DIIL FILE COPY

R Ca N

W
% SEAEA RN
E‘? ’ .

(7& i

«fi VSC-TR-81~28

O THREE-DIMENSIONAL FINITE

& DIFFERENGE SIMULATION OF FAULT
& DYNAMICS: RECTANGULAR FAULTS
y={ WITH FIXED RUPTURE VELOCITY

oy
<

=

S. M. Day
TOPICAL REPORT

SYSTEMS, SCIENCE AND SOFTWARE
P.0O. Box 1620
La Jolia, California 92038

September 1981

APPROVED FOR PUBLIC RELEASE,
DISTRIBUTION UNLIMITED

Monitored by:

VELA Seismological Center
312 Montgomery Street
Alexandria, VA 22314

5 8550
01

;

DTIC

ELECTE
JAN 26 1982

26 82087




K

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

W
> VSC+TR-81-28

IZ. GOVT ACCESSION NO. 3‘ RECIPENT'S CATALOG NUMBER

AD-NI41006

4. "TITLE fand Subtitle) st TYPE OF REPOART & PEMOC SOVERED

Three-Dimensional Finite Difference Simulation of Topical Report
Fault Dynamics: Rectangular Faults with Fixed
- . 4 A ]
Rupture Velocity R 5 R el
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
S. M. Day F08606-79-C-0008
9. PERFORMING QRGANIZATION NAME AND ADDNRESS 10. PROGRAM ELEMENT. PROJECT TASK

AREA & WORK JNIT NUMBERS

Systems, Science and Software
P. 0. Box 1620 Program Code No. 6H189

La Jolla, California 92038 ARPA Order No. 2551

1. CONTROLLING OFFICE NAME ANDO ADDRESS 12. REPQRT DATE

VELA Seismological Center September 1981

312 Montgomery Street . Zg""" OF PAGES
Alexandria, Virginia 22314

S. SECURITY CLASS. (of this report)

Unclassified

14, MONITORING AGENCY NAME & ADORESS(if ditferent from Controlling Oltice)

18a. DECLASSIFICATION,. DOWNGRADING
SCHEDULE

e — v,
16. OISTRISBUTION STATEMENT (of this Reporr)

Approved for Public Release, Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il di{terent irom Report)

i8. SUPPLEMENTARY NQTES

19. KEY WORDS (Continue on reverse side il necessary and identify by dlack number)

Earthquakes, finite difference, dynamic modeling, three-dimensional

Tz0. AISLRACT (Continue on reverse side I necessary snd identify by dlock number)

We analyze three-dimensional finite difference solutions for a simple shear-
crack model of faulting to determine the effects of fault length and width on the
earthquake slip function. The fault model is dynamic, with only rupture velocity,
fault dimensions, and dynamic stress-drop prescribed. The numerical solutions are
accurate for frequencies up to 5 Hz, and are combined with asymptotic results for
shear cracks in order to characterize the slip function at higher frequencies.

(continued)

DD ,S%%, 1473 eormion oF 1 Nov 515 cesoLETE

Unclassified

SECURITY CLASSIFICATION OF TH(IS PAGE (When Dete Encerea;

- R r————E—
/

. ” - - .. - - ..
S 2 - . - i : - Lt WEPY e
- - o . . (B sl w P <. . * ey = 7 2
L e £ & ~ s "y . » Py * . . B N

j

TR




Sive

S s "
el o LR

- — e e R

Unclassified

i
SECUMTY, CLASSIPICATION OF THIS PAGE(When Deta Entered)

(cagtinued)

Near the hypocenter, the slip velocity exhibits a square root singularity
whose intensity increases with hypocentral distance. At distances greater
than the fault width, w, growth of the velocity intensity ceases, and the
slip function becomes nearly invariant with distance along the fault length.
Close-form expressions are developed for the dependence of static slip (ss¥,
slip rise time (), and slip velocity intensity ¥y on fault geometry.. .
Along the centerline of a long, narrow fault, at hypocentral distances ex-
ceeding w, these expressions reduce to se~wAt/u, TR= 0.5 w/up, and V=
JW/2 g At/u, where At is the dynamic stress drop, u the shear modulus, and
UR the rupture velocity, = . L - -

2-3The numerical results imply that uniform-dislocation kinematic earth-
quake models in which s1ip is represented by a ramp time-function will under-
predict high-frequency ground motion relative to low-frequency ground motion.
A further implication of the numerical solutions is that the nature of in-
elastic processes at the advancing edge of a long fault will depend on fault
width, but will be independent of rupture 1ength7\

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

L2

»

S




) Vgcorq!'ror ‘
> NTIS GRARI

DTIC TAB 0
Unannounced O
Justification . _

By
» | Distribution/

Availability_Codp;

" lAvail and/or
eist Special

Al T

AFTAC Project Authorization No. VT/0712/B/PMP
ARPA Order No. 2551, Program Code No. 6H189
Effective Date of Contract: November 17, 1978
Contract Expiration Date: November 15, 1981
Amount of Contract: $1,816,437
Contract No. F08606-79-C-0008
Principal investigator and Phone No.

Dr. J. Theodore Cherry, (714) 453-0060
Project Scientist and Phone No.

Mr. Brian W. Barker, (202) 325-7581

b
-

1 ; This research was supported by the Advanced Research Projects “
3 Agency of the Department of Defense and was monitored by
AFTAC/VSC, Patrick Air Force Base, Florida 32925, under Contract No.
F08606-79-C-0008,

The views and conclusions contained in this document are those of
3 the authors and shouid not be interpreted as necessarily representing
- the official policies, either expressed or implied, of the Advanced
2 Research Projects Agency, the Air Force Technical Applications
z Center, or the U.S. Government.

wW/0 11098




TABLE OF CONTENTS

Section Page

I . INTRODUCTION L] . L] . L] L] L L] L] L L] . . L] - - ]

I1. THE FAULTMODEL. . . . « « ¢ « ¢ ¢« ¢ o o « o« 5
2.1 INTRODUCTION . . « + . « o« ¢ o o « « o« 5
2.2 INITIAL CONDITIONS AND CONSTITUTIVE
PROPERTIES. « .« ¢ o ¢ « « ¢ ¢« « o o o« 5
2.3 GROWTH OF THERUPTURE . . . « . . .« . « .« 5
2.4 BOUNDARY CONDITION OF THE FAULT. . . . . . . 8
2.5 STRESS-DROP SCALING. . . « . « « « « . . 9
2.6 HEALING. . ¢« ¢ « ¢« ¢ o « o o « « « 10
I11. NUMERICAL SOLUTIONS FOR THE FAULT SLIP . . . . . . .12

