

COPY

AFGL-TR-81-0261

DEVELOPMENT AND APPLICATIONS OF TECHNIQUES TO PROCESS HYDROMETEOR DISTRIBUTION DATA

LAWRENCE E. BELKSY FREDRIC B. KAPLAN JAMES P. LALLY D. KEITH ROBERTS TERENCE O'TOOLE

DIGITAL PROGRAMMING SERVICES, INC. 60 HICKORY DRIVE WALTHAM, MASSACHUSETTS 02154

31 JULY 81

FINAL REPORT FOR PERIOD 1 MAY 1978 TO 31 JULY 1981

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

388543

82 01 13 088

·2) 636

) LEVEL 7 10

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service. and the second second second

1.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) 1 REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. AFGL-TR-81-0261 A1 CQQQQ 2Q 4. TITLE (and Subtitue) DEVELOPMENT AND APPLICATIONS OF TECHNIQUES TO PROCESS HYDROMETEOR	READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-81-0261 A109929 • TITLE (and Sublitie) DEVELOPMENT AND APPLICATIONS OF	3. RECIPIENT'S CATALOG NUMBER
DEVELOPMENT AND APPLICATIONS OF	
DISTRIBUTION DATA	5. TYPE OF REPORT & PERIOD COVERED Final Report 1 May 1978 - 31 July 1981 6. PERFORMING ORG. REPORT NUMBER
 Author(*) Lawrence E. Belsky D. Keith Roberts Fredric B. Kaplan James P. Lally 	B. CONTRACT OR GRANT NUMBER(*) F19628-78-C-0131
 PERFORMING ORGANIZATION NAME AND ADDRESS Digital Programming Services, Inc. 60 Hickory Drive Waltham, MA 02154 	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 627A00BJ
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731	12. REPORT DATE 31 July 1981 13. NUMBER OF PAGES
Monitor/Barbara A. Main/LYC 14. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office)	635 15. SECURITY CLASS. (of this report) Unclassified 15. DECLASSIFICATION, DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Airborne data collection, closed physics, mathematical modeling, real time operation	, data processing,
ABSTRACT (Continue on reverse side if necessary and identify by block number) This report summarizes the mathematical p variety of standard and non-standard clou includes the complete descriptions and op for all programs developed under this cor	procedures used on a ud physics data. It perating instructions
	' [

PAGE LEFT BLANK INTENTION ALLY

BLANK PAGE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

1.	INTRC	DUCTIO	N		
2.	CYBER	8 74 PRG	OGRAMMING		
	2.1	PMS-1D	PROCESSI	NG 23	
		2.1.1	PROGRAM I	KNOLL1D	
			2.1.1.1	DATA UNPACKING AND REFOR-	
				MATTING	
			2.1.1.2	PARTICLE TYPING	
			2.1.1.3	EQUIVALENT MELTED DIAMETER	
				CALCULATION	
			2.1.1.4	VCO CALCULATION 33	
			2.1.1.5	SAMPLING VOLUME DETERMI-	
				NATION	
			2.1.1.6	BARWIDTH APPROXIMATION 43	
			2.1.1.7	PARTICLE NUMBER DENSITY	
				CALCULATION	
			2.1.1.8	EDITING CAPABILITY 47	
			2.1.1.9	DATA MODIFICATION 50	
			2.1.1.10	LIQUID WATER CONTENT CAL-	
				CULATION	
			2.1.1.11	MEDIAN VOLUME DIAMETER DE-	
				TERMINATION · · · · · · · · · · 57	
			2.1.1.12	RADAR REFLECTIVITY CALCU-	
				LATION 61	
			2.1.1.13	CHANNEL OVERLAP CORRECTION 62	-1-
			2.1.1.14	MASS TO REFLECTIVITY RATIO 64	
			2.1.1.15	FORM-FACTOR CALCULATION · · · · . 65	-
			2.1.1.16	KNOLL1D OPERATING INSTRUC-	CALL
				$TIONS \cdot \cdot$	- JC
			2.1.1.17	KNOLLID SAMPLE OUTPUT · · · · 72	odes
					./or
				Dist Church	a l -

2.1.2	PROGRAM	KNlUTIL	82
	2.1.2.1	PROGRAM KNIUTIL OPERATING	
		INSTRUCTIONS	83
	2.1.2.2	PROGRAM KNIUTIL SAMPLE	
		OUTPUT	87
2.1.3	PROGRAM	KNPLT1D	91
	2.1.3.1	Z-M SCATTER DIAGRAMS	92
	2.1.3.2	Z-M HISTOGRAMS	93
	2.1.3.3	VCO HISTOGRAMS	94
	2.1.3.4	DENSITY SPECTRA	95
	2.1.3.5	MEDIAN VOLUME DIAMETER PLOTS · · ·	104
	2.1.3.6	VCO PLOTS	111
	2.1.3.7	PROGRAM KNPLTID OPERATING	
		INSTRUCTIONS	113
	2.1.3.8	KNPLT1D SAMPLE PLOTS · · · · · · · ·	123
	2.1.3.9	KNPLTID SAMPLE OUTPUTS · · · · · ·	133
2.1.4	PROGRAM	DENPLOT	145
	2.1.4.1	DENPLOT OPERATING INSTRUC-	
		TIONS	146
	2.1.4.2	DENPLOT SAMPLE PLOT	147
2.1.5	PROGRAM	LST1DTAPE	148
	2.1.5.1	LSTIDTAPE OPERATING INSTRUC-	
		TIONS	151
	2.1.5.2	LSTIDTAPE SAMPLE OUTPUT ••••••	152
2.1.6	PROGRAM	VCOTIME	153
	2.1.6.1	VCOTIME OPERATING INSTRUC-	
		TIONS	154
	2.1.6.2		157
2.1.7			158
		JWEXTR OPERATING INSTRUC-	
		TIONS	159
	2.1.7.2	PROGRAM JWPLOT OPERATING	
		INSTRUCTIONS · · · · · · · · · · · · · · · · · · ·	166

