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A method is proposed for determining the motion of a body relative to a fixed
environment using the changing image seen by a camera attached to the body. The
optical flow in the image plane is the inpnit, while the instantaneous rotation and trans-
lation of the body are the output. If optical flow could be determined precisely, it would
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d.:crepancy bctween the measured flow and that predicted from the computed motion
parameters. Several different error norms are investigated. In general, our algorithm
leads to a system of nonlinear equations from which the motion parameters may be
computed numerically. However, in the special cases where the motion of the camera is
purely translational or purely rotational, use of the appropriate norm leads to a system
of equations from which these parameters can be determined in closed form.
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1. Introduction

In this paper we investigate the problem of passive navigation using optical flow
information. Suppose we are viewing a film. We wish to determine the motion of the
camera from the sequence of images, assuming that the instantaneous velocity of the
brightness patterns, also called the optical flow, is known at each point in the image.
Several schemata for computing optical flow have been suggested (e.g. [2], [3], [5]).
Other papers (e.g. [9], [10], [11]) have previously addressed the problem of passive
navigation. Three approaches can be taken towards a solution which we term the
discrete, the differential and the continuous approach.

In the discrete approach, information about the movement of brightness patterns
at only a few points is used to determine the motion of the camera. In particular, using
such an approach, one attempts to identify and match discrete points in a sequence of
images. Of interest in this case is the photogrammetric problem of determining what
the minimum number of points is from which the motion can be calculated for a given
number of images [10], [11], [14]. This approach requires that one tracks features, or
identifies corresponding features in images taken at different times.

In the differential approach, the first and second spatial partial derivatives of the
optical flow are used to compute the motion of a camera [6], [9]. It has been claimed
that it is sufficient to know the optical flow and both its first and second derivatives
at a single point to uniquely determine the motion [9]. This is incorrect (except for
a special case) [1]. Furthe.more, noise in the measured optical flow is accentuated by )
differentiation.

In the continuous approach, the whole optical flow field is used. A major shortcom-
ing of both the local and differential approaches is that neither allows for errors in the
optical flow data. This is why we choose the continuous approach and devise a least-
squares technique to determine the motion of the camera from the measured optical
flow. The proposed algorithm takes the abundance of available data into account and
is robust enough to allow numerical implementation.

2. Technical Prerequisites

In this section we review the equations describing the relation between the motionof a camera and the optical flow generated. We use essentially the same notation as

19]. A camera is assumed to move through a static environment. Let a coordinate
system X, Y, Z be fixed with respect to the camera, with the Z-axis pointing along
the optical axis. If we wish, we can think of the environment as moving in relation
to this coordinate system. Any rigid body motion can be resolved into two factors,
a translation and a rotation. We will denote by T the translational component of
the motion of the camera and by 0 its angular velocity (see also Figure 1 which is
redrawn from [91). Let the instantaneous coordinates of a point P in the environment
be (X, Y, Z).

aim 2 R
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Figure 1. Coordinate Systems

(Note that Z > 0 for points in front of the imaging system.) Let 7 be the vector
(X, Y, Z)T, where T denotes the transpose of a vector, then the velocity of P with
respect to the X,Y, Z coordinate system, is:

S- -T - 0 x(1)

We define the components of P and 0 as:

,( w-(A,B,C)T• (2)

Thus we can rewrite (1) in component form:

X'= -U -- BZ + CY

Y'= -V- CX + AZ (3)
Z' = -W -- AY + BX.

where 'denotes differentiation with respect to time.
The optical flow at each point in the image plane is the instantaneous velocity of t

the brightness pattern at that point. Let (x, y) denote the coordinates of a point in the~image plane (see Figure 1). Since we assume perspective projection between an object

point P and the corresponding image point p, the coordinates of p are:

'~ C " -
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x Y
X Z Y= Y. (4)

The optical flow, denoted by (u, v), at a point (z, y) is:

u = Z' t = I. (5)

Differentiating (4) with respect to time and using (3) we obtain the following equations
for the optical flow:

X' XZ' U W(6)
Y/ YZ' V w

v= +A = (---C -+A-y(--- A-- Bz).

