
AD-AI09 979 TEXAS INSTRUMENTS INC LEWISVILLE EQUIPMENT GROUP F/G 9/2
ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPE--ETClU)
DEC 81 F30602-SO-C-0293

UN4CLASSIFIED RADC-TR-GI-360-VOL-4 ML,

I , IEEEhEEEEEE"I IIIlfflffl Ifflffllf
I flllllllfffffff
EI//IIIIIII/I/u

IlElhEEElhhEEll

IIIIIIIIIIIIIIfllfllf
*EEEEEUEEEIII

.., l iii.,_._o
II

- .i ti LIIIII
* 11111.5 NhI~~ ~ll1.5

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 963-A

0MI

PHOTOGRAPH THIS SHEET

L TelSI INVENTORY

s.. 8 -S -r . a

NT IDENTIFICA N '3 $#h

-O (Wf4I P3(4W -C- oag3 90C-W.-~f-% (Z~

DRTMUON STATEE A

I__Approved for public relei
Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRA&I

c TABDTIC
UNANNOUNCED 0 ITIC
JUSTIFICATION ELEC

BY _ __ _ __ _S_ _ JAN 25 1982D
DISBUTION S

AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION SAMP

82 01 12 007

DATE RECEIVED IN DTIC ...

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

F oRM DOCUMENT PROCESSING SHEET
DTIC OCT79 70A

TICI

* Pt' .

- . ,' . L, -' . _. . ' : •, 'o p"

RADC-TR-81460, Vol IV (of four)
Interim Report
December 1981

SADA INTEGRATED ENVIRONMENT III
a~COMPUTER PROGRAM DEVELOPMENT

-SPECIFICATION

STexas Instruments, Inc.

[APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

*1 ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-360, Volume IV (of four) has been reviewed and is approved
for publication.

APPROVED:

ELG-ABETH S. KEAN
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
pleaEe notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

e,4

UNCLASSIFIED
SECURITYs CLASSIFICATION OF ?141S PAGE Mhom. OaeaEgia.,.d) ________________

REPORT DOCUMEN4TATION4 PAGE __ FO______________FORM

I. REPOR MUNGER2. GOVT ACCESSION NO. 3. R2CIP1EN1 C-ATALOG MNGMER

4. TITLE (sid Subl~slI) 5. TYPE OF REPORT & PENIOO COVERSO

Interim Report
ADA INTEGRATED ENVIRONMENT III COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION 6. pEmRonwiftG 014. REPORT MUMSEEE

N/A
I. AU ~nO(s) a. CONTRACT 00 GRANT NUNSE9'a)

F3O602-80-C-0293

9. PERFORMING ORGANIZATION NAME AND AGORESS 10. PROGRAM ELEMENT. PROJECT. TASK

Texas Instruments Incorporated AREA a WORKUNIT NUMIER
Equipment Group-ACSL, P 0 Box 405, M.S. 3407 55811F912 /27
Lewisville TX 75067 5811

I I. CONTROLLING OFFICE NAME AMC ADDRESS I2. REPORT CATE

Rome Air Development Center (COES) December 1981

Griffiss AFB NY 13441 80 UM9 F AE

I'. MONITORING A4ENCY NAME 6 ACORCM11 ittfi lPsI oNK Coffffr.d Offi cc) IS. SECURITY CJ.ASS. (of this Popoff)

Same UNCLASSIFIED
t$&. OCCLASSIFICATION/ OOWNGRAOING

N/ACNOULE
IS. DISTRIeUTIO44 STATEMENT' (of this Report) /c

Approved for public release; distribution unlimited.

IT. OISTRIGUT10ON STATEMENT rot th* abstrac onm #a Block 20, if dilffenfoml 9~

RADC Project Engineer: Elizabeth S. Kean (COES)

It. KEYf WORCS (Canftle an Penoas aid* it "0906007 4041 1400011fY by block mmhw64,)
Ada MAPSE AIE
Compiler Kernel Integrated environment
Database Debugger Editor

- IKAPSE APSE

aO. ABSTRACT (Cenlitwo n.. rbvwo. a4de It neeearm an* identiy by block mnwov)

The Ada Integrated Environment (AlE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AlE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

DO 1 ,CR7 1473 EGITIN Oir I Nov 611 S OSSOLEIEr UNCLASSIFIED
SECURITY CLASSIFICATION OF TNIS PAGE (11111 owe rwwed)

-4u

UNCLASSIFIED
SCCUMTV CLASSIICATIOM OF TWel PA9(WMM faWO E016m00

APSE is built and will provide comprehensive support thr~oughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

UNCLASSIFIED
StCURITY CLA6841PICA~t10 OfP A~GfWhs.. 0ata C0199"A

ILL------,--

Development Specification TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title Page

SECTION I SCOPE

1.1 Identification 1-1
1.2 Functional Summary.................1-1

SECTION 2 APPLICABLE DOCUMENTSL2.1 Program Definition Documents.............2-1
2.2 Military Specifications and Standards. 2-1

SECTION 3 REQUIREMENTS

3.1 Introduction.....................3-1
3.1.1 General Description 3-1
3.1.2 Program Interfaces.....................3-2
3.2 Detailed Functional Requirements 3-3
3.2.1 Ada Interactive Editor...............3-3
3.2.1.1 Program Interfaces................3-3
3.2.1.2 User Interface..................3-3
3.2.1.2.1 Syntax Description. 3-3
3.2.1.2.2 Command Summary 3-4
3.2.1.3 Editor Commands 3-6
3.2.1.3.1 ABORT Command 3-6
3.2.1.3.2 APPEND Command....................3-69)3.2.1.3.3 BACKWARD Command.......... 3-6

*3.2.1.3.4 BOTTOM Command........... 3-7
3.2.1.3.5 CHANGE Command.................3-7

*3.2.1.3.6 COPY Command.................3-7
3.2.1.3.7 DELETE Command.................3-7

43.2.1.3.8 DISPLAY Command 3-8
3.2.1.3.9 FIND Command............ 3-8
3.2.1.3.10 FORWARD Command 3-8
3.2.1.3.11 HELP Command.................3-8
3.2.1.3.12 INDENT Command.....................3-8
3.2.1.3.13 INPUT Command 3-8
3.2.1.3.14 INSERT command.................3-9

Iii Ada Programming Toolset

Development Specification TABLE of CONTENTS

3.2.1.3.15 JOIN Command.................3-9
3.2.1.3.16 MOVE Command.................3-9
3.2.1.3.17 NAME Command.................3-9
3.2.1.3.18 QUIT Command.................3-9
3.2.1.3.19 READ Command.................3-10
3.2.1.3.20 REDO Command.................3-10
3.2.1.3.21 REPLACE Command 3-10
3.2.1.3.22 RESTORE Command 3-10
3.2.1.3.23 RESUME Command................3-10
3.2.1.3.24 SAVE Command.................3-10
3.2.1.3.25 SET Command...................3-11
3 .2.1.3.26 SHOW Command..................3-13
3 .2.1.3.27 SPLIT Command 3-14
3 .2.1.3.28 SUSPEND Command 3-14
3.2.1.3.29 TO Command...................3-14
3.2.1.3.30 TOP Command...................3-14
3.2.1.3.31 WRITE Command 3-14
3 .2.1.4 Function Descriptions 3-14
3.2.1.5 Processing Requirements 3-15
3.2.1.5.1 Presentation Manager..............3-15
3.2.1.5.1.1 Teletypewriter Interface 3-15
3.2.1.5.1.2 Video Interface 3-15
3.2.1.5.2 Edit Command Interpreter............3-16
3.2.1.5.3 Edit Command Processor.............3-16
3.2.1.5.4 Edit List Manager 3-16
3.2.1.5.4.1 Edit List Processing.............3-17
3.2.1.5.4.2 Package EDIT-LISTAIANAGER. 3-19
3.2.2 Ada Program Binder................3-20
3.2.2.1 Program Interfaces...............3-20
3.2.2.1.1 Library Utility 3-20
3.2.2.1.2 Execution Environment 3-20
3.2.2.1.3 Program Manager 3-20
3.2.2.1.4 Memory Manager................3-20
3.2.2.1.5 Interactive Debugger..............3-20
3.2.2.2 Functional Descriptions 3-21
3.2.2.2.1 Segment Binding 3-21
3.2.2.2.2 Program Binding 3-23
3.2.2.3 Processing Requirements 3-23
3.2.2.3.1 Segment Binding 3-23
3.2.2.3.1.1 Inputs....................3-24

*3.2.2.3.1.2 Processing..................3-25
3.2.2.3.1.3 Outputs....................3-27
3.2.2.3.1.4 Pre-Load Section Dictionary. 3-28

43.2.2.3.1.5 Loadable Code Section 3-28
3.2.2.3.1.6 Constant Sections 3-29
3.2.2.3.2 Program Binding...............3-29
3.2.2.3.2.1 Inputs....................3-30
3.2.2.3.2.2 Processing.................3-31
3.2.2.3.2.3 Program Image Binding 3-31
3.2.2.3.2.4 Load and Go Binding 3-33

iv Ada Programming Toolset

_-. A -

Development Specification TABLE of CONTENTS

3.2.2.3.2.5 Demand Paging Binding 3-35
3.2.2.3.2.6 Overlay Binding 3-38
3.2.2.3.2.7 Outputs....................3-38
3.2.2.3.2.8 The Segment Code Dictionaries. 3-39
3.2.2.3.2.9 The Segment Table 3-40
3.2.2.3.2.10 The Global Package Table 3-40
3.2.2.3.2.11 The Program Parameter Descriptor . . 3-41
3.2.2.3.3 Special Requirements..............3-41
3.2.2.3.3.1 Subprogram Calls..............3-42
3.2.2.3.3.2 References to Constants 3-45
3.2.3 Ada Interactive Debugger..............3-48
3.2.3.1 Program Interfaces...............3-50
3.2.3.1.1 Interface Block Diagram 3-51
3.2.3.1.2 Detailed Interface Definition. 3-53
3.2.3.2 User Interface..................3-54
3.2.3.2.1 Program Invocation...............3-55
3.2.3.2.2 User Prompt...................3-55
3.2.3.2.3 Command Language....................3-55
3.2.3.2.3.1 ABORT Statement 3-56
3.2.3.2.3.2 ACCEPT Statement..............3-56
3.2.3.2.3.3 ASSIGNMENT Statement.............3-57
3.2.3.2.3.4 CLEAR Statement 3-57
3.2.3.2.3.5 DEFINE Statement..............3-58
3.2.3.2.3.6 DISPLAY Statement 3-58
3.2.3.2.3.7 DUMP Statement...............3-59
3.2.3.2.3.8 END-TERMINAL Statement............3-60
3.2.3.2.3.9 EXCEPTION Statement 3-60
3.2.3.2.3.10 GOTO Statement.. 3-61
3.2.3.2.3.11 HELP Statement...............3-61
3.2.3.2.3.12 IF Statement.................3-62
3.2.3.2.3.13 MONITOR Statement 3-62
3.2.3.2.3.14 RUN Statement 3-63
3.2.3.2.3.15 STATUS Statement..............3-64

*13.2.3.2.3.16 SYMBOLS Statement 3-64
3.2.3.2.3.17 TERMINAL Statement..............3-64
3.2.3.2.4 Internal Variables..............3-65
3.2.3.2.5 Internal Functions...................3-66
3.2.3.2.5.1 DBF-ATTRIBUTE 3-66
3.2.3.2.5.2 DBF-DEFINE..................3-67
3.2.3.2.5.3 DBF-TASK...................3-67
3.2.3.2.5.4 DBF-TASK-STATUS 3-67

23.2.3.3 Processing Requirements 3-67
3.2.3.3.1 Symbol Identification and Completion3-67
3.2.3.3.2 Statement Identification............3-68
3.2.3.3.3 Expression Evaluation 3-68
3.2.3.3.4 Keyboard Interrupts 3-69
3.2.3.3.5 Debugger Activation 3-69
3.2.3.3.5.1 Parameter Processing.............3-69
3.2.3.3.5.2 Obtain Code Map 3-70
3.2.3.3.5.3 Load or Link to Target Program 3-70

Ada Programming Toolset

-.

Development Specification TABLE of CONTENTS

3.2.3.3.5.4 Process Control File 3-70
3.2.3.3.6 Input/Output 3-73
3.2.3.3.6.1 Virtual terminal I/O 3-73
3.2.3.3.6.2 Debug file I/O 3-73
3.2.3.3.7 Statement Processing 3-73
3.2.3.3.7.1 EXCEPTION Statement Execution 3-73
3.2.3.3.7.2 ACCEPT Statement Processing 3-74
3.2.3.3.8 Breakpoint Processing 3-74

SECTION 4 QUALITY ASSURANCE PROVISIONS

4.1 Introduction 4-1
4.1.1 Computer Program Component Test and Evaluation 4-1
4.1.2 Integration Testing 4-2
4.1.3 Formal Acceptance Testing 4-2
4.2 Test Requirements 4-2
4.2.1 Rehosting tests 4-2
4.2.2 Performance Requirements 4-2
4.3 Independent Validation and Verification 4-3

Vi Ada Programming Toolset

. -*. ...- i - - - - - :

Development Specification LIST of FIGURES

LIST of FIGURES

Figure Title Page

3-1 Segment Organizational Parts 3-22
3-2 Segment Binder Overview 3-24
3-3 Pre-Load Section Dictionary 3-28
3-4 Program Binder Overview 3-30
3-5 Demand Paging Control Block 3-35
3-6 Demand Paging Control Structures 3-37
3-7 Segment Code Section Dictionary 3-39
3-8 Run-time Segment Table 3-40
3-9 Subprogram Calling Linkages 3-44
3-10 Locating Address of Internal Constant Group 3-46
3-11 Locating Address of External Constant Group 3-47
3-12 Debugger -- General Organization 3-49
3-13 Debugger Interfaces 3-52

Vii Ada Programming Toolset

L - -_ -Z77-

Development Specification LIST of EXAMPLES

LIST of EXAMPLES

Example Title Page

3-1 ACCEPT Statement--ALWAYS 3-56
3-2 ACCEPT Statement--SPECIFIC LINE NUMBER. 3-56
3-3 ASSIGNMENT Statement 3-57
3-4 CLEAR Statement 3-57
3-5 DEFINE Statement............... 3-58
3-6 DISPLAY Statement 3-59
3-7 DUMP Statement.....................3-59
3-8 EXCEPTION Statement 3-60
3-9 GOTO Statement.....................3-61
3-10 IF Statement. 3-62
3-11 MONITOR Statement--Statement BREAKPOINT 3-63
3-12 MONITOR Statement--VARIABLE BREAKPOINT. 3-63
3-13 MONITOR Statement--PROCEDURE BREAKPOINT 3-63
3-14 SYMBOLS Statement 3-64

4

viii Ada Programming Toolset

Development Specification SCOPE

SECTION 1

SCOPE

1.1 Identification

This specification establishes the requirements for the performance, design,
test and acceptance of a computer program configuration item identified as
the Ada Programming Toolset, CPCI C04. This CPCI contains the following
computer programs for use in Ada software design, development, maintenance
and management activities.

C04.01 General Text Editor

C04.02 Ada Program Binder

C04.03 Ada Source-Level Debugger

These tools are provided on all computer systems supporting the Ada
Integrated Environment.

1.2 Functional Summary

The purpose of this specification is:

1. To identify the functional capabilities of each software tool

2. To describe the interfaces between each tool and the Ada Software
Environment, other Ada programs, the database, and users.

All programs in the toolset are written to be as transportable and machine
relative as is practically possible.

Ta

Texas Instruments 1-I Ada Programming Toolset

r/ ,

Development Specification APPLICABLE DOCUMENTS

SECTION 2
APPLICABLE DOCUMENTS

The following documents form a part of this specification to the extent
specified herein. Unless stated otherwise the issue in effect on the date
of this specification shall apply.

2.1 Program Definition Documents

[DoD80A] Requirements for Ada Programming Support Environments:
"STONEMAN", DoD (February 1980).

[RADC80] Revised Statement of Work for Ada Integrated Environments, RADC,
Griffiss Air Force Base, NY (March 1980).

[SOFT8OA] Ada Compiler Validation Capability: Long Range Plan, SofTech
Inc., Waltham, MA (February 1980).

[SOFT80B] Draft Ada Compiler Validation Implementers' Guide, SofTech Inc.,
Waltham, MA (October 1980).