3.1 METHOD OF SOLUTION . . . « . ¢« « « « .« .12
3.2 DESCRIPTION OF THE CALCULATIONS. . . . . . .12

3.3 SLIP TIME-HISTORIES. . . . « . . « + « . 13

3.4 SLIP VELOCITIES . & ¢ & ¢ ¢ &« o« + + .« .23

Iv. ANALYSIS OF THE SLIP FUNCTION . . . . . . . . . .26
4.1 THE VELOCITY SINGULARITY . . . . « « . . .26

4.2 THE STATICSLIP . . « . ¢ ¢« ¢« ¢« « o« « .29

4.3 THE SLIPRISETIME . . . . « ¢ « .« .« .« 32

V. SUMMARY AND DISCUSSION . . . . . « « « « « « o 34

vI. REFERENCES . . . . ¢ « ¢ ¢ « + ¢« o « « o 42

SYSTEMS. SCIENCE AND SOFTWARE




? LIST OF ILLUSTRATIONS
Figure Page
3 1. Rupture geometry and coordinate system for the
| numerical simulations. . . . « + ¢ ¢« ¢ ¢ o o o o 7
’ ! 2. Computed slip time-histories along the center-line
of the square fault plane at several distances from
the hypocenter . . . =« &« ¢ « o o o o o« o« o + 14
3. Computed slip time-histories along the center-line
of a rectangular fault with aspect ratio 2:1. . . . . .17
t 4, Computed s1ip time-histories along the center-line
of a rectangular fault with aspect ratio 16:3. . . . . . 18
5. Computed slip time-histories along the center-line
of a rectangular fault with aspect ratio 4:1 . . . . . .19
! 6. Static slip along the center-line of the fault (x axis),
as a function of distance from the hypocenter. . . . . . 20
7. Slip rise time along the center-line (x axis) of
rectangular faults. . . ¢ ¢ ¢ ¢ ¢ o o o+ o o o o2
4 8. STip velocity time-histories for the 4 x16 km fault. . . . 24
9. Peak s1ip velocity as a function of hypocentral distance
; along the fault center-line (x axis)s . . . . . . . .25
- 10. Comparison of numerical solution and closed-form "
- approximation (Equation 12) for the static slip on
! ’ a fault with aspect ratio 2:1 . . . . . . . « « . .30
2 1. Sketch summarizing the approximate behavior of the
£ slip function for long, narrow faults . . . . . . . . 35
i§ 12. Sketch of a closed-form approximation for the slip
X ) velocity time-history (Equation 14) at y = 0, x >> w,
3 compared to a corresponding numerical solution (point E
r} of Figure 8). - . . . . e . . Y . . . . . . . 36
7
'; .

Lk

SYSTEMS. SCIENCE AND SOFTWARE




1. INTRODUCTION

Deterministic simulation of earthquake ground motion has
played an increasingly important role in seismology and earthquake
engineering in recent years. For example, ground motion simulation
has been used recently as a tool for developing engineering design ;
motion criteria (Wiggins, et al., 1978; Apsel, 1979). Such simula-
tions require theoretical models for both the source process and the
propagation and dissipation of seismic energy. While ground motion
simulations have been undertaken using rather rigorous theoretical
methods to model anelastic wave propagation from source to site,
including the effects of depth-dependent geologic structure, the
earthquake source itself s usually specified on largely intuitive
grounds. The displacement-discontinuity time history (slip func-
tion), by means of which the earthquake source is represented, is
generally prescribed without rigorous consideration of fault
dynamics.

Following Haskell (1964; 1969) and Savage (1966), most studies
have represented the earthquake by a slip function which is
spatially uniform over the fault surface and has some simple time
dependence, usually that of a finite-duration ramp. Simple kine-
matic source models of this type have proven useful for representing
low-frequency (less than about 1 Hz) characteristics of earthquake
ground motion. For example, Bouchon (1979) used a uniform disloca-
tion of ramp form in combination with a layered earth structure to
model the Station 2 velocity and displacement recordings of the 1966
Parkfield earthquake. However, high frequency (1 to 20 Hz) ground
motion 1is highly sensitive to the specification of the saurce !
process. The analysis of Madriaga (1978), in particular, g
underscores the inapproriateness of the uniform-slip kinematic
models for synthesizing ground motion with wavelengths much shorter
than the fault widtn. This high frequency radiation is important in |
earthquake engineering, as well as in nuclear monitoring studies. ]

i
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Closed-form theoretical solutions describing the slip function
are available only for the most idealized dynamic shear-crack models
of earthquakes. Restricting consideration to three-dimensional
analyses, perhaps the most useful of such analytical results are the
solutions of Kostrov (1964) and Burridge and Willis (1969). The
former gives the slip history on a circular shear crack which
initiates at a point in a prestressed whole space and grows at a
fixed rupture velocity without stopping; <the Jlatter extends
Kostrov's result to the case of an elliptical shear crack. These
self-sim{lar solutions are characterized by square-root singular-
fties at the crack edge in both shear stress and slip velocity, and
the intensity of these singularities grows as the crack dimension
increases. While these analytic solutions are very useful for
interpreting tne results of more complex numerical studies, they
cannot account for effects associated with the stopping of rupture
growth and the ensuing arrest of slip.

Madarfaga (1977a) used two-dimensional analytical results,
notably those of Kostrov (1966, 1975) and Fossum and Freund (1975)
to characterize the slip-velocity singularities associated with the
starting and stopping of ruptures. He then applied a representation
theorem, together with Keller's (1962) geometric theory of dif-
fraction to construct a high-frequency approximation for the radi-
ation from shear cracks in three dimensions. This analysis yields
expressions for the radiation from a discrete jump in rupture velo-
city. The solution involves a stress intensity factor which depends
on the three-dimensional geometry of the fault as well as its stress
and rupture history, and a second factor which depends only on the
instantaneous jump in rupture velocity along the crack edge. The
solution in this form provides considerable fnsight into the process
of high-frequency generation, although to fully characterize the
stress intensity factor and rupture velocity, a complete solution to
the three-dimensional dynamical problem would sti1l be required.
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In general, numerical methods are necessary to solve the
three~dimensional dynamic problem of a fault which stops. Several
studies have addressed this prodblem, with the approximation that
rupture velocity is specified a priori. This fixed-rupture-velocity
fault model has been studied for faulting confined to a circular
region (Madariaga, 1976; Das, 1980), a semi-circular region
(Archuleta and Frazier, 1978), and rectangular regions (Madariaga,
1977b, 1979; Day, 1979; Archuleta and Day, 1980). Das (1981) and
Day (1979) have studied rectangular faults in which rupture velocity
is derived from a fracture criterion (spontaneous rupture). These
numerical solutions demonstrate that edge effects associated with
the narrow dimension of the fault substantially influence the slip
function, controiling static slip and slip rise time.

