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SECTION I

INTRODUCTION

In this report, the induced surface current and charge densities
(-s,ps) are evaluated on an infinitely large circular cylinder in the
presence of a set of axial wires excited by a plane wave incident in
the mid frequency range. One of the reasons for doing this is to intro-
duce a procedure which can eventually be extended to the cases where
there are sets of radial and circumferential wires in the presence of an
infinitely long circular cylinder in order to model the "detailed
structure" of an aircraft between the frequencies 20 and 50 MHz (the mid-
frequency range). The surface current and charge densities mentioned
above, may be induced by lightning or by the electromagnetic pulse (EMP)
aiid their evaluation would ')e of value to designers for the prevention of
damage caused by such phenomena. These quantities, by reciprocity, also
represent the Green's function for the aircraft, and accordingly the
performance of an antenna placed on the vehiclc rin be evaluated by use
of these "aircraft" Green's functions.

Previous computations have given both the surface current and
charge densities for the low frequency region where moment method
solutions are applicable (below 10 MHz for a B-1 aircraft) [1,2] and
the high frequency range where Geometrical Theory of Diffraction (GTD)
techniques are appropriate (above 50 MHz for a B-i aircraft) [3,4].

Richmond [5] developed one of the first moment method solutions for air-
craft structures. These solutions required approximately 100 unknown
currents per square wavelength [5,6,7]. A later method, a surface-
current approach, reduced the unknown currents to about 20 per square
wavelength [8]. Lin [9] pointed out that continuously conducting
surfaces can be closely simulated by a wire grid structure when the
dimensions of the mesh apertures are about X/10. Richmond [10] indi-
cated that 2X is the maximum length for an aircraft to be handled by
the moment method technique. Scattering cross section calculations
for aircraft less than 0.8X in length are found to be within 10 per-
cent of measured data [11]. The reasons for these restrictions are
due to the limitation on the size of matrices which modern computers
can solve without excessive loss of accuracy and computation time [12].

In recent years, Burnside et al. successfully applied GTD tech-
niques to aircraft scattering problems [13,14,15,16,17]. This tech-
nique is most useful when distances between the scattering centers
are greater than approximately X/2. Even for those cases where this
requirement can be relaxed, GTD techniques are restricted to high
frequencies. The low frequency limit is around 100 MHz. The upper
frequency limit is dependent on how well the theoretical model
simulates the important details of the actual structure. A formal
presentation of GTD can be found in the works of Keller [18] and
Kouyoumjian et al. [19,20,21].
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The present approach is intended to partially fill the gap between
moment method solutions and the GTD techniques. In this frequency range
the wings are too narrow to be represented by a GTD solution and the
aircraft has too long a surface area to be handled by the moment method
approach. These restrictions preclude treatment of aircraft geometries
where the length resonances are dominant.

In general, an aircraft can be modeled as an infinitely long
cylinder (representing the fuselage) and an array of thin wires (repre-
senting the wings). As a first step toward such an aircraft model, in
this work, a set of axial thin wires in the presence of a cylinder is
analyzed. Actually, the technique presented here can be extended to any
structure which can be represented by an infinitely long circular
cylinder in the presence of additional scatterers which can be modeled
as wire-grid structures. The only requirement is that the additional
scatterers must be small enough so that they can be included by them-
selves in a momemt method technique. A general aircraft model is shown
in Figure 1.

*

Figure 1 A typical aircraft structure.
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Additional scatterers are modeled by a set of axial wires in order
to set up a moment method solution. However their associated fields
are expanded in terms of the cylindrical functions so that these will
in turn satisfy the boundary conditions over the surface of the
cylinder which represents the fuselage.

Throughout this paper, the medium of the scatterer is taken to be
free space.

An incident plane wave is described by the incident angles (bi,¢i).
The wings are assumed to be flat, i.e., the wires modeling the wings are
taken as the z and p oriented segments. The cylindrical coordinate
system used for the calculations is presented in Figure 6, Section III.

The induced surface current and charge densities (is,ps) on the
surface of the cylinder can be described by

1 + ad (1-a)

+ A (1-b)
Ps = Ps + as(lb

(s'P) are generated on the cylinder without wings by the incident
plane wave. They can be calculated by expending the incident plane
wave fields in terms of the cylindrical Bessel functions and enforcing
the boundary conditions on the fuselage. In this manner the field
( T14) can be obtained on the surface of the cylinder. Then the
induced surface current density, Ts, is given by

UO Nof (2)

and the charge density

s 0 YO .(3)

where n is the outward directed normal vector on the fuselage.

A and Aps are tie current and charge densities induced on the
cylinaer by currents that flow on the wire segments representing the
aircraft wings (in the presence of the fuselage). Consider. for
example, the mth segment. A current I (') is induced on that segment.
In turn, Im(F') generates a field (Wm m) which can be written as

mT f ({' m(T) (4)
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where E(F ') is the dyadic electric field at a point F of an infini-
tesimal dipole of unit magnitude located at r' in the Presence of the
cylinder. Again, Im is the current magnitude on the mtn wire and these
are found from the moment method solution. The magnetic field is also
found similarly. Fields at the surface of the cylinder, from these
current elements, can now be used to find the induced surface current
and charge densities as follows:

aim = n x Hm(a,z, ) (5)

and

APm = " 0 m(azo) (6)

where a denotes the radials of the cylinder. The total current and
charge densities are found from superposition theorem as

N
+ I (7)

s s m=l m

and

N
P5  o + p (8)

m 1

so that

N
Ajs  1 4 M (9)

m=l m

and

N
=Ps I A m (10)

m=l

and N is the total number of wire segments used to model the scatterers.