2.2 Military Specifications and Standards

[DoD80B] Reference Manual for the Ada Programming Language: Proposed
Standard Document, DoD (July 1980) (reprinted November 1980).

Texas Instruments 2-1 Ada Programming Toolset

JT

Development Specification REQUIREMENTS

SECTION 3

REQU I REMENTS

3.1 Introduction

This part of this specification gives a general description, describes
interfaces, and provides detailed functional requirements for the Ada
Software Toolset text editor, Ada program binder, and source language level
debugger.

3.1.1 General Description

The software toolset contains system-provided or user-written programs used
in software design, development, maintenance and management activities. The
software tools included in the minimal Ada Programming Support Environment
and described in this specification are:

* An interactive general purpose text editor, providing facilities
for the creation and modification of text files containing Ada
source text or other programs, data or documentary material. The
editor includes interfaces to database and configuration management
tools.

* A program binder, to integrate Ada program units into complete
programs and map the resulting programs from the Ada virtualmachine to the architecture and configuration of a target machine.

* An interactive, sou rce-language- level debugger, providing
diagnostic facilities for analysis of runtime errors in programs
executing on the Ada Integrated Environment host computer or on an
appropriately connected target machine.

Texas Instruments 3-1 Ada Programming Toolset

-,/ : . ., , • --. . -.-

Development Specification REQUI REMENTS

3.1.2 Program Interfaces

The components of the software toolset are all Ada programs. Each
communicates with its environment by assignment of values to parameters at
program invocation, or by the use of standard subprograms and packages that
interface with the underlying operating system to provide requested
services, such as:

* Logical input/output

* Dynamic storage allocation

* Inquiries concerning system status

*, Values of program, task or file attributes.

A logical input/output package is provided to implement a uniform, device-
independent approach to data transfer. Logical input/output capabilities
are provided for database objects, input/output devices, interactive
terminals, and inter-program communications.

A standard package provides controlled facilities to interrogate or modify
the values of the user-maintained attributes of database objects and
relations between them. This package is integrated with the logical
input/output package to provide a uniform treatment of the attributes of all
logical files.

The general interface between the user and each running program is a control
file containing detailed instructions to specify the processing to be
performed by the program. Each tool in the Ada Integrated Environment shall
incorporate standard provisions for control input from an interactive
terminal or from a file stored in the database. In certain cases, each tool
may implement a specialized control language.

Texas Instruments 3-2 Ada Programming Toolset

4 !1

; /

Development Specification REQUIREMENTS

3.2 Detailed Functional Requirements

3.2.1 Ada Interactive Editor

The Ada Interactive Text Editor provides a user with the capability to
create and modify files of textual data, whether the data is Ada source text
or documentary material.

The Editor may be classified as a "display-oriented context editor." It
takes full advantage of the capabilities of state of the art video display
terminals. It uses the editing capabilities of video display terminals such
as character insertion/deletion to minimize the processing required by the
host computer for these functions.

Although the Editor is designed to be used at a display terminal, it is also
possible to use it from a line-at-a-time device such as a teletypewriter or
a file of commands.

3.2.1.1 Program Interfaces

The Editor is an Ada program. It uses the facilities of the Database
Subsystem to create, write and read temporary files, to save created files,
and to access existing files. The editor invokes the archiving utilities to
save new revisions to text files.

3.2.1.2 User Interface

The Editor's interface with an interactive user is defined by the Editor
Command Language and by terminal-dependent packages which adapt editor
functions to the keyboard and display capabilities of teletypewriters and
various forms of video display terminals.

3.2.1.2.1 Syntax Description

The syntax of the Editor Command Language is described using a variant of

Backus-Normal form.

1. Lower case words denote syntactic categories.

2. Upper case words denote keywords in the language.

3. Square brackets enclose optional items from which a choice may be
made, if desired.

* 4. Parentheses enclose required items from which a choice must be
made.

Texas Instruments 3-3 Ada Programming Toolset

Development Specification REQUIREMENTS

5. A vertical bar separates alternative items.

The command language consists of keywords, operators, and a small number of
syntactic entities. The syntactic entities used in the language description
are as follow.

1. character -- a single ASCII character.

2. number -- a decimal integer.

3. string -- a sequence of one or more characters prefixed and
terminated by the string bracket character ("). A string bracket
character is represented within a string by doubling it.

4. pointer -- indicates a unit within the text being edited. The
size of a unit referred to by a pointer is controlled by the UNIT
option of the SET command. The syntax of a pointer is as follows:

pointer ::= [identifier] [(+1-) number]

where the identifier is an Ada identifier.

3.2.1.2.2 Command Summary

The following is a summary of the editor commands.

Edit Session Termination

ABORT
QUIT ([filename] [REPLACE]IABORT)
SAVE [filename] [REPLACE]
SUSPEND

Data Transfers Between Files

READ filename [FROM pointerl [THRU pointer2]] [TO pointer3]
WRITE [pointerl] [THRU pointer2] TO filename [APPEND]

Pointer Movement

BACKWARD number
BOTTOM
FIND string [THRU pointer]
FORWARD number
TO pointer
TOP

Texas Instruments 3-4 Ada Programming Toolset

,4/

Development Specification REQUIREMENTS

Data Modification

CHANGE stringl TO string2 [THRU pointer] [QUERY]
APPEND string [TO pointer]
DELETE pointeri THRU pointer2
INSERT string [AT pointer]
REPLACE [pointer] [WITH] string
RESTORE
RESUME

Data Movement

COPY pointerl [THRU pointer2] [TO pointer3]
INDENT [pointerl] [THRU pointer2] FOR number
INPUT
JOIN
MOVE pointerl THRU pointer2 TO pointer3
SPLIT [pointerlcolumnnumberlstring]

Miscellaneous Commands

DISPLAY pointerl THRU pointer2
HELP [command name]
NAME pointer
REDO number
SET options -- The available options are as follow:

CASE (UPPERIMIXED)
CURSOR (UNDERSCOREIBRACKET character1 character2)
KEY string
POSITION (BEFOREIAFTER)
RANGE LINES [pointerl] [THRU pointer2]
RANGE COLUMNS [firstcolumn] [THRU last_column]
SCREEN ROWS number of rows
SEARCH (BEGINIEND)
SEARCH (GENERALIEXACT)
SPAN number
SYNONYM (OFFIONinewname oldname)
TAB (WORD stringICOLUMNAR string)
TERMINAL (TELETYPEWRITERIIBM3270IASCII_VDT)
TRUNCATE (ONIOFF)
UCHAR (OFFjcharacter)
UNIT (LINEICHARACTER)
VERIFY (ONIOFF)

SHOW (FILENAMEIOPTIONSIPOINTERISIZE)

Editor commands may be entered in either upper- or lower-case letters and
may be abbreviated to the minimum number of characters necessary for it to
be recognized.

A unit is either a text line or a character, as indicated by the SET UNIT
command. It is the entity manipulated by the commands of the editor.

Texas Instruments 3-5 Ada Programming Toolset

0p
- ..-

Development Specification REQUIREMENTS

The following pointer names are predefined in the editor and may not be
changed by the user:

* ".CURRENT" or ".", which indicates the current text location of
the text being edited;

* ".TOP", which indicates the first unit of the text being edited;

* ".BOTTOM", which indicates the last unit of the text being edited;

* ".FIRST", which indicates the first unit of the range being edited
[see SET RANGE command];

* ".LAST", which indicates the last unit of the range being edited
[see SET RANGE command];

* ".LEFT", which indicates the first character of the current line
being edited; or

* ".RIGHT", which indicates the last character of the current line
being edited.

3.2.1.3 Editor Commands

3.2.1.3.1 ABORT Command

ABORT

The ABORT command terminates an edit session without saving the editing done
during the session.

3.2.1.3.2 APPEND Command

APPEND string [TO pointer]

The APPEND command appends the specified string to the end of the line
specified by "pointer" (default ".CURRENT").

3.2.1.3.3 BACKWARD Command

BACKWARD number
The BACKWARD command positions the current text pointer a specified number

of lines from the current line toward the top of the text.

Texas Instruments 3-6 Ada Programming Toolset
'4f

I/

-'- '..-." .* -=

Development Specification REQUIREMENTS

3.2.1.3.4 BOTTOM Command

BOTTOM

The BOTTOM command positions the current text pointer to the bottom of the
text (i.e., the last unit of the text).

3.2.1.3.5 CHANGE Command

CHANGE string] TO string2 [THRU pointer] [QUERY]

The CHANGE command changes the first occurrence of stringi, searching in the
direction of "pointer" (default ".BOTTOM"), to string2. If stringi is found
between the current text location and the text location indicated by" pointer", the current text pointer is modified to refer to the location of

the located string, otherwise the current text pointer is not modified.

If the QUERY option is specified then each line which can be modified by the
command is displayed in its modified form and the user is prompted as to
whether the modification should take place or not. Following are the
permitted responses to the prompt.

* YES -- the modification should occur.

* NO -- the modification should not occur.

* ALL -- verification is turned off for the rest of the search.

* ABORT -- terminate the command.

3.2.1.3.6 COPY Command

COPY pointer1 [THRU pointer2] [TO pointer3]

The COPY command duplicates the text between "pointer1" and "pointer2"
(default "pointeri") at the text location indicated by "pointer3" (default
".CURRENT").

3.2.1.3.7 DELETE Command

DELETE pointeri [THRU pointer2]

The DELETE command deletes the text between "pointeri" (default ".CURRENT")
and "pointer2" (default ".CURRENT"). The unit following "pointer2" becomes
the current text location.

Texas Instruments 3-7 Ada Programming Toolset

Development Specification REQUI REMENTS

3.2.1.3.8 DISPLAY Command

DISPLAY pointeri THRU pointer2

The DISPLAY command displays a specified portion of the text being edited.
This command is intended, primarily, for use on teletypewriters.

3.2.1.3.9 FIND Command

FIND string [THRU pointer]

The FIND command locates a string in the text being edited starting at the
unit immediately following or preceding the current text pointer and moving
in the direction of "pointer" (default ".BOTTOM"). If "string" is not found
between the current text position and "pointer", the current text pointer is
not changed.

3.2.1.3. il .I RWARD Command

JRWARD number

The 17, p0.:,RD command positions the current text pointer a specified number of
In*s i,, the current line toward the bottom of the text.

3.2.1.3.11 HELP Command

HELP [commandname]

The HELP command assists the user in the use of the Ada Editor. The
parameter is the name of an Ada Editor command. The response is a
description of the specified command,

3.2.1.3.12 INDENT Command

INDENT [pointer1] [THRU pointer2] AT columnnumber

The INDENT command specifies that the first nonblank character on eac line
within the specified range is to occur in the specified column number. This
command is provided to assist the user in the formatting of program text.

3.2.1.3.13 INPUT Command

INPUT

The INPUT command places the editor into input mode. The user may then
insert text at the current text location. The input mode is terminated by
pressing the input termination key for the terminal being used.

Texas Instruments 3-8 Ada Programming Toolset

W .-
o

Development Specification REQUIREMENTS

3.2.1.3.14 INSERT command

INSERT string [AT pointer]

The INSERT command inserts a string at the text location indicated by
"pointer" (default ".CURRENT").

3.2.1.3.15 JOIN Command

JOIN

The JOIN command causes the line following the current line to be appended
to the current line such that the first nonblank character of the following
line is separated from the last nonblank character of the current line by a
blank. The position of the current text pointer is not changed.

3.2.1.3.16 MOVE Command

MOVE pointeri [THRU pointer2] [TO pointer3]

The MOVE command moves the text between "pointer1" and "pointer2" (default
"pointerl") to the text location indicated by "pointer3" (default
".CURRENT")

3.2.1.3.17 NAME Command

NAME pointer

The NAME command gives a "name" to the current text unit in the text being
edited. This command enables a user to place a "paperclip" at a specified
text location, which may be referenced later in any of the commands that
require a pointer.

3.2.1.3.18 QUIT Command

QUIT ([filename] [REPLACE] I ABORT)

The QUIT command terminates an edit session and saves the results of the
session in the specified file (default is the associated filename). If the
external file specified already exists, the REPLACE option must be used to
replace it. The ABORT parameter indicates that the session is to be
terminated without saving the results of the editing session (i.e., the same
as the ABORT command).

Texas Instruments 3-9 Ada Programming Toolset

i i

' , - -: _. /

Development Specification REQUIREMENTS

3.2.1.3.19 READ Command

READ filename [FROM pointeri [THRU pointer2]] [TO pointer3]

The READ command copies the text lines between "pointeri" (default ".TOP")
and "pointer2" (default ".BOTTOM") of the external file specified to the
text location indicated by "pointer3" (default ".CURRENT") within the text
being edited.

3.2.1.3.20 REDO Command

REDO number

The REDO command repeats the last command entered a specified number of
times. The commands which may be repeated are FIND, CHANGE, COPY, and
INSERT.

3.2.1.3.21 REPLACE Command

REPLACE [pointer] [WITH] string

The REPLACE command replaces the text indicated by "pointer" (default

".CURRENT") with the text in the string.

3.2.1.3.22 RESTORE Command

RESTORE

The RESTORE command restores the last portion of text that was deleted. The
text is inserted at the current text location of the edited text.

3.2.1.3.23 RESUME Command

RESUME

The RESUME command causes the editor to resume the last edit session at the
state in which it was suspended. It may only be specified as the first
command upon entry to the editor.

3.2.1.3.24 SAVE Command

SAVE [filename] [REPLACE]

The SAVE command saves the results of the edit session in the specified
external file (default is the associated filename). If the external filespecified already exists, the REPLACE option must be used to replace it.

The current text location is not affected by this command and the edit
session resumes at the same state it was in before the command was entered.

Texas Instruments 3-10 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.1.3.25 SET Command

SET options

* SET CASE (UPPERIMIXED)

- indicates whether the text entered by the user is to be
converted to upper case (UPPER) or not modified (MIXED, the
default) when entered.

* SET CURSOR (UNDERSCOREIBRACKET character1 character2)

- designates the method by which the current text location is
indicated when the TERMINAL option of the SET command is
TELETYPEWRITER. "BRACKET characteri character2" indicates
that the current text location is to be bracketed by the
characters "characteri" and "character2". UNDERSCORE
specifies that the current text location is to be indicated
by underlining it (This only works if the terminal being used
has the backspace capability). The default is "BRACKET []"

* SET KEY string

- defines the meaning of the specified command key, or removes
any meaning associated with the specified command key. This
command is terminated by entry of one of the command keys
defined for the terminal being used, rather than the usual
entry terminator. The parameter "string" is any valid editor
command. As a result of this command, any time that the
command key which is used as a terminator is pressed,"string" is interpreted as a command to the editor.

* SET POSITION (BEFOREJAFTER)

- indicates whether text is to be inserted before or after the
target string when using the INSERT, APPEND, MOVE, READ, and
COPY commands.

SET RANGE LINES pointeri THRU pointer2

- indicates the range of lines of text in which editing
commands may have an effect. This option modifies ".FIRST"
to refer to the same text location as "pointerl" and ".LAST"
to refer to the same text location as "pointer2."

SET RANGE COLUMNS [firstcolumn] [THRU last-column]

- indicates the range of columns of text in which editing
commands may have an effect. This option modifies ".LEFT" to
refer to the first column of the current text line and
".RIGHT" to refer to the last-column of the current text
line.

: Texas Instruments 3-11 Ada Programming Toolset

Development Specification REQUI REMENTS

SET SCREEN ROWS number of rows

- indicates the number of rows which the editor should use.

The default is the number of rows on the screen.

* SET SEARCH (BEGINlEND)

- indicates that the current text pointer is to refer to the
first character (BEGIN, the default) or last character (END)
of a string searched for in a FIND or CHANGE command, if the
command is successful.

* SET SEARCH (GENERALIEXACT)

- indicates that either case (upper or lower) is important
(EXACT) or unimportant (GENERAL, the default) in the first
string of a FIND or CHANGE command.

SET SPAN number

- indicates that the first string in a FIND or CHAgNGE command
may span "number" lines of text (default 1).

SET SYNONYM (OFF ION I newname oldname)

- indicates that synonym substitution shouli (ON) or should
not (OFF, the default) be used for the recognition of
commands; or defines a synonym (newname) for an existing
command (oldname).

SET TAB (WORD stringlCOLUMNAR s ting)

- indicates how the TAB key.. on the user's terminal is to
function (if the user's terminal permits such a
specification-). WORD indicates that the tab positions within
a line should be dynamically based upon the contents of the
line such that each tab position is at the beginning of a
word, where a word is a -string of characters delimited by the
characters specified in the given string. COLUMNAR indicates
that the tab positions should be based upon a list of
columns, where the columns are specified as a list of numbers
separated by commas in the given string. This option affects
only those terminals which transmit a TAB character. There
is no default for this command; pressing the TAB key has no
function unless this option is set.