In this study, our objective is to provide an improved under-
standing of three-dimensional geometrical effects governing slip
functions. The study employs three-dimensional finite-difference
solutions to the dynamic fault problem in a whole space. On the
basis of the numerical solutions, clased-form approximations are
derived for the static slip and rise time predicted for rectangular
faults. These quantities are measures of the low- to fntermediate-
frequency content of the slip function. A particular emphasis of
this study, however, will be ta quantify the high-frequency behavior
of the slip function, which has been largely unresolvable from pre-
vious numerical studies of earthquake dynamics. It is the high-
frequency character {(greater than 1 Hz or so) of the slip function
which is of primary {importance for synthesizing near-field ground
motion in the period range of engineering interest. The high-~fre-
quencies are also of importance for synthesizing earthquake ground
motion at regional distances, where substantial seismic energy is
recorded in the 1-5 Hz range. A good source model for high
frequencies 1s also i{mportant for inferring the attentuative
properties of teleseismic propagation  paths {(i.e., t*).
Furthermore, some of the methods proposed for discriminating
earthquakes from underground explosions use spectral characteristics
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of telesismic P-waves in the 1-5 Hz range (e.g., Bache, et al.,
1979). Once the high-frequency behavior of the slip function has
been quantified from the numerical solutions, the numerical results
are combined with asymptotic resuits for dynamic cracks, in order to
characterize the stress intensity and energy release rate at the
advancing fault edges.

So as to focus our analysis on the geometrical effects
associated with the three-dimensionality of the problem, we employ
the approximation that rupture velocity be a specified constant.
The finite difference method used here is, of course, also well
suited to the more compiex problem of modeling spontaneous rupture
propagation.

The finite difference computations on which this analysis fis
based were performed on the ILLIAC IV computer at NASA/Ames Research
Center. Programming support was provided under the direction of
Susan Biester and Stewart Hopkins.
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II. THE FAULT MODEL

2.1  INTRODUCTION

In the earthquake simuiations reported here, we treat faulting
as a propagating shear stress relaxation which occurs as a conse-
quence of shear fajlure on a planar surface. The mathematical
formulation follows closely that of Equations 2.1 to 2.13 of Kostrov
(1970). Archuleta and Frazier (1978) also present a detailed
exposition of a mathematical model of a propagating shear stress
relaxation.

We will specify the initfal state of stress in the medium, its
constitutive properties, the rupture velocity, the limiting edge of
the rupture surface, and the friction law to be satisfied on the
rupture surface after failure. Although the velocity of the rupture

front is prescribed, the time of arrest of slip at a given point is
not. Instead, the cessation of slip is a consequence of the
nonlinear friction law, and is determined as a part of the dynamic
solution.

2.2 INITIAL CONDITIONS AND CONSTITUTIVE PROPERTIES

For time t less than zero, we assume that an equilibrium state
of stress exists with velacity everywhere zero. The equilibrium
configuration is such that the prospective fault plane experiences a

uniform shear traction T, and compressional normal traction e

The fault plane is permitted to fail in shear, but the medium
will otherwise be assumed to be linearly elastic. Since average
stress changes associfated with faulting are modest, on the order of
a few hundred bars, linear elasticity is a reasonable model of
material behavior away from the immediate zone of faulting.

2.3 GROWTH OF THE RUPTURE

The rupture surface is assumed to occupy a prescribed plane
with unit normal vector ﬁ We specify the growth of the fault
surface as a function of time, rather than determining its evolution
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from the dynamic solution via some failure model. The rupture
nucleates at a point and expands symmetrically at a constant,
prescribed rupture velocity URs until it reaches a prescribed
rectangular boundary (Figure 1). I(t) denotes the portion of the
plane which has ruptured by time t; w and 2 denote the width and
length of a rectangular fault, and x and y are Cartesian coordinates
on the fault plane. Then Z(t) consists of all points x, y such that:

xz +y2 <u§t2 .

x| <

and [yl &% .

Two somewhat artificial features of this rupture model require
mention. They are: 1) the instantaneous acceleration of the rupture
to its terminal velocity, and (2) the instantaneous deceleration of
rupture velocity to zero along a prescribed boundary. The former
assumption may be a fairly good approximation. There 1s Dboth
experimental (Wu, et al., 1972: Archuleta and Brune, 1975 and
theoretical (Cherry, et al., 1976; Das and Aki, 1977) evidence that
rupture velocity can accelerate very rapidly to its terminal value.

The approximation of abrupt stopping, on the other hand, is
difficult to support experimentally, since ruptures normally
propagate completely <through laboratory samples. While the
approximation of abrupt stopping may be quite artificial, it {s not
precluded by theories of dynamic crack propagation. For example,
Husseini et al., (1975) have shown that a rupture can stop
{nstantaneously when it encounters jumps in fracture energy on the
fault plane. This reflects the fact that a crack edge, at least in
the linearly-elastic continuum theory, lacks "fnertia". That is,
the stresses immediately ahead of the crack edge depend on rupture
velocity, but not on the time derivatives of rupture velocity
(Eshelby, 1969).
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E Figure 1. Rupture geometry and coordinate system for the
numerical simulations. The shear prestress is in the x
= direction on the plane z = 0. Rupture initiates at the
2 origin and expands symmetrically at fixed rupture
velocity.
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The Iimportance of the mode of stopping lies in 1its
consequences for high-frequency radiation. Madarfaga (1977a) has
shown that the strongest radiation of high-frequencies is associated
with abrupt changes in rupture velocity such as the sudden stopping
at the fault edges in our Model. A rupture velocity jump generates
f'z high-frequency behavior of the far-field displacement
spectrum, in contrast to the starting phase, which (assuming
nucleation at a point) generates at most an f'3 spectral asymptote.

2.4 BOUNDARY CONDITION OF THE FAULT

On Z(t), we permit a tangential displacement discontinuity
(stip) s(x,t), and require continuity of the traction vector and of
the normal component of displacement. The shear traction on I obeys
a simple Coulomb friction law. The physical requirements of this
friction law are: 1) the magnitude of the shear traction on I is
bounded by a prescribed sliding friction value which depends only on
the normal traction, and, ii) the shear traction is equal in
magnitude to the sliding friction value and opposite in direction to
the slip velocity vector whenever the latter is non-zero.

The vector T denotes the shear traction exerted on the positive
side of I by the negative side (where the direction of A is from
the negative side of . toward the positive). We define t ¢ to be 2
sliding frictionail traction whose direction opposes the
instantaneous siip velocity and whose amplitude is proportional to
the normal traction on L:

3
T S =1 =,
f fT_{]
where Te is B 4oN> the product of the normal traction and the
coefficient of dynamic friction. The amplitude of the sliding
friction, T is presumed to be positive, constant, and less than

the absolute value of the shear prestress To» SO that a stress
drop occurs at the rupture front. We then define T, to be the
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shear traction, at a point on I, which would be sufficient to
enforce continuity of velocity. That fis, I, s the instantaneous
shear traction which would accompany healing, a quantity which can
be readily determined at any time step from the numerical solutfion.
Then the following boundary condition on I is equivalent to the
friction law described in the last paragraph:

s % £ ' (1)

‘I.d 1;!

Equation (1) ensures that the slip velocity s is non-zero only if
the magnitude of t would otherwise exceed that of sliding friction,

Tge

Note from Equation (1) that we do not assume that the
frictional stress immediately increases above the dynamic friction
value Te when a slip velocity zero occurs. Rather than assuming
instantaneous recovery of strength, we let Tg continue to bound
the shear stress on the fault, even after the slip velocity goes to
zera. This is in accord with results from laboratory studies of
time-dependent rock friction. For example, Dieterich (1972, 1978)
found frictional strength of rock surfaces to be proportional ta the
Togarithm of their time of contact, with essentially no recavery of
strength occuring during the first one second of contact. Thus, any
increase of frictional strength due to stationary contact should be
negligible on the time scale of dynamic rupture.