We can write these equations in the form:

U = U, + U. v =v, + v. (7)

where (ut, vt) denotes the translational component of the optical flow and (u,, v,) the
rotational component:

-- U+zW -V + YWZ Z (8)

u, = Azy - B(z2 + 1) + Cy v, = A(y 2 + 1) - Bzy - Cz.

So far we have considered a single point P. To define the optical flow globally we
assume that P lies on a surface defined by a function Z = Z(X, Y) which is positive for
all values of X and Y. With any surface and any motion of a camera we can therefore
associate a certain optical flow and we say that the surface and the motion generate
this optical flow.

Optical flow, therefore, depends upon the six parameters of motion of the camera
and upon the surface whose images are analyzed. Can all these unknowns be uniquely
recaptured solely from optical flow? The answer is no. To see this, consider a surface
S2 which is a dilation by a factor k of a surface S,. Further, let two motions denoted by
M, and M 2 have the same rotational component and let their translational components
be proportional to each other by the same factor k (we will say that M, and M2 are
similar). Then the optical flow generated by S, and M, is the same as the optical flow

generated by S2 and M 2 . This follows directly from the definition of optical flow (8).
It is still an open question whether there are any other pairs of distinct surfaces and
motions which generate the same optical flow.

Determining the motion of a camera from optical flow is much easier if we are told
that the motion is purely translational or purely rotational. In the next two sections
we will deal with these two special cases. Then we shall analyze the case where no a
priori assumptions about the motion of the camera are made. 0

_______________________________-__
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3. Translational Case

In this section we discuss the case where the motion of the camera is assumed to
be purely translational. As before, let t = (U, V, W) be the velocity of the camera.
Then the following equations hold (see (8)):

Ut = Z V, = Z +(9)
z z

3.1. Similar Surfaces and Similar Motions

It will be shown next that if two flows generate the same optical flow, and we know
that the motions are purely translational, then the two surfaces are similar and the two
camera motions are similar. Let Z, and Z 2 be two surfaces and let 7- (U,, V1, W1 )T
and T2 = (U 2 , V2 , W2 )T define two different motions of a camera, such that Z, and 71,
and Z 2 and 12 generate the same optical flow:

-u1  -, W _ V1 W+ YW1  (10)S Z, Z,

-U 2 + zW2  -V 2 + yW 2  (11)
Z2  Z2  (1

Eliminating Z1, Z 2 , u and v from these equations we obtain:

-U1 + zW -U 2 + zW
-vI + Yw, -v 2 +Yw2 (

We can rewrite this equation as:

(-U - zWI)(-V 2 + yW 2 ) = (-U 2 + zW2)(-VI + yW), (13)I or:

UV 2 -zV 2W, -yUW 2 + zyWW, =2 (UV -zVW 2 -yU 2W, +ZyW2 Wi. (14)

Since we assumed that Z, and T, and Z2 and 1'2 generate the same optical flow, the
above equation must hold for all z and y. Therefore the following equations have to
hold:

U1V2 = U2V1
-v2W 1 = -V1 W2  (15)

-Uw 2 = -U2w,.

These e uations can be rewritten as:

£ U1:V1:W1 = U2:V2:W2  (16)

II
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from which it follows that Z2 is a dilation of Zi. It is clear that the scaling factor
between Z1 and Z2 (or equivalently between I'1 and '2) cannot be recovered from the
optical flow, regardless of the number of points at which the flow is known. By uniquely
determining the motion of the camera, we will mean that the motion is uniquely
determined up to a constant scaling factor.

3.2. Least-Squares Formulation

In general, the direction of the optical flow at two points in the image plane
determine the motion of a camera in pure translation uniquely. There is a drawback
however to utilizing so little of the available information. The optical flow we measure
is corrupted by noise and it is desirable to develop a robust method which takes this
into account. Thus we suggest using a least-squares method [4], [12] to determine the
movement parameters and the surface (i.e., the best fit with respect to some norm).

