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GENERAL DISCUSSION

In the following discussion we will describe the
work performed by Science Applications, Inc. (SAI) on
contract number N00014-81-C-2085, SAI project number
1-157-18-265, entitled "Fluid Dynamics-Reactive Flow
Modeling," which had a technical performance period of
1 December 1980 to 30 November 1981.

~This work includes (1) adaptations of the FAST2D
code for slow flow applications, (2) use of the FAST2D code
to model vorticity and turbulence flow efficiently, (3) an
analytical and computational study of the ignition and
quenching of laminar flames in a premixed Hy, 02, N, mix-
ture, and (4) incorporation of the latest reactive flow
computer packages into the NRL ionosphere code. Each of
these topics will be described in the following paragraphs.

SAI has recently increased the flexibility and
efficiency of FAST2D, a two dimensional hydrocode developed
by The Laboratory for Computational Physics at NRL. The
transport algorithm used for transporting density, momentum,
energy, and chemical species has been alfered to compute
along as many as ten rows of computational cells at a time.
The original algorithm could only accommodate one row at
a time. The new algorithm was compared to the original
using a cylindrical axisymmetric shear flow problem. Since
no changes were made in the differencing scheme itself, the
new algorithm gave exactly the same results as the original.
A factor of five increase in computing speed was obtained.




In preparation for reactive slow flow modeling
FAST2D's mechanism for following chemical species was
altered. Number densities rather than fractional densities
for all the species are transported in order to make FAST2D
compatible with existing chemical reaction schemes and

molecular diffusion packages. The revised version has been
benchmarked in a non-reacting shear-flow problem similar
to the one mentioned above. As a result, no significant

numerical diffusion of chemical species occurred.

A project involving shock modeling was also completed
using FAST2D. The object of the study was to accurately
and efficiently capture the various structures in complex,
non-steady shocks. The quasi-Lagrangian rezoning capabil-
ities of FAST2D were sufficient for modeling two of the
four cases studied, regular and single mach reflection.
Complex and double mach reflections were modeled after an
additional re:zoning capability was added to FAST2D. The
code was modified to allow the prid to expand about any
arbitrary point within the computational system. In this
way, grid and fluid motions were synchronized such that
self-similar shock structures could grow naturally with
the system. This work has been reported in Fry, M., et al.,
"Shock Capturing Using Flux-Corrected Transport Algorithms
with Adaptive Gridding," NRL Memo Report 4629 (1981) and
appears in this report as Appendix A. This new adaptive

gridding technique allows one to more efficiently model
vorticity and turbulence flows.

A theoretical and computational study of the igni-
tion and quenching of laminar flames in a premixed HZ:OZ:N2
mixture has been performed and a detailed report of the
work, entitled "A Theoretical Study of the Ignition of

Pre-Mixed Gases," is included as Appendix B. The objectives




of this work were: (1) to complete the calibration of the
similarity solution model, and (2) toutilize the similarity
solution model in conjunction with the NRL 1-D flame model
to study the ignition, propagation and quenching of laminar
flames in premixed gases.

The similarity solution model is based on an
analvtic similarity solution to the non-linear time-
dependent slow flow equations. The similarity solution
and the induction time for the fuel-oxidizer mixture as a
function of temperature and pressure can be used to calcu-
late whether or not a given energy source is adequate to
ignite the system. This simple procedure is then calibrated
using the NRL 1-D flame model which includes the thermo-
physical properties of the mixture, a full chemical
kinetics scheme, nonlinear convection, molecular diffusion
and thermal conduction. The details of the calibration
are given in Appendix B.

The similarity solution model predicts whether or
not a mixture will ignite given the initial radius of energy
deposition Ry» the duration of the heating T and the total
energy deposited in the system Eo. If ignition is predicted,
the model gives the time it takes for ignition to occur.

In contrast, the NRL flame model not only predicts ignition,
but also provides the structure of the propagating flame.

The calculations presented in Appendix B show that the
similarity solution predicts ignition accurately when the
radius of energy deposition is larger than the quench

radius. The NRL flame model is used to estimate the quench
radius as well as to explain the diécrepancy in the predictions
of the two models for very small radii of energy deposition.

SAI has incorporated the latest reactive flow
computer packages into the NRL computer code for the
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numerical modeling of the mid-latitude ionosphere.(l)
There are two significant additions to the code to improve
speed and flexibility. Firstly, the ordinary differential
equation (ODE) solver, IMPLCT, used to time advance the
chemistry part of the continuity equations was replaced

by one which takes advantage of the form of the equations.
If there are NI grid points in altitude, then the ODE's
decouple into NZ systems since with the time-splitting
algorithm used the chemistry at a given altitude will not
depend on the chemistry at any other altitude within the
one hydrodynamic time step. Doing many systems at once is
an ideal situation for a vector computer like the TI-ASC.
The computer package, VSAIM, developed at NRL does such a
problem. Since the chemistry at one altitude may proceed
faster than at another altitude, VSAIM allows each system
to use its own time step. After each chemistry time step
it terminates those that have reached the desired ending
time and if necessary starts a new system thus keeping the
vectors as optimally long as possible throughout the computa-
tion. VSAIM, like its predecessor, CHEMEQ,(Z) also tries
to treat those equations it deems are difficult to solve
with a special algorithm for stiff equations and those
which are easy to solve with a simpler algorithm.

The second major incorporation into the 1D ionosphere
code is a routine for the processing of chemical reactions
and their reaction rates. Formerly these reactions and
reaction rates were hard-wired with the program, requiring
program modification for even the slightest change in
reaction rate coefficients or the number of reactions. By
using the automatic rate processor, ARTP, the chemical
reactions and their corresponding reaction rates are input
as data cards allowing great flexibility in the choice of
the tvpe of chemistry one elects to incorporate into the
ionospheric model.




In order to make these modifications it was neces-
sary to change the data structures used to store the densities
of the various chemical species. Instead of using a
distinct array for each specie present in the problem,
one larger array indexed by the number of species in the -
problem is now used. An array of symbols is now used to
distinguish one specie from another. These symbols are
the data that ARTP uses to recogni:ze which species are
involved in each reaction it processes. By making the
types of ions and minor neutrals input to the program,
the user has a greater flexibility to test the effects of
various chemical reactions and the importance of the various

ions or minor neutrals on the resulting ionosphere.

While the modifications to the code were being made,
documentation describing the variables used by the code was
added. Furthermore, a separate piece of documentation was
added to describe the input data to the program, making
the whole program much more user oriented. In Appendix C
we have included the revised versions of 2 subroutines - INITAL
] and RTCON. These subroutines supply all the information
necessary for setting up the input required for making a
run of the ionosphere code.

e
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SHOCK CAPTURING USING FLUX-CORRECTED

TRANSPORT ALGORITHMS WITH ADAPTIVE GRIDDING
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A numerical technique has been developed for capturing com-
plex, nonsteady shock structures in multidimensions. The
technique relies on moving the computational mesh with the
shock wave so that the features of principal interest appear
approximately stationary. The method has been implemented
using coordinate-split Flux-Corrected Transport (FCT) al-
gorithms which allow the mesh to evolve arbitrarily with
respect to the fluid in each coordinate. The grid may thus
be optimized in response to the needs of a given problem,
Synchronizing the grid and fluid motions permits significant
reduction of numerical transients and eliminates numerical
diffusion. Shocks develop naturally, with no fitting. The
method is illustrated by calculating complex, two-dimension-
al Mach reflection phenomena associated with airblasts and
shock diffraction on wedges. The numerical results are in
good agreement with available experimental data.