SET TERMINAL (TELETYPEWRITER I IBM32701 ASCII_VDT)

- indicates the type of terminal being used during the edit
session. It also enables a user to specify that the editor
should function as if in TELETYPEWRITER mode when using a
video display terminal.

Texas Instruments 3-12 Ada Programming Toolset

_________'_____

Development Specification REQUI REMENTS

SET TRUNCATE (ON]OFF)

- indicates whether a line of text, which is too long to be
displayed on one row should be truncated(ON, the default) or
displayed on several rows(OFF).

SET UCHAR (OFFIcharacter)

- sets the universal character to the given character
(character) or turns off this capability (OFF, the default).
When the universal character is used in a FIND or CHANGE
command it represents a don't care string. For example, if
the universal character is $, the command "FIND animalShouse"
could possibly locate any of the strings:

... animal house,

... animals in the house, or

... animals should not be in the house.

* SET UNIT (LINEI CHARACTER)

- indicates whether pointers refer to lines of text(LINE, the
default) or characters within the text(CHARACTER).

$* SET VERIFY (ONIOFF)

- indicates whether the current line is to be displayed when
the current text pointer changes locations. This command is
principally for use with teletypewriters.

3.2.1.3.26 SHOW Command

SHOW (FILENAMEIOPTIONSI POINTERISIZE)

* SHOW FILENAME

- Displays the name of the external file associated with the
text being edited.

* SHOW OPTIONS

Displays the options controlled by the SET command.

* SHOW POINTER pointer

Displays the line number and column number of "pointer."

SHOW SIZE

- Displays the number of lines in the text being edited.

Texas Instruments 3-13 Ada Programming Toolset

Development Specification REQUI REMENTS

3.2.1.3.27 SPLIT Command

SPLIT [columnnumberlstring]

The SPLIT command splits the current text line into two lines. If the UNIT
option of the SET command is LINE, the column in which the split is to occur
must be specified. The POSITION option of the SET command determines
whether the split occurs before or after the specified column number or
string. If the UNIT option of the SET command is CHARACTER, the split
occurs at the current text location.

3.2.1.3.28 SUSPEND Command

SUSPEND

The SUSPEND command terminates an edit session which the user desires to
resume at some later time. This command causes the state of the current
edit session to be saved and the edit session to terminate. The external
file associated with the text being edited is not modified.

3.2.1.3.29 TO Command

TO pointer

The TO command positions the current text pointer to the text location
indicated by "pointer."

3.2.1.3.30 TOP Command

TOP

The TOP command positions the current text pointer to the top of the text
(i.e., the first unit of the text).

3.2.1.3.31 WRITE Command

WRITE pointer1 [THRU pointer2] TO filename [APPEND]

The WRITE command places the text between "pointeri" and "pointer2" (default
"pointerl") into the external file specified by filename. If the APPEND
option is specified, the text is added to the end of the specified external
file, otherwise the external file is replaced.

3.2.1.4 Function Descriptions

The Editor consists of four packages of procedures and functions. The
packages divide the labor of editing along the lines of functionality in
order to make modification of the editor a simple task.

* The Presentation Manager handles communications with the terminal
to which the editor is interfacing. Because of the many types of
terminals and their many capabilities this portion of the editor

Texas Instruments 3-14 Ada Programming Toolset

Development Specification REQUIREMENTS

handles all terminal dependent communications. These
communications may be as complicated as the management of character
level input/output from a device such as a dumb video display
terminal or as simple as transmitting and receiving text one line
at a time such as from a teletypewriter.

* The Edit Command Interpreter translates editor commands entered by
a user into a sequence of actions required by the editor. The
commands are strings received from the Presentation Manager which
are translated into calls to procedures in the Edit Command
Processor.

The Edit Command Processor performs the majority of the operations
that are required of the editor. The Edit Command Processor
performs many of the operations by itself and translates others to
calls to routines in the Edit List Manager.

The Edit List Manager manages the internal representation of a
text file while it is being edited.

3.2.1.5 Processing Requirements

3.2.1.5.1 Presentation Manager

The Presentation Manager manages the editors input/output processing with
teletypewriters or video displays.

3.2.1.5.1.1 Teletypewriter Interface

The teletypewriter terminal interface is relatively simple. Its
communications are character oriented and require the Presentation Manager
to perform only the following operations:

Transmit a character string to the terminal,

Receive a character string from the terminal, and

* Intercept nonprintable interrupt keys pressed by the user.

For the majority of the time, the Presentation Manager will be transmitting
a character string which is the current text line or the output from a
commanc.

The only1 form of input entered by a user at a teletypewriter is an edit
command u- a special key which must be translated by the Presentation
Manager into a character string to be passed to the Edit Command
Interpreter.

3.2.1.5.1.2 Video Interface

The video display terminal interface is much more complicated because of the
many different kinds of displays on the market. The displays differ in many

Texas Instruments 3-15 Ada Programming Toolset

Development Specification REQUIREMENTS

respects. Some of the differences between terminals are screen size (number
of rows and columns), nonprintable characters available, modes of operation
available (character, line, or screen), special keys (line insert/delete and
character insert/delete), function keys, capability to protect fields on the
screen, intelligence (dumb, smart, intelligent), options for intensity,
blink, and reverse video, and many others.

The goal of the Editor's video interface design is to use as many of each
terminals capabilities as possible, yet maintain the editor's
transportability between different terminals.

3.2.1.5.2 Edit Command Interpreter

The Edit Command Interpreter translates commands and special keys as entered
by a user into a sequence of procedure calls to the Edit Command Processor.

This separation of functionality allows the syntax of the editor command
language to be modified easily as new developments are made in the science
of text editing.

3.2.1.5.3 Edit Command Processor

The Edit Command Processor is responsible for performing the actions
requested by a user. For each command that a user can enter, there is a
routine in the Edit Command Processor which performs the operations

*specified by that command.

3.2.1.5.4 Edit List Manager

The Edit List Manager is a package of procedures and functions which
provides a set of primitives for use by the Ada Editor in the creation and
modification of text files.

An edit list is a declared object which is (usually) associated with an
external file containing text. The operations which may be performed on an
edit list are similar to those available for general input/output.

Elements of edit lists may be fetched or changed, as well as inserted and
deleted. The element pointer may be set to a specified position. In
addition, the current position of the element pointer and the number of
elements in the edit list may be obtained.

An edit list consists of an unbounded sequence of elements, all of type
string. A positive integer number is associated with each element of the
edit-list indicating its (ordinal) position number in this sequence.

The operations available for edit list association with external files are:

Texas Instruments 3-16 Ada Programming Toolset

Development Specification REQUIREMENTS

procedure ASSOCIATE(LIST: in out EDIT LIST;NAME: in STRING);

This procedure associates an edit list with the contents of
an existing external file having the specified name.
Modifications made to an edit list do not affect the external
file with which it is associated. This procedure uses the
procedure OPEN in the package INPUT OUTPUT and hence, may
result in one of the exceptions defi ned for the OPEN
procedure being raised.

After processing has been completed on an edit list, the contents of the
edit list may be associated with an external file by the ARCHIVE procedure.

procedure ARCHIVE(LIST: in out EDITLIST; NAME: in STRING)

Establishes a new external file, if necessary, and transfers
the information from the edit list to the external file with
the given name. Accesses to an external file may raise the
any of the exceptions defined in the package INPUT OUTPUT,
such as NAME ERROR, STATUS ERROR, USEERROR, DATA _ERROR
or DEVICE ERROR. This procedure uses the facilities provided
by the Database Archive Manager to save the editlist as the
new revision of the external file with the given name.

function ASSOCIATED(LIST: in EDITLIST) return BOOLEAN;

Returns TRUE, if the edit list is associated with an external
file, FALSE, otherwise.

function NAME(LIST: in EDITLIST) return STRING;

Returns the string representing the name of the external file
with which the given edit list is associated. If the
edit list is not associated with an external file, the
exception STATUSERROR is raised.

procedure DELETE(LIST: in out EDITLIST);

Deletes the edit list, but does not affect the associated
external file, if there is one.

3.2.1.5.4.1 Edit List Processing

Elements of an edit list can be fetched, changed, inserted, or deleted.
Each edit list has a current element position, which is the position number
of the element available for the next fetch, change, insert, or delete
operation. The current element position can be changed. Positions in an
edit list are expressed in the integer type LISTINDEX.

An edit list has a current size, which is the number of elements in the
edit list. When an edit list is elaborated, it has zero elements and the
current element position is set to 1.

Texas Instruments 3-17 Ada Programming Toolset

Development Specification REQUI REMENTS

The operations available for editlist processing are described below.

procedure FETCH(LIST: in EDITLIST; ELEMENT: out STRING);

Returns, in the ELEMENT parameter, the value of the element
at the current position of the given editlist. The current
element position remains the same. The exception END ERROR
is raised if the current element position is greater than the
end position of the editlist.

procedure CHANGE(LIST: in EDITLIST; ELEMENT: in STRING);

Gives the specified value to the element in the current
position of the given edit list. The current element
position remains the same and the number of elements in the
edit list is not modified. The ENDERROR exception is raised
if the current element position is greater than the end
position.

procedure REMOVE(LIST: in EDITLIST);

Removes the element at the current element position from the
edit-list. The size of the edit-list is decreased by one.

procedure INSERT(LIST: in EDITLIST; ELEMENT: in STRING);

Inserts the specified element into the given edit list in
front of the current element position of the edit list. The
newly inserted element becomes the new current element
position of the editlist. If the current element position
is greater than the end position, the given element is
inserted into the element position which is one greater than
the end element position. The position of the newly inserted
element becomes the new current element position and the size
of the edit-list is increased by one.

procedure SETNEXT(LIST: in EDITLIST; TO: in LISTINDEX);

Sets the current element position of the given edit list to
the specified index value (The specified value may exceed the
end position).

function SIZE(LIST: in EDITLIST) return LIST_ INDEX;

Returns the current size of the edit list.

function NEXT(LIST: in EDITLIST) return LISTINDEX;

Returns the current element position of the edit list.

Texas Instruments 3-18 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.1.5.4.2 Package EDITLISTMANAGER

The specification of the package EDITLISTMANAGER is given below. It
provides the calling conventions for the operations described previously in
this section.

package EDIT LIST MANAGER is

type EDIT LIST is limited private

type LIST_INDEX is range O..implementationdefined

-- general operations for editlist manipulation

procedure ASSOCIATE(LIST: in EDITLIST; NAME: in STRING);

procedure ARCHIVE(LIST: in EDITLIST; NAME: in STRING);

procedure DELETE(LIST: in EDIT_LIST);

function ASSOCIATED(LIST: in EDIT-LIST) return BOOLEAN;

function NAME(LIST: in EDITLIST) return STRING;

procedure FETCH(LIST: in EDIT_LIST;ELEMENT: out STRING);

procedure CHANGE(LIST: in EDITLIST; ELEMENT: in STRING);

procedure REMOVE(LIST: in EDITLIST);

procedure INSERT(LIST: in EDIT_LIST; ELEMENT: in STRING);

procedure SET NEXT(LIST: in EDIT LIST; TO: in LIST INDEX);

function SIZE(LIST: in EDITLIST) return LISTINDEX;

function NEXT(LIST: in EDITLIST) return LISTINDEX;

-- exceptions that can be raised

NAME ERROR. :exception;
USE ERROR : exception;
STATUS ERROR : exception;
DATA ERROR : exception;
DEVICE ERROR : exception;
ENDERROR : exception;

private
-- declarations of the editlist private types

end EDITLISTMANAGER;

* Texas Instruments 3-19 Ada Programming Toolset

--ow

Development Specification REQUI REMENTS

3.2.2 Ada Program Binder

The Ada Program Binder provides the user with facilities to construct
executable programs by binding together compiled Ada program units to form
program segments and by combining program segments into a complete self-
contained program. Capabilities are provided for user specification of
memory partitions and overlays, for inclusion of system library routines,
and for the construction of data structures needed by the bound program to
interface with the command language interpreter, database subsystem and
other APSE or target machine functions.

3.2.2.1 Program Interfaces

The Binder interfaces with its users through a control file, which specifies
the program to be bound and gives other processing instructions, and through
the Ada program library file, which contains information on all necessary
constituent units of the program to be bound. The Binder produces database
objects containing. the bound program, listings and information needed by the
debugger and others.

3.2.2.1.1 Library Utility

The Library Utility is the interface between the Binder and the program
library file. The library file gives the structure of the program, the
status of all compiled program units, and the relationships between program
units. The Binder also uses the Library Utility to record the location of
bound segments and programs.

3.2.2.1.2 Execution Environment

The Binder interfaces to the KAPSE Execution Environment to provide data
needed to load and execute programs. The Binder either builds the
subprogram reference tables that are used by the subprogram linkage handlers
or prepares tables from which they are built by the loader function of the
KAPSE.

3.2.2.1.3 Program Manager

The Binder interfaces to the Program Manager during the program binding
phase to reserve memory for the bound program when the Load-and-Go mode of

'1 the program binder is in use, or disk space for the storage of the program
image when in the Program Image mode.

3.2.2.1.4 Memory Manager

The Binder interfaces to the Memory Manager to provide the Binder with
blocks of dynamic memory while creating bound segments and programs.

*' 3.2.2.1.5 Interactive Debugger

* The Binder interfaces to the Interactive Debugger through the program
binding map, produced by the program binding phase of the Binder. The
program binding map provides the Interactive Debugger with program entry

Texas Instruments 3-20 Ada Programming Toolset

Development Specification REQUIREMENTS

displacements, paging and overlay information and bound segment addresses.

3.2.2.2 Functional Descriptions

The Ada Program Binder is composed of two phases. In the first phase,
individual program units are gathered into groups, called 'segments'. These
segments are the smallest entities to be used for the building of complete
programs. A segment may be used in the building of many programs. In the
second phase, the program binder organizes bound segments into executable
programs. The user is able to control the organization and building of both
the segments and the programs.

3.2.2.2.1 Segment Binding

Tne segment binder is the first step in the transformation of object modules
produced by the compiler into executable programs which will belong to a
system. The segment binder is responsible for the formation of program
segments. Program segments, being the smallest entities which may be
explicitly included into a program, are planned compositions of named
program units. Program segments are grouped with other program segments to
form programs. Segments are capable of being shared among multiple programs
and a well organized segment may be useful in many executable programs. To
provide this capability, the user is given adequate controls to include
selected program units, to set segment partition sizes and to determine
overlay structures. These controls are effected through a set of commands
which direct the structure and composition of the bound segment. The result
of the segment binding is an object code module of four distinct parts:

1. Pre-load Code Section Dictionary

2. Loadable Code section

3. Constant Section Dictionary

4. Constant Section

4 The relationship of these sections is illustrated in Figure 3-1.
Operational use of these segments will be discussed in later sections and
illustrated in Figure 3-9, Figure 3-10 and Figure 3-11.

T

Texas Instruments 3-21 Ada Programming Toolset

Development Specification REQUI REMENTS

13OUND SEGMENT

DICTIONARY I

CODE
SECTIO

LITERA

DICTIONARY

Figure 3-1 Segment Organizational Parts

Texas Instruments 3-22 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.2.2.2 Program Binding

The program binder generates program units which are suitable for target
machine execution. The program binder bases the building of the Ada program
upon a user designated "main" program segment. External references of this
segment is the subject of searches through the pre-load dictionaries of
other segments. When an external reference is found, the segment containing
the reference is attached to the main segment. References to external
subprograms, et.al., from these attached segments is resolved in a similar
manner until all external references are resolved.

This binding process involves the construction of many tables and threads
which become quite interwoven through the executable environment. The
program binder is responsible for the construction of these data structures.
These structures will be:

1. The Segment Table

2. The Segment Code Dictionaries

3. The Segment Code Sections

4. The Segment Constant Dictionaries

5. The Segment Constant Sections

3.2.2.3 Processing Requirements

The following sections describe the processing requirements for the Ada
Program Binder. The two major functions of the binder are segment binding
and program binding. Special requirements are also presented.

3.2.2.3.1 Segment Binding

The segment binder is responsible for the formation of program segments.
Figure 3-2 illustrates the overview of the processing which takes place
during this phase of the AlE Binder.