2.5 STRESS-DROP SCALING

The dynamic stress-drop, at, is defined here as the difference
between the absolute values of shear prestress and sliding
frictional stress,

This quantity is the stress available to accelerate the fault slip,
and has also been termed “effective stress" in the seismological

SYSTEMS. SCIENCE AND SOFTWARE




-'.l.",____.___,,,,.............--u-u-un----lllulllIlllllllllllllll-l-lllll-l---------============-

' literature (e.g., Brune, 1970). If the slip direction were
constrained to be paraliel to the direction of the prestress, then
the dynamic solution would scale directly with the assumed value of
AT, and would be independent of Tge This constraint of the slip

. direction is equivalent to assuming Tg>>aT. In the current study,
we have made this simplifying assumption so that the numerical
results can be scaled rigorously with at. The assumption Te»>4T 1
is consistent with laboratory studies of stick-slip, which report |
fractional stress draps, AT/TO, of a few percent to a few tens of
percent (for example, Byerlee, 1967; Scholz, et al., 1972;
Dieterich, et al., 1978).

] Actually, this simplification does not have a significant
3 effect on the solution (apart from inhibiting siip reversal as
' discussed belaw). It is known, for example, that the self-similar,
expanding elliptical crack exhibits slip which is everywhere

parallel to the prestress direction, even for the case of zero

friction (Burridge and Willis, 1969). For finite faults with low

friction, stopping of rupture can introduce a component of siip

perpendicular to the prestress direction. However, Madariaga (1976)

has shown, for the case of a finite circular crack, that this

’ component is quite small. So, scaling with at, while rigorous only

for TE>8T, should be a good approximation even for relatively low

4 values of Tge

| 2.6 HEALING

When the slip velocity at a point goes to zero, Equation (1)
provides the criterion for whether to permit further slip.
Recommencement of slip is prohibited by Equation (1) if such slip
(which must be accompanied by a shear traction of magni tude rf)
N would increase the magnitude of the shear traction I, rather than

decrease it since that would violate our physical assumption that
the shear traction on I opposes the slip velocity.

10
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Although the friction law embodied in Equation (1) does not _‘
automatically preclude a reversal of sliding direction, a reversal |
could only occur for very small values of sliding friction in this
model. We define the overshoot stress as the amount by which the :
shear traction, at a point on I,drops below . after sliding P
ceases. In order for sliding to reverse, the shear traction would !
have to drop from the sliding friction value to zero, then reverse
sign and increase in magnitude back to Tg; SO no sliding reversal 1
will occur unless Ty is less than half the overshoot stress. The
numerical results given in the next section show that the overshoot
does not exceed about 26 percent of the dynamic stress drop;
therefore, a sliding reversal would only occur if the fractional

stress drop A‘t’/‘ro were at least 0.88. Since we have assumed
y TPAT (i.e., very small fractional stress drap), sliding reversal
does not occur in our simulations.
’

!
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III. NUMERICAL SOLUTIONS FOR THE FAULT SLIP

3.1 METHOD OF SOLUTION

The mathematical model of faulting outlined in the 1last
section poses a three-dimensional, nonlinear, mixed boundary value
problem. To determine the fault slip, this problem is solved
numerically using a three-dimensional finite difference method
developed by Cherry (1977), in which explicit time stepping is used
to integrate the dynamic solution in time. Equation 1, governing
the fault plane, was discretized in accordance with the method
developed by Day (1977, Appendix IV).

e e T L. e . b it

3.2 DESCRIPTION OF THE CALCULATIONS

We present slip functions obtained from numerical simulations
of four different fault geometries. Each calculation simulates a
rectangular fault surface in a uniform whole space. In each case, fi

rupture initiates at the center of the rectangle, as in Figure 1, 31
and the prestress direction is aligned with the long dimension of ,
the fault. ;

The numerical results have been scaled to represent the
following set of physical parameters:

P wave speed, a = 6.0 km/sec

S wave speed, 8 = 3.46 km/sec

shear modulus, u = 3.24 x 10" dynes/cm
rupture velocity, up * 3.12 km/sec
dynamic stress drop, at = 100 bars

Three of the calculations represent a fault length ( of 8 km and
fault widths w of 1.5, 4, and 8 km, respectively. The fourth
calculation was for a fault length of 16 km and a fault width of 4
km. The solutions may be rescaled to represent a different set of
material and fault parameters, provided Poisson's ratio, the fault
aspect ratio, and the ratio ug/8 are unchanged. The appropriate
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1 scaling relationships have been summarized by Madariaga (1976), and
we repeat them here for convenience. Assume that the above values
of dynamic stress drop, fault width, shear speed, and shear moduylus

are multiplied by factors at', w', 8, and u', respectively. Then,
? time, length, stress and displacment in the numerical solutions are
" to be multiplied by scale factors t', x', o' and u', respectively:

-w-l
B!
wl

(time) t' =

(Length) | X
(Stress) ¢ = aT

’ (Displacement) u' = %ﬁlw .

In rescaling the numerical solutions, however, consideration
must be given to a hidden length scale in the problem, the finite
difference cell dimension. The main limitation of the finite
difference method is that the discretization causes substantial
3 . numerical dispersion of wavelengths shorter than about 6 cell
' dimensions. Consequently, accuracy is degraded for high-frequency
components of the solution. For these four finite difference
calculations, the mesh refinement was sufficient to retain accuracy
for frequency components up to about 5 Hz. Frequencies higher than
5 Hz have therefore been removed from the solutions using a
‘combination of artificial viscosity and post-processing with a
low-pass digital fiiter. This non-physical cutoff frequency scales
as 8/w.

3.3 SLIP TIME-HISTORIES

Figure 2 shows the calculated slip histories for selected i
points along the fault length for the square (8 km by 8 km) fault.
The final offset {s greatest near the center of the fault,
decreasing as the observation point approaches an edge. The rise
time of the slip function is also greatest at the center, where it
) . equals approximately the fault length divided by the shear speed.
: The rise time decreases as the edges of the fault are approached.

3 13
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Arrest of slip occurs first at the outer edge and propogates
. inward. The center of the fault is the last point to heal.
Overall, the healing behavior is very similar to that of the
circular fault, as obtained by Madariaga (1976), in spite of the
reduced symmetry present in the square fault problem (the circular

, fault stops simultaneously everywhere on its perimeter whereas the
square fault does not).

.o

We can compare the residual slip for the square fault to
Neuber's (1937) static solution for a circular shear crack in a
Poisson solid, for which the slip s is

By (102212

s(r) = .
1

(2)

where a is the crack radius and r is the distance to the center of
he crack. For the circular crack, the average static slip, from
Squation 2, is 2/3 times the static slip at the center. For the
sy.vre fault calculation, the average static slip is found to be
0.65 times the static slip at the center, which is nearly identical
to the c¢ircular faylt relationship.