INTRODUCTION

Numerical solution of transient multidimensional gas dynamics problems is
always nontrivial. When, in addition, the problem involves reflecting super-
sonic flows, large variations in length scales in both space and time, or phe-
nomena for which neither analytic solutions nor detailed experimental observa-
tions are at hand, the state of the computational art is challenged. Such a
problem arises in calculating the oblique reflection of shocks from solid sur-
faces in planar geometries (e.g. shock tube experiments) or axisymmetric geo-
metries (e.g. airblasts). The complications arise mainly from the presence
of Mach reflections which occur when a shock front impinges on a reflecting
surface at angles of incidence sufficiently far from normal. The formation of
a Mach stem and, consequently, of a slip surface intersecting the triple point
(the confluence of the incident, Mach, and reflected waves) results from the
requirement that the flow behind the reflected shock be parallel to the re-
flecting surface, which cannot be achieved through regular reflection.

Attempts to calculate the properties of the flow in Mach reflections date
back at least to vo2 Neumann— and the research which grew out of the wartime
explosive studies?=4, For the simplest problem, that of a planar shock

Manuscript submitted August 24, 1981.
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reflecting from a plane surface, Jones, Martin, and Thornhill5 noted that it

is possible to reduce the number of independent variables to two by transform-
ing to the similarity variables x/t, y/t, a device that was also used by
Kutler, et al6. Ben-Dor’ developed a theory which used shock polars to explain
some of the features of this problem, and solved the system of algebraic equa-
tions obtained by combining the gump conditions across the various disconti-
nuities (Courant and Friedrichs)® to describe the flow in the neighborhood of
the triple point. To date, no satisfactory treatment of the complete flow
field has been published, although some features (like the shape of various
waveforms) are quite easy to model.

In connection with studies of both chemical and nuclear explosions there
have been many attempts to model a spherical blast wave reflecting from the
ground, the so-called height-of-burst (HOB) problem. The hydrodynamic pheno-
mena in the two cases are identical, although nonideal effects (primarily ex-
plosive afterburn in the first instance and radiation preheating in the second)
are different. Previous attempts to model two-dimensional complex shock re-
flection have suffered from restriction to describing part of the system, the
use of a special assumption like that of self-similarity, or less than satis-
factory agreement with experimental data.

The calculations discussed here represent a step forward in overcoming
these difficulties. They differ from previous numerical work in incorporating
two important computational developments: Flux-Corrected Transport (FCT)10 and i
an adaptive regridding procedure, called "sliding rezone",ll which optimizes ‘
the mesh point distribution and hence the resolution of surfaces of disconti-
nuity.

FCT is a finite-difference technique for solving the fluid equations in
problems where sharp discontinuities arise (e.g. shocks, slip surfaces and ;
contact surfaces). It modifies the linear properties of a second- (or higher)
order algorithm by adding a diffusion term during convective transport, and
then subtracting it out "almost everywhere" in the antidiffusion phase of each
time step. The residual diffusion is just large enough to prevent dispersive
ripples from arising at the discontinuity, thus ensuring that all conserved
quantities remain positive. FCT captures shocks accurately over a wide range
of parameters. No information about the number or nature of the surfaces of
discontinuity need be provided prior to initiating the calculation.

The FCT routine used in the present calculations, called JPBFCT (an ad-
vanced version of ETBFCT)lZ,consists of a flexible, general transport module
which solves 1-D fluid equations in Cartesian, cylindrical, or spherical geo-
metry, It provides a finite difference approximation to the conservation laws
of the general form:

s ¢dv--./¢(g-u)-dé+f'tdA 1
ot Jev(t) G(r) 8 A (t) W

where ¢ represents the mass, momentum, energy or mass species in cell &V(t),
u and u_ represent the fluid and grid velocities, respectively, and T repre-
sents tRe pressure/work terms. This formulation allows the grid to slide with
respect to the fluid without introducing any additional numerical diffusion.
Thus, knowing where the features of greatest interest are located, one can
concentrate fine zones where they will resolve these features most effectively
as the system evolves (Fig. 1).

In the next section we describe the computational techniques used to solve
the wedge problem and present the results of four simulations carried out to
reproduce experimental results of Ben-Dor and Glass.l3 1In Section III we pre~
sent a parallel discussion for a HOB calculation. Finally, in Section IV we
summarize our conclusions.
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Fig. 1. Adaptive grids for a) planar shocks on wedge (double Mach shock fea-
tures are indicated); b) and c¢) HOB problem initially and at transition point
(grid lines in fine-zone region are indistinguishable).

SHOCK~ON-WEDGE CALCULATIONS

The JPBFCT algorithm was used in a 2-D Cartesian version of the FAST2D code
to model the reflections of planar shocks from wedges of 20° to 60° and vary-
ing shock strengths. Four general classes which include regular, single, com-
plex and double Mach reflection were calculated (referred to as cases a,b,c,d
respectively). The bottom of the mesh, treated as a reflecting boundary,
modeled the surface of the wedge. Quantities on the right hand boundary and
on the top were set equal to the ambient values. The remaining boundaries were
treated as permeable. In the single, complex, and double Mach reflection ;
cases, the mesh was anchored on the left, essentially at the wedge tip where a
the incident shock first strikes, while the zones were stretched by a scaling !
factor proportional to t as soon as the reflection region filled a substantial
portion of the grid. 1In case (d), the double Mach reflection case, the open-
ing angle is so small that the incident shock has to traverse many zones
before the mach stem has grown large enough to be well resolved. For this rea-
son, the problem was solved on a uniform mesh in the frame of reference fixed :
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to the reflection point, with stretching being initiated after the first Mach
stem reached v 20 cells in length. The timestep was recalculated at every
cycle with a Courant number of 0.5.

Figure 2 shows the pressure and density contours and the velocity field for
cases a,b,c,d. The pertinent shock phenomena can be easily identified: inci- 4
dent shock, contact surface, first and second Mach stems. As shown in Fig. 1,
the zoning is particularly sparse except for the region of interest. Adequate
resolution of the key surfaces (contact and second Mach stem) is obtained with
5 zones in each direction. The accuracy can be evaluated by comparing the ex-
perimental density distributions along the wall (Fig. 3).
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Fig. 2 = Pressure and density contours and flow velocity vectors (in frame of
reflection point) for planar waves with Mach number M reflecting from vedges
with angle O for (a) M=2.03, O=60°; (b) M=2.82, 0=20°; (c) M=5.29; 0=30°;
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Fig. 3. Comparison of density (in units of ambient demnsity p ) for cases (a),

(), (c), (d) of Fig. 2 vs. distance from corner. Points are measured values
reported in Ref. 13,

HEIGHT OF BURST CALCULATIONS

Next, we performed a numerical simulation of a 1KT nuclear detonation at
31.7 m HOB, a case which could be readily compared with high explosive data. A
constant ambient atmosphere was used with a density of 1.22 x 10-3 g/cm3 and
pressure 1,01 x 106 dynes/cm2. To relate the energy and density to the pressure,
a real-air equation of state (EOS) was uszd. This table-lookup EOS was derived
from theoretical calculations by Gilmorel%s15 for equilibrium properties of air
and has been vectorized for the Advanced Scientific Computer'®. The internal
energy density used in the call to the EOS is found by subtracting kinetic
from total energy; this can be negative due to truncation (phase) errors. When
this occurred, the value of the pressure was reset to zero.

