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I. INTRODUCTION

Deterministic simulation of earthquake ground motion has

played an increasingly important role in seismology and earthquake
engineering in recent years. For example, ground motion simulation
has been used recently as a tool for developing engineering design
motion criteria (Wiggins, et al., 1978; Apsel, 1979). Such simula-

tions require theoretical models for both the source process and the
propagation and dissipation of seismic energy. While ground motion
simulations have been undertaken using rather rigorous theoretical
methods to model anelastic wave propagation from source to site,
including the effects of depth-dependent geologic structure, the
earthquake source itself is usually specified on largely intuitive
grounds. The displacement-discontinuity time history (slip func-
tion), by means of which the earthquake source is represented, is
generally prescribed without rigorous consideration of fault

dynamics.

Following Haskell (1964; 1969) and Savage (1966), most studiest have represented the earthquake by a slip function which is

spatially uniform over the fault surface and has some simple time
dependence, usually that of a finite-duration ramp. Simple kine-
matic source models of this type have proven useful for representing
low-frequency (less than about 1 Hz) characteristics of earthquake
ground motion. For example, Bouchon (1979) used a uniform disloca-
tion of ramp form in combination with a layered earth structure to
model the Station 2 velocity and displacement recordings of the 1966
Parkfield earthquake. However, high frequency (1 to 20 Hz) ground

motion is highly sensitive to the specification of the source
process. The analysis of Madriaga (1g78), in particular,

underscores the inapproriateness of the uniform-slip kinematic

models for synthesizing ground motion with wavelengths much shorter
than the fault widtn. This high frequency radiation is important in
earthquake engineering, as well as in nuclear monitoring studies.

S
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Closed-form theoretical solutions describing the slip function
are available only for the most idealized dynamic shear-crack models
of earthquakes. Restricting consideration to three-dimensional

analyses, perhaps the most useful of such analytical results are the

solutions of Kostrov (1964) and Burridge and Willis (1969). The

former gives the slip history on a circular shear crack which
Initiates at a point in a prestressed whole space and grows at a

fixed rupture velocitj without stopping; the latter extends

Kostrov's result to the case of an elliptical shear crack. These

self-similar solutions are characterized by square-root singular-
ities at the crack edge in both shear stress and slip velocity, and
the intensity of these singularities grows as the crack dimension
increases. While these analytic solutions are very useful for

interpreting tne results of more complex numerical studies, they

cannot account for effects associated with the stopping of rupture
growth and the ensuing arrest of slip.

Madariaga (1977a) used two-dimensional analytical results,

notably those of Kostrov (1966, 1975) and Fossum and Freund (1975)

to characterize the slip-velocity singularities associated with the

starting and stopping of ruptures. He then applied a representation

theorem, together with Keller's (1962) geometric theory of dif-

fraction to construct a high-frequency approximation for the radi-

ation from shear cracks in three dimensions. This analysis yields

expressions for the radiation from a discrete Jump in rupture velo-

city. The solution involves a stress intensity factor which depends
on the three-dimensional geometry of the fault as well as its stress

and rupture history, and a second factor which depends only on the

Instantaneous jump in rupture velocity along the crack edge. The

solution in this form provides considerable insight into the process

of high-frequency generation, although to fully characterize the

stress intensity factor and rupture velocity, a complete solution to

the three-dimensional dynamical problem would still be required.

,'

* 2
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In general, numerical methods are necessary to solve the

three-dimensional dynamic problem of a fault which stops. Several

studies have addressed this problem, with the approximation that

rupture velocity is specified a priori. This fixed-rupture-velocity

fault model has been studied for faulting confined to a circular

* region (Madariaga, 1976; Oas, 1980), a semi-circular region

(Archuleta and Frazier, 1978), and rectangular regions (Madariaga,

1977b, 1979; Day, 1979; Archuleta and Day, 1980). Das (1981) and

Day (1979) have studied rectangular faults in which rupture velocity

is derived from a fracture criterion (spontaneous rupture). These

numerical solutions demonstrate that edge effects associated with

the narrow dimension of the fault substantially influence the slip

function, controlling static slip and slip rise time.

In this study, our objective is to provide an improved under-

standing of three-dimensional geometrical effects governing slip

functions. The study employs three-dimensional finite-difference

solutions to the dynamic fault problem in a whole space. On the

basis of the numerical solutions, closed-form approximations are
derived for the static slip and rise time predicted for rectangular

faults. These quantities are measures of the low- to intermediate-

frequency content of the slip function. A particular emphasis of

this study, however, will be to quantify the high-frequency behavior

of the slip function, which has been largely unresolvable from pre-

vious numerical studies of earthquake dynamics. It is the high-

frequency character (greater than 1 Hz or so) of the slip function

which is of primary Importance for synthesizing near-field ground

motion in the period range of engineering interest. The high-fre-

quencies are also of importance for synthesizing earthquake ground
motion at regional distances, where substantial seismic energy is

recorded in the 1-5 Hz range. A good source model for high

frequencies Is also important for inferring the attentuative
properties of teleseismic propagation paths (i.e., t*).

Furthermore, some of the methods proposed for discriminating

earthquakes from underground explosions use spectral characteristics

3
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of telesismic P-waves in the 1-5 Hz range (e.g., Bache, et aL.,

1979). Once the high-frequency behavior of the slip function has

been quantified from the numerical solutions, the numerical results

are combined with asymptotic results for dynamic cracks, in order to

characterize the stress intensity and energy release rate at the

advancing fault edges.

So as to focus our analysis on the geometrical effects

associated with the three-dimensionality of the problem, we employ

the approximation that rupture velocity be a specified constant.

The finite difference method used here- is, of course, also well

suited to the more complex problem of modeling spontaneous rupture

propagation.

