in Figure 2.

Lines OF and OF' are the Mohr-Coulomb strength envelopes.

The directions of the lines of impending rupture, called

slip lines, are indicated by the angles p which are measured

+ and - from the direction of the major principal stress,

and which can be expressed as:

= 7/4 - /2 (1)

The orientation of the major principal stress with respect

to the horizontal is given by the angle e. If the x-axis

is taken along the horizontal, then e is the angle between
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the direction of the major principal stress and the x-axis.

The symbol a (without subscript) is used to indicate the

stress magnitude on the T-a axis from 0, the point of inter-

section of the Mohr-Coulomb envelope and the a-axis, to the

center of the Mohr circle, Q. In general, a = (ax + a z)/

2 + , where ' = c cot 4. Therefore, the stress state at

any point can be expressed as:

ax = a(l + sin 4 cos 20) -

O = a(l - sin 0 cos 20) - ' (2)

TXz = a sin 0 sin 2e

Figure 3 shows the convention used to describe the

orientation of the various stresses discussed above for the

point in question. This figure demonstrates that the slip

lines at any point can be written in differential form as:

dzd- tan (0 + j) (3)

The P(+) sign refers to "i-characteristic" slip lines in-

clined at a slope of tan (0 + p) from the x-axis and the

i(-) sign refers to "j-characteristic" slip lines inclined

at a slope of tan (0 - i) from the x-axis. The term "slip

line field" is understood to mean the two families of curves

defining the bounds of regions in which stress states cor-

respond to those of incipient plastic failure. The
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directions correspond to the directions of shearing stress

causing the failure.

0x

3 i-characteristic 
slip line

0yo3
\/

Z a 1 j-characteristic slip line

Figure 3. Orientations (after Karafiath
and Nowatzki, 1978).

Assuming that the x-axis is not horizontal but is

inclined at an angle e to the direction of gravity, and

assuming that inertia and seepage forces are zero, the

normal and shear stresses x, rz , T xz on any soil element

must satisfy the static equilibrium equations:

3 x a xz .
-T + -- - ysin c

(4)
°z xz

- + - y cos E
az 8

where y = effective unit weight.

Substituting Equations 2 into Equations 4 yields the

basic differential equation of plastic equilibrium for soil
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under plane stress conditions. Sokolovskii modified these

equations to yield:

do + 2a tanO dO = Y [sin(E+f)dx+cos(E+O)dz]
cos 4

(5)

Numerical Solution

Numerical methods are required for solution of

Equations 3 and 5, for cases of practical interest. Assuming

that the x-axis is horizontal, i.e., £ = 0, the equations

become:

For i-characteristics (the slip lines corresponding

to i = constant):

dz = dx tan(e + j) (6a)

do + 2o tanO dO = y(dz + tan Odx) (6b)

For j-characteristics (the slip lines corresponding

to j = constant):

dz = dx tan(6 - p) (6c)

do - 2a tanO dO = y(dz - tan Odx) (6d)

All points in the i-j coordinate system of Figure

4a can be assigned a position in terms of a nodal number

Xj . where the i denotes the abscissal reference and j the

ordinate. Associated with every nodal point Xi,j are the

quantities xi , z , i ,j , and Oi ,j . All nodal points in
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grid (Figure 4a) and all pertinent information relative to

each point can be put into tabular form (Figure 4b). The

basic problem is to determine the values of x, z, a, and e

at nodal points of interest from known values of these

parameters at neighboring nodal points.

To solve Equations 6, Sokolovskii used a finite-

difference procedure, and proposed that they be replaced by

finite equivalents as follows:

Along i-characteristics:

(z i'j -z ij I ) = (x i'j - xi'j I ) tan (ei,j_1 +

(7a)

(ai j -ij I ) + 2ojl 1i,) - i,j- ) tano

(7b)
= y[(zi j  - zi'j _)  + (xi j  - xi j 1 ) tano]

Along j-characteristics:

(zi j - zil j ) = (xi j - xi-l, j  tan (e i-l,j -

(7c)

(aii j - j ) -2ai-i, j (i. - 0..) tano

(7d)
= [(zi j - zi l j ) - (xi j - Xl, j ) tan])

Equations 7 represent four equations in four un-

knowns. Solving these equations results in the following

recurrence formulas:
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X. . t z i- l'j-zi'j -l +X W j- tan (O ii _j -l+ ) Xi -lW tan (e i l jIt] tan (8i , ) +)-tan -i_ ,-()

(8a)

Zi~ i_ 1  j + (x i ' x - j ) tan (6 -' ),j i- +ilt an 8i-l,j

(8b)

where

C = (zi. j - zil) - tans (xi j - xi-l' j )

D = (zif) - z ij_) + tans (xi j - xi,j I )

e. j  = °i, oi-l,+2tanO(°i,j-18i - +°iljei-, )+y(D-c)

2 tano (ai*j_ 1 + ai-l'j)

(8d)

Equations 8 demonstrate that the quantities x, z, 0,

and 6 can be determined at a node X. if and only if they

are known at the two nodes Xi'j_ 1 and Xi-l' j in the near

vicinity of the node. However, the values of all the vari-

ables are not always known on a given boundary, nor are

boundaries always coincident with characteristic lines.

Basically, three types of boundary-value problems are en-

countered: the Cauchy problem, the Goursat problem, and the

Mixed Boundary-Value problem.
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Cauchy Problem

In this problem (Figures 5a and 5b), x, z, a, and 8

are known at all points on a non-characteristic line, such

as AB, along which neither i nor j is constant. The problem

is to determine these variables along characteristic lines

within and on other boundaries of the triangle ABC. To

accomplish this, AB is first divided conveniently into n

sections by introducing the i and j characteristics as shown

in Figure 4. Then the values of x, z, a, and 8 at each node

represented by the intersection of the characteristics with

AB arf 1ecorded in the appropriate squares of the table given

in Fia.- 4 5b. These values occupy the diagonal spaces shown

shaded in the figure. The recurrence relations (Equations 8)

are u ed to determine the desired values. Proceeding in an

orderly manner according to the arrows shown in the figure,

the entire region can be filled and the quantities extended

to the boundaries of the triangle.