The transition from regular reflection to douhle Mach reflection occurs
at a ground range approximately equal to the HOB. The size of the mesh should




therefore be roughly twice the HOB in both directions. The upper boundary
should be far enough away from the blast front to be non-interfering. We chose
boundaries of 55 m for the radial direction and 103.5 m for the axial direction.
The fine grid in the radial direction contained 140 out of 200 total zones,
each 5 cm in length. The rightmost zones were 80 cm in length, and a smoothing
involving 40 zones .i*3 performed between the regions to guarantee that the zone
sizes varied slowly. In the axial direction the fine grid contained 75 out of
150 total zones, each 5 cm in length, Beyond that region the zones were geo-
metrically increased by a factor of 1.112.

Placement of the fine grid at the origin of the mesh (ground zero, the
point at which reflection first occurs) was determined to be optimum for cap-
turing peak pressure in the airblast wavefront. Thus, as the expanding wave
moves along the ground surface, the fine grid is always locked to it and each
point along the blast front encounters the same spatial gridding as it approaches
the ground. By treating each point of the incident front in the same manner,
we insure that the calculation is internally consistent and that the computed
transition point is accurate to within the limits of the resolution.

The initialization provides a strong shock with approximate Mach number
M=12. This speed and the need for restart capability led to the choice of 200
timesteps as an interval for the spatial display (snapshots). The dump inter-
val that resulted was At N 0.3 milliseconds (ms). These dumps were stored on
magnetic tape and post-processed. ' ¢

A fit to the 1-D nuclear blast flow field (Ref. 17) was used to initialize
the energy and mass density and velocity field at 3.76 ms., The corresponding
peak overpressure was 113 bars. After the 1 KT flow field was laid down inside
a radius of 31.6 m, the fine-zone grid was activated to follow the peak pressure
as it moved along the ground surface, modelled as a perfectly reflecting bound-
ary. This region comprised 140 zones, and a switch was set to keep 40 of these
zones ahead of the reflection point. Permeable boundary conditions are used G
on the top and right edges of the mesh, i.e., density, pressure and velocity
are set equal to ambient preshock conditions. Reflecting conditions were
applied to the left and bottom. The total elapsed physical time in the 2-D
calculation, 7.6 ms, required 5600 cycles. Times are referred to t=0 at the
start of the calculation.

The numerical simulation begins just before the shock first reflects from
the ground. Fig. 4a indicates the pressure and density contours and velocity
vectors at time 3.18 ms. 1In Fig. 4b the reflected shock is shown moving upward,
the outward flow begins to stagnate at the ground (transition). Fig. 4c, t=5.99
ms, shows an enlargement of the shockfront, and the development of the Mach
stem, slip surface and second Mach stem. The angle of the shock front with
respect to the ground is increasing with time, so that the effective wedge
angle is decreasing. From Ben-Dor and Glasslé one expects a transition to
double Mach stem to occur at approximately 45°. The angle in Fig. 4b is about
459 and the shock front has entered the transition phase. Figure 4d shows the
fully developed shock structure at 7.79 ms. Clearly visible is the second Mach
stem and a vortex region behind the first Mach stem. Toeing out of the first
Mach stem can be also seen in the contours of Fig. 4d and occurs as the fluid
rolls forward where the slip line would otherwise intersect the ground. The
velocity field in Fig. 4d also shows this detail. ;

One should also note the reflected shock properties. The reflected shock
propagates rapidly through the high temperature fireball, due to the high local
soundspeed. The shape of this reflected wave is a primary difference between
the HOB case and the wedge casel?, The other major difference, of course, is
the spherically exsanding blast wave which decreases in strength approximately
proportional to r~%.
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regular reflection stage; (b) at transition to Mach reflection; (c) shortly
afterward, when second peak has become larger than first; and (d) fully de-
veloped (note toe at base of first Mach stem).

Finally we consider the pressure/distance relation for the HOB case. In
Fig. 5 we compare the results of the numerical simulation with the data of
Carpenter and with empirical analysis. Carpenter's data are based upon care-
ful HOB experiments with 8 1b PBX9404 spheres. The empirical analysis was
based on a 1 KT nuclear free air curve and HOB construction factors. The cal-
culated values in the regular reflection regime are 20X low and may be attri-
buted to a combination of FCT clipping, the resolution of the grid, and in-
accuracies in the initialization of the flow field. During and after Mach
reflection, the peaks remain low until the Mach stem structure has grown large
enough to be resolved on the mesh, By the time it occuples a region of 15 cells
high and 35 cells wide, the peak pressures are in good agreement with the HE
data and the empirical analysis.

_ Pae! 92100 a2 %1072 Vipas® & T4 X 10?

Fig. 4. Pressure, density, and velocity fields for HOB calculation (a) in
l
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SUMMARY AND CONCLUSION -4

The complex 2-D Mach reflection phenomena associated with shock diffraction
on wedges and height-of-burst explosions have been modeled with the FAST2D com-
puter code. Four wedge cases~--regular, single, complex and double Mach reflec-
tion-—have been calculated and the results compared to experiments. A nuclear
detonation (1 KT at 31.7m HOB) was also simulated. The results give insight in-
to the formation and subsequent evolution of the Mach stem, the triple point 9
and the contact discontinuity. The transition from regular reflection to double
Mach reflection is predicted. Excellent agreement with Ben-Dor's data is obtained.
We suggest that the first signal for transition is the appearance of a second
peak behind the shock front due to stagnation in the flow. Calculated first and
second pressure peaks versus distance in the HOB case agree both with the HE
data and analysis to within 20X,

The use of the adaptive regridding procedure, called "sliding rezone", along
with the FCT algorithm allows one to accurately predict the nonsteady shock
structures in two dimensions for diffractions on wedges and HOB cases. Compari-
son with data for both wedges and HOB yields the best results obtained to date.

£

ACKNOWLE

This work was supported by the Defense Nuclear Agency under Subtask
Y99QAXSG, Work Unit 00001, and Work Unit Title "Flux-Corrected Transport."

A-9




-s

REFERENCES

1. Von Neumann, J., "Oblique Reflection of Shocks", Explosive Research Report
No. 12, Navy Department, Bureau of Ordinance, Re2c, Washington, D.C. (1943).

2. Taub, A. H., "Refraction of Plane Shock Waves”, Rev. Mod. Phys., Vol. 21,

p. 51 (1947). ;

3. Bleakney, W., and Taub, A. H., "Interaction of Shock Waves", Rev. Mod. i
Phys., Vol. 21, p. 584 (1949). i

4. Lighthill, M., J., "On the Dif:ra..ion of Blast I", Proc. Roy. Soc., Vol. ) |
198, p. 454 (1949), Vol. 70, p. 554 (1950).

5. Jones, D. M., Martin, P. M., and Thornhill, C., K., "A Note on the Pseudo-
Stationary Flow Behind a “trong Shock Diffracted or Reflected at a Corner”,
Proc. Roy. Soc., Sec. #, Jol. 275, p. 238 (1951).

6. Shankar, V., Kutler, P., and Anderson, D., "Diffraction of a Shock Wave by
a Compression Corner - To: : 1T, Single Mach Reflection", AIAA Journal,

Vol. 16, No. 1 (1977).