		2.1.7.3	JWPLO	T S	SAMPI	LE F	PLOI	"S	(BE	FO	RE					
			AND A	FTE	ER).	• •	•	•	• •	•	•	•	•	•	•	163
		2.1.7.4	JWPLO	T S	SAMPI	LE C	UTF	TUY	•••		•	•	•	-	•	165
	2.1.8	PROGRAM (CHCOUN	T.	• •		•					•		•	•	166
		2.1.8.1	CHCOU	NT	OPEI	RATI	NG	IN	STR	UC	-					
			TIONS	•			•	•			•	•		•	•	169
		2.1.8.2	CHCOU	NT	SAMI	PLE	PLC	T			•					171
		2.1.8.3	CHCOU	NT	SAM	PLE	OUI	'PU'	r.		•				•	172
	2.1.9	PMS-1D DA	АТА ТА	PE	ARCI	IVI	NG	•			•					174
		PROGRAM														
		PROGRAM C														
2.2		ANALYSIS A														
		PROGRAM H														
		2.2.1.1														
		2.2.1.2														
		2.2.1.3														
	2.2.2	PROGRAM F														
		2.2.2.1														
			TIONS	•	• •		•	•	• •				•		•	231
		2.2.2.2	RADMC	OM	SAME	LE	OUT	PUI	c .	•		•	•			233
	2.2.3	PROGRAM														
		2.2.3.1														
		2.2.3.2	GAMMA	SA	MPLE	: ou	TPU	T		•				•	•	244
		2.2.3.3														
	2.2.4	PPOGRAM S	PANDA	R.			•	•							•	261
		2.2.4.1														
			TIONS													262
		2.2.4.2														
	2.2.5	PROGRAM Z														
		DATA PROC														269

	2.3.1	PROGRAM KN2UTIL	273
		2.3.1.1 KN2UTIL OPERATING INSTRUC-	
		TIONS	278
		2.3.1.2 KN2UTIL SAMPLE OUTPUT	281
	2.3.2	PROGRAM TWODEE	288
		2.3.2.1 PATTERN RECOGNITION	289
		2.3.2.2 PARTICLE DEFINITION	293
		2.3.2.3 AREA	298
		2.3.2.4 PERIMETER	298
		2.3.2.5 HORIZONTAL FERET PROJECTION	299
		2.3.2.6 VERTICAL FERET PROJECTION	300
		2.3.2.7 VERTICAL PROJECTION	300
		2.3.2.8 HORIZONTAL PROJECTION	302
		2.3.2.9 VOLUME	302
		2.3.2.10 LONGEST DIMENSION	312
		2.3.2.11 MAXIMUM LENGTH APPROXIMA-	
		TION • • • • • • • • • • • • • • • • • • •	313
		2.3.2.12 PARTICLE REJECTION	317
		2.3.2.13 TWODEE OPERATING INSTRUC-	
		TIONS	319
		2.3.2.14 TWODEE SAMPLE OUTPUT	321
	2.3.3	PROGRAM KNOLL2D	327
		2.3.3.1 KNOLL2D OPERATING INSTRUC-	
		TIONS	328
		2.3.3.2 KNOLL2D SAMPLE OUTPUT	332
	2.3.4		347
2.4		NALYSIS	348
			350
		2.4.1.1 DEWER OPERATING INSTRUCTIONS	351
			352
	2.4.2	PROGRAM EWER	
		2.4.2.1 EWER OPERATING INSTRUCTIONS	

2.4.2.2 EWER SAMPLE OUTPUT 2.4.4.1 EWERPMS OPERATING INSTRUC-2.4.4.2 EWERPMS SAMPLE PLOT 2.4.4.3 EWERPMS SAMPLE OUTPUT 2.5.2.1 ICEEX OPERATING INSTRUCTIONS . . . 2.5.2.2 ICEEX SAMPLE OUTPUT 2.5.3.1 ICERPT OPERATING INSTRUC-2.5.3.2 ICERPT SAMPLE OUTPUT. 2.5.4.1 ICEDERIV OPERATING INSTRUC-2.5.4.2 ICEDERIV SAMPLE OUTPUTS 2.5.5.1 ICELWC OPERATING INSTRUC-2.5.5.2 ICELWC SAMPLE OUTPUT 2.6.3.1 LWCDIV OPERATING INSTRUC-TIONS

		2.6.3.2 LWCDIV SAMPLE OUTPUT 4	21
	2.6.4	PROGRAM PASSAVE,	22
		2.6.4.1 PASSAVE OPERATING INSTRUC-	
		$TIONS \ldots \ldots \ldots \ldots \ldots 4$	23
		2.6.4.2 PASSAVE SAMPLE OUTPUT 4	24
	2.6.5	PROGRAM MVDLWCCAL	25
	2.6.6	PROGRAM NDPLOTCAL	27
		2.6.6.1 NDPLOTCAL OPERATING IN-	
		STRUCTIONS 4	128
		2.6.6.2 NDPLOTCAL SAMPLE PLOT	129
2.7	MISCEL	LANEOUS PROGRAMMING	130
	2.7.1	PROGRAM HIAC1D	130
		2.7.1.1 HIACLD OPERATING INSTRUC-	
		TIONS \ldots	131
		2.7.1.2 HIACID SAMPLE OUTPUT	132
	2.7.2	PROGRAM FILTER	435
		2.7.2.1 FILTER OPERATING INSTRUC-	
		TIONS \ldots	438
		2.7.2.2 FILTER SAMPLE PLOTS	439
	2.7.3	PROGRAM FLTPMS	443
	2.7.4	PROGRAM PLTD0	444
		2.7.4.1 PLTDO SAMPLE PLOT	445
		2.7.4.2 PLTD0 OPERATING INSTRUC-	
		TIONS \ldots \ldots \ldots \ldots	446
	2.7.5	PROGRAM VHPLOT	447
		2.7.5.1 VHPLOT OPERATING INSTRUC-	
		TIONS \ldots \ldots \ldots \ldots \ldots	448
		2.7.5.2 VHPLOT SAMPLE OUTPUT & PLOT · · · ·	453
	2.7.6	PROGRAM TEMPCK	457