The finite difference computations on which this analysis is

based were performed on the ILLIAC IV computer at NASA/Ames Research

t Center. Programing support was provided under the direction of

Susan Biester and Stewart Hopkins.
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11. THE FAULT MODEL

2.1 INTRODUCTION

In the earthquake simulations reported here, we treat faulting
as a propagating shear stress relaxation which occurs as a conse-

i quence of shear failure on a planar surface. The mathematical
formulation follows closely that of Equations 2.1 to 2.13 of Kostrov
(1970). Archuleta and Frazier (1978) also present a detailed
exposition of a mathematical model of a propagating shear stress
relaxation.

We will specify the initial state of stress In the medium, its
constitutive properties, the rupture velocity, the limiting edge of
the rupture surface, and the friction law to be satisfied on the
rupture surface after failure. Although the velocity of the rupture

front is prescribed, the time of arres; of slip at a given point is
not. Instead, the cessation of slip is a consequence of the
nonlinear friction law, and is determined as a part of the dynamic
solution.

2.2 INITIAL CONDITIONS AND CONSTITUTIVE PROPERTIES

For time t less than zero, we assume that an equilibrium state
of stress exists with velocity everywhere zero. The equilibrium
configuration is such that the prospective fault plane experiences a
uniform shear traction -rand compressional normal traction aN

The fault plane is permitted to fail in shear, but the medium
will otherwise be assumed to be linearly elastic. Since average
stress changes associated with faulting are modest, on the order of
a few hundred bars, linear elasticity is a reasonable model of
material behavior away from the immediate zone of faulting.

2.3 GROWTH OF THE RUPTURE

The rupture surface is assumed to occupy a prescribed plane
with unit normal vector /n. We specify the growth of the fault
surface as a function of time, rather than determining its evolution

9 5
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from the dynamic solution via same failure model. rhe rupture
p nucleates at a point and expands symmetrically at a constant,

prescribed rupture velocity uR1 until it reaches a prescribed

rectangular boundary (Figure 1). Z(t) denotes the portion of the
plane which has ruptured by time t; w and X. denote the width and
length of a rectangular fault, and x and y are Cartesian coordinates

on the fault plane. Theii E(t) consists of all points x, y such that:

2 2 2 2x + y <U Rt

* and lyIls

Two somewhat artificial features of this rupture model require

mention. They are: 1) the instantaneous acceleration of the rupture
to its terminal velocity, and (2) the instantaneous deceleration of
rupture velocity to zero along a prescribed boundary. The former
assumption may be a fairly good approximation. There ) s both
experimental (Wu, et al., 1972: Archuleta and Brune, 1975! and

theoretical % Cherry, et al., 1976; Das and Aki, 1977) evidence that

rupture velocity can accelerate very rapidly to its terminal value.

The approximation of abrupt stopping, on the other hand, is
difficult to support experimentally, since ruptures normally
propagate completely through laboratory samples. While the

approximation of abrupt stopping may be quite artificial, it is not
precluded by theories of dynamic crack propagation. For example,
Husseini et al., (1975) have shown that a rupture can stop
instantaneously when it encounters jumps in fracture energy on the
fault plane. This reflects the fact that a crack edge, at least in
the linearly-elastic continuum theory, lacks "inertia". That i s,
the stresses immediately ahead of the crack edge depend on rupture
velocity, but not on the time derivatives of rupture velocity
(Eshelby, 1969).

6
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xz

Figure 1. Rupture geometry and coordinate system for the
numerical simulations. The shear prestress is in the x
direction on the plane z a 0. Rupture initiates at the
origin and expands symmetrically at fixed rupture
velocity.

T7
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The importance of the mode of stopping lies in its

consequences for high-frequency radiation. Madariaga (1977a) has

shown that the strongest radiation of high-frequencies is associated

with abrupt changes in rupture velocity such as the sudden stopping
at the fault edges in our Model. A rupture velocity jump generates
f-2 high-frequency behavior of the far-field displacement

spectrum, in contrast to the starting phase, which (assuming

nucleation at a point) generates at most an f-3 spectral asymptote.

2.4 BOUNDARY CONDITION OF THE FAULT

On E(t), we permit a tangential displacement discontinuity

(slip) s(x,t), and require continuity of the traction vector and of

the normal component of displacement. The shear traction on E obeys

a simple Coulomb friction law. The physical requirements of this

friction law are: 1) the magnitude of the shear traction on Z is

bounded by a prescribed sliding friction value which depends only on

the normal traction, and, ii) the shear traction is equal in

magnitude to the sliding friction value and opposite in direction to

the slip velocity vector whenever the latter is non-zero.

The vector ' denotes the shear traction exerted on the positive

side of Z by the negative side (where the direction of n is from

the negative side of E toward the positive). We define -,f to be a

sliding frictional traction whose direction opposes the
instantaneous slip velocity and whose amplitude is proportional to

the normal traction on Z:

fif

where Tf is -OdON' the product of the normal traction and the

coefficient of dynamic friction. The amplitude of the sliding

friction, Tf, is presumed to be positive, constant, and less than
the absolute value of the shear prestress rop so that a stress

drop occurs at the rupture front. We then define 'rc to be the

8
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shear traction, at a point on Z, which would be sufficient to
enforce continuity of velocity. That i s, T is the instantaneous
shear traction which would accompany healing, a quantity which can
be readily determined at any time step from the numerical solution.
Then the following boundary condition on Z is equivalent to the
friction law described in the last paragraph:

r a Z if licI 4>Tf

Equation (1) ensures that the slip velocity i is non-zero only if
thle magnitude of T~ would otherwise exceed that of sliding friction,

~f.

