
AD-AL09 978 TEXAS INSTRUMENTS INC LEWISVILLE EQUIPMENT GROUP F/G 9/2
ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPE--ETC(U)
DEC 81 F30602-80-C-0293

UNCLASSIFIED RADC-TR-81-360-VOL-3 t&

I * IIIIIIIIIIIIfflfflf
II lfl lfl l..llll.f
lflflflflflflflflfll
ElllllIIhllhmu
IIIIEIIIIIEEEE
Ilflflflflflflflflflflfl

*~11 111 ._L2

11111- 1.

1IL25 1fj.4~ 1111_L16

MICROCOPY RESOLUTION TIST CHART

PHOTOGRAPH THIS SHEET

t*40 LEVEL 7e~a TAwM~ Thr I I]9NO
Lee s .7X E Pft~e#G~A S

A 'De'ewvent K
0 DOCUMENT IDENTIFICATION rg

<P I a .- z-c-o. ft bc~*/-3(O; U,1 .'i

DJSTRD'ON STATEMENT A
Approved for public releasi

DitributiOn Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR
NTIS GRAM!

DTICUNANOUNC-EDlli ELECTE i
JUSTIFICATION

A ____________S JAN 25 1982 Dlf
BY D
DISTRIBUTION /
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DYI

DISTRIBUTION STAMP NC

i 82 01 12

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEETDTIC OCT 79 70A

RADC-TR41460, Vol III (of four)
Interim Report
December 1981

ADA INTEGRATED ENVIRONMENT III
COMPUTER PROGRAM DEVELOPMENT
SPECIFICATION

Texas Instruments, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-360, Volume III (of four) has been reviewed and is approved
for publication.

APPROVED: .• ,

EL BETH S. KEAN
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER: E

JOHN P. HUSS
Acting Chief, Plans Office

i

If your address has changed or if you wish to be removed from the RADC
*, mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

*

UNCLASSIFIED
SECURIT'Y CLASSIFICATION OF THIS PAGE ilMan 0404 Enteed),

REPORT DOCMEI4TAX1ON PAGE 8FR OPEIGFR
I.-ReOR HUMIDR Ia. GOVT ACCESSION NO.-IREC0FIPI NTS CATALOG NUMS a

RADC-TR -81-360, Vol III (of four)______________
4. 'IS. TVP6 OF REPORtTtb PERIODO VERED
4. TTLE end uUUE.) nterim Report

ADA INTEGRATED ENVIRONMENT III COMPUTER 15 Sep 80 - 15 Mar 81
PROGRAM DEVELOPMENT SPECIFICATION 6.1PRO119 OG.RPRTNME

7. AUT1NOR1(e) 6. CONTRACT OR GRANT NUMS9111()

F30602-80-C-0293
9. 0PRORMING0 ORGANIZATION NAME AND AGGRESS5 10. PROGRAM ELEMENT. PROJECT. TASK

Texa IntrumntsIncoportedAREA G WORK UNIT NUMBERS

TE xasipm nst rue ts Incorp oted. .3 07 6 2 4F 3 1 6F 6 7 2

ewiuie TrupACX P56 05o545811930 624F1 6/27
L11. vll TXTRLLN 75067E 558AN DOS11919OR OT

Rome Air Development Center (COES) December 1981

Griffiss AFB NY 13441 180uMC F AK

14. MONITORING AGENCY NAME & ADONRESOit different trade Controfllng Office) IS. SECURITY CLASS. (.1 thief*~er)

Same UNCLASSIFIED
IS&. DZCASS1IICATION/ DOWNGRADING

N/ASCH LOULIE

14. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the "@tract entered In Black 20, it different IeNN RePaff)

Same

1S. SUPPLEMENTARY NOTES

RADC Project Engineer: Elizabeth S. Kean (COES)

IS. KEY WORDS (Cusnaimea an revere. side it necessar And identify by block nuber)

Ada MAPSE AIE
Compiler Kernel Integrated environment
Database Debugger Editor
KAPSE APSE

- . 20. ABSTRACT (Centimue an reveree olde it necessary and identify by block maber)

The Ada Integrated Environment (AlE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AlE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MA.PSE is the foundation upon which an

00 1 P I*1 1473 EDITION OF I NOV 65 IS OBSOLETE UCASFE

SECURITY CLASSIFICATION OF THIS PAGE (Whem Data 810tered

UNCLASSIFIED
sCcumvV CLAMPICATION OF THIS PAGE(.,, Date Ena

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

.1#.

UNCLASSIFIED

SISCURIlY CLASSIFICAION OF YU* 0AOEfWPef D00 EMn6ej)

Development Specification TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title Page

SECTION 1 SCOPE

1.1 Identification 1-I1
1.2 Functional Summary 1-1

SECTION 2 APPLICABLE DOCUMENTS

2.1 Program Definition Documents 2-1
2.2 Military Specifications and Standards2-1

SECTION 3 REQUIREMENTS

3.1 Introduction 3-1
3.1.1 General Description3-1
3.1.1.1 The Front End 3-2
3.1.1.2 The Back End 3-2
3.1.1.3 Compiler Control File 3-3
3.1.1.4 Automatic Generation of Pathnames 3-5
3.1.1.5 Error Reporting 3-5
3.1.1.6 Generation of Listings 3-6
3.1.1.6.1 Source Listing and Error Messages. 3-6
3.1.1.6.2 Symbol Table Listing 3-7
3.1.1.6.3 Symbol Cross Reference Listing 3-7
3.1.1.6.4 Environment Listing 3-8
3.1.1.6.5 IL Listing 3-8
3.1.1.6.6 Object Code Listing 3-8
3.1.1.7 Bootstrapping the Compiler 3-9
3.1.1.8 Retargeting and Rehosting the Compiler 3-11
3.1.2 Program Interfaces 3-11
3.1.2.1 Interface with the Library File Utility 3-12
3.1.2.2 Interface with the Program Binder 3-12
3.1.2.3 Interface with the Database Manager 3-12
3.1.2.4 Interface with the Source Level Debugger . . 3-12
3.1.2.5 Interface with Listing Tools 3-12
3.1.3 Function Descriptions 3-13
3.1.3.1 The Anal)zer 3-13

jjj1 Ada Optimizing Compiler

/ e - i.71;.

Development Specification TABLE of CONTENTS

3.1.3.2 The Expander/Optimizer 3-13
3.1.3.3 The Code Generator 3-14
3.2 Detailed Functional Requirements 3-14
3.2.1 The Analyzer 3-14
3.2.1.1 Inputs 3-15
3.2.1.2 Initialization 3-15
3.2.1.3 Lexical Analysis 3-17
3.2.1.4 Syntax and Semantic Analysis 3-19
3.2.1.5 Semantic Analysis Issues 3-23
3.2.1.5.1 Enforce Visibility Rules.. 3-23
3.2.1.5.2 Static Expression Evaluation 3-24
3.2.1.5.3 Error Handling 3-24
3.2.1.5.4 Generics ... 3-24
3.2.1.5.4.1 Processing a Generic Declaration and Body 3-25
3.2.1.5.4.2 Processing a Generic Instantiation 3-26
3.2.1.5.4.3 Optimization of Generic Instantiations 3-27
3.2.1.5.5 The INLINE Pragma 3-27
3.2.1.5.6 Representation Specifications 3-28
3.2.1.6 Saving the IL 3-28
3.2.1.7 Compilation Statistics 3-29
3.2.1.8 Formation of the Statement Map 3-30
3.2.1.9 Outputs 3-30
3.2.2 The Expander/Optimizer: Introduction 3-31
3.2.2.1 Inputs 3-32
3.2.2.2 Pre-processing 3-32
3.2.2.3 Expansion/Local Optimization 3-33
3.2.2.3.1 Representational Decisions 3-33
3.2.2.3.2 Expansion of the Abstract Syntax Tree 3-33
3.2.2.3.2.1 Inline Subprogram Expansion 3-33
3.2.2.3.2.2 Expansion of a Generic Instantiation . 3-35
3.2.2.3.2.3 Other Tree Transformations 3-36
3.2.2.3.3 Local Optimization 3-37
3.2.2.4 Global Optimization 3-38
3.2.2.5 Saving the Expanded/Optimized IL 3-38
3.2.2.6 Outputs 3-38
3.2.3 The Code Generator: Introduction 3-39
3.2.3.1 Inputs 3-40
3.2.3.2 Pre-processing 3-40
3.2.3.3 Storage Allocation 3-41
3.2.3.4 Code Generation 3-42
3.2.3.4.1 Code Generation Schema 3-43
3.2.3.4.2 Processing Representation Specifications . 3-43
3.2.3.4.3 Processing Language Attributes 3-44
3.2.3.4.4 Processing Global References 3-44
3.2.3.5 Post-Processing (Final Optimizations) 3-44
3.2.3.5.1 Branch and Label Optimization 3-45
3.2.3.5.2 Peephole Optimization 3-46
3.2.3.5.3 Cross-Jumping 3-48
3.2.3.6 Formation of Object Module 3-48
3.2.3.7 Formation of Symbol Information for the Source

iv Ada Optimizing Compiler

Development Specification TABLE of CONTENTS

Level Debugger.................3-48
3.2.3.7.1 The Symbol Map................3-49
3.2.3.7.2 The Type Map.................3-49
3.2.3.8 Updating the Statement Map 3-49
3.2.3.9 Outputs......................3-50

SECTION 4 QUALITY ASSURANCE PROVISIONS

4.1 Introduction............ 4-1
4.1.1 Computer Program Component*Test and Evaluation 4-1
4.1.2 Integration Testing 4-2
4.1.3 Formal Acceptance Testing. 4-2
4.2 Test Requirements 4-2
4.2.1 Bootstrap tests 4-2
4.2.2 Ada Compiler Validation Tests. 4-3
4.2.3 Rehosting tests 4-3
4.3 Acceptance Test Requirements 4-3
4.3.1 Performance Requirements..............4-3
4.4 Independent Validation and Verification. 4-3

APPENDIX A THE COMPILER CONTROL LANGUAGE

A.1 Introduction....................A-1
A.2 Command Language Syntax A-i
A.3 Control Language Semantics..............A-2
A.3.1 The LIBRARY Command A-2
A.3.2 The UNIT Command.................A-2
A.3.3 The PRAGMA Command................A-3
A.3.4 The NAME Command.................A-3
A.3.5 The P-UNIT Command................A-3

.4A.4 Command Stream Examples A-4

APPENDIX B A RECURSIVE DESCENT PARSER FOR ADA

B.1 Construction of the Recursive Descent Parser . .. B-i
B.1.1 The Basic Approach.................B-i
B.1.2 Left Factoring..................B-4
B.1.3 Composition B-5
B.1.4 Combination of Non-terminal Productions. B-6
B.1.5 Incorporating Semantics B-7
B.1.6 Elimination of Left Recursion. B-7

V Ada Optimizing Compiler

/_

NNW ----

Development Specification TABLE of CONTENTS

APPENDIX C A PRACTICAL GRAMMAR FOR ADA

C.1 Ada Concrete Syntax C-1.
c.2 Productions........................C-10O

APPENDIX D THE SYMBOL DICTIONARY

D.1 Underlying Data Structures................D-1
D.1.1 The Visibility Stack....................D-3
D.l.2 Declared Symbol Tahles...................D-4
D.1.2.1 Block, Subprogram,' Package and Task

Declarators D-5
D.l.2.2 Symbol Table Entries and Fields. D-7
D.1.2.3 Type Table Entries and Fields. D-9
D.1.2.4 Virtual Symbol Table.................D-11
D.1.3 The Look-Up Table D-11
D.1.4 The Name Table......................D-13
D.2 The Predefined Environment................D-13
D.2.1 The Package STANDARD....................D-13
D.2.2 Reserved Words and Pragmas D-14
D.3 Maintaining the Compilation Context. D-15
D.3.1 Basic Block Structure Operations D-15
D.3.2 Processing PackagesD-25
D.3.3 Processing WITH and USE Clauses. D-29
DA4 Enforcing the Visibility Rules D-31
D.4.1 Direct Visibility and Hidden Identifiers D-31
D3.4.2 Loop Parameters D-32
D.4.3 Overloading and Operator Identification D-32
D.4.4 Selected Components D-34

4D.4.5 Direct Visibility for Package Entities via USE
Clause .*.*.*.'.'.*.*...*......................D-36

D.5 The RENAME Statement....................D-38
D.6 Derived Types D-40

APPENDIX E REPRESENTATIONS OF DIANA

E.1 Design Issues E-1
E.2 Source Position.....................E-2

*E.3 Internal Representation E-3
E.4 External Representation E-4
E.4.1 Naming Nodes.......................E-4
E.4.2 Text versus Binary Representation. E-4

*.E.4.3 Representation of DIANA on Files E-5
E.4.4 Transforming DIANA on a File to the Internal

Representation......................E-6
E.4.4.1 Constructing a Symbol Table. E-6

vi Ada Optimizing Compiler

Development Specification TABLE of CONTENTS

E.4.4.2 Constructing an AST E-7
E.5 Visible Representation................E-8
E.6 Derivation of Dialects...............E-8

APPENDIX F THE LIBRARY FILE UTILITY

F.1 Introduction.....................F-1
F.2 The Library File..................F-1
F.2.1 The Library File Descriptor. F-2
F.2.2 Compilation Unit Name Table. F-2
F.2.3 The Compilation Unit Descriptor F-3
F.3 Functional Capabilities F-6
F.4 Library File Interface...............F-6

APPENDIX G REFERENCES

Vii Ada Optimizing Compiler

Development Specification LIST of TABLES

LIST of TABLES

Table Title Page

3-1 Lexical Unit Constructs 3-17
3-2 Outputs of the Analyzer 3-31
3-3 Machine-Independent Optimizations 3-32
3-4 Outputs of the Code Generator 3-50
A-i Output File Designators A-3
D-1 USE Visibility Determination Table--Entering Scope D-36
D-2 USE Visibility Determination Table--Leaving Scope D-38

viii Ada Optimizing Compiler

S.. " .-

Development Specification LIST of FIGURES

LIST of FIGURES

Figure Title Page

3-1 Ada Compiler's Structure 3-1
3-2 Structure of the Front End 3-2
3-3 Structure of the Back End 3-3
3-4 Structure of the IBM 370 Bootstrap Compiler 3-9
3-5 Compiler Environment Interfaces 3-11
3-6 Structure of the Analyzer 3-15
3-7 Organization of the Front End 3-22
3-8 Generic Definition and Instantiation Data Flow . . . 3-26
3-9 Generic Expansion Data Flow 3-36
3-10 Representation of a Code Node 3-45
A-I Compiler Command Language Syntax A-2
D-1 Organization of the Symbol Dictionary D-2
D-2 Structure of the Visibility Stack D-3
D-3 Visibility Stack Entry D-4
D-4 Organization of Declared Symbol Tables D-5
D-5 Block, Subprogram, Package and Task Declarator . D-6
D-6 Symbol Table Entry D-8
D-7 Type Table Entry D-10
D-8 Look-Up Table and Symbol Table Interface D-12
D-9 Initialization of the Symbol Dictionary with

STANDARD D-14
D-10 Typical Block Structure D-17
D-11 Enter 'P D-18
D-12 Enter 'Q'. D-19
D-13 Leave 'Q', Enter ;R' D-20
D-14 Enter 'S'. D-21
D-15 Leave 'S', Enter'T'.. D-22
D-16 Leave 'T', Still in 'R'.. D-23
D-17 Leave 'R', Still in 'P'.. D-24
D-18 Leave 'P', Still in Parent of 'P' D-25
D-19 Typical Block Structure With A Package D-26
D-20 In Package 'Q', Leaving 'QI', Entering 'Q2 D-27
D-21 In Proc 'P', Leaving 'Q', Entering 'R'........ D-28
D-22 In Proc 'S', 'Use Q' D-29
D-23 WITH Package ABC D-30
D-24 USE Package ABC. D-31
D-25 Overloading Chains in the Symbol Table D-33
D-26 Operator Identification Structures D-34
D-27 Selected Component Identification Algorithm D-35
D-28 Newname RENAMES OldnameD-40
D-29 Linkages for a Derived Type D-41
E-1 Representations of DIANA E-I
F-1 Interface with the Library File Utility. F-7

ix Ada Optimizing Compiler

Development Specification LIST of EXAMPLES

LIST of EXAMPLES

Example Title Page

A-1 Compiler Command Stream for the Analyzer A-4
A-2 Compiler Command Stream for the Expander/Optimizer . A-4
A-3 Compiler Command Stream for the Code Generator . . . A-5

*1

X Ada Optimizing Compiler

77-

Development Specification SCOPE

SECTION 1

SCOPE

1.1 Identification

This specification establishes the requirements for the performance, design,
test and acceptance of a computer program identified as the Ada optimizing
compiler. This CPCI provides a programmer or test engineer with the ability
to compile Ada compilation units. The compiler is hosted on the IBM 370
operating under the Ada Integrated Environment (AlE), or on the Interdata
8/32 under the Ada Integrated Environment.

1.2 Functional Summary

The purpose of this specification is two-fold:

1. To identify the functional capabilities of the Ada optimizing
compiler

2. To describe the interface between the Ada optimizing compiler and
the AlE, the command language, the library file, and the program
binder

The Ada optimizing compiler is a compiler for the Ada language as defined by
the Language Reference Manual [DoD80B]. It consists of four passes. The
first pass (front end) performs lexical analysis, syntactic analysis, and
static semantic analysis, and produces the intermediate language, DIANA.
The next pass expands the high-level intermediate language into a lower
semantic level dialect which includes machine dependent information. A
(logically) optional optimization pass performs machine independent

* optimizations on the intermediate language. A code generation phase then
converts the dialect of DIANA output by the expansion or optimization pass
to target machine code. The entire system is written to be as transportable
and machine relative as is practically possible.

Texas Instruments 1-1 Ada Optimizing Compiler

Development Specification APPLICABLE DOCUMENTS

SECTION 2

APPLICABLE DOCUMENTS

2.1 Program Definition Documents

[DoD80A] Requirements for Ada Programming Support Environments:
"STONEMAN", DoD (February 1980).

[RADC80] Revised Statement of Work for Ada Integrated Environemnts, RADC,
Griffiss Air Force Base, NY (March 1980).

[SOFT80A] Ada Compiler Validation Capability: Long Range Plan, SofTech
Inc., Waltham, MA (February 1980).

[SOFT8OB] Draft Ada Compiler Validation Implementers' Guide, SofTech Inc.,
Waltham, MA (October 1980).

2.2 Military Specifications and Standards

[DoD80B] Reference Manual for the Ada Programming Language: Proposed
Standard Document, DoD (July 1980) (reprinted November 1980).

Texas Instruments 2-1 Ada Optimizing Compiler

i:(

Development Specification REQUIREMENTS

SECTION 3

REQU I REMENTS

3.1 Introduction

3.1.1 General Description

The compiler is divided into two parts: the machine independent front end
and the machine dependent back end (cf. Figure 3-1).

COMPILATION UNIT
(ADA SOURCE TEXT)

I" FONTEND

MACHINE
IL(DIANA) INDEPENDENT

j A MACH INE

DEPENDENT

iOgJECT MODULE

Figure 3-1 Ada Compiler's Structure

The front end (analyzer) and the back end (expander/optimizer and code
generator) consist of separate, individually invoked tools. A system
command language procedure can be written to invoke these tools
sequentially, i.e., to compile a compilation unit.

Texas Instruments 3-1 Ada Optimizing Compiler

I
m P -. . - "

Development Specification REQUI REMENTS

3.1.1.1 The Front End

The front end, also known as the analyzer, is a language translator which
accepts the Ada source text for a compilation unit, performs lexical
analysis, checks the syntax and semantics of the compilation unit, andproduces an intermediate representation/language of the compilation unit
more convenient for later processing, i.e., optimization and code generation(cf. Figure 3-2). DIANA [GOO81] shall be used as the intermediate language
(IL) (cf. Appendix E). The DIANA dialect output by the front end is a
dialect common to all tools requiring IL as input.

COMPILATION UNIT
(ADA SOURCE TEXT)

FANALYZER

IL
(DIANA)

Figure 3-2 Structure of the Front End

3.1.1.2 The Back End

The back end is a language translator which accepts the DIANA dialectproduced by the analyzer for a compilation unit and produces an objectmodule for the compilation unit. The back end consists of two separate
tools, i.e., the expander/optimizer, and the code generator (cf. Figure 3-3). In the expander/optimizer pass, the DIANA dialect output by the frontend is expanded into a low-level machine dependent dialect and high payoff
machine-independent optimizations are applied to the new dialect. Expansionof the high-level machine independent DIANA dialect produced by the frontend into a low-level machine dependent DIANA dialect exposes the details of
the computations and permits optimizations to be applied to them. Thedialect also includes decisions on the run-time representation of data typesand control constructs, thereby eliminating some tasks normally associated

Texas Instruments 3-2 Ada Optimizing Compiler

L

Development Specification REQUI REMENTS

with a code generator. In order to perform machine independent
optimization, pertinent information is assembled into usable constructs,
such as flow graphs. After all expansions have been performed, local
machine-independent optimizations with a high payoff 'are performed. Then,
potentially low payoff, time consuming global machine independent
optimizations specified by the implementation defined pragma OPTLEVEL are
performed. If the pragma is present in a declarative part, the designated
optimizations are applied to the body or block enclosing the declarative
pa rt.

The code generator accepts the DIANA dialect produced by the
expander/optimizer, generates machine code for the target machine, and
performa machine dependent optimizations. Its output is an object module
for the compilation unit serving as the input to the program binder.

Each compiler pass is a tool which must be invoked in the proper order via
the command language. The associated bookkeeping is maintained in the
library file via the library file utility (cf. Appendix F).

IL(DIANA)

EXPANDED

AND
OPTIMIZED

IL

CODE
GENERATOR

OBJECT MODULE
FOR COMPILATION UNIT

Figure 3-3 Structure of the Back End

3.1.1.3 Compiler Control File

Input to each pass of the compiler is the pathname of a control file
specifying its input parameters. The control file contains a command stream
expressed in the compiler control language (cf. Appendix A). The command
stream specifies, for one or more compiler passes, a block of control

Texas Instruments 3-3 Ada Optimizing Compiler

Development Specification REQUIREMENTS

sequences. The block of control sequences is delineated by a labeled BEGIN-
END pair; the label designating the pass. It is the function of each
compiler pass to scan the control file for its block of control sequences.
Each control sequence designates and applies to a compilation unit to be
processed.

The input parameters to a compiler pass consists of:

the pathname of a library file

a list of compilation units to be processed

language pragmas

pathnames of output files

The pathname of a library file must be specified first since all compilation
bookkeeping for a program library is maintained in it. The library file
must be created initially via a call to the creation subprogram in the
library file utility (cf. Appendix F).

The nature of the list of compilation units depends on the compiler phase.
For the analyzer, an item in the list is the pathname of an Ada source text
file. This source file may contain one or more compilation units. For the
expander/optimizer and code generator passes, an item in the list is the
pathname of the appropriate input IL file of the compilation unit being
processed.

Pragmas may be specified that override or augment those specified in the
source text of a compilation unit. It is as if the pragma had occurred in
the position specified in the pragma's definition (except for LIST which is
positioned before the named unit). Since a pragma's extent is confined to
the compilation unit in or before which it appears, it is not necessary to
construct for a compilation unit a set of in-scope pragmas (by examining the
DIANA of other compilation units according to the static structure of the
program as maintained in the library file). Pragmas, in a control sequence,
permit overriding pragmas specified in the source text without having to
modify the source text and recompiling it. (Since the overriding pragma is
recorded in the control file which is part of the derivation history of the
output, the output object in the database can be re-derived.) This
flexibility permits, for example, compilation units to be compiled and
debugged without optimization during program development and then
1"recompiled" with optimization for the production version. Recompilation
consists only of reprocessing the DIANA. Therefore, other compilation units
need not be recompiler as would be required when source text is changed and
recompiled.

Pathnames of output files may be specified in a control sequence; otherwise,
they are assigned by default (cf. Section 3.1.1.4).

,.9

Texas Instruments 3-4 Ada Optimizing Compiler

-7 -. * . . -.-

Development Specification REQUIREMENTS

3.1.1.4 Automatic Generation of Pathnames

The pathnames of IL, error, debugger information and object files are
assigned by default by the compiler unless a specific pathname is given in
the control file. (The same naming conventions are also followed by the
listing tools for listing file pathnames.) The format of the pathname is:

1 ibraryfi le. 1 ibrary-unit(. subunit) .category

The 'category' is defined in the output section for each compiler phase.
The 'category' is the concatenation of the database category attribute and a
signature. The signature is a unique integer assigned by the library file
utility (cf. Appendix F). It uniquely identifies a particular file in a
given category when there are more than one.

The 'library-file' portion of the pathname is given as input in the control
file. The 'library-unit(.subunit)' portion is derived as follows:

* For the front end compiler pass, it is generated from the name of
the compilation unit. If the compilation unit is a subunit, it is
derived from the name of the subunit and the name of its parent
unit.

For the back end passes, a consistency check is first made. The
input IL file's dictionary (cf. Section E.4.3) contains a unique
integer index used to reference the entry for the corresponding
compilation unit in a the library file and the database name of the
library file (cf. Appendix F). The library file pathname given as
input in the control file is mapped to its database name and
checked against the database name of the library file given in the
input IL file's dictionary. The two must match. The name of the
compilation unit (i.e., library-unit(.subunit)) is obtained from
the compilation unit's entry in the library file.

3.1.1.5 Error Reporting

The compiler detects all syntax errors and all semantic errors as specified
in the Ada Reference Manual (DoD8OB]. Errors detected by a compiler pass
are output to an error file associated with an IL or object file output by
the pass. The default pathname of the error file is:

1 ibraryfi le. 1 ibrary-unit{ . subunit). ERROR

The pathname is constructed from information contained in the entry of the
compilaton unit in the library file. An error file contains a sorted list
of error descriptor. An error descriptor consists of an error number, a
severity code, an index to an entry in the Source Table (contained in the IL
file for the compilation unit (cf. Appendix E, Section E.4.3) containing
the databasename of the source file, the line number of the text where the

Texas Instruments 3-5 Ada Optimizing Compiler

Development Specification REQUIREMENTS

error occurred, and the character position within the line. Error numbers
are unique for a compiler pass.

The severity code indicates the correctness of the resulting output of a
compiler pass. The severity codes are:

* Note (N): Information to the user about the compilation;
compilation continues and the output is not affected.

* Warning (W): Information about the reliability or validity of the
input; compilation continues and the output is not affected. The
program may behave incorrectly at run-time.

* Error(E): Identification of an illegal syntactic or semantic
construct. Reasonable recovery actions are enacted and compilation
continues. The program may behave incorrectly or meaninglessly at
run-time.

* Serious error (S): Identification of an illegal construct with no
well-defined _'overy action. The analyzer pass continues by
deleting 6' , IANA for the construct. The expander/optimizer and
code genera. .ass will not process the DIANA.

* Fatal t r . (F): Identificaton of an unrecoverable host
environr,?-'1 error; compilation terminates and all opened files are
properl-~,~d

3.1.1.6 Generation of Listings

Compiler output listings are generated by separate tools. With this
approach, only the database names of the files used to generate the listings
need to be recorded in the library file. The derivation of a listing file is
maintained in database relations. Input parameters to the tool are the
specificaion of a compilation unit and the pathname of the library file it
is in. For the source listing, the pathname of a source file designates the
compilation unit; for all other listings, the pathname of an IL file
designates the compilation unit.

3.1.1.6.1 Source Listing and Error Messages

A source listing for a compilation unit may be generated via the tool LISTER
from the original source text. A line consists of a line number, a
statement number, and the text of the line. Lines and statements are
numbered uniquely starting at 1; lines of INCLUDE files are numbered
sequentially starting with the line number of the INCLUDE. Statement

,* numbers are generated as the text is processed using the same subprograms
used in the analyzer. The listing can be turned on/off via the language
pragma LIST. INCLUDE pragmas are expanded unless, the listing is turned
off.

Error messages from the compiler passes are merged into the source text as
the source -listing is generated. Error messages are placed under the the
source line containing the error, or after the first available line

Texas Instruments 3-6 Ada Optimizing Compiler

Development Specification REQUIREMENTS

following the source line containing the error. The line number is obtained
from the error descriptor. Line numbers within an INCLUDE file must be
decremented by the line number of the INCLUDE pragma; this base is kept in
the Source Table. The error message consists of an error identifer, a
severity code, a brief description of the error, and a ' ' underneath the
token being processed at the time the error occurred. The description of
the error is obtained from a table using the error number. The position of
the ' is obtained from the error descriptor. Multiple errors for a source
line are printed one error message per line in the order of the character
position of the error, i.e., the errors associated with a line are sorted.
An error identifer encodes which compiler pass generated it.

Each page of the listing contains the page number, the date and time the
listing was produced, column numbers of 0 through 80 across the top of the
page, the name of the compilation unit and the version of the compiler used
to compile the compilation unit.

The default pathname of the listing file is:

library-file i brary-uni t(. subunit). LIST. SOURCE

The pathname is constructed from information contained in the entry of the
compilaton unit in the library file.

3.1.1.6.2 Symbol Table Listing

A listing of the symbol table for a compilation unit may be generated via
the tool LST-SYMTAB. The listing consists of an alphanumeric list (in the
collating sequence defined in the Ada Reference Manual [DoD80B]) of all
symbols defined in the compilation unit and their charactertics. The symbol
tables for all embedded program units and blocks are also generated. This
information is useful both to the user and in managing and maintaining the
compiler.

The default pathname of the symbol table listing file is:

library-file.library-unit(.subunit).LIST.SYMTAB

The pathname is constructed from information contained in the entry of the
compilation unit in the library file.

3.1.1.6.3 Symbol Cross Reference Listing

A symbol cross reference listing for a compilation unit may be generated via

the tool LST.XREF. The listing consists of an alphanumeric list of all
symbols defined in the compilation unit. With each symbol is its block
level and a sorted list of statement numbers where the symbol is set and
used. Statement numbers, where the symbol is set, are prefixed with an

Texas Instruments 3-7 Ada Optimizing Compiler

Development Specification REQUI REMENTS

The default pathname of the symbol cross reference listing file is:

library-file.library-unit(.subunit}.LIST.XREF

The pathname is constructed from information contained in the entry of tile
compilation unit in the library file.

3.1.1.6.4 Environment Listing

An environment listing for a compilation unit may be generated via the tool
LSTENVT. The listing consists of an alphanumeric ordered list of external
names referenced by the compilation unit, e.g., names appearing in a USE
clause, global variables and subprograms, etc. Associated with each name is
the source position in the source where the external name is referenced.

The default pathname of the environment listing file is:

library-file.libraryunit(. subunit}. LIST. ENVT

The pathname is constructed from information contained in the entry of the
compilaton unit in the library file.

3.1.1.6.5 IL Listing

A listing of the visible representation of the generated DIANA (cf.
Appendix E, Section E.5) may be generated via the tool LSTDIANA. The
listing is especially useful in debugging and maintaining the compiler.

The default pathname of the DIANA listing file is:

1 ibraryfi le. 1 ibrary-unit .subunit). LIST.DIANA

The pathname is constructed from information contained in the entry of the
compilaton unit in the library file.

3.1.1.6.6 Object Code Listing

A listing of the object code for a compilation unit may be generated by the
tool LSTCODE. The listing contains one machine instruction per line: the
machine code representation and the equivalent symbolic assembly language
representation. A comment containing the source code statement number and
statement shall precede the machine code for the statement. The assembly
language makes correct use of all labels as they appear in the Ada source
text; compiler generated labels are provided where no corresponding source
label exists. Each page contains the name of the compilation unit, the time
and date the code was produced, the compiler version, and the page number.

Texas Instruments 3-8 Ada Optimizing Compiler

Development Specification REQUIREMENTS

The default pathname of the code listing file is:

l ibrary-file. library-unit{.subunit).LIST.CODE

The pathname is constructed from information contained in the entry of the
compilation unit in the library file.

3.1.1.7 Bootstrapping the Compiler

Texas Instruments shall use the front end developed by the University of
Karlsruhe for the German MoD to construct a bootstrap compiler. A
preliminary release is expected in April-May 1981, with the final release
scheduled for October 1981. The Karlsruhe front end accepts full Ada
[DoD80BJ, outputs DIANA, the intermediate language preferred by Texas
Instruments (cf. Appendix E), and implements the Ada separate compilation
facility. It is a production quality front end and is available at no cost
due to the Memorandum of Understanding between DoD and the German MoD. The
bootstrap compiler permits implementation of the AlE tools to proceed in
parallel, especially those whose interface is DIANA, and to be written in
Ada from the outset.

The structure of the bootstrap compiler is given in Figure 3-4.

ADA SOURCE

UNIVERSITY OF
KARLSRUHE
FRONT END

DIANA

370 CODE
GENERATOR

370 OBJECT MODULE(S)

ADA EXECUTION
ENVIRONMENT 37

.M E LINK EDITOR

,EXECUTABLE

ADA PROGRAM

Figure 3-4 Structure of the IBM 370 Bootstrap Compiler

Texas Instruments 3-9 Ada Optimizing Compiler

Development Specification REQUIREMENTS

The front end was written in Ada-0, transformed to LIS, compiled by the
Siemens 7760 LIS compiler, and linked with the LIS run-time package to
produce an executable program [GO080] which runs under the BS2000 operating
system. The Siemens 7760 computer is essentially a copy of the IBM 370 and
this fact permits the front end object modules to be transported to the IBM
370. Texas Instruments shall take the object modules constituting the
executable front end and transform them into 370 object modules that may be
linked and run on the IBM 370 under VM. This process involves (possibly)
rewritting certain routines (e.g., the run-time initialization routine),
emulating certain Siemens instructions (e.g., LBF, STBF), fixing the object
format (e.g., ESD cards), and emulating certain OS functions (e.g., output).

Texas Instruments shall write a simple throw away IBM 370 code generator in
Pascal that accepts Diana and outputs IBM 370 object modules. The code
generator shall generate code based on the AlE Ada execution environment
(cf. Ada Software Environment CPDS). The Ada execution environment for the
bootstrap compiler shall be simplified and use only those features required
by the subset of Ada needed to write the AlE compiler. The subset shall be
rich enough to write and maintain the AlE compiler; the subset shall be
similar to Ada-0 [G0080] which does not include reals, tasking, and
generics. The Ada execution environment shall be written in Ada and 370
assembly code. This approach permits Texas Instruments to become familiar
enough with Diana to generate code and to verify some of its Ada execution
environment concepts.