Equations (7) and (R) give U s and ps over the surface of the
cylinder. The currents on the surface of the wings have already been
evaluated and are given by the value of Im at each point. The surface
current density is simply Im/At where A is. now the width of a cell or
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wire spacing as seen in Figure 1 (flat plate model). The surface charge
density here would be obtained from the equation of continuity

s = 10- (11)
5 3W 5

where j = vT. Throughout this paper, ejWt time conversion is under-
stood and suppressed.

In the following paragraphs, a detailed treatment of the hybrid
moment method is introduced. The moment method technique is also in-
cluded in this paper for completeness and to establish the ties between
the previous work and the hybrid technique. The version of the moment
method presented in the following sections is the one developed and used
to produce the results in this paper. A number of papers have been
written on this subject, and a more detailed treatment of this method
can be found throughout the literature [22].

( 7
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SECTION II

THE MOMENT METHOD SOLUTION OBTAINED FROM
THE REACTION INTEGRAL EQUATION

Consider the reciprocity theorem in the following form

f(ra -b a-b)dF =f (Tb.Ua- b.M4a)dr (12)

where the fields (a,fa) and (b,Hfb) are generated by the sources
(74,9a) and (Jb,Mb) respectively [23]. As indicated earlier the
medium of the scatterer and the sources is taken to be free space.

The field quantities are related to the sources by the following
equations

i -jP 0 j e (13)
all space

and

Ti(T) = -jW o  f m(iF')'i(7')d' (14)

all space

4e(rir') and am(rIr') are the electric and magnetic dyadic Green's
functions, respectively.

Now, assume there is an external source (Ji,Mi) generating the
field (E,H) in the presence of a closed surface, S (see Figure 2).

The reciprocity equation between the source (Ji,Mi) and a test
source (Tt,Mt) which is placed inside the closed surface is given as

f(' - H'Mt)dv =f (t' - t Mi)dv (15)

8
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Figure 2. Schematic representation of sources.

where (Et,jTt) are the fields generated by the test source (5tMt) in
free space.

If the surface, S, is conductive then the field inside the closed
surface is zero.

When the integrals in Equation (15) are restricted to the internal
region of the surface, S, then Equation (15) reduces to

f (T* --tl i)dv = 0 (16)

interior of
S

and

f - f'FRt)dv = 0 (17)

interior of
S

since the fields ("jT) vanish inside the conducting media [24].

The incident field (i,Ti) is defined as the field generated by the
external source (TiHr) without the scatterer, S. Then the scattered
field (Es,lTs) is defined as follows:

E= - 1 (18a)

IT -T- TT. (18b)
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Substituting Equations (18a,b) into Equation (17) results in

f (l[s'JUt -"R s'Mt)dv = - f (  i " t ITi "1 t ) dv

interior of interior of
S S (19)

Equation (15) is one form of reaction integral equation (RIE). Another
form of reaction integral equation can be obtained from Equation (19)
and reciprocity theorem (Equation (12))

f t'-s- 1t'Rs)dv = -f(rt'i - It'r i )dv (20)

where (Ts,51 ) are the surface current densities which generate the
scattered field (Es,1Ts) and are defined as follows:

Us x xIT (21)

x (22)

On a perfectly conductive surface, the magnetic current density
vanishes. Then Equation (20) takes the following form:

f F - ti i)dv =-Ir tJS dv (23)

For a given field ([t,1t), Equation (23) represents an integral
equation with Js as the unknown. One way to solve such an equation is
to expand the unknown function in a given set of basis functions

U (24)
n

where In are the unknown complex coefficients and Fn are the basis
functions of our choice.

10
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Substituting Equation (24) into Equation (23), one obtains

fi'(t .Th *7 rfC - -Fn~ dr (25)

Equation (25) is one equation with n unknowns: If, 12, "' In. In
order to obtain n such equations, the test source (Jt,Mt) can be
moved to n different places inside the scattered body. Denoting
(Et,Ht) as the fields generated by the test source ( jt,Mt) when it is
located at the position m

I- r'* i)dF = n  n m=l,2,..n (26)

Equation (26) defines n linearly independent equations with n
unknowns and can simply be written as

vm = II nZmn m=l,2,...n (27)

n

or in matrix rotation

(v) : (1)[Z] (28)

where

vm fEm.- tMi)d7 (29)

and

Zmn Et Fn dr (30)

The unknown currents In can be solved by simply inverting the [Z]
matrix and multiplying by (V)

(I) = (V) [Z]-1  (31)

Employing the reciprocity theorem one more time, Equation (29)
can be expressed in a slightly more useful form

11
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i T - Tiit)d (32)

where (J,r') denotes the test source (Jt'Mt) positioned at locationm and as before (TiITi) is the incident field.

In Galerkin's fornulation of the moment method, the test source
(it,Mt) is expanded in the same set of basis functions as are the
current densities JS.

By virtue of Equation (13) with changinq the index i to t
Equations (30) and (32) can be rewritten as

Vill "ft, Fm dr (33a)

Z = -Jd rd' Tn(r) n ( ')'(r') (33b)

where t(rIT') is defined by the following equation

(rjr' =-J o 0e(r r) (34)

such that a c oriented infinitesimal electric dipole located at point
r' generates an electric field r(-117') at point r by the following
relation

T T (F')-C (35)

where c is the unit vector.

In the process of derivinq Equations (33a,b), it is assumed that
the wires are perfectly conductive and therefore there are no magnetic
current densities on them. The same assumption is employed
throughout this paper.

Equation (31) and Equations (33a,b) constitute the moment method.