Note from Equation (1) that we do not assume that the
frictional stress immediately increases above the dynamic friction
value Tf when a Slip velocity zero occurs. Rather than assuming
instantaneous recovery of strength, we let Tf continue to bound
the shear stress on the fault, even after the slip velocity goes to
zero. This is in accord with results from laboratory studies of
time-dependent rock friction. For example, Dieterich (1972, 1978)
found frictional strength of rock surfaces to be proportional to the
logarithm of their time of contact, with essentially no recovery of
strength occuring during the first one second of contact. Thus, any
increase of frictional strength due to stationary contact should be
negligible on the time scale of dynamic rupture.

2.5 STRESS-DROP SCALING

The dynamic stress-drop, AT, is defined here as the difference
between the absolute values of shear prestress and sliding
frictional stress,

& T a

This quantity is the stress available to accelerate the fault slip,
and has also been termed "effective stress" in the seismological

9
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literature (e.g., Brune, 1970). If the slip direction were
constrained to be parallel to the direction of the prestress, then
the dynamic solution would scale directly with the assumed value of
a&, and would be independent of -cf. This constraint of the slip
direction is equivalent to assuming Tf>>&T. In the current study,

we have made this simplifying assumption so that the numerical
results can be scaled rigorously with av. The assumption "Tf>>At

is consistent with laboratory studies of stick-slip, which report

fractional stress drops, a-r/ 0o, of a few percent to a few tens of
percent (for example, Byerlee, 1967; Scholz, et al., 1972;
0ielerich, et al., 1978).

Actually, this simplification does not have a significant

effect on the solution (apart from inhibiting slip reversal as

discussed below). It is known, for example, that the self-similar,

expanding elliptical crack exhibits slip which is everywhere

parallel to the prestress direction, even for the case of zero

friction (Burridge and Willis, 1969). For finite faults with low

friction, stopping of rupture can introduce a component of slip

perpendicular to the prestress direction. However, Madariaga (1976)

has shown, for the case of a finite circular crack, that this

* component is quite small. So, scaling with a-, while rigorous only
for Tf>>A', should be a good approximation even for relatively low

values of TV

2.6 HEALING

When the slip velocity at a point goes to zero, Equation (1)
provides the criterion for whether to permit further slip.

Recommencement of slip is prohibited by Equation (1) if such slip

(which must be accompanied by a shear traction of magnitude Tf)

would increase the magnitude of the shear traction T, rather than
decrease it since that would violate our physical assumption that

the shear traction on Zopposes the slip velocity.

70
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Although the friction law embodied in Equation (1) does not

automatically preclude a reversal of sliding direction, a reversal

could only occur for very small values of sliding friction in this

model. We define the overshoot stress as the amount by which the

shear traction, at a point on E,drops below rf after sliding

ceases. In order for sliding to reverse, the shear traction would

have to drop from the sliding friction value to zero, then reverse

sign and increase in magnitude back to rf;so no sliding reversal
will occur unless Tf is less than half the overshoot stress. The

numerical results given in the next section show that the overshoot

does not exceed about 26 percent of the dynamic stress drop;

therefore, a sliding reversal would only occur if the fractional

stress drop Ar/t o were at least 0.88. Since we have assumed
f>>A&r (i.e., very small fractional stress drop), sliding reversal

does not occur in our simulations.

i
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III. NUMERICAL SOLUTIONS FOR THE FAULT SLIP

3.1 METHOD OF SOLUTION

The mathematical model of faulting outlined in the last

section poses a three-dimensional, nonlinear, mixed boundary value

problem. To determine the fault slip, this problem is solved

numerically using a three-dimensional finite difference method

developed by Cherry (1977), in which explicit time stepping is used

to integrate the dynamic solution in time. Equation 1, governing

the fault plane, was discretized in accordance with the method

developed by Day (1977, Appendix IV).

3.2 DESCRIPTION OF THE CALCULATIONS

We present slip functions obtained from numerical simulations

of four different fault geometries. Each calculation simulates a

rectangular fault surface in a uniform whole space. In each case,

rupture initiates at the center of the rectangle, as in Figure 1,

and the prestress direction is aligned with the long dimension of

the fault.

The numerical results have been scaled to represent the

following set of physical parameters:

P wave speed, a a 6.0 km/sec

S wave speed, a - 3.46 km/sec

shear modulus, 1 9 3.24 x 10" dynes/cm

rupture velocity, uR a 3.12 km/sec

dynamic stress drop, A't - 100 bars

Three of the calculations represent a fault length I of 8 km and

fault widths w of 1.5, 4, and 8 km, respectively. The fourth

calculation was for a fault length of 16 km and a fault width of 4

km. The solutions may be rescaled to represent a different set of

material and fault parameters, provided Poisson's ratio, the fault

aspect ratio, and the ratio uR/a are unchanged. The appropriate

12
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t scaling relationships have been summarized by Madariaga (1976), and

we repeat them here for convenience. Assume that the above values

of dynamic stress drop, fault width, shear speed, and shear modulus

are multiplied by factors at', w', a, and i', respectively. Then,

time, length, stress and displacment in the numerical solutions are

to be multiplied by scale factors t', x', a' and u', respectively:

(time) t' . '

(Length) x' - wo

(Stress) ' -

(Displacement) u W w

In rescaling the numerical solutions, however, consideration

must be given to a hidden length scale in the problem, the finite

difference cell dimension. The main limitation of the finite

difference method is that the discretization causes substantial

numerical dispersion of wavelengths shorter than about 6 cell

dimensions. Consequently, accuracy is degraded for high-frequency

components of the solution. For these four finite difference

calculations, the mesh refinement was sufficient to retain accuracy

for frequency components up to about 5 Hz. Frequencies higher than

5 Hz have therefore been removed from the solutions using a

*combination of artificial viscosity and post-processing with a

low-pass digital filter. This non-physical cutoff frequency scales

as 8/w.

3.3 SLIP TIME-HISTORIES

Figure 2 shows the calculated slip histories for selected

points along the fault length for the square (8 km by 8 km) fault.