7. Ben-Dor, G., and Gluss, L., "Nonstationary Oblique Shock Wave Diffractions
_n Nitrogen and Argon - Experimental Results", UTIAS Tech Note (1978).

8. Courant, R., and Friedrichs, K. 0., "Supersonic Flow and Shock Waves",
Interscience Publishers, New York (1948).

9, Booen, M., and Needham, C., "Two-Dimensional Hull Code Simulation of Complex
and Double Mach Reflections", AFWL NTE TN 81-001 (1981).

10. Boris, J., and Book, D., "Flux-Corrected Transport: I SHASTA, A Fluid Trans-
port Algorithm that Works", J. Comp. Phys., 11, 38 (1973).

1l1. Oran, E. S., Young, T. K., Jr., and Boris, J. P., "Applications of Time-
Dependent Numerical Methods to the Description of Reactive Shock", Proc.
17th Symposium (International) on Combustion, The Combustion Institute,
Pittsburgh (1979).

12, Boris, J. P., "Numerical Solution of Continuity Equations", NRL Memo Report
3327 (1976).

13. Ben-~Dor G,and Glass, I.,"Domains and Boundaries of Non-Stationary Oblique
Shock-Wave Reflections, II Monatomic Gas", J. Fluid Mech., 96, p. 735
(1980).

14, Gilmore, F. R.,"Equilibrium Composition and Thermodynamic Properties of Air
to 24,000°K" RAND Corp, RM-1543 (24 August 1955).

15. Gilmore, F. R., "Equilibrium Thermodynamic Properties of High Temperature
Air", Lockheed Missile and Space Co., DASA 1917-1 (April 1967).

16. Young, T. R., (Private Communication 1981).

17. Needham, C., et. al., Nuclear Blast Standard, AFWL 7R~73-55, Air Force
Weapons Laboratory (April 1975).

18. Ben-Dor, G., Glass, 1., "Domains and Boundaries of Non-Stationary Oblique
Shock-Wave Reflections Diatomic Gas", J. Fluid Mech., Vol., 92, part 3,

p. 459 (1979).

19. Book, D., et, al., "Two-Dimensional FCT Model of Low Altitude Nuclear Effects",
NRL Memo Report 4362 (1980).

20, Carpenter, H. J., "Height of Burst at High Overpressures", 4th Interna-
tional Symposium on Military Applications of Blast Simulation (1974).

A-10




Appendix B

A THEORETICAL STUDY OF THE
IGNITION OF PRE-MIXED GASES

by:

K. Kailasanath
Science Applications, Inc.
McLean, Virginia 22102

and

. E. Oran and J. Boris
Laboratory for Computational Physics
Naval Research Laboratory
Washington, D.C. 20375




ABSTRACT

In this paper, time-dependent results obtained from ;oth 2 simple
but nonlinear analytic similarity solution and a detailed numerical simula-~-
tion model are used to study the interactions between the fundamental processes
occurring in the ignition of homogeneous premixed gases. The parameters which
may be varied are the composition of the mixture, the initial radius of energy
deposition Rb’ the duration of the heating 16, and the total energy deposited
in the system Eo' The similarity solution plus the induction time for the
fuel-oxidizer mixture as a function of temperature and pressure caé be used
to calculate whether or not a given energy source is adequate to ignite the
system. This simple procedure is then calibrated using a time-dependent
detailed numerical reactive flow model which includes the thermophysical
properties of the mixture, a full chemical kinetics scheme, nonlinear convec-
tion, molecular diffusion and thermal conduction. Calculations are presented
for a selected mixture of Hz-oz-Nz for various values of Rb and Eo. These
show that the similarity solution predicts ignition accurately when the radius
of energy deposition is larger than the quench-radius. The detailed numerical

reactive flow model is used to predict the quench-radius and the absolute

minimum ignition energy associated with it.
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Nonlinear amplitude in similarity solution
Energy

Total amount of energy deposited
Induction Parameter

Scale size in similarity solution
Boltzmann's constant

Total number density

Number density of species j

Pressure

Term representing production of species j
Contribution to the heat flux vector due to diffusion
Term representing loss of species j
Initial radius of deposition
Characteristic radius of energy deposition
Radial distance

Temperature

time

fluid velocity

Diffusion velocity of species j

ratio of specific heats, cp/cv

mixture viscosity coefficient

mixture thermal conductivity coefficient

mass density

time period during which energy is deposited

chemical- induction time




INTRODUCTION

An external source of energy can initiate interactions among the
controlling convective, diffusive and chemical processes in a fuel-
oxidizer mixture. Whether the interactions result in ignition of a
deflagration or detonation wave depends on the intensity, duration,
and volume affected by éhe external heat source. Ignition will also
depend on the initial ambient properties of the mixture which determine
the chemical induction time and the heat release per gram of material.

Thus ignition is a complicated phenomena whose occurrence for a specific
mixture of fuel and oxidizer depends strongly on diffusive and chemical
parameters which are often very poorly known.

It is possible, in principle, to study flame ignition by performing
detailed numerical simulations. This is a complicated, multi-dimensional,
multi-species, time-dependent problem which has been solved in certain limited
cases (see e.g., Ref. 1). Part of the complication and cost of such cal-
culations arises from the multi-dimensional solution of the conservation
equations, but at least as much arises from integrating the large number of
ordinary differential equations describing the chemical reactions. This
latter factor is further complicated by the fact that we usually do not have
an adequate representation of the chemical reactions with which to work. Thus
a convenient, inexpensive way to estimate whether a mixture will ignite given
a heat source intensity, duration, and volume would be a very valuable labora-

tory tool and a useful learning device.




This paper represents an extension and clarification of the work

described by Oran and Boris [1l,2]. They presented a preliminary summary

. of a simplified, theoretical model of localized ignition ;; a homogeneous,
premixed gas and explained how it could be calibrated by using a detailed
simulation. 1In this paper the calibration of the simplified model is
extended and the results are compared in detail to those of detailed,
one-dimensional simulations. After a brief review of related literature,
the essential properties of the detailed, time-dependent, numerical model
are presented. Then a description is given of a closed form similarity
solution for the nonlinear time-dependent slow flow equation which forms the
basis for the simplified model of localized ignition. The similarity model
avoids the integration of the ordinary differential equations describing
the chemical reactions by defining an induction parameter. Two constants
must be calibrated; the radius at which the thermal conductivity is evaluated
and the radius at which the induction parameter is evaluated. Finally,
comparisons between the two models are described for ignition of a Hz-oz-N2
mixture. The composition of the mixture and the duration of energy deposition

are held constant but the total energy deposited and the radius of deposition

are allowed to vary.




BACKGROUND

Ignition phenomena and the associated properties of minimum ignition
energies and quench volumes have been studied both experim;ntally and
theoretically. Lewis and von Elbe [3] have reported extensive experimental
data on ignition by electric sparks. Weinberg and Wilson [4] and Kingdon
and Weinberg [5] have compared the ignition energies required when a spark
and a laser were the source of ignition. The former paper [4] concludes that
the laser minimum ignition energy is very much less than that required by a
spark for mixtures at low pressures or near the flammability limit. They have
attributed this difference to the influence of the electrodes and the losses
to them since the guenching distances are large under the above conditions.
The latter paper [5] concludes that for short pulses applied to mixtures with
small quenching distances, the energies required by the two ignition sources
are not that different.