Goursat Problem

For this problem (Figures 5c and 5d), the quantiti-

ties x, z, a, and 8 are known at all points on the charac-

teristics AB and AC. As with the Cauchy problem, the

Goursat problem is solved by proceeding from two known

points to an unknown point as shown in Figure 5d until the

values of the variables are known at all nodes within the

zone defined by the boundary CABD.
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-2 L 2  i-I i +1n

j+1

1.- . b. ~
1 2 i-1 i +1 n

in C - - - D- -- - -

1 2j-A i W+mI

1

j+1 2

2-- B +

~~~~*~~ 12 - +

+1 B_

j-1 -

A1 2 1-11 i+1 n~

Figure 5. Type of boundary-value problems (after Harr,
1966). -- (a,b) Cauchy problem; (c,d) Goursat
problem; (e,f) Mixed boundary-value problem.
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Mixed Boundary-Value Problem

In this problem, some of the quantities x, z, a,

and 6 are known and some specified along one (noncharacter-

istic) boundary and all of the quantities are known along

another (characteristic) boundary. Thus there are a number

of variations of this case. Figures 5e and 5f show one case

where x, z, a, and 6 are all known along the characteristic

AB and only z and a are known along the non-characteristic

line AC. The problem is to determine the value of all quan-

tities on and within the boundary ABC. The recurrence

formulas given by Equations 8 will not directly provide the

results along AC. If Equations 7c and 7d are rewritten as:

xi j  = (z i j  - Zi-l j )  cot (6i.l,j - 1) + xi-l j

(9a)
{.-(x . . tan.=]+(a i
+{ [(zitj -i-,j) W, -1,9)  ij - 1-,j)

i,j i-l,j

(9b)

the resulting expression can be used to determine values

along AC. For points within the boundary, where neither x,

z, a, or 6 are known, Equations 8 must be used.

Once the desired x, z, a, and 6 quantities have been

obtained, plotting and connecting the corresponding x and z

coordinates of the same characteristics results in the slip

line field. The envelope of these is the failure surface.

4i'
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The corresponding stresses at any point can be obtained by

extrapolating the a and e values at the nodal points and

applying Equations 2. The accuracy of the results increases

as the number of characteristics used in the grid increases.

For increased accuracy, Sokolovskii recommended that, in

Equations 8 and 9, the terms 8i-lj be replaced by ( i-l,j +

Si,j)/2 and i,j_ 1 by (8ij1 + ij )/2. Once ei, is deter-

mined, i-l'j and 0ij_1 are recalculated, as just described,

and substituted into the recurrence formulas, Equations 8

and 9.

Plasticity Approach to

Retaining Wall Problem

The determination of lateral earth pressures against

rigid retaining structures is one of the most common problems

encountered in the evaluation of the stability of such struc-

tures. In practice, the Coulomb solution is widely used.

This solution is a limit equilibrium solution in which the

soil is assumed to fail by sliding along some plane inclined

at a certain angle, w, from the backface of the wall (refer

to Figure 6). The magnitude of the angle w is a function of

the internal friction angle, , of the soil behind the wall,

the wall-soil interface friction angle, 6, the wall backface

inclination, a, with respect to the horizontal, and the back-

fill inclination, B, with respect to the horizontal. The

magnitude of the force exerted by the backfill soil on the
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wall depends upon the direction of wall movement. Wall

movement away from the backfill is called the "active" case

and wall movement into the backfill the "passive" case.

Conditions imposed by anchor pullout approximate the passive

case most closely. In the passive case (wall movement into

the backfill) the soil-wall interface friction angle, 6, may

be positive or negative. It is positive for downward move-

ment of the wall relative to the backfill and negative for

upward movement of the wall relative to the backfill. The

(+) and (-) directions are shown in Figure 6. Therefore, the

wall force, Pp, may act in any direction.

P
P

+6 W

Pp2 p2

Figure 6. Coulomb solution to lateral earth pressure
problems (after Nowatzki and Karafiath, 1981).
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Positive 6 angles are usually encountered in conven-

tional soil mechanics problems where passive pressures are

generated by horizontal movement of the wall into the soil

backfill, i.e., the passive force of the wall against the

backfill is directed downward. In some cases, however, such

as soil anchors, bulldozer blades and track grousers, the

force is applied at a negative 6 angle.

Application of conventional plasticity theory to the

problem of passive earth pressure results in slip line

fields that define the geometry of the failure surface.

The failure surfaces shown in Figures 7a and 7b compare well

with those shown in literature, as, for example, by Chen

(1975). The plasticity solution for the case shown in

Figure 7c, however, results in an overlapping of the slip

line field. This overlapping implies that two different

stress states exist at a given point within the overlap

region at the same time, a physical impossibility. Yet,