The final offset is greatest near the center of the fault,

decreasing as the observation point approaches an edge. The rise

time of the slip function is also greatest at the center, where it

equals approximately the fault length divided by the shear speed.

The rise time decreases as the edges of the fault are approached.

13
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ISlip Direction

1.0
t

0 1.0 2.0 3.0
Time (s)

Figure 2. Computed slip time-histories along the center-line of
the square fault plane at several distances fromt the
hypocenter. Slip is scaled to represent a dynamic
stress drop of 100 bars and a fault length of 8 km.

14
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Arrest of slip occurs first at the outer edge and propogates

inward. The center of the fault is the last point to heal.

Overall, the healing behavior is very similar to that of the

circular fault, as obtained by Madariaga (1976), in spite of the

reduced symmetry present in the square fault problem (the circular

fault stops simultaneously everywhere on its perimeter whereas the

square fault does not).

We can compare the residual slip for the square fault to

Neuber's (1937) static solution for a circular shear crack in a

Poisson solid, for which the slip s is

s(r) a (l-r /a2)1/2 , (2)

where a is the crack radius and r is the distance to the center of

.me crack. For the circular crack, the average static slip, from

5Tjuation 2, is 2/3 times the static slip at the center. For the
• . fault calculation, the average static slip is found to be

0.65 times the static slip at the center, which is nearly identical

to the circular fault relationship.

As a reasonable approximation, we might apply Equation 2 to

the square fault with the reinterpretation that a is '1/7 , where

A is the fault area. In that case, the static offset at the center

of the square fault exceeds the prediction of Equation 2 by a factor

of 1.26. This "overshoot" of the dynamic solution relative to the

static solution has been discussed for circular faults by Madariaga

(1976), Archuleta (1976), and Das (1980). The value cf 1.26

obtained here for the square fault is in good agreement with their

numerical results (which range from 1.20 to 1.27).

This value of overshoot implies that no reversal in slip

direction will occur if the dynamic frictional traction Tf exceeds

about 0.13 &T, or half the overshoot stress. Thus, as remarked in

the previous section, a slip reversal requires a fractional stress

drop, &T/', greater than 0.88, which is far greater than those

observed in laboratory stick-slip experiments. We emphasize again
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that this conclusion requires only our assumption that sliding
friction is a dissipative process which opposes the slip*, it does
not require an assumption of rapid strength recovery on the fault
following a slip velocity zero.

Figure 3 shows slip histories calculated along the fault

length for the case w a4 , I 8. The time histories in this case
are similar to those in Figure 2, but the rise time and static slip
are reduced, especially near the center of the fault. Rise time and

* static slip at a point are apparently controlled by proximity of the
nearest edge of the fault.

Figure 4 shows slip histories for the case w a1.5, 9. 8 .
Again, it is clear that fault width controls static amplitude and
rise time. Beyond a distance of about one fault width from the
hypocenter, the slip function remains essentially constant in shape
with increasing hypocentral distance. This uniformity of the slip
function beyond one fault width is also apparent in Figure 5 for the
case w a 4, L a 16.

In Figure 6, the relations between fault width and the static
offset are shown in more detail. Static offset calculated along the
fault centerline, is plotted for the cases w a 4 and w 2 1.5 (1 a 8
in both cases). The horizontal lines show the static solution for
an infinitely long strike slip fault (Knopoff, 1958). Except near

the end of the fault, the static slip for the finite-length faults
is essentially constant along the fault length and is very well

K predicted from Knopoff's static solution. At the center of the 4 x
8, 1.5 x 8, and 4 x 16 faults, the static slip exceeds the Knopoff
solution by less than 5 percent. The 'overshoot" phenomenon,

observed for the square and circular faults, is not significant over
most of the length of the long, narrow faults. This result concurs
with the numerical results of Archuleta and Day (1980), which show
overshoot confined to within about one half-width of the end of the
fault. Elsewhere, the final shear stress is approximately equal to
the sliding frictional stress.
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Figure 4. Computed slip timie-histories along the center-line of a
rectangular fault with aspect ratio 16:3. Scaling is
as in Figure 2.
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Figure 5. Computed slip time-histories along the center-line of a
rectangular fault with aspect ratio 4:1. Slip is
scaled to represent a dynamic stress drop of 100 bars
and a fault length of 16 km.

1.1 _________19

SYSTEMS. SCIENCE AND sorrTWARE



r4i

1000

S041

4 '- (C 0

L- C

X U

I 4- E

-. :~ ~ 4 l- m,,-

I' .!. .,- '

4~-.- -

I.' 0 ,- "43 ,CA

I 04-'3I'En

I ~.- =-

1 4-

I-i

cm w. C

•r s- 0 0

I N0

SU 
W

(A 0
4 -

OL1 .- t

Iu)- *hi

sysEs SCINC AN so..AR



p

For a long, narrow fault model, then, the static stress drop

will approximately equal the dynamic stress drop AT, since little or

no overshoot occurs, and "undershoot" is not permitted by our

model. That is, no physical mechanism has been incorporated into
the model (Equation 1) capable of healing the fault at a stress

level higher than the prescribed sliding frictional level. In

practice, however, we have to be cautious in equating static and

dynamic stress drops. Seismic estimates of static stress drop are
actually estimates of average static offset divided by gross fault

dimension. If an earthquake leaves unbroken patches, or if some

regions heal at stress levels above the dynamic friction level, then
the seismically inferred static stress drop may be substantially

lower than the dynamic stress drop AT, as demonstrated by Madariaga
(1979). Static stress drop estimates may constitute, in general, an

approximate lower bound on A-.