Dixon-Lewis and Shepherd [€] have used a time-dependent flame model to
examine the effects of varying the initial radical concentration and of
changing the geometry of the initial hot core. Their studies were done on a
homogeneous premixed 60% hydrogen-air mixture in which energy was deposited
instantaneously in the form of hydrogen atom radicals and temperature. They
found that energy in the form of hydrogen atoms was more efficient at igniting
a flame. Dixon-Lewis [7] then looked for a minimum quench volume in the same
60% hydrogen-air mixture in which one third of the added energy was in the

form of hydrogen atoms.
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Another point noted by both Overley et al. [8] and by Dixon-Lewis
and Shepherd [6] is that the shape and size of the mixture core is
important in determining the minimum ignition energy. The.former paper
presented a study of a hydrazine mixture in both spherical and prolate .
spheroidal coordinates. The latter paper considered both cylindrical and
spherical systems., Both papers investigated the effects of flame curvature
on burning velocity.

The work of Ballal and Lefebvre [9]) is a detailed experimental investi-
gation of the effects of pressure, velocity, turbulent intensity and scale,
and mixture composition on the minimum ignition energy and quench distance
in a flowing gas mixture. Using the data as a guide, they aralyzed the
important transport and turbulent processes and developed a highly simplified

model for the quench distance in the lim.: of low and high turbulence. The

data has allowed them to calibrate the model and determine important constants.
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THE DETAILED NUMERICAL SIMULATION MODEL

This section describes the detailed numerical flame model which solves

the time-dependent conservation equations for total mass p, momentum pv,

energy E, and individual species densities nj [2.10]):

2& = em .
3t _V_ pv (1)
= =V . Vv, - v . + P, - <13,

e R N M T (2
L4 T
.3F=-1-(p1v_)—v1=+y_-nm[v_v+(\7_v)] (3)
2E L y.Ev-V-(Pv-~AVUT-Q) (4
at LB = Tr (P = A 00 - g) -

The technique for solving the various terms in these equations is based
on the method of asymptotic timestep splitting in which the individual
chemical and physical processes are integrated separately and then asymptot-
ically coupled together [1]. The model permits a wide variety of geometric,
initial, boundary and time-varying energy input conditions and was specif-
ically developed to study the various physical and chemical processes which
control flame initiation and quenching. [23].

The convective transport is solved by the algorithm ADINC, a Lagrangian
hydrodynamic algorithm which solves implicitly for the pressures [11]. The
method allows for arbitrary equations of state, gives an accurate representa-
tion of material interfaces, and allows steep gradients in species and

temperature to be developed and maintained,
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A number of tests of this algorithm have been documented by Boris [11] . An
adaptive gridding method has been‘implemented in which cells are inserted or
deleted according to externally ;pecified physical conditions in the flow.
The diffusion velocities are calculated using an iterative algorithm [12,1].
‘The chemical interactions are described by a set of nonlinear coupled
ordinary differential equations. For this ignition study we have used the
32-02 reaction scheme [13] given in Table 1 which involves the eight reactive

species, Hz, 02, 0, H, OH, HO_,, H_ O,, H O and diluent which is chosen to be

2" 72727 2

N The thermochemical properties of these species were taken from the JANAF

e
tables [l4]. The ordinary differential equations describing the chemical
kinetics are solved using a fully vectorized version of the selected asymptotic
integration method, CHEMEQ, developed by Young [15,16].

Results from a typical flame calculation in spherical geometry are
presented in Fig. 1. The figure depicts the time history of the temperature
profile after 4mJ of energy is deposited over a period of .10--4 seconds. Even
after the energy deposition is stopped the "core" temperature continues to
increase due to the heat released in chemical reactions. With time, however,
the temperature near the center decreases and the temperature away from the
center increases due to heat conduction. In this case, since the rate of
heat generation is greater thaﬂ the rate of heat loss, the temperature profile

develops into that of a typical flame temperature profile. Species profiles

and details of the flame front have been pre-~ented elsewhere [2].
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THE SIMILARITY SOLUTION

The similarity solution is derived from the slow flow approximation
[1,17] and is predicated on the assumption that energy addition to the f
system is slow enough so that there is no shock heating. Thus the system
is characterizedby flow velocities which are small compared to the speed
of sound, and an essentially constant pressure field. The energy and

velocity equations may be written in terms of total derivatives as

2 2
ae k" (t)xr

at (5)

O=-yPV* - vs+V- yNkBKVT + s(t)e

and the continuity equation is written in the form

©o|+
QAIQa
[a g Ao

==-V-.v. (6)

In Eq. (5) ¥ is held constant, and Kk is a function of the mixture thermal
conductivity, Am,

o
=Wk, @ (7)

The last term on the right hand side of Eq. (5) is the source term. Proper
choice of S(t) ensures that a given amount of energy, E,, is deposited in

a certain time, To' It is the choice of this Gaussian profile which allows

us to obtain the "closed" form similarity solution which is given below.

The details of the solution of Egs. (5) and (6) are given in the
Appendix at the end of this paper. The final results for the temperature

and density as a function of time and position may be written as
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2, . 2
-k (t)r
T(r,t) = 7 _eP(t)e (8)

2 2 -
and -a(p)e ® (B)F (9)

p(x,t) =pge
whexe T, and P_ are the background temperature and density, respectively.
In addition, two ordinary differential equations describing the evolution

of A(t) and k(t) are required to complete the solution,

dk 3

at kvl - 2Kk (10)
aa _ S(t) 2

at ~yp_ 2¢ck” a (11)

where vy is an approximation to the velocity based on the assumption that

v(r,t) vl(t)r; and ¢ is a constant which depends upon the configuration
of the problem (¢ = 1 for cartesian, 2 for cylindrical and 3 for spherical
_coordinates). By comparing the results from this similarity solution model
to those from the detailed numerical simulation model described earlier, we !

have seen that the linear dependence on r is a valid approximation before

ignition occurs.

The model requries one further defintion in order to predict ignition.
The chemical induction time, which is a function of temperature and pressure,

must be used to define the induction parameter,

t

1(T,P) -f de . (2
4 s [T(r.t"), Plr,t)]
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For the work presented in this paper, pressure is constant-throughout the
calculation. Then I(T,P ) is integrated in time according to Eq. (12).
Ignition "occurs" when I(T,P) = 1, which is an exact result in the
limit of large heat source and constant temperature near the center of the
heated region. Values of Tc have been calculated [13] for a wide range of
temperatures and pressures from the chemical rate scheme given in Table I.
In general, Tc as required in these calculations may be obtained from such
detailed kinetic calculations, a few measured points, or from educated guesses.
The concept of an induction parameter has been extended in scope and used
extensively for reactive shock and detonation studies [e.g., 1, 18, 22].

The parameter x in Egs. (10) and (11) is found using the definition
in Eq. (7). Determining the temperature (radius) at which Kk is to be evaluated
is part of the calibration to be done. For this, the derivation in the
appendix was also done for the case where k was assumed to be a function of
radius (r). This analysis indicated that if k is to maintain its similarity
form and be a function of time alone, k must be independent of r. Thus, within
the framework of the similarity solution, the appropriate 1location at which
to evaluate ¢ is at the center (r = 0). Determining the location at which
the induction parameter, I(T,P), should be evaluated is the second
calibration to be done. This has been done by comparing the predictions
of the two models and is discussed in the next section.