plastic zones have been observed to form experimentally even

for the case 6 < 0 (Rowe and Peaker, 1965).

In plasticity solutions obtained in the conven-

tional way, all three boundary value problems are generally

solved in order to obtain a complete slip line field within

a loaded soil mass. Generally, the Cauchy problem is

solved to obtain the passive zone, the Mixed Boundary-
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x

0 A

z

Cauchy

p rG

+6 B
MBV

C

D (a)

6> 0

0 A

Cauchy

MBV B,C

p

D (b)

A
0

Cauchy
C

,MBV

p P(c)

6 <0

Figure 7. Passive case failure zone geometries for various
values of 6 (after Nowatzki and Karafiath, 1981).
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Value problem (MBV) to obtain the active zone, and the

Goursat problem (G) to obtain the transition zone between

the other two.

These zones and their related problems are indicated

in Figure 7 for the case of passive earth pressure on a re-

taining wall. Zone OAB is the Cauchy zone and zone OBC the

Goursat zone. The computation of x, z, a, and e revolves

about the singular point 0 where a values are computed for

specified changes in 0. In zone ODC, x, z, a, and e are

known along OC after the Goursat problem has been solved.

For a vertical wall, OD, x = 0 along the wall boundary and

e is assumed. Therefore, this is a Mixed Boundary-Value

problem. Once solved, the normal pressures along the wall

can be determined from a and 0.

Reexamination of the boundary conditions by Nowatzki

and Karafiath (1981) for this case resulted in the following

conclusions:

1. In the passive case the wall force is an applied

force, the direction of which is defined by the

problem. Therefore, along OD (refer back to Figure

7) all four vdriables, x, z, a, and 0, are given

a priori (although for computational purposes a and

S are assumed). Therefore, zone OBD should be

solved as a Cauchy problem.
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2. In cohesionless soils, 6 along the free surface, OA,

is undetermined since aI = a2 = a3 = 0. Therefore,

zone OAB should be solved as a Mixed Boundary-Value

problem, with z = 0 and a = 0 along OA.

Nowatzki and Karafiath developed a computer program

incorporating the recurrence relationships of Equations 8

and 9, to accommodate the above boundary conditions. There

was found to be excellent agreement between the computed

and observed failure surfaces of cases investigated by Rowe

and Peaker (1965). In addition, this new analytical ap-

proach does not contain the physically inadmissible over-

lapping of the slip lines previously encountered in appli-

cation of plasticity theory to such problems, nor does it

require an assumption of stress discontinuity within the

slip line field as made by other researchers, as, for

example Lee and Herrington (1972). The 0 values vary along

the ground surface, OA, indicating that the principal

stresses reorient themselves as a result of the upward

pushing of the wall. In this procedure, zone OCB disap-

pears, since there is no stress discontinuity at 0 in this

direction.

99 .. . . L . . . . . . . . .



CHAPTER 3

LITERATURE REVIEW OF ANCHOR PULLOUT STUDIES

Baker and Konder (1966) summarized the failure

hypotheses for shallow anchors by the "friction cylinder

method," the "soil cone method" and Balla's method. The

shapes of the corresponding failure surfaces are shown in

Figure 8. In the friction cylinder method, the pullout

capacity, P, is equal to the weight of soil, Ws, immediately

above the anchor as well as the shear resistance, S, along

the assumed vertical cylindrical failure surface. The soil

cone method assumes that the failure surface takes the shape

of a truncated cone extending above the anchor with a base

angle of 450 - c/2. The pullout capacity is given as the

weight of the soil within the truncated cone. The method

presented by Balla (1961) is based on the shape of the fail-

ure surface observed during small-scale model anchor tests

(Figure 8c) in sand. The pullout capacity is equal to the

weight of soil within the assumed failure surface and the

side shear resistance.

Prediction of the pullout capacity of a buried cir-

cular plate is accomplished by the following equation:

21
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P

D is*I 1 i S

(a)

P

(b)

P

45- /2

* Assumed Failure Surface (c)

Figure 8. Methods of calculating pullout capacity (after
Baker and Konder, 1966). -- (a) Friction cylinder
method; (b) Soil cone method; (c) Balla's method.
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P = YDFqA (10)

where

A = projected area of the plate

D = depth of the anchor plate below the ground

surface

F = a pullout factor which is a function of theq

angle of shearing resistance of the sand, and

the D/B ratio

P = pullout capacity

y = effective unit weight

Modern research on this subject began with the paper

by Balla. Baker and Konder (1966) confirmed Balla's major

findings regarding anchor plates in dense sand; they showed

that deep anchors behaved differently from shallow anchors.

Sutherland (1965) presented results of pullout tests with

model plates up to 6 in. in diameter in loose and dense