For the following we assume that the image plane is the rectangle ze[-t, w] and
y[-h, h]. The same method applies if the image has some other shape. (In fact, it
can be used on sub-images corresponding to individual objects in the case that the
environment contains objects which may move relative to one another). Furthermore
we have to assume that 1/Z is a bounded function and that the set of points where 11Z
is discontinuous is of measure zero. This condition on 1/Z assures us that all necessary
integrations can be carried out. We wish to minimize the following expression:

_J__ + (-- YW)z] d (17)

In this case then, we determine the best fit with respect to the ML2 norm which is
defined as:

1I AX, Y) 11= f ij[f(, y)J2dzdy. (18)

The steps in the least-squares method are as follows: First we determine that Z which
minimizes the integrand of (17) at every point (z, y). Then we determine the values of
U, V and W which minimize the integral (17).

Let us introduce the following abbreviations:

a = -U + w f = -v + YW. (19)

Note that the expected flow, given U, V and W is simply:

a P =(20)

Then we can rewrite (17) as:

f J~ (U C )2 + (V - )2]dzTdy. (21) o
Z, , (
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Figure 2. Geometrical Interpretation

We proceed now with the first step of our minimization method. Differentiating the

C integrand of (17) with respect to Z and setting the resulting expression equal to zero

yields: ( _ a 3 3(22)
Z )- + (V - =F)j2 0. 22

Therefore we can write Z as:
~Z - (23)

"a + V'(3

This equation, by the way, imposes a constraint on U, V and W, since Z must be
positive. We do not make use of this except to help us pick amongst two opposite
solutions for the translational velocity later on. Note that now:

Q u __ -vo p - V
_ _ _ _ _a 

ts v a (24)

Z 2+# C a2 ~ +z2(4

and we can therefore rewrite (17) as:

_W vC +P 2 d (25)

It should be clear, by the way, that uniformly scaling U, V and W does not change

the value of (25). This is a reflection of the fact that we can determine the motion

parame t,!rs only up to a constant factor.
Before proceeding with the second step, we give a geometrical interpretation in

£ Figure 2 of what we have so far. Suppose that the motion parameters IT, V, and

,4|

.-- I nn -- M ,
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W are given. At any given point, say (Zo, Yo), optical flow depends not only upon the
motion parameters but also upon the value of Z at that point, ZO say. However, the
direction of (u, v) does not depend upon Z0 . The point (u, v) must lie along the line L
in the uv-plane defined by the equation u - va = 0. Let the measured optical flow
at (zO, yo) be denoted by (ur, v,,), and let the closest point on the line L be (u., v.).
This corresponds to a particular Z. given by (23). The remaining error is the distance
between the point (urn, vin) and the line L. The square of this distance is given by the
integrand of (25).

For the second step, we differentiate (25) with respect to U, V and W and set the
resulting expressions equal to sero:

f /i(u/ - vca)(uat + Vft) dzdy = 0

4 f ,~ a(u/i - Va~)(uO + VP) dxdy = 0 (26)

- ,W (a2 + #2)2 vidd -

f ' (ya - zl)(u/3 - va)(ua + VO) dzdy=

Let us introduce the following abbreviation:

K = (up - va)(ua + V"8) (27)
(a2 + #2)2

Then equations (26) can be rewritten as:

f hJJf- [(-V + yW)K~dxdy = 0

T'hI [(-U + zW)Kldzdy = 0 (28)

fh [(-yU + xV)Kldzdy = 0.

The sum of U times the first integral, V times the second integral, and W times the
third integral is identically zero. Thus the three equations are linearly dependent. This
is to be expected, for if:

f(kU, kv, kW) = f(U, V, W), (29)

where f is a differentiable function and k a constant, then:
.1

'of af ao (30)U -+ V57V + wY- - .'
0

F . . .. -



The result is also consistent with the fact that only two equations are needed, since the
translational velocity can be determined only up to a constant factor. Unfortunately
equations (28) are nonlinear in U, V and W and we are not able to show that they have
a unique (up to a constant scaling factor) solution.