In summary, the approximations to Egs. (1) - (4) which allows us to

write Eq. (5) and obtain the solutions represented by Eqs. (8) - (11) are:




1. The flow velocities characteristic of the system are small compared to
the speed of sound;

2. The pressure is essentially constant everywhere;

3. The ratio of specific heats, y, is constant;

4. Molecular diffusion effects are not important until after ignition;

5. The velocity, V(r,t) may be approximated by Vl(t)r;

6. The system is homogeneous and premixed;

7. The energy is input in a Gaussian form with a characeristic radius
R.c which increases in time; and

8. The gas never gets hot enough to radiate away a significant fraction

of its energy during the ignition period.
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MODEL COMPARISONS

The calibration of the similarity model is complete when the lccation

at which the induction parameter should be evaluated is determined. For

this purpose, the results from detailed simulations aré compared to those
from the similarity model, Energy deposition in both models is linear in
time at a rate determined by requiring an energy Eo to be deposited in

a time T, For all of the results discussed in this paper, T, is taken

to be 10-4 seconds. As in the similarity model, energy deposition in the
detailed model is in the form of a Gaussian profile in space. The charac-
teristic radius of the Gaussian, Rc, increases with time and is determined in
the detailed simulation by the formula:

2 _ 2fr21n('.l‘/Tm)dr

R
¢ [ & a/rear a3)

The chemical model for these first tests was taken to be a mixture
of HZ:OZ:N2 in the ratio 2:1:10 at 1 atm and T = 300°K. The induction
time as a function of temperature for this mixture was derived from the
detailed studies of the H2-02 reaction mechanisms [13] and is shown in
Fig. 2.

In the similarity model, k was estimated by comparing the-formula

at 300°k,
3 o
S - 8.4 X 10 T(CK) erg
A ;2 i cm sec K, (14)

which assumes that an average molecular distance ¢ and an average mole-

cular weight M may be found, to the more exact formulation

-1
1 L
*n ;' A [1+E7—2 kf§ "k “jk] (5)
where wjk is a function of {Aj} and the atomic masses {mj} suggested by

Mason and Saxena [19). This gives us
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g=3.16 A (16)

M= 24.3.
This approximation is valid because the similarity solut{on is only accurate
for ignition, that is, before any major amount of product or intermediates
are formed. Then the parameter x is found using the definition in Eq. (7).

As discussed in the previous section, for the similarity solution « is !

evaluated at the central (r=0) temperature. Im contrast the detailed

simulation uses Eq. (15) to evaluate the thermal conductivity at each

cell at each time step.

In the first case studied, the initial radius of deposition, Ro’

was 0.1 cm and both models were configured for spherical symmetry. By
varying Eo and evaluating the induction parameter I(T,P“) at the central

; temperature (r=0) the similarity solution indicates that the minimum ignition
energy is about 3.7mJ.. Figure 3 shows the typical behavior of the amplitude,
A(t), and the characteristic radius, Rc’ for this test case. 1If I(T,P) is
evaluated at R = 0.06 cm the minimum ignition energy predicted is about 5.1mJ,
and if it is evaluated at Rc ignition is not predicted even when E° is raised
: to 8mJ. By comparing these predictions with those from the detailed simula-
tion model we determine the location at which I(T,Pm) must be

evaluated. Results from the detailed simulation are shown in Fig. 4 for
three values of Eo' Ignition occurs when Eo is greater than or equal to
3.7mJ. Therefore good agreement between the two models for the case under
study is achieved by evaluating the induction parameter at the central
temperature.

The central temperature and the induction parameter have been shown

IR e A et AR

for three values of Eo in Figs. 5 and 6 respectively. The time at which f

ignition occurs (I=1.0) is shown by a '*' in Fig. 6. A comparison with the
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results from the detailed simulation (Fig. 4) tells us that both models
predict ignition at essentially the same time for a range of input energies.
The temperature profiles predicted by the two models are presented in Fig. 7.
The agreement is very good except for long times when the detailed simulation
predicts higher temperatures than those from the similarity model. This is
primarily due to the heat released in chemical reactions which is not included
in the similarity model. It is interesting to note that the effects of
molecular diffusion included in the detailed simulation model are not con-
sidered in the similarity solution model. The results presented have shown
that these effects are not as important as the effects of thermal conduction
in determining the ignition characteristics of the system under investigation.
The models were then re-configured for cylindrical geometry and the
Ease, R°=0.lcm, was again investigated. By varying Eo, the similarity solu-
tion indicates that the minimum ignition energy is about 3.5mJ/cm, not very
different from the spherical case. The detailed simulation predicts that
the minimum ignition energy is between 3.3 and 3.7mJ/cm, so again the predictions
of both models are comparable when the induction parameter is evaluated at

r=0.
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EFFECT OF QUENCHING DISTANCE

As discussed in the previous section, good agreement between the
predictions of the detailed simulation and the similarity.solution is
obtained for the case, Rb = 0.1 cm. In order to determine if the agree-
ment is good for other values of Rb’ various cases were studied and these
have been summarized in Table II. Evaluating the induction parameter at the
central temperature provides agreement between the ignition predictions
of the two models for all the cases in which Rb is greater than 0.1 cm.
However, for radii smaller than 0.1 cm the similarity solution predicts
a minimum ignition energy that is lower than for the Rb = 0.1 case described
above. 1In fact, as the initial radius of deposition decreases below 0.1 cm
the similarity solution (with I(T,p,) evaluated at a fixed radius) predicts
that the minimum ignition energy also decreases. The detailed simulation
does not agree with this prediction. The radius 0.1 cm appears to be a
"critical radius" below which the minimum ignition energy again increases.

The above observation is similar to that made by Blanc, Guest, von Elbe and
Lewis [20]. In their study of spark ignition, it was observed that there was

a "critical electrode spacing" below which the minimum ignition energy increased.
The critical electrode spacing was termed the "quenching distar-z".

To study the phenomena of "absolute" minimum ignition energies and

quenching distances, the energy deposition in the detailed simulation needs
to be modified. Up to this point energy was deposited in a Gaussian profile
with a characteristic radius which increased with time. This was necessary

in order to ensure that energy was deposited in a manner which closely

matches the one derived from the similarity model. In the similarity model,
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a Gaussian profile with characteristic radius increasing in time was

essential to obtain the similarity solution described earlier. However,
for studying the effect of the radius of deposition on the minimum ignition
energy, it is confusing to have a varying radius of deposition. Therefore,
for the results discﬁssed below, energy is deposited in a Gaussian profile
with a constant radius of deposition. As before, energy deposition is
linear in time at a rate determined by requiring an energy Eo to be deposited
in a time To.

For a particular radius of deposition, a certain amount of energy is
deposited and the computations are carried out for sufficient time until
the existence (or absence) of a propagating flame is definite. By repeating
the computations for different values of Eo a bound for the minimum ignition
energy for that particular radius is optained. Similar calculations are
performed for different values of the radius of deposition, Rb' The results
of such investigations are shown in Fig. 8. A propagating flame results
when 3.8 mJ of energy is deposited in a sphere with a radius of 0.1l cm.
However if the same amount of energy is deposited in a sphere of smaller
radius, the rate of heat liberation is insufficient to compensate for the rate
of heat loss and consequently there is no ignition. This radius, 0.1 cm, is
the "quench-radius" for this particular mixture. For radii slightly larger
than the quench-radius, the minimum ignition energy is almost constant and
for larger radii (larger than 0.11 cm) the minimum ignition energy increases

rapidly with increasing radii. Therefore for the system under study, the




I

absolute minimum ignition energy is about 3.7 mJ. These observations are
in qualitative agreement with those of Lewis and von Elbe [21]. Quantitative
comparisons are not possible since the composition of the mixture and the time
for energy deposition are different.