2.7.6.1 TEMPCK SAMPLE OUTPUT 463 2.7.6.2 TEMPCK OPERATING INSTRUC-465 AIRBORNE DATA COLLECTION 467 3. 469 3.2 REAL TIME OPERATING SYSTEM-RTX/8..... 470 471 475 476 482 483 3.2.5.1 TASK STATUS BLOCK 'TSB' 405 3.2.5.2 DEVICE STATUS BLOCK 'DSB' 49. 3.2.5.3 I/O PACKET 491 3.2.5.4 TRAP BLOCKS 492 3.2.5.5 CLOCK BLOCKS 494 3.2.5.6 FLOATING POINT PROCESSOR 495 3.2.6 PDP/8E INTERRUPT MONITOR 501 3.2.7 DATA RETRIEVAL 502 3.2.8 BUILDING THE OPERATING SYSTEM 504 3.2.9 OPERATING INSTRUCTIONS 506 3.3 REAL TIME AIRCRAFT PROCESSING USER PROGRAMS 507 USER PROGRAM TAPE 3.3.1 509 3.3.2 USER PROGRAM LWCD 510 3.3.3 USER PROGRAM PRINT 515 3.3.4 USER PROGRAM PLOT 518 3.3.5 USER PROGRAM DPMS 520 3.3.6 USER PROGRAM CHECK 521 3.3.7 USER PROGRAM TWCI 522 3.3.8 SPECIAL USER PROGRAM MNSI 523

		3.3.9	SPECIAL U	JSER	PROG	RAM	UNI	т.	•	•	•	•	•	•	•	•	•	524
4.	IN-H	OUSE CO	MPUTERS .	· • ·		•			•	•	•	•	•	•	•	•	•	525
	4.1	LYC PD	P8E COMPUT	ER .		•	• •		•	•	•	•				•	•	525
		4.1.1	OS/8 OPER	RATI	NG SY	STE	м.			•		•			•			526
		4.1.2	CENTRONIC	CS PI	RINTE	R.	• •		•	•	•	•	•	•			•	528
	4.2	FORTRA	N IV	• • •	• • •	•	• •		•	•	•	•	•				•	530
		4.2.1	FORTRAN S	SYSTI	ем сс	MPC	NENI	rs .	•	•	•	•		•	•	•	•	531
		4.2.2	TECO	• •		•	• •	• •	•	•	•	•	•		•		•	537
		4.2.3	F4	• •		•			•	•	•	•	•		•		•	539
		4.2.4	RALF	• •		•	• •		•		•	•	•			•	•	541
		4.2.5	LOAD	•		•			•				•	•			-	543
		4.2.6	FRTS			•		• •	•		•					•	•	545
	4.3	POST F	LIGHT PROC	CESS	ING .	•		• •	•	•	•		•	•	•	•	•	548
		4.3.1	PROGRAMS	WRI	TTEN	IN	ASSE	EMBL	ER	LÆ	NG	SUA	AGE	2	•		•	549
			4.3.1.1	QWI	ка.	•	•••		•		•		•	•		•	•	549
			4.3.1.2	KNM	on .	•		•••	•	•	•	•	•			•	•	556
			4.3.1.3	PLO	г.	•		• •	•		•			•	•	•	•	557
			4.3.1.4	HSK	PNG .	•	• •	• •	•	•	•	•	•	•		•	•	563
		4.3.2	PROGRAMS	WRI	TTEN	IN	FOR	[RAN	I	7	•	•	•	•		•		567
			4.3.2.1	KNO	LlD.	•	•••	• •	•	•	•	•	•			•	•	567
			4.3.2.2	KN1	UTL	•		• •	•	•	•		•				•	573
			4.3.2.3	JWP	LOT.F	т	•••	• •			•			•		•	•	575
				4.3	.2.3.	1	CONT	CIM.	FT		•	•	•	•	•	•	•	580
				4.3	.2.3.	2	INPU	JT.F	T	•	•	•		•	•		•	580
				4.3	.2.3.	3	DISE	PL.F	T	•	•	•	•	•			•	581
				4.3	.2.3.	4	JWC	DRR.	FT	•	•	•					•	581
				4.3	.2.3.	5	SCAI	LE.F	T	•	•	•	•	•		•		581
				4.3	.2.3.	6	REAL	DT.F	T	•	•		•	•	•	•	•	581
				4.3	.2.3.	7	LINE	CAX.	ዮጥ									582

4 2 2																				
4.3.3	FORTRAN	SUE	BRO	JT	IN	ES	5	•	•	•	•	•	•	٠	•	•	•	•	•	583
	4.3.3.1	RM	ITA	0	•	•	•	•	•	•	•	•	•		•		•	•	•	584
	4.3.3.2	cc	RE	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	587
	4.3.3.3	SC	'AN	Г	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58 9
TEKTRO	NIX PLOT	FING	F PZ	ACI	KA	GE		•	•	•	•	•	•	•	•	•	•	•	•	593
4.4.1	TKPLOT.	RA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	594
4.4.2	CROSS.	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	596
4.4.3	NUMBER	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	598
4.4.4	LINEAX		•	•	•			•	•	•	•	•	•		•	•	•	•	•	600
	TEKTRO 4.4.1 4.4.2 4.4.3	4.3.3.1 4.3.3.2 4.3.3.3 TEKTRONIX PLOT 4.4.1 TKPLOT.1 4.4.2 CROSS. 4.4.3 NUMBER	4.3.3.1 RM 4.3.3.2 CC 4.3.3.3 SC TEKTRONIX PLOTTING 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA 4.3.3.2 CORE 4.3.3.3 SCAN TEKTRONIX PLOTTING PA 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0 4.3.3.2 CORE. 4.3.3.3 SCANT TEKTRONIX PLOTTING PACE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0 . 4.3.3.2 CORE 4.3.3.3 SCANT . TEKTRONIX PLOTTING PACKA 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0	4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE. 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<></td></td<></td></td<></td></td<></td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<></td></td<></td></td<></td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<></td></td<></td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<></td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<></td></td<>	4.3.3.1 RMTA0 <td< td=""><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER </td><td>4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE </td></td<>	4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE 4.4.1 TKPLOT.RA 4.4.2 CROSS 4.4.3 NUMBER	4.3.3 FORTRAN SUBROUTINES 4.3.3.1 RMTA0 4.3.3.2 CORE 4.3.3.3 SCANT 4.3.3.3 SCANT TEKTRONIX PLOTTING PACKAGE