3.3. Using a Different Norm

There is a way, however, to devise a least-squares method which allows us to display
a closed form solution for the motion parameters. Instead of minimizing (17), we will
try to minimize the following expression:

[(u _ _U + XW) 2 + (V__ - V + YW) 2 1](C2 + 2 )dxdy (31)

obtained by multiplying the integrand of (17) by a2 + #2. Then we apply the same
least-squares method as before to (31). When the measured optical flow is not corrupted
by noise, both (31) and (17) can be made equal to zero by substituting the correct motion
parameters. We thus obtain the same solution for the motion parameters whether we

minimize (31) or (17). If the measured optical flow is not exact, then using expression
(31) for our minimization, we obtain the best fit with respect not to the ML 2 norm,
but to another norm which we call the MLa norm:

*
II f(, Y) "= j [f(, y)12(a 2 + 32 )dzdy. (32)

What we have here is a minimization in which the error contributions are weighted,
greater importance being given to points where the optical flow velocity is larger. This
is wost appropriate when the measurement of larger velocities is more accurate.

Which norm gives the best results depends on the properties of the noise in the
measured optical flow. The first norm is better suited to the sitation where the noise in
the measurements is independent of the magnitude of the optical flow. Note also that
if we really want the minimum with respect to the ML 2 norm, we can use the results
of the minimization with respect to the ML,e norm as starting values in a numerical
minimization.

We discuss now our least-squaie" wethod in the case where the norm is chosen to
be ML. . First we determine / by differentiating the integrand of (31) with respect
to Z and setting the result equal to zero. We again get (22):

(U -a)e + (- =0o, (33)

from which it follows that (23):

Z - a= +# (34)
ua + v#*

7



10

So we want to minimize:

/_f!_ (up - VC) 2dzdy. (35)

Let us call this integral g(U, V, W), then, since:

up - Ver = (vU - uV) - (XV - Yu)W, (36)

we have:

g(U, V, W) = aU2 + bV2 + cW 2 + 2dUV + 2eVW - 2f1WU, (37)

where:

a= f v 2dzdy b = fOhf" . u 2dxdy
h W h wu

c = -f (XV - yu)2 dxdY d = - ff uvdxdy (38)
h w h --w

C = ThL- u(xv - yu)dxdy f = - ff v(zv - yu)dxdy.

Now g(U, V, W) cannot be negative, and g(U, V, W) = 0 for U = V = W 0. Thus
a minimum can be found by inspection, but is not what we might have hoped for. In
fact, to determine the translational velocity using our least-squares method we have to
solve the following homogeneous equation for ':

G = o (39)

where G is the matrix:
aG= b f 

(40)

Clearly (39) has a solution other then zero if and only if the determinant of G is zero.
Then the three equations (39) are linearly dependent and T can be determined up to
a constant factor. In general, however, as the data is corrupted by noise, g cannot be
made equal to zero for non-zero translational velocity and so P - (0,0, 0)T will be the
only solution to (39). To see this in another way, note that g has the following form:

g(kU, kV, kW) = k'g(U, V, W) (41)

where k is a constant. Clearly g(U, V, W) assumes its minimal value for U = V -
W= 0.

What we are really interested in, is determining the direction of P which minimizes
g, for a fixed length of 7. Hence we impose the constraint that P be a uitit vector.

A 1 • ' _
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If 1 is constrained to have unit magnitude, the minimum value of g is the smallest
eigenvalue of the matrix G and the value of T for which g assumes its minimum can be
found by determining the eigenvector corresponding to this eigenvalue [8]. This follows

from the observation that g is a quadratic form which can be written as:

g(U, V, W) = TTGT. (42)

Note that G is a positive semidefinite hermitian matrix as a > 0, b > 0, c > 0, ab >
d2 , bc > e2 and ca > f2. (The last three inequalities follow from the Cauchy-Schwarz
inequality [7], [8]). Hence all eigenvalues are real and non-negative and are the solutions
X of the third degree polynomial:

X3 - (a + b + c)> 2 + (ab + bc + ca -- d2 - e2 - f 2)X + (43)

(ae2 + bf2 + cd2 - abc - 2def) = 0.