This study of the "quench-radius™ provides the insight needed to explain
the discrepancy in the predictions of the similarity solution and the detailed
model for small radii. We conclude that a volume smaller than the "quench-volume"
needs to be maintained at a temperature T for a time which is longer than the
corresponding induction time for ignition to occur. Therefore the concept
of an induction parameter as it is used in the similarity‘solution is not
valid ‘for very small radii. If the absolute minimum ignition enerqgy is deposited
in a sphere of radius smaller than the quench radius, ignition will not occur
since the heat generation rate within this smaller volume cannot compensate for
the heat loss rate. This effect is not significant in measurements of induction
time which are for larger radii. Therefore an agreement between the predictions
of the two models can be forced for radii smaller than the quench-radius by
evaluating the induction parameter at increasingly larger radii (i.e. lower
temperatures). For example, when the initial radius of deposition is 0.08 cm, the
detailed simulation predicts that the minimum ignition energy is between 3.4
and 5 mJ. The minimum ignition energy predicted by the similarity solution
is 3.4 mJ if the induction parameter is evaluated at 0.06 cm and it is
5.1 mJ if the induction parameter is evaluated at 0.08 cm. For the case when

the quench radius, rq = 0.1 cm, the formula

BRO
r=xr =~ Ae : (17)
q

A= 2,84 x 10-4 and B = 58.78 gives a good estimate for the radius at which

to evaluate the induction parameter. We are currently seeking a more general

formula to give this radius.




SUMMARY AND CONCLUSIONS

This paper describes a theoretical model for flar: ignition based on
a similarity solution which may be used to predict the ignition properties
of a homogeneous mixture of gases. The model requires specification of the
amount of energy input, Eo' the length of time over which the energy is
deposited, To' and the radius of energy deposition, Rb' The model also
requires basic information about the gas mixture which includes estimates
of the thermal conductivity and the chemical induction time of the gas
mixture as functions of temperature. Since a number of approximations
have been applied to derive the model, it has been calibrated and its range
of validity determined. This has been done by comparing its predictions
to those of detailed numerical simulations.
The one-dimensional detailed numerical simulation used solves the

set of coupled partial differential equations representing conservation of

mass, momentum, and energy as well as individual species densities. For
this study it was configured with an open boundary at one end to simulate
an infinitely large system. Energy was deposited linearly with time, as it
was done in the similarity solution, and the radius of deposition was chosen
to mimic that determined by the characteristic radius in the similarity
solution. The detailed model, however, contained calculations of the thermal
conductivity and chemical kinetics which were much more accurate than the

- approximations used in the similarity solution. Furthermore, the detailed
model contained the effects of molecular diffusion, which were not at all
included in the similarity solution.

Predictions from the similarity model consist of an answer as to whether

or not a given mixture would ignice given Eo' To? and Rb' Then if ignition

is predicted, the model gives the time it takes for ignition to occur. 1In
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contrast, the detailed simulation model not only predicts ignition,
but also provides the structure of a propagating flame.

Comparisons of the predictions of the two models show that the
system center is the optimal location for evaluation of ;n induction
parameter, which is the indicator of ignition in the similarity model.
Furthermore, the predictions of the similarity model are excellent when
energy is deposited in a large enough volume. When the radius of deposition
is less than the quench radius of the system, the similarity model is not
accurate: the similarity model predicts ignition whenthe detailed model
shows it does not occur. This can be compensated for by evaluating the
induction parameter away from the system center. However, as with the
value of the quench radius, the radius at which the induction parameter
must be evaluated can be determined by comparisons with experiments or
calculations performed with a detailed model.

After performing a series of studies which tested and calibrated the .
similarity model in cylindrical and spherical geometries, the detailed
1 model was reconfigured to evaluate the quench radius and the minimum ignition

energy of a particular gas mixture. This study provided insight into the

source of the disagreement between the predictions of the similarity and
detailed models at very small radii of energy deposition. The error occurred
because the definition of an induction time is only valid for a volume of
material that is large and homogeneous enough in temperature and pressure

so ;hat diffusive effects are not important. In the cases where the radii

of deposition were very small, increased thermal conductivity due to a steep
temperature gradient eroded the high temperature region too quickly. Thus in
the competition between chemical energy release to heat a region and thermal

conduction to cool it, thermal conduction dominated.
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Further limits of validity of the simplified model should now be tested.
These include investigating the sensitivity of predictions to time or mode
of energy deposition, to variations in the chemical induction time, and to
the effects of radiative losses discussed in the Appendix. These kinds of
calibrations and determinations of the limitations and sensitivity of the
similarity model are extremely important if we are to establish the level
of accuracy required for input data. Once this has been done, the similarity
model can be used with experimental input data to estimate quickly whether
a material is flammable and if so, how much energy is required to ignite it.
Another extension of the work presented here involves using the detailed
simulation to investigate the effect of geometry and method of energy

deposition on ignition energies and quenching distances. Both these studies

are currently being pursued.
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APPENDIX
The derivation of the similarity solution model is discussed in detail
here for the case of spherically symmetric geometry. Assuming that the

pressure field is essentially constant and that no shocks are present, the

conservation equations for momentum and energy may be combined to give

2 2
-g—z- & 0= -‘YP!.-!_ + !- ANkB _V_T + S(t)e-k (t)x (A1)

2.2
whre ¥ and the Gaussian energy deposition term, S(t)e kx « have already !

been discussed. The other equation required is the continuity equation,

O I+
n-|:m
o

= -V_°v

(a2)

Assuming dP/dt ® 0, Eq. (Al) gives an algebraic equation for V. v which

may be combined with Eq. (A2) to give

14T _ ‘X
T = e + V-G uT (n3)

where P“ is the background pressure. The solution is then

2 2
eA(t)e-k (t)r

T(r,t) = T, (A4)

and
2 2
-k (t)r
-A(t)e
ple,e) = p &M (a5)
where T and p  are the background temperature and density, respectively.

Thus the nonlinear slow flow equations including expansions and contractions

of the flow have been converted into a single equation which is linear in

the logarithm of the temperature.
The total energy of the system at any instant is the sum of the
internal energy and the work performed in expanding the heated region. It

- may be written
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PY
o«
E(t) = o3 /" am2ar [1 - p;r,t)] (A6)

o (-]
o - -~
,,_"f:’____ f an x> [1_eAe ] ax
-uxey
Y Py -
& 3 F(A(t)). (a?)
(y-1) k™ (t) :

which defines the integral F(A(t)). Differentiating this we find that

g _ /% s (8)
N P

which may be equated to

. (n9)

|6

&k ot @&

8l

Thus a consistency condition has been specified on the rates of change
of the amplitude, A(t), and the scale size kyl(t) for the heated region.
If the fluid velocity v is then expanded such that

v{(r) *‘-vl(t) r, (A10)

that is, only the linear term is kept, two coupled ordinary differential

equations for k and A may be obtained,

dk 3
gt = - kv, -2 (A11)
an _st) _ .,2
at = gp - KA (n12)

Then the expression for v1 may be written in terms of the integral F(A)

_S_ F'(0) -F' (a) 2 AF'(A) -F(A)
Y173, F(A) 2k ) ()
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which results from using the principle of energy conservation and equating

Eqs. (A8) and (R9).