sand, as well as with 94 in. diameter shafts in medium dense

to dense sands. He found that the mode of failure varied

also with sand density and showed that Balla's analytical

approach gave reasonable results only in sands of some

intermediate density.

Vesic (1971) showed that his theory of expansion of

cavities close to the surface of a semi-infinite rigid-plastic

solid, which gives the ultimate radial pressure needed to
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break out a cylinder or a spherical cavity, can be applied

to the problem of anchor plates. Vesic found that transi-

tion to deep anchor behavior occurred in loose sand at D/B

ratios of two or three, and in dense sand at D/B ratios of

ten or more.

Healy (1971) performed both model and field pullout

tests in granular materials. He found that the pullout

resistance of small anchors (6 inches) in sand varied di-

rectly with the depth provided that the anchors have D/B

ratios equal to or greater than six in dense sand and D/B

ratios between two and six in loose sands.

Adams and Hayes (1967) photographed pullout tests in

sand for D/B ratios between 2 and 4.5. The failure surface

changes with relative density and D/B ratio. At shallow

depths (D/B = 2), the failure shape very closely approxi-

mates the friction cylinder method assumption, regardless

of the soil density. At greater depths (D/B > 4.5), the

failure zone was "local" for a loose sand condition, while

for the dense sand tests, the failure zone reached the

ground surface.

Kovacs and Yokel (1979) summarized the studies of

Bemben, Kupferman and Kalajian (1971), in which the pullout

capacity of a 55 in2 Y fluke (marine) anchor for various

depths of embedment was presented as calculated by seven

f I

.. ..... -I
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different theoretical methods and as measured in field

loading tests. There is some agreement between predicted

and measured values for D/B ratios less than 3. At D/B = 4,

the predicted pullout capacity varies considerably. As the

anchor is embedded further, only the friction cylinder

hypothesis gives reasonably conservative results. This was

also observed by Das and Seeley (1975). Based on the wide

scatter of the pullout factor, Fq versus D/B relationship

as determined theoretically and in the laboratory, Esquivel-

Diaz (1967) concluded that no satisfactory theory is avail-

able for the determination of the pullout capacity of

circular disc anchors.

The anchor pullout studies discussed in this chapter

apply only to dry sand. However, there are anchor pullout

studies on clays and marine soils. An extensive biblio-

graphy of anchor pullout studies is contained in Kovacs and

Yokel (1979).



CHAPTER 4

SOLUTION PROCEDURE

Definition of the Problem

Figure 9 shows the coordinate axis used in the

problem. A circular disk is embedded at some depth, +z

downward, below the surface. A force, P, acting along the

z-axis in the negative direction, is applied at the center

of the plate. The problem is axially symmetric with respect

to geometry and load. Therefore, only half the problem

needs to be solved. Assumptions inherent to this study are:

1. Soil behaves as a rigid-perfectly plastic material.

2. Soil strength properties are homogeneous and iso-

tropic.

3. Seepage and inertia forces are equal to zero.

4. There are no normal or shear stresses along the

ground surface.

5. The anchor plate is infinitely rigid with respect

to the soil, so that the soil fails before the

anchor plate deforms.

The primary difficulty is determining the boundary

conditions. It was hypothesized that as the plate is moved

26
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upward, a mass of soil above the plate moves with it as a

rigid body. The movement of this rigid body of soil stres-

ses the surrounding soil, and thereby creates the slip line

field at failure. The shape of the rigid body is not known.

Two shapes were arbitrarily selected and investigated separ-

ately in this study. The first was a right circular cone,

with the apex at the surface and the base coincident with the

plate (Figure 9a). The second was a right circular cylinder

extending vertically from the edge of the plate to the sur-

face (Figure 9b) and having the same diameter as the plate itself.

=, 0

/o I _

/ <..Assumed Rigid- 4.
Body Surface/ 7

//
DD

11 -_ Anchor Plate-11 D

z z
a. b.

Figure 9. Assumed rigid body surfaces.

The stresses transferred from the rigid body to the surround-

ing soil are due to passive pressures, with 6 < 0 generated

at the soil-rigid body interface. Therefore, the analytical

I VI".I II I..
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approach of Nowatzki and Karafiath (1981) was extended to

the problem at hand, with the rigid body surface acting

similar to a retaining wall boundary.

Procedure

Nowatzki and Karafiath's computer program was al-

tered, and the boundary conditions outlined in the previous

section were incorporated. The program for each rigid body

is included in Appendix A. Figure 10 shows the numbering of

nodal points and the layout of the problem for computer