There is an explicit formula for the least positive root in terms of the real and imaginary
parts of the roots of the quadratic resolvent of the cubic. In our case this gives us the
desired smallest root, since the roots cannot be negative. For the sake of completeness,
however, various pathological cases that might come up will be discussed next, even
though they are of little practical interest.

Note that X = 0 is an eigenvalue if and only if G is singular, that is, if the constant
term in the polynomial (43) equals zero. In fact, if the determinant of G is zero one

can find a velocity T which makes g zero. It follows from a theorem in calculus that

this happens only when the optical Bow is either not corrupted by noise at all or only

at a few points. The theorem states that if the integral of the square of a bounded and

cntinuous function is zero then the function itself is zero. Hence errors can only occur

at points where the optical flow is discontinuous, and these are exactly the points where

the surface defined by Z is discontinuous. (These are also the places where existing

methods for computing the optical flow [5] are subject to large errors).
It is impossible for exactly two eigenvalues to be zero, since this would imply that

the coefficient of X in the polynomial (43) equalled zero, while the coefficient of X2 did

not. That in turn would imply that ab = d2 , bC = e2 , and ca = f 2, while a, b, and
c are not all zero. For equality to hold in the Cauchy-Schwarz inequalities, however,
u and v must both be proportional to xv - yu. This can only be true (for all z and

y in the image) if u=v=0. But then all six integrals become zero and consequently

all three eigenvalues are zero. This situation is of little interest, since it occurs only

when the optical flow data is zero everywhere. Then the velocity is zero too. Oncethe smallest eigenvalue is known, it is straightforward to find the translational velocity

which best matches the given data. To determine the eigenvector corresponding to an
eigenvalie, say X1, we have to solve the following set of linear equations:

Zap
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(a - X )U + dV +1W = 0
dU + (b - >,)V + eW = 0 (44)
fu + eV + (c - X1)W = 0.

As Xi is an eigenvalue, equations (44) are linearly dependent. Let us for a moment
assume that all eigenvalues are distinct, that is, the rank of the matrix (G - I), where
I is the identity matrix, is two. Then we can use any pair of them to solve for U, V in
terms of W say. There are three ways of doing this. For numerical accuracy we may
add the three results to get the symmetrical forms:

U = (b - ),)(c - X,) - f(b - X1) - d(c - X1) + e(f + d - e)

V = (c - Xi)(a - X) - d(c - XI) - e(a - Xi) + f(d + e - f) (45)

W = (a - X1)(b - Xi) - e(a - X1) - f(b - X1) + d(e + f - d).

Note that X1 will be very small, if the data is good, and one may wish to just
approximate the exact solution by using the above equations with X, set to zero. (Then
there is no need to find the eigenvalue). In any case, the resulting velocity may now be
normalized so that its magnitude equals one. There is one remaining difficulty, arising
from the fact that if P is a solution to our minimization problem, so is -P'. Only one
of these solution will correspond to positive values of Z in equation (34) however. This
can be easily seen by evaluating (34) at some point in the image. The case where the
two smallest eigenvalues are the same will be discussed in one of the next paragraphs.

There is a simple geometrical interpretation of what we have done so far. To this
end we consider the surface defined by g(U, V, W = k where k is a constant. Note
that we can always find a new coordinate system U, V, W in which g(U, V, W) can be
written as:

XlU + X2  +XW = k (46)

where X, for i = 1, 2,3 are the three eigenvalues of the quadratic form. If the eigenvalues
are all non-zero, the surface g(U, V, W) = k is an ellipsoid with three orthogonal semi-
axes of length VkVX,. We are particularly interested in the case where the constant
k is the smallest eigenvaue. Then all three semi-axes have lengths less than or equal
to one. Hence the ellipsoid lies within the unit sphere. If the two smallest eigenvalues
are distinct, the unit sphere touches the ellipsoid in two places, corresponding to the
largest axis. If the two smaller eigenvalues happen to be the same, however, the unit
sphere touches the ellipsoid along a circle and as a result all the velocity vectors lying
in a plane spanned by two eigenvectors give equally low errors. Finally, if all three
eigenvalues are equal, no direction for P is preferred, since the ellipsoid becomes the
unit sphere.