APPENDICES

ŧ

1	VCO'S RECORDED ON C-130 PMS-1D SYSTEM 60	3
2	KENNEDY TAPE RECORD FORMAT 60	4
3	1D PARTICLE TYPE CODES	5
4 A	PARTICULAR NUMBER ADJUSTMENT COEFFICIENTS (HTOX	
	TABLE)	6
4B	EQUIVALENT MELTED DIAMETER COEFFICIENTS (XTOD	
	TABLE)	7
5	KNOLL1D (TAPE 2) OUTPUT FORMAT 60	8
6	KNOLLID (TAPE 2) VCO PLACEMENT	9
7A	PMS-1D STATUS WORD ALLOCATION 61	0
7 B	PMS-2D STATUS WORD ALLOCATION 61	1
8	PMS/VCO OUTPUT BLOCK	2
9	SPANDAR INPUT TAPE FORMAT	3
10	SPANDAR OUTPUT TAPE FORMAT	4
11	PMS-2D PARTICLE IMAGE TAPE DESCRIPTION 61	5
12A	C-130/LEAR PMS-2D FAST-DATA RECORD FORMAT 61	€
12B	C-130/LEAR PMS-2D SLOW-DATA RECORD FORMAT 61	7
12C	C-130/LEAR TIME & ID WORD DESCRIPTION 61	8
12D	C-130 PMS-2D SLOW-DATA RECORD WORD ALLOCATION 62	0
12E	PMS-2D PARTICLE TAPE FORMAT	2
13	ICEEX OUTPUT TAPE FORMAT • • • • • • • • • • • • • • • • • • •	3
14	MEMO OF 19 DEC 79 ON ICE DETECTOR	4
15	TU-10 TAPE FORMAT	С
16	AEROMET 205 WORD PROCESSED DATA TAPE • • • • • • • • • • • • • • • • • • •	С
17	AEROMET 210 WORD PROCESSED DATA TAPE • • • • • • • • • • • 63	1
18	TU-10 TAPE FORMAT WITH 'NEW' A-D BUFFER 63	2
19A	RTX8 IOT'S • • • • • • • • • • • • • • • • • • •	3
19B	PDP8 MAGNETIC TAPE IOT'S • • • • • • • • • • • • • • • • • • •	4
20	RTX/8 USER DIRECTIVES· · · · · · · · · · · · · · · · · · ·	6

TABLE OF FIGURES

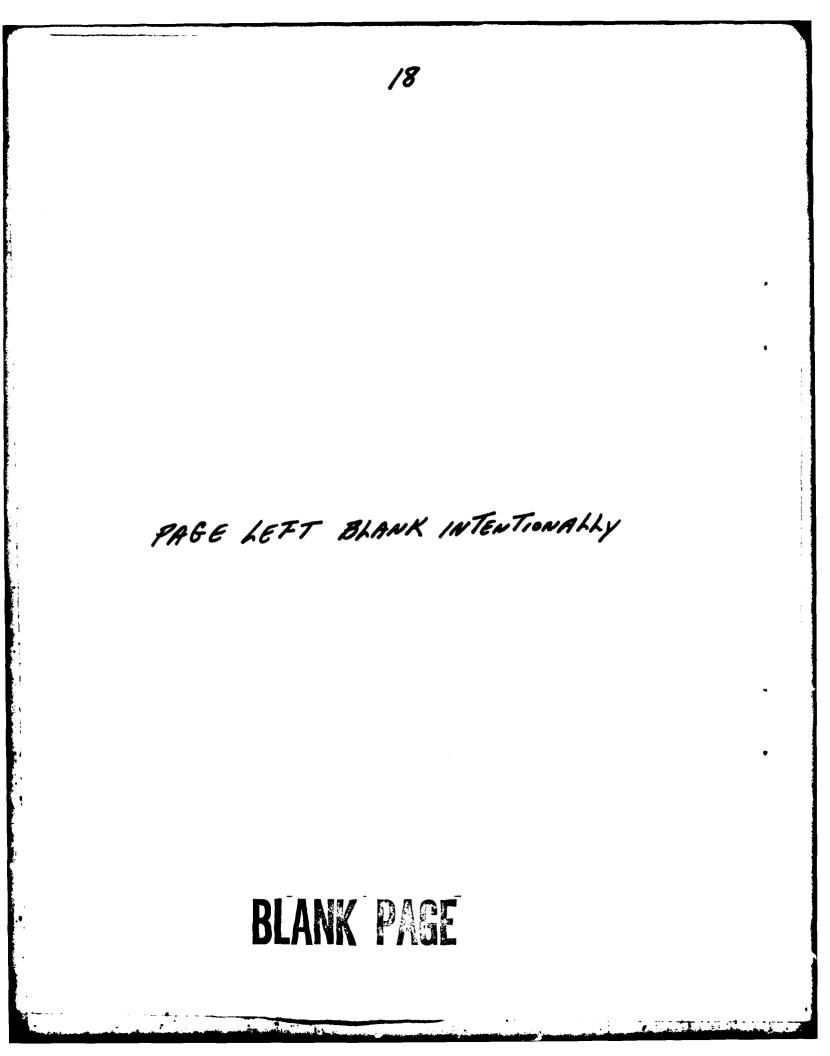
2.1	PARTICLE TRACE THROUGH PMS-1D SYSTEM
2.2	PMS-1D PROCESSING PROGRAM FLOW
2.3	A PICTORIAL REPRESENTATION OF SAMPLING
	VOLUME
2.4	EXTRAPOLATING CHANNEL DATA
2.5	BOBINI FLOWCHART
2.6	MEDIAN VOLUME DIAMETER
2.7	OVERLAP CORRECTION ALGORITHM 63
2.8	KN1UTIL DECIMAL AND SELECTED OUTPUT LISTING 88
2.9	KN1UTIL PROBE SELECT OPTION
2.10	KN1UTIL STATUS PARAMETERS
2.11	EXAMPLES OF TYPE 2 SURROUNDED ZERE ELIM-
	INATION
2.12	EXAMPLE OF ENDING ZERO ELIMINATION 109
2.13	EXAMPLES OF TYPE 1 SURROUNDED ZERO ELIM-
	INATION
2.14	JW-LWC VS HEIGHT ADJUSTMENT
2.15	RADAR ANALYSIS AND CORRELATION PROGRAM FLOW 185
2.16	PP-OP VALUE LIMITS
2.17	SPANDAR OUTPUT SUMMARY
2.18	SPANDAR (TAPE 8) OUTPUT
2.19	SPANDAR (TAPE 2) OUTPUT
2.20	PMS-2D PROCESSING PROGRAM FLOW
2.21	KN2UTIL OUTPUT TAPE SUMMARY
2.22	KN2UTIL SHORT RECORD SUMMARY
2.23	KN2UTIL LONG RECORD SUMMARY
2.24	KN2UTIL LONG RECORD SUMMARY
2.25	KN2UTIL MICROFICHE OUTPUT
2.26A	EXAMPLES OF ADJACENT STRINGS