Figure 7 shows the relationship between slip rise time and

fault width. Rise time is plotted along the fault centerline for 3

rectangular fault calculations. Rise time in Figure 7 was defined
to be the time required for a point on the fault to attain 90 per-

cent of its final value of slip. The horizontal lines represent a

rise time equal to the half-width divided by the rupture velocity.
For w - 1.5, f a 8, the rise time at first decreases with distance
from the hypocenter, then approaches a constant level of about

w/ZuR. For w - 4, k - 16, a constant level of w/2uR is again

approached as hypocentral distance increaipt. For w r 4, 1 = 8, the
rise time again decreases with distance from the hypocenter, but the

effects of the end of the fault intervene to further reduce the rise
time before a constant level can be clearly established. These

numerical results predict that a long, narrow fault will have a rise

time of roughly w/R over most of its length, with larger values

near the hypocenter and lower values near the ends.

Actually, in these simulations the rupture and shear velo-

cities differ only by about 10 percent, so Figure 7 could alter-
natively be interpreted as showing rise time controlled by 1/s
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rather than 1/,j. We prefer the latter interpretation, as

explained in a later section.

3.4 SLIP VELOCITIES

We turn our attention now to the high frequencies. Here it is

appropriate to focus on the slip velocity function and,

particularly, on the peak slip velocity. Figure 8 shows the slip

velocity time histories at selected points along the centerlines of

the 4 x 16 km fault model. The slip velocities have been low-pass

filtered to remove frequencies in excess of 5 Hz, which is close to

the highest frequency that can be reliably computed in the finite

difference mesh.

Figure 8 shows that the peak slip velocity Initially Increases

with hypocentral distance. However, the rapid growth in peak slip

velocity ceases beyond a hypocentral distance of about one fault

width. From then on, the slip velocity function is nearly uniform

along the fault centerline. The figure also shows slip velocities

observed at points distributed across the fault width, at a fixed

distance of 6 km along the length of the 4 x 16 km fault. This

figure illustrates the near uniformity of peak slip velocity across

the fault width as well as along the fault length, for hypocentral

distances greater than about w. The slight decrease in peak slip

velocity very near the fault edge, evident in this figure, may be

due to the slip function rise time near the edge becoming comparable

to the rise time of the 5 Hz low-pass filter.

The uniformity of peak slip velocity is further illustrated in

Figure 9. The'broken curves represent peak low-passed (5 Hz) slip

velocities obtained along the fault centerline for the two cases w

1.5, Z a 8 and w a 4, 1. 16 kin, respectively. In both cases, the

peak slip velocity first increases rapidly with hypocentral

distance, then quickly settles to a uniform level when the

hypocentral distance exceeds w. The results in Figure 9 will be

further analyzed in the next section.
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- ;iFigure 8. Slip velocity time-histories for the 4 x 16 km fault.
The time-histories have been low-pass filtered with a
5 Hz cutoff (corresponding to the limiting frequency
for which the numerical method is accurate). Peak slip
velocity is nearly invariant with position, for
distance x greater than fault width.
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Figure 9. Peak slip velocity as a function of hypocentral
distance along the fault center-line (x axis). The
dashed curves represent the numerical solutions for
1.5 x 8 km and 4 x 16 km rectangular faults,
respectively. The solid curve represents Kostrov's
analytical solution for an expanding circular crack.
Horizontal lines approximate Kostrov' s solution
evaluated at radius r a w. Slip velocities for the
numerical solutions were digitally low-pass filtered
with a 5 Hz cutoff, and the analytical solution was
analytically low-passed by convolution with a boxcar
function of width 1/fc (fc 5 Hz).
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IV. ANALYSIS OF THE SLIP FUNCTION

4.1 THE VELOCITY SINGULARITY

We can interpret the numerical results for peak slip velocity
by means of the closed-form analytic solution of Kostrov (1964) for
an expanding circular crack. The analytic solution for the velocity
discontinuity i on a circular crack expanding at a uniform rupture
velocity is

. ~ - B T + rlUR
__C_ _ H(T) (3)

' VT(T+2r/uR)

where T is the reduced time (time minus rupture arrival time), r is
the distance (x2 + y 2 )1/ 2 from the center of the crack to the
observation point, H is the unit step function, and C is a constant
which equals 0.81 for a Poisson's ratio of 0.25 and rupture velocity
of 0.9 s (Dahlen, 1974). This solution is singular at the rupture
arrival time (except at the hypocenter), and approaches CIs for T
large compared to the rupture arrival time. In order to compare
this solution to the numerical solutions for finite-width faults, we

approximate the effect of a low-pass filter by averaging the analy-
tic solution (Equation 3) over a "cutoff" period 1/f c . The re-
sulting expression for peak slip velocity i on the circular crack is

i- CE 9(2rfc/A) + 1) 1 / 2  (4)

which, for fc>>UR/r, is proportional to r I/ 2 ,  That is, in the
absence of edge effects (and nonlinearities), peak slip velocity

would increase as the square root of distance from the point of
rupture.

Equation 4, with fc equal to 5 Hz, is plotted as a solid
curve in Figure 9. Comparing this curve with the peak-velocity
curves from the finite-differences fault simulations, we see that
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edge effects do not act to modify the peak velocity within a hypo-

central distance of approximately one fault width. Up to that

distance, the behavior of peak slip velocity closely follows that of

Kostrov's expanding circular crack solution, increasing as ri/2.

The influence of the fault edges is to terminate this growth of peak

slip velocity at a hypocentral distance of approximately r - w.

Thus, the numerical solutions predict that, over most of its length,

a long, narrow fault will have a peak slip velocity, after low-pass

filtering with cutoff frequency fc' of approximately

T, = -2c (5)

In (5) we have assumed fc " UR/w and have introduced the ap-

proximation C AUR/8, which is accurate within about 10 percent

for all sub-shear rupture velocities (Dahlen, 1974). Equation (5)

is shown by horizontal lines on Figure 9. For this model of

faulting, then, peak (low-passed) slip velocity is proportional to

dynamic stress-drop AT, the square root of rupture velocity, and the

square root of fault width.