The case where exactly one eigenvalue is zero also has a simple geometrical inter-
pretation. The surface defined by g(U, V, W) = 0 is a straight line, which can be seen
easily from the following equation:

\I &2 + X 2 0 0 (47)
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written for the case when X3 is zero. (Remember that X1 and X2 are both positive.)
Clearly the unit sphere intersects this line in exactly two points, one of them cor-
responding to positive values for Z in equation (34).

The method which we just described can be easily implemented. To this end, the
problem can be discretized. An expression similar to (31) can be derived where the
integrals are approximated by sums. Our minimization method can then be applied
to these sums. The resulting equations are similar to ones described in this section,
with summation replacing integration. We implemented the resulting algorithm and
tested it using synthetic data including additive noise. Thes results agreed with our
expectations.

One can use the ratio of the biggest to the smallest eigenvalue, the so called
condition number [13], as a measure of confidence in the computed velocity. The result
is very sensitive to errors in the measurements unless this ratio is much bigger than
one.

Curiously, the same error integral as (35) is obtained in the case where the MLz..
norm is used:

hlz =/ [f(Xy)Z(Xy)1 2(u' + v2)dzdy. (48)

We can arrive at a similar solution by multiplying the integrand in (17) by Z2 instead
of by a2 + . In that case the minimization is carried out with respect to the MLz
norm defined by:

II f(x, f') [z _ f(, y)Z(, )]2dzdy. (49)

Here optical flow velocities for points which are further away are weighted more heavily.
This is most appropriate when the measurement of larger velocities is less accurate.
We end up with a quadratic form similar to g, only the integrals for the six constants
corresponding to a, b, c, d, e, and f are a bit more complicated. Curiously they only
depend on the direction of the optical flow at each point, not its magnitude.

Also, other constraints could be used. If we insist on U2 + V 2 = 1, for example, we
obtain a quadratic instead of a cubic equation, and if we use W = 1, a linear equation
only need to be solved. The disadvantage of these approaches is that the result is
sensitive to the orientation of the coordinate axes. Clearly, in the case of exact data,
we get the right solution using any of the constraints mentioned above.

34. Using a Different Constraint

The minimization scheme discussed in the previous section gives us a unique
solution in most cases for the velocity vector t. Here we propose a slightly different
approach which always gives us a unique solution. Note that applying the first step in
our minimization method gives us a constraint between the values of Z, the velocity

'1 ," T .
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vector and the optical flow at every point. We can in addition ssume that Z = Zo is
known at a particular point, say (Zo, yo). Using the MLz, norm in our scheme, we
want to minimize:

[UZ _ (-U + zW)J, + [vZ _ (-V + YW)J 2(U + ti)dzdy. (50)

Differentiating (50) with respect to Z, and setting the resulting expression equal to zero,
we obtain:

U2 + V2 51

Thus we propose to solve the minimization scheme under the following constraint:

Zo(U + V2) - (Uo0 + Vop) = 0 (52)

where uo and vo denote the components of the optical flow measured at (Zo, yo). The
error integral (50) becomes after substituting (51):

_ji (Up - VI)2dZdy (53)

which is the same as (35) and is denoted by g(U, V, W) (37). Thus we want to minimize: ' )

g(U, V, W) + 2X[Zo(uo + v0) - (uoa + von)] (54)

where X denotes a Lagrangian multiplier. To determine U, V and W the following
linear equations obtained by differentiating (54) with respect to U, V, W and X have to
be solved:

aU + dV +W+ Xuo - 0

dU + bV + eW + Xvo 0 (55)
f U + eV + cW - X(zoUo + poao) =" 0
UoU + VOV - (ZoUo + ioVo)W = -Zo(O + Vo).