solution. The solution procedure is demonstrated schematic-

ally in Figure 11. Equations 9 were used to determine x and

6 values along the ground surface, OA, and Equations 8 were

used to compute x, z, a, and 0 values of the remaining nodal

points. Figure 10 also shows the plot of 0 values along the

ground surface, with negative 0 values shown upward.

Although z = 0 and a = 0 along the ground surface,

OA, an explanation is required of how the parameters were

obtained along the rigid body surface, OD. After the soil

parameters and the geometry of the problem are input, the

program divides the boundary OD into (n - 1) equal segments

(refer to Figure 10), where n = some convenient number of

nodal points. For the cylindrical rigid body surface, x = 0

and Az = depth of the plate/(n - 1). For the cone surface,

Ax = plate radius/(n - 1) and Az = depth/(n-l).
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1 ___ °__
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8 Prob]em Mxe E cudir/I

9 v I ?rcim I
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B A

* Rigia Body Surface; x, z, a, and e known

Ground Surface; z = a = 0; x and e unknown

Figure 11. Solution procedure.

Along both surfaces, 6 was assumed to remain constant

and the surface load varied linearly from zero at the sur-

face, point 0, to the maximum value at the base, point D.

The stress at this point was designated qb" The magnitude

of 6 and qb was estimated and input for an initial trial.

Then, e and a at point D was determined using the following

relationships:

sin6

e = (i/2)arctan sinp + (6/2) (lla)A ~sin6.2

s in4

q b
a = (llb)

COS6 +
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For the rigid body cone, the inclination of the rigid body

surface (i.e., angle of Figure 9a) had to be taken into

account in determining 8.

The above procedure required assuming various combi-

nations of 6 and qb values, because many of these assumed

combinations of values did not create a proper slip line

field (i.e., overlaps occurred within the slip line field).

A solution was assumed to be acceptable when, for a given qb 6

was varied until ocerlapping in the slip line field was elimina-

ted. The acceptable combination of 6 and q that predicted the

greatest pullout capacity was assumed to be the correct one.

Figures 12 through 15 demonstrate the variations in

the slip line field with different assumed 6 and qb along

the rigid body surfaces. These figures also show the vari-

ations in e along the ground surface. In each of these

figures the middle plot was assumed to be the correct slip

line field. To produce Figures 12 and 13, 6 value remained

constant and the surface loading was progressively increased

from (a) to (c). Overlaps within the slip line field are

circled. For Figures 14 and 15, the surface loading re-

mained constant and 6 values were varied, becoming increas-

ingly more negative from (a) to (c). Note that Figures 14a

and 15a are also acceptable slip line fields. However,

neither is considered to be the correct one, in accordance

with assumptions stated in previous paragraphs.
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q .248 psi

(a)

7/

q7 b 27s

7

// .264 psi

(C)

Figure 12. Variation of surface load (cylinder). -

6 = 23.00, B =3", D = 3".
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q .316 psi

(a)

qb 325 psi

(b)7

(C)

Fiqure 13. Variation of surface load (cone). -

6 -4.00, B 3', D =3".
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5= -22.4 0

(a)

y0

I ~= -23.0O

(b)

-3 0

S 2.6

(C)

Figure 14. Variation of 6 (cylinder). -- q= .257 psi,
B =3", D 3 1
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6 -. 5 -

6 - 4.

(b)7

76 -4 450

Figure 15. Variation of 6 (cone). q- b .325 psi, B =3"',

D =3.
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The process of assuming various combinations of 6

and qb and evaluating the results with regard to permissible

solutions was greatly facilitated by using the facilities

of the University of Arizona Interactive Graphics Engineer-

ing Laboratory. Here the x, z, a, and 0 values for the

j = n nodal points were viewed on the screen as they were

calculated, i.e., in real time. Generally, if there was an

overlap within the slip line field, it occurred on the j = n

characteristic line. Plotting was then done as a check on

what otherwise seemed an acceptable slip line field.

Therefore, this iterative procedure was easily accomplished

internal to the execution of the program. This procedure

saved time, eliminated redundant calculations, and decreased

the possibility for human error.

The CALPLOT program was used to plot the mesh of x

and z values calculated and the 8 values along the ground

surface. The CALPLOT program consists of FORTRAN callable

subroutines, each of which works through the computer hard-

ware system to drive the Calcomp 602 plotter. A sample

printout of slip line field values is included in Appendix B.

Once the correct slip line field was determined, the

pullout capacity, P, and pullout factor, F , were calculated

as follows. The z-direction component of q was designated

as oz . Integration of the triangular stress distribution