12



SECTION III
HYBRID MOMENT METHOD

The principle behind the hybrid techniques can be outlined as
follows:

I. The scatterer is divided into subsections so that each can
be handled by one of the standard mathematical methods developed for
electromagnetic problems when the rest of the scatterer is absent. In
this paper the superscript "o" is used to denote such quantities (for
example 0, p , Zmn) and the term "isolated" is placed in front of
them in order to indicate that only one of the subsections of the
whole scatterer is under consideration (for example isolated mutual
impedance). A schematic representation of this situation is shown in
Figures 3(a,b).

2. The interaction between the subsectional scatterers is intro-
duced to the problem as a correction term. The notation "A" and the
term "perturbed" is used with such quantities (for example AJs, AZmn,
perturbed mutual impedance). This case is illustrated in Figures
4(a,b).

In this paper, the scatterer is divided into two principle parts:
An infinitely long circular cylinder, and the rest of the scatterer.
Eigensolutions and the moment method techniques are the tools used for
calculating the "isolated" and "perturbed" quantities. As indicated
earlier, in order to employ moment method techniques, the scatterers,
other than the circular cylinder, are modeled as wire grid structures
(the term "additional scatterers" is used in order to identify
these structures). Figures 5(a,b,c) schematically illustrate some of
these "isolated" and "perturbed" quantities and the general geometry.

Superposition theorem is used to obtain the final results such
that

US + s (36a)

o (36b)
PS 

= PS + AP

Z z0  +6Z (36c)
mn mn mn

13
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Vm = V 0 + AV (36d)

where m = 1,2,-"N

n 1,2,-"N

and N is the total number of segments used to model the additional
scatterers.

In the above equations, Zmn is the isolated mutual impedance
between the dipoles modeling the additional scatterers. AZmn introduces
the effect of the cylinder on the impedance. AVo is the isolated open
circuit voltage at the terminals of the dipoles modeling the additional
scatterers due to the direct plane wave incident. Vm denotes the per-
turbed open circuit voltage as a result of the fields scattered from
the cylinders.

The quantities in Equations (36a,b) are described in the previous
pages. Precise mathematical expressions for the quantities introduced
above are presented in the following sections.

Because of the cylindrical symmetry, cylindrical coordinate
system is employed in this paper. The axis of the cylinder is chosen
as the z-axis. Figure 6 illustrates this coordinate system. An
incident plane wave is described by the incident angles, ei and Oi,
as shown in Figure 6.

Axial, radial and phi oriented wire segments can be chosen as the
three canonical cases for this problem. In Figure 7, these three
canonical cases are illustrated.

Axial dipoles are considered here as a first step in developing
the analysis for this rather complex solution. It is recognized that
this present solution is in itself representative of an aircraft
structure with straight wings only for incident waves perpendicular to
the cylinder and polarized parallel to the cylinder. For waves
polarized perpendicular to the cylinder, the current flow on the wings
has a dominant component normal to the axial dipoles which, of course,
cannot exist when only the axial dipoles exist. There is also such
a significant nonaxial current component for waves that are not
normally incident on the cylinder. Further, if there is any dif-
fraction process that yields a nonaxial current component, then the
solution presented here is not applicable. For example, this implies
that aircraft with swept back wings would require the use of radial
dipoles. Research directed toward generated similar solutions for the
radial and phi oriented wires is underway but has not yet reached a
state such that it can be included in this thesis.

14



For each canonical problem, the following steps can be taken in
order to obtain surface charge and current densities (ps,s) induced
on the surface of the cylinder due to a plane wave.

a. Calculate (pJs) using an eigenfunction expansion of the
incident fields and the boundary conditions.

b. Calculate the current magnitudes on the wire segments which
are used to model the aircraft wings by the moment method technique.

c. Determine the fields (Tm,m) generated by these current
segments and obtain the resulting surface current and charge densities
from using these fields.

d. Using the superposition theorem, find the total induced surface
charge and current densities at a given point on the surface of the
cylinder.

15
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SECTION IV

AXIAL DIPOLE

1. Analysis

The procedure introduced in the previous secti6n is employed
in the following pages. The geometry used for this chapter is presented
in Figure 8. In order to establish a foothold for the future work, the
calculations for an axial dipole are carried out for an arbitrarily
incident, TMZ pLarized plane wave. The electric field of such a plane
wave is gi-n by

= Jk(psin6icos( i- )+z cosei) (37)

whey; the observation point is represented by cylindrical coordinates
p, z and 6. 6i and *i describe the incident plane wave and are shown
in Figures 6 and 8.

In particular, ei = 900 is the interest of this paper.

a. Calculation of (Jsps)

Surface current and charge densities, in the absence of the axial
dipoles, can be calculated by simply expanding the incident plane wave
in cylindrical Bessel functions and enforcing the boundary conditions
on the surface of the cylinder.

For the incident field given in Equation (37), the total z
component of the electric field is

jkz cos6 i

E sine i e Eo .n=0 
E nj cos

n=On1

n (ap)H(2)( a)-dn(0a)H 2)( P)

n n nn n(38)

n (0a)

where a = k sine i and a is the radius of the cylinder

21
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e I n=O
2 n#O

In Appendix A various components of the fields are given in terms of
Ez and Hz for TMz and TEz polarizations respectively.

It can be seen from these equations that, for TMz case, Ho is
given as follows

H - 0 EZ (39)

Then with the aid of Equation (21) and Equation (39), on the
surfaceof the cylinder, isolated induced surface current density
Js = nxoH,(a,z,o) is found to be

-2 wo ejkz cos6 i  cos n(€i

=-2 o sino. Ese 2 1nj  ((2 )

k i n H n (0a)

where 8 = k sinei.