2.26B	EXAMPLES OF NON-ADJACENT STRINGS
2.27	PARTICLE MERGING
2.28	EXAMPLES OF LOST DATA AND REGENERATION 296
2.29	PERIMETER CALCULATION
2.30	HORIZONTAL AND VERTICAL FERET PROJECTION 299
2.31	VERTICAL PROJECTION
2.32	IRREGULARLY SHAPED PARTICLE
2.33	ORIGIN AT CENTROID
2.34	PARTICLE ROTATED TO MAJOR AXES
2.35	LONGEST DIMENSION
2.36	MAXIMUM LENGTH, SPHERICAL PARTICLES
2.37	MAXIMUM LENGTH APPROXIMATION 0 ⁰ ORIENTATION 314
2.38	MAXIMUM LENGTH APPROXIMATION 30° ORIENTA-
	TION
2.39	MAXIMUM LENGTH APPROXIMATION 0° ORIENTATION 316
2.40	EXAMPLES OF TWODEE ADJACENCE TESTS
2.41	SHORT PARTICLE TAPE LISTING
2.42	FULL PARTICLE TAPE SUMMARY
2.43	TWODEE PICTURE SUMMARY
2.44	KNOLL2D SAMPLE DATA
2.45	KNOLL2D SAMPLE DATA
2.46	KNOLL2D SAMPLE DATA
2.47	KNOLL2D SAMPLE DATA
2.48	KNOLL2D SAMPLE DATA
2.49	KNOLL2D SAMPLE DATA
2.50	KNOLL2D SAMPLE DATA
2.51	KNOLL2D SAMPLE DATA
2.52	KNOLL2D SAMPLE DATA
2.53	EWER ANALYSIS PROGRAM FLOW
2.54	ICE DETECTOR ANALYSIS PROGRAM FLOW • • • • • • • •
2.55	ICING CYCLE
2.56	AFFTC SPRAY TEST PROGRAM FLOW

2.57	VHPLOT - INPUT OPTION SECTION
2.58	VHPLOT - CALIBRATED LISTING
2.59	VHPLOT - SAMPLE PLOT
3.1	CONFIGURATION FOR AIRBORNE PDP8/E
3.2	FPP DEVICE HANDLER - FPP INITIALIZATION
	ROUTINE
3.3	FPP DEVICE HANDLER - FPP INTERRUPT COM-
	PLETION ROUTINE
3.4	FPP DEVICE HANDLER
3.5	PRINTER OUTPUT FORMAT
4.1	PDP8/E BLOCK DIAGRAM
4.2	OS/8 FORTRAN IV SYSTEM
4.3	PREPARING A FORTRAN IV SOURCE FILE
4.4	COMPILING A SOURCE FILE
4.5	QWIK4 SAMPLE OUTPUT
4.6	SAMPLE KNOLLID OUTPUT
4.7	JWPLOT DIALOGUE
4.8	JWPLOT SAMPLE OUTPUT
4.9	LINEAX SAMPLE PLOT

LIST OF TABLES

2.1	TWODEE REJECTION CRITERIA	322
2.2	EWER VCO CALIBRATION COEFFICIENTS	355
2.3	SYMBOL DEFINITION FOR PROGRAM ICERPT	382
2.4	PARAMETER LIST FOR PROGRAM ICERPT - PASS SUMMARY	384
2.5	PARAMETER LIST FOR PROGRAM ICERPT - DETAIL OUTPUT	386
2.6	KNOLLIDCAL OUTPUT 'DECK' (TAPE 4)	416
2.7	MVDLWCCAL TABLE	425
3.1	FPP ACTIVE PARAMETER TAPE	500
4.1	LAB DECTAPE LISTING	527
4.2	TECO COMMAND SUMMARY	538
4.3	F4 COMPILER OPTIONS	539
4.4	RALF OPTIONS	541
4.5	LOAD OPTIONS	544
4.6	RUN-TIME SYSTEM OPTIONS	546
4.7	FORTRAN I/O UNIT ASSIGNMENT	555
4.8	QWIK4 ERRORS	597
4.9	'CROSS' CHARACTER CODES	


LIST OF DEFINITIONS

The following abbreviations are used throughout this report.