As a reasonable approximation, we might apply Equation 2 to
’ the square fault with the reinterpretation that a is VA/z , where
A is the fault area. In that case, the static offset at the center
of the square fault exceeds the prediction of Equation 2 by a factor
of 1.26. This "overshoot” of the dynamic solutfon relative to the
static solution has been discussed for circular faults by Madariaga
(1976), Archuleta (1976), and Das (1980). The value cf 1.26
obtained here for the square fault is in good agreement with their
i numerical results (which range from 1.20 to 1.27).

R i e )

This value of overshoot implies that no reversal in slip
direction will occur if the dynamic frictional traction T¢ exceeds
about 0.13 at, or half the overshoot stress. Thus, as remarked in
the previous section, a slip reversal requires a fractional stress
drop, at/ Ty greater than 0.88, which {is far greater than those
observed in laboratory stick-slip experiments. We emphasize again

. -
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e Y
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that this conclusion requires only our assumption that sliding
friction is a dissipative process which opposes the slip;” it does
not require an assumption of rapid strength recovery on the fault
following a s1ip velocity zero.

é . Figure 3 shows slip histories calculated along the fault

; length for the case w = 4 , £ = 8. The time histories in this case ;
are similar to those in Figure 2, but the rise time and static slip
are reduced, especially near the center of the fault. Rise time and
static slip at a point are apparently controlled by proximity of the
nearest edge of the fault.

Figure 4 shows slip histories for the case w = 1.5, & = 8.
Again, it is clear that fault width controls static amplitude and
rise time. Beyond a distance of about one fault width from the
hypocenter, the slip function remains essentially constant in shape
with increasing hypocentral distance. This uniformity of the slip
function beyond one fault width is also apparent in Figure 5 for the
case w = 4, L= 16.

In Figure 6, the relations between fault width and the static
offset are shown in more detail. Static offset calculated along the
fault centerline, is plotted for the cases w = 4 and w = 1.5 (£ = 8
in both cases). The horizontal lines show the static solution for
an infinitely long strike slip fault (Knopoff, 1958). Except near
the end of the fault, the static slip for the finite-length faults
is essentially constant along the fault length and is very well
predicted from Knopoff's static solution. At the center of the 4 x
8, 1.5 x 8, and 4 x 16 faults, the stati¢c slip exceeds the Knopoff
solution by less than 5 percent. The “overshoot"™ phenomenon,
observed for the square and circular faults, is not significant over
most of the length of the long, narrow faults. This result concurs
with the numerical results of Archuleta and Day (1980), which show
overshoot confined to within about one half-width of the end of the
fault. Elsewhere, the final shear stress is approximately equal to
the sliding frictional stress.

16
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Figure 3. Computed slip time-histories along the center-line of a
rectangular fault with aspect ratio 2:1. Scaling is as
in Figure 2.
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Computed slip time-histories along the center-line of a
rectangular fault with aspect ratio 4:1. Sliip is
scaled to represent a dynamic stress drop of 100 bars
and a fault length of 16 km.
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i For a long, narrow fault model, then, the static stress drop
will approximately equal the dynamic stress drop at, since little or
no overshoot occurs, and ‘“undershoot" 1is not permitted by our
model. That is, no physical mechanism has been incorporated into
the model (Equation 1) capable of healing the fault at a stress
level higher than the prescribed sliding frictional level. In
practice, however, we have to be cautious in equating static and
dynamic stress drops. Seismic estimates of static stress drop are
actually estimates of average static offset divided by gross fault
dimension. If an earthquake leaves unbroken patches, or {if some
regions heal at stress levels above the dynamic friction level, then
the seismically inferred static stress drop may be substantially
Tower than the dynamic stress drop at, as demonstrated by Madariaga
(1979). Static stress drop estimates may constitute, in general, an
approximate lower bound on a<.

Figure 7 shows the relationship between slip rise time and

fault width. Rise time is plotted along the fault centerline for 3

rectangular fault calculations. Rise time in Figure 7 was defined

to be the time required for a point on the fault to attain 90 per-

‘3, cent of its final value of slip. The horizontal lines represent a
' rise time equal to the half-width divided by the rupture velocity.
For w = 1.5, { = 8, the rise time at first decreases with distance
b from the hypocenter, then approaches a constant level of about
X w/2uz. For w = 4, £= 16, a constant level of w/2uy is again
approached as hypocentral distance increazeés. For w =+ 4, £ = 8, the

rise time again decreases with distance from the hypocenter, but the

effects of the end of the fault intervene to further reduce the rise

2 time before a constant level can be clearly established. These
numerical resulits predict that a long, narrow fault will have a rise

time of roughly w/2uR over most of its length, with larger values
near the hypocenter and lower values near the ends.

Actually, in these simulations the rupture and shear velo-
cities differ only by about 10 percent, so Figure 7 could alter-
natively be interpreted as showing rise time controlled by 1/8

21
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rather than 1’“a° We prefer the latter interpretation, as
explained in a later section.

3.4 SLIP VELOCITIES

We turn our attention now to the high frequencies. Here it is
appropriate to focus on the slip velocity function and,
particularly, on the peak slip velocity. Figure 8 shows the slip
velocity time histories at selected points along the centerlines of
the 4 x 16 km fault model. The slip velocities have been low-pass
filtered to remove frequencies in excess of 5 Hz, which is close to
the highest frequency that can be reliably computed in the finite
difference mesh.

Figure 8 shows that the peak slip velocity initially increases
with hypocentral distance. However, the rapid growth in peak slip
velocity ceases beyond a hypocentral distance of about one fault
width. From then on, the slip velocity function is nearly uniform
along the fault centerline. The figure also shows slip velocities
observed at points distributed across the fault width, at a fixed
distance of 6 km along the length of the 4 x 16 km fault. This
figure illustrates the near uniformity of peak slip velocity across
the fault width as well as along the fault length, for hypocentral
distances greater than about w. The slight decrease in peak slip
velocity very near the fault edge, evident in this figure, may be
due to the slip function rise time near the edge becoming comparable
to the rise time of the 5 Hz low-pass filter.

The uniformity of peak slip velocity is further illustrated in
Figure 9. The broken curves represent peak low-passed (5 Hz) slip
velocities obtained along the fault centerline for the two cases w =
1.5, 2= 8 and w = 4, £ = 16 km, respectively. In both cases, the
peak slip velocity first 1increases rapidly with hypocentral
distance, then quickly settles to a uniform level when the
hypocentral distance exceeds w. The results in Figure 9 will be
further analyzed in the next section.
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Figure 8. Slip velocity time-histories for the 4 x 16 km fault.

The time-histories have been low-pass filtered with a
5 Hz cutoff (corresponding to the limiting frequency
for which the numerical method is accurate). Peak slip
velocity 1s nearly {nvariant with position, for
distance x greater than fault width.
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Peak Slip Velocity (m/s)

Circular

Figure 9.