With these two executable programs, i.e., the front end and the 370 code
generator, Ada programs can be compiled, linked with the Ada execution
environment modules, and executed. In particular, the AIE tools can be
compiled and executed in this manner.

To help describe the bootstrapping process, some definitions are needed.
Deliverable compilers are discussed in terms of the host and target machines
using the notation 'host-machine x target-machine', or for the case where
the host and target machine are the same, simply the host machine name. For
example, the products which results from this contract are the 370x370
compiler, the 370x8/32 compiler, and the 8/32x8/32 compiler. The first and
last of these, at times, are referred to simply as the 370 compiler and the
8/32 compiler.

The first step of the bootstrap process shall be to develop the AlE 370
compiler. This shall be done using the bootstrap compiler. When the 370
compiler is producing valid code and passing other tests, this compiler
shall be used to compile itself to produce the bootstrapped compiler. The

. process consists of compiling the 370 compiler three times. First, it is
compiled using the bootstrap compiler. The output is then used to compile
it again. The output of the second compilation is used to compile it a
third time. The object produced by the second and third compilation are
compared and must be identical. Once the compiler has reproduced itself in
this manner, it is relatively stable.

Texas Instruments 3-10 Ada Optimizing Compiler

Development Specification REQUIREMENTS

3.1.1.8 Retargeting and Rehosting the Compiler

Having bootstrapped the 370 compiler, the process of retargetting the
compiler to the Interdata 8/32 can begin. The process consists of re-
parameterizing the machine- relative back end, i.e., the expander/optimizer
and the code generator, and constructing the 8/32 code tables for the table-
driven code generator. Since the 370 and 8/32 have similar architectures,
the re-parameterization should be relatively straight forward. The result
of compiling the 8/32 back end on the 370 is an executable 370 program that
accepts DIANA and generates code for the 8/32.

The 8/32 back end is then tested and the generated code hand checked. Once
the 8/32 code generator is generating proper 8/32 code on the 370, compiled
code for small test programs shall be executed and tested on the 8/32. This
requires the program binder and run-time support modules be retargetted for
the 8/32. For the latter, this requires rewritting the low-level routines

in 8/32 machine language and making algorithmic changes to those routines
written in Ada. An executable 8/32 program is constructed by executing the
retargetted 8/32 binder on the 370. Once cross-compiled programs are
executing properly on the 8/32, the front end and the 8/32 back end compiler
shall be compiled by the 370x8/32 compiler and the object modules bound.
The resultant load module shall be transported to the 8/32 and tested. The
8/32 compiler shall be exercised and any remaining subtle errors corrected.
Once it is executing properly on the 8/32 it shall be used to bootstrap
itself. This is accomplished by compiling the source for the 8/32 compiler
until it reproduces itself as described for the 370 system. When the
project is finished, there shall be a compiler for the 370, for the
Interdata 8/32, and a cross-compiler between the 370 and the 8/32.

3.1.2 Program Interfaces

The Ada optimizing compiler is an Ada program which interfaces with its
environment through a number of files (cf. Figure 3-5). The unit of
compilation is the compilation unit; the source text file may contain one or
more compilaton units. The compilation state of each compilation unit
constituting the program family is maintained in the library file. Each
pass of the compiler is controlled by a control file. The major outputs of
the compiler are object modules, information for the source level debugger,
and information of the listing tools. There are a number of internal
interfaces, i.e., DIANA dialects, between the different compiler passes
which are described in the appropriate section of the pass (cf. Section
3.2.1, Section 3.2.2, Section 3.2.3).

SOURCE FILE ADA -. OBJECT MODULE
LIBRARY FILE OPTIMIZING DEBUGGER INFORMATION

CONTROL FILE COMPILER LISTING TOOL INFORMATION

Figure 3-5 Compiler Environment Interfaces

Texas Instruments 3-11 Ada Optimizing Compiler

/~.~

Development Specification REQUIREMENTS

The compi;er interfaces with other Ada tools that perform requisite
processing functions, i.e., the library file utility, the database manager,
the source level debugger, and listing tools.4
3.1.2.1 Interface with the Library File Utility

Th-2 library file utility provides the functional capabilities for
maintaining the compilation state of a program contained in the program's
library file. For each compilation unit in a program, there is an entry in
the library file; the information associated with an entry is described in
detai; in Appendix F. Information for a compilation unit is accessed (read
or updated) via ca:Is to subprograms.

3.1.2.2 Interface with the Program Binder

The library file is the interface between the compiler and the program
binder. All information required to extract the object modules constituting
a program is maintained in the library file by the compiler.

3.1.2.3 Interface with the Database Manager

The database manager provides the functional capabilities to create files,
access file attributes, and establish a relationship between files. During
the compilation process, the compiler generates a number of files (e.g.,
DIANA files, listing files, object module files) which are created by the
database manager. The compiler maintains file attributes, especially those
pertinent to it and which only it knows, e.g., the category of a file
created by the compiler, the compiler identification, the compilation
date/time. The compiler must also obtain values of file attributes, e.g.,
the category attribute to verify an input file. Finally, the compiler must
also establish certain relationships between files resulting from the
compilation, e.g., relate a DIANA and listing file with a source file,
relate an object file with a DIANA file.

3.1.2.4 Interface with the Source Level Debugger

The information required by the Ada source level debugger is generated by
the compiler and output to a number of files, viz., symbol tables (which are
maintained in the DIANA files), symbol maps, type maps, and statement maps.
Each of these files is described in detail in the section describing the
compiler pass which generates them (cf. Section 3.2.1, Section 3.2.2,
Section 3.2.3, Appendix E).

3.1.2.5 Interface with Listing Tools

The database names of the files, containing the information from which
listings are generated, are contained with the entry for a compilation unit
in a library file. This entry consists of the error files output by
different compiler passes for the source listing; the DIANA files containing
the symbol tables for the symbol table listing, the symbol cross reference
listing, and the environment listing; the DIANA files containing the DIANA
for the IL listing; and the object modules for the code listing.

Texas Instruments 3-12 Ada Optimizing Compiler

Development Specification REQUIREMENTS

3.1.3 Function Descriptions

The Ada optimizing compiler consists of three major passes: the analyzer,
the expander/optimizer, and the code generator.

3.1.3.1 The Analyzer

The analyzer consists of four major tasks:

The lexical analysis task converts Ada source text for language
construct into tokens and enters information about certz i declared
tokens (symbols) into a symbol table.

* The syntax analysis task checks if the tokens form a legal
derivation based on the grammar using a recursive descent parsing
algorithm and constructs an abstract syntax tree (AST) of the
language structure.

* The semantic analysis task checks for valid language structures
based on the static semantic rules of the language [CII80].
Generic instantiations and inline subprograms are expanded.

* The IL generator task writes out the IL (AST and symbol table) for
the compilation unit in an external representation (cf. Appendix
E, Section E.4.3) for use by other tools, in particular, theexpander/optimizer and the code generator.

3.1.3.2 The Expander/Optimizer

This pass consists of the interleaving of IL expansion and local machine
independent optimization followed by global machine independent
optimization. Its major tasks are:

* Walk the abstract syntax tree and form the basic blocks and flow
A graph.

* Collect information about the unit by traversing its AST.

* Make run-time representational choices for data and control
structures.

* Incorporate the representational choices explicitly into the high-
level abstract syntax tree by expanding the AST.

* Perform local machine-independent optimizations on the expanded
AST.

* Perform global machine-independint optimizations.

* Save the optimized IL.

Texas Instruments 3-13 Ada Optimizing Compiler

Development Specification REQUIREMENTS

3.1.3.3 The Code Generator

The major tasks of the code generator are:

* Map the machine characteristics onto the IL by transforming the IL
into a lower-level IL more suitable for processing.

* Allocate storage (displacement in stack frames/heap, registers)
for variables and literals in accordance with the abstract machine
model and the characteristics of the target machine.

* Generate code for the target machine.

* Perform machine-dependent optimizations.

* Assemble code into an object module.

*, Produce information required by Ada source level debugger.

3.2 Detailed Functional Requirements

3.2.1 The Analyzer

The purpose of the analyzer pass is to perform lexical, syntax, and static
semantic analysis on one or more compilation units, and produce
syntactically correct DIANA. The DIANA reflects the semantically analyzed
compilation unit with type checking, overload resolution, and name binding
performed. The structure of the analyzer (cf. Figure 3-6) is a consequence
of using a recursive descent parser (see Appendix B for the rationale behind

4 this approach).

-9

Texas Instruments 3-14 Ada Optimizing Compiler

Development Specification REQUIREMENTS

COMPILATION UNIT
(ADA SOURCE TEXT)

LEXICAL ANALYSIS

' TOKENS

SYNTAX ANALYSIS

' AST

SEMANTIC ANALYSIS

I AST

IL GENERATOR

F IL(DIANA)

Figure 3-6 Structure of the Analyzer

3.2.1.1 Inputs

Input to the analyzer is the pathname of a control file (cf. Section
3.1.1.3). The control file contains the pathname(s) of source files for the
compilation units to be processed. A source file may contain one or more
compilation units. The control file must also specify the pathname of the
library file in which the compilation state of the compilation unit(s) is
maintained.

3.2.1.2 Initialization

Prior to processing the declaration or body part of a compilation unit, or
the body of a subunit, the context specification and the name of the
subunit's parent are scanned and a number of tasks related to separate

- compilation are performed, utilizing the library file utility and
information contained in the library file (cf. Appendix F):

Determine and validate the compilation context: From the library
file, the genealogy of the compilation unit is found. This
genealogy together with the merged list of library units occuring
in WITH clauses constitute the compilation context. A unit
mentioned in a WITH clause must be a library unit. For the
qualified name of the parent of a subunit, the first component must
be the name of a library unit that is the root of the genealogy,

Texas Instruments 3-15 Ada Optimizing Compiler
- - ---------- Optimizi - n C pie

Development Specification REQUI REMENTS

and the remaining components must be subunits belonging to the
genealogy of the library unit. The subunits must have been
declared in one of the units or subunits of the genealogy.

Ensure the proper order of compilation by performing the following
checks:

- a compilation unit may only be compiled after all units
mentioned in WITH clauses and/or a SEPARATE part arecompiled.

- a package body must be be compiled after its specification.

- a subunit must be compiled after its parent unit.

* Create the compilation context for the compilation unit (cf.
Appendix D): First, the symbol table for STANDARD is loaded. An
implicit declaration of the named library units mentioned in the
WITH clauses are entered in STANDARD's symbol table. Then, the
symbol tables of compilation units elaborated in the USE clause of
the compilation specification are made visible (cf. Appendix D).
For a subunit, the symbol tables of all its ancestors, starting
with parent unit, are loaded. If the compilation unit is the body
of a separately compiled subprogram or package, i.e., its
declaration part, the symbol table for that part is loaded (because
it constitutes the local environment of the body)..

* Determine the compilation units requiring recompilation:
Compilation units requiring recompilation are so marked in the
library file. Compilation units requiring recompilation are
determined as follows:

When the specification of a subprogram is recompiled, the
specification is checked against the previous specification.
If the new specification is different, all calling units must
be recompiled. If the specification is the same and the
previous compilation contained an inline pragma for the
subprogram but the current compilation does not, then all
calling units for which the call was expanded inline must be
recompiled.

When the body of an inline subprogram is recompiled, all
calling units for which the call was expanded inline must be
recompiled.

When the body of an inline subprogram is compiled or
recompiled, a warning message is given listing all calling
units for which the call was out-of-line and that should be
recompiled.

Texas Instruments 3-16 Ada Optimizing Compiler

Development Specification REQUI REMENTS

3.2.1.3 Lexical Analysis

The principle task of the lexical analyzer or scanner is the classification
of the source input into tokens. Each time a syntactical analyzer routine
needs a new token, it calls the routine, SCAN, which will return the next
token in the input stream. The token's value consists of an enumeration
value and a pointer to the entry for the lexical unit, i.e., to either the
symbol dictionary look-up table (cf. Appendix D, Section D.1.3) in the case
of identifiers and operators, or to the name and string table (cf. Appendix
D, Section D.1.4) for literals and strings. The enumeration value indicates
the construct of the scanned lexical unit, such as reserved word, numeric
literal or punctuation (cf. Table 3-1).

Table 3-1 Lexical Unit Constructs

Reserved Word
Identifier
Decimal Real
Decimal Integer
Based Number
Character Literal
Character String
Operator
Punctuation
Attribute

If an error should be detected by the lexical analyzer, the analyzer returns
an error token so the syntax analyzer may be notified. The lexical analyzer
then continues to scan from the point of error to the next delimiter sojproper scanning can be continued.

The lexical scanner is also responsible for entering newly found identifiers
and literal strings, both numeric and alphabetic, into the name and literal
table and, when a new identifier is recognized, the look-up table.

* Scanning is accomplished through the use of finite-state automatons.
Techniques used will be a standard approach such as described by Aho [AH077]
and Dedourek [DED80]. Three such automatons are used to recognize all
constructs required by the Ada Language. The determination of the automaton
to be used is made on the basis of the first character of a scanned item.
These three automatons are:

1. Letter -- The occurrence of a letter causes entry into a finite-
state automaton, assembling a string which is either a reserved
word or an identifier. This string assembly stops when a special
character delimiter or a space has been read. the resulting
character string, without the terminating special character, is
hashed. The look-up table is entered via a table of pointers
indexed by the hashed value. The identifier is matched with the
identifier represented by the look-up table entry. The spelling

Texas Instruments 3-17 Ada Optimizing Compiler

Development Specification REQUI REMENTS

of the look-up table entry can be found via a pointer to the name
and literal table. On a match, the look-up table index is
returned as the token number. If there is no match, a hash code
thread is followed to the next eligible entry and the comparison
made again. When no match is made along the entire hash thread:

* The next available entry in the look-up table will be
assigned to the new identifier;

* The proper spelling entered into the name and literal
table;

* The look-up table entry attached to the hash code
thread;

* The new look-up table index is returned as the token
number.

The successful detection of a reserved word returns a unique pre-
assigned token number for that reserved word.

When a non-reser\ d identifier is found and it is followed by a
single quote (fron .ie look-ahead), an 'Attribute Expected' flag
is set to signal the Lexical Scanner that the next identifier
should be checked for being a correct attribute. Then, when the
'Attribute Expected' is seen to be set and a letter encountered,
the identifier is checked against a special table to detect the
name of the attribute desired. This table must be kept separate
of the reserved word/identifier look-up table because the

* attribute names are not reserved and must not be accidently
considered as such. When the 'Attribute Expected' flag is set and
anything other than a correct attribute is detected, an error

2 token is returned. A detected attribute returns the identity of
the attribute, not a pointer to any outside table. The correct
spellings of the Predefined Language Attributes are found in
Appendix A of the [DoD80].

2. Digit -- When a digit is encountered as the first member of a
lexical unit, a finite-state automaton . assembles and identifies
the nature of the numeral. The automaton will identify all of the
following:

* Real decimal literal with or without an exponent;

* Integer decimal literal;

* Based number. The literal representation of the number
is saved in the name and literal table without generating
duplications of the same literal. The token for a
numeric literal contains a pointer to the name and
literal table entry. Illegal constructs cause an error
token to be returned.

Texas Instruments 3-18 Ada Optimizing Compiler

4'.

Development Specification REQUIREMENTS

Any problem of detecting a real decimal literal which starts with
a decimal point, e.g., '.123', is alleviated by Ada Language
because the syntax defines a real literal as having a leading
integer numeral, '0.123'.

When a "period" follows an integer, the decision as to whether or
not the "period" is the decimal point of a real number or part of
the ". ." of a range constraint, depends upon the next character
to be scanned. Therefore, the lexical scanner looks ahead two
characters after the integer has been scanned.

3. Punctuation -- A special character appearing at the start of a
lexical unit causes the recognition of that character and returns
its identity. This serves to identify simple punctuation and
operator symbols. The punctuation may be delimiters (cf.
[DoD80B], Section 2 2) or compound symbols. Some look ahead is
required in the case of the hyphen, '-', for the proper
recognition of the minus sign and comments, the asterisk, '*', for
the recognition of multiplication and exponentiation symbols, and
the other compound symbols.

The scanner recognizes and ignores comments. This is done by
finding the string "--" and skipping the rest of the source
record.

Character literals and character strings are fully detected and
placed into the name and literal table. The returned token
contains a pointer to the entry in the name and literal table.

This automaton may be entered when a single quote which is
prefixing an attribute is encountered. The problem arises when
distinguishing bewteen a character literal and attribute. The Ada
Implementor's Guide offers a solution [SOFT80BI with the detection
of a "apostrophe, character, apostrophe" string and a check to the
last lexical element for a reserved or non-reserved word
identifier.

3.2.1.4 Syntax and Semantic Analysis

The processing performed by the analyzer is depicted in Figure 3-7.

Syntax analysis is performed by a recursive descent parser. A practical
grammar for Ada was derived from the concrete syntax given in the language
reference manual [DoD80B] (cf. Appendix C). Conceptually, each nonterminal
in the revised grammar is represented by a recursive routine that accepts
any string derivable from that nonterminal, and only such strings. In
actual practice, some of the trivial routines for nonterminals are merged
with others to form composite routines. To carry out its task, the
recursive routine performs lexical, syntactical, and semantical analysis,
i.e., these three subtasks are interleaved in the logic of the routine, and
builds the abstract syntax tree for the string.

Texas Instruments 3-19 Ada Optimizing Compiler
.t/

Development Specification REQUIREMENTS

The structure of each recursive routine is basically the same.

1. The control portion forms a tree from the tree(s) built by its
recursive syntactical descendents. A tree contains both parse
tree nodes and DIANA attributed tree nodes; DIANA nodes are parse
tree nodes transformed as a result of semantic analysis. The
resultant tree is passed back to the routine's caller.

2. The syntax portion obtains tokens from the lexical scanner. If
the token is part of a legal syntactic construct, it is either
processed by the routine or another routine is called to perform
the processing; otherwise, an appropriate syntax error is
generated. Eventually the construct to be recognized by the
recursive routine will have been scanned and its syntax checked.

3. Then static semantic analysis is applied to the tree for the
construct. This consists of applying the static semantics as
given in the formal definition [DoD81]. This approach permits the
correctness and completeness of the analysis to be demonstrated.
This results in a tree with both DIANA and parse tree nodes. Any
DEFIDs occurring in the attributed tree are entered in the symbol
table.

Thus, as recursive routines are left, a progressively more complex and
complete tree is built until a fully developed DIANA tree exists for the
target construct. Notice that certain aspects of Ada cannot be processed in
a single tree traversal. For example, overload resolution requires the
constructed expression tree to be traversed twice (cf. Appendix D).

The abstract syntax tree is a condensed tree representation of the
derivation tree for the derivable string. It serves as the intermediate
language between separate parts of the compiler and contains information
needed for performing transformations on the string, e.g., optimization and
code generation. This semantic information is distributed as attributes in
the nodes of the AST and the entries for symbols in the symbol dictionary.
The information is used in the performance of semantic analysis tasks, e.g.,
of type checking, control of the visibility of declared items, and
resolution of overloaded operators (i.e., operator identification). The
entries for symbols are actually IL nodes referenced from AST nodes. They
also can reference AST nodes, e.g., unevaluated initialization values. The
error recovery mechanism employed guarantees that the AST is syntactically
correct (cf. Section 3.2.1.5.3).

After the compilation specification of the compilation unit is processed,
the nature of the compilation unit is determined. If it is a library unit
and this is the first time it is being compiled, an entry for it is made in
the library file (cf. Appendix F). If it is a subunit which is a
subprogram, the subprogram specification in the body is checked to see if it
corre-punds to that given in the body stub.

During the processing of the compilation unit, subunits defined by a body
stub are registered in the library file, i.e., an entry is made for the

Texas Instruments 3-20 Ada Optimizing Compiler

f4

Development Specification
REQUIREMENTS

subunit.

If compilation of the compilation unit is successful, the library file isupdated to reflect the new compilation state by replacing it with theupdated memory copy (cf. Appendix F).

Texas Instruments 3-21 Ada Optimizing Compiler

Development Specification REQUI REMENTS

W

JA-

2 IL M-

> UZoX

00

0 Z.0

-> -

- - wIU &
IL > LJ

W- 0W 0A
8W I 4.,

U) I) I-L#

U) 0
W t

0aa.

W I -

4 0 h0

IaA
IL IL

U)

9Z

Texa Insrumnts -22Ada ptimzin Comile

Development Specification REQUIREMENTS

3.2.1.5 Semantic Analysis Issues

3.2.1.5.1 Enforce Visibility Rules

The symbol table is a compiler data structure that associates symbols with
their attributes. A symbol can be an identifier, an operator, a literal,
predefined attributes and pragmas, and reserved words. The attributes
depend on the symbol; typical attributes are type, name, initial value, and
scope information. Values are assigned to the attributes as they become
known. 'There is a separate symbol table for each language construct that
can contain a declarative part, i.e., blocks and program units (subprograms,
packages, and tasks), which is saved as part of the construct's IL (cf.
Appendix E, Section E.4.3). Symbol tables are assembled together to form
the compilation context for a block or program unit and the entries are
interconnected together in a manner effecting the semantics of the visiblity
rules (i.e., scope, hiding, overloading, USE, WITH, RENAME, and the
predefined environment). The resulting data strlcture, known as the symbol
dictionary, is described in Appendix B, Section C.1. It contains the
information needed by the different passes of the compiler.

Appendix B also attempts to demonstrate informally that the design of the
symbol dictionary supports the enforcement of the visibility rules by
stating the required processing. This processing consists of:

creating the predefined environment (cf. Appendix D, Section C.2)

initializing the symbol dictionary, in particular, for the
package STANDARD, the reserved words, and the predefined
pragmas

* maintaining the compilation context (cf. Appendix D, Section C.3)

keeping the block structure

,L- maintaining the scope of declared entities
- processing packages (visible and private parts, private

types)

- processing a WITH and USE clause

* enforcing the visibility rules (cf. Appendix D, Section C.4)

- direct visibility for a block, subprogram, task, and the
visible part of a package (via a USE clause)

- hiding

- handling a loop parameter

- handling selected components

Texas Instruments 3-23 Ada Optimizing Compiler

Development Specification REQUIREMENTS

- handling overloading for subprograms, enumeration literals,

and aggregates

- operator identification

handling renaming, both static and dynamic (cf. Appendix D,
Section C.5)

handling the associated inheritance of subprograms and operators
for derived types (cf. Appendix D, Section C.6)

3.2.1.5.2 Static Expression Evaluation

Static expressions needing to be evaluated, e.g., to perform compile-time
error detection or type determination, are calculated using a package that
simulates the arithmetic operations of the target machine specified via the
SYSTEM pragma. Another target machine dependent package is used to obtain
values of language defined attributes that may appear in a staticexpression.

3.2.1.5.3 Error Handling

Error recovery is performed in the fashion described by Hartman [HAR77] and
later elaborated upon by Pemberton [PEM80]. This is a relatively straight-
forward technique consisting of skipping symbols until an appropriate symbol
occurs in the current context. When it is possible to determine the nature
of the error, i.e., when a semicolon is expected, an error message is be
emitted and parsing continues as if the expected symbol had occurred.

There are cases where it may be feasible to move this up a level. For
example, when an arithmetic operator is expected, parsing can continue by
emitting IL to indicate an unspecified (erroneous) operation.

Every effort shall be made to give the most meaningful error message
possible. This sometimes entails being careful about specifics since as
more specific details are put into an error message, the chances are also
increased that this message may sometimes be wrong. A classic example of
this is the message emitted by many FORTRAN compilers relating to function
statements when the real problem is a missing dimension on an array.

The DIANA produced by the front end is syntactically correct so subsequent
passes can ignore processing of syntactic errors. This may require deletion
of some previously produced DIANA nodes.

3.2.1.5.4 Generics

There are five times during the compilation process that generics are
processed: 1) when the generic declaration is met, 2) when the generic body
is met, 3) when the generic instantiation is met, 4) during expansion of a
generic instantiation, and 5) during the optimization of the generic
instantiations of a given generic declaration. The generic declaration/body
and instantiation are processed by the analyzer. The generic body istransformed into an IL template to be used during the expansion. Generic

Texas Instruments 3-24 Ada Optimizing Compiler I

Development Specification REQUI REMENTS

instantiation involves substituting the actual parameters for the generic
formal parameters in a copy of the generic specification. Expansion of a
generic instantiation results in replacing generic formal parameters in the
IL template for the generic declaration with the actual parameters. Generic
expansion is performed by the expander/optimizer pass (cf. Section
3.2.2.3.2.2). Further processing results in a customized expansion.
Optimization of generics is an attempt to share code between different
instantiations of a generic definition. Whether or not code can be shared
is a function of both the target machine and the program. Details of the
kinds of generic optimizations that can be performed and the generic
optimizer is given in Section 3.2.1.5.4.3. Generic optimization is
performed by the program binder. If no optimization is possible, the
customized instantiation is used to build the object module.

3.2.1.5.4.1 Processing a Generic Declaration and Body

The definition of a generic subprogram/package consists of two parts: the
generic subprogram/package specification and the body. These two parts do
not necessarily have to be adjacent to one another in the source text nor
need they be compiled together. Processing the generic declaration results
in a symbol table for the generic unit; it contains the name of the generic
unit and the generic formal parameters. The body of a generic subprogram or

package is processed like a normal subprogram or package. Because of the
way generics were, designed there should not be any unresolved type or
overload resolutions to be performed, e.g., a user must supply as a generic
formal parameter any subprograms needed to resolve overloading. Therefore,
operator identification, subprogram overloading resolution, and type
checking can be performed as the body is processed. (The matching rules
make sure the actual parameter correctly matches the formal parameter.) The
resultant AST is a template for the AST of corresponding program units
obtained by generic instantiation. The IL for the generic unit (AST and
symbol table) is stored in the IL file (cf. Appendix E, Section E.4.3) for
the compilation unit. A list of all generic declarations and bodies within
the compilation unit is recorded in the entry for the compilation unit in
the library file (cf. Appendix F).

The top portion of Figure 3-8 depicts processing a generic declaration and
body.

.

I Texas Instruments 3-25 Ada Optimizing Compiler

Development Specification REQUI REMENTS

ADA

•I I

I (PATTERN)

II W IT

INSTANTIATION TREE

COMPILATION
UNIT SMO

SOURCE TBE LFL

Figure 3-8 Generic Definition and Instantiation Data Flow

3.2.1.5.4.2 Processing a Generic Instantiation

In DIANA, an instantiation is not expanded, i.e., the generic declaration
copied and actual parameters substituted in the copy for the generic formal
parameters. This could not be done in general by the front end since the
body of the generic unit may be compiled separately. Instead, an
instantiation involves copying only the specification part of the generic
unit and replacing in the copy every occurrence of a generic formal
parameter with the corresponding actual one. The matching rules are applied
between the actual parameters and the generic formal parameters.

Texas Instruments 3-26 Ada Optimizing Compiler

- -----------.--

Development Specification REQUIREMENTS

The bottom portion of Figure 3-8 depicts processing a generic instantiation.

3.2.1.5.4.3 Optimization of Generic Instantiations

Given as input a reference to the IL for a generic unit and a list of all
instantiations (this information is obtained from the library file), the
generic optimizer consolidates identical instantiations into one and finds
instances where code may be shared. With respect to sharing code, the kinds
of optimizations that can be performed depends on the target machine.
Typical examples are:

* for types having the same representation, any generic instances
can be shared.

* for machine operations which are type independent, e.g., a
comparison operator or data movement, or which decode an operand
descriptor as in a tagged architecture, any generic instances
involving only these operations can be shared.

* for type dependencies whose frequency and/or size relative to the
total code is 'small', generic instances involving such a
dependency are candidates for either procedure parameters and/or
casing.

For those generic instantiations which can be shared, either. one of the
expansions is used or the IL is reformed for the new expansion (as would be
the case if additional parameters were being passed or there was casing).
If new IL is formed, it is automatically passed through the
expander/optimizer and code generator. The object module for the new
expansion is passed back to the program binder. For the case of a generic
subprogram which has a formal subprogram parameter, if the instantiations
can be shared and the actual parameters are not inline subprograms, the
formal subprogram parameter is implemented as an implicit parameter.

Optimizing generics across a program may result in slow link times. If this
proves to be the case, it shall be restricted to a compilation unit.
Regar.;;ess of when it is applied, the processing required to perform generic
optimization is the same.

Generic optimization is applied to the compilation units involved in the
segment binding phase of the program binder, but not to partial or fully
formed program segments. This allows such a partially linked object module
to be shared and implemented in ROM.

3.2.1.5.5 The INLINE Pragma

The INLINE pragma denotes a property placed upon the names of the
subprograms appearing within a declarative part of a program unit or block.
An instance of the INLINE pragma in a declarative part, results in entities
having that name, including overloaded subprograms declared in that
declarative part, as having the inline property. When the user wishes to
intermix the inline subprograms within an overloaded set, the user may have
to resort to separate compilations of the inline and non-inline subprograms

Texas Instruments 3-27 Ada Optimizing Compiler

.

Development Specification REQUIREMENTS

to insure proper intent. Subprograms which are compilation units (as is the
case of subprograms which are library units or separately compiled
subprogram bodies), not having an encompassing declarative part may have the
pragma inline declaration as the first statement of the compilation unit.

Calls to a subprogram before it is known that the called subprogram is to be
inline (e.g., the INLINE pragma appears with a separately compile body and
not the corresponding specification or an overloaded subprogram is specified
later in an INLINE pragma) results in a normal calling sequence code. When
the body of an inline subprogram is met, all calling subprograms compiled
before the body of the inline subprogram may have to be recompiled. A
warning is issued by the compiler to this effect with a list of all calling
subprograms. Separate recompilation of a call results in inline expansion.
Expansion of inline subprograms is handled by the expander (cf. Section
3.2.2.3.2.1); the analyzer only builds a DIANA pragma node.

There are a number of issues related to recompilation. When the body of an
inline subprogram is changed and recompiled, the caller is changed and must
be recompiled. Also, if an inline subprogram is recompiled and no longer
specified as inline, all callers must be recompiled. Further discussion of
these issues can be found in the discussion on separate compilation in
Section 3.2.1.2.

3.2.1.5.6 Representation Specifications

When the representation specification is met in a declarative part, a DIANA
abstract syntax tree (AST) is built for it. A representation specification
for a type must appear in the same declarative part containing the
declaration of the type. There may be more than one representation
specification, each of which specifies different aspects of the
representation. To facilitate later processing, an implementation
attribute, rep-s, for representing the representation specifications for a
type is added to the DIANA DEF-ID node defining the type. The value of the
attribute is a reference to the root node of the ASTs for the representation
specifications. The static expressions in a representation specification
are evaluated by the expander. The representaton specification is used by
the code generator in the allocation of items.

3.2.1.6 Saving the IL

During the processing of a program unit (subprogram, package, task) and
block, its abstract syntax tree and symbol table are constructed. The
symbol table represents a description of the information contained in the
DIANA AST (in DIANA each definable entity is represented by a defining
occurrence, i.e., an AST node [GOO81, Section 1.1]). This dichotomy
facilitates later processing which requires the symbol table, e.g.,
construction of the compilation context and source level debugging. The
structure of the AST is determined during syntax analysis, i.e., nodes are
created and appended to the tree. During static semantic, analysis the
nodes are decorated with DIANA attributes. After each program unit and
block is processed, its IL (AST and symbol table) is written out to the IL
file. The structure of the IL file is described in detail in Appendix E,
Section E.4.3. During the processing of embedded program units and blocks,

Texas Instruments 3-28 Ada Optimizing Compiler

Development Specification REQUIREMENTS

the IL (AST and symbol table) for the enclosing unit is retained in memory.
Once the IL is written out, the memory space is reclaimed. If the
compilation unit is being recompiled, all IL files and object modules
previously generated from it are discarded, i.e., the library file is
updated to reflect the new compilation state of the unit.

3.2.1.7 Compilation Statistics

Generation of compilation statistics are controlled via the implementaton
defined language pragma STATS, which can only appear before a library unit.
It takes COMPILER and/or STATIC as arguments. The STATIC statistics pertain
to static characteristics of the program and are partitioned into the
following categories:

Program structure characteristics: distribution of statement
types, distribution of types, distribution of the number of program
units and blocks, distribution of nested control constructs,
distribution of the number and usage frequency of INLINE
subprograms, distribution of the number and usage frequency of
generics, distribution of the number of statements, etc.

Declaration characteristics: distribution of initialized
variables, occurrences of overlays, distribution of the number,
types and kinds of parameters per procedure.

* Statement characteristics: distribution of forward and backward
control transfer distances (in tokens), distribution of number of
operators per statement type, distribution of operator type by
statement type, distribution of number of operands per statement
type, distribution of operand type by statement type, distribution
of loop types, number of implicitly delcared loop control
variables.

Expression characteristics: distribution of expression length in
operands and operators.

Operator characteristics: distribution of operator types per
compilation unit

Operand access characteristics: distribution of constants by
type, distribution of operand types, number of operands per
compilation unit, distribution of the number of array indices,
distribution of operand reference scope (local, global, parent,
intermediate).

COMPILER statistics pertain to compiler performance and consist of:

* rate of processing.

* memory requirements

S disk accesses

Texas Instruments 3-29 Ada Optimizing Compiler

Development Specification REQUIREMENTS

* elapsed CPU time

* elapsed clock time

number of instructions generated for each kind of DIANA node

Statistics generated by a compiler pass for a compilation unit are written
to a file associated with the library file: one file for static statistics
and another file for compilation statistics. The static and compilation
statistics shall be accumulated and summarized by a separate AlE tool. This
tool shall also be capable of extracting statistics generated by a
particular compilation of a compilation unit.

3.2.1.8 Formation of the Statement Map

The Ada source level debugger needs a statement map in order to map machine
code back to the source. The statement map is initially generated by the
analyzer and updated by each pass of the compiler that performs
optimizations. There is one statement map file associated with each
compilation unit. This file contains a statement map for the compilation
unit and each embedded program unit and block; as each is processed, its
statement map is appended to the file. A statement map consists of the name
of the program unit or block and for each statement the following:

* the line number of the statement in the source listing

* the source statement number

* the offset within the program unit or block of the first byte of
the first instruction statement

* the offset to the first byte of the last instruction of the
statement

* a list of references to symbol table entries of statement labels
(if present).