over the rigid body surface yielded the following expressions:
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For the cone:

S = (1/2) a 7R/R2 + DY (12a)z

For the cylinder:

S = a z TRD (12b)

Adding the shear resistance, S, to the weight of the soil

within the rigid body yielded the pullout capacity as

follows:

For the cone:

P = S + (1/3)yrR 2D (12c)

For the cylinder:

P = S + y rR2D (12d)

Rewriting Equation 10 yielded the following expression for

pullout factor:

P
Fq R 2 (12e)

where

R = plate radius (B/2)

D plate depth

y soil unit weight

The pullout factor is used in many studies to com-

pare pullout capacity results with other reports. In this

way, different sized anchors can be equated if their relative

depth (D/B) and the soil parameters are the same.



CHAPTER 5

PRESENTATION AND DISCUSSION OF RESULTS

A summary of the numerical results for this study

is given in Table 1. The relationship between pullout

factor (F q) and relative depth (D/B) determined in this

study are plotted, along with other theoretical and experi-

mental results in Figures 16a and 16b for loose and dense

sand, respectively. In this study, loose sand was consid-

ered to have a unit weight of 100 pcf and an angle of in-

ternal friction of 310; dense sand was assumed to have y =

112 pcf and = 420.

The theoretical results of this study are lower than

experimental findings, but are much closer at shallow depths,

with the differences becoming progressively greater with

depth. The rigid body cylinder assumption predicts higher

pullout capacities than the cone. A numerical comparison

of the theoretical Fq values with experimental ones is shown

in Table 2. For D/B ratios down to four, the cylinder Fq

values in loose sand are an average of 81 percent of Suther-

land's results. At D/B = 1, theoretical values are in

agreement with Vesic's Theory, but rapidly diverge with

depth. For dense sand, the cylinder Fq values are an average

38
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Table 1. Theoretical study results.

Angle of Unit Pullout
D/B Internal Weight Capacity*

Rigid Body Ratio Friction (4) (pcf) (ib) Fq

Cone 1 31 100 1.72 1.39

" 2 " " 4.86 1.98

" 3 " " 9.56 2.59

" 4 " " 15.57 3.17

it 10

Cylinder 1 " " 2.63 2.14

2 " 8.07 3.29

3 " " 16.33 4.44

"I 4 " " 27.36 5.57

10 " " 152.94 12.46

Cone 1 42 112 2.35 1.70

2 " 7.05 2.56

3 " " 14.13 3.43

4 ... 23.57 4.28

10 " " 129.33 9.41

Cylinder 1 " 3.73 2.72

to 2 " " 12.19 4.44

3 " " 25.36 6.14

4 " " 43.28 7.87

10 " " 249.84 18.18

* For 3" diameter plate.
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Table 2. Numerical comparison of F values.q

Rigid Body

D/B Cylinder Cone Sutherland Vesic

Loose Sand

1 2.1 1.4 2.5 2.1

2 3.3 2.0 3.8 3.5

3 4.4 2.6 5.4 5.4

4 5.6 3.2 7.7 7.6

Rigid Body

Baker &
D/B Cylinder Cone Sutherland Konder

Dense Sand

1 2.7 1.7 4.8 4.0

2 4.4 2.6 10.1 6.5

3 6.1 3.4 19.3 12.0

4 7.9 4.3 29.8 17.3
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of 58 percent of Baker and Konder's and 40 percent of

Sutherland's results.

Figure 17 shows that theoretical pullout factors

increase linearly with relative depth increase. In contrast,

experimental Fq values appear to increase exponentially with

increasing relative depth.

The causes of the disagreement with observed data

were not determined. However, the assumption of linearly

varying a and/or constant 0/6 along the surface of the rigid

body, could be refined. Varying these parameters along the

rigid body surface might produce an acceptable slip line

field at a more inclined 6, thus mobilizing more shear

strength of the soil and increasing the predicted pullout

capacity. Perhaps another rigid body shape is correct,

possibly a cone truncated at the ground surface, or an

elliptical or parabolic rigid body surface. Investigation

of these shapes was beyond the scope of this study.

It should be noted that the plane strain equations were

used in this analysis, and not the axially symmetric ones. The

latter equations are presented in Karafiath and Nowatzki (1978).

Attempts were made to use the recurrence relation-

ships for the axially symmetric case; however the solutions

did not converge. It is felt that the boundary conditions

imposed by the anchor pullout problem made the recurrence

relationships ill-conditioned for the numerical method

followed in the plane strain solution procedure.

i I. | I . . . . . . _ _ _ ..
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Comparison with Coulomb
Trial Wedge Method

Since not all engineers have ready access to a

computer, it was desired to find an easy hand method to

approximate the theoretical analysis. It was found that

the results of the Coulomb graphical trial wedge method (see

Figure 18) correlated well with the computer results. For

6 = 0.750 as obtained from the computer solution, the most

critical failure wedge with the rigid body surface was found

to be approximately 300 for both the loose and dense soil.

The Z-directional component of the measured Pp force was

integrated over the circumference of the rigid body cylinder

and then added to the weight of the soil within the rigid

body cylinder to determine the pullout capacity, P. The