The isolated induced surface charge density Ps is determined from
the equation of continuity.

jkz cosei .n cos n(oi-0)o =cs.2 0o e E°1 J H" 2 ( a  (41)

s =  i a k sine i  n n
1 n

b. Current Magnitudes On the Dipoles

As indicated before, current magnitudes on the dipoles which are
approximating the additional scatterers are found by moment method
techniques. In order to solve for currents, Im from Equation (31),
[Z] and (V) matrices must be known.

(1) [Z] Matrix

Entries of the [Z] matrix are calculated from Equations (36c) and
(33b). By virtue of Equation (33b), the quantities Zn and AZ for
the axial dipole are

23



z z 3= - dz' f dz" r (z") 0(F'jP) r-(z') (42)

z zI1n 1

and

ZI Z11I

3 3
AZ n - dz' d " T (Z") • s(74 IT ,) • T n( Z ) (43)

I

In the above equations, sinusoidal current distributions are used
as basis functions,

F(z) = sink(z-z 1 ) + P (3) (44)
I+in 2 snkd2

where

P z < z < z
P1  0

elsewhere
(1I zo <z <z 3

P2=03

elsewhere

and

d I  = Ilz -zol

d2  = Izo-z31

Z1, Zo, z3 and z are defined in Figure 9.

s(r Ir ) •? is the scattered electric field from the infinitely
long circular cylinder and is calculated at point ' when an in-
finitesimal axial dipole located at point T' is radiating in the

presence of the cylinder. s(I') can be written in terms of dyadic
electric Green's function as

24
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A

Z

Figure 9. A linear test dipole and its sinusoidal current

distribution. The endpoints are at Zl and z3
with terminals at zo.

sPJT):-JmWo rs ) (45)

For an axial dipole, the only nonzero contribution to the imped-
ance matrix comes from the zz component of the dyadic Green's function,
Gezz (r' r'). From Appendix B, scattered part of zz component of the
dyadic Green's function Gezz(" F') is found to be

0 k k2_t 2  J (aa )

GS(Fj?) = if dt on cOs k(z-z')n Hn(Pa)Hn(P'a)
f n=O

0
(46)

where a = 2

and

1 n=O

n 2 otherwise

is the electric field at point P' which is generated
by a c oriented infinitesimal dipole located at point T' when it is
kadiating in the free space. Similar to scattered electric field,

ts(T'jT'), to(7"i') is also defined as follows:

25
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(PIF' T = -jE o r 47
o 0 e(

where °(?'J'") is the free space dyadic Green's function and is given
in Appendix C, Again, only nonzero contribution comes from the zz

component of P°(r"IT') which is given bye
o --, i azL2 -jk - F '  

(8
Gezz(rlr) = + (4 jr-- (48)

ZZk az I 14W

Now [Z] matrix can be written as

0 0 0o Z z 4

1o 12 iN1 AZ1 2  IN

[Z]= + (49)Zo LZ
NN ZNN

(2) The Source (V) Matrix

(V) matrix is the summation of the isolated and perturbed open
circuit voltages on the dipoles, i.e.,

S0 V1

(V) V2  + 2  (50)

N VN)

The elements of these column matrices are calculated from Equation
(33a)

Z3
V°  f E' (") Fm(z')dz' (51)m I z

zI

26



and

6V Es(r') Fm(z')dz' (52)Vm  f ,

z1

where E and E are the z components of the reflected electrical fields
from the cylinder and the direct incident field respectively and are
given by Equations (53), (54)

i jk(z'cosOi+P'sine, cos(Oi-P'))
E Z ') = -sine i  E e (S3

and

s-jkz'cosei n J n(aa)Ez (r') = sine i E0 e iklno
n cos n(Ui- Hn Hn(a p

n=O n

(54)

where a = k sine i

Fm(z) is the magnitude of T(z) which is given in Equation (44).

Now the currents on the dipoles can be found by simply inverting
[Z] matrix and multiplying by the (V) matrix

(I) = [Z]1  (V) (55)

c. Currents and Charges Due to Dipoles

Perturbed surface current and charge densities induced on the
cylinder is the result of the currents on the dipoles which are
modeling the additional scatterers. The magnitudes of these currents
on the dipoles and in turn, the whole current distribution,which is
approximated by sinusoidal basis functions, on the additional
scatterers is already found in step 2. In order to calculate the
perturbed surface induced current density, it is necessary to find
the tangential magnetic field on the surface of the cylinder. For an
axial dipole the z component of the magnetic field is zero. From
Appendix A, it is easy to see that for TMz case HO and Ez are related
to each other by the following equation.

27



H jw aE z (56)

For a radial dipole with a sinusoidal current distribution on it as shown
in Figure 9, the z component of the electrical field can be found from
Equation (13) as follows:

Em= - m Fm(Z')Gezz(rl')dz' (57)

where Im is the current magnitude or the mth dipole. Ez is the
component of the electric field generated by the same dipole.

Gezz(71-r') is the ii component of the dyadic Green's function and,
from Appendix B, is found to be

H (P'a)(77- n:dt Sn fk cos t(z-z') n
ezz T 0 n=0 k Hn (aa)

cos n(o-')in(P)Hn(aa) - J n(aa)Hn(Pa)} (58)

Ho can be calculated by sustituting Equation (58) into Equation
(57) and then substituting Equation (57) into Equation (56). Once Ho is
found then the perturbed induced surface current density, Zm , (due to
the mth dipole is found from the boundary condition. The equation of con-
tinuity can be used in order to find the perturbed induced surface charge
density AP The resulting expressions for Aim and Apm are given in
Equations 59) and (60).