These equations can be written in the form:

,, =F (56)

where a P ( = (U, V, W, X)T and 2 (0,0,0, -Z0(t4 + v2))T. Let the determinant of
CX be A0:

A0 =(d' - ab)(zouo + YoVo) 2 + (e' - bc)uo + (f2 - ac)v -+ (57)
2[(de - bf )uo(zouo + yovo) + (df - ae)vo(zouo + Yovo) + (cd - ef)uovo]. 0 "I

• - 0-
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Assuming that A0 3 0 we can easily determine 'x from (55):

GX -. (58)

Introducing the following abbreviation:
K-- Z0(i4' + t4)()

AO (5)

we can give these formulae for '),:

U = K[uo(bc - e') + vo(ef - cd) + (ZoUo + yovo)(bf - de)]

V = K[uo(ef - cd) + vo(ac - f2) + (ZoUo + yovo)(ae - df)] (60)

W = K[uo(de - bi) + vo(df - as) + (z0t 0 + yovo)(d 2 - ab)]

X = K[ae2 + d2 + bf 2- abc - 2def].

The disadvantage of this approach is that the result depends upon the values of the
optical flow at a single point. To circumvent this problem we propose to determine
average values for U, V and W in the following manner. First note that we are only
interested in the ratios of U/W and V/W which obviously do not depend upon the
(unknown) value for Zo. Equivalently we could determine the value for K from the
condition that 7 should have unit length. Hence we can determine values for U, V
and W which depend only upon the values of the optical flow at a sing!e point and the
coefficient in the matrix G. If we want to remove the dependence of the result on the
data at a single point, we can simply average the values obtained for all image points.

In the case where the data is exact, i.e., where the determinant of G, denoted
by detG, vanishes, the solution for T is the same one as obtained using no constraint
in our minimizations scheme. To see this just observe that in that case X = 0 as
X = -KdetG). In the case where AO = 0, equations (55) have a solution only when
detG = 0. We do not have to be concerned with the case where A0 = 0 but detG 3 0
as we can argue that equations (55) always have to have a solution. Note that our
method is based on the condition that Z is a certain function (51) of U, V, W. Hence
(52) cannot impose a constraint which would be impossible to satisfy.

4. Rotational Case

Suppose now that the motion of the camera is purely rotational. In order to
determine the motion from optical flow we again use a least-squares algorithm with the
ML 2 norm described in the previous section. Recall that in this case the optical flow
is (see (8)):

u, = Axy - B(z2 + 1) + Cy (61)

*v, = A(y' + 1) - Bxy - Cx.

IblMW NNW%" .
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We will show now in an analogous fashion to section 3.1 that two different rotations,

say 0D = (Ai, Bi, Ci)T and 02 = (A2 , B 2, C2 )T, cannot generate the same optical flow.
Assuming the converse, the following equations have to hold for all values of z and y:

Aixy - Bi(x2 + 1) + Ciy = A2Xy - B2(X2 + 1) + C¢y (62)

AI(y 2 + 1) - Bixy - Cx = A 2(y' + 1) - B 2zy - C 2 z

from which we can immediately deduce that 0i = 02.

In general, the direction of the optical flow at two points and its magnitude at one

point determine the motion of a camera in pure rotation uniquely. We choose instead
to minimize the following expression:

_ _ [(U -- U,)2 -+- (V -- V,)2dd. (63)

As the motion is purely rotational, the optical flow does not depend upon the distance
to the surface and therefore we may omit the first step in our method. Thus we imn-

mediately differentiate (63) with respect to A, B and C and set the resulting expressions
equal to sero:

h f K(U - U,)Ty + (V - V,)(y 2 + )I)dzdi = 0

hf [(u - u,)(z2 + 1) + (v - v,)zy]dzdy = 0 (64)

f . I - u,)y - (v - v,)xldxdy = 0.