Peak slip velocity as a function of hypocentral
distance along the fault center-line (x axis). The
dashed curves represent the numerical solutions for
1.5x 8 km and 4 x 16 km rectangular faults,
respectively. The solid curve represents Kostrov's
analytical solution for an expanding c¢ircular crack.
Hori zontal 1ines approximate Kostrov's solution
evaluated at radius r = w. Slip velocities for the
numerical solutions were digitally low-pass filtered
with a 5 Hz cutoff, and the analytical solution was
analytically low-passed by convolution with a boxcar
function of width 1/f; (fc = 5 Hz).
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IV. ANALYSIS OF THE SLIP FUNCTION

4.1 THE VELOCITY SINGULARITY

We can interpret the numerical results for peak slip velocity
by means of the closed-form analytic solution of Kostrov (1964) for
an expanding circular crack. The analytic solution for the velocity

discontinuity $ on a circular crack expanding at a uniform rupture
velocity is

. T+rk
s R

8 H(T) (3)
4 VT(Te2r/up)

where T s the reduced time (time minus rupture arrival time), r is
the distance (xz * yz)l/ 2 from the center of the crack to the
observation point, H is the unit step function, and C {is a constant
which equals 0.81 for a Poisson's ratio of 0.25 and rupture velocity
of 0.9 8 (Dahlen, 1974). This solution is singular at the rupture
arrival time (except at the hypocenter), and approaches CA—JB for T
large compared to the rupture arrival time. In order to compare
this solution to the numerical solutions for finite-width faults, we
approximate the effect of a low-pass filter by averaging the anmaly-
tic solution (Equation 3) over a “cutoff" period l/fc. The re-
sulting expression for peak slip velocity § on the circular crack is

T o AT 1/2

$ = Cr s(erc/uR + 1) s (4)
which, for fc>>uR/r. is proportional to rl/z. That {s, in the
absence of edge effects (and nonlinearities), peak siip velocity
would increase as the square root of distance from the point of
rupture.

Equation 4, with fc equal to 5 Hz, is plotted as a solid
curve in Figure 9. Comparing this curve with the peak-velocity
curves from the finite-differences fault simulations, we see that
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edge effects do not act to modify the peak velocity within a hypo-
central distance of approximately one fault width. Up to that
distance, the behavior of peak slip velocity closely follows that of
Kostrov's expanding circular crack solution, increasing as r1/2.

The influence of the fault edges is to terminate this growth of peak

slip velocity at a hypocentral distance of approximately r = w.
Thus, the numerical solutions predict that, over most of its length,
a long, narrow fault will have a peak slip velocity, after low-pass
filtering with cutoff frequency fc. of approximately

T =2 wog -:l . (5)

In (5) we have assumed fc >> uR/w and have introduced the ap-
proximation C zUR/s, which 1is accurate within about 10 percent
for all sub-shear rupture velocities (Dahlen, 1974). Equation (5)
is shown Dby horizontal lines on Figure 9. For this model of
faulting, then, peak (low-passed) slip velocity is proportional to
dynamic stress-drop at, the square root of rupture velocity, and the
square root of fauit width.

The above interpretation of the numerical solutions permits us
to “"undo" the filtering effect of the numerical scheme and char-
acterize the slip velocity singularity at the leading edge of a
long, narrow rupture. To simplify the discussion, we take x>>w, so
that we can ignore the rupture front curvature across the fault
width, and so that the rupture front represents Mode II (in-plane
shear) crack extension. We expect a singularity of the form

s ~Vivgt = )72 Hiypt - x) (6)

This singular form is a universal property of sub-shear-velocity
crack propagation (Freund and Clifton, 1974; Freund, 1979). In
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Equation (6), V 1is the velocity intensity, and we can estimate it
from Equation (5). Recalling that s is approximately s averaged
t over time 1/fc, and using Equation (6), we obtain the expression

:

t AT

[ V==4@§ — (7)
h

Fi i for the velocity intensity. Thus, the model predicts a velocity

g

intensity proportional to the square root of fault width and also
proportional to rupture velocity. This result contrasts with
two-dimensional crack solutions, in which the velocity {ntensity {s
proportional to the square-rgot of fault length.

In addition, we can use this result to estimate the dynamic
stress intensity factor X at the advancing edges of the fault. The
shear stress change near the edge, T ~Tgs has the asymptotic form
(Freund and Clifton, 1974).

T-T ~ K (x-uRt:)']'/2 H(x-uRt). (8)

For a Mode I!I crack, K can be obtained from V (Freund, 1979):

8 Riyp)
K = 7 Vo (9)
ug (1-\.)2 82)

where R is the Rayleigh function

ae) - [(1 'i‘;)m(l ) :72)1/3 (1 . %::2) z]

From (7) and (9) we obtain the approximation

AT, {10)

UR) (12 /42 ) ik
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so that the dynamic stress intensity factor is proportional to the
square root of the fault width and is independent of the length of
rupture. This value of K happens to be very close to the dynamic
stress intensity factor for a two-dimensional inplane shear crack of
length w; in fact, the difference (about 8 percent at vg * 0.98)
is not significant in view of the approximate nature of our analysis.

Finally, from Equatfon (10) we can determine the energy flux
into the propagating rupture front, the so-called energy release
rate G. G {s the energy absorbed per unit area by the advancing
crack edge, and is given by (Freund, 1972)

I
G 23; Ky ,

from which we obtain

¢ = 2(L) i) at (11)
=~ Z\v 174 mn :
R 1.UZ B2
R
That {s, for a long, narrow fault, the energy release rate fis
proportional to the fault width, rather than fault length.

4.2 THE STATIC SLIP

From Figure 6, it was observed that the final slip for the
rectangular fault model is very close to Knopoff's two-dimensional
(antiplane) static solution, except near the ends of the fault.
Comparing the two cases shown in that figure, it is evident that the
length of the end region is proportional to fault width, rather than
fault length. The greatest deviation from the two-dimensional
solution occurs within a distance w/2 of the ends. We use these
observations to construct an approximate expression which summarizes
the numerical results.

Figure 10 shows in more detail the numerical results for
static slip on the fault with aspect ratio 2. Four profiles across
the narrow dimension of the fault are shown as dashed curves. The
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uppermost solid curve {1s Knopoff's static solution for the in-
finitely Tong (in the x direction) fault of width w:

2

s(y) = -:-1 ..[1.(‘_2'1) ]
For points more than half a fault width away from the end of the
fault, this expression 1is a reasonable approximation to the
numerical solution; for x = 0 and x = 0.5w, the agreement {s within
about 10 percent over most of the fault width. To modify this
expression to account for end effects, we are motivated by the fact
that, very near the fault ends, plane-strain conditions should be
approximated. Therefore, gquided by the two~dimensional static
solution of Starr (1928) for a finite, in-plane shear crack, and the
observation that the end region is of ‘length approximately w/2, we
try the approximation

1/2

3 ‘ 21 1/2
; ' s = Zw [1 -(él) ] (2 -¢)1/2 gl/z (12)

where £(x) is 1 for points farther than w/2 from the ends, and
otherwise is the normalized distance to the end of the fault:

el ot fod <3
&(x) = W
1 if [g-x[> 5

The approximation (12) is simply that the static slip has the value
éusw along the centerline, with an elliptical cross-section across
the width, multiplied by a quarter-ellipse taper near each end. As
Figure 10 1indicates, Equation 12 represents the numerical solu-
tions fairly well over the whole length and width of the fault,
though somewhat less well near the end.