3 F')dz' CoH n (p'a)
S= 2 dt 5n cos t(zz') H (a ) coszf. 2w2a o n= goo n o (-

z0

(59)

and
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4P3Fz )dz' dtItesntzz H n(p'a)c osn-

zI

(60)

In the above equations prime coordinates indicate the source location
and unprime coordinates indicate the observation point. In order to
arrive at Equations (59) and (60), the following Wronskian relation is
also used.

J(x) Hn(X) - an(x) Hn(x) = (61)
n nx n TTX

d. Total Induced surface Charge and Current Densities

The results found in steps 1 and 3 with the combination of
superposition theorem enable us to calculate the total induced surface
charge and current densities on the surface of the cylinder.

N
us = Us + I A (62)

S m=l m

N
PS = P, + ' AP (63)

m= 1

2. Results

Results obtained using the techniques outlined in the previous
section are to be presented in this section. Wherever practical,
the computations are verified at each step in the process by a
completely different solution to establish confidence not only in the
technique itself, but also the computer programs used to obtain the
results.

While there are no known results giving the impedances, the
currents and voltages induced on the scatterers, some related
geometries can be treated that will approximate the same results.
One of these is the case of a horizontal dipole mounted over an
infinite ground plane which can be analyzed by image theory. This
case can be related to the case of a horizontal dipole close to the
surface of a cylinder as compared to the radius of the cylinder.
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A second geometry that can easily be treated is that of a dipole
near a very thin finite length cylinder. Here, the length of the thin
cylinder can be made sufficiently long that it gives the same results
for the impedances on the wires representing the wing. A moment
method solution can then be used to obtain the fields of this finite
length relatively long thin cylinder in the presence of a thin short
wire. This result can then be compared to those obtained using the
hybrid formulation of major interest.

The agreement between these geometries is given in the following
paragraphs. First the impedance of a short dipole is examined, second
the open circuited voltage at the dipole is presented, third the
near field results for an axial short dipole in the presence of an
infinite cylinder are given and, finally, the total perturbed and
isolated surface current densities on the infinite cylinder are
presented.

The following is organized into four subsections:

a. Impedance Matrix [Z] Results

b. Voltage Matrix [V] Results

c. Charge and Current Densities Induced on an Infinite
Cylinder by a Dipole Source

d. Surface Current Densities on the Cylinder.

Actually, the impedances are the mathematical representation of
the total geometry and are all that are needed for the analysis of the
surface current and charge densities on the cylinder. However to
ascertain that the current and charge densities on the wings themselves
are valid, it appears to be of some merit to demonstrate that the
voltages and currents existing on the dipoles are also correct. Of
course, the important quantity in evaluating the current density in-
duced on the surface of the cylinder is the total current on the
dipole elements; the impedance and driving voltages merely represent
part of the process of correctly evaluating the currents on these
dipoles.

The main purpose of the following paragraphs is to establish the
validity of the computer programs obtained from the newly derived equation.
Once the correctness of these results is demonstrated, then the ac-
ceptability of the rest of the elements follows from the well
established moment method techniques and the superposition theorem.
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a. Impedance Matrix [Z] Results

The validity of Equations (42), (43), and (49) for the impedance
of a short dipole in the vicinity of the incident cylinder is ex-
amined. Equation (42) is a well known expression and is widely used in
regular moment method solutions. Richmond [22], et al. write Equation
(42) in a more familiar form

zo r.d, r (64
Zmn - Cm( ) n(r') (64)

where En(r') is the electrical field generated by the nth dipole when
it is radiating in the homogeneous medium (po,co) without the other
wires and the infinite cylinder present, and this electrical field is
calculated at the location of the mth dipole. It can easily be seen
from Equations (42) and (64) that

En(r ) = o(rIr' Fn(r") dr" (65)

Figures 10, 11 and 12 are plots of the real and imaginary parts of
the total self-impedance (Zm =Zm + AZmm) of a dipole in the presence of
an infinitely long cylinder versus the distance, H, of the dipole
from the surface of the cylinder. Equations (42) and (43) are used in
order to calculate Z& and AZMM respectively. The same plots present
the results obtained when infinite groundplane replaces the cylinder.
As has been noted, the infinite ground plane calculations are made by
finding the self impedance of the dipole in the absence of the infinite
ground plane (Zom) and adding to this the mutual impedance between the
dipole and its image (Zmn,) so that

z = + Z°  (66)mm mm mm'

where m' is the image location. Both Zo and Z, are calculated
from Equation (42). Observe that ZOn, is the approximation to Z
obtained by replacing the infinite cylinder by the infinite ground
plane.

In the case of a cylinder with a large radius (Figures 10 and 11),
the results obtained by Equation (43) and the results found from the
infinite ground plane are in reasonable agreement when the dipole is
close to the surface of the cylinder. This is an expected result
because, insofar as the dipole impedance is concerned, the cylinder
appears as if it were an infinite ground plane. The data presented
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Figure 10. Input impedance of a half wavelength axial dipole near an
infinitely long circular cylinder with 5 A radius.
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Figure 12. Input impedance of a half wavelength axial dipole near an

infinitely long circular cylinder with O.05X radius.
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in Figure 12 are also satisfactory since the ground plane does not
closely approximate a cylinder whose radius is only 0.05X.