Rewriting the above equations we obtain:

f;f [uzy + v( = + - 1)]dxdp =-- _ [u,zy + V,(y2 + 1)]dZdyh W h w

hf [U(z + 1) + vxyldzdy = .U,(Z + 1) + Vit]dy (65)
h w h W

and expanding these equations yields:

AA +2B +7C==k
2A + + 2C --- (66)
7A + 2B + Zc =M,

Okt
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where:

h W

W[~2+ (y2 + 
F]dd

= f-f__[(z2 + 1)2 + X2y'Jdzdy

=L f__[W +pJd (67)

aT = - Jhf: 2 + y2 + 2)]dxdy

h W

ydxdy
7 = f T  e- ]dzdy,

and:

= h- [uXy + V(y2 + 1)]dzdyh W

1= i- i-u1
_ ' J 2 + 1)v + v]x d z(68)
h W

If we call the coefficient matrix in (66) M and the column vector on the right-hand side
R4, then we have:

MQ = ft. (69)

Thus, provided the matrix M is non-singular, we can compute the rotation as follows:

a - M - 1 . (70)

It is easy to see that the matrix M is non-singular in the special case of a rectangular

image plane since then:
h' 2h' 4tuShs

A4wh( + " +  4w+

4wh,!--l + hs) (71

4wh 2 h2
3 (

77 a-RUN=0.

[i ~ ~.....



So in the case of a rectangular image plane, the matrix is diagonal, which makes it
particularly easy to compute its inverse. In fact, the matrix is diagonal if the image
plane is symmetrical about the z-axis and the y-axis. As the extent of the image plane
decreases, however, the matrix M becomes ill conditioned. That is inaccuracies in the
three integrals (E, 1, and M) computed from the observed flow are greatly magnified.
This makes sense since we cannot expect to accurately determine the component of
rotation about the optical axis when observations are confined to a small cone of
directions about the optical axis. Again, in our numerical implementation of the
algorithm the integrals in (67) can be approximated by sums.

5. General Motion

We would like now to apply a least-squares algorithm to determine the motion of a
camera from optical flow given no a priori assumptions about the motion. It is plain that
a least-squares method is easiest to use when the resulting equations are linear in all the
motion parameters. Unfortunately, there exists no norm which will allow us to achieve
this goal. We did find a norm, however, which resulted in equations that are linear in
some of the unknowns and quadratic in the others. We again attack the minimization
problem using the MLap norm under the constraint that U2 + V 2 + W2 = 1. The
ensueing equations are polynomials in the unknowns U, V, W, A, B and C and can be
solved by a standard iteration method like Newton's method or Bairstow's method [12]
or by an interpolation scheme like regula falsi 112]. The expression we wish to minimize
is: /2# °

f - ( - t,) + [V + ,)]l}(g2 + #2)dZdy. (72)

The first step is to differentiate the integrand of (72) with respect to Z and set the
resulting expression equal to sera:

Z a2~= + #2 73
( ,)O + (V - (73)

We introduce the Langrangian multiplier X as before and attempt to minimise:

JJ (U - U,)#- (V - V,)aIddy + A(U2 + V 2 + W2 - 1). (74)

The equations we have to solve to determine the motion parameters are obtained by ()

7--,
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differentiation-

_hfJ (U - (v - v,)][(z 2  - 1) ]dxdy = 0

T __(u - U,)# - -(v - [ 1)p _ zadzdy = 0

h' ,.[(u- u )# - (v - v,)alJ[Y + x U]dxdy = 0 (T5)

J [(u - - (V - Vr)av, dzdy + XU = 0/' _
- )# - . ( - -),c.)au,+.dzdy + XV = 0

U2 "- V 
2  = 1.

Note that the first three of thee equations are linear in A, B and C from which these
parameters can be determined uniquely in terms of U, V and W. Then we can determine
U,V and W from the last four equations by a numerical method. To this end, the
problem can be discretized and equations analogous to (75) derived, where summation
of the appropriate expressions is used instead of integration.

6. Summary

Our objective was to devise a method for determining the motion of a camera from
optical flow which allows for noise in the measured data. The least-squares method
which we proposed in this paper meets our goal and is also suitable for numerical
implementation. An important application of our results is in passive navigation. Here
the path and instantaneous altitude .of a vehicle is to be determined from information
gleaned about the environment without the emission of sampling radiation from the
vehicle.
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