pullout factor, Fq, was then calculated using Equation 12e.

There is a very close correlation between the results of

the computer analysis and those of the trial wedge method.

The comparison is shown in Table 3.

Thus it seems that the graphical solution could be

used just as well as the sophisticated computer solution

to obtain an estimate of Pullout Factor F for the conditions
q

and assumptions made in this study. Obviously, both solu-

tions fall short of the test data, indicating that the

plane strain assumption may be unrealistic for this case.

jI
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W / 9006

lFp

CL) (a)(b)

Figure 18. Trial wedge method. -- (a) Failure wedge and
acting forces; (b) force polygon for compu-tation of P

pp

Table 3. Correlation between computer analysis and trial
wedge method F values.

q

D/B Computer Trial Wedge

1 310 2.14 2.17

2 310 3.29 3.33

3 310 4.44 4.50

4 310 5.57 5.67

1 420 2.72 2.75

2 420 4.44 4.50

3 420 6.14 6.24

4 420 7.87 7.99

Mal.



CHAPTER 6

CONCLUSIONS

This has been a theoretical anchor pullout study,

using the plasticity theory and hypothesis that a rigid body

of soil moves with the anchor plate as it is moved toward

the surface. Two such rigid body shapes were investigated:

the right circular cylinder and right circular cone. The

theoretical pullout capacities were found to be lower than

experimental results, with the cylinder rigid body provid-

ing closer agreements than the cone. At shallow depths in

loose sand, predicted pullout capacities are approximately

81 percent of experimentally determined ones. In dense

sand, predicted values are about 50 percent of experimental

ones.

Assumptions of this report might be changed to pro-

vide better results. Varying 6 and/or applying a non-

triangular stress distribution along the surface may produce

acceptable slip line fields at a more inclined 6, thus pre-

dicting a greater pullout capacity. Additionally, there is

also the possibility that neither of the rigid body surfaces

investigated are the correct ones.

46
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A conventional, graphical solution procedure was

also used to determine the pullout capacity. The results

of that solution correlate well with the computer results.

This suggests that small engineering offices, without

acces-s to a computer, may be able to utilize simpler,

approximate solutions for anchor pullout problems provided

the conditions assumed in this study pertain.

Recommendations for Further Study

1. Refine the mathematical model to account for vari-

able 6 and/or variable stress distribution along the

rigid body surface.

2. Investigate other possible rigid body surfaces,

such as a truncated cone, ellipse, or parabola.

3. Perform full-scale and model tests.

4. Further study of the axially symmetric computer

solution.



APPENDIX A

COMPUTER PROGRAMS

48
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C CONE RIGID BODY

DIMENSION XC21,1l).Z(21,11),SIG(21,11),THE(21.11)
OPEN 12. "ARRAYS. OUT". ATTw"SOM"
ACCEPT "INPUT PHX.GAMMA- ",PHX.QAlt'A
TYPE " PHI-".PHI." GAMPIA-",QAMMA
ACCEPT "INPUT DEPTHLENQTH ".,DEPTI4.HLENG
TYPE "DEPTH-". DEPTH." LENGTH-1. HLENG
ACCEPT "INPUT N ".N
TYPE *N-",N
GO-GAMMA
ARC-. 0174533
P1-3. 14159
FI-ARC*PI
TF-TAN(Fl)
UI-PI/4-F1/2

59 Do 5e J1,N
DO 56 1-1,21
X CI,4) -Q
Z(I. J)zQ
SIGCI. J)=0

58 THE(I.,)O
NT-N
ACCEPT "INPUT DELTA. OSOT ".DELTA.OBOT
TYPE "DELTA-'. DELTA," GODT-",GSOT
DEL-ARC *DELTA
BETA=ATANCHLENG/DEPTH)
DTHE-. 5*(ATANCSIN(SIN(DEL)/SINCF1))/

ISQRTC1-(SINCDEL)/SIN(Fl))**2))+DEL)-BETA
SIBOT-QBOT/CCOS(DEL)+SQRT(COS(DEL)**2-COS(FI)**2))
DO 80 )-IN
I-N+I-4
F-(FLOATCJ)-1)/(N-1)
X(I, .)-F*HLENG
Z(I, J)-F*DEPTH
S10(1. J)-F*SIBOT

80 THECI,,J)=DTHE
IF(ABS(THECN. 1)).GT.Ul) NT-N-i
TYPE "THE.Ul-'.THE(N. l)AJ1
DO 90 J-2. N
DO 90 1-CN+2-J)),(NT+J-1)
IF(I.EG. (NT+J-1)) GO TO 10
L-0
THI-THEC I. 4-1)+U1
TH2-TH'E(X-1. 4)-Ul
SI1-SIGCI. J-1)
S12-S10(1-1.,J)
V7-2*SIGC 1-1, 4)*SZG( I. 4-)

VB-(THE( I.,J-1)-T4E( 1-1.J) )*TF
Y9-2*SIGCI-1.J)*SIG(I. 4-1)*VB

5 VI-TAN(T-I)
V2-TAN(TH2)
XI-VI*X(I, 4-1,
X4)-V2*X(I-1.,J)
V12-1/(Vl-V2)
XC I. )-V12*C Z( I-1, J)-Z( I.4-1)+XI-XJ)
ZI, 4)-V I-i. 4)+(XC 1, )-X( I-I.4) )*V2

AA--TF4I(X( 1. )-xC 1-1,J.C V I~. J)-z( -i.4))
313=TF*(X(1, 4)-X(I. 4-1) ).(Z(I. 4)-Z( 1.4-1))
LJS-SIG( I, -1 )-SlG( 1-1,J)
IF(U9.EG. 0) GO TO 15
SIG(I,J)in(V74V9.GO*(SII*AA+5I2*BB))/U9
THE(I,4)-(US+U6+GO.(3B-AA))/(2*TFOu9)
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GO TO 16
15 SIG(I..J)-GO*(AA+BB)/(24TF.(THE(I-1,J)-THE(I,J-1)))

THE(I. J)-(31*(1+THE( I-1,,J) )-AA*(1-THE(I, J-1)))/(AA+13)
16 IF(L.EQ. I) GO TO 20

THI=. 5*(THE( I. J-1)+THE( I. ,.)))
TH2-.5*(THE(I-1,J)+THE(r,J)))-uI

U6-2*TF*(SI1*THE( I, J-1)+SI2*THE( I-I. J))
V7=SI 1*SIG( I-i. J).5I2*SIG( I.,J-1)
V9-2*SII1*S12*VS
U9-SI 1SI2
L-1
GO TO 5

10 Z(I.J)=O
SIG( I.J)0O
TH3=TAN(THE( I-1.,J)-U1)
KK=0

UZ3=SIGC!. J)-SIG( I-i. J)-GO*AA
THE(r. ,.flU3/(2*SIG( I-I,..)*TF)+THE(I-l..J)
TH3=TAN(.5*(THE( I.,J)+THE( I-I.J) )-U1)
IF(KK. EG.6) GO TO 20
VK-K+l
GO TO 11

20 IF(J. EQ.1N) TYPE "I. J.X. Z= ".,I J.X(I. J). ZCI.J)
90 CONTINUE

SI Z=GBOT*SlIN (BETA-DEL)
5=. 5*51 Z*P I*HLENG*SQRT (HLENG**2+DEPTH**2)
P=S+GO*P I*HLENG**2*DEPTH/3
FG=P/ (QO*DEPTH*PI*HLENG**2)
TYPE "P-",P." FG=",FG