Figures 13, 14 and 15 are used to compare the results obtained from
regular moment method techniques with the results obtained from
Equation (43). The hybrid solution is seen to be valid by these compu-
tations and indeed the derivatives observed earlier when the ground
plane replaced the O.05X cylinder (Figure 12) is now clearly seen to be
caused by the change in geometry. Note that the results presented in
Figures 14 and 15 are obtained for different length dipoles. The
agreement between results obtained from the two solutions is more
than satisfactory. At this point, it is claimed that the impedance
computations using the hybrid solutions for both large radii cylinders
(Figures 10,11,12) and small radii cylinders (Figures 13,14,15) are
correct.

Up to this point the validity of Equation (43) is checked when
"n=m" in other words for self impedance, Zmm, calculations. The
mutual impedance between two dipoles in the presence of the infinite
cylinder has been calculated from Equation (43). The results are
shown in Figures 16, 17, 18 and 19. As has been done for the self im-
pedance calculations, mutual impedance calculations are also compared
to infinite ground plane and regular moment method solutions. In
Figures 16 and 17, the differential component of the mutual impedance
between two dipoles caused by the presence of the cylinder (the
perturbed mutual impedance, AZ12) is presented. This perturbed mutual
impedance is compared to the value obtained when the cylinder is re-
placed by the infinite ground plane.

In Figures 18 and 19, the change in the mutual impedance of two
dipoles caused by the presence of a thin cylinder is plotted. On the
same graphs, the moment method solution is presented. For moment
method solution, the thin cylinder is modeled as a finite length thin
wire of the same radius.

Figures 16, 17, 18 and 19 clearly establish the accuracy of Equations
(43) in predicting the mutual impedance. The only point where near
perfect agreement is not obtained is for the large cylinder (R=5.0X)
when the two dipoles are arranged in a near endfire configuration.

b. Voltage Matrix (V) matrix

The accuracy of Equations (51) and (52) for the source voltages or
the dipoles is tested in the folloiwng paragraphs. As was Equation
(42), Equation (51) is also a well known expression and is used in the
regular moment method solutions. The accuracy of Equations (52), on
the other hand, should be verified. This is the goal of Figures 20
and 21. It is expected that when the radius of the cylinder is large
compared to the distance, H, between the dipole and the surface of the
cylinder then the cylinder should appear as if it were an infinite
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Figure 13. Input impedance of a half wavelength axial
dipole near an infinitely long circular
cylinder with O.OO1A radius.
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Figure 14. Perturbed impedance of a 0.2A axial dipole
near an infinitely long circular cylinder
with 0.001X radius.
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Figure 15. Perturbed impedance of a 1/4X axial dipole
near an infinitely long circular cylinder
with 0.001A radius.
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Figure 17. Mutual perturbed impedance between two 1/4A axial
dipoles near an infinitely Iona circular cylinder
with 0.5x radius.
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Figure 18. Perturbed mutual impedance between two 1/4 axial
dipoles near an infinitely long circular cylinder
with 0.001X radius.

41



A O.026,\ Y4-\ 0.026 X

O.-O.0.21

H 0.002X

INFINITELY LONG 15.025 X LONG

CIRiCULAR CYLINDER THIN WIRE

0 POINTSSOLID LINE

C-

A

Figure 19. Perturbed mutual impedance between two 1/4 axial
dipoles near an infinitely long circular cylinder
with 0.001A radius.
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Figure 20. Open circuit voltage at the terminals of a 1/2X axial
dipole near an infinitely long circular cylinder with
0.5X radius for a broadside plane wave incident.
Vo~c denotes the isolated open circuit voltage.
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Figure 21. Open circuit voltage at the terminals of a 1/10A axial
dipole near an infinitely long circular cylinder with
5X radius for an oblique incident plane wave. Vo'c
denotes the isolated open circuit voltage. 0
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ground plane. Indeed, this is the conclusion one could draw from
Figures 20 and 21. Figure 21 is included here in order to demonstrate
the fact that in the case of oblique plane wave incident, the results
obtained from the equations in this report are still valid
for an axial wire.

This concludes the verification of [Z] and (V) matrices. The
results obtained from newly derived equations (Equations (43) and
(52)) are satisfactory. Hence, as the final step on the regular
moment method solution, now Equation (31) can safely be used in order
to find the correct currents on the dipoles modeling the additional
scatterers. Since the validity of regular moment method solutions
is checked over and over again, it is excepted, in this thisis,
that the currents calculated from Equation (31) on the dipoles are
correct and there is no need to make any further verification.

c. Charqe and Current Densities Induced on an
Infinite Cylinder by a Dipole Source

As has been noted, the total induced surface current and charge
densities are the sum of the isolated and perturbed surface current
and charge densities. In the case of the perturbed quantities, the
dipole of interest, say mth dipole, is taken as the source of the radi-
ation. The current on this dipole is assumed to be sinusoidally
distributed with unit magnitude at the terminals of the dipole. The
resulting induced surface current and charge densities on the cylinder
are called the perturbed surface current and charge densities and can
be calculated from Equations (59) and (60) by setting Im=l. In order
to calculate the total induced surface current and charge densities on
the surface of the cylinder, these perturbed quantities must be multi-
plied by terminal currents as calculated from the moment method tech-
niques. Figures 22 through 26 present some of the results obtained
from Equations (59) and (60) with Im=l.

d. Surface Current Densities on the Cylinder

In Figures 27 and 30, the total induced surface current densities
are presented when there are one dipole and two dipoles in the
vicinity of the infinite cylinder [25]. These graphs are obtained as
follows: First the current magnitudes at the terminals of the dipoles
are found from (I) = [Z]-  (V) relation. Next the perturbed surface
current densities are calculated from Equation (59) with Im=l, Then
these perturbed surface current densities are multiplied by the
correct current magnitudes at the terminals. Finally these results
are combined with the isolated surface current densities to give the
total surface current density induced on the infinite cylinder.