The above interpretation of the numerical solutions permits us

to "undo" the filtering effect of the numerical scheme and char-

acterize the slip velocity singularity at the leading edge of a

long, narrow rupture. To simplify the discussion, we take x>>w, so

that we can ignore the rupture front curvature across the fault

width, and so that the rupture front represents Mode II (in-plane

shear) crack extension. We expect a singularity of the form

s ~V(uRt - x)"1/2 H(1JRt - x) (6)

This singular form is a universal property of sub-shear-velocity

crack propagation (Freund and Clifton, 1974; Freund, 1979). In
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Equation (6), V is the velocity intensity, and we can estimate it
from Equation (5). Recalling that s is approximately i averaged

over time 1/f,,and using Equation (6), we obtain the expression

ATv,7 - R  (7)

for the velocity intensity. Thus, the model predicts a velocity

intensity proportional to the square root of fault width and also
proportional to rupture velocity. This result contrasts with
two-dimensional crack solutions, in which the velocity intensity is
proportional to the square-root of fault length.

In addition, we can use this result to estimate the dynamic
stress intensity factor K at the advancing edges of the fault. The
shear stress change near the edge, T -to, has the asymptotic form
(Freund and Clifton, 1974).

-- To -K (x-ut)'/ 2 H(x-uRt). (8)

For a Mode 11 crack, K can be obtained from V (Freund, 1979):

2&s2  R(uR)K -/ v (9)3 // 2  /'
uR i- 1-77

where R is the Rayleigh function

R(c) [ 1/2 ( c2 1/2 ( - 2 2

From (7) and (9) we obtain the approximation

2 R(uR)
K' 42 (10)
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so that the dynamic stress intensity factor is proportional to the

square root of the fault width and is independent of the length of
rupture. This value of K happens to be very close to the dynamic

stress intensity factor for a two-dimensional inplane shear crack of
length w; in fact, the difference (about 8 percent at u a 0.96)

is not significant in view of the approximate nature of our analysis.

Finally, from Equation (10) we can determine the energy flux

into the propagating rupture front, the so-called energy release

rate G. G is the energy absorbed per unit area by the advancing

crack edge, and is given by (Freund, 1972)

G " 1R KV,

7R

from which we obtain

2 R (u R ) ~g AT2 (1

That is, for a long, narrow fault, the energy release rate is

proportional to the fault width, rather than fault length.

4.2 THE STATIC SLIP

From Figure 6, it was observed that the final slip for the

rectangLlar fault model is very close to Knopoff's two-dimensional

(antiplane) static solution, except near the ends of the fault.

Comparing the two cases shown in that figure, it is evident that the

length of the end region is proportional to fault width, rather than

fault length. The greatest deviation from the two-dimensional

solution occurs within a distance w/2 of the ends. We use these

observations to construct an approximate expression which summarizes

the numerical results.

Figure 10 shows in more detail the numerical results for

static slip on the fault with aspect ratio 2. Four profiles across

the narrow dimension of the fault are shown as dashed curves. The
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uppermost solid curve is Knopoff's static solution for the in-
finitely long (in the x direction) fault of width w:

2 1/2

s(y) -A-w -3L L \/ JJ

For points more than half a fault width away from the end of the
fault, this expression is a reasonable approximation to the
numerical solution; for x - 0 and x a 0.5w, the agreement is within

about 10 percent over most of the fault width. To modify this
expression to account for end effects, we are motivated by the fact
that, very near the fault ends, plane-strain conditions should be

approximated. Therefore, guided by the two-dimensional static
solution of Starr (1928) for a finite, in-plane shear crack, and the

observation that the end region is of length approximately w/2, we
try the approximation

r 211/2&T - w 1 (2 . -1/2 1/2 , ( 2)

where W(x) is 1 for points farther than w/2 from the ends, and

otherwise is the normalized distance to the end of the fault:

4(x) V k x! if7
1if

The approximation (12) is simply that the static slip has the value

w along the centerline, with an elliptical cross-section across

the width, multiplied by a quarter-ellipse taper near each end. As
Figure 10 Indicates, Equation 12 represents the numerical solu-

tions fairly well over the whole length and width of the fault,
though somewhat less well near the end.

To summarize, we find that final slip for a long, narrow fault
is proportional to fault length rather than fault width. The final

slip is well approximated by Knopoff's solution, except near the
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ends. The extent of this end region is also proportional to fault

width, not length. Equation 12 represents reasonably well the

overall behavior of the static offset.

4.3 THE SLIP RISE TIME

The approximate expressions deduced above for the slip

velocity singularity and static slip can be used to derive an

approximate expression for the rise time TR. Integrating the slip

velocity singularity (Equations 6 and 7) and equating the resulting

slip to the static slip (Equation 12) gives the following prediction

for the rise time:

TR  w - 1 - 1?2 - C, (13)

assuming x>>w. This derivation of Equation (13) assumes that the

slip velocity at a point follows Equation 6 until the static slip

value is reached, then slip terminates abruptly. This is an over-

simplification of the actual slip function, as Figure 8 shows.

However, the resulting expression for TR is in very good agreement

with the numerical result, shown in Figure 7, that the rise time

along the fault centerline (y-O) approaches w/2 ,JR for points more

than one fault width away from the hypocenter. Furthermore, the

numerical result that TR increases with decreasing hypocentral

distance for x<w, which is evident in Figure 7, can be interpreted

In the same manner. For x<w, however, Equation (6) should be

replaced by Equation (3) to estimate the rise time.