The last two pieces of information are filled in by the code generator.

3.2.1.9 Outputs

The outputs of the analyzer and the default file pathnames are summarized in
Table 3-2. Their generation is discussed in previous sections.

Texas Instruments 3-30 Ada Optimizing Compiler

Development Specification REQUIREMENTS

Table 3-2 Outputs of the Analyzer

IL file:
1 ibraryfi le. 1 ibrary-unit{. subunit) .DIANA

Compiler Statistics (optional):
I ibraryfi le. LIST. SSTATS
1 ibraryfi le. LIST.CSTATS

Statement Map:
1 ibraryfi le. l ibrary-unit(. subunit) .ASMAP

The library file is updated to reflect the new compilation state of the
compilation unit. In particular, the database names of the generated IL
file, statement map file, and type representation specification file are
recorded in the compilation unit's entry.

The pathnames, default or user specified, for the output files in Table 3-2
are also output.

3.2.2 The Expander/Optimizer: Introduction

The expander/optimizer is divided into two parts' an expansion-local
machine-independent optimization subphase and a global machine-independent
optimization subphase. The expansion subphase makes run-time
representational choices about data types and control structures, and
incorporates the choices into the DIANA abstract syntax tree. After the
expansions are made, local machine-independent optimization is performed.
The global optimization subphase performs global machine-independent
optimizations; the nature and level of optimization is controlled by the
pragmas OPTIMIZE and OPTLEVEL, respectively. The net result is a lower
semantic level dialect of DIANA which is machine dependent. Applying global
optimizations to this lower level dialect will be more effective than if
optimization was applied to the dialect output by the analyzer.

The unit of processing is the body of a program unit (subprogram, package,
or task) or a block. Program units and blocks within a compilation unit are
processed in the order determined by their lexical level in the source text,
i.e., from the outermost lexical level to the innermost and for program
units and blocks at the same level, in the order of occurrence. The
processing order is the reverse order in which the IL was written out (cf.
Appendix E, Section E.4.3). Prior to the processing of each unit, its
compilation context is created and its symbol table loaded.

* Table 3-3 lists the machine-independent optimizations performed by the
expander/optimizer. The local optimizations are performed by the expander,
while the global optimizations are performed optionally by the global
optimizer. Other optimizations, such as register allocation, variable
overlaying, structure alignment, peephole, inline substitution, reduction of
Boolean expressions, and algebraic simplification of subscription, are

Texas Instruments 3-31 Ada Optimizing Compiler

/I

Development Specification REQUIREMENTS

performed in the code generation pass. Generic optimization is performed by
the program binder.

Table 3-3 Machine-Independent Optimizations

Local Optimizations
Constant folding
Constant propagation
Common subexpression elimination

Global Optimizations
Assertion propagation
Common subexpression elimination
Code motion
Strength reduction
Loop unrolling
Loop fusion
Dead code elimination
Dead variable elimination

3.2.2.1 Inputs

Input to the expander/optimizer is the pathname of a control file (cf.
Section 3.1.1.3). The control file contains the pathname(s) of IL files
output by the analyzer to be processed. The dialect attribute of the IL
file is used to verify that the correct DIANA dialect is input. The control
file must also specify the pathname of the library file in which the
compilation state of the compilation unit(s) is maintained. The
optimization pragma OPTIMIZE and OPTLEVEL pragmas for a program unit or
block may be specified in the source text or respecified in the control
file.

3.2.2.2 Pre-processing

Prior to performing any expansions or optimizations, an information
gathering subphase performs the following:

The AST for each block and program unit within the compilation
unit being processed is traversed and the control flow graph is
constructed. Each node of the flow graph represents a basic block.
A basic block is an ordered set of DIANA nodes with a single
control path through them; entry may be only to the first node and
exit may be only from the last node. The control flow graph is the
basic data structure used by the flow analysis algorithms. Other
information required by the optimization algorithms can be
extracted from it, e.g., a list of immediate successors and
immediate predecessors for each basic block; data flow
relationships, e.g., definition, use, and live range for variables
and temporaries; the loops and their entry block; and the immediate
predominator for each basic block.

.9

Texas Instruments 3-32 Ada Optimizing Compiler

rA* '"' i. -. ' -

Development Specification REQUIREMENTS

Static expressions not evaluated by the front end are evaluated.
As in the front end, this evaluation is target machine dependent
and uses a package that simulates the arithmetic operations of the
target machine specified via the SYSTEM pragma.

Unreachable code is eliminated. Examples are sequences of
statements in an if statement that will not be executed because of
the static condition. Or, choices in a case statement may not be
executed because of the static expression used to select the
choice.

The static frequency of access for each declared object is
determined. This information is used by storage allocator (cf.
Section 3.2.3.2).

3.2.2.3 Expansion/Local Optimization

Representational decisions about data and control structures are made, after
which these decisions are made explicit in the AST.

3.2.2.3.1 Representational Decisions

Based on the Ada virtual machine (cf. Ada Software Environment CPDS), the
packing algorithm chosen for the target machine, and representation
specifications, a target machine dependent representation (i.e., size and
internal structure) is chosen for each data type. The size information is
used to determine the size of the actual parameter list for each subprogram
call node. These choices are encoded in attributes of AST nodes.

Representational choices for a number of control structures are also made.
Based on the size of an IN formal parameter, it is decided whether the
actual parameter is to be passed by copy or by reference. The decision is
encoded in the defining occurrence of the formal parameter. Based on the
number of choices and their sparseness, the implementation of each case
statement is chosen, i.e., as nested if statements or as a transfer vector.
The decision is encoded in the case node.

3.2.2.3.2 Expansion of the Abstract Syntax Tree

Based on the preceeding decision making, a number of high-level language
dependent tree transformations are performed on the AST.

3.2.2.3.2.1 Inline Subprogram Expansion

The rules for determining whether an inline subprogram can be expanded
inline are:

1. If the body of the inline subprogram has not been compiled, the
inline is ignored and the call is elaborated with a normal calling
sequence.

2. If the body has been compiled and if the caller is not inline,

Texas Instruments 3-33 Ada Optimizing Compiler j
l - : , -.:_..

Development Specification REQUI REMENTS

the called inline subprogram is expanded.

3. If the body has been compiled and if the caller is inline,

a. Construct a call graph starting with the caller as the
root.

b. Find all recursive cycles involving the caller and the
inline subprogram.

c. If there exists one recursive cycle in which all
subprograms are inline, the INLINE pragma of the called
subprogram is ignored and the call is elaborated with a
normal calling sequence.

d. If no recursive cycles exist with all inline members,
expand the called subprogram normally.

Inline expansion takes place as an integration of the DIANA of the callee
with the DIANA of the caller at the point of call. The IL (AST and symbol
table) of the caller is modified so the meaning of the subprogram [DoD80B
Section 6.3] and the semantics of the parameters are preserved. Inline
expansion proceeds as follows:

1. A copy of the symbol table and DIANA abstract syntax tree of the
called subprogram is made. The subprogram call node is replaced
by the DIANA AST.

2. References to IN OUT and OUT parameters within the expanded
subprogram are changed to the actual parameter's symbol table
node.

3. References to IN parameters within the expanded subprogram
reference a compiler generated temporary variable with the type of
the actual parameter. AST nodes are inserted prior to the call
node which assign a copy of the actual parameter value to this
compiler temporary variable. A symbol table node defining the
compiler temporary variable is placed in the symbol table of the
caller. Literal values passed as IN parameters are directly
substituted into the syntax nodes of the called subprogram,
allowing for possible optimization in a later pass of the
compiler.

4. A RETURN value is placed in a compiler generated temporary
variable assigned to the caller. This temporary variables is
normally generated for a return value and handled by the caller
when program control returns. AST nodes are inserted after the
call code which assign the return value to this compiler temporary
variable.

5. Symbol table nodes denoting local variables of the inline
subprogram are logically merged with the symbol table of the

Texas Instruments 3-34 Ada Optimizing Compiler

• _ .. = = . ,~

Development Specification REQUIREMENTS

caller. This is achieved by recording in the entry for the
compilation unit containing the caller a reference to the callee's
symbol table. When the expanded AST is processed, the symbol
table loaded for the caller consists of its symbol table generated
by the analyzer plus the symbol tables of all expanded inline
subprograms. Duplication of identifiers is not a problem because
all name conflicts have been resolved and the IL contains a unique
reference to the proper identifier, i.e., node-name's between
different compilation units are unique (cf. Appendix E, Section
E.4.1). The size of the activation record of the calling
subprogram is increased to handle the new local symbols.

A function which is used as a parameter to a subprogram would normally be
evaluated prior to the call to the subprogram and the parameter value set
from a temporary variable. An inline function would be likewise expanded
prior to the subprogram invocation and the parameter value assigned from the
resulting temporary result.

3.2.2.3.2.2 Expansion of a Generic Instantiation

To perform the expansion, the generic body must have been compiled. If the
compilation has not been performed, an error message is issued to this
effect with the name of the generic unit. If the generic body has been
compiled, expansion of a generic instantiation involves replacing generic
formal parameters with the actual parameters in a copy of the generic body's
AST (cf. Figure 3-9). This is a simple substitution process since all type
and overload resolution were performed by the analyzer. The substitution
involves changing references to formal symbol table nodes (for types, IN OUT
variables, and subprograms) to references to actual parameter symbol table
nodes. For an IN variable, the AST for the expression representing the
value replaces the formal parameter.

:O

!Texas Instruments 3-35 Ada Optimizing Compiler

'5

Development Specification REQUIREMENTS

SYMBOL DICTIONARY

INSTANT IAT ION
('NEW') TREE

OPERATOR
IDENTIFICATION SYMBOL

TABLESG:NRIC

PARAM ETERS

EXPANDER/
OPTIMIZER

IL PATTERN
DETAILS

COMPLETE IL GENERIC AST

Figure 3-9 Generic Expansion Data Flow

A symbol table of all symbols defined in the expansion is constructed by
copying nodes from the symbol tables of the generic body and the units
defining the actual parameters. The symbol table and IL for the expansion
are saved on an IL file (cf. Appendix E, Section E.4.3).
3.2.2.3.2.3 Other Tree Transformations

The following transformations are made on the abstract syntax tree:

* The passing of actual parameters in a subprogram call are made
into explicit assignments to the actual parameter list, a compiler
gnerated temporary. (The actual parameter list is allocated in the

Texas Instruments 3-36 Ada Optimizing Compiler

Development Specification REQUIREMENTS

stack frame of the caller (cf. Ada Software Environment CDPS)).
Ths assignment is based on whether the formal parameter is passed
by copy or reference. This compiler temporary is subject to the
same optimizations as a user defined object. In particular, since
its lifetime is known, actual parameter lists may be shared. Also,
since the actual parameter list is read only, its values are
invariant after return from a subprogram call. Code to initialize
actuals that are constant may be moved out of a loop.

* Function returns are expanded into an assignment to a compiler
generated temporary. During storage allocation in the code
generation pass, this compiler temporary will be allocated to a
dedicated register that either contains the functional value or a
pointer to the functional value. The compiler temporary is subject
to the same optimizations as a user defined object.

* Address arithmetic for array subscripting, up-level addressing,
referencing accessed objects, and referencing a selected component
are made explicit. The required computation is based on the
representation choice made for the data type. Exposing the address
calculations permit them to be optimized, e.g., for common
subexpressions to be detected. The level of expansion for array
subscripting depends on the architectural support of the target
machine.

* Check nodes not designated as suppressed by the SUPPRESS pragma
are expanded into explicit tests, e.g., checks on range error in
array subscripting and scalar assignment are generated.
Unnecessary check nodes are removed by the assertion propagation
algorithm during global machine-independent optimization.
Address and value contexts are explicitly distinquished. This
information is useful during code generation.

Certain control constructs are expanded into more primitive
operations. For example, case nodes are replaced by an equivalent
subtree of nested if statements or marked as using a transfer
vector in effecting a choice.

DIANA nodes for aggregates with static components are replaced by
a node defining the constant. This permits the aggregate to be
manipulated as a block instead of component by component.

3.2.2.3.3 Local Optimization

After all the expansions are made to the abstract syntax tree, local
machine-independent optimizations are performed because L,. their high
payoff. These optimizations, applied to a basic block, consi:': of constant
propagation and folding, and common subexpression elimination.

-. 9

Texas Instruments 3-37 Ada Optimizing Compiler

Development Specification REQUIREMENTS

3.2.2.4 Global Optimization

After all expansions and local machine-independent optimizations have been
performed, the global machine-independent optimizations are performed (cf.
Table 3-3). Assertion propagation is always performed. It is required in
Acta for the elision of constraint checks and overflow checks; otherwise,
code . size and execution time will be intolerable. Whether or not the
remairing global optimizations are performed is controlled by the
presence/absence of the OPTIMIZE pragma. If the pragma appears in a
declarative part, then the block or body enclosing the declarative part is
optimized to the level specified by the OPTLEVEL pragma. If the OPTIMIZE
pragma is present, but the OPTLEVEL pragma is missing, then all global
optimizations are performed. If the OPTIMIZE pragma is absent, but the
OPTLEVEL pragma is present, the OPTLEVEL pragma is ignored. OPTLEVEL takes
an integer as an argument that specifies the level of optimization. The
global optimizations are ordered, the ordering weighted by their potential
payoff and execution time. The optimizations are grouped into classes, each
class defining an optimization level. The integer argument of OPTLEVEL
specifies that all optimizations up to an including those in the specified
optimization level are to be performed.

The optimizer does not actually effect common subexpression elimination or
code motion by making the necessary tree transformations; it only indicates
which ones are feasible. The pre-processing subphase of the code generation
pass chooses which of the feasible optimizations are, in fact, desirable.

The optimization algorithms employed shall be based on those developed by
Texas Instruments, those used in the Bliss_11 compiler [WUL75] and the more
recent versions used in the PQCC project [LEV75]; the work on assertion
propagation [WEL78] shall be used for the assertion propagation algorithm.
Texas Instruments has implemented machine-independent optimizers for TI
Pascal, DX10 Rifle (a subset of TI Pascal used for systems programming), and
Fortran for its dataflow architecture. Texas Instruments is currently under
contract to the U.S. Army to design an Ada compiler for the dataflow
architecture (Contract No. DAAK20-80-C-0276), and shall utilize its
optimization algorithms. Also, Texas Instruments shall draw on newly
published results, especially theses related to the PQCC project and
specifications of the PQC phases, to improve the algorithms.

3.2.2.5 Saving the Expanded/Optimized IL

As each program unit and block of the compilation unit are processed, the
expanded AST is written to a new IL file. With the exception of generics,
the symbol table is not written out since it is the same as that generated
by the analyzer. The structure of the IL file is described in detail in
Appendix E, Section E.4.3.

3.2.2.6 Outputs

The optimized AST and flow graphs for the compilation unit and all embedded
program units and blocks are written to a new IL file. The symbol table is
not rewritten out to this file since it is unchanged; any pertinent code
generation information is recorded as attributes in the AST. The pathname

Texas Instruments 3-38 Ada Optimizing Compiler

Development Specification REQUIREMENTS

of this new IL file is:

library-file.library-unit(. subunit). OIL

The statement map for the compilation unit output by the analyzer is updated
when optimizations are performed. The database name of the statement map
file to be updated is obtained from the entry for the compilation unit in
the library file. The updated statement map is then written to a new file;
the original statement map is retained since it may be needed in other
derivations. The pathname of the updated statement map file is:

libraryfile. 1 ibrary-unit(.subunit}.OSMAP

The library file is updated to reflect the new compilation state of the
compilation unit. In particular, the database names of the optimized IL
file and updated statement map file are recorded in the compilation unit's
entry; the input IL file is not discarded.

The pathnames, default or user specified, for the output files in Table 3-3
are also output.

3.2.3 The Code Generator: Introduction

To generate high quality code, an AST node must be examined in a context
larger than a single node and the best code sequence for the context
selected. Processing to generate code is divided into four phases: pre-
processing, storage allocation, code generation, and post-processing. The
pass is concluded with an object module formation phase.

The pre-processing phase performs various algebraic transformations and
gathers machine dependent information, used in the later phases, defining
the characteristics of the best code to generate.

The allocation phase assigns program declared objects and compiler generated
objects to target machine registers and storage locations.

The code generation phase is table driven [CAT79, GRA80]. It generates code
by matching subtree patterns against the context of the AST.

The post-processing phase performs final machine dependent optimizations on
the object code prior to construction of the object module.

The last phase forms an object module in the format required by the program
binder. Also, information required by the Ada source level debugger is
generated.

The unit of processing is the body of a program unit (subprogram, package,
or- task) or a block. Program 'units and blocks within a compilation unit are

Te- Instruments 3-39 Ada Optimizing Compiler

Development Specification REQUI REMENTS

processed in the order determined by their lexical level in the source text,
i.e., from the outermost lexical level to the innermost and for program
units and blocks at the same level, in the order of occurrence. The
processing order is the reverse of the order in which the IL was written out
(cf. Appendix E, Section E.4.3). This processing order guarantees objects
referenced by embedded units have been allocated. Prior to a unit being
processed, its compilation context is created and its symbol table loaded.

3.2.3.1 Inputs

Input to the code generator is the pathname of a control file (cf. Section
3.1.1.3). The control file contains the pathname(s) of IL files output by
the expander/optimizer that are to be processed. The control file must also
specify the pathname of the library file in which the compilation state of
the compilation unit(s) is maintained.

3.2.3.2 Pre-processing

Prior to the allocation of storage and code generation, information required
by these later phases is gathered and recorded in attributes of AST nodes,
and source-to-source transformations are applied to the AST.

The pre-processor subphases are based on the DELAY phase of the Bliss-l
compiler [WUL75]. The contribution of each subphase to the production of
optimal code is small; however, taken together the contribution can be
substantial. The subphases are:

Context determination: This subphase determines the way in which
the result of an operation is used. Use of a Boolean is
determined, i.e., whether to realize a Boolean result or utilize a
conditional change in the flow or control. Also, arithmetic and
address contexts are distinquished in order to utilize indexing or
address instructions.

* Determination of desirable feasible optimizations: Common
subexpressions and code motions involving an expression specified
by the machine independent optimizer are examined. It is decided
whether or not the optimization is worthwhile. For example, it may
be more profitable to recompute a common subexpression at each use
then to manipulate a compiler generated temporary or tie up a
register over a region of code.

* Unary complement operator propagation: Unary complement operators
are propagated to higher tree nodes until they are subsumed in
other operations or they can be moved no further. Transformations
may be performed on an expression that take advantage of target
machine instructions (e.g., instructions which perform peculiar
combinations of binary operators and unary complement operators).

* Evaluation order and targeting: Targeting makes use of the
commutativity of arithmetic operators to avoid loads and stores.
The algorithm employed, to determine the optimal evaluation order
for arithmetic expressions in the AST depends on the presence of

Texas Instruments 3-40 Ada Optimizing Compiler

,. ,-.,'

Development Specification REQUIREMENTS

common subexpressions. During the processing, the number of
registers necessary to evaluate an AST node is recorded in an
attribute for the node. This information is used by the storage
allocator.

The algorithms employed in each subphase can be found in [WUL75].

A final subphase performs target machine independent tree transformations
[LEV75]. This subphase is driven by a table of transformation patterns: a
subtree transformation skeleton describing the conditions that must be met

in order for the transformation to be applicable and a subtree skeleton that
describes the result of the transformation. Typically, algebraic
transformations are performed.

3.2.3.3 Storage Allocation

Tihe register allocator is machine-independent [SIT79A]. It accepts as input
a set of objects that can be potentially assigned tc registers, the live
range (obtained from flow analysis) and static frequency of use for each
object, and a description of the storage hierarchy of the target machine.
Using this information, the objects are mapped onto the storage hierarchy
such that the most frequently used objects are allocated to high-speed
access storage, and such that two objects with disjoint live ranges share
the same storage location.

Prior to register allocation, all declared objects that must be allocated in
the stack frame are marked. This selection is based upon the
default/specified representation of the object's type, e.g., the length of a
variable or alignment of a record. The actual stack frame displacements are
assigned after register allocation. The set of objects not marked
constitute the objects that can be potentially assigned to a register. The
stack frame pointers of the most frequently accessed global objects are
added to the set.

For target machines, like the IBM 370, which have base register addressing,
the number of required base registers is determined and allocated prior to
the execution of the register allocation algorithm.

For code space, the number of required base registers is based upon an
estimate of the upper bound of the code size. This upper bound is the
product of the number of DIANA nodes and the ave.'age number of instructions
generated per node. (A more refined estimate is the sum of the product of
the number of nodes of a particular kind and the average number of
instructions generated for the node kind. The average number of
instructions generated for DIANA nodes is obtained from compiler statistics
(cf. Section 3.2.1.7)). If the size estimate is close to the range of the
base register, only one base register is allocated. During code generation,
if a second base register is required, the code generation pass is restarted
with a second base register allocated. (This avoids unnecessarily
allocating a base register and thereby generating less than optimum code.)
If more than one base register is required, the flow graph is examined for
execution locality, i.e., the absence of spagetti logic. If present, code
is injected at appropriate points to load the shared base register with the

Texas Instruments 3-41 Ada Optimizing Compiler

e.--,--- * . .*

Development Specification REQUI REMENTS

correct base.

For data space, the size of the stack frame is computed (dynamic arrays
present no problem since they are always accessed indirectly). The size
information was determined in the expander/optimizer pass when the
representation of each type was chosen. If more than one base register- is
required, the nature of the objects in the frame is examined. If a large
object causes smaller objects to be allocated beyond the range of the base
register, then the large object is placed at the end of the stack frame.
Its original placement in the stack frame is replaced with a pointer;
generated code accesses the object indirectly.

The number of available registers to which objects can be allocated is
reduced by the maximum number of registers required to hold intermediate
results. This number is obtained by calculating the maximum number of
registers required for each control path in the flow graph. The register-
requirements for a node was determined in the pre-processing phase.

The allocation order of objects is based on frequency of use. Loop
variables are weighted more heavily while large objects are weighted
negatively. Using the allocation order, objects are mapped onto the top
level of the hierarchy (i.e., registers), starting with the lowest offset.
When the storage locations are exhausted, allocation is from the next level
(i.e., stack frame), starting with the lowest offset. Thus, the most
frequently referenced local objects are allocated to registers. Also, the
stack frame pointers of the most frequently referenced global objects are
allocated to registers. The most frequently referenced objects not assigned
to registers are assigned to the start of the stack frame. The bias towards
low offsets facilitates cache locality, the use of block move instructions
(to initialize objects), and the use of instructions with short addressing
modes.

The objects marked as having to be allocated in the stack frame are assigned
stack displacements based on the type representation choices made in the
expander/optimizer pass. The pointer for an access variable is assigned a
stack displacement and the heap packet displacements within an accessed
object are assigned. The storage assignments are recorded in attributes of
AST nodes for later use by the code generation pass.

A typical storage hierarchy description is described by Sites [SIT79A]. The
storage hierarchy is divided into a number of storage levels: even
registers, odd registers, floating point registers, dedicated registers,
index registers, general purpose registers, stack memory, and other memory.
The storage hierarchy description (for a particular target machine) contains
a description of each level. A level descriptor includes the number of
available storage units, alignment, and permissible data types.

3.2.3.4 Code Generation

The code to be generated is based on the Ada run-time model (cf. Ada
Software Environment CPDS). The exact code to be generated is not
presented. Instead, the schema of how code is to be generated is presented,
and for a few cases, the nature of the code to be generated is described.

Texas Instruments 3-42 Ada Optimizing Compiler

... , . . ' - , -.. . .• . -

21

Development Specification REQUIREMENTS

3.2.3.4.1 Code Generation Schema

The code generation schema, based on the work of Cattell [CAT78], uses the
information gathered in previous phases: register allocation, access mode
determination, evaluation order, algebraic transformations, and so on.
Their decisions are all represented in the DIANA representation of the unit
by either explicit transformations or by decorating the tree with relevant
information. Note, ancestor compilation units of a compilation unit must
have been processed by the code generation pass so code can be generated to
reference global objects.

The code generation phase is driven by a database of code generation
templates. Each template. is a pattern-action pair (abstract syntax subtrees
and a code sequence to be generated). The code generation algorithm is
described in detail in [WUL80, LEV79, LEV80]. Briefly, it consists first of
traversing the AST and finding for each node all patterns that match. The
best code sequence is selected and code is generated backwards. This has
the advantage that a larger context is seen when traversing the tree
backwards (top-down, right-to-left traversal) so that the best maximal
pattern is applied. Efficient and comprehensive techniques exists to handle
the enormous case analysis involved in the matching process [CAT78].

The pattern-action pairs are constructed by hand; they can be generated
automatically using a description of the target machine as input when the
code generator-generator technology becomes available.

To ensure code is generated, there is a pattern-action pair for each DIANA
operation and every possible data move. The dynamic semantics portion of
the formal definition and the underlying run-time model (i.e., the Ada
abstract machine) is used to determine the target machine code to be
generated for a DIANA AST node(s). There may be many code sequences for a
pattern. The choices are based on the location or addressing mode of the
operands, instruction set features, special case hardware, fast machine
features, and the use of alternative operations. The patterns are sorted so
special case patterns are examined before general case patterns.

Encoded with each instruction to be generated is its machine format. The
generated code is represented as a doubly-linked list; nodes are linked
together in the order the instructions will appear in the object module.
This intermediate form is based on the data structure used in the FINAL
phase of the Bliss-l1 compiler [WUL75].

3.2.3.4.2 Processing Representation Specifications

A length representation specification of collection size results in a call
to the run-time subprogram INITIALIZESUBHEAP (cf. Ada Software Environment
CPDS) with one of its input parameters being the value of the expression
representing the number of storage units to be reserved for the collection.
This subprogram returns a subheap descriptor subsequentially used by the
storage manager during the allocation of objects of the collecton.

An address representaton specification for an object results in code being
generated which uses the address directly (addresses normally are

Texas Instruments 3-43 Ada Optimizing Compiler

...

Development Specification REQUI REMENTS

displacements off a base or a register). An address specification for a
subprogram, package, or task results in the generation of a linkage with an
object mode tag indicating where the subprogram, package, or task is to be
loaded. An address specification for an entry results in a call to the run-
time routine CONNECT INTERRUPT (cf. Ada Software Environment CPDS) with the
address of the interrupt and the entry as input parameters.

3.2.3.4.3 Processing Language Attributes

Code generated to obtain the value of a language attribute involves either a
compile-time constant (e.g., SIZE), access to a compiler known run-time data
structure (e.g., attributes of a dynamic array), or a function call (e.g.,
COUNT, IMAGE, VALUE). For COUNT, the call is to a run-time routine whose
input parameter is the address of the task control block (cf. Ada Software
Environment CPDS). For IMAGE and VALUE, the code generated depends upon the
type. For certain types, such as integer and real, the call is to an
overloaded function whose input parameter is the parameter of the attribute,
i.e., value and string respectively. For other types, such as enumeration,
the call is to a function whose input arguments are a type descriptor and
the parameter of the attribute. So that storage for the type descriptor is
only allocated when an attribute requiring the descriptor is encountered,
the function is generic. Its formal generic parameter is an IN mode object
of the type descriptor's type. The call causes an instantiation of the
generic function. The instantiation has the type descriptor literal bound
into it. Duplicate instantiations for the same attribute and type shall be
consolidated into one per type by the generic optimizer. To share code
between different instances of the same type class, the run-time function
calls an overloaded function whose input parameters are a type descriptor
and the parameter of the attribute.

3.2.3.4.4 Processing Global References

Objects global to a compilation unit may have been allocated to a register
by the register allocator. Addressability of the object is achieved by the
fact a caller's registers are saved in its stack frame when a subprogram is
called (cf. Ada Software Environment CPDS). The code generator is aware of
the placement of the registers in the stack frame and generates code to
access the appropriate saved register using the proper displacement from the
base of the stack frame.

3.2.3.5 Post-Processing (Final Optimizations)

A final optimization phase performs machine dependent optimizations on the
object code before the object module is constructed. The code is subjected
to three classes of optimizations: branch and label optimization, peephole
optimization, and cross-jumping [WUL79]. Application of these optimizations
result in redundant store/load elimination, constant folding, dead code
removal, a change in the sense of conditional branch instructions, the
transformation of a code sequence into a more optimizal code sequence, etc.
The optimizations are not performed in any order, but are inter-mixed and
applied in multiple passes over the object code until no further
optimizations can be performed.

Texas Instruments 3-44 Ada Optimizing Compiler

- f ,-*. ** .AL,-

Development Specification REQUIREMENTS

The branch and label optimization and peephole optimization are executed in
an alternating fashion. The branch optimizer processes the generated code
in the forward direction. This permits the detection and removal of dead
code, multiple labels, and branches to the next instruction, etc. The
peephole optimizer processes the generated code in the backward direction
[LAM80]. It has a sliding window through which small code sequences are
examined and optimized. Cross-jumping optimization is applied as the first
optimization pass and when ever the other two optimizers fail to perform an
optimization. Any transformation of code by an optimization pass may result
in code subject to another optimization. For instance, cross-jumping
optimization can create branches which result in dead code. A later pass of
the branch optimizer removes the dead code. As long as any optimizer
performs an optimization, the generated code is reprocessed. Optimization
is complete when all optimizers fail to perform an optimization.

The generated code is represented in doubly-linked nodes (cf. Figure 3-10).
This structure allows the free traversal of the chain and the moving and/or
deleting of code.

UP LINK

DOWN LINK

NODE KIND (LABEL. CODE)

OPCODE

INSTRUCTION LENGTH

NUMBER OF OPERANDS

OPERAND I - ACTUAL

ADDRESS MODE I

SYMBOL NODE 1

OPERAND 2 - ACTUAL

ADDRESS MODE 2

SYMBOL NODE 2

Figure 3-10 Representation of a Code Node

3.2.3.5.1 Branch and Label Optimization

The following branch and label optimizations are applied to the object code:

1. Multiple Label Removal -- Multiple label nodes in the code chain
which mark the location of an instruction node can be reduced to a

Texas Instruments 3-45 Ada Optimizing Compiler

Development Specification REQUIREMENTS

single label. To set references to the eliminated labels to the
surviving label, the eliminated label identifiers are saved in a
table. When references to these labels are encountered, the
reference is set to the remaining label.

2. Unused Label Removal -- Label nodes in the code chain which are
not referenced in the code are removed.

3. Branch Chaining -- Branch instructions whose target is a labeled
branch instruction and long chains of these branches are optimized
by setting the target label to the label of the last branch in the
chain. Further optimization removes unused labels.

4. Dead Code Removal -- The nodes in the generated code chain which
reside between an unconditional branch and a label node are
unreachable and, therefore, removed from the code chain. This
optimization is most likely to be used to remove dead code created
by earlier optimizations.

5. Conditional Branch Optimization -- The instruction following a
conditional branch is checked for the occurrence of an
unconditional branch. If found, the sense of the conditional is
reversed and the unconditional branch deleted. However, if both
branches are to the same label, the conditional branch is removed.

The next node in the object code chain is checked for a label node
with the same identifier as the target of the conditional branch.
If found, the conditional branch is removed.

3.2.3.5.2 Peephole Optimization

Peephole optimization consists of scrutinizing a few instructions at a time
and transforming a recognized sequence into a more optimal sequence. The
sequences generally result when optimum code generated for disjoint AST
nodes is brought together, resulting in redundancies and/or an awkward code
sequence.

The peephole algorithms are machine-relative, i.e., they are driven by a
target machine dependent pattern table [DAV80] which is encoded in a machine
independent format [DAV80]. A pattern is a boolean predicate involving, for
example, opcode and addressing modes. The peephole optimizer scans the
object code, viewing the code through a small window. The code appearing
within the window is analyzed by comparing it to a set of patterns.
Information is extracted from the instruction sequence being examined and a
hash lookup used to reference the list of applicable patterns. The
applicable patterns are ordered according to their payoff. The list is
searched for the first boolean predicate that is true. For the pattern
matched, pertinent data is extracted from the original code, as dictated by
the pattern, and substituted into the form of the optimized code. This new
code replaces the original code sequence.

9

Texas Instruments 3-46 Ada Optimizing Compiler

J,.

Development Specification REQUIREMENTS

The benefits derived from a pattern driven peephole optimizer have been
documented in terms of up to 40%h savings in final output object code
[LAM80,DAV80,WUL75]; the percentage depends on the quality of the originally
generated code. The following optimizations are performed by the peephole
optimizer:

1. Statement Combining -- This part of the peephole optimizer
represents the most labor intensive and machine dependent portion
of the optimizer. In statement combining, the code chains are
searched for patterns in adjacent instructions. Matching patterns
in the code to pre-established sequences allows the optimizer to
substitute single code instructions for two and three instruction
sequences.

2. Code Substitution -- This optimization is a sub-set of statement
combining. In code substitution, single instructions are
substituted for longer and slower single instructions. For
instance, some machines allow the use of long and short branches,
short branches using only a single word to hold the opcode and
range (1 to 127 words) of the branch. As the code is reduced by
optimizations, longer branch instructions may come into the range
of the short branch and be eligible for the shorter
representation. Algorithms for long vs. short addressing
determination shall be used for design guidance (ROB79].

Another code substitution situation presents itself in the
occurrence of literal operands in 'add', 'subtract', 'or', 'and',
et.al., instructions. In many cases, the instructions may be
changed to 'clear', 'set', 'increment', or 'decrement'
instructions. Elimination of some code sequences may be possible
through constant folding.

The manipulation of constants by the optimizer helps eliminate
4 unnecessary exceptions (divide by zero, etc.) and range checking.

These checks would normally be made against variables at run-time,
but in the case of constant values, compile time checks are just
as valid and more efficient.

A further optimization might be possible in the case of the
'increment' instruction. If the target machine has an auto-
increment addressing mode, the increment may be combined with an
earlier instruction.

3. Test and Compare -- Specific instructions which test a condition
and set a condition code may be eliminated if the previous
instruction, a move or arithmetic instruction, already has set the
condition.

4. Ineffective Code -- An optimization is possible when code causes
the storing of a value into memory, modifies that data and stores
another value into the same memory location. If the modifications
of the data are not used (moved to another location or loaded into
a register, for instance), those modifications are removed as

Texas Instruments 3-47 Ada Optimizing Compiler

/ 4.

Development Specification REQUIREMENTS

ineffective code [WUL75].