For one dipole case, perturbed and isolated induced surface
current densities are also presented in Figures 28 and 29.
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Figure 22. Magnitude of surface induced perturbed current on an
infinitely long cylinder (Im=l).
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Figure 23. Phase of surface induced perturbed current on an
infinitely long circular cylinder due to a 1/2
axial dipole excited with unit magnitude current
located 1/lOX away from the surface of the
cylinder.
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Figure 24. Magnitude of surface induced perturbed charge
density on an infinitely long cylinder due to
a 1/2X dipole excited with unit magnitude
current located I/lOX away from the surface
of the cylinder.
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with unit .nagnitude current located 1/lO away
from the surface of the cylinder.
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Figure 26. Surface induced perturbed current density on an
infinitely long circular cylinder due to a
dipole excited with unit magnitude current.
Normalization factor is 3.34 mAmp/meter.
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Figure 27. Normalized total surface current induced on an
infinitely long circular cylinder with 1/2X
radiug in the presence of a thin wire.
(Jz=J +LJs'Im). Thin wire is located 1/lOA
away from the cylinder. Normalization factor
is 5.52 mAmp/meter. lImll.98 amps.
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Figure 28. Normalized perturbed surface current density
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Figure 29. Isolated surface current density with plane
wave incidence. (Jo) for geometry of
Figure 27.
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SECTION V
FUSELAGE CURRENT DENSITIES FOR AIRCRAFT-LIKE STRUCTURE

As a next step, an aircraft-like structure is analyzed. A total
of eighteen wires, nine on each side of the cylinder, is used in
order to simulate the wings (0.3X by 1X long). The current distri-
bution on these wires is obtained from the hybrid moment method
solution as outlined previously. The geometry of this aircraft
model is illustrated in Figure 31. The current density on the

co

Z

/10

' x
'

A

Figure 31. Aircraft geometry with 0.3A by X wings placed
in a plane containing the cylinder axis.

cylinder as obtained from the hybrid imioment technique is shown in
Figure 32. In the same plot, a GTD solution is also presented [26].
Considering the limitation of the GTD solution for such a geometry,
the results shown in Figure 32 are in reasonable agreement.
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Figure 32. Surface current density induced on a fuselage as
a function of 0 angle for geometry of Figure 31.

An aircraft-like structure with one wavelength long square wings
is also analyzed. Such an aircraft is presented in Figure 33.
Both the field and the dB plots of the hybrid moment method results
are included in Figures 34 and 35. In the same plots, related GTD
solutions are shown as dotted lines. Again, up to the limitations
of the GTD solution, the results are in reasonable agreement.

A linear plot of the surface induced current density on the
fuselage and the wings for the same aircraft structure (Figure 33) is
shown on Figure 36. The relationship Js=Im/A^ is employed in order
to obtain the surface current density on the wings. These results
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Figure 33. "Aircraft-like" geometry with lX, by IX square wings
placed on a plane containing the cylinder axis.
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Figure 34. Surface current density induced on fuselage as a
function of , angle for geometry of Figure 33.
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Figure 35. Surface current density induced on a fuselage as
a function of 0 angle for geometry of Figure 33.
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are compared with the results shown in Figure 37 obtained from two
dimensional eigensolutions and a related moment method technique
(strip model) where the win s are represented as infinitely long
strips (patch type solution? and the fields are again expanded in
terms of the cylindrical Green's functions [27]. The agreement
between Figure 36 and Figure 37 is remarkable. Even the current
density on the "wings" of the two structures is in good agreement.
Only for the low level fields in the shadow region do these results
show any significant difference.

Finally, the aircraft-like structure, shown in Figure 38, is
analyzed. The purpose of this figure is to simulate a typical air-
craft as closely as possible at a frequency where the GTD model is not
valid. Total surface current density induced on the fuselage is shown
in Figure 39. When Figure 39 is compared with the results obtained
for isolated surface current density, Js (i.e., without the wings), it
is found that for this polarization, the wings shown in Figure 38 have
almost no effect on the surface current density. In order to see how
wide the wings should be before they can have a significant effect on
the surface current distributions, isolated, perturbed and total
surface current densities induced on a fuselage are plotted as a
function of dipole length for a single dipole spaced X/lO from the
surface. These results are presented in Figure 40. As it can be seen
from this figure the wings should be wider than O.2X before they can
have any effect on the surface current density for this incidence and
for this polarization.
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Figure 38. Aircraft-like structure with O.l)X by 0.5X wings
placed on a plane containing the cylinder axis.
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Figure 39. Surface current density on a fuselage as a function
of 0 angle for geometry of Figure 38.
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Figure 40. Total, perturbed and isolated surface current densities
induced on an infinitely long circular cylinder as a
function of dipole length.
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

The results obtained in this report show that the hybrid moment method
solution outlined is a valid approach for calculating the induced surface
current and charge densities on an infinitely long circular cylinder in
the presence of axial thin wire segments. Rather simple aircraft models
can be constructed by using such cylinders and axial dipoles when the
geometry is selected carefully, and therefore the theory presented above
can be used in the solutions of such structures. There remains the task
of including the radial wires to make this solution more general. This
has been partially completed to the extent that the cylindrical Green's
functions GP, and the mutual impedances Zpp have been programmed. There
remains in this solution to evaluate G. and Zpt and then incorporate
these quantities in the existing solution. If this solution is carried
to completion, it will indeed help fill the void between the low frequency
(moment method) and high frequency (GTD) solutions.