- AFGL Air Force Cambridge Research Laboratories
- LYC Convective Cloud Physics Branch of the Air Force Geophysics Laboratory

PRECIP PROBE Precipitation Probe

1

1. Introduction

During the period of May 1978 to July 1981 DPSI was under contract (F19628-78-C-0131) to the Convective Cloud Physics Branch (LYC), Meterology Division of the Air Force Geophysics Laboratory (AFGL). LYC is the Air Force office abbreviation for Cloud Thysics Branch and will be used interchangeably throughout this report. The purpose of this contract was to develop and apply mathematical procedures to a variety of standard and non-standard cloud physics research data.

Work, under this latest contract, was performed on two distinct computer systems. The AFGL inhouse Cyber 74 Computer Systems (Control Data Corp.) and two DEC (Digital Equipment Corp.) PDP-8/E's. The major delineations of this report is along those lines. Chapter 2 describes CDC Cyber 74 programming while chapters 3 and 4 details real-time programming for the PDP-8/E installed on an AFGL operated MC-130E instrumented aircraft; and an in-house LYC PDP-8/E for testing of flight programming and post flight analysis.

The work performed under this contract has been submitted, in detail, in a set of 39 monthly reports. This document will summarize changes to existing programs; in addition, new programs and procedures will be fully described in this document. A complete set of updated documentation and operating instructions for each program is included.

2. CYBER 74 PROGRAMMING

LYC is a support facility to the USAF in the area of cloud physics research. Practical applications, rather than pure research are emphasized as the mission of the branch. At present these practical applications are in the following areas:

- aircraft icing rates
- melting layer research
- AFFTC spray test
- radar correlation
- Pasarelli spiral

The following chapter describes the contributions that DPSI has made in the above areas during the length of this contract.

Specific programs are listed under each general application. For every program the inherent mathematical modeling will be fully described or referenced. In addition a sample output description will be included.

Full operating instructions are presented for each program. The user of this information should be familiar with the contents of the "AFGL USER'S GUIDE". That document describes most of the conventions that must be complied with in order to run jobs on AFGL CYBER systems. Although the user's guide is a much simplified version of the set of CDC cyber manuals it gives enough information for the running of simple jobs. This knowledge plus the detailed operating instructions presented in this document are quite sufficient for the proper running of the programs. 2. CYBER 74 Programming (cont'd)

DPSI maintains all CYBER programming on a disk pack (LYCPFI) owned by the computer center (SOD). In the succeeding documentation DPSI uses the convention of attaching, in the instructions, the word BIN to the program name (LYCPFI file name) when using the system command "ATTACH" to make the compiled program local to a user job.

ex. ATTACH, LGO, PLTEXTRACTBIN, ID=GLASS, MR=1.

LGO.

The binary of program PLTEXTRACT is made local to the job as a file named LGO. Repetition of the name tells the system to load it and begin execution. DPSI maintains several binaries on the shared system (ID=GLASS) using this convention. However not all programs are so saved. The computer center does not allow files to be stored on the shared disk system without their continued usage. For this reason DPSI maintains only the most frequently used binaries on the disk. If the user wants a program not currently on the shared system (determined by use of the "audit" command) there are two options. INTERCOM can be used to attach the program. This will compile and save the binary on the shared system as above. Or, the control deck can be altered by placing a "PK" parameter on the first card and replacing the original attach with the following cards:

ex. PAUSE. PLS MOUNT DISK LYCPFI. MOUNT,VSN=LYCPFI,SN=LYCPFI. ATTACH,P,PLTEXTRACT,ID=LALLY,SN=LYCPFI. FTN,I=P,PL=999999. LGO.

2. CYBER 74 Programming (cont'd)

In this example the compilation is actually done during the job. In the succeeding documentation the single attach convention will always be used. It is left to the user to determine if the particular program is or is not currently on the shared system.

2.1 PMS-1D processing

The PMS-1D particle sizing system consists of three different probes that record particle counts in overlapping size ranges. The Axial Scattering Probe detects particles in the 2-30 μ range. The 20-300 μ particles are measured with the cloud probe. The Precip (or Precipitation) Probe is used for particles in the 200-4500 μ range. Actual size ranges for the probes in each aircraft are shown in the following chart.

	<u>C130</u>	LEAR
Axial Scatter	2-30µ	2-30µ
Cloud	20-300µ	20-300 μ
Precipitation	300-4500µ	200-3000µ

The Axial Scattering Probe is considerably different than the other two. It measures optical forward scattering from small particles in a constant size sampling volume. Dual photodiode detectors are used to verify that the particles are within the sampling volume. There is pulse height detection circuitry to classify the particles into fifteen size categories. The size classes are then read out by the data acquisition system at one second intervals.

This probe is specifically designed for water particles only. Since the scattering function of ice crystals is poorly understood, the probe is used only to indicate relative numbers but is not normally relied upon for determining mass of ice crystals.

The Cloud and Precip Probes utilize a laser beam condensed and mirrored to a zoom lens which distributes light to a row

2.1 PMS-1D processing (cont'd)

of diode sensors; the cloud probe has 22 sensors and the precip 24. As the aircraft flies, particles appear between the zoom lens and the sensors, interrupting the light. A shadow is cast, shutting off some of the diode sensors. The device is read when a diode is turned off, and the sampling is continued as any diode state changes until all diodes are back on. At the conclusion, then, a particle of known diode length has been counted; the output consists of the count of particles seen for lengths of one to fifteen diodes for each second. As an example, if a particle traces the following states in the diodes (0 = diode on; X = diode off)

Figure 2.1: Particle trace through PMS-1D system

the result would be 1 particle of diode length 5. The "5" results from the maximum different number of diodes turned off from start to finish of the sampling (all within a fraction of a second).