It is perhaps surprising that Equation 13 involves the rupture

velocity, rather than the shear-wave velocity, since the arrival of

shear waves diffracted from the long edges of the fault might be ex-

pected to control the rise time at a point on the fault. In fact,

both Day (1979) and Das (1981) have adequately explained rise times

for numerical models of rectangular faults on the basis of dif-

fracted shear-wave arrivals, predicting rise time proportional to

1/s. Since the shear and rupture velocities differ by only 10
percent or so in our simulations, we could not distinguish between a
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1/s and l/uR dependence for T R on the basis of these numerical
results alone. Instead, the proportionality of rise time to the
reciprocal of rupture velocity in Equation 13 follows directly from
the property that the velocity intensity at the leading edge of the
fault is proportional to uR. This proportionality to uRis a
general property of dynamic cracks running at sub-Rayleigh velocity
(see, for example, Freund, 1976). Therefore, it will take longer
for a slow-running crack to reach static equilibrium than for a
fast-running crack to do so (recall that negligible static overshoot
was found for the long, narrow faults and that static shear stress
is required by the model to be less than or equal to rf). The
shear-wave diffraction effect may act to retard the slip velocity
below that given by (6) and (7), but not to increase i t. For our
earthquake model, then, an expression such as Equation (13) is a
more appropriate approximation to the rise time than would be ob-
tained with s in place of vR. The conclusion might be different
if some mechanism, such as velocity-dependent friction (Oleterich,
1978) were incorporated into the fault model to permit healing to
occur at a stress level substantially higher than Tf.
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V. SUMMARY AND DISCUSSION

The approximate behavior of the slip function for a long,

narrow fault, as deduced from the foregoing analysis of the numer-

ical solutions, is summarized schematically in Figure 11. Near the

hypocenter, the slip function initially resembles Kostrov's solu-

tion, Equation (3), in which the velocity singularity grows as the

square root of hypocentral distance. For x (distance along the

fault length) greater than the fault width w, this growth of the

velocity singularity ceases, and the slip function is then nearly

invariant with distance in the x direction, except near the ends.

In this "steady-state" regime, x>w, both rise time and static

slip are proportional to w, and the advancing crack edges have

velocity singularities proportional to 'i. Slip nearly ceases at a
given point after the crack edge has advanced a distance of roughly

one half-width past the point. The slip-velocity time function can

be approximated by

T 41/2 [H(T~) - H(T-TR)]. (14)

In Equation 14, T is reduced time t-uR/r, and TR is the slip

rise time as given by Equation 13. This approximation is sketched

(for the case y a 0) in Figure 12 along with the corresponding

shear-stress singularity. Also shown for comparison in Figure 12 is

a numerical solution for slip velocity (point E of Figure 8).

The low-frequency characteristics obtained here for the slip

function, that is, rise time and static slip, are similar to those

inferred from similar calculations by Archuleta and Day (1980) and

from a spontaneous-rupture numerical model by Das (1981). The mesh

refinement used to obtain the numerical solutions in this study,

however, has permitted observation of some previously unresolved

high-frequency characteristics of the solution, as well. These

high-frequency slip characteristics, specifically the strength of
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Figure 11. Sketch summarizing the approximate behavior of the slip
function for long, narrow faults. At a time greater
than that required for the rupture to cross the fault
wi dth sRI) ip is concentrated on two patches, each
approximately one half-width long, moving away from the
hypocenter in opposite directions. The shape of slip
function then remains nearly invariant as these patches
propagate along the fault length. In this steady-state
regime, the static slip and rise time are proportional
to w, and the slip velocity has a square root
singularity with intensity proportional to 4.
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Figure 12. Sketch of a closed-form approximation for the slip
velocity time-history (Equation 14) at y a 0, x >> w,
compared to a corresponding numerical solution (point E
of Figure 8). Also sketched is the corresponding
approximation derived for the shear-stress singularity
(Equations 8 and 9).
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the velocity and stress singularities at the leading edge of the
fault, are of particular importance for understanding the radiation
of high-frequency seismic energy. For example, Madariaga (1977a)
has shown that "the high frequencies originate from the stress and
slip velocity concentrations in the vicinity of the fault's edges".
Frequencies in excess of 1 Hz are an important component of the
strong ground motion recorded in the iumediate vicinity of
earthquakes, and are also of importance for understanding earthquake

ground motion at regional distances, where substantial seismic
energy is observed in the 1-5 Hz range.

We first consider some implications of the dynamic solutions
for kinematic modeling procedures used to predict ground motion time
histories. An assumption commonly made in kinematic modeling of
earthquake ground motion is that the source can be represented by a
uniform dislocation, that is, a slip function which is uniform in
its amplitude and its time dependence over the entire fault plane
(apart from a time delay associated with the rupture arrival time).
Usually the slip function is assumed to have a simple ramp time-
history, i.e., constant slip velocity over some specified rise
time. We focus for now on the high-frequencies radiated from the
leading edge of the fault after it has propagated more than a fault
width from the hypocenter. In this case, Equation (14) is an
appropriate representation of the slip function for our dynamic
solutions. The spectral amplitude of a ramp function behaves
asymptotically at high frequency as f-1, whereas Equation 14
implies an f-1 /2 slip-function spectrum (Lighthill, 1958, p. 52).
Since the predicted radiation depends linearly on the assumed slip

function, we woul d expect the ramp-functi on source representati on to
be relatively deficient in its prediction of high-frequency ground
motion. For example, one might attempt to approximate the slip
function using a ramp function in which the ratio of static slip to
rise time is the same as for the dynamic solution (Equation 14).
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Then, at a period of TR/O, the ramp slip function would be

deficient in spectral content by about a factor of 7 relative to
Equation 14.