To summarize, we find that final siip for a long, narrow fault
is proportional to fault length rather than fault width. The final
slip is well approximated by Knopoff's solution, except near the

A ainaE e bk it
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ends.
width,

4.3

assuming x>>w.

numerical

The extent of this end region is also proportional to fault
not length. Equation 12 represents reasonably well the
overall behavior of the static offset.

THE SLIP RISE TIME

The approximate expressions deduced above for the slip
velocity singularity and static slip can be used to derive an
approximate expression for the rise time TR' Integrating the slip
velocity singularity (Equations 6 and 7) and equating the resulting
slip to the static slip (Equation 12) gives the following prediction
for the rise time:

[1 -(51) 2](2 -9 ¢, (13)

This derivation of Equation (13) assumes that the
slip velocity at a point follows Equation 6 until the static slip
value is reached, then slip terminates abruptly. This is an over-
simplification of the actual slip function, as Figure 8 shows.
However, the resulting expression for TR is in very good agreement
with the numerical result, shown in Figure 7, that the rise time
along the fault centerline (y=Q) approaches W/ZuR for points more
than one fault width away from the hypocenter. Furthermore, the
resuylt that TR increases with decreasing hypocentral
distance for x<w, which {s evident in Figure 7, can be interpreted E
in the same manner. For x<w, however, Equation (6) should be
replaced by Equation (3) to estimate the rise time.

J——-—_—-ﬁ

It is perhaps surprising that Equation 13 involves the rupture

velocity, rather than the shear-wave velocity, since the arrival of
shear waves diffracted from the long edges of the fault might be ex-
pected to control the rise time at a point on the fault. In fact,
both Day (1979) and Das (1981) have adequately explained rise times
for numerical models of rectangular faults on the basis of dif-
fracted shear-wave arrivals, predicting rise time proportional to

1/8.

Since the shear and rupture velocities differ by only 10

percent or so in our simulations, we could not distinguish between a
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1/8 and 1/uR dependence for TR on the basis of these numerical
results alone. Instead, the proportionality of rise time to the
reciprocal of rupture velocity in Equation 13 follows directly from
the property that the velocity intensity at the leading edge of the
fault is proportional to uge This proportionality to Vg is a
general property of dynamic cracks running at sub-Rayleigh velocity
(see, for example, Freund, 1976). Therefore, it will take longer
for a slow-running crack to reach static equilibrium than for a
fast-running crack to do so (recall that negligible static overshoot
was found for the long, narrow faults and that static shear stress
is required by the model to be less than or equal to t¢).  The
shear-wave diffraction effect may act to retard the slip velocity
below that given by (6) and (7), but not to fncrease it. For our
earthquake model, then, an expression such as Equation (13) is a
more appropriate approximation to the rise time than would be ob-
tained with 8 in place of uR* The conclusion might be different
if some mechanism, such as velocity-dependent friction (Dieterich,
1978) were incorporated into the fault model to permit healing to
occur at a stress level substantially higher than Tgs
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V. SUMMARY AND DISCUSSION

The approximate behavior of the slip function for a Tlong,
narrow fault, as deduced from the foregoing analysis of the numer-
ical solutions, is summarized schematically in Figure l1. Near the
hypocenter, the slip function initially resembles Kostrov's solu-
tion, Equation (3), in which the velocity singularity grows as the
square root of hypocentral distance. For x (distance along the
fault length) greater than the fault width w, this growth of the
velocity singularity ceases, and the slip function is then nearly
invariant with distance in the x direction, except near the ends.

In this “steady-state" regime, x>w, both rise time and static
slip are proportional to w, and the advancing crack edges have
velocity singularities proportional to Yw. S1ip nearly ceases at a
given point after the crack edge has advanced a distance of roughly
one half-width past the point. The slip-velocity time function can
be approximated by

s -,/guR :—T 1 -1/2 [H(T) - H(T-TR)]. (14)

In Equation 14, T f{s reduced time t-up/r, and To s the slip
rise time as given by Equation 13. This approximation is sketched
(for the case y = 0) in Figure 12 along with the corresponding
shear-stress singularity. Also shown for comparison in Figure 12 fis
a numerical solution for slip velocity (point E of Figure 8).

The low-frequency characteristics obtained here for the slip
function, that is, rise time and static slip, are similar to those
inferred from similar calculations by Archuleta and Day (1980) and
G- from a spontaneous-rupture numerical model by Das (1981). The mesh
' refinement used to obtain the numerical solutions in this study,
however, has permitted observation of some previously unresolved
high-frequency characteristics of the solution, as well. These
high-frequency slip characteristics, specifically the strength of
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Sketch summarizing the approximate behavior of the slip
function for long, narrow faults. At a time greater
than that required for the rupture to cross the fault
width (%), slip is concentrated on two patches, each
approximately one half-width long, moving away from the
nypocenter in opposite directions. The shape of slip
function then remains nearly invariant as these patches
propagate along the fault length. In this steady-state
regime, the static slip and rise time are proportional
to w, and the slip velocity has a square root
singularity with intensity proportional to yW.
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Figure 12. Sketch of a closed-form approximation for the slip
velocity time-history (Equation 14) at y = 0, x > w,
compared to a corresponding numerical solution {(point E
of Figure 8). Also sketched is the corresponding
approximation derived for the shear-stress singularity
(Equations 8 and 9).
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the velocity and stress singularities at the leading edge of the
fault, are of particular importance for understanding the radiation
of high-frequency seismic energy. For example, Madariaga (1977a)
has shown that “the high frequencies originate from the stress and
slip velocity concentrations in the vicinity of the fault's edges”.
Frequencies in excess of 1 Hz are an important component of the
strong ground motion recorded in the immediate vicinity of
earthquakes, and are also of importance for understanding earthquake
ground motion at regional distances, where substantial seismic
energy is observed in the 1-5 Hz range.