On board the MC-130 aircraft, a Kennedy 7-track recorder records the PMS-1D particle counts. In addition there are a number of data sensors aboard the aircraft. These are fed directly to voltage controlled oscillators (VCO's) and are hard wired to this output stream by analog to digital converters. These

2.1 PMS-1D processing (cont'd)

sensors contain environmental information of pressure, temperature and dewpoint, as well as, information of heading and speed.

Figure 2.2 is a graphic illustration of the processing options available for this data. This section describes these programs in detail.

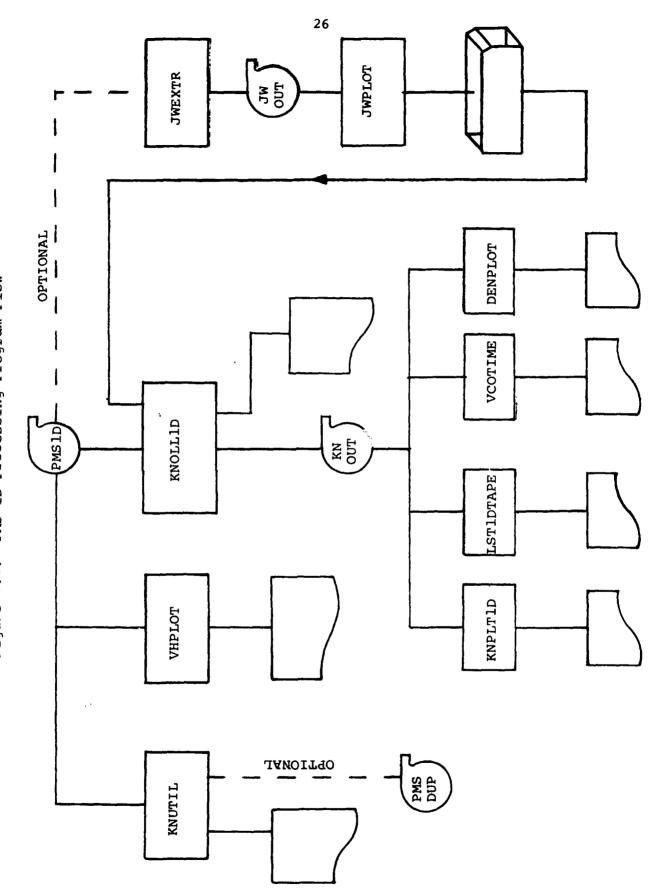


Figure 2.2: PMS-1D Processing Program Flow

2.5 7

.

į

• 7

· • -

N

2.1.1 Program KNOLL1D

The one dimensional PMS measuring devices along with the aircraft VCO's is written on the Kennedy recorder in real time. It is this Kennedy tape which is delivered to LYC for post processing. The first of these post processing programs, and indeed the most extensive, is KNOLL1D. Section 2.1.1.1 through 2.1.1.15 explain in detail the calculations and techniques of KNOLL1D; the operating instructions and sample output will be found in sections 2.1.1.6 and 2.1.1.7.

A complete familiarization with KNOLL1D is mandatory for all users. This program is actually the "workhorse" of LYC, and since the nature of all the work is research, DPSI is often required to make alterations in order to examine changes in the scientist's theories. Of course, modifications are also required from time to time because of sensor malfunctions on the aircraft.

2.1.1.1 Data unpacking and reformatting

The data record on the Kennedy recorder consists of 256 words of 24 bits per word (see appendix 2). When read into the CDC 6600, which has a 60 bit word length, this record becomes 103 words. It must be converted back to 256 words so that each word can be processed as a separate entity. Each 24 bit word consists of four 6 bit groups; the real information on each of these 6 bit groups is contained in the rightmost 4 bits. That is, of the 24 bits per word, only 16 are pertinent.

A COMPASS subroutine unpacks these values from the 103 read-in words to the 256 binary entities. This is done in three steps: firstly, the 24 bits for a word are separated out; secondly, the 16 bits of concern are isolated into 4 groups of 4 bits each; and thirdly, these bits are multiplied by the appropriate power of ten and added to form a single binary result.

An example will explain this technique

24 bit word (2869)	110010 111000 110110 111001
mask out 2 leading bits in each character	001111 001111 001111 001111

resultant

DCBA

2.1.1.1 Data unpacking and reformatting (cont'd)

integer value of:

A x $10^{0} = 9$ x 1 = 9B x $10^{1} = 6$ x 10 = 60C x $10^{2} = 8$ x 100 = 800D x $10^{3} = 2$ x 1000 = 2000

the	intege	r equivalent of	
the	24 bit	word = $A+B+C+D =$	2869

2.1.1.2 Particle typing

Liquid water content is heavily dependent upon the type of particle seen by the PMS-1D device. This can be seen by considering the resultant mass when a particle of fixed diameter is snow rather than rain.

The particle type is determined manually via input cards. The particle type selected will control the crystal size and equivalent melted diameter equations used throughout the program. The next sections show these calculations in detail.

Manual particle typing requires the following information to be input:

- (a) time interval that (b) and (c), below are in effect
- (b) particle type for Cloud Probe
- (c) particle type for Precip probe

There is a maximum of 15 such specifications; each specification is called a pass, and may be thought of as a pass of the aircraft in a given Cloud/Precip medium. It should be noted that the cloud (see b, above) and precip probes (see c, above) may contain different types during the same pass. Appendix 3 lists all the available input particle type codes.

As previously discussed, the Scatter Probe works differently than the Cloud and Precip Probes. Essentially the probe is accurate for water droplets only and not ice crystals. It is for this reason that the program usually processes the scatter probe as rain.