5. Redundant Loads -- Instructions which cause the loading of
registers with data stored in the previous instruction may be
removed from the object code, if an active label is not attached
to the load instruction.

3.2.3.5.3 Cross-Jumping

When two code sequences merge via an unconditional branch to a label node,
it may be possible to remove redundant code if the code which leads to the
merger is the same in each path. Cross-jumping is accomplished by backing
up the code sequences preceding the two branches that merge at a label node
and comparing them until a match fails. The first instruction of one
sequence is replaced by a branch to the corresponding code node in the other
sequence. This method can generate dead code which is removed later by the
branch and label optimizer.

3.2.3.6 Formation of Object Module

Using the double linked list of instructions and internal tables constructed
by the code generator describing constants and external references for each
program unit, an object module for each program unit is constructed. Each
object module has two control sections, viz., a code section and a constant
section. For a subprogram or package body, any code produced during the
compilation of its specification is concantenated with that generated for
the body (cf. [DoD8OB] Section 10.4.3). The format of the object module is
as required by the program binder (cf. Program Binder CPDS). Literals are
characterized for the binder as to whether they are local or global. As
each object module is built, it is appended to a file resulting in one
object file for the compilation unit.

3.2.3.7 Formation of Symbol Information for the Source Level Debugger

Information required by the source level debugger about each symbol defined
in a program unit or block is recorded in three different places: the
symbol table (generated by the analyzer), and the symbol map and type map.
The latter two maps represent machine dependent attributes generated by the
code generator. This dicatomy eliminates the need to save an updated symbol
table; the source level debugger can ascertain all the information it needs
from the symbol table, symbol map, and type map. From the node-name of the
symbol's name in the symbol table, the node-name for the definition of the
identifier can be obtained; it contains the node-name for the definition of
the identifer's type. The symbol table entry for the type gives such
informaton as references to subtypes, structure of a record or array, etc.
The type's node-name can be used to look up the type's representation
specification in the type map.

The symbol map and type map are also necessary for obtaining the value of
langauge attributes. The entity following a prime is either an object,
type, or entry. The symbol map is used to obtain attribute values
pertaining to objects, and the type map for those pertaining to types.

Texas Instruments 3-48 Ada Optimizing Compiler

II

Development Specification REQUIREMENTS

There are circumstances where both tables are needed. For example, for a
constrained array, in order to get to the array descriptor that contains the
attribute value it is necessary to go through the symbol map (to obtain a
type map reference) and then through the type map (to obtain the reference
to the array descriptor).

3.2.3.7.1 The Symbol Map

The symbol map provides the map between symbol addresses and the symbol
names. There is one symbol map file associated with each compilation unit.
This file contains a symbol map for the compilation unit and each embedded
program unit or block; as each is processed its symbol map is appended to
the file. A symbol map consists of:

* the name of the program unit or block

and for each uniquely defined symbol:

* the node-name of the entry in the symbol table for the symbol's
name (cf. Appendix E, Section E.4.1)

* the allocation of the symbol: register number, displacement in
code space, stack displacement, or displacement in heap packet.

* the name of the symbol's associated type in the type map

3.2.3.7.2 The Type Map

The type map provides the map between types and type representations on the
target machine. There is one type map file associated with each compilation
unit. For each unique type used in a compilation unit, a type descriptor is
built which specifies how the type is mapped onto the target machine. The
type descriptor is built from default information, if no representation
specification for the type was specified; otherwise, built from the
representation specification. Each type descriptor is uniquely named (e.g.,
numbered sequentially starting at 1) so that it may be referenced from the
symbol map. An entry for a type consists of:

* the name of the type within the type map

* the node-name of the type's entry in the symbol table

* the type descriptor

3.2.3.8 Updating the Statement Map

The statement map for the compilation unit output by the optimizer is

updated when optimizations are performed. The database name of the
statement map file to be updated is obtained from the entry for the
compilation unit in the library file. The updated statement map is then
written to a new file; the original statement map is retained, since it may
be needed in other derivations.

Texas Instruments 3-49 Ada Optimizing Compiler

- . ,

Development Specification REQUIREMENTS

3.2.3.9 Outputs

The outputs of the code generator and the default file pathnames are
summarized in Table 3-4. Their generation is described in the preceeding
sections.

Table 3-4 Outputs of the Code Generator

Object File:
1 ibraryfi le. 1 ibrary-unit{. subunit).CODE

Symbol map:
library-file.library-unit{.subunit).SYMAP

Statement Map:
library-file. library-unit.subunit).SMAP

Type Map:
1 ibrary.fi le. 1 ibrary-unit{.subunit).TMAP

The library file is updated to reflect the new compilation state of the
compilation unit. In particular, the database names of the object module
and updated statement map file are recorded in the compilation unit's entry.

The pathnames, default or user specified, for the output files in Table 3-4
are also output.

Texas Instruments 3-50 Ada Optimizing Compiler

b,,

L " "' " ; ."-" ' -T: - 11 .. --- - = -, . __ ":'.L._ =/

Development Specification QUALITY ASSURANCE PROVISIONS

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Testing of the Ada compiler shall be in accordance with the schedule,

procedures and methods set forth in the following documents:

1. Contractor's Computer Program Development Plan (CPDP)

2. Computer Program test Plan for this CPCI

3. Computer Program Test Procedures for this CPCI.

Testing of the Ada compiler shall be performed at three levels:

1. Computer program component test and evaluation

2. Integration test, involving all components of the CPCI

3. Computer program acceptance testing, involving the APSE

4.1.1 Computer Program Component Test and Evaluation

This level of testing supports development. Each component of the compiler
shall be tested as a stand-alone program before integration. This testing
shall concentrate on areas where new algorithms have been developed or where
there is relatively high risk. Examples of such areas are:

* Expressions

4 * Resolution of overloading

* Generic expansion

"* * Separate compilation features

The test bed for unit testing shall be the parts of the compiler that are
complete at test time, together with special purpose drivers required for
each test.

Test results shall be recorded in informal documentation; formal test
reports are not required.

Texas Instruments 4-1 Ada Optimizing Compiler

Development Specification QUALITY ASSURANCE PROVISIONS

4.1.2 Integration Testing

This level of testing supports integration and prepares for acceptance
tests. During this testing, Ada compiler components shall be integrated one
at a time and run with previously tested subsets of the complete Ada
compiler. Testing at this level shall follow the test plan and procedures
for the CPCI. Formal test reports are not required.

4.1.3 Formal Acceptance Testing

This testing assures that the compiler conforms to the language requirements
and to requirements in the Type A and B5 specifications. A formal test plan
and test procedures shall be generated and used to insure conformance to the
requirements. Acceptance tests shall be defined to incrementally test major
functional components of the compiler. Acceptance testing shall be
witnessed by the Government. Test results shall be documented in accordance
with the Computer Program Development Plan and Computer Program Test Plans,
and delivered to the Government with final system documentation.

All Ada compilers delivered shall be validated by the Government using the
Ada Compiler Validation Facility. Government acceptance of each compiler
shall be contingent on the the results of this validation and certification
by the Ada Configuration Control Board.

4.2 Test Requirements

Unit testing and integration testing shall be performed using the developed
compiler and needed drivers. While testing shall not use formal test plans,
testing shall keep the final acceptance tests in mind. Unit tests and
integration tests consist of three primary parts: the bootstrap test,
execution of the ACVF tests, and special purpose tests designed to exercise
compiler features not otherwise adequately covered.

4.2.1 Bootstrap tests

The bootstrap operation consists of compiling the compiler using the
compiler itself until the compiler reproduces itself. Three iterations
suffice if the compiler has no errors. This is a good check of language
features used in the implementation of the compiler, since it tests complex
interactions between features that no contrived test could. For example,
the bootstrap process tests arithmetic, boolean arithmetic, commonly used
control statements, record structures and arrays, since such features are
used extensively in compiler construction. The bootstrap test is not
adequate, however, for language features rarely used in the implementation
of a compiler. Such features would include floating or fixed point
arithmetic, tasking, and generics; they require special tests.

Texas Instruments 4-2 Ada Optimizing Compiler

, a .- I- t -. ,. .. , . -. '

Development Specification QUALITY ASSURANCE PROVISIONS

4.2.2 Ada Compiler Validation Tests

The DoD Ada Compiler Validation Facility (ACVF) tests are designed to test
compiler conformance to the Ada language standard. These tests may also be
used for the detection of compiler errors. Each of the ACVF tests is a
"pass-fail" trial. The compiler is expected to produce a specific result
for each case.

4.2.3 Rehosting tests

Parallel sets of bootstrap, ACVF and special tests shall be run on the IBM
370 and the Interdata 8/32 compilers. Components of the 370 version may be
used to simulate or provide drivers for components not yet rehosted on the
Interdata 8/32, during unit testing.

4.3 Acceptance Test Requirements

The acceptance tests shall be run according to the contractually developed
test plan. The acceptance test shall consist of the three groups of tests
described above: the ACVF tests, the compiler bootstrap, and special
purpose tests designed to test particular features.

4.3.1 Performance Requirements

The performance of the Ada compiler shall be measured in terms of its use of
host system resources and in the efficiency of the software products it
generates.

The Government shall specify the machine and operating system configurations
for the initial Ada Integrated Environment host systems. Acceptance test
plans shall specify compiler performance requirements in terms of processing
speed and memory use in these host systems.

The Ada Integrated Environment Statement of Work [RADC80] requires that the
delivered compilers shall compile a nontrivial Ada program of at least 50
source statements in at most 256K bytes of memory, at a compilation rate of
1000 statements per minute.

4 4.4 Independent Validation and Verification

An independent validation and verification (IV&V) contractor, if one
participates in the Ada Integrated Environment program, may perform
independent testing of the Ada compiler using any of the tests descibed

above or additional procedures.

Texas Instruments 4-3 Ada Optimizing Compiler

Development Specification THE COMPILER CONTROL LANGUAGE

APPENDIX A

THE COMPILER CONTROL LANGUAGE

A.1 Introduction

The compiler control language is the means for specifying the input
parameters to the various passes of the Ada optimizing compiler, viz., a
library file, the compilation units to be compiled, pragmas to be applied to
the compilation and the pathnames of output files. The control language is
used to build a command stream for a compilation. A command stream is
composed of a specification of a program library, and for each compiler
pass, a control sequence for each compilation unit within the program
library to be processed by that pass. A compilation unit's control sequence
may name files to be used for output generated by the invoked compiler pass
and/or may specify language pragmas to be included as an integral part of
the compilation unit. Pragmas are applied at the program unit/block level.
Therefore, it is possible in a compilation unit's control sequence to
associate pragmas with the compilation unit and with a specific programunit/block embedded in the compilation unit.

A command steam specifies the control sequences for one or more compiler
passes. However, the compiler passes so specified must be unique.

A.2 Command Language Syntax

The syntax for the compiler control language is specified in Figure A-1.

A

Texas Instruments A-1 Ada Optimizing Compiler

r .7.........

Development Specification THE COMPILER CONTROL LANGUAGE

Command-Stream Library-Designator
Compilation-Pass
{Compi lation-Pass)

Library-Designator LIBRARY File-Pathname
Compilation-Pass «<Pass > BEGIN Control-Sequence

{Control-Sequence) END
Pass ANALYZER I OPTIMIZER I CODEGEN
Control-Sequence UNIT Compilation-Unit-Designator

(Pragma-Designator)
(Outpu-Fi le-Designator)
(Program-Uni tDesignator)

Compi lation-Unit-Designator
:=File-Pathname

Pragma-Designator PRAGMA Pragma-Name [(Argument { ,Argument))]
Pragma-Name CONTROLLED I INLINE IINTERFACEI

LIST I MEMORY-SIZE IOPTIMIZE IPACK
PRIORITY I STORAGE-UNIT I SUPPRESS
SYSTEM I STATS I OPTLEVEL

Output-Fi leDesignator
NAME File-Name-Designator (File-Pathname)

Fl le-Name-Designator
SOURCE I SYMTAB I XREF ISSTAT CSTAT
ENVT IIL I ASMAP I EIL IOIL IOSMAP
CODE LISTCOOE ISYMAP ISMAP ITMAP

Program-Un it-Desi gnator
P-UNIT Program...Uni-Name
(Pragma-Desi gnator)

Program-Unit-Name Identifier
File-Pathname Identifier(.Identifier)

Figure A-i Compiler Command Language Syntax

A.3 Control Language Semantics

A.3.1 The LIBRARY Command

The LIBRARY command designates the pathname of a library file in which the
compilation state of the compilation units are maintained. Only one LIBRARY
command may appear within a command stream and it must be first.

A.3.2 The UNIT Command

The UNIT command designates a specific compilation unit to be compiled.
Further commands in the command stream pertain to the designated compilation

Texas Instruments A-2 Ada Optimizing Compiler

Development Specification THE COMPILER CONTROL LANGUAGE

unit until another UNIT command is encountered. The parameter to this
command is the pathname of a source file when the analyzer pass is being
invoked, and the pathname of the appropriate IL file when the expander,
optimizer, or code generator pass is invoked.

A.3.3 The PRAGMA Command

The PRAGMA command permits language pragmas to be designated from outside
the Ada program source text. This capability serves two purposes:
1) pragmas may supplement those already in the source (for example, the
OPTIMIZE pragma may be introduced); and 2) pragmas which already exist in
the source text may be overridden (for example, the source listing may be
turned on/off). It is as if the pragma had occurred in the source text in
the position as defined for the pragma. The one exception is LIST which is
positioned before the named unit. The acceptable pragmas which may appear
are the predefined language pragmas, except INCLUDE, (cf. [DoD80B],
Appendix B) and any implementation defined pragmas.

A.3.4 The NAME Command

The Name command designates the pathnames of output files that may be
generated by the compiler pass when processing a compilation unit. Output
files designated by the NAME command must be relevant to the compiler pass;
otherwise they are ignored. When a file is not specified in a NAME command,
a default name is used (cf. Section 3.1.1.4, Section 3.2.2 Section 3.2.3).
The output files which may be designated are summarized in Table A-i.

Table A-1 Output File Designators

File-NameDesignator Output File Compiler Pass

DIANA Generated IL analyzer
ASMAP Statement Map analyzer
OIL Optimized IL exp/opt
OSMAP Updated Statement Map exp/opt
CODE Object Module code generator
SYMAP Symbol Map code generator
SMAP Updated Statement Map code generator
TMAP Type Map code generator

A.3.5 The PUNIT Command

The P UNIT command designates individual program units/blocks within the
compilation unit to which following PRAGMA commands are to be applied.
Further commands in the command stream pertain to the designated program
unit/block until another PUNIT or UNIT is encountered.

Texas Instruments A-3 Ada Optimizing Compiler

Development Specification THE COMPILER CONTROL LANGUAGE

A.4 Command Stream Examples

The examples below are for the case where each compiler pass has its own
control file and is invoked disjointly. The block of control sequences can
be combined into one command stream with only one LIBRARY command.

Example A-1 illustrates a typical command stream provided to the Ada
compiler when the analyzer pass is activated (indentation is for readability
purposes). In this example, the compilation unit will be a source file
since this is an analyzer command stream. The source file, 'Core.Source' is
a compilation unit within the 'Alpha. Beta. Project' program library.
Specified pragmas will be applied, both to the compilation unit as a whole
and to named program units within the command sequence. Space optimization
is specified for the entire compilation unit. The output file for the
generated I L will be 'Core. Diana'.

LIBRARY Alpha.Beta.Project
<<ANALYZER>> BEGIN

UNIT Core.Source
PRAGMA List (On)
PRAGMA Optimize (Space)
NAME DIANA (Core.Diana)

PUNIT GETNAME
PRAGMA List (Off)

-_UNIT STORECORE
PRAGMA Inline

END

Example A-i Compiler Command Stream for the Analyzer

Example A-2 illustrates a typical command sequence to control the operation
of the expander/optimizer pass of the compiler. The compilation unit
designator is the pathname of the DIANA file generated by the analyzer
(Example A-i), viz., 'Core. Diana'. The level of machine independent
optimization is specified to be 2. The expanded/optimized DIANA will be
output to the named file, 'Core.Optil'.

1.

LIBRARY Alpha. Beta. Project
<<OPTIMIZER>> BEGIN

UNIT Core.Diana
PRAGMA Optlevel (2)

END NAME OIL
(Core.Optil)

Example A-2 Compiler Command Stream for the Expander/Optimizer

Texas Instruments A-4 Ada Optimizing Compiler

,. . - .,.-. -

Development Specification THE COMPILER CONTROL LANGUAGE

Example A-3 illustrates a typical command sequence to control the operation
of the code generator pass of the compiler. The compilation unit designator
is the pathname of the optimized IL generated by the expander/optimizer
(Example A-2), viz., 'Core.Optil'. The generated code will be output to the
named file 'Core.Objcode'. The command sequence also specifies the
pathnames of files generated by the code generator, viz., a symbol map,
'Core. Symap', type map, 'Core.Typemap', an updated statement map, and a
'Core.Stmtmap' for use by the source level debugger.

LIBRARY Alpha.Beta.Project
<<CODEGEN>> BEGIN

UNIT Core.Optil
NAME Code (Core.Objcode)
NAME Symap (Core.Symap)
NAME Smap (Core.Stmtmap)
NAME Tmap (Core.Typemap)

END

Example A-3 Compiler Command Stream for the Code Generator

Texas Instruments A-5 Ada Optimizing Compiler

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

APPENDIX B

A RECURSIVE DESCENT PARSER FOR ADA

B.1 Construction of the Recursive Descent Parser

The grammar was run through a syntax analyzer to determine whether or not
the grammar is LL(1). If the grammar was LL(1), it would have been possible
to construct a completely factored parser which would execute as efficiently
as a table driven parser. Since that grammar was not LL(1), special
techniques must be used in some cases, especially where the grammar is
ambiguous.

One possible solution is to "look ahead" one or two symbols. This usually
helps only in simple cases; however, when it can be used it is probably the
simplest method. More difficult cases are handled by writing composite
routines which essentially recognize more than one alternative
simultaneously by remembering what was scanned. Finally, for the cases
where there is ambiguity, a composite routine will make use of semantic
information to r- olve the ambiguity. More detailed examples of these
techniques follow.

A side benefit of the syntax analyzer is the determination of selection sets
for each production. The LL(1) criteria is basically that all of the
selection sets for a given production be distinct. Therefore, examination
of the syntax analyzer output will permit systematic construction of the
parser. The analyzer output also indicates where clashes exist when the
LL(l) condition is not satisfied to help in determining how to handle
problems when they arise.

The output of the grammar analyzer is shown in Appendix C. This listing
consists of several parts. The first part is simply the listing of the
grammar for Ada. It was run on an IBM 370, therefore some character
translations were necessary. The listing of the grammar is followed by a
listing of all of the terminal symbols of the grammar followed by all of the
nonterminal symbols of the grammar. Since the grammar analyzer actually
handles standard BNF, productions starting with "X" followed by two lower
case letters are generated for all productions enclosed in square or curley
brackets. These listings are followed by a listing of the productions of
the grammar with the select set for each production and an indication of
whether or not that particular production satisfies the LL(1) criteria.

B.1.1 The Basic Approach

The basic approach used is to represent the Ada syntax as syntax diagrams
constructed from the modified grammar, and then implement the syntax

Texas Instruments B-1 Ada Optimizing Compiler

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

diagrams as recursive subroutines. In a simplistic implementation, there
would be a syntax diagram for each non-terminal of the grammar. In reality,
this probably is not the case since this would result in modules which were
much too small. Simple productions shall be subsumed into higher level
productions, i.e., reduced syntax diagrams shall be obtained by suitable
substitution of non-terminals in diagrams.

For example, the production for alignment-clause' consists of two
terminals, AT and MOD, followed by a 'simple.expression'.
'Alignment-clause' is only used in one production. Therefore, rather than
have a separate routine, the 'alignment-clause'; production shall simply be
recognized in the production for 'record-type-representation'. This is
purely for efficiency and does not affect the concept of a routine for every
non-terminal symbol. Since this part of the design is essentially well
understood, the design will not be carried to the level of detail of each
routine. Examples will be given for a typical routine, and special
attention paid to those areas where there are problems with the grammar.

In addition to syntactic analysis, the recursive routines shall also perform
semantic analysis and actually produce the IL, i.e., the AST. For example,
the syntax for 'if-statement' is:

if-statement ::=
IF condition THEN sequence-of.statements
(ELSIF condition THEN sequence-of-statements)
[ELSE sequence-of-statements]
END IF;

The corresponding syntax diagram is:

--- >IF-->condition ----- >THEN--->sequence-o fstatements -------

+---

I I

AI I v
+- >ELSIF --->condition-->sequence_of statements -------

A

7---
+---I I

I I V
+--+->ELSE--->conditlon-->sequence-o fstatements ----- >END--+

S<---;<---I F<---+

The syntax routine developed from this syntax diagram would perform the
following actions:

.9

Texas Instruments B-2 Ada Optimizing Compiler

.... : - ..

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

1. The terminal symbol IF has already been recognized before entry
to this routine by the calling routine. An IL node to represent
the 'if-statement' is created, and attrib -s filled in later.

2. Call the routine for condition, if successful it returns a
pointer to the IL node which represents the root of the AST for
that condition. Fill in the corresponding field in the
'if-statement' IL node. If unsuccessful, call the routine SKIP
which skips to a symbol in the error set for this routine, and
output an appropriate error message.

3. Recognize a 'sequence-of-statements'. (This is terminated by
ELSE, ELSIF or END). Fill in the field corresponding to theI sequence-of-statements' in the 'if-statement' IL node created
earlier to reference the AST for the 'sequence-of-statements'.

4. Recognize the terminal symbol THEN. If not present output an
error message and SKIP.

5. Recognize ELSIF. If not present go to step 6. Recognize
condition as in step 2. Recognize a 'sequence-of-statements'.
Construct an IL node to represent the elsif part and fill in the
field of either the previous if or elseif node. Note this is
dependent to some extent upon the IL chosen. Go to step 4.

6. Recognize ELSE. If present recognize a sequence-of-statements'
and link it in as the a field of the preceeding node.

:1 7. Recognize END, followed by IF. IF not present, SKIP and output
an appropriate error message. The tree represented by the IL node
for the 'if-statement' is returned as a reference either through a
global variable, a parameter, or possibly as a function result.
In any case, this is an implementation detail.

This pseudocode description is long primarily because it is trying to be
descriptive. The actual code will probably be comparable in size, and in
some ways, much clearer. Many of the steps which are done repetitively and
in a large number of places will be made into single procedures.

The 'if statement' routine is typical of the implementation of the syntactic
routines for most of the Ada grammar. Implementation of routines from
syntax diagrams for other language constructs proceeds in a similar straigt-
forward process. Typical areas where problems occur are discussed below.
Problem areas are those where the grammar is not LL(1). Note, if the
grammar were LL(1), the entire implementation would be as simple as the

Texas Instruments B-3 Ada Optimizing Compiler

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

example described above. Areas where the grammar diverges from LL(1) are
easily fixed by simple rewriting of the grammar; in others, where the
grammar is actually ambiguous more obscure techniques are required.

B.1.2 Left Factoring

One simple technique which can be used both for efficiency and to make the
productions LL(1) is left factoring. For example, the production for-
renaming-declaration' is as follows:

renaming-declaration
identifier : type-mark RENAMES name;
identifier : EXCEPTION RENAMES name;

I PACKAGE identifier RENAMES name;
I TASK identifier RENAMES name;

This particular production is not LL(1) because identifier begins each of
the first two alternatives. In this case, there is not a real problem,
because the following productions are clearly equivalent:

renaming-declaration ::=
identifier : new-production RENAMES name

I PACKAGE identifier RENAMES name;
I TASK identifier RENAMES name;

new-production ::= type-mark I EXCEPTION

Since EXCEPTION is a terminal symbol and is distinct from the set of
terminal symbols which can begin 'type-mark', this new production satisfies
the LL(1) condition. A syntax diagram of the procedure to implement this
production might be as follows:

renaming-declaration

+-->typemark---+

I V
--- >identifier ----- >EXCEPTION ------- >RENAMES ---- >name --- >;-->

A

+-->PACKAGE ---- >identifier -+

* +-->TASK ------- >identifier -----+

Note, in this diagram the RENAMES, 'name', and ";" are factored. This is
more efficient to code because there is less repeated code, but the syntax
routine must remember whether the result is a type, an exception, a package
or a task. This presents no problem. The result is either a field of the
IL node created early in the routine or can be remembered in a variable.

Texas Instruments B-4 Ada Optimizing Compiler

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

B. 1 .3 Composition

Now consider an example where left factoring does not work as well, namely
the productions:

allocator :: NEW type-mark [(expression)]
I NEW type-mark aggregate
NEW type-mark discriminate-constraint

I NEW type-mark index-constraint

The productions for allocator are not LL(1) since they all start with "NEW".
However, by simply introducing a new production and left factoring out the
common part, this problem goes away.

allocator ::= NEW type-mark new-prod
new-prod :: aggregate I discriminant-constraint

I index-constraint I [(expression)]

While this solves the problem at this level, new problems occur because the

select sets for the alternatives of 'new-prod' are not unique and there is
nothing that can be simply factored out. In this case, a composite routine
shall be written which simultaneously scans for one of the allowable four
productions. This production may have the capability to lookahead some
number of symbols to differentiate between the possible alternatives before
deciding whihc routine to call. The productions of interest are:

aggregate ::= (component-association {, component-association))
component-association ::= [choice {"I" choice) =>] expression
choice ::= simple-expression I discrete-range I OTHERS
discrete-range ::= type-mark [range-constraint] I range
range ::= simple-expression .. simple-expression
discriminant-constraint

(discriminant-specification {, discriminant-specification})
discriminant-specification ::= [name ("I" name) =>] expression
index-constraint ::= (discrete-range {, discrete-range))
type-mark ::= name

In this case, the problem is more severe since this actually represents an
ambiguous grammar. Note, for some input, 'aggregate' reduces to
expression' which reduces to "(expression)". Also
'discriminant constraint' reduces to "(expression)". Therefore, for the
input string: "(id)" syntactically there are at least three different
parse trees:

Texas Instruments B-5 Ada Optimizing Compiler

* *

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

new-prod new-prod

discriminant-constraint aggregate

--------------- --------------- +----------- -------------

I I I I II
(discriminant-specification) (component-association)

I I
expression expression

new-prod
I

.-------------------

I I I
(expression)

To resolve this ambiguity, a composite routine shall be written to take
advantage of available semantic information. In this case, the
differentiating semantics is the previously recognized type, and the
semantic rules concerning the make up of each of these components. For
example, semantically, aggregates with only one element must be given in the
named notation. There are similar rules about discriminants. Further,
trouble is encountered when expression is considered and anticipating that
trouble, 'expression' will eventually be constrained to return the type
associated with the expression. Using this semartic information, a
composite routine can be written to handle this production.

B.1.4 Combination of Non-terminal Productions

Another problem occurs with the production array-type-definition'.
Relevant productions are:

array-type-definition
ARRAY (index (, index)) OF subtype-indication

I ARRAY index-constraint OF subtype-indication
index-constraint ::= (discrete-range {, discrete-range))
index ::= type-mark RANGE <>
discrete-range ::= type-mark [range-constraint] I range
range ::= simple-expression .. simple-expression
range-constraint ::= RANGE range

ARRAY can be left factored, however, there are still problems since
'index-constraint' can begin with "(" Bringing the definition of
'index-constraint' up a level results in a rewritten grammar:

Texas Instruments B-6 Ada Optimizing Compiler

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

array-type-definition ::=
ARRAY (newprod) OF subtype-indication

newprod ::= newprodl {, newprodl)
newprodl::= index I discrete-range

A simple routine shall be written which handles this. Application of the
semantic rule that 'index' and 'discrete-range' cannot be mixed in the list
results in the same language being parsed. Note, the routine for 'newprodl'
must scan to the box to resolve which alternative is to be recognized.

B.1.5 Incorporating Semantics

Another technique to eliminate problems with the grammar is to modify the
grammar and use a semantic rule which cannot be expressed in BNF. For
example, the production for 'expression' is:

expression : relation (AND relation)
relation (OR relation)

I relation (XOR relation)
I relation (AND THEN relation)
relation (OR ELSE relation)

This creates problems because each alternative begins with relation. This
production requires parenthesis if the relational operators are mixed. The

* following productions are equivalent if combined with a semantic rule that
all non-parenthesized occurrences of 'booLtop' must be the same literal
string.

expression :: relation (bool-op relation)
bool-op ::= AND I OR I XOR I AND THEN I OR ELSE

There is still a minor problem in differentiating between AND and AND THEN,
and between OR and OR ELSE. This can be resolved simply by looking ahead a
single symbol.

B.1.6 Elimination of Left Recursion
-1

. There are also multiple problems with the productions for 'name'. The
relevant productions are:

Texas Instruments B-7 Ada Optimizing Compiler

/

Development Specification A RECURSIVE DESCENT PARSER FOR ADA

name identifier I indexed-component I slice
I selected-component I attribute I function-call
I operator-symbol

indexed-component ::= name (expression {, expression))
slice ::= name (discrete-range)
selected-component :: name.identifier I name.ALL

i name.operator-symbol
attribute ::= name'identifier
function-call :: name actual-parameter-part I name()
discrete-range :: type-mark [range-constraint]

i simple-expression .. simple-expression

In addition to not being LL(1), 'name' is also indirectly left recursive.
For example, 'indexed-component', I selected-component', 'attribute' and
'function-call' all begin with 'name'. Recursive descent parsers do not
tolerate left recursion. There are algorithms for eliminating left
recursion that could be applied; they eliminate left recursion by changing
to iteration or right recursion. To convert to iteration, the rule is:

Transform a left recursive production of the form,
"a::=a xlb" to an iteration of the form "a::=b (x)"

Application of this rule to 'name' after applying left factoring gives:

name :: name2 {namel)
namel ::= (expression {, expression)) I (discrete-range)

I •name3
I 'identifier i actual-parameter-part I ()

name2 identifier I operator-symbol
name3 ::: identifier l ALL I operator-symbol

A composite routine shall be written to process these productions. Semantic
information shall be used to resolve similarities between 'expression',
"discrete-range' and 'actual-parameter-part'.

Texas Instruments B-8 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

APPENDIX C

A PRACTICAL GRAMMAR FOR ADA

C.1 Ada Concrete Syntax

sequence.of-statements :,= statement (statement)

statement
(label) simple-statement (label) compound-statement

simple.statement ::= null-statement
I assignment-statement I exit-statement
I return-statement goto-statement
procedure-call I entry-call

1 delay-statement abort-statement
I raise-statement code-statement

compound-statement
if-statement I case-statement

I [identifier ":"] compound-statementl
I accept-statement select-statement

compound-statementl ::= loop-statement I block

label :=<<" identifier " "

null statement ::= NULL

assignment-statement ::= name ":= expression

if statement
IF condition THEN sequence-of-statements
{ ELSIF condition THEN sequence-of-statements }
r ELSE sequence-of-statements]

* I END IF;

condition expression

case statement
CASE expression IS
(WHEN choice { "I" choice = > seqiience-of-statements)

loop~statement = iteration-clause J basic-loop [identifier]

basic-loop ::= LOOP sequence-of-statements END LOOP

Texas Instruments C-1 Ada Optimizing Compiler

- .•-

Development Specification A PRACTICAL GRAMMAR FOR AD

iteration-clause
FOR loop-parameter IN [REVERSE] discrete-range I WHILE condition

loop-parameter ::= identifier

block
[DECLARE

declarative-part J
BEGIN

sequence-of-statements
[EXCEPTION { exception-handler) J
END [identifier]

exit-statement ::=
EXIT [name] [WHEN condition J

return-statement ::= RETURN [expression]

goto-statement ::= GOTO name

choice ::= simple-expression i discrete-range i OTHERS

declarative-part ::= { declarative-item)
{ representation-specification { program-component I

declarative-item declaration I use-clause

accept-statement
ACCEPT name [formal-part] [DO

sequence-of-statements
END [identifier] ;

delay-statement DELAY simple-expression

select-statement selective-wait
* conditional-entry-call I timed-entry-call

selective-wait =
SELECT
[WHEN condition =>]

select-alternative
(OR [WHEN condition =>]

select-alternative }
[ELSE

sequence-of-statements]
END SELECT

select-alternative
accept-statement [sequence-of-statements J

I delay-statement [sequence-of-statements]
i TERMINATE

Texas Instruments C-2 Ada Optimizing Compilei

-4.*__ _ _ _ _- - -

Development Specification A PRACTICAL GRAMMAR FOR ADA

conditional-entry-call
SELECT

entry-call [sequence-of-statements]
ELSE

sequence--of-statements
END SELECT

timed entry-call
SELECT

entry-call [sequence-of-statements]
OR

delay-statement [sequence-of-statements]
END SELECT

abort.statement ABORT name { , name }

raise_-statement RAISE [name]

range-constraint RANGE range

range ::= simple-expression .. simple-expression

discrete range ::= type-mark [range-constraint] range

use clause ::= USE name (, name }

actual-parameter-part ::=
(parameter-association (, parameter-association I)

parameter-association

[formal-parameter => I actual-parameter

formal-parameter identifier

actual-parameter expression

procedure-call
name [actual-parameter-part ;

exception-handler ::=
WHEN exception-choice ("I" exception-choice =>

sequence-of statements

exception-choice ::= name I OTHERS

entry..call ::= name [(actual-parameter-part)

code-statement ::= qualified-expression

identifier ::= letter { [underscore] letter-or-digit)

letter-or-digit ::= letter I digit

Texas Instruments C-3 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

letter ::= upper-case-letter t lower-case-letter

numeric-literal decimal-number I based-number

decimal-number integer [integer] [exponent

integer digit ([underscore] digit)

exponent E exponenti

exponent1 [+] integer - integer

based-number base # based-integer [based-integer] # [exponent

base ::= integer

based-integer extended-digit ([underscore] extended-digit }

extended-digit digit I letter

character-string "(character }"

function-call
name actual-parameter-part I name ()

name ::= identifier
indexed-component I slice
selected-component I attribute

I function-call I operator-symbol

indexed-component name (expression (, expression))

, tslice ::= name (discrete-range)

selected-component ::= name selected-compl

selected-compl ::= identifier I ALL I operator-symbol

attribute ::= name "'" identifier

literal
numeric-literal I enumeration-literal I character-string INULL

aggregate
(component-association (, component-association))

component-association ::=
[choice ("I" choice } =>] expression

expression
relation (AND relation }

I relation { OR relation)
*., I relation { XOR relation)

Texas Instruments C-4 Ada Optimizing Compiler

. T .~"goal*,,. . .