We first consider some implications of the dynamic solutions
for kinematic modeling procedures used to predict ground motion time
histories. An assumption commonly made in kinematic modeling of
earthquake ground motion is that the source can be represented by a
uniform dislocation, that {s, a slip function which is uniform in
its amplitude and {ts time dependence over the entire fault plane
(apart from a time delay associated with the rupture arrival time).
Usually the slip function {s assumed to have a simple ramp time-
history, {.e., constant slip velocity over some specified rise
time. We focus for now on the high-frequencies radiated from the
leading edge of the fault after it has propagated more than a fault
width from the hypocenter. In this case, Equation (14) is an
appropriate representation of the slip function for our dynamic
solutions. The spectral amplitude of a ramp function behaves
asymptotically at high frequency as f'l, whereas Equation 14
implies an f'l/z slip-function spectrum (Lighthill, 1958, p. 52).
Since the predicted radiatfion depends linearly on the assumed slip
function, we would expect the ramp-function source representation to
be relatively deficient in {its prediction of nigh-frequency ground
motion. For example, one might attempt to approximate the slip
function using a ramp function in which the ratio of static slip to
rise time {s the same as for the dynamic solution (Equation 14).
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Then, at a period of Tp/10, the ramp slip function would be
deficient in spectral content by about a factor of 7 relative to
Equation 14.

This spectral comparison between the ramp-function represen-
3 tation and the dynamic solution may provide a physical basis for a
X result obtained by Oel Mar Technical Associates (1979). They
! modeled the 1966 Parkfield earthquake using & uniform-dislocation
earthquake model with a ramp slip function, attempting to fit
spectral characteristics of the ground motion recorded at the 5 ;
accelerograph stations of the Chalome-Shandon array. They reported
difficulty in matching observed response spectra over a broad period :
range with this slip function; in order to fit recorded short-period
spectral levels of ground motion, it was necessary to tolerate a
large overestimate at long periods. This result is in accord with
our prediction that the ramp function earthquake representation is
relatively deficient in high frequencies.

0f course, a ramp function suitably scaled, might be adequate
for modeling ground motion over a narrow frequency band. As an i
example, Bouchon (1979) successfully synthesized the velocity and
displacement pulses recorded for the Parkfield event at Station 2, i
using a uniform slip function with a ramp time history. In this
case, however, the predominant period of the waveforms being modeled
was several times greater than the assumed rise time of the ramp.

The dynamic solutions reveal a second difficulty with uniform-
dislocation kinematic models, this one invoiving the starting phase
radiated from the hypocenter when rupture initiates. We have seen

. that the ramp function is a poor representation of the slip function

for the dynamic solution at points well removed from the hypocen-
e | ter. It {s tempting to try to retain the uniform dislocation
' 'Y approximation, but alter the time-function to resemble the singular ,
behavior of the dynamic solution in the "steady-state" regime, !

x>>w. Unfortunately, 1f the time-function of a uniform dislocation

model is chosen to match the the dynamic solution at points far from
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| the hypocenter (i.e., replace the ramp function by an expression
2 such as (14)), then the starting phase predicted for the uniform
' dislocation will be much larger than that for the dynamic model. To
see this, we use the expression derived by Richards (1973) for the
first-motfon approximation to the shear-wave acceleration l_ls due
to an expanding circular crack:

. Cug AT
i, =R’ > 2 > \2 - H(t-R/8) (15)
R 1"’R 8- sin"e

where R contains the double couple radiation pattern, e is the angle
formed at the hypocenter by the fault normal and the receiver direc-
tion, and R is the hypocentral distance to the receiver. We will
also use the corresponding expression for an expanding, uniform,
circular dislocation:

UZ
a R R

r s (/) , (16)

‘~__  where s(t) is the assumed slip-velocity time function for the uni-
| form dislocation. Equation (16) can be deduced from Savage (1966).
If, in a uniform-dislocation model, we choose § in accordance with
# Equation 14, Equation 16 implies that the acceleration first-motion
'; will have a T"]'/2 singularity, whereas the dynamic solution for
the initiation phase, Equation 15, gives only a step discontinuity
for Es To quantify further the effect of the uniform-dislocation
approximation in this case, assuming a band-1imited observation with
! cutoff frequency fc' we substitute Equation 14 into Equation 16,
k- | average over a period 1/f, and take the ratio of (16) to (15).
The result is that the uniform dislocation yields a starting accel-
¥ erationz phase which exceeds the dynamic solution by a factor of
(1-%32 sinzo)TR f. (we have introduced the approximation T = ;
w/ZuR and up/s = C). Thus, for perfods much less than the rise |
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L time, the uniform dislocation model substantially over-predicts the
‘ starting phase amplitudes, relative to the dynamic solution (except
near o = 30°).

In summary, the uniform dislocation kinematic models, since
i they do not incorporate the spatial variation of slip present in the
dynamic solution for x<w, will either over-predict the starting
phase or under-predict the dominant high-frequencies associated with
§_ the velocity singularity. At least for the simple dynamic mode!
studied here, we can't construct a uniform dislocation approximation )
; which will replicate both the starting phase radiation and the
; high-frequency behavior of slip at the leading edge of the fault.

" The numerical solutions obtained here also have tectono-
physical implications. Husseini, et al (1975), Das and Aki (1977b),
and Aki (1979) have analyzed the role of fault-plane "barriers", or
high-strength segments, in resisting or arresting rupture growth.
Whether fault growth stops at a barrier or rupture continues through
the barrier depends upon the barrier strength, as well as upon the
: stress intensity factor developed at the leading edge of the fault.
- In two-dimensional fracture mechanics, the stress intensity
increases with rupture growth as the square root of fault length,
for a given dynamic stress drop. Therefore, one would predict that
as fault length increased, the 1likelihood of rupturing barriers
would dincrease as well. In contrast, the three-dimensional
solutions demonstrate that the stress intensity ceases to grow with
fault length beyond a distance of about one fault width. Equation
. {10), derived on the basis of the three-dimensional numerical
k! solutions, gives a stress {intensity factor proportional to the
W square-root of fault width. The capability of a long narrow fault
‘ to rupture barriers should be proportional to dynamic stress drop,
" and the square-root of fault width, but independent of rupture
Tength.

Similarly, two-dimensional analytical and numerical solutions
imply that the energy release rate at the fault edge fncreases with
fault length. As Andrews (1976) points out, those results would
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require that longer ruptures be accompanied by thicker zones of
microcracking or other inelastic response. Our three-dimensional
results, however, imply an energy release rate proportional to
width, rather than length (Equation 1l). So we conclude that the
level of inelastic response associated with long, narrow ruptures
will depend on fault width, not length.

The numerical results also have important potential
applications to the problem of seismic monitoring of nuclear
test-1imitation treaties. For example, some of the methods proposed
for discriminating earthquakes from underground explosions make use
of characteristic spectral differences in the radiation from the two
types of events (e.g., Bache, et al., 1979). Results such as these
can help provide a theoretical basis for such discriminants.

A second example relates to the seismic estimation of
explosion yield. This problem requires a good understanding of
propagation effects on the seismic signal, particularly the average
path attenuation (i.e., t*). Anelastic attenuation is difficult to
separate observationally from source effects, however. In order to
i‘ make use of earthquake signals to infer propagation-path
attenuation, it 1is therefore important to have a good earthquake
source model, a point also underscored by Hanks (1981). To address
these questions wusing the numerical simulations, it will be
necessary to compute the radiated seismic signal from the earthquake
i models. The slip histories obtained here are sufficient for
Al synthesizing the radiated waveforms, and this will be undertaken in
a subsequent report.
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