Texas Instruments 3-23 Ada Programming Toolset

Development Specification REQU I REMENTS

ILES BINDER

OBJECT COECOMMANDS

SEGMENT BINDER

FILE

Figure 3-2 Segment Binder Overview

3.2.2.3.1.1 Inputs

The segment binder requires two sources of input for its proper operation:
user commands and program units. The user commands which determine the
structure and composition of the bound segments. These commands are
available to the binder through the KAPSE, but normally originate through a
user terminal or control file in the library. The commands to the binder
are:

1. INCLUDE -- The INCLUDE command designates a specific program unit
for inclusion into the segment. The name associated with the
INCLUDE command is a library name and path sequence to the desired
member of the library.

2. VERSION -- The VERSION command allows the user to specify a list
of program library versions, determining the order of search
through a program library for object modules when building
segments.

3. SEGSIZE -- The SEGSIZE command limits the number of storage units
which a segment may occupy. The predetermination of segment size
has several uses. For instance, when segments are expected to be
burned into ROM, the fixing of the segment size aids the user in
the optimum organization and filling of the ROM space. Segment

Texas Instruments 3-24 Ada Programming Toolset

i./

Development Specification REQUIREMENTS

sizing is useful when overlay operations are anticipated so that
all overlays may be the same size and fit into a given area of
memory. Overlays may contain several segments apiece, so the
sizing of individual segments may prove to be useful for the
construction of well fitting overlays. This command is optional.

4. SEGNAME -- The SEGNAME command associates a literal name with the
bound segment. This command is generally be optional, but may be
required when overlay operations are expected.

5. FILL -- The FILL command specifies a category of information with
which to fill unused space at the end of a bound segment. The
space may be filled with:

a. Lexical descendants of included program units

b. Externally referenced subprograms included internally

c. Copies of external subprograms that have already been
included in other segments.

6. OVERFLOW -- The OVERFLOW command allows the segment binder to
form a second (or later) segment when the included contents of a
segment exceed the specified or default segment size.

7. PARTIAL -- The PARTIAL command specifies that final resolution of
references created by included program units during this binding
session should not be accomplished. Once a reference has been
called externally and set into the dictionary as "external" at the
close of a binding session, it may not be changed to "internal".
Partial binding allows the resolution of these references as
"internal" in a later session.

8. EXPAND -- The EXPAND command allows the user to designate a bound
segment to which further program units are to be bound. To ensure
that the added program units are properly referenced, the segment
should have been bound with the PARTIAL option in earlier
sessions.

9. END -- The END command designates the end of the binding commands
for a segment. The End-of-File mark actually designates the end
of the binding operations, so it is possible to bind several
segments during a single binding session.

The second source of input into the segment binder is the program units,
named in the INCLUDE binder command. These units are retrieved from the
program library as illustrated in Figure 3-2.

3.2.2.3.1.2 Processing

Segment binding is performed in two passes which allows a more organized
approach to the construction of the run-time tables resulting in an

Texas Instruments 3-25 Ada Programming Toolset

Development Specification REQUIREMENTS

optimally bound segment. The first pass interprets user commands and check
the validity of program library references. The 'INCLUDE' command is the
primary means of designating the contents of the segment. The algorithm
describing the action of this command is as follows:

Pass 1:

Find compilation unit by library and path given in
'INCLUDE' command

Check library directory section of dictionary for
coded form of library name

If not found
Add library name to directory

Endif
Check dictionary for library and path name
If found and is already bound

Issue ERROR
Exit Binder

Endif
If found and is external

Remove from external list
Decrement external count

Endif
Add entry to dictionary
Mark as internal
Enter library and path name
If object code has external references

For each named external reference
Search Ada program library for named

reference
If found

Find library and path in dictionary
If not found

Add entry to dictionary
Mark as external
Enter library and path name

Endif
Endif

Endfor
Endif

Between the passes, the segment binder is responsible for performing the
optimization of program units resulting from generic instantiations of the
same generic definition. When generic optimization is requested, the
library names of the effected program units are passed to the optimizer.
The functional design of the generic optimizer is described in Section
3.2.1.6.10.3 of the Compiler CPDS. The returned optimized code is bound
into the containing segment. The code section dictionary entries for the
pre-optimized generic instantiations are not removed, but the displacement
values for each are set to the new entry displacement. Other displacements

, Texas Instruments 3-26 Ada Programming Toolset

_ZIA

Development Specification REQUIREMENTS

in the table may have to be changed to allow for the packing of the segment
by removing program units and the possible expansion of the newly optimized
(by type casing) code.

The second pass brings together the compilation unit object code modules to
form the bound segments. If the 'PARTIAL' binder command is specified for
the binding session, this pass of the binder will not be executed. The
'PARTIAL' command allows the expansion of the section dictionary during
multiple sessions. When the second pass of the segment binder is executed,
external references are fixed, thereby setting the order of the members of
the dictionary. This fixing does not allow further internal definition of
formerly external references without a complete re-binding.

Pass 2:

For each internal reference in dictionary
Find object code module in library
Enter object code displacement to dictionary
Increment segment size
If object code has external references

For each external reference
Find library and path in dictionary
For each reference along external

reference chain
Get reference to next link on chain
Substitute dictionary entry index

for chain link
Endfor

End for
Endif
Place object code module into section

Endfor

3.2.2.3.1.3 Outputs

The output from the segment binder is a file containing the bound segment
which is inserted into the program library. The segment is now in a form
that may be saved either by burning it into ROM for embedded processor
deployment, or by storing it in a library file for debugging, testing or
general usage. In either environment, the bound segment is ready to be
combined with other bound segments to become a program. The parts making up
the bound segment are as follows:

1. Pre-load Section Dictionary

2. Loadable Code section

3. Constant Dictionary

4. Constant Section

Texas Instruments 3-27 Ada Programming Toolset

..

Development Specification REQUI REMENTS

3.2.2.3.1.4 Pre-Load Section Dictionary

The pre-load section dictionary is a block of information which informs the
program binder of the contents and requirements of the loadable object
section. The dictionary carries information dealing with the size of the
code section, a directory of library names which are coded into the
dictionary, a list of library memberships of internal subprograms so that
references to this segment may be resolved, and a list of external
references which need to be resolved by the program binder (external names
are temporary). The layout of the pre-load section dictionary is shown in
Figure 3-3.

SIZE OF CODE SECTION IN SEGMENT

LIBRARY NO. LIBRARY NAME
LIBRARY NO. LIBRARY NAME

LIBRARY NO. LIBRARY NAME

NUMBER OF INTERNAL REFERENCES
LIBRARY NO. PATH NO.: PATH NO DISPLACEMENT
LIBRARY NO.: PATH NO.: PATH NO. DISPLACEMENT

LIBRARY NO. PATH NO.: PATH NO DISPLACEMENT

NUMBER OF EXTERNAL REFERENCES
EXTERNAL NAME: LIBRARY NO.. PATH NO.: PATH NO.
EXTERNAL NAME: LIBRARY NO.: PATH NO.: PATH NO.
EXTERNAL NAME: LIBRARY NO.: PATH NO.: PATH NO.

EXTERNAL NAME LIBRARY NO.: PATH NO.: PATH NO.

Figure 3-3 Pre-Load Section Dictionary

3.2.2.3.1.5 Loadable Code Section

The loadable code section is a module of code which has been linked by the
segment binder. This linkage may have been accomplished in multiple binding
sessions. The completeness of the section is determined by the user. The
user is also responsible for the specification of the program units making
up the segment. All internal branches are resolved at this time.

Subprogram calls are resolved such that the object code need not be modified
when program binding takes place. A unique method of determining subprogram
entry addresses is maintained during runtime which is independent of the
object code. The object code for a subprogram call consists of a subroutine
branch to a subprogram call handler and a numeric value. The address of the

Texas Instruments 3-28 Ada Programming Toolset

-".- --- r

Development Specification REQUIREMENTS

call handler is available through an indirect reference to a dedicated
register so that the branch to the call handler is handled externally to the
segment. The numeric value is the entry index into the calling subprogram's
section dictionary. Using the information found in the dictionary and other
tables at its disposal,- the calling utility is able to determine the address
of the called routine. When the segment is introduced to the program
binding phase, this information will be included in its pre-load dictionary.
The system of tables will provide a transportable mechanism allowing
independence from the resolution of external and internal references in the
object code at final binding.

3.2.2.3.1.6 Constant Sections

The constant section and the constant dictionary are formed during segment
binding. The result of that binding is a form which is ready for final
program binding or loading. The constant section is a sequential grouping
of the constants found within the program units of a segment. A constant is
defined as a (non-scalar) constant that is allocated in code space (instead
of data space) and is (1) passed by reference to another subprogram or (2)
is large enough that it is not desirable to make a copy in each offspring
subprogram where it is referenced in global scope. The constant dictionary
is a structure which contains displacements from the beginning of the
constant section for each program unit in the segment. These displacements
mark the start of the constants as they are defined in each program unit.
The entries in the constant dictionary match the internal entries in the
section dictionary in a one-to-one correspondence.

3.2.2.3.2 Program Binding

The program binder is responsible for the formation of executable Ada
programs. Figure 3-4 illustrates the overview of the processing which takes
place during this phase of the AlE Binder.

TA

.-1

° I

"Texas Instruments 3-29 Ada Programming Toolset

Development Specification REQUIREMENTS

FILES BINDER
BOUN COMMANDS

I. 'MAIN' SEGMENT SELECTION
2. BINDER MODE
3. OVERLAY ORGANIZATION

PROROGRA BINDERN

PROGRAM IMAGE

i EXECUTAE.LE

LIBRRY / PROGRAMLAR / 'N MEMORYILE
/PROGRAM

Figure 3-4 Program Binder Overview

3.2.2.3.2.1 Inputs

The program binder requires two sources of input for its proper operation.
The user commands which determine the structure and composition of the final
program. These commands are made available to the program binder through
the KAPSE, but normally originate through a user terminal or control file in
the library. The commands to the program binder are:

1. MAIN -- The MAIN command names the bound segment containing the

program unit which is the root of the program.

2. OVERLAY -- The OVERLAY command lists the names of the bound
segments which make up a program overlay. A numerical parameter
to this command denotes the level of nesting of the overlay. That
is, an overlay may include lower levels of overlaying, and
overlays of the same numerical value will be paged into the same
memory space. This command prevents the binder from using demand
paging binding.

3. PROGSIZE -- The PROGSIZE command is an optional command which
allows the user to limit the size of the memory space used by the
bound program. This command aids the binder in the determination
of the need for demand paging of segments when overlays are not
specified.

Texas Instruments 3-30 Ada Programming Toolset

, .- '. = . -,•/ , - .. -- - -

Development Specification REQUIREMENTS

4. STACKSIZE -- The STACKSIZE command is an optional command which
allows the user to override the default or earlier specified stack
size for the bound program.

5. HEAPSIZE -- The HEAPSIZE command is an optional command which
allows the user to override the default or earlier specified heap
size for the bound program.

6. IMAGE -- The IMAGE command specifies that the bound program image
be placed into a named program image file in the program library.
The program binder defaults to the load-and-go binder mode if this
command is not in the command stream.

The second source of input into the program binder is bound segments
generated by the segment binder phase. These units will be retrieved from
the program library as illustrated in Figure 3-4.

3.2.2.3.2.2 Processing

The operational environment of the Ada program being bound dictates the
mode(s) for the operation of the program binder. The program binder may
operate in one of two modes with options attached to these.

1. Program Image Binding

2. Load-and-Go Binding

These modes may be augmented by further instructions to the binder to cause
overlay operations or demand paging of segments.

3.2.2.3.2.3 Program Image Binding

The program image binder provides the user with a bound program image which
is saved and used in multiple executions. The program image binder also
provides debugger support for the quick and efficient development of Ada
systems. The program image binder operates in two passes. The first pass
is responsible for the determination of which segments will be needed for
complete definition of the program. This determination starts with the
examination of the external references contained in the pre-load section
dictionary of a named main segment. External references will be added to a
"Referenced and Resolved" list as each segment which resolves earlier
external references is brought into the program. When all external
references are resolved, a second pass will build the code sections of these
segments into a program and will supply required information to the segment
table and individual section dictionaries. This gathered information is
made available to the user in the form of a subprogram binding map. This
information will also be passed to the debugger for more thorough
investigation of the operation of the program. The algorithms used in the
program binder will be:

Texas Instruments 3-31 Ada Programming Toolset

. l

Development Specification REQUI REMENTS

Pass 1:

Initialize segment table
Get 'Main' segment
Initialize program area
Build unresolved reference chain for first

entry in main segment dictionary
For every unresolved entry in reference chain:
Get segment table entry for segment
Get segment info block for segment
Enter segment library information into info block
Find size of dictionary from pre-load dictionary
Get runtime dictionary block of appropriate size
Put address of dictionary block into segment table
For all dictionary internal references

Get next dictionary entry
Mark as internal
Enter code section displacement
Find entry in reference chain
If not found

Build a reference chain entry
Enter library nomenclature

Endif
Enter segment number
Enter dictionary entry index
Mark as resolved

Endfor
For all dictionary external references

Get next dictionary entry
Mark as external
Find entry in reference chain
If not found

Build a reference chain entry
Enter library nomenclature
Mark as unresolved

Endif
Endfor

Endfor

Pass 2:

For all segments in segment table:
Get segment info block
Get segment from library
Release segment info block
Get segment's section dictionary
Load code section into program area
Load segment table with code section address
Load constant dictionary into program area
Enter constant dictionary address into segment table
Load constant section into program area
Enter constant section address into segment table
For all external references in pre-load dictionary

Texas Instruments 3-32 Ada Programming Toolset

S --

Development Specification REQUI REMENTS

Find reference in reference chain
Get segment number for dictionary entry
Get dictionary index for dictionary entry
Enter info into runtime section dictionary

Endfor
Find beginning of reference chain
For all entries in reference chain for current segment

Dump information to binder map
Endfor

Endfor
Release all members of reference chain
Write program area, segment table and section

dictionaries to program file

3.2.2.3.2.4 Load and Go Binding

The second mode of the program binder is basically a load-and-go binder.
This load and go binder has the capability to perform the loading of
segments (which under most circumstances will be residing in ROM) into an
executable program with a minimum amount of memory, call a utility to set up
necessary linkages, and execute the bound program. This binder may then be
used during program development by providing an environment for the quick
binding and testing of new programs.

The load-and-go binder also proves to be useful in the construction of
programs from segments residing in ROM, such as may be found in an embedded
processor system. Program binding of ROM segments allows the quick
modification and customization of embedded systems with the interchange of
ROM packages. In this way, the personality of a system may be altered
significantly without re-binding all members of the system. Of course, with
the bound segments in ROM, constructing tthe segment table and section
dictionaries in RAM memory becomes the biggest responsibility of this
binder. The load-and-go binder may be called during system power-up so that
some crucial programs can be "loaded" and run quickly and efficiently.