Development Specification A PRACTICAL GRAMMAR FOR ADA

I relation (AND THEN relation)
I relation (OR ELSE relation }

relation
simple-expression [relational-operator simple-expression
I simpleexpression [NOT] IN range
I simple expression (NOT] IN subtype-indication

simpleoexpression [unary-operator] term (adding-operator term)

term ::= factor (multiplying-operator factor I

factor primary [** primary]

primary =
literal I aggregate I name I allocator I function-call
i type-conversion I qualified-expression I (expression)

logicaloperator AND OR I XOR

relational-operator = = /= "<" I "<=" I ">"

adding operator + - &

unary operator + - NOT

multiplying-operator * / MODI REM

exponentiating-operator **

type.conversion ::= type-mark (expression)

qualified-expression ::= typemark qualified-exl

qualified-exl : expression) J "'" aggregate

allocator NEW type-mark allocator1

allocatorl [(expression) 3 I aggregate I discriminant-constraint
index-constraint

declaration declarationl I type-declaration
i subtype-declaration I subprogram-declaration I package-declaration
I task declaration

declarationI identifier-list ":" declaration2

declaration2 object-or-number-declaration
i EXCEPTION ; I renaming-declaration

object-or-number..declaration
[CONSTANT] subtype-indication [":=" expression]

I [CONSTANT] array-type-definltion [":=" expression]

Texas Instruments C-5 Ada Optimizing Compiler

E I , , -- .

Development Specification A PRACTICAL GRAMMAR FOR ADA

CONSTANT II:Iexpression

identifier-list identifier {,identifier

type-declaration TYPE identifier [discriminant-part]
IS type-definition ; Iincomplete-type-declaration

type-definition :=enumeration-type-definition Iinteger-type-definition
Ireal-type-definition Iarray-type-definition frecord-type-definition
Iaccess-type.definition I derived-type-definition I private--type-definition

subtype-declaration SUBTYPE identifier IS subtype-indication

subtype-indication type-mark [constraint]

type-mark name

constraint range-constraint Iaccuracy-constraint I index-constraint
di scriminant-constraint

derived-type-definition :=NEW subtype-indication

enumeration-type-definition:=
(enumeration-literal (, enumeration-literal)

enumeration-literal :=identifier I character-literal

integer-type-definition :=range-constraint

real-type-definition accuracy-constraint

accuracy-constraint floating-point-constraint Ifixed-point-constraint

floating-point-constraint
DIGITS simple-expression [range-constraintJ

fixed-point-constraint
DELTA simple-expression [range-constraint]

array-type..definition
ARRAY-(index {,index I)OF subtype-indication
IARRAY index-constraint OF subtype-indication

ARRAY (indexi l indexi l OF subtype-.indication

indexl type-mark RANGE i<i
Itype-mark [range-constraint)Irange

index-..constraint (discrete-range (,discrete-range))

record-type-definltion :=RECORD comporent-list END RECORD

*component-list (component-declaration I[variant-part)INULL

Texas Instruments C-6 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

component-declaration
identifier-list ":" subtype-indication I ":' expression]
identifier list ":" array-type-definition [":=" expression]

discriminant-part
(discriminant-declaration (; discriminant-declaration })

discriminant-declaration
identifier-list ":" subtype-indication ["-" expression]

discriminant-,constraint
(discriminant-specification { , discriminant-specification })

discriminant_.specification : name ('gl name = >] expression

variant-part ::=
CASE name IS
{ WHEN choice { "i" choice => component-list) END CASE

access-type-definition ::= ACCESS subtype-indication

incomplete-type-declaration ::= TYPE identifier [discriminant-part]

pragma ::= PRAGMA identifier [(argument (, argument))

argument [identifier =>] argumenti

argumentl name expression

program-component body
I package-declaration I task-declaration I body-stub

body ::= subprogram-body I package-body I task-body

subprogram.declaration ::= subprogram-specification
I generic-subprogram-declaration
I generic_.subprogram-instantiation

subprogram-specification
PROCEDURE identifier [formal-part

. FUNCTION designator [formal-part 3 RETURN subtype-indication
designator ::= identifier I operator-symbol

operator symbol ::= character-string

formal pairt,
(parameter-declaration { ; parameter-declaration I)

parameter declaration
identifier-list ":" mode subtype-indication [":=" expression J

mode [IN] I OUT I IN OUT

* Texas Instruments C-7 Ada Optimizing Compiler

ELL

Development Specification A PRACTICAL GRAMMAR FOR ADA

subprogram-body ::=
subprogram-specification IS
declarative-part

BEGIN
sequence-of-statements

[EXCEPTION
{ exception-handler)]

END [designator]

package-declaration ::= generic-package-declaration
I package-decl-header package-decl

package-decl-header ::= PACKAGE identifier IS

package-decl ::= package-specification I generic-package-instantiation

package-specification
(declarative-item)

[PRIVATE { declarative-item }
{ represertation-specification }]

END [identifier]

package-body
PACKAGE BODY identifier IS
declarative-part

[BEGIN
sequence-of-statements

S[EXCEPTION
{ exception-handler I]]

END [identifier]

private-type-definition [LIMITED J PRIVATE

renaming-declaration
renaming-declarationl RENAMES name

I PACKAGE identifier RENAMES name
I TASK identifier RENAMES name
1 subprogram-specification RENAMES name

renaming-declarationl ::= type-mark I EXCEPTION

task-declaration ::= taslspecification

task-specification
TASK [TYPE] identifier [IS
{ entry-declaration }
(representation-specification)

END [identifier]]

task-body
TASK BODY identifier IS

[declarative-part]

Texas Instruments C-8 Ada Optimizing Compiler

* b

Development Specification A PRACTICAL GRAMMAR FOR ADA

BEGIN
sequence-of-statements
EXCEPTION
(exception-handler I]

END [identifier]

entry declaration
ENTRY identifier [(discrete-range)] [formal-part]

compilation { compilation-unit }

compilation-unit context-specification compilation-unitl

compilation-unitl subprogram-declaration
subprogram-body I package-declaration I package-body I subunit

context specification = with-clause [use-clause] 1

with-clause ::= WITH name (, name ;

subunit i:=
SEPARATE (name) subunit-body

subunit.body
subprogram-body I package-body I task-body

body- stub
subprogram-specification IS SEPARATE
PACKAGE BODY identifier IS SEPARATE
TASK BODY identifier IS SEPARATE

generic-subprogram-declaration
generic-part subprogram-specification ;

generic-package-declaration
generic-part package-specification

generic--part ::= GENERIC { generic-formal-parameter 1

generic formal-parameter
parameter declaration

I TYPE identifier [discriminant.part] IS generic-type-definition
I WITH subprogram-specification [IS name]
I WITH subprogram-specification IS <>"

generic type-definition
(I'<",,) I RANGE "<>" I DELTA "<>" I DIGITS "<>"
I array-type-definition I access-type-definitlon
I private-type-definition

generic subprogram-instantiation
PROCEDURE identifier IS generic-instantiation ;

I FUNCTION designator IS generic-instantiation ;

Texas Instruments C-9 Ada Optimizing Compiler

_ ____, -. -

Development Specification A PRACTICAL GRAMMAR FOR ADA

generic-package-instantiation
NEW name [(generic-association { , generic-association })

generic-association ::=
[formal-parameter =>] generic-actual-parameter

generic-actual-parameter
expression I name I subtype-indication

representation-specification ::=
length-specification i enumeration-type-representation

I record-type-representation address-specification

length-specification ::= FOR attribute USE expression

enumeration-type-representation FOR name USE aggregate

record-type-representation
FOR name USE

RECORD [alignment-clause ;]
{ name location ; I

END RECORD

location ::= AT simple-expression RANGE range

alignment-clause ::= AT MOD simple-expression

address-specification ::= FOR name USE AT simple-expression

.*1

C.2 Productions

abort-statement
4 ABORT name Xbh

==>ABORT

accept-statement
ACCEPT name Xao Xap

==>ACCEPT

access-type-definition ::=
ACCESS subtype-indication

==>ACCESS

accuracy-constraint ::=
floating-point-constraint.

==>DIGITS
fixed-polnt-constralnt

==>DELTA

Texas Instruments C-10 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

actual parameter
expression

==>(+ character 1"character_-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

actual parameter-part
(parameter-association Xb)

adding- operator

address-specification
FOR name USE AT simple-expression

==FOR

aggregate
(component-association Xcc)

alignment-clause
AT MOD simple-expression

allocator
NEW type-.mark allocatori

==>NEW

allocatori
Xck (+&** /= --

=~>I<I 1111II~II1111:=',: lowercaseletter

=>upper-case-letter AND ARRAY BEGIN END
==>FOR FUNCTION GENERIC IN IS LOOP MOD NOT
==>OR PACKAGE PRIVATE PROCEDURE RANGE REM
==>RENAMES SUBTYPE TASK THEN TYPE USE XOR

aggregate
NOT LL(I)

discriminant-constraint I
NOT LL(I)

index- constraint
NOT LL(1)

Texas Instruments C-11 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

argument
Xdn argumentl

+ - "(character 1" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

argumentl
name I

==>"{ character)" lower-case-letter upper-case-letter

expression

NOT LL(1)
==>(- "{ character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

array-type-definition
ARRAY (index Xdc) OF subtype-indication I

==>ARRAY
ARRAY index-constraint OF subtype-indication ARRAY (indexl Xdd) OF

subtype-indication
NOT LL(1)

==>ARRAY

assignment-statement
name ":=" expression

==>"(character }" lower-case-letter upper-case-letter

attribute
name "'" identifier

==>"(character 1" lower-case-letter upper-case-letter

base
integer

==>digit

based-integer
extended-digit Xb

==>digit lower-case-letter upper-case-letter
' ==>

based-number
base # based-integer Xbq # Xbr

==>digit

basic-loop
LOOP sequence-of-statements END LOOP

==>LOOP

block

Texas Instruments C-12 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xa BEGIN sequence-ofstatements Xa END Xa
==>BEGIN DECLARE

body
suhprogram-bodyI

==>FUNCTION PROCEDURE
package body I =>AKG

task-body
==>TASK

body-stub
subprogram-specification IS SEPARATE;

== >FUNCTION PROCEDUREPACKAGE BODY identifier IS SEPARATE;
==>PACKAGE

TASK BODY identifier IS SEPARATE
==>TASK

case statement
CASE expression IS Xag

==>CASE

character-string
"(character i

-=>"{ character 1

choice

simpi==> eepeso + - fcharacter 1"character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

discrete.-range
'*NOT LL(1)***

-=> + character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

OTHERS
==>OTHERS

code statement
qualified--expression

==typemark

compilation
Xer

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE
==>WI TH

compilation--unit
context.-specification compilation-unitl

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE
==>WITH

Texas Instruments C-13 Ada Optimizing Compilerj

EL-/

Development Specification A PRACTICAL GRAMMAR FOR ADA

compilation-unitl
subprogram-declarationI

==>FUNCTION GENERIC PROCEDURE
subprogram-body
NOT LL(1)

->FUNCTION PROCEDURE
package-declaration
-NOT LL(l)*

==>GENERIC PACKAGE
package-body I
NOT LL(1)

==> PAC KAGE
subunit

==>SEPARATE

component-association
Xcd expression

==>("+ character 1"character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL OTHERS

component-declaration
identifier-list Y'subtype-indication Xdi;

-->lower-case-letter upper-case-letter
identifier-list 'Y' array-type-definition Xd
NOT LL(1)

-- >l ower-case-letter upper-case-letter

component-list
Xdg Xdh

-->lower-case-letter upper-case-letter CASE
==>END WHEN

NULL;
==>NULL

compound-statement
if-statement

==IF
case-statement I

==>CASE
Xad compound-statementl

-->lower-case-letter upper-case-letter BEGIN
==>DECLARE FOR LOOP WHILE

accept-statem7.ent I
==>ACCEPT

sel ect-statement
==>SELECT

compound-statementl
loop-statement

==>FOR LOOP WHILE
block

Texas Instruments C-14 Ada Optimizing Compiler-

Development Specification A PRACTICAL GRAMMAR FOR ADA

==>BEGIN DECLARE

condition
expression

+ >("+ character 1"character-literal
==>digit lower-case.-letter typemark upper-case-letter
==>NEW NOT NULL

conditional entry-call
SELECT entry-call Xbe ELSE sequence-ofstatements END SELECT

==>SELECT

constraint :
range-constraint

==RANGE
accuracy-constraint I

==>DELTA DIGITS
index-constraint

discrimi nant-constraint
'*NOT LL(1)***

contextspecification
Xe

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE
==>WITH

decimal-number
integer Xbl Xbm

== >digit

declaration
declarationl

=>lower-case-letter upper-case-letter
type.declarationI

~=TYPE
subtype declaration I

==>SUBTYPE
subprogram declarationI

==>FUNCTION GENERIC PROCEDURE
package-declaration I
NOT LL(1)

==>GENERIC PACKAGE
task-declaration

==>TASK

declarationi .
identifier-list :"declaration2

-->lower-case-letter upper-case-letter

declaration2
object-or-number-declarationI

Texas Instruments C-15 Ada Optimizing ~

A-AI09 978 TEXAS INSTRUMENTS INC LEWISVILLE EQUIPMENT GROUP F/G 9/2
ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPE-CETC(U)
DEC 81 F30602-80-C-1293

UNCLASSIFIlED RADC-TR-81-360-VOL-3 NI.3IIIIIIIIIII
i fllllllllfh.,IIIIIIIIIIIIIfll~fflf
IIIIIEIIEEEEEE
EIIhEIhEEEEEI
IIIIIIIfflfflfllfllII
IIIEEEIhhEEIIE

11111 ~ ~ 2 1.1111_L~ ~I 25

- . IIII 8
INN .25 II~ I .

MICROCOPY RESOLUTION TEST CHART

NA11ONAL BUREAU OF T ANARD I qqA A

Development Specification A PRACTICAL GRAMMAR FOR ADA

>"{ character }" lower-case-letter upper-case-letter

==>ARRAY CONSTANT
EXCEPTION ; I

==>EXCEPTION

renaming-declaration
NOT LL(1)

==>"(character }" lower-case-letter upper-case-letter
==>EXCEPTION FUNCTION PACKAGE PROCEDURE
==>TASK

declarative-item
declaration

==>lower-case-letter upper-case-letter FUNCTION
==>GENERIC PACKAGE PROCEDURE SUBTYPE TASK
==>TYPE

use-clause
==>USE

declarative-part
Xal Xam Xan

==>lower-case-letter upper-case-letter BEGIN
==>END FOR FUNCTION GENERIC PACKAGE PROCEDURE
==>SUBTYPE TASK TYPE USE

delay-statement
DELAY simple-expression

==>DELAY

derived-type-definition
NEW subtype-indication

==>NEW

designator
identifier I

==>lower-case-letter upper-case-letter
operator-symbol

==>"(character }"

discrete-range
type-mark Xb I

==>"(character)" lower-case-letter upper-caseletter

range

NOT LL(1)
==>(+ - "(character }" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

discriminant-constraint
(discriminant-specification Xd)

discriminant-declaration

Texas Instruments C-16 Ada Optimizing Compiler

• - v ~ ~~~~.. ' , ; r
+

Development Specification A PRACTICAL GRAMMAR FOR ADA

identifier-list ":" subtype-indication Xd
==>1 ower-case-letter upper-case-i etter

discriminant-part
(discriminant-declaration Xd)

discriminant-specification
Xd expression

==>("+ character 1" character-literal
=>digit lower-case-letter typemark upper-case-letter

==>NEW NOT NULL

entry-call
name Xb

-=>'(character)"lower-case-jetter upper-case-letter

entry-declaration
ENTRY identifier Xep Xeq

==>ENTRY

enumeration-literal
identifier I

==>l owe rcase-letter upper-case-letter
character-li teral

==>character-literal

enumeration-type-definition
Cenumeration-literal Xc)

enumeration-typerepresenta~ion
FOR name USE aggregate

==FOR

exception-choice
name I

-=>"(character)"lower-case-letter upper-case-letter

OTHERS
OTHETRER

exception-handler
WHEN exception-choice Xb =>sequence-of-statements

==>WHEN

exit statement
EXIT Xa Xaj

==> EXIT

exponent
E exponenti

Texas Instruments C-17 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

exponentiating-operator

exponentl

Xbp ite~er ==>+ digit

-integer

expression
relation Xcf

+ - (character)"character-literal
==>digit lower-case-lette typemark upper-case-letter
==>NEW NOT NULL

relation Xcg
NOT LL(1)

==>(+ character)" character-literal
==>digit lower-.caseletter typemark upper-case-letter
==>NEW NOT NULL

relation Xch I
***NOT LL(l)-**

==>("+ character)" character-literal
=>digit lower-case-letter typemark upper-case-ietter

reltio Xc I==>NEW NOT NULL

'*NOT LL(1)***
==(+ - '1(character I" character-.literal

=>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

relation Xc
'*NOT LL(1)***

+ >("+ character)" character-literal
==>digit lower-case-letter typeniark upper-case-letter
==>NEW NOT NULL

extended-digit
digit

=>digit
letter

=>lower-case-letter upper-case-letter

factor
primary Xci

=>("{ character)" character-literal digit
=>lower-case-letter typemark upper-case-letter
==>NEW NULL

flxed-polnt-.constraint
DELTA simple-expression Xdb

==>DELTA

Texas Instruments C-18 Ada Optimizing Compiler

doom

Development Specification A PRACTICAL GRAMMAR FOR ADA

floating-point-constraint
DIGITS simpleexpression Xda

==>DIGITS

formal-parameter
identi fier

==>1 ower-case-ietter upper-case-letter

formalpart :
(parameter-declaration Xdq)

function-call
name actual-parameter-part

==i{character)"lower-case-letter upper-case-letter

name()
NOT LL(1)

=>'{ character 1"lower-case-ietter upper-case-letter

generic-actual-parameter
expressionI

==>('+ character 1" character-literal
=>digit lower-case-letter typemark upper-case-letter

==>NEW NOT HUWLL
name I
NOT LL(1)

==>"{ character }"lower-case-letter upper-case-letter

subtype indication
NOT LL(1)

->{character)"lower-case-letter upper-case-letter

generic-association
Xfh generic-actual-parameter

==>(- "(character I" character-literal
=>digit lower-case-letter typemark upper-case-letter

==>NEW NOT NULL

generic formal-parameter
parameter-declaration;

==>lower-case-letter upper-case-letter
TYPE identifier Xfd IS generic-type-definltion;I

==>TYPE
WITH subprogram-specification Xfe;

==>WI TH
WITH subprogram-specification IS <

NOT LL(1)
==>WITH

Texas Instruments C-19 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

generic-package-declaration
generic-part package-specification

==>GENERIC

generic-package-instantiation
NEW name Xff

==>NEW

generic-part
GENERIC Xfc

==>GENERIC

generic-subprogram-declaration
generic-part subprogram-speci fi cation

==>GENERIC

generic-subprogram-instantiation
PROCEDURE identifier IS generic-instantiation

==>PROCEDURE
FUNCTION designator IS generic-instantiation

==>FUNCTION

generic..type-definition

RANGE<>
==RANGE

DELTA II<>"II

==>DELTA
DIGITS 11<>" 1

6 ==>DIGITS
* array-type-definition

==>ARRAY
access..type-definition

==>ACC ES S
private-.type-definition

==>LIMITED PRIVATE

goto-statement
GOTO name

==>GOTO

identifier
letter Xbj

==>lower-case-letter upper-case-letter

identifier-list
identifier Xcp

==>lower-case-letter upper-case-letter

if-statement
IF condition THEN sequence-of-statements Xae Xaf END IF

=>IF

Texas Instruments C-20 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

incomplete-ype-declaration
TYPE identifier Xdk;

==>TYPE

index-.constraint :
(discrete-.range Xdf)

indexed--component
name (expression Xcb)

-=>"(character 1"lower-case-letter upper-case-letter

indexl
type-mark RANGE g<~

-- >"(character)'lower-case-letter upper-case-letter

type-mark Xde
NOT LL(1)

==".character)"I lower..case-ietter upper-case-letter

range
NOT LL(1)

==>("+ character)" character-literal
=>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

integer
digit Xbn

==>digit

integer-type-definition
range--constraint

==RANGE

iteration.-clause
FOR loop-parameter IN Xa discrete-.range

==FOR
WHILE condition

==>WHILE

label ::
II identifier ">>

length specification
FOR attribute USE expression

==FOR

letter
upper--case-letterI

=>upper-case-letter

*ITexas Instruments C-21 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

lowercase-letter
=>lower-.case-letter

letter-or-digit
letterI

==>lower...caseletter upper-case-letter
digit

=>digit

literal
numeric-literal

=>digit
enumeration-literal I

==>character-literal lower-case-letter upper-case-letter

character-stringI
=>"(character 1

NULL
==>NULL

location :
AT simple-..expression RANGE range

==>AT

logical-operator
AND I

==>AN4D
ORI

XOR
==>XOR

loop-parameter
identi fier

==>lowerctase-letter upper-case-letter

loop-statement
Xai basic-loop Xa

==>FOR LOOP WHILE

mode
Xd

>{character)"lower-case-letter upper-case-letter

OUT
==>OUT

IN OUT
NOT LL(I)

==> IN

multiplying-operator

Texas Instruments C-22 Ada Optimizing Compiler

7-n4 4

Development Specification A PRACTICAL GRAMMAR FOR ADA

MOD ==>MOD

REM ==>REM

name
identifier

==>lower-case-letter upper-case-letter
indexed-componentI
NOT LL(1)

="(character 1"lower-case-letter upper-case-letter

slice
NOT LL(1)

=>"{ character 1"lower.case-letter upper-case-letter

selected-component
'*NOT LL(1)***

-- >"{ character 1"lower-case-letter upper-case-letter

attributeI
'*NOT LL(1)***

==>"(character)"lowercase-jetter uppercase-letter

function-callI
NOT LL(1)

-- >"{ character 1"lower-case-letter upper..case-letter

operator-symbol
NOT LL(1)__>" character 1

null .statement
NULL;

==>NULL

numeric-literal
decimal-numberI

==>digit
based-number
NOT LL(1)

== >digit

object-or-number-declaration
Xcl subtype-indication Xcm;

==>I(character 1"lowercase-letter uppercaseletter
==CONS TANT

Xcn array-type-definition Xco;
NOT LL(I)

==>ARRAY CONSTANT
CONSTANT ":=" expression

Texas Instruments C-23 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

NOT LL(1)
==>CONSTANT

operator-symbol
character-stri ng

"(character g

package-.body
PACKAGE BODY identifier IS declarative-part Xei END Xe

==>PACKAGE

package-decl
package-speci fication

==>lower-case-letter upper-case-letter END
==>FUNCTION GENERIC PACKAGE PRIVATE PROCEDURE
==>SUBTYPE TASK TYPE USE

generi cpackage-instanti ati on

package-decl-header :
PACKAGE identifier IS

* ==>PACKAGE

package-declaration :
generic-package-declaration

==>GENERIC
package-decl-header package-decl

==>PACKAGE

package-specification
Xed Xee END Xeh

=>lower-case-letter upper-case-letter END
==>FUNCTION GENERIC PACKAGE PRIVATE PROCEDURE
==>SUBTYPE TASK TYPE USE

parameter-association :
Xb actual-parameter

+ >("+ character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

parameter-declaration :
identifier-list ":" mode subtype-indication Xdr

==>lower-case-letter upper-case-letter

pragma
PRAGMA identifier Xdl

=P RAGMA

primary

literal character I" character-.literal digit
==>lower-case-letter upper-case-letter NULL

Texas Instruments C-24 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

aggregate I

name I
NOT LL(1)

==>"{ character)" lower-case-letter uppercase-letter

allocator =
==>NEW

function-call I
NOT LL(1)

-- >"{ character)" lower-case-letter upper-case-letter

type conversion I
NOT LL(1)

==>"{ character }" lower-case-letter upper-case-letter

qualified-expression
==>typemark

(expression)
NOT LL(1)

private.type-definition
Xe PRIVATE

==>LIMITED PRIVATE

procedure-call
name Xb

==>"(character I" lower-case-letter upper-case-letter

program-component
body I

==>FUNCTION PACKAGE PROCEDURE TASK
package-declaration I
NOT LL(1)*

==>GENERIC PACKAGE
task declaration I
NOT LL(1)

==>TASK
body-stub
NOT LL(1)

==>FUNCTION PACKAGE PROCEDURE TASK

qualified expression ::=
typemark qualified-exl

==>typemark

qualified-exl
(expression)

"'" aggregate

Texas Instruments C-25 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

raise-statement
RAISE Xbi

==>RAISE

range
simple-expression .. simple-expression

==(+ - "{ character)" character-literal
==>digit lower-case-letter typemark upper-caseiletter
==>NEW NOT NULL

range-constraint
RANGE range

==> RANGE

real-type-definition :
accuracy-constrai nt

==>DELTA DIGITS

record-type.definition
RECORD component-list END RECORD

==>RECORD

record-type-representation
FOR name USE RECORD Xfi Xf END RECORD

==FOR

relation
simple-expression Xc

+ >("+ character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

simple-expression Xc IN range
NOT LL(1)

==> + character)" character-literal
=>digit lower-case-letter typemark upper-case-letter

==>NEW NOT NULL
simple-expression Xc IN subtype-indication
NOT LL(1)

==>('+ character)" character-literal
=>digit lower-case-letter typemark upper-case-letter

==>NEW NOT NULL

relational-operator

Tea ntuet -6Ad piiigCmie

1WE T

Development Specification A PRACTICAL GRAMMAR FOR ADA

renaming-declaration
renaming-declarationl RENAMES name;

-"(character 1"lower-case-letter upper-case-letter
==>EXCEPTION

PACKAGE identifier RENAMES name;
==>PACKAGE

TASK identifier RENAMES name;
==>TASK

subprogram-specification RENAMES name
=FUNCTION PROCEDURE

renaming declarationl
type markI

~~i(character I"lowercase-letter upper-case-letter

EXCEPTION
==>EXCEPTION

representation-specification
length-specificationI

==>FOR
enumeration-type-representation
'*NOT LL(1)***

==>FOR
record-type-representation
'*NOT LL(1)***

==FOR
address-specification
'*NOT LL(1)***

==FOR

return statement
RETURN Xak

==>RETURN

select alternative
accept-statement Xbc

==ACCE PT
delay-statement Xbd I

==DLAY
TERMINATE;

==>TERMI NATE

select statement
selective-.wait

==>SELECT
conditionalentry-call I

*** NOT
LL()***

Texas Instruments C-27 Ada Optimizing Compiler

Development Specif ication A PRACTICAL GRAMMAR FOR ADA

==>SELECT
timed-entry-cal 1
NOT LL(l)

=>ELECT

selected-component
name .selected-compl

->{character)"lower-case-letter upper-caseiletter

selected-compl
identifier

==>lower-case-letter upper-case-letter
ALL

==>ALL
operator-symbol

="(character)

selective-wait
SELECT Xar select-alternative Xa Xbb END SELECT

==>SELECT

sequence-of-statements
statement Xaa

=>"«"<1 "{ character)" lower-case-letter
=>typemark upper-case-letter ABORT ACCEPT
==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

simple-expression
Xc term Xc

==>("(character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

simple-.statement
null-statement

==>NULL
assignment-statement

~>{character 1"lower-case-letter upper-case-letter

exit-statementI
==>EXIT

return-.statement I
==>RETURN

goto-statement, I
==>GOTO

procedure-.callI
NOT LL(1)

-=>"(character)"lower-case-letter upper.case-letter

entry-call

Texas Instruments C-28 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

NOT LL(1)

=>"(character 1" lower-case-letter upper-case_]etter

delay-statement I
==>DELAY

abort._statement I
==>ABORT

raisestatement I
==>RAISE

code--statement
==>typemark

slice
name (discrete-range)

>"(character }" lower-case-letter upper-case-letter

statement
Xab simple-statement I

==>"" "{ character)" lower-case-letter
==>typemark upper-case-letter ABORT DELAY
==>EXIT GOTO NULL RAISE RETURN

Xac compound-statement
NOT LL(1)

==>"<" lower-case-letter upper-case-letter
==>ACCEPT BEGIN CASE DECLARE FOR IF LOOP
==>SELECT WHILE

subprogram body :
subprogram-specification IS declarative-part BEGIN sequence-of-statements

Xea END Xec
==>FUNCTION PROCEDURE

subprogram-declaration
subprogram-specification i

==>FUNCTION PROCEDURE
generic-subprogram-declarationI

==>GENERIC
generic-_subprogram instantiation
NOT LL(1)

==>FUNCTION PROCEDURE

subprogram specification
PROCEDURE identifier Xdo I

==>PROCEDURE
FUNCTION designator Xdp RETURN subtype-indication

==>FUNCTION

subtype declaration
SUBTYPE identifier IS subtype-indication

==>SUBTYPE

subtype, indication

Texas Instruments C-29 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

type-mark Xcr
=>"l{ character 1"lower-case-letter upper-case-letter

subunit
SEPARATE (name)subunit-body

==>SEPARATE

subunit-body
subprogram-.body

==>FUNCTION PROCEDURE
package-body

==>PAC KAGE
task-body

==>TASK

task-body
TASK BODY identifier IS Xel BEGIN sequence-ofstatements Xem END Xeo

==>TAS K

task-declaration
task-speci fi cati on

==>TASK

task-specification
TASK Xe identifier Xe

==>TASK

term
factor Xc

=>(eI{ character 1"character-literal digit
=>lower-case-letter typemark upper-case-letter

==>NEW NULL

timed-entry-call :
SELECT entry-call Xbf OR delay-statement Xbg END SELECT

==>SELECT

type-conversion
type-mark (expression)

=>{character)" lower-case-letter upper-case-letter

type-declaration
TYPE identifier Xcq IS type-.definition;

==>TYPE
incomplete-type-declaration
NOT LL(1)

==>TYPE

type-definition
enumeration-type-definitlon

==>(

Texas Instruments C-30 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

integer-type-definition
==RANGE

real-type.definition I
==>DELTA DIGITS

array-type-definition
==ARAY

record-type-.definition
==>RECORD

accesstype-definition
== >ACC E SS

derived-type-definition
==NEW

private-type-def inition
==>LIMITED PRIVATE

type-mark
name

-=>"(character 1"lower-case-letter upper-case-letter

unary operator

NOT
==>NOT

use.clause
USE name Xb

==>USE

variant-part
CASE name IS Xdl END CASE

==>CASE

with-clause
WITH name Xfb

* ==>WI TH

* Xaa
statement Xaa

==>"" "{character)"lower-case-letter

==>typemark upper...caseletter ABORT ACCEPT
==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

--empty-
NOT LL(1)

==>"1<<1 "1(character)" lower.caseletter
=>typemark upper-case-letter ABORT ACCEPT

==>BEGIN CASE DECLARE DELAY ELSE ELSIF END
==>EXCEPTION EXIT FOR GOTO IF LOOP NULL

Texas Instruments C-31 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

==>OR RAISE RETURN SELECT WHEN WHILE

Xab
label Xab

<empty>
=>"{ character)" lower-case-letter typemark
=>upper..case..jetter ABORT DELAY EXIT GOTO

==>NULL RAISE RETURN

Xac
label Xac

<empty>
==>lower-case-letter upper-case-letter ACCEPT
==>BEGIN CASE DECLARE FOR IF LOOP SELECT
==>WHI LE

Xad
identifier : I

==>lower-case-letter upper-case-letter

<empty>==>BEGIN DECLARE FOR LOOP WHILE

Xae
ELSIF condition THEN sequence-ofstatements Xae

==>ELSI F
<empty>

==>ELSE END

Xaf =
ELSE sequence-of-statementsI

==> ELSE
<empty>

==END

Xag
WHEN choice Xah => sequence-of-statements Xag

==>WHEN
<empty>
NOT LL(l)

==>«<1 "(character)" lower-case-letter
=>typemark upper-case-letter ABORT ACCEPT

==>BEGIN CASE DECLARE DELAY ELSE ELSIF END
==>EXCEPTION EXIT FOR GOTO IF LOOP NULL
==>OR RAISE RETURN SELECT WHEN WHILE

Xah
gpgchoice Xah

<empty>

Texas Instruments C-32 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xai
iteration--clause

==>FOR WHILE
,:empty>

==LOOP

Xa
identifier

==>lower-case-letter upper-case-letter
,~empty>

Xa
RE VERSE

==>REVERSE
<empty>

==(+ - "1(character I" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

Xa
DECLARE declarative-part

==>DEC LARE
' empty>

==>BEGIN

Xa
EXCEPTION Xa

==>EXCEPT ION
,-empty>

==END

Xa
exception-handler Xa

==>WHEN
<empty>

==>END

Xa
identifier

=>lower-case-letter upper-case-letter
<empty>

Xa
name

->(character 1"lower-case-letter upper-case-letter

--empty>
>;WHEN

Xaj
WHEN condition

Texas Instruments C-33 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

==>WHEN
<empty>

Xak
expression

==>("+ character)"character-literal
==>digit lower-case-ietter typemark upper-case-letter
==>NEW NOT NULL

<empty>

Xal
declarative-item Xal

==>lower-case-letter upper-case-letter FUNCTION
==>GENERIC PACKAGE PROCEDURE SUBTYPE TASK
==>TYPE USE

<empty>
'*NOT LL(1)***

==>BEGIN END FOR FUNCTION GENERIC PACKAGE
==>PROCEDURE TASK

Xam
representation-specification Xam

==> FOR
<empty>

==>BEGIN END FUNCTION GENERIC PACKAGE PROCEDURE
==>TASK

Xan
program-component Xan

==>FUNCTION GENERIC PACKAGE PROCEDURE TASK

<empty>
==>BEGIN END

Xao
formal-partI

<empty>
==>; DO

Xap
DO sequence-of-statements END Xaq

<empty>

Xaq
identifier

==>lower-case-letter upper-case-letter
<empty>

Texas Instruments C-34 Ada Optimizing CompilerJ

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xar
WHEN condition =>

==>WHEN
<empty>

==>ACCEPT DELAY TERMINATE

Xa
OR*Xba select-alternative Xa

<empty>==>ELSE END

Xba
WHEN condition =>

==>WH EN
<empty>

==>ACCEPT DELAY TERMINATE

Xbb -=
ELSE sequence-ofstatements

==>ELSE
<empty>

==END

Xbc
sequence-of-statements

==h1«<<1 "(character)" lower-case-letter
=>typemark upper-case-letter ABORT ACCEPT