EFFECT OF RADIATIVE LOSSES -

When a large amount of energy is deposited in a small volume, the effect
of radiative losses may be significant. Exact calculation of all the low tem-
perature radiation effects is still beyond even the best detailed calculations
today. An idealized model can be included in the similarity solution, however,
to estimate these effects.

Black body radiation from a spherical surface at radius ¥ takes energy

out of the system at a rate

dE
—rad | 4201 (). (A14)
dt
In the similarity solution the tempergturezat any radius r is given by
~ke(t)r
T (r, t) = Ta eé'(t)e . (Al15)
Therefore, 2 2
dE -k“(t)r
_E%EQ - 4on,? r2 eAA(t)e . (A16)
However at t = 0 (A = 0),
dE
rad
It o (A17)

Therefore the background radiation into the volume must be substracted from
(A 16) to give

2 2
dE -h"(t)
Srad | arh FET T gl 2 wie)

The next step is to choose r such that Eq. Al8 is maximized. By assuming
that the loss from the systemproceeds at the maximum rate possible, the model
is sure to signal the onset of radiative loss effects at least as soon as they

occur in the physical system itself,
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Table I. HZ_OZ Elementary Reactive Mechanism
k, = AT exp (c/1)(®
Reaction A®) B c(b) . Reference
H+HO >0+ 112 1.40(-14) 1.00 3.50(403) [24]
3.00(-14) 1.00 4.48(+03) [24]
B+ HO, * H, + 0, 4.20(~11) 0.00 3.50(1402) [24]
9,10(-11) 0.00 2.91.(104) [24]
H+ no2 z HO + HO 4.20(-10) 0.00 2.50(402) [24]
2.00(-11) 0.00 2.02(404) (24}
H + Ho2 0+ H20 8.30(-11) 0.00 5.00(+02) [25]
1.75(-12) 0.45 2.84(104) kr - kf/xc
H+H0, 2 HO, + 8, 2.80(-12) 0.00 1.90(403) {24]
1.20(-12) 0.00 9.40(403) [24]
H + H,0, > HO + H,0 5.28(-10) 0.00 4.50(4+03) [24]
3.99(-10) 0.00 4,05 (404) k: - kflxc
HO + B, 3 B + H0 1.83(-15) 1.30 1.84(+03) [26]
1.79(~14) 1.20 9.61(+03) [26]
HO + HO > H, + 0, 1.09(-13) 0.26 1.47(+04) ke = ke /K,
2.82(~11) 0.00 2,42(104) [271]
HO + HO > O + H,0 1.00(-16) 1.30 0.00(1+00) [26]
3.20(~15) 1.16 8.77(103) k = k. /K
o £f' ¢
HO + uo2 ps nzo +0, 8.30(-11) 0.00 5.03(+02) f28]
2.38(-10) 0.17 3.69(404) k, = kflkc
HO + H,0 > HO, + H, 1.70(-11) 0.00 9.10(+02) £24])
4,70(-11) 0.00 1.65(+04) ~ [24]
HO + o3 b H02 + o2 1.60(-12) 0.00 9.56(+02) [25]
6.69(-14) 0.33 2.04(404) kr - k.tllcc
HO + Hz z HO + uzo 1.20(-12) 0.00 9.41(+03) [27])
1.33(-14) 0.43 3.62(+04) kt - kflxb
mo2 + H02 pa llzo2 + o2 3.00(-11) 0.00 5.00(+02) [25)
1.57(-09) -0.38 2,20(+04) k: - k.E/Kc

B-30




T an e v e St e 1. - far e et s s WM o aa

Table I. (continued)

H, -0, Elementary Reactive Mechanism

k, = AT exp (-c/1) <2 a
Reaction Reference
| A B c(®?
O+HO2H+O, 2.72(~12) 0.28 ~8.10(+01) ke -k /%,
3.70(-10)  0.00 8.45(+03) R4]
O + HO, > HO + 0, 8.32(~-11) 0.00 5.03(+02) 28]
2,20(~11) 0.18 2.82(404) k= k.f/xc
o+ 11202 P nzo +0, 1.40(~-12) 0.00 2.12(403) [25]
. 5.70(-14) 0.52 4.48(+04) k= kf/Kh
o+ H202 T HO + HO2 1.40(-12) 0.00 2.,13(403) {251
2.07(-15) 0.64 8.23(4+03) k= kflx.~=
H+H+M2E, +M 1.80(-30) ~1.00 0.00(+00) [24]
3.70(-10) 0.00 4.83(-04) [24)
H+HO+M2 HO+M 6.20(-26) -2.00 0.00(+00) 241
5.80(-09) 0.00 5.29(+04) (24]
H+O0,+M>HO, +M 4,14(-33) 0.00 -5.00(+02) [24)
3.50(-09) 0.00 2.30(+04) 241
HO + HO + M 3 H0, + M 2.50(-33) 0.00 -2.55(+03) [24]
2.00(-07) 0.00 2.29(+04) [24]
O+H+M>HO+M 8.28(-29) -1.00 0.00(+00) [291]
2.33(-10) 0.21 5.10(404) k= kflxc
0+ HO +M 3 HO, +M 2.80(-31) 0.00 0.00 (+00) [29)
1.10(-04) -0.43 3.22(+04) k= kflxc
0O+0+M 20, +N 5.20(-35) 0.00 -9.00(+02) [24]
3.00(-06) -1.00 5.94(+04) {24}

(a) Bimolecular reaction rate constants are given in units of cm3l(m01ecule sec).

Termolecular reaction rate constants are given in units of cmal(molecule2
(b) Exponentials to the base 10 are given in parenthesis; i.e., 1.00(-10) =

1.00 x 10719,

sec).
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Table IX

Case Initiai Radius Total Energy Ignition Prediction
of Deposition Deposited Detailed Similarity
R° (cm) Eo (mJ) Numerical Solution

’ ~ Simulation

1 0.1 4.0 yes yes
3.7 yes yes '
3.0 no no
2 0.11 5.0 yes yes
3.0 no no
3 0.12 7.0 yes yes
6.0 no ne
1
4 0.09 3.3 no yes i
5 0.08 3.3 no yes
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CAPTIONS

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1l

Time history of the temperature profile in a H2:02:N2/

2:1:10 mixture as predicted by the detailed numerical simulation
model. )

Temperature as a function of induction time for 32:02:N2/2:1:10
mixture evaluated using the chemical reaction scheme in Table I.
The nonlinear amplitude, A, and the characteristic radius, Rc,
as functions of time calculated using the similarity solution
model.

Calculations of the central temperature as a function of time
for three values of Eo using the detailed numerical simluation
model.

The central temperature as a function of time for three values
of Eo as predicted by the similarity solution model.
Calculations of the induction parameter as a function of time
for three values of Eo using the similarity solution model.

The "*" indicates the predicted time of ignition.

Comparisons of the time history of the temperature profiles
predicted by the detailed numerical model and the similarity

solution model.

The minimum ignition eneirgy as a function of the radius of

energy deposition calculated using detailed numerical simulations.
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