The load-and-go loader constructs the executable program using two primary
functions. The first deals with the establishment of the segment table for
the segments involved in the program. All segments are assumed to be in ROM
within certain address bounds. The second function builds the section
dictionaries for the runtime environment. The code sections are re-entrant
and do not have to be pulled from ROM into RAM memory. The algorithms which

* complete the load-and-go loading will be:

, I

Establish Segment Table Entry:

Starting address is to a pre-load dictionary
Get size of code section from dictionary
Get number of entries in dictionary
Calculate starting address of code section from

number of entries in dictionary

Texas Instruments 3-33 Ada Programming Toolset

ELI

Development Specification REQUIREMENTS

Get next segment table entry
Put code section address in segment table
Put constant section address in segment table
Put constant dictionary address in segment table

Establish Section Dictionary External Entry:

Get starting address of segments in ROM

Repeat
Scan internal names of dictionary for external name
If found
Calculate starting address of code section from

number of entries in dictionary
Find segment table entry with correct segment

address
If not found

Establish segment table entry for this segment
Endif
Save segment table index for section dictionary
Save entry index in scanned dictionary for

reference in current dictionary
Else

Calculate address of next dictionary from
number of entries in scanned dictionary and
code section size

Endif
Until external name is found or ROM bound is met
If external name is found
Add entry in runtime dictionary
Mark entry as external
Enter segment number
Enter section dictionary index

Endif

Binding Control:

Initialize segment table and pointers
Get starting address of main segment in ROM
Establish segment table entry for main segment
For every entry in segment table

(segment table may grow dynamically in this loop)
Find code section for segment
Find section dictionary for segment

,4 (back track from code section)
Find total number of entries for dictionary
Get block for entries
Put address of block into segment table for

section dictionary
For all internal members in pre-load.,dictionary

Get entry in runtime dictionary
Mark as internal
Enter code section displacement

Texas Instruments 3-34 Ada Programming Toolset

Development Specification REQUIREMENTS

Endfor
For all external members in pre-load dictionary

Establish section dictionary external entry
Endfor

Endfor

3.2.2.3.2.5 Demand Paging Binding

LINK TO NEXT OCB

OVERLAY CONTROL FLAGS

DISK ADDRESS OF OVERLAY

STORAGE SIZE OF OVERLAY

CURRENT MEMORY ADDRESS

SWAP SCHEDULE INFORMATION

Figure 3-5 Demand Paging Control Block

Demand paging operations are initialized in the program binder and/or load-
and-go loader. Pages are normally one or more segments which are
superficially bound together in what the user deems to be a logical order.
Bound pages will normally reside on a disk (when using the program binder)
and are brought into memory when a program unit within the page is needed
for execution. In the load-and-go binder, pages will normally be adjacent
segments in ROM which mutually reside in a bounded address space. Paging
operations will involve address switching to enable the proper ROM when a
program unit in a given page is invoked. A system of tables and control
blocks (Figure 3-6) are used to effect the demand paging operation. The
paging director table is a list whose structure parallels the segment table.
That is, the index into the segment table references paging information for
the same segment. Entries for the paging director include a displacement
into the page for the segment and a pointer to the demand paging control
block for the containing page. During paging operations, the segment table
entry for the code section address may be invalid because the address of the
segment may vary from reference to reference as it is loaded into different
areas of memory. The displacement in the paging director gives the call
handler and other utilities needed information in establishing an entry
address for an paged segment. The demand paging control block (Figure 3-5)
is an information control center which:

1. Determines whether a page is in or out of memory

2. Points to the page's base address

Texas Instruments 3-35 Ada Programming Toolset

Development Specification REQUI REMENTS

3. Gives the page's size

4. Points to the page's disk/ROM image

Every segment which is included in any single page will have a pointer to a
demand paging control block through the paging directory entry for that
segment, with the exception of a segment which is to be memory resident at
all times. When a segment is memory resident, the absence of a pointer to a
demand paging control block will signal that the code section address in the
segment table is valid.

Ttg

4Texas Instruments 3-6Ada Programming Toolset

__ __ _ __ _ I

Development Specification REQU IREMENTS

OVERLAY IOVERLAY

SEGMENT DIRECTOR CONTROL
TABLE TABLE BLOCK

DICTIONARY OCS POINTER I/U LG
(NIL--CODE Is

CODE RESIDENT) LOAD ADDRESS
0

L17 ERAL DICTIONARY DS DRS

CODE DISPLACEMENT
LIT ERALS

DICTIONARY

OCB POINTER
CODE

LITERAL DICTIONARY
CODEDISPLACEMENT OVERLAY

CODEDISLACEENTCONTROL
LITERALS BLOCK

DICTIONARY WUFLG

CODE OBPITRLA DRS

LITERAL DICTIONARY DS DRS

LITERALS

DICTIONARY

CODE
CPONE

LITERAL DICTIONARY

LITERALS

DICTIONARY
CPONE

CODE
4

LITERAL DICTIONARY

LIT ERALS

DICTIONARY

CODE

LITERAL DICTIONARY

LITERALS

Figure 3-6 Demand Paging Control Structures

*Texas Instruments 3-37 Ada Programming Toolset

Nom - --

Development Specification REQUI REMENTS

3.2.2.3.2.6 Overlay Binding

Another option to the program binder for the purpose of controlling the
paging of segments and/or groups of segments is the specification of overlay
operations. Overlays are special cases of demand paging. In demand paging,
the bound segment groups are swapped into memory on a demand basis with
memory allocation being a function of the available paging areas and
scheduling algorithms. Overlays are bound segment groups which are paged
into memory into pre-determined addresses. Flags in the demand paging
control block specify that a bound segment group is an overlay. When this
flag is set, the address found in the 'current memory address' entry of the
demand paging control block is the fixed address of the overlay. The only
entry in the block which will change is the in-out of memory flag. The
KAPSE Interface Task (KIT) is responsible for the memory management of the
overlay paging.

3.2.2.3.2.7 Outputs

The output from the program binder is a file containing the program image
which is inserted into the program library when the binder operates in the
Program Image mode. The binder will leave the program image in memory when
the load-and-go binder mode is used. In either case, the environment,
generated and output by the binder for the execution of the program, is
virtually the same. The segments making up the program image consisted of
four parts:

1. Pre-load Section Dictionary

2. Loadable Code section

3. Constant Dictionary

4. Constant Section

The program binder retains these four sections of the program segment.
However, the program image will have transformed one of these parts by
trading library pathnames for address displacements and table indices. The
binder also generates other tables and blocks for the execution environment.
These tables and blocks are:

1. The Segment Table -- The Segment Table manages the addresses of
the four parts of all segments within a program.

2. The Global Package Table -- The Global Package Table manages the
addresses of the storage areas used by packages which are global
to the bound program.

3. The Program Parameter Descriptor -- The Program Parameter
Descriptor describes to the program manager the expected
parameters to the main subprogram of the bound program.

The following sections describe the output form of these segment parts when
they are bound by the program binder.

Texas Instruments 3-38 Ada Programming Toolset

*

Development Specification REQUIREMENTS

3.2.2.3.2.8 The Segment Code Dictionaries

The cde section dictionary goes through some drastic changes in the program
binder. The most noticeable change is the transformation of the library
name references into segment numbers as the external references are
resolved. It is the transformed dictionary which is referenced from the
segment table. As the binding progresses, external references are directed
to loaded segments through the segment table. The resulting dictionary for
the segment will change to the form in Figure 3-7.

INTERNAL/EXTERNAL REFERENCE FLAG
0 = INTERNAL 1 = EXTERNAL

INTERNAL -- DISPLACEMENTOF CODE ENTRY
WITHIN CODE SECTION OF SEGMENT

EXTERNAL -- INDEX OF SEGMENT IN SEGMENT TABLE
SEGMENT DICTIONARY INDEX

FOR THIS REFERENCE

0 DISPLACEMENT

I SEGMENT NUMCER DICTIONARY ENTRY

-I

Figure 3-7 Segment Code Section Dictionary

The entries in the dictionary are flagged to differentiate the internal from
the external references. The internal references (flagged with the "0")

Ai contain only the displacement of the subprogram from the start of the
segment's object code. The address for the object segment is found in the
segment table. External references (flagged with the "I") contain two
pieces of information. The segment number identifies the segment in the

, segment table. With this information, the location of that segment's
dictionary will be retrieved. The second piece of information within the
original segment dictionary entry identifies the entry's index into the
referenced dictionary. From this thread, the displacement and the address
of the external reference will be discerned at run-time The address of the
external reference will not be placed within !Ile calling segment's
dictionary as this may change during execution.

Texas Instruments 3-39 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.2.3.2.9 The Segment Table

The purpose of the segment table (Figure 3-8) is to keep an orderly list of
the addresses needed in the run-time environment. Each entry to the segment
table represents one segment in the program and contains four addresses.
These addresses are:

1. Address of Code Section Dictionary

2. Address of Code Section

3. Address of Constant Section Dictionary

4. Address of Constant Section

SEGMENT 0

ADDRESS OF CODE SECTION DICTIONARY
ADDRESS OF CODE SECTION SEGMENT I

ADDRESS OF CONSTANT SECTION DICTIONARY
ADDRESS OF CONSTANT SECTION

SEGMENT 2

0 ol SEGMENT N

Figure 3-8 Run-time Segment Table

Segments within the executable program are identified by their index into
this segment table. Addresses within this table are entered as segments are
brought into the binder and the run-time addresses calculated.

i 3.2.2.3.2.10 The Global Package Table

The global package table is constructed by the program binder whenever
' ,! program units within the program segments contain an external reference to a

0 0

Texa ments ithinthe3-40 Ada Programming Toolset

tnrtrs

Development Specification REQUIREMENTS

global package. The global package table contains addresses to storage
areas, allocated by the program manager, used by the package's visible
variables. The reason for this table is to establish a means by which the
executable code of the program, without the benefit of absolute addressing
within the segment, will be able to access these visible parts of the
package.

A global package handler is used to compute the address of a needed
package's storage. The object code of the program unit is able to invoke
this handler by an indirect branch to the address of the global package
handler, kept in a system maintained table. This table also maintains the
addresses of other pertinent handlers. A constant in the object code serves
as an index into the global package table to determine the location of the
visible parts of the package. This address is used as a base address for
future references.

3.2.2.3.2.11 The Program Parameter Descriptor

The program parameter descriptor is a block of data describing the
parameters to be passed to the main subprogram of the program so that proper
execution of the program may occur. This block contains the number of
expected parameters and the literal name, simple type and default value of
each parameter.

The parameter descriptor is formed by the program binder from information
about the parameters found in the symbol table for the program unit
designated as "main". The information required for each parameter includes:

1. Name of Parameter -- The name of the parameter is derived from
the identifier assigned by the- user in the source code of the
subprogram. The name should be descriptive of the actual usage of
the parameter because the only modification of the name will be
the elimination of underscores.

2. Simple Type of Parameter -- The simple type of the parameter is
included in the descriptor so that some external type checking may
be done previous to the parameter's usage in the program. The
descriptor accepts the predefined simple types of INTEGER,
BOOLEAN, STRING and CHARACTER.

3. Default Value -- The default value of the parameter, if available
from the symbol table, is included in the c'escriptor. When the
stack frame of the main subprogram is initialized, this value is
used unless externally overridden with another value.

The program binder saves this program parameter descriptor so that the AlE
Program Manager will be able to use it for invoking the program.

3.2.2.3.3 Special Requirements

The program binder is required to provide the execution environment with a
complete program image. This environment has to provide a mechanism which
allows for the efficient calling of subprograms and referencing of constants

Texas Instruments 3-41 Ada Programming Toolset

--7- , " -t

Development Specification REQUI REMENTS

within the framework of the its data structures. The following sections
describe the mechanisms used to effect the calling of subprograms and
referencing of constants.

3.2.2.3.3.1 Subprogram Calls

It should be remembered that the segment's object code cannot be modified,
but at the same time, the exact addresses of its called subprograms are
unknown. To keep the calling sequences uniform, internal and external
references are identical in the object code. The run-time environment is
able to address a resident subprogram call handler. This utility is
responsible for stack maintenance, parameter passing and the locating of the
called subprogram. The finding of the called subprogram is the interesting
function from the binder's point of view. The area in the object code which
follows the branch to the call handler identifies the entry in the segment
dictionary to which program control is to be passed. The subprogram call
handler will use the following algorithm in finding the address of the
called subprogram. Figure 3-9 gives a graphic description of the data
structures and processing involved in a subprogram call.

Get segment number of current segment from
Task Control Block

Get dictionary entry index from object code
Repeat

Find segment entry in segment table
Follow pointer to segment's dictionary
Find referenced entry in dictionary
If reference is 'EXTERNAL'

Get segment number
Get dictionary entry id

Endif
Until 'INTERNAL' reference is found
Add displacement (from dictionary entry) t-)

base address of segment (from segment table)
Result is entry address of called subprogram

An optimization in the addressing of calls to subprograms within the segment
may be implemented. Since the postion of subprograms within the segment is
known at segment binding time, the displacement of the called subprogram,
relative to the code section, would be substituted for the section
dictionary index. Knowing the entry address of the segment and the
displacement, the called address would be calculated in a more efficient
manner. This optimization requires that the section dictionary index word
in the object code section be flagged according to its usage. A negative
number in that position would indicate the dictionary index which would be
complemented and applied.

The call handler algorithm is significantly changed when paging operations
are being used. The following algorithm describes the call handler for
paged segments.

Texas Instruments 3-42 Ada Programming Toolset

~/
- .. g•- , . .'- 7 ,, - . -:-i , .

Development Specification REQUIREMENTS

Get segment number of current segment from
Task Control Block

Get dictionary entry index from object code
Repeat

Find segment entry in segment table
Follow pointer to segment's dictionary
Find referenced entry in dictionary
If reference is 'EXTERNAL'

Get segment number
Get dictionary entry id

Endif
Until 'INTERNAL' reference is found
Check demand paging operations flag
If paging is being used

Get segment displacement from paging
director table

Get demand paging control block through
paging director table

If page is not in memory
Swap in page from library/disk
Enter load address into demand paging

control block
Mark page as in memory

Endif
Get page address from demand paging

control block
Add segment displacement for entry address

for desired segment
Else

Get base address of segment from segment
table

Endif
Add displacement (from dictionary entry) to

base address of segment
Result is entry address of called subprogram

T

STexas Instruments 3-43 Ada Programming Toolset

U JLL.E ,-

Development Specification REQUIREMENTS

L TASKCOTL
BLOCK

SEGMENT TABL

0 CURRENT SEGMENT PROGRAM COUNTER

WORD IN ACTIVATION

DICTIONARYRECORD (STACK RAM E) D
DICTIONARYR -1-DICTIONARY

1OBJECT CODE
0 DISPLACEMENT

o DISPLACEMENT

C" 0 DISPLACEMENT

0 DISPLACEMENT

3 1 SEGMENT NO. ENTRY

I SEGMENT NO. ENTRY-

DICTIONARY IDENTITY OF CONTAINING SEGMENT
OBJECT 1 SEGMENT NO. ENTRY

LOCATION OF
DICTIONARY SPECIFIC ENTRYIN SEGMENT

DICTIONARY

BASE ADDRESS
OF SEGMENT

N OBJECT CODE 0 DISPLACEMENT

O DISPLACEMENT

0 DISPLACEMENT

1 SEGMENT NO. ENTRY

I SEGMENT NO. ENTRY

E EIN /I SEGMENT NO. ENTRY

DlEG IN

DISPLACEMENT OF SUBPROGRAM
FROM BASE ADDRESS

Figure 3-9 Subprogram Calling Linkages

Texas Instruments 3-44 Ada Programming Toolset

/,

Development Specification REQUIREMENTS

3.2.2.3.3.2 References to Constants

The referencing of literal constants which are too large to be included in
the code section is addressed in a manner similar to the calling of external
subprograms. These constants are included in a constant section. An
associated dictionary holds the displacements to the segment's program unit
constant groups. These constructs were reviewed earlier. A constant
handler is called as a part of the entry into a subprogram in which
constants are used. Subsequent calls to the constant handler may be made
when needed constants are out of the local scope of the subprogram. The
code in the code section which calls the constant handler includes a storage
unit of data to direct the handler to the referenced constant section. In a
manner similar to the call handler, the constant handler's address is
available to the run-time environment as a member in a block of addresses
pointed to by a register or run-time variable. The attached storage unit is
an index into the section and/or constant dictionary. There is a one-to-one
correspondence between the entries in these two structures. The constant
handler calculates the starting address of the constants for the segment
section requested and deposits the address in a register or known variable.
Requests for specific constants in that constant group are made by in-code
offsets from the calculated address. The following algorithm describes the
action of the constant handler in finding the address of a constant. Figure
3-10 and Figure 3-11 show the data structures and relationships which are
used by the algorithm.

Get dictionary entry index from code
Get constant relative offset from code
Repeat
Get section dictionary for segment
Find dictionary entry for index
If entry is external
Get segment number
Get dictionary entry index

Endif
Until dictionary entry is internal
Get constant dictionary for segment
Get constant dictionary entry for index
Get displacement from entry
Get start of constant section from segment table
Address of constant group = Starting address of

constant section + displacement

Texas Instruments 3-45 Ada Programming Toolset

Development Specification REQUIREMENTS

SECTION DICTIONARY

0 0 DISPLACEMENT () COMPILATION UNIT 2 ISINTERNAL TO THIS SEGMENT

I 0 DISPLACEMENT

2 0 DISPLACEMENT

SECTIONDICTIONARY 3 1

CODE SECTION 4 1S

LITERALL HDICTIONARY 5 1I

LITERAL SECTION 6 1|

SGET BASE

ADDRESS OF CODE SECTION

LITERAL (LITERAL HANDLER

IS CALLED FOR
LITERAL GROUP I

CALL LITERAL
HANDLER I

LITERAL DICTIONARY

0 DISPLACEMENT ADD DISPLACEMENT OFGROUP TO BASE ADDRESSFOR START OF LITERALS

I DISPLACEMENT FOR COMPILATION UNIT

2 DISPLACEMENT

LITERAL SECTION

D LITERAL HANDLER
LOADS REGISTER
WITH LITERAL
GROUP ADDRESS

Figure 3-10 Locating Address of Internal Constant Group

Texas Instruments 3-46 Ada Programming Toolset

Development Specification REQUI REMENTS

SECTION DICTIONARY

0 0 DISPLACEMENT

SEGMENT TABLE 1 0 DISPLACEMENT

2 0 DISPLACEMENT

3 1 SEG NO. INDEX

4 t SEG NO. INDEX

SECTION DICTIONARY 5 1 SEG NO. INDEX

CODE SECTION (D COMPILATION UNIT 4 IS EXTERNAL TO
_THIS SEGMENT. GET SEGMENT NUMBERLITERL DITIONRY AND DICTIONARY INDEX.