Some of these results can be used to infer a procedure for in-
troducing the finite length of the fuselage itself at least for this
particular type of aircraft and incidence plane. Figure 24 and
Figure 25 show that the charge and current densities induced on the
cylinders by the dipole are significant only a limited distance along
the cylinder. These cases are for dipoles a distance of X/lO away
from the cylinder surface. As the dipoles are displaced a greater
distance, these surface currents and charges would decay rather
rapidly. Thus we observe that the currents on the dipoles repre-
senting the wings can be obtained rather accurately if only the
fuselage in the vicinity of the wings can be represented by the
infinite cylinder. Once these currents are known, they can then be
used as sources (in addition to the plane wave excitation) exciting
a finite length fuselage. Here, only the fuselage itself needs to be
included in the impedance matrix. This means that a significantly
larger aircraft could be modeled using moment method techniques.

As a final comlent, once these mechanisms are all well established,
a further substantial improvement can be obtained by introducing sur-
face patches in place of the wire grid model. If all of these steps
are carried to a proper conclusion then indeed this hybrid solution
would fill the void that exists in the frequency domain between
moment riethod and GTD solutions for surface current and charge den-
sities that are excited by a plane wave incident on aircraft
structures. It would then be possible to obtain realistic impulse
response for these quantities and of course to find the response to
any excitation in the time domain for these quantities.
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APPENDIX A
TE AND TM FIELDS SEPARABLE IN THE CYLINDRICAL COORDINATE SYSTEM

The harmonic electromagnetic fields listed below satisfy Maxwell's

equations in a homogeneous source-free region [10].

TE Fields TM Fields

E = - C(jwp/p) R P' Z E = C R' P Z'p
E = C jwv R' P Z E0 = C (1/p) R P' Z'

2
Ez  0 Ez = C B R P Z

H = C R R' P Z' H = c(jwe/p) R P' Zp p

H = C (l/p) R P' Z' Ho = -jwe C R' P Z
0 2

Hz = C 2  R P Z Hz = 0

C denotes an arbitrary constant.

The time dependence ejWt is understood. R is a function of p only,

P is a function of 0 only, and Z is a function of z only. Primes
indicate differentiation with respect to p, 0 or z. The functions
satisfy the following differential equations:

d (pR') + (2 2
P dp m( ) -m R 0

pit = _m2 p

Z" = -h2 z

where

a 2 2, and s and h are constants.
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Some solutions of these differential equations are listed below.

R(p) = ' (OP) PWo =Cos ins Z(z) cos hz

N (Op) sin mf sin hz

m eh

If 0 , the radial function is R(p) pim
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APPENDIX 8
THE ELECTRIC DYADIC GREEN'S FUNCTION

FOR THE CIRCULAR CYLINDER

The electric dyadic Green's functions for a circular cylinder
with radius a is given as follows [28]

~erro iTd nk en) ( ona 'o (no

+ M(3) (t,r)EM(l)(-t r )+a (3) (-t,r )Aon on 0o n on o

+ 14 3) (t ,r)[1(l)(t,r )+b N(3) (-t,r)

on n r0 )+nen (- ro o

on on 0 non (-~o

(n (3) (3)
+[N tr+ N ~ ~ + (t,r)]M (.-ttr

nen8V en o no

'[(1)(tr+ (3) (r)](3) -r

+[N(l)t,r)+b N ()(t,r)]N ()(-tsr )i for p<pqonnon on 0

with
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a J (ak2-t)) b Jn(a V(k2-t2 ))

2n2U),n 22(2) (k2t2) )
( (a k -t2) H]( (k

en+ _nCos sn sin'

Jt -jz [-L az(n )( (k2t2))Cos Lp- ntZ(i )
k(J)(t'r)= I e -j ±z  't  :n in"  - i k2-t2)) sino

+(k2-t2 )zJ)(p (k2-t2 ))cs n

j = 1,3 and Z () = dn(X),Z(3)(x) = t (2)(x).
n n n n

where Jn(x) and H2) x) denote the cylindrical Bessel and Hankel
functions.

Please be aware of the fact that in the above equations j is used in two
different senses In one case it denotes an integer, in the other
case it wieans The time dependence eJ t is understood. For an
arbitrarily oriented infinitesimal electric dipole located at
r (o (po a,¢ozo) with moment (-jwPIdL)L, the total electric field
is

Ti(F,) + (F) = -jwpI dt e(rro) L
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APPENDIX C

THE ELECTRIC DYADIC GREEN'S FUNCTION OF FREE SPACE

The electric dyadic Green's functions for free space [24J

Gu (F I F)

G (FI ?)=G r(FF) 1 a2 i__u uu u.i 0 kZ au au.

where

=i xy,z for i =1,2,3

and

4nIF- - T0 I
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APPENDIX D
LARGE ORDER APPROXIMATION FOR HANKEL FUNCTION

One of the difficulties encountered in this report is the numerical
convergence problem. During this investigation, it is found that while
the ratios of the cylindrical Bessel functions used for the calculations
are not negligible, both the numerator and the denominator became very
small for large orders when they are calculated individually. Because
of the limitations of todays computers, when the ratio of two such
small numbers is taken by the computer, it is set to zero even though
it is very significant. This difficulty is overcome by calculating
the ratio itself directly for large orders of Bessel functions. In
this appendix, a suitable expression for this purpose is presented.

The ratio of two cylindrical Hankel functions with different
arguments and large order is

if(2)(np)2 /4 2 nn = - p l + l -p'" exp

where n is the order [29]. The argument of the ratio can be complex.
The relation between modified Hankel functions and regular Hankel
functions can be used in order to obtain the ratio of modified
Hankel functions such that

Kn (np') (.jnp,)

K (np) H (-jnp)n

where j
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