ACCEPT "INPUT 1 FOR CHANGE OF DATA.ELSE 0 ",IJK
IF(IJK. EQ. 1) GO TO 59
ACCEPT "INPUT 1 FOR PRINT OF DATA.ELSE 0 ".I'JI
IF(KJI.EG.0) GO TO 75
WRITE (12.24)

24 FORMAT (/39X. "CONE RIGID BODY" f"PHI. GO. DEPTH. HLENG. QBOT,",
I"PFQ.DELTA")
WRITE (12. 25) PHI. GO. DEPTH, HLENG. OBOT. P. FO.DELTA

25 FORMAT (10F10.4)
WRITE (12.30)

30 FORMAT (//40X,"X-COORDINATES"//)
WRITE (12,35)C(X(X,J),J-1,N),IlI,(NT+10))

35 FORMAT (11F11.4)
WRITE (12,40)

40 FORMAT (//40X. "Z-COORDINATES"//)
WRITE (12,35)((Z(I,J),J1,N).11.,(NT4+10))
WRITE (12.50)

50 FORMAT (//40X. "SIGMA VALUES"//)
WRITE (23)(I(.)41N.i1(T1)
WRITE (12,60)

60 FORMAT (//4C)X,"THETA YALUES"//)
WRITE (12,35 )C(THE(I.J),J-1,N),11I,(NT+10))

75 ACCEPT "INPUT I FOR PLOT, ELSE 0 ",M
ACCEPT "INPUT SCALE ",SC
IF(M. EQ 1) CALL PLTSL(X. Z.THE. N.NT. HLENG. DEPTH. SC)
CLOSE 12
STOP
END
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SUBROUTINE PLTSL(X, Z.THE. N.NT. HLENO. DEPTH. BC)
DIMENSION X(21. 11). 2(21. 11),THE(21. 11)
CALL 1N&02 (1. "PASS. PLT")
DO 4 Jin1N
DO 6 1-I. C2*N-1)
X( IJ)-SCeX( I.J)

CALL PLT602 (7.5.0.*3)
CALL PLT402 (0.o..2)
CALL PLT6O2 (0.*(-SC*DEPTH)#2)
CALL PLT602 ((SC*NLENO). (-SC*DEPTH),2)
CALL PLT602 (0.#O..2)
DO 5 Jin2,N
K-N+1-J
CALL PLT602 CX(K*J).(Z(KJ)).3)
DO 5 1-(K+1).(NT+J-1)

5 CALL PLT602 (X(I,J)s(Z(Z,.J)),2)
DO 3 1-2. (NT+N-2)
K-N+1-1
IP'(I.GT.N) K-I-NT.1
CALL PLT602 (X(I,K).(Z(I.K))*3)
DO 3 %,%-(K+1), N

3 CALL PLT602 (X(I,J)o(Z(I,J))o2)
CALL PLT602 (7.5,.25*3)
CALL PLT602 (0..23,2)
CALL PLT602 (X(N.1).(-.5*THE(N,1)+.25h,2)
DO 2 I-N. (NT+N-1)
4-1-NT+1

2 CALL PLT602 (X(I,J). C-. 5oTHE(IJ)+.25).2)
CALL FIN602
RETURN
END
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C CYLINDER RIGID BODY
DIMENSION X(21.llbZ(21,11),SI(21.11),THE(21.11)
OPEN 12, "ARRAYS. OUT", ATT-"SOI"
ACCEPT "INPUT PHi. GAMMA= ".PHI. GAMMA
TYPE PHI=".PHI," GAMMA"GAMMA
ACCEPT "INPUT DEPTH. LENGTH ",.DEPTH. HLENG
TYPE "DEPTH=".DEPTH."' LENGTH=",HLENG
ACCEPT "INPUT N ",N
TYPE "N=",N
GO=GAMMA
ARC-. 0174533
PI=. 14159
F iAR C*PH I
TF=TAN(F-i)
UI=PI/4.-Fi/2

59? DO 58 J=1,N
DO 58 I=1,21
X (I. J )=0
Z(I. J)=O
SIG( I.J)=0

58 THE(X.,J)=0
NT=N
ACCEPT ,rNPUT DELTA. QBOT ".DELTAGBOT
TYPE "DELTA",DELTA. " GBOT-" OBOT
DEL=ARC *DELTA
DTHE=. 5.(ATAN(SIN(SIN(DEL)/SIN(Fl) )/

ISORTUI-(SINqDEL)/SIN(F-ifl**2))+DEL)
EIBOT=QIBOT/(COS(DEL)+SRT(COS(DEL)**2-COS(F)**2))
DO 80 .J=1,N
I-N+I-J
F-=(FLOATfJ)-i )/(N-i)
X (I, .J)=-HLENG
Z(CI. J )=F-*DEPTH
SIG( I.,J)-F*SIBOT

so THE(IJ)-DTHE
IF(ABS(THE(N, i').GT. Vl) NT-N-i
TYPE "THE.Ul= ",THE(N.1),li
DO 90 J=2. N
DO 90 1I(N+2-J),(NT+J-1)
IF-!. EQ. (NT+.J-i)) GO TO 10
L=O
THI1THE(I. J-i)+UI
TH2=THE( I-i.,J)-Ul
SII=SIG(I,J-1)
S72-SIG(I-i, J)
V7=2*SIG(I-1,.J)*SIG(I, J-i)

VB=ITHE(I,.J-l)-THE(I-1,J))*TF
V9-2*SIG( I-i .. )*SIG I, ..-1)*VB

5 V1=TANCTHl;
V2-TAN(TH2)
XIMVI*X(I , .J-1
X,)-V2*X( 1-3,J
Vi2= / (Vi-VZ!
XC I, J)-Vl24(Z( I-i. J)-Z( I.,J-1)+XI-XJ)
ZI. J)-Z( I-I. )+(XC 1, J)-X( I-I. .J)*v

AA--TF*(XJ, J)-X( 1-2., ) 1. (,J)-ZC I-1i.)

IF-(U9 E0.0) GO TO 15
S21(1,J)-C7+V9.O *CSII*AA+SI24E3))/U9
THEt'2, J)-(U+Ub+GD4CBB-AA) )/C2*TF*U9)
GO TO 16
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16 IF(L. EQ. 1) GO TO 20
TH1=. 5* (THE( I, J-1)*THE( I. Jfl+Ul
TH2=. 5*(THE(I-1, .)+THE(I. .J))-UI

U6-2*TF*(S11*THE(I,J-l)*sI2THE(r-.fl;

V9=2* *51S2*Vs
U9-SZ11S2
L-1
Go To 5

10 Z (I, J)-o
SIG( I. .io

TH3-TAN(. 5*CTHE(I,J)+THE(I-1,J)l-Ul)
IF (V. EQ.6) GO TO 20

GO TO 11
20 IF(J. EQ. N) TYPE "Z, J, X, Z= ", 1, JX(l,J), Z(I, J)
90 CONTINUJE

SIZ=-GflOT*SIN(DEL)*
P=SI Z*P 1*HLENG*DEPTH+Go*p I*HLENG**2*OEPTH
FO-P/ (QO*DEPTH*P I*HLENG**2)
TYPE "'. FQ-".FG
ACCEPT "INPUT I FOR CHANGE OF DATA. ELSE 0 ".I.JK
IFcIJK.EQ-1' GO TO 59
ACCEPT "INPUT I FOR PRINT OF DATA.ELSE 0 ",KJI
IF(V4I. EQ. 0) GO TO 75
WRITE (12.&'4)

24 FORMAT (/37X, "CYLINPE-R RIGID BODY". /"PHI. GO. DEPTH. HLENG. GBO3T#"
I "P, FG, DELTA")
WRITE (12,25) PH1,GO,DEPTH,NLENG,OBOT,P,F0,DE-LTA

25 FORMAT (10F10.41
WRITE (12.30)

30 FORMAT (//40X. "X-COORDINATES"l//)
WRITE C23)~1J.~.)11(T1)

35 FORMAT (11F11.4)
WRITE (12,40)

40 FORM~AT (//40X, "Z-COORDINATES'//l

WRITE (12,50)
50 FOPRMAT (//40X. "SIGMA VALUES"//)

WRITE (2 5 (X(.0 J1 .Il N+O
WRITE (12.60)

60 FORMAT (/140X."THETA VALUJES"//)
WRITE (12,351 ((THE(Is.Ib.Jul, N), Il1, (NT+10fl

75 ACCEPT "INPVT I FOR PLOT, ELSE 0 ".M
ACCEPT "INPUT SCALE ".SC
IF(M. EQ 1) CALL PLTSL-F(X, Z,THE,N,NT,HLENO,DEPTH.SC)
CLOSE 22
STOP
E14D
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SUBROUTINE PLTSLF(X. Z*THE. N.NT, HLEN~oDEPTH. SC)
D114ENSION X(21,I1)eZ(21,11)#THE(21#11)
CALL IN602 Cl. "PASS. PLT")
DO 6 Jinl.N
DO 6 1inl.(2*N-1)
XCI. J)mSC*X( IJ)

6 Z(I.J)--SC*Z(I.J)
CALL PLT602 (7.5,..3)
CALL PLT602 (0.,.*.2)
CALL PLT602 (0.,.(-SC*DEPTH)o2)
CALL PLT602 ((SC*HLENG). (-SC*DEPTH),2)
CALL PLT602 ((SC*HLENG),0..2)
DO 5 Ji2*N
K-N+l-J
CALL PLT602 (X (Ko J). (Z(K. J) ),3)
DO 5 I-(K+1),(NT+J-1)

5 CALL PLT602 (X(I.~J)(Z(IJ)ho2)
DO 3 -2, (NT4N-2)
K-N+l -I
IF(I. OT. N) K-I-NT~l
CALL PLT602 (X(I#K)#(Z(tKI))3)
DO 3 J-(IK+1).N

3 CALL PLT602 (XCI#J)#(Z(I.J)).2)
CALL PLT602 (7.35..25#3)
CALL PLT602 ((XCN,1))..23.2)
CALL PLT602 (X(Nsl). C-.*-*THEN~l)+.25),2)
DO 2 I-N. CNT+N-l)
J-I-NT+l

2 CALL PLT602 (X(IoJh (-. 5*THE(I, 41+. 251.21
CALL FIN602
RETURN
END
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