LITERAL DICTIONARY

LITERAL SECTION

S CALL LITERAL

HANDLER 4

SECTION DICTIONARY LITERAL HANDLER IS CALLED
r

0 DISPLACEMENT

0 DISPLACEMENT

0 DISPLACEMENT
CHECK FOR INTErNAlEXTERNAL
INDEX SAVED IN TEP 2. REPEAT

O DISPLACEMENT STEPS 2-4 IF EXTERNAL.

I

FIND EXTERNAL SEGMENT
IN SEGMENT TABLE

T - LITERAL DICTIONARY
SECTION DICTIONARYL

DISPLACEMENT
CODE SECTION

LITERAL DICTIONARY____DISPLACEMENT_ (5D USE SAME INDEX AS IN STEP 4
TO GET LITERAL GROUP

DISPLACEMENT DISPLACEMENT IN LITERAL
LITERAL SECTION SECT ION.

DISPLACEMENT

GET LITERAL SECTION
BASE ADDRESS

LITERAL SECTION

ADD DISPLACEMENT OF GROUP
TO BASE ADDRESS OP LITERAL
SECTION TO GET ADDRESS OF
COMPILATION UNIT LITERALS.

® LITERAL HANDLER LOADS REGISTER
WITH LITERAL GROUP ADDRESS

Figure 3-11 Locating Address of External Constant Group

.T

,* Texas Instruments 3-47 Ada Programming Tooset

Development Specification REQUIREMENTS

3.2.3 Ada Interactive Debugger

The Ada Interactive Debugger provides the user with facilities to monitor a
running Ada program and modify its target program flow, display and change
the contents of its data structures, and display diagnostic information.
The debugger is designed to provide these capabilities in interactive and
non-interactive modes.

The design of the debugger permits the user to debug programs without any
modification to the code generated by the Ada compiler. The debugger may be
invoked at any point during the execution of the target program. The target
program may be executing in the host machine or, if appropriate
communications interfaces are provided, in some other target machine. The
debugger may also be used as an interactive dump analyzer, when applied to a
database object containing the image of the memory address space occupied by
an Ada program.

The Ada Interactive Debugger consists of two major components. The Debugger
Executive Program resides on the host computer and interfaces with the user,
processes information, and accesses database objects. The Debugger
Interface Package resides in the address space of the target program and
provides the interface between the executive and the target program.

Texas Instruments 3-48 Ada Programming Toolset

N/

I,

JA

Development Specification REQU IREMENTS

IU)~ ~

C

a: I

w
I-W

V)Wwo

[Do
WW

X M

24 exs nsruens - Ad rgrmig ole

w ZIL L
-- J 0.- ..- 6

Development Specification REQUIREMENTS

3.2.3.1 Program Interfaces

The Ada Interactive Debugger is an Ada program, invoked by the user through
the Command Language Interpreter (CLI). Once the Debugger is invoked, the
target program is loaded (if necessary) in its own address space. Target
program execution is suspended and control is passed to the debugger
executive.

The function of obtaining information from and storing information into the
address space of the target program is handled by the Debugger Interface
Package (DIP), a component of the KAPSE Interface Task (KIT) which is
contained in all invoked programs. Although the debugger interface runs as
an independent task in the address space of the target program, it takes no
action on its own but responds to commands from the Debugger Executive sent
via inter-program communication facilities within the Kernel APSE. The
processing of user requests, the collection and processing of information
produced by the compiler and binder, the processing of files and the
maintenance of debug internal variables are all under the control of the
Debugger Executive.

The Ada compiler and program binder must generate several tables which may
be required by the debugger, depending upon the features used. The debugger
will be designed to be as machine-independent as possible; in addition, the
system will be designed so that the debugger executive may reside on a host
and the debugger interface on a target processor. Commands sent from the
debugger executive to the debugger interface are at a high level to minimize
the executive's need to know the target machine architecture. Since the
debugger executive will be written entirely in Ada, the debugger may be
rehosted on different architectures with minimum effort. All information
passed to the debugger from the compiler and binder is contained in disk
files related to the target program through the appropriate program library
file.

The Ada Compiler must provide:

1. Statement Map

2. Symbol Map

3. Type Map

The Binder must provide:

1. Code Map

2. Ada Bound Program

The Kernel APSE must provide:

1. Program Location

Texas Instruments 3-50 Ada Programming Toolset

-mm=

Development Specification REQUIREMENTS

2. Stack Pointers

3. Terminal I/O

4. File I/O

5. Software Interrupts which allow control to be passed to AID

3.2.3.1.1 Interface Block Diagram

Figure 3-13 shows the interfaces between the target program, the debugger
interface, the debugger executive and the KAPSE. The input to the debugger
interface, referred to as CONTROL, consists of commands generated by the
debugger executive. Primary output from the debugger interface to the
debugger executive will be values for display purposes, referred to as DATA.

Texas Instruments 3-51 Ada Programming Toolset

AAA Vol',

Development Specification REQUI REMENTS

DI-.
I-OL

zo

I--,

< z
0

0Q

LI)

Irw U

Co 0 0

I I/r\I I
I O. , I,

w.o_

II k 1\Jo

a w>

-- I.

01 1

I II

I ~a.M
I < 0

I (I

Texas Instruments 3-52 Ada Programming Toolset

j|

/

(K

Development Specification REQUIREMENTS

3.2.3.1.2 Detailed Interface Definition

This section describes the interfaces to be produced by the binder and the
Ada compiler for the Ada Interactive Debugger. The information required
will be generated automatically by the compiler and binder, and will be
stored in files that are accessible to the debugger. Use of the Ada
Interactive Debugger must not modify the way the binder and compiler perform
their task; this is a major design criterion.

The information required to access symbolic entities within program units
will be recorded in the symbol map and the type map. The symbol map
contains a pointer to the corresponding entry in the type map. A statement
map must be provided to facilitate mapping machine code back to the original
source level statements.

The symbol map must contain the following information:

1. The name of the program unit or block.

2. The node-name of the symbol's entry in the symbol table.

3. The allocation of the symbol: register number, displacement in
the code space, stack displacement or displacement in heap packet.

4. The name of the symbol's associated type in the type map.

The type map must provide the following information:

1. The name of the type within the type map.

2. The node-name of the type's entry in the symbol table.

3. The type descriptor.

The statement map must contain the following information:

1. The line number of the statement in the source listing

2. The source statement number.

3. The offset within the program unit or block of the first byte of
the first machine instruction corresponding to the source
statement.

4. The offset to the first byte of the last machine instruction of
the source statement.

5. A pointer to the symbol table for each label on the statement.

Texas Instruments 3-53 Ada Programmin9 Toolset

L~/

Development Specification REQUI REMENTS

The code map should contain the following information:

1. The name of each program unit within the program.

2. The length of each program unit and program segment.

3. The segment number of each program segment.

4. The ordinal position of each program unit within each segment.

The source listing must contain the statement numbers and a human-readable
reproduction of the original source statement. This provides the user with
the capability of displaying the original source text while using the
debugger. The compiler will generate and display a name for each overloaded
procedure on the listing so the user will have a unique identifier for each
instantiation.

Two files are required from the binder: the bound Ada program ready for
execution and a code map. The Ada Interactive Debugger places no additional
demands on the object code. the purpose of the code map is to allow segment
mapping within the bound Ada program back to the program units. In order to
maintain the relationship between the statement map generated by the
compiler and the bound Ada program, the binder should not modify the code
within the compilation units.

The primary demands made by the Ada Interactive Debugger on other areas of

the system are those placed on the executive and in particular the debugger
interface. The debugger interface must have the these capabilities:

1. It must map the given segment number, entry number and
displacement to a target machine address.

2. Given a CONTROL command to probe the code at a mapped address
location, the debugger interface must return the original object
code and replace it with the correct 'probing' code. A 'probing'
code is object code which will interrupt execution of the target
program, save the context of the target program and pass control
to the debugger executive.

3. Given a target machine location as a segment number, an entry
within that segment and an offset, it must start or resume
execution of the target program at that location.

4. The debugger interface must inform the DEP when a task activation
or termination occurs within the target program.

3.2.3.2 User Interface

The following paragraphs will describe the detailed input, processing and
output functional requirements for the Ada Interactive Debugger.

Texas Instruments 3-54 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.3.2.1 Program Invocation

The Ada Interactive Debugger is designed to be used either interactively or
in a batch mode. The debugger may be controlled with commands from a
terminal or commands from a pre-existing file.

procedure DEBUG (NAME: in STRING; CONTROL: in STRING);

The debugger can be invoked with either one or two parameters. The required
NAME parameter is the name of the program to be debugged or a dump file.
The optional CONTROL parameter is either the name of a debug initialization
file (a set of debug commands) or the keyword ACTIVE. If the second
parameter is the keyword ACTIVE, the debugger assumes that the target
program is already loaded and obtains information on its status from the
KAPSE. The ACTIVE parameter puts the debugger in interactive mode. If the
program is being run in batch, the two-parameter invocation is mandatory and
the second parameter must specify the debug control file.

3.2.3.2.2 User Prompt

The Ada Interactive Debugger will display:

DEBUG:

when it is awaiting terminal input.

3.2.3.2.3 Command Language

The command language is Ada-like. The commands available to the user are:

statement ::= abort-statement I
accept-statement
clear-statement I
define-statement I
display-statement I
dump-statement I
end-terminal-statement
exception-statement I
goto-statement I
help-statement]
if-statement I
monitor-statement I
run-statement I
status-statement I
symbol sstatement I
termi nal-statement

sequence-of-statements :: statement (statement)

Texas Instruments 3-55 Ada Programming Toolset

.

Development Specification REQUIREMENI S

3.2.3.2.3.1 ABORT Statement

abort-statement ::= ABORT

The ABORT statement is used to terminate a debug session.

3.2.3.2.3.2 ACCEPT Statement

accept-statement ACCEPT breakpoint-name DO
sequence-of-statements
end (breakpoint-name);

breakpoint-name selected-component I ALWAYS
selected-component ::= selected-name I statement-number
statement-number ::= integer
selected-name ::= identifier { . identifier } [statement-number]

The function of the ACCEPT statement is to enable the user to specify a set
of commands which are to be executed when a given breakpoint occurs or upon
the occurrence of every breakpoint. The ALWAYS parameter defines a set of
debug statements that are to be executed at each breakpoint. ALWAYS could
be used to trace the statements at which a variable changes values by
indicating the new value.

ACCEPT ALWAYS DO
DISPLAY(X, DBStatement); -- display information

END; -- end of global breakpoint

Example 3-1 ACCEPT Statement--ALWAYS

In Example 3-1, the ACCEPT command indicates that each time a breakpoint is
executed, the debugger is to display the current value of the variable X and
source text of the current statement.

The ACCEPT statement allows the user to give a set of commands which are to
be executed when a breakpoint at a specific location is executed.

ACCEPT P.5 DO
DISPLAY(X, Y, Z); -- display variables

END P.5; -- end of ACCEPT

Example 3-2 ACCEPT Statement--SPECIFIC LINE NUMBER

ri Texas Instruments 3-56 Ada Programming Toolset

"- 14L- . '- -

Development Specification REQUIREMENTS

In Example 3-2 the ACCEPT statement indicates that if a breakpoint is
encountered at statement number 5 in procedure P, the current values of the
variables X,Y and Z are to be displayed. If a breakpoint is encountered and
there is no corresponding ALWAYS or specific action, the results depend on
the mode in which the debugger is being executed. In interactive mode, the
breakpoint message is generated and control is passed to the user's
terminal; in batch mode, the breakpoint message is generated and execution
of the target program continues. A statement may be expressed either as a
statement number or as a label if there was a label on the original source
statement.

3.2.3.2.3.3 ASSIGNMENT Statement

assignment-statement ::= name := expression

The debugger assignment statement may be used to assign new values to target
program variables or to debugger variables. Assignment to constants is not
allowed.

P.X := Q.Y + P.Z

Example 3-3 ASSIGNMENT Statement

In Example 3-3, the sum of the variable Y, defined in procedure Q, and
variable Z, defined in procedure P, will be assigned to the variable X,
declared in procedure P.

3.2.3.2.3.4 CLEAR Statement

clear-statement ::= CLEAR (selected-component-list)

The CLEAR statement is used to clear breakpoints which have been established

via MONITOR statements.

CLEAR(P.X.5, Q.24); --clear breakpoints

Example 3-4 CLEAR Statement

In Example 3-4, the breakpoints at statement 5 in procedure X within
procedure P and at statement 24 in procedure Q would be cleared. The
execution of the CLEAR statement does not change the status of any ACCEPT
statements which might be associated with the cleared breakpoints. The

Texas Instruments 3-57 Ada Programming Toolset

Development Specification REQUIREMENTS

ACCEPT statements are still maintained and will be executed, if a later
MONITOR statement re-establishes the breakpoints and they are encountered
during the course of execution.

3.2.3.2.3.5 DEFINE Statement

define-statement DEFINE (identifier,selected-component)

The DEFINE statement allows the user to assign a selection string to a debug

variable which will represent an entire selection prefix.

DEFINE(DB_P, P.L.Q.Z); --set debugger string

Example 3-5 DEFINE Statement

In Example 3-5, the debugger variable DBP is assigned the selection prefix
P.L.Q.Z. When the user wishes to display the contents of the program
variables N and X declared within procedure Z (within procedure Q within
procedure L within procedure P), the user need only type DBP followed by
the variable name to select the proper variable.

3.2.3.2.3.6 DISPLAY Statement

display-statement ::= DISPLAY (display-list)
display-list display-item (, display-item I
display-item selected-component I display-function I literal
display-function ::= display-function-name (identifier)
display-function-name ::= T I H I 0 1 A I S

The DISPLAY statement is used to display the contents of target variables or
debug variables during the course of the debug session. The display list is
a list of variable names, line numbers, function invocations or literals
separated by commas. The order in which the items appear in the list is the
order in which they will be displayed. The format of the display output is
the fully selected name of the variable, an equal sign, and the value, in
the case of target program variables. If the variable is an array, the
subscript will be displayed, enclosed in parentheses following the name of
the variable in the output. The user may display all elements of an array
by giving the array name. Specific items within the array may also be
displayed by giving the desired subscript. If the variable is a debug
variable, the name of the variable, an equal sign, and the value will be
displayed. If the display-item is a statement number, the fully selected
identifier for the source statement will be displayed on an output line
followed by the source text on the next output line. The user may display
information about variables or display values in a format other than the

Texas Instruments 3-58 Ada Programming Toolset

,-.. , .- , • -. , * : - . = -

Development Specification REQUIREMENTS

default. The options are:

1. T(variable)--Display the TYPE of the variable from the symbol
table.

2. H(variable)--Display the value of the variable in hexadecimal.

3. O(variable)--Display the value of the variable in octal.

4. A(variable)--Display the address of the variable in the memory of
the target processor.

5. S(variable) -- Display the ranges of the subscripts of the
variable.

DISPLAY(P.X, T(P.X), H(P.X)); --display data on X

Example 3-6 DISPLAY Statement

In Example 3-6, the variable "X" defined within procedure P, would be
displayed in the default format for its type. Then, the TYPE would be
displayed and finally the value of the variable in hexadecimal would be
displayed. Assuming the variable was REAL and had a value of 5.0, the
display would be:

DEBUG : P. X=5.0
DEBUG: P. X=T(REAL)
DEBUG: P. X=H(41500000)

3.2.3.2.3.7 DUMP Statement

dump-statement ::= DUMP [(CODE)] ;

The DUMP statement gives a formatted dump of the stack, heap and,

optionally, the code areas of the target program. The statement has at most
one parameter. If the parameter is specified, the debugger will dump the
code areas of the target program as well as the stack and heap. If the
parameter is omitted, only the stack and heap will be dumped.