==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

<empty>
==>ELSE END OR

Xbd =
sequence-of-statementsI

=>11«"1 "(character)" lower-case-letter
==>typemark upper-case-letter ABORT ACCEPT
==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

<empty>
==>ELSE END OR

Xbe :
sequence-ofstatements

==>01<< "'(character)" lower...caseletter
==>typemark upper-case-letter ABORT ACCEPT
==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

-:empty>

Texas Instruments C-35 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

==>ELSE

Xbf
sequence.-ofstatements

-=>"«"<1 "(character)"lower-case-letter
==>typemark upper..case...letter ABORT ACCEPT
==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
==>IF LOOP NULL RAISE RETURN SELECT WHILE

<empty>

Xbg
sequence-ofstatementsI

-=>"«<<" "1 character)" lower-case-letter
=>typemark upper-case-letter ABORT ACCEPT

==>BEGIN CASE DECLARE DELAY EXIT FOR GOTO
'~NULL RAISE RETURN SELECT WHILE

<empty>

Xbh
name Xbh

<empty>

Xbi
name

-- >"(character)Ilower-case-letter upper-case-letter

<empty>

Xb
range-constraintI

==RANGE
<empty>

= >>) => LOOP

Xb
,name Xb

<empty>

Xb
parameter-.association Xb

<empty>

Texas Instruments C-36 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xb
formal-parameter =>I

==>lower-case-letter upper-case-letter
<empty>
NOT LL(1)

+ >("+ character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
=NEW NOT NULL

Xb
actual-parameter-partI

<empty>

Xb
I"exception-choice Xb

,-empty>

Xb
(actual-parameter-part)I

<empty>

Xbj
Xbk letter-or-digit Xbj

==>digit lower-case-letter underscore upper-case-letter

-empty>
NOT LL(1)

==> (+ &* *);/1,-

==><" ~>~ ~1>1 ":=1111:1 1111lower-case..letter

==>upper-case-letter AND ARRAY AT BEGIN
==>OELTA DIGITS DO END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDUJRE RANGE REM RENAMES RETURN SEPARATE
==>SUBTYPE TASK THEN TYPE USE WHEN WITH
==>XOR

Xbk
underscore

== >underscore
empty>

==>digit lower-case-letter upper-case-letter

Xbl
*integer

<empty>

Texas Instruments C-37 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

+ & * / = >6<I lI

__ 1>=1" ">":=" lower-case-letter upper-case-letter
==>AND ARRAY BEGIN E END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDURE RANGE REM RENAMES SUBTYPE TASK
==>THEN TYPE USE XOR

Xbm

exponent

<empty>
=>*. + &* *) -// -- >m<I1<1

__ I>..I "> ":' 1ower-case-letter upper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDURE RANGE REM RENAMES SUBTYPE TASK
==>THEN TYPE USE XOR

Xbn
Xbo digit Xbn

=>digit underscore
<empty>

==. + & * *)~-// ,# = > I<

~mgmI*Ii. I>.I 1111II:1lower-case-jetter

==>upper.case-letter AND ARRAY BEGIN E END
==>FOR FUNCTION GENERIC IN IS LOOP MOD NOT
==>OR PACKAGE PRIVATE PROCEDURE RANGE REM
==>RENAMES SUBTYPE TASK THEN TYPE USE XOR

Xbo
underscore

==underscore
<empty>

=>digit

* Xbp

<empty>
=>digit

Xbq
based-integer

<empty>

Xbr
exponent

==> E

<empty>
=>.. + &* *) -1 ,=>I<I1<1

Texas Instruments C-38 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

">= I >6 "~'lower-case..ietter uppercase-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDURE RANGE REM RENAMES SUBTYPE TASK
==>THEN TYPE USE XOR

Xb
Xca extended-digit Xb

==>digit lower-case-letter underscore upper-case-letter

<~empty>

X(-a
underscore

==>underscore
<empty>

=>digit lower-case-jetter upper-case-letter

Xcb
,expression Xcb

<empty>

Xcc
component-association Xcc

<empty>

Xcd
choice Xce =>

==>("+ character 1"character-literal
==>digit lower-caseiletter typemark upper-case-letter
==>NEW NOT NULL OTHERS

<empty>

***NT LL1)>* + - (character)" character-literal

==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL I

Xce
""choice Xce

<empty>

Xcf
AND relation Xcf

==>AN4D
,-empty>

Texas Instruments C-39 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

=);,> IS LOOP THEN

Xcg
OR relation Xcg

<empty>
==>) > IS LOOP THEN

Xch
XOR relation Xch

==>XOR
<empty>

==>) > IS LOOP THEN

Xci
AND THEN relation Xci

==>AND
<empty>

==>) = -> IS LOOP THEN

Xc
OR ELSE relation Xc I

<empty>
==>) > IS LOOP THEN

Xc
relational-operator simple-expression
<empty> =/ I<~I 11 >I 11

==>) => AND IS LOOP OR THEN XOR

Xc
NOT

==NO

<empty>
==>I1N

Xc
NOT

==NOT
<empty>

==> IN

Xc
unary-.operator

-=> NOT
<empty>

=.=>(f{character)"character-literal digit
=>lower-case-letter typemark upper-case-letter
==>NEW NULL

Xc

Texas Instruments C-40 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

adding-operator term Xc

<empty> ; = f<I 11 11 >I

-- gg ower-case-letter upper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP NOT OR PACKAGE PRIVATE PROCEDURE
==>RANGE RENAMES SUBTYPE TASK THEN TYPE
==>USE XOR

Xc
multiplying-operator factor Xc

==*/MOD REM
<empty>

II:II owr-cseleterupper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP NOT OR PACKAGE PRIVATE PROCEDURE
==>RANGE RENAMES SUBTYPE TASK THEN TYPE
==>USE XOR

XCj
*primary

<empty>-
=> .+ & *) ;-// = > < I1<1111

~ It :=" lower-case-letter upper-case-letter
==>'AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDURE RANGE REM RENAMES SUBTYPE TASK
==>THEN TYPE USE XOR

Xck
(expression)

<empty>

">" >" ower-case--letter upper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IN IS LOOP MOD NOT OR PACKAGE PRIVATE
==>PROCEDURE RANGE REM RENAMES SUBTYPE TASK
==>THEN TYPE USE XOR

Xci
CONSTANT

==>CONSTANT
<empty>

==>"I(character 1"lower-case-letter upper-case-letter

XCm
~~**~expression

Texas Instruments C-41 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

<empty>

Xcn
CONSTANTI

==CON STANT
<empty>

==>AR RAY

Xco
I:=j, expression

<empty>

Xcp
identifier Xcp

<empty>

Xcq
discriminant-partI

<empty>

Xcr
constraint

==>(DELTA DIGITS RANGE
<empty>

==>) > ":=" lower-case-letter uppse' *rAse_ letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IS LOOP OR PACKAGE PRIVATE PROCEDURE
==>RENAMES SUBTYPE TASK THEN TYPE USE XOR

Xc
enumeration-literal Xc

<empty>

Xda
range-constraintI

==RANGE
<empty>

==>) -> :"lower-case-letter upper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IS LOOP OR PACKAGE PRIVATE PROCEDURE
==>RENAMES SUBTYPE TASK THEN TYPE USE XOR

Texas Instruments C-42 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xdb
range-constraint I

==RANGE
<-empty>

=>) => a. lower-case-letter upper-case-letter
==>AND ARRAY BEGIN END FOR FUNCTION GENERIC
==>IS LOOP OR PACKAGE PRIVATE PROCEDURE
==>RENAMES SUBTYPE TASK THEN TYPE USE XOR

Xdc
index Xdc

<empty>

Xdd
indexi Xdd

<empty>

Xdle
range, constraint.

==RANGE
<empty>

Xdf
discrete-range Xdlf

,:empty>

Xdg
component-declaration Xdg

==>lower-case-letter upper-case-letter
,empty>

==>CASE END WHEN

Xdh
variant-part

==>CASE
<empty>

==>END WHEN

Xdi
:=1expression

-empty>

Xd

Texas Instruments C-43 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

1:=1 expression I

<empty>

Xd
discriminant-declaration Xd

<empty>

Xd
":=" expression I

<empty>

Xd
discriminant.specification Xd

==> ,

<empty>

Xd
name Xd => I

>"{ character }" lower-case-letter upper-case-letter

<empty>

NOT LL(1)
==>(+- " character)" character-literal
==>digit lower-caseiletter typemark upper-caseiletter
==>NEW NOT NULL

Xd
name Xd I

<empty>

Xd
WHEN choice Xdj => component-list Xd

==>WHEN

<empty>
==>END

Xdj
"I" choice Xdj I

==>I
<empty>

Xdk
discriminant-part I

Texas Instruments C-44 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

.-,empty>

Xdl
(argument Xdm)

-empty>

Xdm
argument Xdm

<empty>

Xdn
identifier =>

=>lower-case-letter upper-case-ietter
<empty>
"*NOT LL(1)***

==>("+ character)" character-literal
==>digit lower-case-letter typemark upper-case-letter
==>NEW NOT NULL

Xdo
formal-part

<empty>
>IS RENAMES

Xdp
formal-partI

<empty>
>RETURN

Xdq
parameter-declaration Xdq

,-empty>

Xdr
:"expression

<empty>

Xd

<empty>

Texas Instruments C-45 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

>(character 1"lower-case-letter upper-case-letter

Xea
EXCEPTION Xeb

==>EXCEPTION
<empty>

==END

Xeb
exception-handler Xeb

==>WHEN
<empty>

==END

Xec
designator

=>"{ character)'lower-case-letter upper-case-letter

<empty>

Xed
declarative-iAtem Xed

==>lower-case-letter upper-case-letter FUNCTION
==>GENERIC PACKAGE PROCEDURE SUBTYPE TASK
==>TYPE USE

<empty>
==>END PRIVATE

Xee
PRIVATE Xef Xeg

==>PRI VATE
<empty>

==>END

*Xef :
declarative-item Xef

==>lower-case-letter upper-case-letter FUNCTION
==>GENERIC PACKAGE PROCEDURE SUBTYPE TASK
==>TYPE USE

<empty>==>END FOR

Xeg
representat ion-specification Xeg

==>FOR
<empty>

==END

Xeh :
identifier

=>lower-case-letter upper-case-letter

Texas Instruments C-46 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

<empty>
NOT LL(l)

==>; lower-case-letter upper-case-letter
==>BEGIN END FOR FUNCTION GENERIC PACKAGE
==>PRIVATE PROCEDURE SEPARATE SUBTYPE TASK
==>TYPE USE WITH

Xei
BEGIN sequence.ofstatements Xe

==>BEGIN
<empty>

==END

Xe
EXCEPTION Xe 4

==>EXCEPTION
<empty>4

==>END

Xe
exception-handler Xe

==>WHEN
<empty>

==>END

Xe
identifierj

==>lowercase-letter upper-case-letter
<empty>

Xe
LIMITED ==LMIE

<empty>
==>PRIVATE

Xe
TYPE

==>TYPE
<empty>

=>1 ower-case-letter upper-case-letter

Xe
IS Xe Xej END Xek I

==IS
<empty>

Xe
entry-declaration Xe

==>ENTRY
-empty>

Texas Instruments C-47 Ada Optimizing Compiler

N Nip wwI

Development Specif ication A PRACTICAL GRAMMAR FOR ADA

Xej
->END FOR

representation-specification Xej1
==>FOR

<empty>
-=>END

Xek

idenifir ->lower-case-letter upper-case-letter
<empty>

Xel
declarative-partI

-=>lower-case-letter upper-case-letter BEGIN
==>FOR FUNCTION GENERIC PACKAGE PROCEDURE
==>SUBTYPE TASK TYPE USE

<empty>
NOT LL(1)

==>BEGIN

Xem
EXCEPTION Xen

==>EXCEPT ION
<empty>

==>END

Xen
exception-handler Xen

==>WHEN
<empty>

=>N

Xeo
identifierI

-=>lower-case-letter upper-case-letter
<empty>

Xep
(discrete-range)I

<empty>
NOT LL(1)

Xeq
formal-partI

<empty>

Texas Instruments C-48 Ada Optimizing Compiler

Development Specification A PRACTICAL GRAMMAR FOR ADA

Xer
compilation-unit Xer

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE
==>WITH

<empty>

Xe
with-clause Xfa Xe

==>WI TH
<empty>

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE

Xfa
use-.clause

==>USE
<empty>

==>FUNCTION GENERIC PACKAGE PROCEDURE SEPARATE
==>WITH

Xfb
name Xfb

<empty>

Xfc
generic-formal-parameter Xfc

=>lower-case-letter upper-case.ietter TYPE
==WITH

<empty>
NOT LL(1)

=>lower-case-letter upper-case-letter END
==>FUNCTION GENERIC PACKAGE PRIVATE PROCEDURE
==>SUBTYPE TASK TYPE USE

Xfd
discriminant.part

<empty>
==IS

Xfe
Is name

==IS
empty>

Xff
Cgeneric-association Xfg)

Texas Instruments C-49 Ada Optimizing Compiler

=I

Development Specification A PRACTICAL GRAMMAR FOR ADA

<empty>
==>lower-case-letter upper-case-letter BEGIN
==>END FOR FUNCTION GENERIC PACKAGE PRIVATE
==>PROCEDURE SEPARATE SUBTYPE TASK TYPE
==>USE WITH

Xfg
generic-association Xfg

<empty>

Xfh
formal-parameter =>

==>lower-case-letter upper-case-letter
<Pmpty>
***NOT LL(1)**-

+ - "+ character)" character-literal
=>digit lower-case-.letter typemark upper-case-letter

==>NEW NOT NULL

Xfi
alignment-clause;

<empty>
-=>"(character 1"lower-case-letter upper-case-ietter
==END

Xf
name location ;Xf

->(character 1"lower-.caseletter upper-case-letter

<empty>
==END

GRAMMAR IS NOT LL(1)

Texas Instruments C-50 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

APPENDIX D

THE SYMBOL DICTIONARY

D.1 Underlying Data Structures

The data structures which represent the current compilation context are the
compiler's source of information fro associating symbols with their
attributes. A symbol can be an identifier, an operator, a literal,
predefined attributes and pragmas, and reserved words. The structures which
define the compilation context are the Visibility Stack, the declared symbol
tables, the Look-Up Table and the Name Table. The composition of these data
structures constitutes the symbol dictionary (cf. Figure D-1).

Texas Instruments D-1 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

I HASH ENTRY

P I ~ SPELLING L

IDENTIFIER LOOK-UP TABLE NAME TABLE

(VISIBILITY CONTROL) I (LITERALSsTIN AND

IDENTIFIER NAME

REFERENCE MOST RECENTLY DECLARED,
OCCURRENCE OF IDENTIFIER

AND THREAD OF HIDDEN NAMES

SYMBOL TABLE

I I
SYMBOL TABLE

VISIBILITY COMPILATION PAGE AREA'SI LTYK ' UNIT (SYMBOL AND

(BLOCK • DECLARATIONS 0 TYPE ENTRIES)
STLUCE (SUBPROGRAM,

STRUCTURE PACKAGE
AND SCOPE TASK AND 0CONTROL) 0 BLOCK)

0II

PAGE CONTROL "
_

_ ZPA

STACK IN-SCOPE
POSITION OF SYMBOL ENTRIES

COMPILATION UNIT

IVIRTUAL
SYMBOL

tTABLE

Figure D-1 Organization of the Symbol Dictionary

Texas Instruments D-2 Ada Optimizing Compiler

*

Development Specification THE SYMBOL DICTIONARY

D.1.1 The Visibility Stack

A compile-time Visibility Stack (cf. Figure D-2) is used to effect the
visibility rules and maintain the block structure. It is expandable in both
directions from the entry for the package STANDARD in order to handle WITHed
packages and subprograms.

STANDARD

1 OPILTO ITHF
4-A -ARE

Figure D-2 Structure of the Visibility Stack

An element of the compile-time Visibility Stack entry contains (cf. Figure
D-3):

1. A reference to the compilation unit/sub-unit specification. This
reference to a subprogram, package or block declarator provides
callability and visibility to the specification and visibility to
its symbol table. Relative position in the Visibility Stack
provides information regarding the hierarchical relation of the
unit with the compilation context and its callability.
Accessability to the specification and its symbol table is gained
through direct visibility or selected component reference through
the name of the declared block. The stack allows the reference of
a specification for a procedure/function call, if it is in scope,
even though its symbols are not in scope. In this circumstance,
the pointer from the unit block declarator (cf. Section D.1.2.1)
to the symbol table would have been removed and set to NIL.

2. The head of a 'Use' chain which links packages used since the
start of the unit's declaration.

3. A reference to the Visibility Stack which encompasses subunits
declared within the scope of the parent unit.

Texas Instruments D-3 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

'USE' CHAIN

SCOPE REFERENCE

BLOCK DECLARATOR

SPARAM4ETERS

SYMBOL TABLE

'VISIBILITY STACK'/

F SYMBOL TABLE r PARAMETERS i

Figure D-3 Visibility Stack Entry

D.1.2 Declared Symbol Tables

There is a separate symbol table for each language construct that can
contain a declarative part (i.e., block, subprogram, package or task).
Symbol tables are referenced from the Visibility Stack to form the
compilation context for a block, subprogram, package or task (cf. Figure D-
4).

Texas Instruments D-4 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

XYZ PROCEDURE
DECLARAT ION

'VISIBILITY' STANDARD
STACK h PACKAGE

DECLARAT IO N

BLOCK
DECLARATOR

I ABC PACKAGE 1
DECLARATION

XYZ

STANDARD 'WITH ABC. DEF

ABC

DEF

DEF PROCEDURE
DECLARATION

Figure D-4 Organization of Declared Symbol Tables

The entries within the symbol tables are interconnected together in a manner
which realizes the semantics of the visibility rules (i.e., scope, hiding,
overloading, USE and WITH clauses, RENAME statement, and the predefined
environment). The entry catagories which are found within the symbol tables
are:

1. Block, Subprogram, Package and Task Declarators

2. Symbol Entry and Fields

3. Type Entry and Fields

D.1.2.1 Block, Subprogram, Package and Task Declarators

The declaration of a block, subprogram, package or task generates a block of
information which is attached to the visibility stack so that the proper
context of the unit is represented (cf. Figure D-5). Enough data is kept
in the declarator block to get to the symbols when they are in scope. For
subprograms, information is kept that references the parameters; this
information is used when processing a call to the subprogram.

Texas Instruments D-5 Ada Optimizing Compiler

L'

Development Specification THE SYMBOL DICTIONARY

DECLARATOR NAME (NAME TABLE REF)

HIDDEN IDENTIFIER LINK

RENAMED IDENTIFIER LINK

OVERLOAD CHAIN LINKS (UP AND DOWN)

IL NODE IDENTIFIER

TYPE OF DECLARATOR
(BLOCK, PROCEDURE FUNCTION.

PACKAGE TXSK)
AND GENERIC FLAG

SYMBOL TABLE LOCATION

RETURN TYPE (FUNCTION)
OR ENTRY DECLARATION (TASK)

NUMBER OF PARAMETERS (SUBPROGRAM)
OR PRIVATE SYMBOL TABLE LOCATION(PACKAGE)

PARAMETERS (SUBPROGRAM)
OR PACKAGE SUBUNIT DECLARATORS

(PACKAG E)

NUMBER OF GENERIC PARAMETERS

GENERIC PARAMETERS

Figure D-5 Block, Subprogram, Package and Task Declarator

Declarator fields are:

1. Declarator Name -- Reference to the Name Table entry for the
unit.

2. Type of Declarator -- This field indicates the type of the unit,
i.e., block, procedure, function,package or task.

3. Generic Flag -- Set, if the unit is generic.

Texas Instruments D-6 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

4. Symbol Table Location -- Virtual address of corresponding symbol
table.

5. Return Type -- Reference to the result type of a function.

6. Entry Declaration -- Pointer to block of memory with copy of
declaration of entry to task.

7. Number of Parameters -- Two part field to indicate number of
parameters: how many are expected and how many are required.

8. Private Symbol Table Location -- Virtual address of private
symbol table for packages.

9. Parameters -- List of parameter declarations

10. Package Subunit Declarators -- List of subunits in a package
which are visible when the package is in scope.

11. Number of Generic Parameters -- Number of parameters which are
expected and required to fill out the generic declaration at
instantiation.

12. Generic Parameters -- List of generic parameter declarations.

The declarator block contains other information which is required for the
successful elaboration of textual references, as found in selected component
notation and overloading. These fields are described in Section D.1.2.2.

D.1.2.2 Symbol Table Entries and Fields

The Symbol Table Entries contain the working information of the symbol
table. The entries are logically connected and the system of entries are
eventually tied to the subprogram declarator of which they are a member.

Symbol table entries contain fields dictated by information required by the
IL and internal information required to successfully determine proper
operations (i.e., overloading and selected component elaboration) in the
symbol table.

Texas Instruments D-7 Ada Optimizing Compiler

. ,. '- , '-II - 4

Development Specification THE SYMBOL DICTIONARY

MY NAME (NAME TABLE REFERENCE)

I HIDE (HIDDEN IDENTIFIER"THREAD LINK)

I RENAME (RENAMED OBJECT
THREAD LINK)

I OVERLOAD (OVERLOADING
CHAIN LINK)

OVERLOADED BY (RESERVE LINK
ON OVERLOADING

CHA IN)

MY IL RESERVED VALUE OFIL NODE IDENTIFIER)

OBJECT CLASS (IDENTIFIES
WHAT THIS NODE NAMES)

REQUIRED IL ATTRIBUTES
(AS DEFINED BY SELECTED IL)

Figure D-6 Symbol Table Entry

Internal symbol table fields used are:

1. My-Name -- Reference to Name Table entry for the object.

2. IHide -- Thread to identifiers using the same name. This thread
is used to:

a. Establish uniqueness (when NIL).

Texas Instruments D-8 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

b. Determining correct context for selected components.

c. Resetting Name Table reference when top entry is removed.

3. I Rename -- Thread to the symbol table entry of an object which
is renamed by this entry. A non-nil pointer in this field also
indicates that there is no IL data in the entry. This data is
kept in the original entry. (cf. Section D.5)

4. I Overload -- Thread of overloadable identifiers using tie same
name. This thread is used to identify an outer scope entity which
shares in overloading.

5. Overloaded. By -- Reverse link of I-Overload.

6. My IL -- Reference to IL node generated for this Symbol Table
entry. The generation of IL, for instance, for an inner entity
may force the assigning of node identifications for global
entities prior to the generation of the actual IL node for that
global entity, in this case, a symbol table entry. This field may
be used to reserve that node identifier for later IL generation.

7. Object Class -- This field identifies the nature of the object

being represented by the symbol. The field may indicate:

a. Standard Object

b. Loop Parameter

c. Type Identifier

D.1.2.3 Type Table Entries and Fields

The Type Table Entries contain the working information of the type table.
The entries are logically connected and the system of entries are eventually
tied to the subprogram's symbol table and declarator of which they are a
member.

Type table entries contain fields dictated by information required by the IL
and internal information required to successfully determine proper
operations requiring type checking (cf. Figure D-7).

Texas Instruments D-9 Ada Optimizing Compiler

/I

Development Specification THE SYMBOL DICTIONARY

TYPE KIND

PARENT TYPE (IDENTIFIES A
DERIVED TYPE)

VISIBILITY FACTOR

PEDIGREE (PREDEFINED OR
USER DEFINED)

REPRESENTATION SPECIFICATION

MY IL(RESERVED VALUE OFIL NODE IDENTIFIER)

REQUIRED IL ATTRIBUTES
(AS DEFINED BY SELECTED IL)

Figure D-7 Type Table Entry

Internal type table fields used are:

1. Type Kind -- This field identifies the nature of the type being
represented by this entry. The field indicates the basic
structure of the type, that is:

a. Scalar Types : (Enumeration, Integer, Boolean, Character,
Floating Point and Fixed Point)

b. Array Type and Strings

c. Record Type

d. Access Type

2. Parent Type -- For use with the Derived Type Declaration. (cf.
Section D.6).

Texas Instruments D-10 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

3. Visibility Factor -- This field indicates the visibility of a
type, used specifically with Private Types within a package which
may be referenced in separate compilations.

4. Pedigree -- Indicates whether a type is predefined or user
defined.

5. Representation Specification -- This is a reference to an IL node
holding any representation specification declared for this type.

6. My IL -- Reference to IL node generated for this type table
entry. The generation of IL, for instance, for an inner entity
may force the assigning of node identifications for global
entities prior to the generation of the actual IL node for that
global entity, in this case, a type table entry. This field may
be used to reserve that node identifier for later IL generation.

D.1.2.4 Virtual Symbol Table

It is very probable that all the symbol tables constituting the compilation
context of a compilation may not fit into main memory. If the target
machine has virtual memory, this is handled automatically. For those target
machines without virtual memory, a software package shall be provided that
implements virtual symbol tables. Virtualization of the symbol table
portion of the symbol dictionary is easily attainable due to its disjunctive
structure (which is a departure from the classic block mechansims due in
part to the proper implementation of package declarations). When the symbol
tables are loaded to create the compilaton context, symbol table references
are assigned sequential virtual addresses. These virtual addresses are
translated via page tables to the memory locations containing the entry. If
the symbol table entry is not in memory, a page (block of symbol table
entries), stored in a random file record, is brought into memory. If all
pages are filled, a page is selected and written out to a random file
record. A package shall be provided for accessing the symbol table entries.
It keeps the actual mechanisms of reading and writing of records into paging
areas transparent to the rest of the compiler.

D.1.3 The Look-Up Table

A Look-Up Table is kept for predefined and user defined identifiers (cf.
Figure D-8). The Look-Up Table contains a reference to the Name Table entry
containing the name of the identifier. Also maintained in the Look-Up Table
is a reference to the DIANA NAME node corresoponding to the name.

Texas Instruments D-11 Ada Optimizing Compiler

..,, ..:

Development Specification THE SYMBOL DICTIONAR

SYMBOL TABLE LOOK-UP TABLE

(INTERNAL USE FIELDS SHOWN)

RESERVED
WORD ENTRY

RESERVED
WORD ENTRY

MY-NAME

IHIDE
MY-IL

IOVERLOAD/ /
OVERLOADEDBY/ /

MRD IL NAME TABLE
REF NODE REFERENCE

/ /
Y-NAME
1_1K1DE
MY-IL

I-OVERLOAD
OVERLOADE1DBY

Figure D-8 Look-Up Table and Symbol Table Interface

The Look-up Table also contains a pointer to other entries within itself
(not shown in Figure D-8) linking members of hash chains. When an
identifier is placed into the Look-up Table for the first time, the
character string which represents the identifier is hashed to get a numeric
value. Identifiers which generate equivalent numeric values are chained
together. This chaining restricts the set of identifiers to be searched in
the Look-up Table in later operations.

The Look-Up Table for user defined identifiers maintains a 'Most Recently
Declared' reference into the symbol table for each active name indicating
the entry which last declared the name represented in the table. This
reference is the anchor to the hidden names thread for all visible
identifiers using the particular name. This thread is useful in finding
overloading chains, resolving selected component references components and
determining visibility of entities in a package referenced by a USE clause.
However, most importantly, the 'Most Recently Declared' reference determines
'direct visibility'.

A sub-field to the 'Most Recently Declared' reference is a package
declaration count which controls the direct visibility of some package
identifiers in USEDed packages. The use of this sub-field is described in
the Section D.3.2.

Texas Instruments D-12 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

The initialization of the Look-Up Table takes place when the package
STANDARD is elaborated and the 'Most Recently Declared' reference is set to
this entry. Therefore, the names in the STANDARD package become directly
visible at the start of the compilation of a unit until they are hidden
and/or overloaded.

A separate portion of the look-up table is kept for predefined language
attributes, predefined language pragmas, and reserved words. A call to a
special look up subprogram to this portion of the table is triggered by:

1. A prime (') character in the proper context to denote an

attribute

2. The reserved word PRAGMA

3. An expected reserved word as defined by the syntax.

The 'Most Recently Declared' reference for a reserved word or predefined
identifier is a pointer to a symbol table entry containing its attributes.
The symbol table for reserved words and predefined identifiers is not
attached to the Visibility Stack.

D.1.4 The Name Table

The wide range of string lengths for identifiers is more easily maintained
outside of the Look-Up Table in a Name Table. The Name Table contains the
correct spelling of reserved words and predefined identifiers, user
identifier names, and user defined numeric and character literals. Access
to the Name Table is through the Look-Up Table name reference field.

D.2 The Predefined Environment

D.2.1 The Package STANDARD

All predefined identifiers, for example, those of built in types such as
INTLGER, BOOLEAN and CHARACTER, operators and the predefined function ABS,
are loaded into symbol tables as pre-compiled units of the package STANDARD
[DoD8OB, Appendix C] (cf. Figure D-9). The inclusion of the package
STANDARD in the Visibility Stack serves as a base for the building of the
compilation context. The location of the STANDARD package within the
Visibility stack is covered in Section D.1.1.

Initialization of the symbol dictionary with the package STANDARD also
consists of building entries within the Look-Up Table and Names Table. All
identifiers declared in the visible part of the package STANDARD are assumed

l exas Instruments D-13 Ada Optimizing Compiler

-.. ..-1 " , ._." ., ..

Development Specification THE SYMBOL DICTIONARN

* to be declared at the outermost level of every program. The connection of
the 'Most Recently Declared' link from the Look-Up Table makes each of the
visible identifiers in the STANDARD package directly visible. This
visibility is equivalent to an implicit 'With STANDARD; Use STANDARD' prior
to the translation of any user source code. In addition, the separately
compiled subprograms and packages named in a WITH clause are assumed to be
implicitly declared in STANDARD.

I LOOK-UP TABLE

S II lii ill
HIDDEN IDENTIFIER THREADS

• 'P A C K A G E T Y M Lw TABLE

1FUNCTION '
*6

SCOPE USE DECLAR

Figure D-9 Initialization of the Symbol Dictionary with STANDARD

D.2.2 Reserved Words and Pragmas
The Name Table and Look-Up Table are initialized to the reserved words and
pragmas, and their symbol table loaded in order to present a consistent
method of identifier recognition. Token numbers and hash chains related to
an identifier's position in the Look-up Table are pre-assigned with this
initiaization. The balance of information required for reserved words and
pragmas is found in symbol table entries separate from other symbol tables
and the Visibility Stack since their presence does not determine scope or
visibility. These symbol table entries may be referenced with the 'Most
Recently Declared' pointer in the Look-up Table.

Texas Instruments D-14 Ada Optimizing Compiler

i

Development Specification THE SYMBOL DICTIONARY

D.3 Maintaining the Compilation Context

D.3.1 Basic Block Structure Operations

lhe following sequences of operations provide the visibility of objects and
proper compilation context necessary to successfully implement the Ada Rules
of Visibility.

Entering Scope:

1. Get Subprogram Declarator Block and 'Push' its reference onto the
visibility stack.

2. Update the 'Scope' entry in the visibility stack for the
immediate parent of the subprogram to include the new declarator.

3. Fill in description of the subprogram into the declarator from
the Ada declaration specification.

4. Attach the declarations of the parameters.

5. Get a block of empty symbols and types table entries.

6. Process symbol declarations of the subprogram.

a. Hidden identifier thread extention

b. Overloading chain insertions

c. Add more symbol table blocks, as required

d. Process and link 'Use' referenced packages.

Leaving Scope (Subprogram)

1 Output IL for symbols and type table.

2. Remove symbols from hidden identifier thread.

Texas Instruments D-15 Ada Optimizing Compiler

d ... = L i | ... a7

Development Specification THE SYMBOL DICTIONARY

3. Remove overloaded symbols from chains.

4. Dispose (or save in Libraries) blocks of symbols

5. Traverse 'Use' chain to disconnect packages, as requi red (N1ore
hidden threads and overloading).

6. Dispose of subprogram and package declarators on visibility stiwk
between entry and 'Scope' reference.

7. The current subprogram stays with visibility stack until parent's
scope is left.

Leaving Scope (Package)

1. Output IL for symbols and types table.

2. Remove symbols from hidden identifier thread.

3. Remove overloaded symbols from chains.

4. Dispose (or save in Libraries) blocks of symbols

5. Traverse 'Use' chain to disconnect packages, as required (More
hidden threads and overloading).

6. Remove references of subprogram and package declarators on
visibility stack between entry and 'Scope' reference. The 'Scope'
referenced region remains as part of the package as a reserved
place for future USE clauses. The subprogram and package
declarators within the package are chained to the package
declarator for later access.

7. The current package declarator stays in the Visibility Stack
until the parent's scope is left.

When the body of a package or subprogram is compiled, the symbol table for-
its corresponding specification is loaded (if not present).

Texas Instruments D-16 Ada Optimizing Compiler

Developmient Specification THE SYMBOL DICTIONARY

The following sequence of diagrams and explanations illustrate the mechanics
of manipulating the Visibility Stack and the symbol tables for the program
in Figure D-10. Each of the diagrams show the 'classic' block structure
symbol table and the Ada symbol dictionary in the same phase of development.
rhis parallel development demonstrates that the Ada symbol dictionary
operates in the same situations as the 'classic' table. Flexibility gained
with this table structure is more apparent when coupled with the discussion
on processing packages (cf. Section D.3.2).

P

Q

R

S

T

___I

Figure D-10 Typical Block Structure

The subprogram P is entered and a subprogram declarator pushed onto the
visibility stack. The end result of the processing of the declarations is
shown in Figure D-11. The symbol table for P is attached to the declarator.
Not shown, but required to provide proper visibility, are the connections to

Texas Instruments D-17 Ada Optimizing Compiler

twoolfwon-90, 1-

Development Specification THE SYMBOL DICTIONARY

the Name Table in the form of hidden identifier threads, denoting direct
visibility for the objects at the top of the stack.

PROC P.
P. SYM

'CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

PROC. P ,

SCOPE USE DECLAR

*ADA' SYMBOL TABLE

Figure D-11 Enter 'P'

The addition of the subprogram Q to the stack is illustrated in Figure D-12.
The 'Scope' of subprogram P is extended to encompass the new subprogr'am.
Once again, hidden identifier threads are established and any overloading
declarations inserted into the proper chains.