This spectral comparison between the ramp-function represen-

tation and the dynamic solution may provide a physical basis for a

result obtained by el Mar Technical Associates (1979). They

modeled the 1966 Parkfield earthquake using a uniform-dislocation

earthquake model with a ramp slip function, attempting to fit

spectral characteristics of the ground motion recorded at the 5
accelerograph stations of the Chalome-Shandon array. They reported

difficulty in matching observed response spectra over a broad period

range with this slip function; in order to fit recorded short-period

spectral levels of ground motion, it was necessary to tolerate a

large overestimate at long periods. This result is in accord with
our prediction that the ramp function earthquake representation is

relatively deficient in high frequencies.

Of course, a ramp function suitably scaled, might be adequate

for modeling ground motion over a narrow frequency band. As an

example, Bouchon (1979) successfully synthesized the velocity and

displacement pulses recorded for the Parkfield event at Station 2,

using a uniform slip function with a ramp time history. In this

case, however, the predominant period of the waveforms being modeled

was several times greater than the assumed rise time of the ramp.

The dynamic solutions reveal a second difficulty with uniform-

dislocation kinematic models, this one involving the starting phase

radiated from the hypocenter when rupture initiates. We have seen

that the ramp function is a poor representation of the slip function

for the dynamic solution at points well removed from the hypocen-

ter. It is tempting to try to retain the uniform dislocation

approximation, but alter the time-function to resemble the singular
behavior of the dynamic solution in the "steady-state" regime,
x>>w. Unfortunately, if the time-function of a uniform dislocation

model is chosen to match the the dynamic solution at points far from
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the hypocenter (i.e., replace the ramp function by an expression

such as (14)), then the starting phase predicted for the uniform

dislocation will be much larger than that for the dynamic model. To

see this, we use the expression derived by Richards (1973) for the
first-motion approximation to the shear-wave acceleration due
to an expanding circular crack:

CU2
CaR AT H(t-R/6) (15)

where R contains the double couple radiation pattern, e is the angle

formed at the hypocenter by the fault normal and the receiver direc-

tion, and R is the hypocentral distance to the receiver. We will
also use the corresponding expression for an expanding, uniform,
circular dislocation:

2v R
-2 R(1-U z  sin z a (t-R/ ) , (16)

where i(t) is the assumed slip-velocity time function for the uni-

form dislocation. Equation (16) can be deduced from Savage (1966).

If, in a uniform-dislocation model, we choose i in accordance with

Equation 14, Equation 16 implies that the acceleration first-motion

will have a T" 1 2  singularity, whereas the dynamic solution for
the initiation phase, Equation 15, gives only a step discontinuity
for u-s To quantify further the effect of the uniform-dislocation

approximation in this case, assuming a band-limited observation with

cutoff frequency fc' we substitute Equation 14 into Equation 16,

average over a period 1Ifc, and take the ratio of (16) to (15).
The result is that the uniform dislocation yields a starting accel-

eration phase which exceeds the dynamic solution by a factor of

('I-' sin e)TR fc (we have introduced the approximation TR
w/ZUR and uR/s v C). Thus, for periods much less than the rise
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time, the uniform dislocation model substantially over-predicts the

starting phase amplitudes, relative to the dynamic solution (except
near e - 90).

In suary, the uniform dislocation kinematic models, since
they do not incorporate the spatial variation of slip present in the
dynamic solution for x<w, will either over-predict the starting
phase or under-predict the dominant high-frequencies associated with
the velocity singularity. At least for the simple dynamic model
studied here, we can't construct a uniform dislocation approximation
which will replicate both the starting phase radiation and the
high-frequency behavior of slip at the leading edge of the fault.

The numerical sol utions obtained here also have tectono-
physical implications. Husseini, et al (1975), Das and Aki (1977b),
and Aki (1979) have analyzed the role of fault-plane "barriers". or
high-strength segments, in resisting or arresting rupture growth.
Whether fault growth stops at a barrier or rupture continues through
the barrier depends upon the barrier strength, as well as upon the
stress Intensity factor developed at the leading edge of the fault.
In two-dimensional fracture mechanics, the stress intensity

increases with rupture growth as the square root of fault length,

for a given dynamic stress drop. Therefore, one would predict that
as fault length increased, the likelihood of rupturing barriers
would increase as well. In contrast, the three-dimensional

solutions demonstrate that the stress intensity ceases to grow with
fault length beyond a distance of about one fault width. Equation

(10), derived on the basis of the three-dimensional numerical

solutions, gives a stress intensity factor proportional to the
square-root of fault width. The capability of a long narrow fault
to rupture barriers should be proportional to dynamic stress drop,
and the square-root of fault width, but independent of rupture
length.

Similarly, two-dimensional analytical and numerical solutions
imply that the energy release rate at the fault edge increases with

fault length. As Andrews (1976) points out, those results would
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require that longer ruptures be accompanied by thicker zones of
microcracking or other inelastic response. Our three-dimensional
results, however, imply an energy release rate proportional to
width, rather than length (Equation 11). So we conclude that the
level of inelastic response associated with long, narrow ruptures
will depend on fault width, not length.

The numerical results also have important potential

applications to the problem of seismic monitoring of nuclear
test-limitation treaties. For example, some of the methods proposed
f or discriminating earthquakes from underground explosions make use
of characteristic spectral differences in the radiation from the two

types of events (e.g., Bache, et al., 1979). Results such as these
can help provide a theoretical basis for such discriminants.

A second example relates to the seismic estimation of
explosion yield. This problem requires a good understanding of
propagation effects on the seismic signal, particularly the average
path attenuation (i.e., t*). Anelastic attenuation is difficult to
separate observationally from source effects, however. In order to
make use of earthquake signals to infer propagation-path

attenuation, it is therefore important to have a good earthquake
source model, a point also underscored by Hanks (1981). To address
these questions using the numerical simulations, it will be
necessary to compute the radiated seismic signal from the earthquake

*models. The slip histories obtained here are sufficient for
synthesizing the radiated waveforms, and this will be undertaken in
a subsequent report.
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