DUMP(CODE); --dump stack, heap and code

Example 3-7 DUMP Statement

Texas Instruments 3-59 Ada Programming Toolset

i •

Development Specification REQUIREMENTS

In Example 3-7, the debugger would give a formatted dump of the stack, heap
and code areas. The dump of the stack and heap will be in historical order
from the most recent stack frame to the oldest. The dump of the code
segments will follow the dump of the stack and heap information and will be
in the order in which the segments are produced by the binder.

3.2.3.2.3.8 END-TERMINAL Statement

end-terminalstatement ::= END-TERMINAL

The END-TERMINAL statement has meaning only when entered from a terminal
following a TERMINAL command. The statement returns control from the
terminal to the EXCEPTION or ACCEPT statement which originally passed
control to the terminal. If control was passed to the terminal via a
breakpoint without a specific action, this statement is identical to a RUN
statement.

3.2.3.2.3.9 EXCEPTION Statement

exception-statement ::= EXCEPTION exception-handler END
exception-handler WHEN exception-choice

(I exception-choice = > exception-action
exception-choice exception-name I OTHERS
exception-action sequence-of-statements I SYSTEM

The EXCEPTION statement specifies a sequence of commands to be executed when
an exception is raised within the target program. When the exception is
raised, the exception choices are searched for the occurrence of the given
exception name. If a match is found, the sequence of statements following
that exception name is executed; otherwise, the sequence of statements
following the keyword OTHERS is executed. If the keyword SYSTEM is used, it
must be the only statement specified. This indicates that the normal system
action is to be taken when the given exception is raised.

A

EXCEPTION
WHEN DIVISION-CHECK =>

DISPLAY("DIVISION BY ZERO AT", DBStatement);
DISPLAY(X, Y, Z, D);
STATUS(TARGET);
DUMP;

WHEN OTHERS=>
SYSTEM;
END;

Example 3-8 EXCEPTION Statement

Texas Instruments 3-60 Ada Programming Toolset

MCC=

Development Specification REQUIREMENTS

In Example 3-8 when a DIVISION CHECK exception arises the system will display
the string "DIVISION BY ZERO AT", followed by the statement at which the
error occurred. Next, the variables X,Y,Z and D in the current procedure
will be displayed. Finally, the target program status will be displayed and
the context of the target program will be dumped. If the exeception is not
a DIVISIONCHECK, the normal system action will be taken.

3.2.3.2.3.10 GOTO Statement

goto statement ::= GOTO (name)

The GOTO statement allows the transfer of control to a new source line
within the current procedure of the target program. The name must be a
label on a source statement. The user will not be allowed to transfer
control outside the current block or procedure.

IF A.B = 0 THEN GOTO LX;
END IF;

Example 3-9 GOTO Statement

In Example 3-9, if the value of the variable B, declared in procedure A, is
equal to zero, control will be passed to statement labeled LX in the current
procedure. Note a run statement is not necessary when a jump is used to
resume execution of the target program.

3.2.3.2.3.11 HELP Statement

help statement ::= HELP (name)

The HELP statement enables the user to obtain:
* Syntatic and semantic information about debug commands

* Definitions of debugger variables and functions

* Definitions of exceptions

* Explanations of debug return codes

The following information is displayed by the various parameters

* debugstatement-- syntatic and semantic information of the given

debug statement

Texas Instruments 3-61 Ada Programming Toolset

.

Development Specification REQUIREMENTS

* exception-name-- a description of the conditions which will cause
the named exception to be raised

* debug-variable-name-- a description of the value associated with
the given debug variable

* debug-return-code-- a description of the error which would cause
the variable DB_.RETURNCODE to be set to the given value

* LIST-- a list of debug commands, variables, and functions

3.2.3.2.3.12 IF Statement

if-statement ::= IF condition THEN
sequence-of-statements

END IF;
condition expression

The IF statement within the debugger can be used to test the status of a
program or debugger variable and to execute a sequence of statements if the
condition is satisfied.

IF DBL5C MOD 10 = 0 THEN -- is the counter divisible
DISPLAY(X);

END IF;

Example 3-10 IF Statement

In Example 3-10, the debugger variable DB_L5C is used to count the number of
times the breakpoint at statement 5 in procedure P is encountered. If the
debug variable, DB_L5C, is divisible by 10, the value of the variable X is
diplayed.

3.2.3.2.3.13 MONITOR Statement

monitor-statement ::= MONITOR (selected-component-list)
selected-component-list ::=

selected-component { , selected-component)

The MONITOR statement is used to set breakpoints at specific statements,
procedures or variables within the target program. Statement number 10 in
procedure P, within procedure X, would be written as X.P.10. If the
statement has a label, the label rather than the statement number may be

; .Texas Instruments 3-62 Ada Programming Toolset

.j . -,!. " -

Development Specification REQUIREMENTS

used.

Statement number breakpoints occur at the first machine instruction
corresponding to the source statement. Procedure breakpoints occur at the
entry and exit points of the procedure. Variable breakpoints occur when the
variable's value changes.

MONITOR(X.P.10, Z.5, Q.P.7); --set breakpoints

Example 3-11 MONITOR Statement--Statement BREAKPOINT

In Example 3-11, the MONITOR statement causes breakpoints to be established
at statement number 10 in procedure P within procedure X, at statement
number 5 in procedure Z and at statement number 5 in procedure P within
procedure Q.

MONITOR(X.MAN, Q.Z.N, P.STR); --set breakpoints

Example 3-12 MONITOR Statement--VARIABLE BREAKPOINT

In Example 3-12, a breakpoint would occur when the following variables
change: variable MAN declared in procedure X; variable N declared in
procedure Z which is in procedure Q; variable STR declared in procedure P.
Variables in the list must be variables in the target program and not
debugger variables.

.1

MONITOR(X.P, Z, Q.L); --set breakpoints

Example 3-13 MONITOR Statement--PROCEDURE BREAKPOINT

4 In Example 3-13, breakpoints would be set at the entry and exit points of
procedure P within procedure X, procedure Z, and procedure L within
procedure Q.

3.2.3.2.3.14 RUN Statement

run-statement ::= RUN
i

The RUN statement causes the debugger to start execution of the target
program or to resume execution following a breakpoint or exception.

'P
t;Texas Instruments 3-63 Ada Programming Toolset

* .. I,' 4 ~ ~

/.4,

Development Specification REQUIREMENTS

3.2.3.2.3.15 STATUS Statement

status-statement ::= STATUS (name)

The STATUS statement is a machine-dependent instruction which, when
executed, dumps one of the following: the status of the target program, the
current status of the hardware of the target machine, the status of the
system, the "set" statement breakpoints, the "set" procedure breakpoint or
the "set" variable breakpoints. If the keyword SYSTEM is specified as tile
parameter, the available information on the status of the target hardware is
displayed. If the keyword TARGET is given, the status of the target program
is displayed. The parameter S will produce a list of the "set" statement
breakpoints; V will produce a list of the "set" variable breakpoints; and P
will produce a list of the "set" procedure breakpoints. For some options,
the status information depends on the architecture of the target computer;
however, typical data could be register contents, condition codes, or
program counter contents.

3.2.3.2.3.16 SYMBOLS Statement

symbols-statement ::= SYMBOLS (selected-component)

The SYMBOLS statement allows the user, to display all symbols and their
associated types declared within a given procedure.

SYMBOLS(P.X); --display symbols and types

4Example 3-14 SYMBOLS Statement

4 In Example 3-14, all symbols appearing in the symbol table for the proced-4v
X within procedure P and their associated types will be displayed.

3.2.3.2.3.17 TERMINAL Statement

* terminal-statement ::= TERMINAL ;

The TERMINAL statement is used to return control to the user's terminal when
the debugger is used in the interactive mode. The terminal user may enter
any debugger commands he wishes once he has control. This includes the
modification of EXCEPTION or ACCEPT statements. The user returns control to
the debugger by issuing an END TERMINAL or RUN command.

Texas Instruments 3-64 Ada Programming Toolset A*1!
I ,. -- - ,,---

Development Specification REQUIREMENTS

3.2.3.2.4 Internal Variables

Within the Ada Interactive Debugger there are two classes of internal
variables. The first class lets the user calculate and store values for
later calculations or comparisons. The second class is built into the
debugger" and is used to initiate features or to obtain values.

The internal variables are differentiated from program variables by their
first characters,which must be "DB_". Since the user may need additional
variables during the course of his debugging session, internal variables of
the first class will not be explicitly typed. The TYPE of the variable is
defined by its initial assignment. If a later assignment attempts to
redefine the TYPE of a variable, an error message will be generated and the
assignment statement will be ignored. All symbol table entries and storage
necessary to support internal variables will be maintained by the Ada
Interactive Debugger on the host machine. TYPE is limited to BOOLEAN, CHAR,
INTEGER and REAL.

Variables of the second class have predefined TYPE and are created by the
invocation of the Ada Interactive Debugger. The variables of this class are
identified as either read-only or read-write. The only difference between
the two is that read-only variables may not be the target of assignment
statements. Read-only variables are, in general, those which return
information on the run-time environment of the program being debugged.
Read-write variables are, in general, those which invoke features of the
debugger. If more than one task is active, these variables will refer to
the task in which the breakpoint occurred. The read-only variables are:

* DBLEVEL- -Contains the level of recursion of the current routine
in the current context.

* DB TASK--Contains the identification of the current task.

* DBSTACK--Contains a character string containing the description
of the current active stack frames.

* DBStatement-- Contains the identification of the current
statement.

DBSStatement- -Contains a list of the currently set statement
breakpoints.

* DBPROCEDURE- -Contains the name of the current procedure.

* DBSPROCEDURE--Contains a list of the currently set procedure
breakpoints.

DB_VARIABLE--When a variable breakpoint occurs, this contains the
name of the variable causing the breakpoint. It is null, if the
breakpoint was caused by a break other than a variable breakpoint.

* DBSVARIABLE--Contains a list of the currently set variable

Texas Instruments 3-65 Ada Programming Toolset

I I

Development Specification REQUIREMENTS

breakpoints.

DBRETURNCODE--If the previous debug statement was executed
successfully, this variable will be set to zero. Otherwise, it
will be set to an integer number indicating type of error.

* DBDATE--Contains the current julian date.

* DB_TIME- -Contains the current time.

The read-write variables are:

* DBSINGLE--This is a boolean variable which if set to "true" puts
the debugger in single step mode. If it is "false", the debugger
runs in multi-statement mode. The initial value of this variable
is "false".

* DBECHO--This is a boolean variable which, if set to "true",
causes the debugger to produce a file suitable for printing
containing the debug commands and their output. The user may
change the value of the variable during the course of a debug
session with no change to any information already generated. The
initial value of this variable is "false".

DBTRACE--This is a boolean variable which if set to "true" causes
the debugger to generate statement track information. The track
display is in the form of a statement-specification. The initial
value of this variable is "false".

3.2.3.2.5 Internal Functions

Within the debugger, there are internal functions which allow the user to
obtain information about the target program or target program variables.
These functions are identified by the prefix "DBF_".

3.2.3.2.5.1 DBFATTRIBUTE

function DBFATTRIBUTE(X,Y: STRING) return STRING;

The DBFATTRIBUTE function has as its first parameter a STRING which is the
selected name of a target program variable. The second parameter is a
STRING representing an entry in the type map generated by the compiler. The
function returns a string which is the entry in the type map for the given
variable and attribute. If the attribute is not stored as a STRING in the
type map, it will be converted to a STRING by the function.

Texas Instruments 3-66 Ada Programming Toolset

Development Specification REQUIREMENTS

3.2.3.2.5.2 DBFDEFINE

function DBF.-DEFINED(X STRING) return STRING;

The DBF DEFINED function has a variable name as its parameter (this need not
be a selected name) and returns a string which is the selected name of the
procedure in which the variable is defined. If the variable is not defined
within the current scope, a string of zero length will be returned.

3.2.3.2.5.3 DBFTASK

function DBFTASK return INTEGER;

The function DBFTASK returns the number of tasks activated by the target
p rog ram.

3.2.3.2.5.4 DBFTASKSTATUS

function DBFTASKSTATUS(X: STRING) return INTEGER;

The parameter passed to DBFTASKSTATUS is a string which specifies a task
within the current target program. The function returns an integer number
indicating the status of the task.

3.2.3.3 Processing Requirements

3.2.3.3.1 Symbol Identification and Completion

Symbols are entities declared within the target program. The AID accesses
them using the symbol table and type table generated by the compiler. The
symbol must be entered exactly as it appears within the program. A symbol
entered without a selection criterion is assumed to be declared within the
currently executing program unit. To reference symbols in other program
units, the user must write the symbol as a selected component. If the
symbol does not exist, an error message will be sent to the terminal in
interactive mode or to the debug output file in batch mode. The statement
containing the invalid symbol reference will not be executed; but, the
syntax scan will continue. The user may use the SYMBOLS command to obtain a
list of all symbols declared within a procedure.

Symbols are resolved in the following manner:

1. If the name starts with DB_, the debugger's internal symbol table
is used.

2. If the name is a program name

a. The symbol table is scanned for the symbol. If the symbol

Texas Instruments 3-67 Ada Programming Toolset

ii______________i

Development Specification REQUIREMENTS

is not found, an error message is generated and scanning
terminates.

b. If the symbol is found then the pointer to the
corresponding entry in the type map is used to locate the
correct entry in the type map.

c. The type is validated to test for any type conflicts.

3.2.3.3.2 Statement Identification

The Debugger identifies source text statements via the corresponding source
statement numbers. These numbers will reflect those which appear on the
compiler listing. A statement number entered without selection information
is assumed to be within the currently executing program unit of the target
program. To reference statements in other program units, the user must
write the statement number as a selected component in which the last
specification is an integer. The statement map generated by the compiler
will be used to verify the statement number. If the statement map does not
contain the statement, an error message will be generated, and the debug
statement containing the invalid reference will not be executed. An invalid
staten,ent number does not stop the syntax scan.

3.2.3.3.3 Expression Evaluation

expression ::= relation (logical-operator relation }
relation ::= simple-expression

[relational-operator simple-expression]
simple-expression { unary-operator) term

{ adding-operator term 1
term ::= factor { multiplying-operator factor I
factor primary [** primary]
primary literal I name I (expression)
logical-operator ::= AND I OR I XOR I AND THEN I OR ELSE
relational-operator < I > I
adding-operator + & - &
unary-operator + NOT
multiplying-operator * I / t MOD I REM
numeric-literal decimal-number
decimal-number integer [. integer]

* integer ::= digit { [underscore] digit }
character-string " { character } "
name ::= identifier
literal numeric-literal I character-string

NULL I TRUE FALSE

Texas Instruments 3-68 Ada Programming Toolset

- -L-- r 1

Development Specification REQUIREMENTS

The syntax of expressions used by the AID is similar to the syntax o"
expressions within the Ada language. Numeric symbols are considered
constants of the type defined by their representation. Numeric symbols,
debug variables and target program variables may be combined with
mathematical or logical operators to form expressions. The AID supports all
operators given in section 4.5 of the Ada Reference Manual and the
precedence of the operators is identical to that of the Ada language.

In expression evaluation, the type rules of the language apply. Symbols of
unlike types may not be mixed in the expression. If an expression contains
mixed types, the statement containing the expression will not be executed
but syntax checking will continue.

3.2.3.3.4 Keyboard Interrupts

During program execution, the user may disconnect a program from a terminal
using the ATTENTION key. This allows the user to halt the program via
executive commands and invoke the debugger in an interactive mode. Since
the ATTENTION key disconnects the target program from its window of the
physical screen, the user must re-establish the connection between the
target program and the physical terminal prior to issuing a RUN command from
within the AID. If the RUN command is issued without re-establishment of
the link between the target program and the physical terminal, control will
be given to the target program but terminal I/O will be suppressed.

3.2.3.3.5 Debugger Activation

Invocation of the debugger causes loading and initiation of the debugger
executive. Prior to passing control to the target program, the debugger
executive must do the following:

Process the parameters. This particularly involves checking the

second parameter:

If the ACTIVE parameter is not specified, the debugger
executive must request that the KAPSE load the program.
Otherwise, the debugger executive must obtain information on
the status of the program from the KAPSE.

If a control file is requested, the debugger executive must
read it in and process the control file.

* Obtain the binder's code map for the target program and translate
it into internal format.

* Give control to the user's virtual terminal.