Texas Instruments D-18 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

PROC P. PROC 0Q
P. SYM Q SYM

'CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

SCOPE USE DECLAR

tAVA' SYMBOL TABLE

Figure D-12 Enter 'Q'

In Figure D-13, the scope of subprogram Q has been closed with exception of
its callability. Its symbol table has been released and saved with the
generated IL (cf. Appendix E, Section E.4.3).

After the closing of Q, the scope of subprogram R is opened. The declarator
and symbol table of R are included within the scope of P. The 'Scope' entry
for P is extended to show inclusion of R.

*Texas Instruments D-19 Ada Optimizinq Compiler

Develonment Specification THE SYMBOL DICIlONARY

PROC P. PROC PROC R'
PO SYM ' 'R SYM

'~CLASS IC' BLOCK STRUCTURE

~SYMBOL TABLE

SCOPE USE DECLAR

'ADA* SYMBOL TABLE

Figure D-13 Leave 'Q', Enter 'R'

Next the scope of R is expanded with the declaration of subprogram S (cf.
Figure D-14). The 'Scope' entry for R is extended to include S.

Texas Instruments D-20 Ada Optimizing Compiler

Developmnent Specification THE SYMBOL DICTIONARY

JROC iP. PROC PROC 'R' PROC 'S
.P. SYM '0' ,Ri SYM S. SYM

'CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

PRc'° I

SCOPE USE DECLAR

'ADA' SYMBOL TABLE

Figure D-14 Enter 'S'

Figure D-15 illustrates leaving the scope of S and entering the scope of T.
The 'Scope' entry for R now encompasses the subprogram T. The subprogram
declarator for S is still attached to the visibility stack for CALL
information, but its symbol table has been de-allocated since its objects
are no longer in scope.

Texas Instruments D-21 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

[I

PROC P. PROC PROC R' PROC PROC T'
.P. SYM 0 R SYM S -T- SYM

'CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

L PROC -'

- POC ,,, I q . Y

i ~PROC .- I |'' Y

SCOPE USE DECLAR

'ADA' SYMBOL TABLE

Figure D-15 Leave 'S', Enter"T'

In Figure D-16, the subprograms S and T have been compiled within the scope
of R and their declarators remain so that statements within R may call S and
T. The body of R is then compiled.

Texas Instruments D-22 Ada Optiniiiing Compiler

Development Specification THE SYMBOL DICTIONARY

PROC P. PROC PROC 'R' PROC PROC
.P. SYM a -R' SYM S S T-

*CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

~~PROC *Q0

PROC 'S' J

. PROC: T'

SCOPE USE DECLAR

'ADA, SYMBOL TABLE

Figure D-16 Leave 'T', Still in 'R'

Leaving the scope of R is illustrated in Figure D-17. The steps involved in
leaving its scope are:

1. Save the I L and the symbol table for R.

2. Remove symbols from the hidden identifier thread. This operation
consists of popping a linked-list stack.

3. Remove objects from the overloading chains.

Texas Instruments D-23 Ada Optimizing Compiler

- - ---- I

Development Specification THE SYMBOL DICTIONA10

4. Release symbol table blocks and disconnect reference f rom the
subprogram dleclarator.

5. Deallocate the subprogram dleclarators bounded by the entry for R
and the 'Scope' reference. This removes all mention of S and T.

PROC *P' PROC PROC
.P. SYM *0. R-

'CLASSIC' BLOCK STRUCTURE
SYMBOL TABLE

SCOPE USE DECLAR
ADA' SYMBOL TABLE

Figure D-17 Leave 'R', Still in 'P'

Leaving the scope of P brings the symbol table back to where it was when P
was originally entered (cf. Figure D-18). Q and R are removed f ron the
scope of P to bring the visibility stack to its original position. The
symbol table of P is released, making its contents inaccessible f rom its
brothers, but retaining its own callability.

Texas Instruments D-24 Ada Optimizing Compiler'

Development Specification THE SYMBOL DICTIONARY

PROC
P.

CLASSIC BLOCK STRUCTURE
SYMBOL TABLE

SCOPE USE DECLAR

'ADA' SYMBOL TABLE

Figure D-i Leave 'P, Stili in Parent of 'P'

D.3.2 Processing Packages

The maintaining of the compilation context as detailed for a typical block
structure requires an extention of those techniques for packages. Symbol
table representations, scopes, and visiblities required to preserve the
block environment and provide the proper methods to enforce the visibility
of the package's parts, differ from the classical block structure referenced
in the previous section. The presence of packages in Ada dictates the
disjunctive nature of the symbol dictionary. It can be shown that these
techniques in the presence of a package are totally compatible with the
normal operation of the symbol dictionary in a block structure.

The following sequence of diagrams and explanations illustrates the
mechanics of manipulating the Visibility Stack and the symbol tables for the
package in Figure D-19.

Texas Instruments D-25 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

P

PACKAGE Q

01

Q2

R

S

USE: I
T

Figure D-19 Typical Block Structure With A Package

Packages allow the specification of groups of logically related entities.
Generally, packages are used to describe groups of related objects and
subprograms, whose inne- contents are concealed from outer references.
However, these private parts are fully available to members of the package
during compilation. At compilation time, normal block structure operations
are in effect for the package.

Consider the state of the symbol tables in Figure D-20. 'QI' has been
compiled and its symbols being out of scope, has had its symbol table
detached. 'Q2' is in the process of being compiled. All objects, visible
or private, of the package are directly visible at this time to 'Q2'. It is
important to note the detachment of the 'private* portion of the symbol

Texas Instruments D-26 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

table from the visible portion. During the compilation of the package body,
both symbol tables are loaded and are logically one. During the compilation
of a unit that USEs the package, only the visible portion of the symbol
table is loaded, thereby removing the private declarations from scope. When
compiling a package body, the private portion of the symbol table is
accessed through a pointer in the package declarator. Thus, direct
visibility of entities in the private portion are provided according to the
Ada visibility rules without benefit of special processing. This high level
of visibility ends when the scope of 'Q2' and the package, 'Q', are left.

i PROC 'P, - 'P'SYM I

SPACK '' V: 0Q SYM 'Q' Sym

-IPROC 'Q V

SCOPE USE DECLAR

Figure D-20 In Package 'Q', Leaving 'Q1', Entering 'Q2'

The symbol dictionary allows the legal declaration of the same identifier
twice in the same declarative part as long as the first declaration is a
private' type in the visible part of the package specification and the

second is a type in the private part. The 'Most Recently Declared' thread
passes through both identifers so when scope is left and the private part of
the package is removed, the visible declaration is still on the tiul,.,,,J 1,
keep it intact.

The central feature of processing packages is the inclusion of the package
declarator in the Visibility Stack. This declarator serves as an anchor for
package scope, selected component determination and reference point for
future 'Use' chains. The package declarator also provides the central
control of the package's private and visible objects, subprogram declarators
and, in the case of generic packages, parameter declarations.

Texas Instruments D-27 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARN

In Figure D-21, the scope of package 'Q' is left. This does not bring the
total disconnection of symbol tables and removal of subprograms that the
leaving of scope of a subprogram would entail. The concept of package
demands that some remnant of the compilation context remain for use by the
other elements of the program. The following items are accomplished to
leave the compilation scope of a package:

1. Detach private symbol table from package declarator.

2. Ensure subprograms in a package are threaded to package
declarator. This allows finding the subprograms through selected
component notation.

3. For all subprograms within 'Scope' reference of package
declarator, remove entries from the Visibility Stack. Retain tile
scope of the package declarator.

4. Remove symbols in visible symbol table from 'Most Recently
Declared' threads in Look-Up Table. Names referen~ced in the Look-
Up Table are not removed.

, ,.-I I(PUt3LIC)

0 PROC 'QI'

0 LPROC ' Q2 '

SCOPE USE DECLAR

Figure D-21 In Proc 'P', Leaving Q', Entering 'R'

Texas Instruments D-28 Ada Optimizing Compiler

..- .-- , j , .,- , ,-

L)evelopment Specification THE SYMBOL DICTIONARY

Figure D-22 illustrates the state of the symbol tables after the USE clause
in procedure S is processed. The following actions are taken to provide
direct visibility:

1. Objects in the package's symbol table are checked for eligibility
as directly visible (cf. Section D.3.3). Eligible objects are
connected with the Look-Up Table as 'Most Recently Declared'.

2. Subprograms visible within the package are also checked for

direct visibility and overloading. Subprograms overloading other
subprograms are included in the overloading chains. Directly
visible subprograms are attached to the Visibility Stack in the
entry reserved for them by the scope of the parent package.

Fu D In o' 'a Q'

PUL
P~ROC ' 01 '

. PROC1,, 0,, '

-- Jl PROC 'R' 'SYM

SCOPE USE OECLAR

Figure D-22 In Proc 'S', 'Use Q'

D.3.3 Processing WITH and USE Clauses

The appearance of a library name in WITH clauses has the effect of including
the specification for that library unit as an implicit part of the STANDARD
package. Since the library name becomes part of the STANDARD declaration
(already implicitly declared with a USE and WITH), the name becomes directly
visible by being installed in the Look-Up Table and the 'Most Recently

Texas Instruments D-29 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARv

'I Declared' thread attached. The thread which connects the children
subprograms and packages of STANDARD is extended through the subprogram and
package declarators of WITHed libraries.

For packages which are included with the STANDARD package through a WITH
clause (cf. Figure D-23), their visible symbol table is included by placing

Sa reference to it in the package's dleclarator. Also, entries in the
Visibility Stack are reserved for each subprogram and package declared in

the package's specification. When a USE clause denoting the package is
encountered, the declarators for the visible subprograms and packages are
linked to the Visibility Stack via their reserved entry.

The local objects of subprograms referenced by a WITH clause are not
visible; only the symbol table for the subprogram's specification is loaded.

I 'LOOK-UP TABLE

HIDDEN IDENTIFIER THREADS

SCOPE USEANEALD

STANDARD S MBOd

q PACKAGE TABLEs

-- FUNCTION7'* '

FUNCTION '+.

SCOPE USE DECLAR
L

Figure D-23 WITH Package ABC

The inclusion of a package into STANDARD via a WITH clause does not provide
direct visibility for the visible parts of the package, only the name of the
package. A subsequent USE clause for the included package causes direct

visibility of objects declared in the package's specificaton by setting the
hidden identifier threads in the Look-Up Table accordingly (cf. Section
D.4.5). The entry in the Visibility Stack for STANDARD is the base of the
'Use' chain to these packages (cf. Figure D-24).

Texas Instruments D-30 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

LOOK-UP TABLE.I II, ,,ii,.I1 ,, ii
HIDDEN IDENTIFIER THREADS

SCOPE USEADEARA

FigureD-PACUEAGackgABABD.4 nfocin th Visbilty ule

De V iy Hd d i UNCTION

i " ~FUNCTION '+'

PACKAGE ABC,

LlTABLE
SCOPE USE DECLAR

Figure D-24 USE Packag e ABC

D.4 Enforcing the Visibility Rules

D.4.1 Direct Visibility and Hidden Identifiers

The Ada Language Reference Manual [DoD80, Section 8.3] states, "The scope of
the declaration of an identifier ... is the region of text over which the
declaration has an effect. For each declaration, there exists a subset of
this region where the declared entity can be named simply by its identifier;
the entity, its declaration and its identifier are then said to be DIRECTLY
VISIBLE from this subset." The mechanism of the *Most Recently Declared'
pointer keeps a constant reference to the symbol table entry representing
the most inner declaration of an identifier. By finding the name of an
identifier through the Look-up Table, the declaration directly visible is
immediately available.

'An entity ... declared within a given construct is said to be HIDDEN
within an inner construct when the inner construct contains another
declaration with the same identifier. Within the inner construct the hidden
outer entity is not directly visible." A further function of the Look-up
Table's 'Most Recently Declared' pointer is to anchor the thread of hidden

Texas Instruments D-31 Ada Optimizing Compiler

4.

Development Specification THE SYMBOL DICTIONARN

identifiers. The thread operates as a stack structure with the top entity
being directly visible and other declarations of the same identifier in
outer scopes being pushed deeper into the stack. When an inner- scope is
left, the top entity is popped from the stack allowing the next innermost
identifier to become directly visible again.

D.4.2 Loop Parameters

The Ada Reference Manual [DoD80, Section 5.5] states, "The execution of a
loop statement with a for iteration clause starts with the elaboration of
this clause, which acts as the declaration of the loop parameter... the
loop parameter is declared as a variable, local to the loop
statement... Within the basic loop, the loop parameter acts as a constant."
The occurence of a for iteration clause generates an anonymous block
declaration in the symbol dictionary. The Visibility Stack references a
block declarator with no name, no parameters and a single entry symbol
table. The symbol table entry declares the loop parameter. This entry has
the object class of loop parameter so when the parameter is used within the
scope of the loop, it can be treated as a constant for computation, but
properly incremented and tested as a variable at the end of the loop's
sequence. The loop parameter is directly visible during the scope of the
loop, hiding any other declaration of the same identifier in any outer
scope.

D.4.3 Overloading and Operator Identification

The Overloading Chains (cf. Figure D-25) are mechanisms set up by the
opening of the scope for a subprogram facilitating tile resolution of
otherwise ambiguous subprogram calls and enumerated literal usage. The
overloading algorithms require a means of checking all members of a
particular chain, so the chain is doubly linked.

Members of an individual chain belong to one of the two overloadable
classes, subprogram and enumerated literals. The chains of the classes are
not shared, even though the identifier is the same. However, the hidden
identifier thread which links all identifiers of the same name makes it
possible to get from one class chain to the other along that thread.

Texas Instruments D-32 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

MyNAME LOOK-UP TABLE ENTRY

-J '-- * HIDDEN IDENTIFIER
I H IDE LTHREAD

I OV ER LOA D

-- OVERLOADED BY

MY NAME

HIDDEN IDENTIFIER
I HIDE -THREAD

I OVERLOAD - .

OVERLOADED BY

Figure D-25 Overloading Chains in the Symbol Table

It is the responsibility of the Operator Identification algorithm to
determine, from the syntax and semantics, the appropriate operator, function
or subprogram in an overloaded condition. The Ada Rationale [ICH79] states
a multi-pass algorithm is required for this determination; contextual
information is propagated in both a top-down and bottom-up traversal of the
expression tree until convergence is achieved. However, it has been shown
[PEN80, PER80] that two passes are sufficient to resolve the identification
of the operation(s). The Pennello/Deremer/Meyers aigorithm [PEN80] can be
fully implemented with the symbol table structures, as designed. For each
operator, a set of overloaded operators is constructed. Based on the
operand types required by the parent operator and available operand types of
children operators, or the parameters of subprograms (i.e., types, order,
number), nonapplicable members of the set are eliminated. The result is a
single member set for each operator indicating the correct operator to
apply.

The implementation of the algorithm uses an array of BOOLEAN variables to
indicate operator membership in the set (cf. Figure D-26). The tree node
being visited by the algorithm references the head node in the chain of
overloaded operators, functions or procedures. An available operator is
recognized by its 'TRUE' value in the array. The operator is then located
by its position in the boolean array, and its corresponding relative
location in the overload chain.

Texas Instruments D-33 Ada Optimizing Compiler

I - *~jt ~~~--r.

Development Specification THE SYMBOL DICTIONARY

TREE NODE SET OF OPERATORS......... "'"Il.""'lI .J ' ° ~ °]
... .. OPERATORI 11!!1: 0 1 0 1 1 1

SRELATIVE LOCATION REFERENCES

SYMBOL TABLE ENTRIES OF OPERATORS

Figure D-26 Operator Identification Structures

D.4.4 Selected Components

The strategy of the symbol table provides a method of determining the
identity of objects named as a selected component. The Ada Reference Manual
[DoD80, Section 4.1.3] states, "Selected components are used to denote
record components. They are also used for objects designated by access
values. Finally, selected components are used to form names of declared
entities... A selected component can denote either

a. A component of a record...

b. An object designated by an access value...

c. An entitiy declared in the visible part of a package...

d. An entry (or entry family) of a task...

e. An entity declared in an enclosing subprogram body, package

Texas Instruments D-34 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

body, task body, block or loop..."

The algorithm (cf. Figure D-27) locates an object by its selected component
name. With the exception of the last name in the selected component, all
identifiers in the selected component must have symbol table entries
referencing other identifers or target types. As long as the names in the
selected component agree with entries in the symbol tables and subsymbol
tables (for instance, record field descriptors), the search is successful.
A completed search returns an appropriate symbol table entry. An
unsuccessful search resets the pointers to the selected component name list
and re-start the search with the next instance of the first name along the
hidden identifier thread.

Find first name in selected component in Look-Up Table
While there are more entries along hidden identifier thread

Follow hidden identifier thread to next entry
While there is success in locating names in symbol tables

Case of type of entry is one of the following:
Access -- Type points to simple type or structured type
Record -- Type points to structured type
Subprogram -- Declaration points to symbol table and/or

other subprograms, packages and tasks
within scope

Package -- Declaration points to symbol tables and/or
other subprograms, packages and tasks
within scope

Task -- Declaration points to declaration of entry point(s)
Otherwise Exit while loop as unsuccessful
Locate symbol table entry referenced by type
Check symbol table entries for next component name

(other subprograms, packages and tasks for
subprogram and package declarations)

If not found -- Exit loop
Reset selected component name pointer
Exit while Loop

If last name in selected component
Exit while loop as successful

Endwhile
If Successful name found--

Exit while loop as successful
Endwhi le
If selected component not found--Return nil symbol table pointer

Figure D-27 Selected Component Identification Algorithm

Texas Instruments D-35 Ada Optimizing Compiler!Y

Development Specification THE SYMBOL DICTIONARY

D.4.5 Direct Visibility for Package Entities via USE Clause

When a USE is elaborated, the visible symbol table of the package is
scanned. An identifier having a name not appearing in the Look-Up Table is
entered into the Look-Up Table as any other identifier. An occupied Look-Up
Table 'Most Recently Declared' reference denies the direct visibility to the
package's identifer [DoD80B], Section 8.4] (Use Clause Rule 1).

The mechanisms of the symbol tables and the 'Most Recently Declared*
reference of the Look-Up Table must be able to handle the visibility rule
concerning the repeated declaration of an identifier in a second used
package. The Ada Reference Manual states that an identifier must be
declared in the visible portion of ONE AND ONLY ONE package. Therefore, the
direct visibility of a used package's variables must be removed, but should
be restored with the leaving of the scope of the second package. Using the
action table in Table D-1, the symbol tables, and the look-up table, this
rule can be effected.

Table D-1 USE Visibility Determination Table--Entering Scope

0 NIL ATTACH SYMBOL ENTRY TO MRD
INCREMENT PACKAGE COUNTER

0 NOT IDENTIFIER IS IN USE

NIL DO NOT ATTACH PACKAGE ENTRY

>0 NIL ERROR

IDENTIFIER IS USED BY ANOTHER PACKAGE,

> 0 NOT INCREMENT PACKAGE COUNTER
NIL DO NOT ATTACH PACKAGE ENTRY

When a USE clause is encountered, the visible identifiers of the package are
located in the Look-Up Table. Consider the case when the Look-Up Table
entry for an identifier, 'A', is:

01 NI
Applying the action found in Table D-1, the identifier is made directly
visible by setting the 'Most Recently Declared' reference in the Look-UP
table, and the package declaration count is incremented to show the presence
of a USE clause. The completed action leaves the Symbol Table and Loop-Up
Table as follows:

Texas Instruments D-36 Ada Optimizing Compiler

-. 9 -

Development Specification THE SYMBOL DICTIONARY

if SYMBOL TABLE

SINGLE PACKAGE DECLARATION OF AN IDENTIFIER

The second occurrence of the identifier, 'A', within another package
designated by a USE clause invalidates the direct visibility of the first
occurrence of the identifier. Using the action directed Table D-1, the
package declaration counter is incremented to show the second usage of the
identifier. The value of the counter now indicates that the MRD reference
does not indicate direct visibility. The state of the tables is now:

I t SYMB8OL TABLE

i " I r -- I, '

MULTIPLE PACKAGE DECLARATION OF AN IDENTIFIER

At any time, it is possible for the identifier, 'A' to be declared in a
subprogram's declarative part. Using the normal algorithm for processing
the declaration, the new 'A' reference is now the 'Most Recently Declared'
and directly visible. Its I _Hide entry contains the reference to the
package 'A' and the package count. The package count in the Look-Up Table
is cleared to zero. Note, this combination does not allow the attachment of
any package identifiers to the name, 'A'. When the scope of the
subprogram's 'A' is left, the original package designators are restored to
the Look-Up Table.

Another set of actions are applied when the scope of a package is left.
These are shown in Table D-2. These actions properly restore the
compilation context and visibility of the outermost package.

Texas Instruments D-37 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

Table D-2 USE Visibility Determination Table--Leaving Scope

O NIL ERROR

IDENTIFIER WAS IN USE,
NOT PACKAGE ENTRY WAS NOT ATTACHED,
NIL DO NOTHING

>0 NIL ERROR

IDENTIFIER USED BY THIS PACKAGE ONLY,
NOT DECREMENT PACKAGE COUNTER,NIL DETACH ENTRY

IDENTIFIER IS USED BY ANOTHER PACKAGE.
>1 NOT DECREMENT PACKAGE COUNTER,

NIL PACKAGE ENTRY WAS NOT ATTACHED

PKG MRD ACTION
COUNT VALUE

The techinque used for Rule 1 also applies to enumeration literals when the
literal is an identifier. Character literals are to always be visible
[DoD80B, Section 8.4] (USE Clause Rule 2). See Section D.4.3 for
implementation of overloading of enumeration literals from a package.

A subprogram in a package may be made directly visible if it does not have
the exact structure of a visible subprogram (traverse the hidden identifier
thread checking other subprograms with subprograms in the package
specification) and it may not be visible if any non-overloadable entity
exists with the same name (stop traversal of hidden identifier thread if a
non-overloadable entity is found) [DoD80B, Section 8.4] (USE Clause Rule 3).
See Section D.4.3 for implementation of overloading of subprograms from a
package.

D.5 The RENAME Statement

For processing the RENAME statement, the two design choices considered were:

1. Create a thread for the new name from the Look-Up Table through
the renamed node. However, multiple renames of the original name
results in countless threads through the symbol table entry which

Texas Instruments D-38 Ada Optimizing Compiler

- - J

Development Specification THE SYMBOL DICTIONARY

is unmaintainable. Also, renaming of the new name is difficult to
implement and maintain.

2. Create a new symbol table entry for the new name. However, there
remains the determination of where the IL data for the new symbol
table entry should be kept. Since the representation of the IL is
subject to changes after a rename, i.e. representation
specifications, etc., if the IL were copied into the new symbol
table entry, there is the possiblity that changes to the IL may
not be incorporated in the renamed entry. Therefore, it has been
decided to create a new symbol table entry and link it to the
original for IL information. This design also allows independent
overloading and hiding of the renamed object.

The second choice was selected because of its ease of implementation and
maintenance.

"Renaming may be used to resolve name conflicts, to achieve partial
evaluation and to act as a shorthand." [DoD80B, Section 8.5]. The selected
method of representing a renaming in the symbol table covers the resolution
of name conflicts. However, some extra processing is involved in partial
evaluation and shorthand. The following statements demonstrate the use of
these concepts:

1. XYZ renames A(5);

2. XYZ renames M.N.O.P; (where all components are records and/or
record fields -- no access types)

3. XYZ renames A(L);

4. XYZ renames M.N.O.P; (where N is an access type)

Statements 1 and 2 are considered 'static' renaming statements since the
type of the variable and its relative location in the run-time stack can be
determined at compile-time. On the other hand, statements 3 and 4 are
considered 'dynamic' renaming statements because the exact location in the
run-time stack structure must be evaluated at run-time from the current
value of L in A(L) and the allocated storage of N in the selected component
expression, respectively. The static and dynamic statements are handled the
same in the symbol table, i.e., the entry in the symbol table for the
renaming object references the renamed object (cf. Figure D-28), but
differently during code generation.

Texas Instruments D-39 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

LOOK-UP TABLE

OLDNAM E

MY NAME MY NAME
I HIDE I HIDE

I RENAME I RENAME
OVERLOAD OVERLOAD

OFFSET OFFSET

IL DATA NULL

Figure D-28 Newname RENAMES Oldname

In static renaming statements, the reference to the renamed object exists
primarily to indicate the stack frame offset (determined at compile-time) of
the renamed object and typing informaton about the renamed object.
Generated code accesses the renamed object directly.

In dynamic renaming, the run-time stack frame offset cannot be calculated at
compile-time. In this case, the renaming object is allocated space in the
stack frame for the subprogram in which it is declared. This entry is an
indirect reference to the renamed object, so that source code use of the
renaming object results in code using the local indirect reference. The
contents of the renamed object is determined at entry into the subprogram.
Although the renamed object making the statement dynamic may change after
the elaboration of the RENAME, the indirect reference remains static as long
as the RENAME is visible.

D.6 Derived Types

A derived type has its own symbol table entry which is a copy of the parent
type with any declared constraints. A reference to the parent type through
a Derived Base Type field serves as link in determining type suitability for
derived subprogram parameters and return values.

Texas Instruments D-40 Ada Optimizing Compiler

... *= £. _ """-J. =

Development Specification THE SYMBOL DICTIONARY

SYMBOL TABLE

' TYPE-' ' DERIVED '
FUNCT ION

P I PARIS

PARMI
PARi2
PARM 3
RET RN

F_ TYPE '

Figure D-29 Linkages for a Derived Type

Figure D-29 illustrates the state of the symbol table for the following
code:

Package P is
Type M is
Function P1 (..)Return M;

End Package P;

Subprogram Q is
Use P;

Type N is new M;
U is N;

Begi n

U : P (..

End Q;

According to the rules governing derived types, the object U is a legal
return parameter in the function 'Pl'. This legality can be found using the
following algorithm:

Texas Instruments D-41 Ada Optimizing Compiler

Development Specification THE SYMBOL DICTIONARY

Find type of object used as parameter.
2: Find type of expected subprogram parameter.

If types disagree
If checked type is a derived type, get derived

base type and re-enter Algorithm at label 2
else return a Failure For type check.

If types agree, Return with Success for type check

This algorithm and derived type chaining allows the use of predefined
functions for all types derived from STANDARD and predefined types
corresponding to those functions.

Texas Instruments D-42 Ada Optimizing Compiler

Development Specification REPRESENTATIONS OF DIANA

APPENDIX E

REPRESENTATIONS OF DIANA

E.1 Design Issues

In order to process DIANA effectively, a number of design decisions must be

made. Certain design issues involve defining the implementation-defined
types used in the definition of DIANA, in particular, the source position of
a node and the representation of identifiers. (The latter is described in
Appendix D.) Other design issues involve the representations of DIANA.
There are three basic representations of DIANA (cf. Figure E-1): the
internal representation, the external representation, and the visible
representaton.

/ #r RE PRESENTAT ION

INTERNALE

REREPRESENTATION

VISIBLE
REPRESENTAT ION

Figure E-1 Representations of DIANA

The internal representation is the representation of DIANA in main memory.
The external representaton is the representation of DIANA on a file. The
visible representation is the human readable representation of DIANA.

Texas Instruments E-1 Ada Optimizing Compiler

*,-

Development Specification REPRESENTATIONS OF.-DIANA

Finally, there are design issues concerning the transformation of the the
external representation to the internal representation, and the derivation
of new dialects.

Note, the design decisions described below on external representation,
symbol tables, Source Table, etc. constitute a dialect of DIANA. The
designers of DIANA intended for DIANA to be extensible to different
dialects, i.e., for the DIANA definition to be specialized by making
implementation decisions on the private types used in the definition, and
for attributes to be added for tool specific information. The design
decisions made are well within the framework of the dialect derivation
process intended by the DIANA designers.

E.2 Source Position

There are cases where it is necessary to relate a node back to the source
text from which it was created. For example, the source position is used
during semantic analysis to report error messages. Also, it is used by the
source level debugger to relate debug information back to the source text;
this is particularly important if optimization has been performed. The
position in the source text is uniquely specified by a line number and
character number within the line. Because of the INCLUDE pragma it is also
necessary to uniquely identify the source file. Therefore the value of the
source file attribute is the triplet (sourcefile, line, char) which is
collectively called the "sourcedesignator".

The "source file" is the database name of the source file which uniquely
specifies the revision and version. The "line" part is an integer; source
lines in a file are numbered sequentially starting at 1. The "char" part is
an integer representing the position of the source character in the "line"
from which the node was created; character postions are numbered from left
to right starting at 1.. If a node has no equivalence in the source file,
"line" and "char" are zero. The "sourcedesignator" is retained in the
SOURCE attribute of a node which is part of the external representation of a
node. T,1 . source file attribute need not be part of the internal
representation of DIANA. It could either be stored in the file containing
the external representation of DIANA or on a separate file. Regardless,
there must be a mapping from the node in main memory to the node on the file
which contains the attribute. Because of the inefficiencies associated with
the mapping, the source file attribute is also part of the internal
representation of a node.

There are circumstances in which it is desirable to store more than one
source position with a DIANA node. Useful positions are the left most
character of a construct, the rightmost character of a construct, and a
"middle" character of a construct (e.g., the position of the infix operator
for an expression). Therefore, the DIANA source_position attribute is
viewed as a list of "sourcedesignator"s

There is the possibility that a source file is included more than once in a
program and it is desirable to be able to map back to the source uniquely.

Texas Instruments E-2 Ada Optimizing Compiler

-. 1.2- ... _ -1T-

Development Specification REPRESENTATIONS OF DIANA

Reference to the included file in this case is not sufficient, it is
necessary to also know the complete qualification of included files starting
with the compilation unit containing the first INCLUDE. The qualification
is effectively maintained in the Source Table. An entry in the Source Table
consists of the database name of a source file (input file and INCLUDE
files) and a line count base, i.e., the value of the line counter when the
first line of the source file is processed. (Lines are numbered
sequentially starting at 1; lines of INCLUDEd files are number sequentially
starting with the line number of the INCLUDE.) The base is used to relate
line numbers generated by the compiler back to the line in the source file.
Instead of storing a database name in the "source file" of a"source designator", the index of the entry for the source file in the
Source Table is stored instead. The Source Table is save in an IL file as
part of the IL.

For generic instantiations, there is no source text associated with the
expansion. Therefore, the source file attribute for each DIANA node in the
expansion references the generic instantiation.

E.3 Internal Representation

There are many kinds of DIANA nodes. Different kinds of nodes are
represented as variants of a single record type, NODE, which contains the
record component, NODEKIND, as an enumeration discriminant. NODE is
declared with default initial values for the discriminants. This permits
variables to be declared without a discriminant constraint; such variables
are unconstrained and can be assigned any record value. Node attributes are
represented as fields in NODE. Attributes contained in the fixed part of
the record are SOURCE, NODEKIND and NODENAME.

During compilation, the number of DIANA nodes is not known in advance.
Therefore, node objects are created dynamically by execution of an
allocator; node references are represented as access variables of type NODE.
Discriminant values are supplied with the allocator to indicate the kind of
node to allocate; the allocated node object is contrained by these values.

The abstract syntax tree (AST) is represented by nodes whose NODE KIND
attribute has the value AST-NODE. Attributes in the variant part of an AST
node consists of an operation, a node reference to a symbol table entry (a
DIANA DEF ID and its attributes are stored as an entry in the symbol table;
all references to the DEF ID in the AST are replaced by references to the
symbol table entry), a node reference to the first subnode of a sequence of
subnodes, and a node reference to a sibling. Depending on the operation,
the number of subnodes may be fixed or variable in length. Therefore, the
subnodes are linked together via the SIBLING field of the AST node; a
pointer to the first sibling is contained in the SUBNODES field of the
parent node. Each AST node which is not a root is referenced as a subnode
(either by the SUBNODES or SIBLING field) in exactly one AST node.

There are many kinds of symbol table nodes each of which is distinguished by
a unique NODE-KIND value. How these nodes are linked together depends on

Texas Instruments E-3 Ada Optimizing Compiler

Development Specification REPRESENTATIONS OF DIANA

the organization of the symbol table (cf. Appendix D).

E.4 External Representation

E.4.1 Naming Nodes

When outputing a compilation unit's DIANA in its external representat;on,
internal node references (access values) must be replaced with an external
node reference. Thus, each node must be uniquely named. Since each
compilation unit's DIANA is stored separately and because of cross-
compilation node references (for example, references to symbol table nodes
for non-local types or objects), it is necessary to uniquely identify the
compilation unit and the node within the compilation unit. An external node
reference is uniquely specified by the pair (compilation-unit, node label)
which is collectively called the "node name". The "compilation unit" is a
unique positive integer starting at 1. The association of the number of a
compilation unit to the file containing the corresponding DIANA is
maintained in a table within the library file. The "node label" is a unique
integer which starts at 1.

The "node name" is retained in the NODE NAME attribute of a node which is
part of the external representation of a node. It is not an attribute in
the internal representation. "Node name"s are generated when the DIANA is
written out to the file, i.e., a pass is first made over the DIANA assigning"node label"s, then the IL is output to the IL file. The "node name" does
not include the database name of the library file since the IL file is not
known outside the context of the library file (i.e., when referencing the IL
file for a compilation unit it is necessary to specify the library file
which contains the compilation unit).

E.4.2 Text versus Binary Representation

Nodes can be represented externally as text or as binary. Textual
representation has an advantage; it can be directly printed or viewed on a
CRT. However, converting it to an internal representation requires
converting the text to binary and then storing the binary in the fields of a
node object; the first step can be eliminated, if the nodes are stored in
binary form. Therefore, nodes are represented externally as binary. The
nodes are written to a file of records (using the high-level I/O package)
where each record is of-type EXTNODE. The type EXT NODE is similar to the
type NODE except access types are replaced by a type representing an
external node reference, i.e., node-name. Each field of a node (created by
execution of an allocator) is copied to the corresponding field of a
variable of type EXT_NODE. Fields of the node containing internal node
references (i.e., access values) are mapped to an external node reference
(i.e., node name). The node name is obtained from the NODE NAME field of
the node pointed to by the access value.