3.2.3.3.5.1 Parameter Processing

The CLI supplies the parameters to the debugger executive. The first
parameter must be be the name of the Ada program to be debugged. The second

Texas Instruments 3-69 Ada Programming Toolset

* a . . * -.

Development Specification REQUIREMEt

parameter is optional; if present it may be either the name of a coni
file or an indication that the program is already active. Should the sec(
parameter be omitted, a check must be made to insure that the debugger is
interacitve mode; otherwise, execution terminates with an error message.

3.2.3.3.5.2 Obtain Code Map

Using the name of the target program (parameter one) and the proF
attributes, a request is made to the Data Base Manager (DBM) that access
granted to the code map produced by the binder. If access is not grant(
an appropriate error message is generated and the debugger terminates.
access is granted, the file is read and translated from human readable fo
into an internal format. The internal format must allow efficie
processing when mapping from a program unit name to an internal location
the reverse.

3.2.3.3.5.3 Load or Link to Target Program

If the second parameter is not the keyword ACTIVE, the debugger executi,
requests that the KAPSE load the program and pass control back when tl
loading is completed. Should the program already exist, a message is se
via Intertask Communication Facilities (ICF) to establish a link between tl
debugger executive and the debugger interface. If the program must 1
loaded, the link is established after control is returned to the DE
following the load.

3.2.3.3.5.4 Process Control File

If the second parameter is present and is not the keyword ACTIVE, tf
parameter designates the name of a control file and a request is made to tt
Database for access to it. Should access be denied, the DEP generates z
error message. In interactive mode, control is passed to the user's virtu
terminal; in batch mode, the debugger terminates.

At this point, the debugger executive reads the control file sequentialh
All statements are scanned for syntax and, if in error, a message
generated. Statements within EXCEPTION or ACCEPT statements are scanned f(
syntax but not executed. If the statement is an EXCEPTION or ACCEP
statement at the top level, the statements are processed and written to a
internal debug direct access file keyed on the associated statement numbel
No entry is made in the file for EXCEPTION or ACCEPT statements neste
within other EXCEPTION or ACCEPT statements until the parent statement
actually executed. All debug command processing is interpretive; thereforf
data written to the temporary file is in human-readable format.

MONITOR statements requesting statement level breakpoints require that th
debugger have access to the statement map generated by the compiler. If
requesi is made to set a breakpoint, debugger executive will determir
whether the statement map for the given program unit has already bee
processed. If so, the statement number is entered in a pending list and i

Texas Instruments 3-70 Ada Programming Tools(

"'~1.

Development Specification REQUI REMENTS

flagged as being a direct request for a statement breakpoint. Otherwise, a
request is made to the DBM for the given program unit's statement map. If
the access is successful, the map is read and processed. Should an error
occur, a message is generated and a flag is set indicating to the debugger
executive that statement level debugging will not be permitted in that
program unit.

The request for variable breakpointing requires not only the statement map,
but also the type map and the symbol map. A variable breakpoint requires
that the system process statement maps for all program units as well as a
symbol map and type map for the program unit in which the variable is
declared. Statement maps are processed as described above. If the
statement map is not available for any program unit, an error message is
generated and the variable breakpoint occurs at the procedure level rather
than the statement level. All statements in all program units are added to
the pending list. Symbol maps and type maps, like statement maps, are
initially requested from the DBM and then the debugger executive maintains
them internally from that time on. A symbol breakpoint error message is
generated under the following conditions:

* The type map for the given program unit does not exist.

* The symbol map for the given program unit does not exist.

* The symbol is not on the symbol table for the program unit.

In any of these cases, the statement is ignored.

Procedure level breakpoints do not require an', file access to the Database
since the information necessary to locate them is contained in the code map
generated by the binder which is processer' at the start of the debug
session. The procedure level breakpoint is added to the pending list and
identified as a breakpoint set by a direct request.

All breakpoint information both statement breakpoints or procedure

breakpoints is maintained in a table containing the following:

* Breakpoint Identification

* The segment number, entry number, and displacement value of the
first byte of the first machine instruction of the breakpoint.

* The original code contained in the above byte.

The segment number, entry number, and displacement value of the
first byte of the last machine instruction of the breakpoint.

The original code contained in the above byte.

* ;A pointer to any ACCEPT/EXCEPTION table, if there is an entry for
this statement.

A flag indicating if this breakpoint was explicitly "set".

Texas Instruments 3-71 Ada Programming Toolset

Development Specification REQUI REMENTS

A statement breakpoint or procedure breakpoint in a MONITOR statement will
generate an entry in the breakpoint table for the specified statement or
procedure. A variable breakpoint in a MONITOR statement or entry into
single step mode will generate an entry in the breakpoint table for every
source statement in the program.

Once a MONITOR statement has been processed, then and only then are the
pending breakpoint lists processed. Processing breakpoints requires
requesting the DIP sent the first byte of the first and last instruction of
the statement to the executive. This is then entered in the breakpoint
table. Once this is accomplished, the DIP is told to place "set" interrupts
in the first byte of the first instruction of the statement. If an error in
syntax occurs during the processing of the statement, the pending lists are
deleted and no breakpoints are set.

A RUN statement outside of an EXCEPTION or ACCEPT statement causes the
debugger executive to stop reading the command file and pass control to the
target program. In interactive mode, since there is no way to read the rest
of the file once the debugger executive has passed control to the target
program, a message will be written stating that any other commands on the
command file will be ignored. In batch mode, the system will start reading
commands from the command file following a RUN statement if:

1. A breakpoint occurs at a statement where there is no action

specified

2. A procedure breakpoint occurs and there is no "ALWAYS" statement

3. A variable breakpoint occurs and there is no ACCEPT statement
active

NOTE: If the debugger is in single step mode, it behaves as if there is a
statement level breakpoint "set" at every statement in the program.

If an end-of-file is encountered in the control file prior to a RUN
statement, results again depend upon the mode; in interactive mode, control
is returned to the user's virtual terminal, while in batch mode, a RUN
statement is assumed at the end-of-file. The first time the end of file is
encountered in batch mode control is passed to the target program. Any
additional attempt to read from the control file will result in an error
message and termination of the debug session. An ABORT statement will
terminate the debugger at once with all remaining information on the controi
file ignored. It is suggested that the last command on a control file be an
ABORT command.

3.2.3.3.6 Input/Output

All input/output to the terminal and debug output files is done by the
debugger executive via Ada high-level I/O. The information transmitted,
whether input or output, is in strings. Formatting and decoding is done by
the debugger executive. Files within the DBM are accessed using standard
access methods defined within the Ada language.

Texas Instruments 3-72 Ada Programming Toolset

" * , - '-9

Development Specification REQUIREMENTS

3.2.3.3.6.1 Virtual terminal I/O

The attachment of the user's virtual terminal to the debugger executive
shall be the responsibility of the KAPSE. The internal file name will be
TERMINAL. All terminal I/O is handled one line at a time. No attempt will
be made within the debugger executive to do full screen formatting.

3.2.3.3.6.2 Debug file I/O

The debugger executive shall request the DBM to create a new entry in the
directory under the target program named DEBUG. This file will have
attributes of TIME and DATE which are the time and date at which the
debugger is invoked. The user uses these attributes to differentiate
between different debug files for the same target program.

3.2.3.3.7 Statement Processing

All statements in the debugger are executed via an interpreter within the
debugger executive. Debug statements can be broken into two areas: those
that are executed when encountered and those that are executed only when
they are triggered by an event in the target processor. EXCEPTION and
ACCEPT statements are the only statements which fall into the second group;
all other statements are executed when encountered. Statements contained
within EXCEPTION and ACCEPT statements are scanned for syntax as they are
input but their execution is delayed until the EXCEPTION or ACCEPT statement
is executed.

3.2.3.3.7.1 EXCEPTION Statement Execution

As exception statements are encountered, they are scanned for appropriate
syntax and written to a relative record direct access file. An entry is
made in a debug table giving the name of the exception, the number of
statements and the location on the file. If the statement specifies the
SYSTEM option, the exception is removed from the table and the space on the
direct access file is marked as "available".

When an exception is raised in the target program, any exception processing
indicated within the target program is performed and the debugger interface
passes control to the debugger executive. The debugger executive searches
the table to locate a corresponding EXCEPTION statement. If none is found,
control is returned to the target program; otherwise, the sequence of
commands within the EXCEPTION are read and executed in a sequential manner.
The DEP continues to process the file until the number of statements given
in the table is processed or until a TERMINAL command returns control to the
user's virtual terminal. When control is passed to a terminal, the pointer
to the last statement read is maintained and an END-TERMINAL statement will
cause the system to start processing at the next statement on the file. If
the user issues a RUN statement from the terminal, the remainder of the
statements in the EXCEPTION block are ignored and control is passed back to
the target program.

Texas Instruments 3-73 Ada Programming Toolset

V l I* - . . .,

Development Specification REQUIREMENTS

3.2.3.3.7.2 ACCEPT Statement Processing

The processing involved in the ACCEPT statement is almost identical to that
of the EXCEPTION statement. In both statements, the same table and relative
record files are used internally. The target machine address or the keyword
ALWAYS replaces the exception-name in the table.

If the parameter is a selected-component, the last item in the component is
scanned. If it is an integer, the statement map of the program unit is read
and the number tested to make sure it is a valid statement number. If
either the statement map is missing or the number is invalid, an error
message is generated and the ACCEPT statement is ignored. Otherwise, the
statement number is converted to a segment number, entry number, and
displacement value, the table updated, and the information written to the
relative record file.

If the last item is a name, the statement map and symbol map of the program
unit are used to validate it as a label. If either map is missing, the name
cannot be found on the symbol map or it is not a statement label, an error
message is generated and the ACCEPT statement ignored. The method for
resolving this is:

1. Find the symbol on the symbol map.

2. Find a reference to the symbol table node in the statement map.

3. Replace the label with the proper statement number.

Once the proper statement number has been supplied, the statement number is
converted to a segment number, entry number and displacement value the table
is updated, and the information written to the relative record file. ACCEPT
statements apply to every occurence of the statement in all tasks. If the
breakpoint is currently # set" the breakpoint table is updated with the
location of the "ACCEPT" in the ACCEPT/EXCEPTION table.

3.2.3.3.8 Breakpoint Processing

When a breakpoint occurs, execution of the target program is halted, the
target program is halted, control is passed to the debug executive, and the
segment number, entry number, and displacement value are sent to the debug
executive. When an EXCEPTION is raised, an indication of the type of
exception is also supplied.

Once processing has passed to the debug executive, the field containing the
first byte of the first machine instruction in the breakpoint table is
scanned to obtain the statement number and see if the breakpoint was
explicitly "set". If the breakpoint was not explicitly "set", the debug
executive test to see if a variable breakpoint has occurred. If so, the
debug executive:

1. Generates a message giving the location of the breakpoint.

Texas Instruments 3-74 Ada Programming Toolset

Development Specification REQUIREMENTS

2. Generates a message giving the name of the variable and the new
value.

3. Proceeds to ACCEPT statement processing.

Otherwise, control is passed to the target program. If the breakpoint has
been explicitly "set", a message is generated giving the location of the
breakpoint and the executive proceeds to ACCEPT statement processing. ITEM

If the breakpoint's entry in the breakpoint table indicates there is an
ACCEPT statement, the statements are read from the relative record file and
executed until either the number of statements in the table or a statement
transfers control elsewhere. When the final statement has been processed,
any commands associated with an "ALWAYS" entry are processed. If the
"ALWAYS" is processed to the last statement, control is returned to the
target program.

If there is no ACCEPT for a given breakpoint: in debug mode, control is
passed to the user's virtual terminal; in batch mode, control is returned to
the target program. Breakpoint processing interactive mode is terminated
via either a RUN or ABORT command. Passing control back to the target
program requires the debug executive fetch the original code for the first
statement from the breakpoint table then place it in its correct place in
the target program and place a "reset" interrupt in the first byte of the
last machine instruction in the statement.

In processing a "reset" interrupt, the debug executive replaces the original
code at the start of the source statement with a "set" interrupt, replaces
the "reset" interrupt with the original code, and returns control to the
target program.

Texas Instruments 3-75 Ada Programming Toolset

Development Specification QUALITY ASSURANCE PROVISIONS

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Testing of the Toolset CPCI shall be in accordance with the schedule,
procedures and methods set forth in the following documents:

1. Contractor's Computer Program Development Plan (CPDP)

2. Computer Program test Plan for each tool in this CPCI.

3. Computer Program Test Procedures for each tool in this CPCI.

Testing of each CPC shall be performed at three levels:

1. Computer program unit test and evaluation

2. Integration test, involving all components of the CPC

3. Computer program acceptance testing, involving the APSE

4.1.1 Computer Program Component Test and Evaluation

This level of testing supports development. Each program component of this
CPC shall be tested as a stand-alone program before integration with the
APSE. This testing shall concentrate on areas such as the following:

* Text editor command language

. * Binder commands

* Debugger interactive commands

An overall system test plan and schedule shall identify the parts of the
system that must be available for testing of each component.

Test results shall be recorded in informal documentation; formal test
reports are not required.

Texas Instruments 4-1 Ada Programming Toolset

Development Specification QUALITY ASSURANCE PROVISIONS

4.1.2 Integration Testing

This level of testing supports integration and prepares for acceptance
testing of each CPC. Each CPC shall receive separate integration testing,
using available components of the complete system. Testing at this level
shall follow the approved test plans and procedures. Formal test reports
are not required.

4.1.3 Formal Acceptance Testing

This testing assures that the Ada Integrated Environment system and its
constituent CPCs conform to all requirements in the Type A and B5
specifications. A formal test plan and test procedures shall be generated
and used to insure satisfaction of all requirements. Acceptance tests shall
be defined to incrementally test major functional capabilities of the three
tools in this CPCI: the text editor, the binder and the interactive
debugger. Acceptance testing shall be witnessed by the Government. Test
results shall be documented in accordance with the Computer Program
Development Plan and Computer Program Test Plans, and delivered to the
Government with final system documentation.

4.2 Test Requirements

Unit testing and integration testing shall be performed using the developed
computer program components and needed drivers. While testing shall not use
formal test plans, testing shall keep the final acceptance tests in mind.
Unit tests and integration tests consist primarily of an exercise of each
specified feature of each computer program component. Each language feature
of the control languages for the text editor, binder and debugger shall be
separately tested.

The test plans for each CPC shall specify the completeness of testing to be
achieved by describing all logical paths through the code of each developed
program and identifying testing conditions that will traverse the
appropriate paths.

4.2.1 Rehosting tests

Parallel sets of tests at all levels shall be developed for each CPC to be
; run on the IBM 370 and the Interdata 8/32 host sy.;tems. Components of the

370 version may be used to simulate or provide drivers for components not
yet rehosted on the Interdata 8/32, during unit testing.

4.2.2 Performance Requirements

The performance of each system component shall be measured in terms of its
use of host system resources and in the efficiency of the software products

Texas Instruments 4-2 Ada Programming Toolset

Development Specification QUALITY ASSURANCE PROVISIONS

it generates.

The Government shall specify the machine and operating system configurations
for the initial Ada Integrated Environment host systems. Acceptance test
plans shall specify CPC performance requirements in terms of processing
speed and memory use in these host systems. Interactive response time
criteria and criteria for efficiency of database mass storage use shall be
specified for appropriate system components.

Acceptance test plans shall specify performance requirements, in terms of
processing speed and memory utilization on the host systems, of selected
test programs generated from input Ada source text by the Ada Integrated
Environment compiler and software toolset.

4.3 Independent Validation and Verification

An independent validation and verification (IV&V) contractor, if one
participates in the Ada Integrated Environment program, may perform
independent testing of the Ada compiler using any of the tests descibed
above or additional procedures.

T

1Texas Instruments 4-3 Ada Programming Toolset

MISSION
* Of

Rome Air Development Center

RAVC ptan6 and execute, r&each, development, tat and
seted acqusition programs in support o6 Command, Control
Communication and Inteltigence (C3 1) activitez. Technical
and engineering support within ateas o6 technical competence
tz p'tovided to ESV Prtogtam Offica (POs) and other ESD
etement6. The principal technical mzssion aAeaz are
communications, etectomagnetic guidance and contol-, suA-
veittance of ground and avrospace object6, intelligence data
collection and handling, information system technology,
ionospheric propagation, solid 6tate science., micAowave

physia6 and etectPonic ketiabitity, maintainability and
compatibiLdty.

1_*

.4

_ :/

:: 47pi