Texas Instruments E-4 Ada Optimizing Compiler

Development Specification REPRESENTATIONS OF DIANA

For an AST node, it is not necessary to map internal node references to
other AST nodes external node references if the external representation
contains the node's degree (i.e., map SUBNODES and SIBLING access values if
the number of subnodes of a node is contained in the external
representation). Given the preorder walk of the AST and the degree of each
AST node, the internal representation of the AST can be constructed with the
internal node references to other AST nodes being implicit. However, the
mapping is performed since it may be required by other processing programs.
For example, a program to print the AST would not have to construct the
internal representation of the AST, but could process the nodes one at a
time and print it. Or the information could be used to verify the correct
node was being processed. To facilitate constructing the internal
representation of the AST, the number of subnodes of an AST node is retained
in the DEGREE attribute of the external representation.

E.4.3 Representation of DIANA on Files

The DIANA for a compilation unit is stored in its external representation on
a random access file. The DIANA nodes appear in a specific sequence in the
file. The IL consists of two physically separate parts: DIANA nodes
representing the abstract syntax tree and nodes representing the symbol
table. (The DEF-ID's are saved as symbol table nodes. The symboi table
constructed by the front-end is saved to expedite processing later by other
tools requiring it, including the separate compilation facility of the front
end.) A symbol table (cf. Appendix D) consists of three parts: a table of
declared entities, a table of name nodes (names are kept separate from their
associated declared entity because they can be of arbitrary length), and a
table of literal nodes. A compilation unit may contain one or more packages
or subprograms. A separate symbol table is maintained for the compilation
unit (which is needed for a separate compilation) and for each embedded
package, subprogram, task and block. These symbol tables are required by
the source level debugger.

The IL (AST and symbol table) for the compilation unit and each embedded
package and subprogram are written to the file separately; first the
abstract syntax tree nodes, then the symbol table nodes. This permits each
piece to be separately processed by the code optimizer and code generator.
As each package and subprogram is compiled, its IL is written out. The IL
for the compilation unit is written out last. Therefore, the order of the
IL is from the most embedded package/subprogram to the outermost
package/subprogram. A symbol table is converted into a linear sequence
determined by its internal organization, e.g., whether it is a balanced tree
or hashed, and the ability to reconstruct the internal organization easily
from the linear sequence. An abstract syntax tree is converted into a
linear sequence corresponding to a preorder walk of the abstract syntax
tree, i.e., visit the root, then the subnodes from left to right. Preorder
is selected so declarations appear before body nodes.

The first record of the random access file contains a dictionary giving a
map of the IL for the compilation unit and the embedded packages,
subprograms, tasks and blocks, i.e., the starting and ending record numbers
within the file for each AST and symbol table, and the range of node labels.

Texas Instruments E-5 Ada Optimizing Compiler

7J

Development Specification REPRESENTATIONS OF DIANA

The IL for a generic declaration is delineated so it can be extracted and
used in the expansion of generic instantiations. The record also contains
the database name of the library file of which the compilation unit is a
member, the integer index of the compilation unit's entry in the library
file (cf. Appendix F), and the Source Table.

E.4.4 Transforming DIANA on a File to the Internal Representation

For a tool to process the IL of a compilation unit, it must transform the
external representation to the internal representation, i.e., construct the
internal representation of the abstract syntax tree and the symbol table(s).
Requisite symbol tables are transformed first, then the AST is constructed.
Constructing the AST or symbol table consists of obtaining a node in its
external representation, transforming it to an internal representation, and
linking the node into the (partially constructed) data structure. A node's
external representat;on (a binary value) is read from a file into a variable
of type EXT NODE and moved into a new node of the proper NODE KIND. The
type of the new node depends on the tool processing the IL, i.e., attributes
required by, for example, the code optimizer and the code generator are
different. The type supports only the attribut,.s required. The node kind
is obtained from the NODE KIND field of the variable. BaseJ on the
NODE KIND, an allocator is executed with the proper discriminant values and
fields of the variable are copied one at a time to the corresponding fields
of the allocated node object. Those fields (attributes) not essential to
the processing program are not copied. Fields of the variable that contain
external node references are mapped to internal node references (i.e.,
access values) (see below).

E.4.4.1 Constructing a Symbol Table

Certain symbol table nodes contain external node references to other symbol
table nodes, e.g., from a symbol entry to an entry in the name table, or
links dependent on the lookup algorithm. These external node reference must
be mapped to internal node references. Also, certain symbol table nodes
contain external node references to AST nodes which must be mapped to
internal node references, e.g., a symbol table node for a package symbol
would reference AST nodes for the package specification and package body.
This presents a problem; AST nodes are loaded after symbol table nodes.
Both mappings are handled by use of) nodename dictionary.

An entry in the dictionary consists of a node name, the kind of node (symbol
table or AST), a mark indicating whether the node is loaded or not, and a
pointer whosp, value depends on the mark's value. All symbol table nodes
referencing a nodename of a node not loaded are linked together via the
node field containing the internal node reference, and the pointer in the
dictionary entry for the reference node name points to the head of this
list. When a node with node name is loaded, all nodes on the list of
iinsatisfied references have their link field set to point to the loaded
node. The pointer in the dictionary is changed to point to the loaded node
,rid the entry marked as loaded. If the node name is a symbol table node in

ther symbol table (e.g., to a type), this entry is already loaded and the
,)rpate .ymbol table is searched for an entry with node name (recall

-,'rjments E-6 Ada Optimizing Compiler

Development Specification REPRESENTATIONS OF DIANA

node name is kept as part of the internal representation of a node). A list
of all symbol tables loaded and their location is maintained; the
appropriate one is selected via the "compilation unit" part of the
node name. Searching the symbol table for the nodename is more efficient
spacewise than retaining the symbol table nodename dictionary for each
symbol table loaded.

Once the symbol table for a compilation unit is loaded or all symbol tables
of embedded packages and subprograms in a compilation unit are loaded, the
dictionary need be retained only if AST nodes of the same compilation unit
are to be loaded (cf. Section E.4.4.2). The dictionary is used to resolve
external node references to/from symbol table nodes from/to AST nodes. The
only node name entries in the dictionary marked as unloaded are for
references to AST nodes. Depending on the processing to be performed, it
may be necessary to load these AST nodes and their subtrees in which case
the dictionary is required.

E.4.4.2 Constructing an AST

Given the preorder for the AST and the degree of a node, it is a simple
matter to construct the internal representation of the AST. The algorithm
p-ocesses one node at a time retaining on a stack a pointer to the nodes
whose subnodes have not been processed yet and a count of the number of
subnodes still required. When the count goes to zero the pointer is removed
from the stack and the node is linked to the node referenced by the pointer
on top of the stack. Likewise, a node with degree zero is linked to the
node referenced by the pointer on top of the stack. Each time a node is
linked, the count of the top element on the stack is decremented by I.

The external node references to other AST nodes comprising the AST being
loaded (i.e., the node references in the SUBNODES and SIBLING fields) are
not mapped to internal node references (i.e., access values) because the
internal node reference is implicit in the construction algorithm. The
internal node reference is assigned to the element in the subnode sequence
determined by the count on top of the stack (a count equal to the node's
degree indicates the first element and a count equal to one indicates the
last element).

The external node references to symbol table nodes are mapped to access
values by either looking up the external node reference in the node-name
dictionary of the symbol table just loaded or searching the appropriate
symbol table for an entry with node-name.

As each AST node is loaded and linked into the AST, its node name is looked
up in the node name dictionary. If not found, nothing happens. If found,
all nodes on the list of unsatisfied references have their lirk field set to
point to the loaded AST node. The dictionary entry is not updated to where
the node is loaded since nodenames are unique.

There are no external node references between AST nodes in different IL
files for "updates to previously compiled units are forbidden in DIANA"
[G0081, Section 3.4.3.21. However, such node references may be temporarily
established during the processing of the AST.

Texas Instruments E-7 Ada Optimizing Compiler

Development Specification REPRESENTATIONS OF DIANA

E.5 Visible Representation

The visible representation of DIANA is its text form. There are a number of
reasons for having such a representation. First, it is a transportable
representation between computers. Second, it is useful as a debugging aid,
particularly for the compiler. Finally, it leaves the decision of the
internal representation to the processing programs. The definition of DIANA
[G0081] defines a visible representation as does the IDL [NES81] formal
description. This visible representation shall be used. It shall be
produced by a program that processes the external representation of DIANA on
an IL file.

E.6 Derivation of Dialects

The DIANA output by the compiler is viewed as the common interface for all
tools that use DIANA. This dialect contains all the information about a
program. Therefore, a tool can derive any additional attributes needed for
its processing. For example, the code optimizer can derive the flowgraph or
procedure call graph from the common dialect. There must be a mechanism to
derive a dialect from the common dialect, i.e., to delete attributes not
needed and define new ones that are. Also, it must be possible to write out
the new dialect in its external representation (with attributes that are
needed only for the program itself deleted) and to read it in. This permits
the new dialect to be used as an interface to other tools.

A mechanism to derive dialects is a utility program that accepts a
definition of the input and output dialects (i.e., a definition of the
external representation of the DIANA input and output, a definition of the
internal form, together with a definition of the mapping between the
external representation of the input/output dialects and the internal form).
The input and output dialects may be the same. The output of this program
is an Ada package containing the data structure definitions for the
input/output dialects and the internal form, and a set of procedures for
reading the input external form into the internal data structure and writing
the internal form to the output external form. Such a utility program could
generate a package to input the common dialect, transform it into an
internal representation, and write out a new dialect in its external
representation. A package could also be generated to read/write a given
dialect from/to its external representation to/from its internal form.

IDL [NES81], which is used to describe DIANA, shall be used to specify the
data structures for different dialects. A program shall be written that
converts an IDL specification into an implementation of an Ada package with
corresponding reader/writer routines. This effort shall utilize the work
being done at Carnegie-Mellon University where similar programs for
different languages are being developed.

Texas Instruments E-8 Ada Optimizing Compiler

.........----------I-.....--- -- --------------------------

Development Specification THE LIBRARY FILE UTILITY

APPENDIX F

THE LIBRARY FILE UTILITY

F.1 Introduction

Information about a program required by the Ada separate compilation
facility and by AlE tools (e.g., the source level debugger, the program
binder, and the command interpreter) is maintained in a library file. The
library file utility provides, via subprograms, the primitives to manipulate
the contents of a library file.

F.2 The Library File

The library file is a database object. The database system manages
concurrent access to the library file; multiple tools may be reading a
library file, but only one tool may be writing to a library file. The
library file is a separate database for maintaining the compilation state of
a program or family of programs.

It is the function of a tool accessing a library file to maintain its
consistency, i.e., a tool modifying a library file must do so in a
consistent manner. A library file is modified by making a memory copy,
modifying the copy, and replacing the library file with the memory copy.
While the tool is modifying a library file, it has exclusive access to it.
As an example, consider the compiler. At the start of a compilation, the
compiler makes a memory copy of the library file. This memory file is
modified during the compilation to reflect the changes in the compilation
states of the compilation units processed. When the compilation is
finished, the compiler decides whether the compilation was successful based
on the severity of the errors detected. If the compilation was successful,
it replaces the library file with the new updated memory copy. No other
compilations may occur in parallel using the same library file, for
exclusive access to a library file is granted to only one instance of the
compiler.

Within the library file the hierarchical dependencies (genealogy) of the
compilation units are maintained. This is, in general, a forest structure.
The roots of the forest are library units; each tree consists of subunits
contained in the library file. There may be a number of library units
(subprograms) that can serve as the main program. The main program is
ascertained by the fact it is a library unit and is specified at the time
the program is bound; there is no MAIN pragma to indicate a main program.
Thus, the library file can contain the compilation unit(s) for a single
program or a family of programs. The main program is specified to the

Texas Instruments F-1 Ada Optimizing Compiler

Development Specification THE LIBRARY FILE UTILITY

program binder which binds the correct compilation units into an executable
program.

A library file consists of information describing the library file, a table
of compilation unit names, and an entry for each compiled compilation unit.

F.2.1 The Library File Descriptor

The library file descriptor contains global information used by the library
file utility to maintain it. This information consists of:

* The database name of the library file. This is needed to recreate
the pathname of the library file. It is used, for example, by the
compiler when forming default pathnames.

* Signature. An integer value used in the construction of default
pathnames; it is concatenated to the file category. The value is
incremented each time a default pathname is created.

* The number of compilation units in the library file. When a
compilation unit is compiled for the first time, this number is
incremented and associated with the compilation. The associated
number, known as the compilation unit's configuration index,
uniquely identifies the compilation unit within a library file.

It is not necessary to retain references to the roots of the forest
structure. These references can be derived by searching the compilation
unit name table for library units.

F.2.2 Compilation Unit Name Table

The compilation unit name table provides a map from the name of a
compilation unit to the entry for the compilation unit. There is one entry
in the table for each compilation unit which consists of:

* The compilation unit's name. The name is a string; it is the name
of the compilation unit as it appeared in the source text. It is
used, for example, by the compiler when forming default pathnames.

* The nature of the compilation unit:

- A mark indicating whether the compilation unit is a library
unit or a subunit.

- A mark indicating whether the compilation unit is for a
subprogram or package declaration, or for a subprogram,
package, or task body.

- A mark indicating whether the compilation unit is generic,
and, if so, whether it is a generic declaration or a generic

Texas Instruments F-2 Ada Optimizing Compiler

-- 7 77F

Development Specification THE LIBRARY FILE UTILITY

instantiation. If it is generic, the previous mark indicates
whether it is a subprogram or package.

The configuration index of the compilation unit's specification.
For a subprogram with no separate specification, the index is zero.

The configuration index of the compilation unit's body. For a
package with no separate body, the index is zero.

* A reference to the compilation unit's descriptor. The descriptor
contains all of the relevant information associated with the
compilation unit.

The forest structure is maintained in the compilation unit name table. Each
compilation unit that is a library unit is the root of a tree in the forest.
Entries of subunits of a compilation unit are linked together to form the
genealogy of the compilation unit. The genealogy of a compilation unit can
be used to obtain a list of all its subunits.

Either the configuration index or the name of a compilation unit can be used
to look up the entry for a compilation unit. If the compilation unit is a
subunit, its name may not be unique; only names of subunits of a library
unit need be unique. In this case, the name of the subunit's ancestor that
is a library unit must be supplied. The ancestor library unit is looked up
first, then its genealogy is traversed to locate the subunit.

F.2.3 The Compilation Unit Descriptor

The compilation unit descriptor contains information specific to a
compilation unit. Not all information associated with a compilation unit is
maintained in the descriptor, in particular, information which can be
derived by other means. For example, the major outputs of each compiler
pass, i.e., an IL file, an optimized IL file, and an object module form
nodes in the derivation tree for the compilation unit. This derivation tree
is maintained in the database instead of the library file via derivation
attributes. The derivation attributes consist of Input File,
Processor Name, and Control File. The derivation attribute Input File is
the database name of the compilation unit processed by the compiler pass.
The attribute Processor_-Name is the database name of the compiler used to
process the compilation unit. The attribute Control File is the database
name of the compiler control file containing the input parameters to the
compiler pass. These derivation attributes are set by the compiler. Other
output files of a compiler pass, such as error files, statement map,
compiler statistics, symbol map, and type map, are associated with the major
output of that pass via database relations. These relationships are set by
the compiler. As an example, consider the determination of the error files
producted during a compilation. Given the database name of the object file,
the derivation path in the derivation tree can be determined via the
derivation attributes. The derivation path consists of the major outputs of
each compiler pass. The database names of the error files generated by each
pass are obtained by examining the appropriate database relation for each of
the major outputs.

Texas Instruments F-3 Ada Optimizing Compiler

Development Specification THE LIBRARY FILE UTILITY

A compilation unit descriptor consists of:

Compilation unit's name table reference: a reference back to the

entry for the compilation unit in the compilation unit name table.

Compilation time and date stamp: records the order of

compilations. It is used to check for required recompilations (see
INCLUDE list below).

Compile indicator: a mark that indicates whether the compilation
unit has been compiled or needs to be recompiled. When stubs are
met for the first time, a compilation unit descriptor is created
for the subunit and this mark in the descriptor is set to indicate
the subunit needs to be compiled. Once a compilation unit has been
compiled and it is determined it needs to be recompiled, the mark
is set accordingly.

WITH list: a list of library units appearing in WITH clauses of a
context specification. An entry in the list consists of the
database name of the library file containing the library unit and
the configuration index of the library unit within the library
file. The database name of the library file is needed when the
library unit is from another program. The list is needed in the
determination of the correct compilation order, i.e., what has been
compiled, and in the creation of the compilation context for a
compilation unit (the WITH list for a subprogram, package, or
generic declaration is inherited by the corresponding subprogram or
package body, and the WITH list for a library unit is inherited by
its subunits). The list also defines the dependence relations
between library units which are used in the determination of a
consistent elaboration order of these units.

* USE list: a list of packages appearing in USE clauses of a
context specification. An entry in the list consists of the name
of a package, the configuration index of the compilation unit
containing the package, and the database name of the library file
containing the compilation unit. The list is needed in the
creation of the compilation context for a compilation unit; USE
clauses are inherited in the same manner as WITH clauses. The list
is also used in the determination of compilation units that need to
be recompiled. When a package is recompiled, then all compilation
units that use it must be recompiled.

* SEPARATE list: a list of all ancestors of a subunit starting with
the ancestor library unit. An entry in the list consists of the
configuration index of each ancestor compilation unit within the
library file. The list is empty for library units. The list is
used in the creation of the compilation context of the subunit. It
is also used by the compiler in the formation of default pathanmes.

* Package reference list: a list of all packages appearing in USE

clauses within the compilation unit. An entry in the list consists

Texas Instruments F-4 Ada Optimizing Compiler

Development Specification THE LIBRARY FILE UTILITY

of the name of a package, the configuration index of the
compilation unit containing the package, and the database name of
the library file containing the compilation unit. The list is used
in the determination of the/ elaboration order of library units that
are package bodies.

INCLUDE list: a list of all text files specified in INCLUDE
pragmas within the compilation unit. An entry in the list consists
of the database name of the text file. The list is used by the
program binder to determine if any units being bound need to be
recompiled, i.e., to check that included files in the unit were not
modified by a text editor after the compilation unit was compiled.
The check involves comparing the compilation time and date stamp of
the compilation unit with the edit time and date stamp of the
included file.

Source file reference: the database name of the source file
containing the compilation file. It is used to verify the input to
the back end of the compiler was derived from a compilation unit in
the library file. This database name is checked against the
database name of the library unit from which the input was derived.

Subprogram declare list: a list of all subprograms declared
within the compilation unit. The list is used to construct a call
graph in the determination of whether an inline subprogram can be
expanded. An entry in the list consists of: 1) a
specbody indicator which states whether the specification or body
of the subprogram appeared in a declarative part; 2) the name of
the subprogram; and 3) a subprograms called list. The specbody
indicator is used in the determination of compilation units that
need to be recompiled when the compilation unit containing the
declaration of the subprogram is recompiled. In this case,
compilation units containing calls to the subprogram need only be
recompiled if the body of the subprogram was recompiled or the
specification was recompiled but remained unchanged. The name of
the subprogram is the node name of the symbol table node for the
subprogram; the node name uniquely identifies the
declared subprogram.

The subprograms called list is a list of all subprograms called by
a subprogram declared within the compilation unit. The list is
used to construct a call graph for inline expansio,, and in the
determination of compilation units that need to be recompiled (see
spec body indicator above). An entry in the list is: 1) an inline
indicator which states whether the call was expanded inline or out-
of-line; 2) a reference to the compilation unit containing the
subprogram called; and 3) the name of the subprogram called. The
inline indicator is used in the determination of whether to expand
an inline subprogram. The compilation unit reference consists of
the database name of the library file containing the compilation
unit and the configuration index of the compilation unit within the
library file. The name of the subprogram called is the node name
of the symbol table node for the subprogram; the node name uniquely

Texas Instruments F-5 Ada Optimizing Compiler

- - -

= _. .,= ;.mL : it.. .. :L+.+ + .' . " " +°.. . . '+- .. . ml '" " " '+ -- .,+, .t _4._ 4'i.:

Development Specification THE LIBRARY FILE UTILITY

identifies the subprogram called. The list is also used in the
determination of the elaboration order of library units that are
package bodies.

* Generic instantiation list: a list of all generic instantiations
within the compilation unit. An entry in the list is the node name

4of the DIANA AST generic instantiation node. This list is used by
the program binder in performing generic optimization.

F.3 Functional CapabilitiesJ

At The primitive functional capabilities supported by the library file utility
a re:

* Create library file: a library file is created and initialized.
Initialization consists of initializing the library file descriptor
and entering the compilation unit name table to the predefined
environment STANDARD.

* Include members from another library.

* Delete members in a library file.

* Create an entry for a compilation unit

* Access information recorded in a library descriptor, in a
compilation units descriptor, and in an entry of the compilation
unit name table. This permits a compilation unit's compilation
state to be examined and/or modified.

* Open and close a library file.

* Load a copy of the library file into memory.

* Update a library file with a memory copy.

* Assign the next signature(s). Used in the automatic generation of
pathnames.

F.4 Library File Interface

To isolate the implementation of the primitives provided by the library file
utility from the tool which uses them, the library file utility is
implemented as a package. The structure of the library file is private and
is operated on by the primitives (subprograms). Any additional functional
capabilities required by a tool, such as determination of a recompilation
list, checking if all units have been compiled, displaying the forest
structure, displaying the roots of the forest, listing all the compilation
units, listing all subunits of a compilation unit, or listing the derivation

Texas Instruments F-6 Ada Optimizing Compiler

- II

Development Specification THE LIBRARY FILE UTILITY

tree of a compilation unit, must be built in terms of the primitives. If
the primitives provided by the library file utility are changed, or the
library file utility package is recompiled, every tool using it must be
recompiled. This can be prevented by moving the new functional capabilities
out of the tool into a package known as a library file interface (cf.
Figure F-1). Each interface subprogram would implement its functional
capability utilizing the primitive capabilities provided by the library file
utility package. Changes in the implementation of the library file utility
affects only the library file interface; the tool need not be recompiled.

TOOL FILE

UTILITY

AlE TOOL FILE F 7IEY

INTERFACE UTILITYI

(PACKAGE) PROGRAM
INSTANCE)

Figure F-1 Interface with the Library File Utility

Texas Instruments F-7 Ada Optimizing Compiler

Development Specification REFERENCES

APPENDIX G

REFERENCES

[AH077] Aho, A.V. and J.D. Ullman, Principles' of Compiler Design,
Addison-Wesley Publishing Company, Reading, MA (1977).

[ALL76] Allen, F.E., A Program Data Flow Analysis Procedure, CACM 19, 3
(March 1976), 137-147.

[BAR80] Barnes, J.G.P., An Overview of Ada, Software-Practice and
Experience, 10 (November 1980), 851-887.

[BAR79] Barrett, W.A. and J.D. Couch, Compiler Construction: Theory
and Practice, SRA (1979).

[BAT76] Bates, D. (editor), Program Optimization, Infotech State of the
Art Report, Infotech International Limited (1976).

[BEL80] Belmont, P.A., Type Resolution in Ada: An Implementation
Report, SIGPLAN Notices, 15,11 (November 1980), 57-61.

[BRO8OA] Brosgol, B.M., et.al., TCOL Ada: Revised Report on an
Intermediate Representation for the Preliminary Ada Language,
Carnegie-Mellon University, Computer Science Department
(February 1980).

[BRO8OB] Brosgol, B.M., TCOL-Ada and the "Middle End" of the PQCC Ada
Compiler, SIGPLAN Notices, 15,11 (November 1980), 101-112.

[CAT77] Cattell, R.G., A Survey and Critique of Some Models of Code
Generation, Carnegie-Mellon University, Computer Science
Department (November 1977).

[CAT78] Cattell, R.G., Formalization and Automatic Derivation of Code
Generation, PhD Thesis, Carnegie-Mellon University (April 1978).

[CAT79I Cattell, R.G., et. al., Code Generation in a Machine-
independent Compiler, SIGPLAN Notices, 14,8 (August 1979), 65-
75.

[CAT80] Cattell, R.R., Automatic Derivation of Code Generators from
Machine Descriptions, ACM Transactions on Programming Languages
and Systems, 2,2 (April 1980), 173-190.

[C11801 CII Honeywell Bull, Formal Definition of the Ada Programming
Language, Louveciennes, France (November 1980).

[DAU79A] Dausmann, M., et. al., Notes on TCOL, Universitat Karlsruhe,

Texas Instruments G-1 Ada Optimizing Compiler

-

Development Specification REFERENCES

West Germany (October 1979).

[DAU79B] Dausmann, M., et. al., AIDA: An Intermediate Representation of
Ada Programs - Global Design, Universitat Karlsruhe, West
(bermany (November 1979).

[DAU79C] Dausmann, M., et. al., AIDA: An Intermediate Representation of
Ada Programs, Universitat Karlsruhe, West Germany (November
1979).

[DAU80A] Dausmann, M., et. al., AIDA: An Informal Introduction,
Universitat Karlsruhe, West Germany (February 1980).

[DAU80B] Dausmann, M., et. al., AIDA: Reference Manual (Preliminary
Draft), Universitat Karlsruhe, West Germany (February 1980).

[DAU80C] Dausmann, M., et. al., Command Interpreter of the Library-User-
System (User Information), Universitat Karlsruhe, West Germany
(July 1980).

[DAU80D] Dausmann, M., et. al., AIDA: An Informal Introduction (Draft),
Universitat Karlsruhe, West Germany (November 1980).

[DAU80E] Dausmann, M., et. al., AIDA: Reference Manual (Draft),
Universitat Karlsruhe, West Germany (November 1980).

[DAU8OF] Dausmann, M., et. al., SEPAREE: A Separate Compilation System
for Ada (Draft), Universitat Karlsruhe, West Germany (November
1980).

[DAV80] Davidson, J.W. and C.W. Fraser, The Design and Application of
a Retargetable Peephole Optimizer, ACM Transactions on
Programming Languages and Systems, 2,2 (April 1980), 191-202.

[DED80] Dedourek, J.M. and U.G. Gujar, Scanner Design, Software-
Practice and Experience, 10 (December 1980), 959-972.

[FAI80] Faiman, R.N. and A.A. Kortesoja, An Optimizing Pascal
Compiler, IEEE Transactions on Software Engineering, Vol. SE-6,
No. 6 (November 1980), 512-518.

[GAN80] Ganzinger, H. and K. Ripken, Operator Identification in Ada:
Formal Specification, Complexity, and Concrete Implementation,
SIGPLAN Notices, 15,2 (February 1980), 30-42.

[GES72] Geschke, C.M., Global Program Optimization, PhD Thesis,
Carnegie-Mellon University, Computer Science Department (October
1972).

[GOOD80] Goodenough, John B., The Ada Compiler Validation Capability,
SIGPLAN Notices, 1U,11 (November 1980), 1-8.

[G0080] Goos, G. and G. Winterstein, Towards a Compiler Front-End for

Texas Instruments G-2 Ada Optimizing Compiler

- ~ ' .. -..

Development Specification REFERENCES

Ada, SIGPLAN Notices, 15,11 (November 1980), 36-46.

[GO081] Goos, G. and W. A. Wulf, (editors), Diana Reference Manual,
Carnegie-Mellon University and University of Karlsruhe Report
(February 1981).

[GRA79A] Graham, S.L., W.N. Joy, and 0. Roubine, Hashed Symbol Tables
for Languages with Explicit Scope Control, Proceedings of the
SIGPLAN Symposium on Compiler Construction, SIGPLAN Notices,
14,8 (August 1979), 50-57.

[GRA80] Graham, S.L., Table-Driven Code Generation, Computer (August
1980), 25-34.

[HAR75] Harrison, W.H., A Class of Register Allocation Algorithms, IBM
Watson Research Center, Yorktown Heights, NY (March 1975).

[HAR79] Harrison, W.H., A New Strategy for Code Generation-the General-
Purpose Optimizing Compiler, IEEE Transactions on Software
Engineering, Vol. SE-5, No. 4 (July 1979), 367-373.

[HAR77] Hartmann, A.C., A Concurrent Pascal Compiler for Minicomputers,
Springer-Verlag, Berlin (1977).

[HET77] Hecht, M.S., Flow Analysis of Computer Programs, American-
Elsevier, New York, NY (1977).

[HIS80] Hisgen, A. et. al., A Runtime Representation for Ada Variables
and Types, SIGPLAN Notices, 15,11 (November 1980), 82-90.

[IBM71] PL/I (F) Compiler Program Logic Manual, IBM Corporation, Order
No. GY28-6800-5 (December 1971).

[IBM72] FORTRAN IV (H) Compiler Program Logic Manual, IBM Corporation,
Order No. GH28-6642-5 (October 1972).

[ICH79] Ichbiah, J.D. et. al., Rationale for the Design of the Ada
Programming Language, SIGPLAN Notices, 14,6 (June 1979).

[JAN80] Janas, J.M., A Comment on "Operator Identification in ADA" by
Ganzinger and Ripken, SIGPLAN Notices 15,9 (September 1980), 39-
43.

[JOH75] Johnsson, R. K., An Approach to Global Register Allocation, PhD
Thesis, Carnegie-Mellon University, Computer Science Department
(December 1975).

[KOR80] Kornerup, P., et. al., Interpretation and Code Generation Based
on Intermediate Languages, Software Practice and Experience,
10,8 (August 1980), 635-658.

[LAM8OA] Lamb., David A., Construction of a Peephole Optimizer, Carnegie-
Mellon University, Computer Science Department (August 1980).

Texas Instruments G-3 Ada Optimizing Compiler

. • " . • S1 ,

Development Specification REFERENCES

[LAM80B] Lamb, David A., et.al., The Charrette Ada Compiler, Carnegie-
Mellon University, Computer Science Department (October 1980).

[LEB79] LeBanc, R.J. and C.N. Fischer, On Implementing Separate
Compilation in Block-Structured Languages, SIGPLAN Notices, 14,8
(August 1979), 139-143.

[LEV79] Leverett, B.W. et.al., An Overview of the Production Quality
Compiler-Compiler Project, Carnegie-Mellon University, Computer-
Science Department (February 1979).

[LEV80] Leverett, B.W. et. al., An Overview of the Production-Quality
Compiler-Compiler Project, Computer (August 1980) 38-49.

[MIN79] Mintz, R.J. et. al., The Design of a Global Optimizer, SIGPLAN
Notices, 14,8 (August 1979), 226-234.

[MoD] United Kingdom Ministry of Defence, Ada Support System Study:
Phase 2 and 3 Reports.

[NES81] Nestor, J. R., W. A. Wulf, and D. Lamb, IDL-Interface
Description Language: Formal Description, Carnegie-Mellon
University, Computer Science Department (Februrary 81).

[PEM80] Pemberton, S., Comments on an Error-recovery Scheme by Hartmann,
Software-Practice and Experience, 10 (1980), 231-240.

[PEN80) Pennello, T., F. DeRemer, and R. Meyers, A Simplified Operator
Identification Scheme for Ada, SIGPLAN Notices, 15,7&8 (July-
August 1980), 82-87.

[PER80] Persch, G. et. al., Overloading in Preliminary Ada, SIGPLAN
Notices, 15,11 (November 1980), 47-56.

[ROS80] Rosenberg, J. et. al., The Charrette Ada Compiler SIGPLAN
Notices, 15,11 (November 1980), 72-81.

[RUD79] Rudmik, A. and E.S. Lee, Compiler Design for Efficient Code
Generation and Program Optimization, SIGPLAN Notices, 14,8
(August 1979), 127-138.

[SCH73] Schaefer, M., A Mathematical Theory of Global P_roram
Optimization, Prentice-Hall, Inc., New York, NY (1973).

[SCH77] Scheifler, R.W., An Analysis of Inline Substitution for a
Structured Programming Language, CACM 20,9 (September 1977),
647-654.

[SHE80A] Sherman, M.S. and M.S. Borkan, A Flexible Semantic Analyzer
for Ada, SIGPLAN Notices, 15,11 (November 1980), 62-71.

[SHE80B] Sherman, M. et. al., An Ada Code Generator for VAX 11/780 with
Unix, SIGPLAN Notices, 15,11 (November 1980), 91-100.

Texas Instruments G-4 Ada Optimizing Compiler

V AD-AI09 978 TEXAS INSTRUMENTS INC LEWISVILLE EQUIPM4ENT GROUP F/G 9/2
ADA INTEGRATED ENVIRONMENT III COMPUTER PROGRAM DEVELOPMENT SPE--ETCCUl
DEC A1 F30602-80-C-0293

UN"CLASSIFIED RADC-TR-91-36O-VOL-3 "L

MEL

1111 ~*'~ * 40 iI2.0

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURITO Of STANDARDS 1963-A

Development Specification REFERENCES

[SIT7bA] Sites, R.L., Machine-Independent Register Allocation, SIGPLAN
Notices, 14,8 (August 1979), 221-225.

[SIT79B] Sites, R.L. and D.R. Perkins, Universal P-Code Definition,
Version 0.3, Department of Electrical Engineering and Computer
Sciences, University of California at San Diego (July 1979).

[WEL78] Welsh, J., Economic Range Checks in Pascal, Software-Practice
and Experience, 8 (1978), 85-97.

[WIN80] Winterstein, G. et. al.,The Development of a Compiler Front-
End for Preliminary Ada: Overview, University of Karlsruhe
(August 1980).

[WUL75] Wulf, W.A. et. al., The Design of an Optimizing Compiler,
American-Elsevier, New York, NY (1975).

[WUL80] Wulf, W.A., PQCC: A Machine-Relative Compiler Technology,
Carnegie-Mellon University, Computer Science Department
(September 1980).

Texas Instruments G-5 Ada Optimizing Compiler

MISSION
Of

Rame Air Development Center
RAVC ptans6 and excutes~ 'Leseatc, devetopment, .te,~t and
4etected acquisition p)LopLamn in -sappo~~t o6 Command, Con-tt
Commnications~ and Intettiqence (C31) activtes. rchnicat
and engi4neeinq 6uPpo4~t wi-thin akeaz o6 tehnicat competence
i6 p'tovided -to ESO P'togxtm OjfZcez, (P0s) and o-thek ESV
etement6. The. p'k£nc.4at technicat mision a-'eaz au't
communications, etectomanetijc guidatnce and contt, 6Wt--
veittance o64 gtound and aeAozpace object6, inteeaqence diata
cottection and handting, in~o'imation sysem technotogg,
-Lonozphe'uic p-'tpaqation, sotid state scienes, mic~oUnxwe
physics and etectAonic uttiabit-ty, nintainabiLtqt and
cornpatibiLtgt.

DATE

FIL ME