2.1.1.3 Equivalent melted diameter calculation

The equivalent melted diameter calculated for each channel of the Cloud and Precip Probe is a three step procedure. The first step, channel number adjustment, is a function of particle type and channel number. The second step, crystal size determination, is a function of probe only. Finally, the equivalent melted diameter is a function of particle type, probe and crystal size. The complete procedure is shown in the following.

Step 1. Calculate adjusted channel number for each channel

 $N' = m_{1}jN + b_{1}j \qquad \text{for } N \leq BN_{j}$ $N' = m_{2}jN + b_{2}j \qquad \text{for } N > BN_{j}$

where

and

N' = adjusted channel number N = channel number j = particle type code BN = channel number breakpoint b = intercept m = slope

Step 2. Determine crystal size of each channel for each probe

$$CRSZ_N = Wd_p \cdot N'$$

where

CRSZ = crystal size (mm) Wd = probe diode width (mm) N' = adjusted channel number

Step 3. Calculate equivalent melted diameter of each channel for each probe

and

 $D = c_{2j} \cdot CRSZ^{e_2j}$ for $CRSZ > BC_j$

 $D = c_{1j} \cdot CRSZ^{e_{1j}}$ for $CRSZ \leq BC_{j}$

where

D = equivalent melted diameter (mm)
CRSZ = crystal size (mm)
j = particle type code
c = coefficient
e = exponent

Note that steps 1 and 3 actually allow for two equations. The equation chosen is dependent upon the channel number (in step 1) or the crystal size (in step 3). Refer to appendix 4 for all the coefficients and exponents used in these calculations.

2.1.1.4 VCO calculation

The VCO's calculated by program KNOLL1D may be classified in two categories: standard and special. The standard VCO results are calculated using a quadratic equation with the appropriate calibration coefficients in order to convert from the measured quantities to engineering units. The special VCO's are initially calculated using the same equation but undergo additional calculations.

Note that the coefficients generally consist of a slope and intercept only, i.e. linear equation. Although the program can use a quadratic, most of the current calibrations have a higher order coefficient of zero. All the equations are shown as follows:

Standard VCO's

(including: dewpoint, true airspeed, two pressure devices, EWER and magnetic heading)

 $VCO = c_{0i} + c_{1i} \cdot x + c_{2i} \cdot x^{2}$

where:

х	= VCO counts
i	= VCO channel
Co	= intercept
c_1	= slope
C ₂	= second-order coefficient

```
Special VCO's
```

(including: height, true temperature, velocity, LWC-JW, ΔP , potential temperature, dewpoint, saturation vapor, vapor, and relative humidity)

1. Height (meters)

 $Ht = 44307.69 - 11872.42(P)^{0.190284}$

where: P = pressure (mb) calculated from the selected VCO

2. Delta pressure (mb)

This initially uses the standard VCO equation to calculate IAS (indicated airspeed). IAS is then used in the following equation

 $\Delta P = (1.865 \times 10^{-3} (IAS) - 6.0149 \times 10^{-2}) (IAS) + 3.96965$

3. Mach number squared

This is a function of pressure and delta pressure, and is necessary for the temperature and velocity equations

MCHSQ =
$$5 \cdot \{ (1 + \frac{\Delta P}{P})^{2/7} - 1 \}$$

where:

 ΔP = pressure gradient (mb) P = pressure (mb) P is calculated from the standard VCO ΔP is calculated from IAS VCO (see 6)

4. Temperature (°C)

There are three different methods to calculate tempera-

ture. Although only one method uses the VCO, for uniformity, all three will be shown here. The actual method used within the program is a user option.

A. VCO method

This initially uses the standard VCO equation getting TTC. Then TTC is substituted in the following:

 $TEMP = (TTC + 273.16)/(1 + 0.1992 \cdot MCHSQ)$

where:

TEMP = temperature ($^{\circ}K$) MCHSQ = mach number squared TTC = VCO temp ($^{\circ}C$)

B. Standard atmosphere model

This technique calculates temperature as a function of pressure.

 $\text{TEMP} = 76.88288 \cdot \text{PRES}^{0.190824}$

where:

TEMP = temperature (°K) PRES = pressure (mb)

C. Radiosonde temperature profile

This method allows a temperature-pressure table

(maximum 20 levels) to be read as part of the input deck. After the exact pressure has been calculated, the temperature is determined by interpolation of the table.

All three methods calculate temperature in degrees Kelvin. A final step is required to convert to Celsius.

 $T(^{\circ}C) = TEMP(^{\circ}K) - 273.16^{\circ}$

5. Velocity (meters/second)

The velocity is calculated as a function of pressure, pressure gradient, and temperature.

VEL = $\left\{\sqrt{1516.4 (\text{TEMP}) (\text{MCHSQ})} + 3 \sqrt{\frac{\text{TEMP}}{\text{PRES}}}\right\} \{0.5144\}$

where:

VEL = velocity (m/s) TEMP = temperature (°K) PRES = pressure (mb) MCHSQ = mach number squared

6. Liquid water content - Johnson-Williams (LWC-JW)

LWC-JW is initially calculated using the standard VCO equation to solve for LWC. The LWC is then normalized to adjust for airspeed using...

 $LWC-JW = LWC \cdot \frac{200}{VEL}$

where:

LWC = liquid water content from standard VCO VEL = velocity (knots)

KNOLLID optionally inputs a set of JW-height profiles for making an additional adjustment to the calculated values. A description of this adjustment routine can be found in section 2.1.7 for program JWPLOT.

7. Meteorological parameters

Additional meteorological parameters are calculated from the previously determined VCO's they are listed below.

POTENTIAL TEMPERATURE (K) =

$$(T+273) * (\frac{1000}{P})$$
 . 2857

*DEWPOINT (C) =

9.84*10⁻⁴*D²+1.1305*D-0.012

SATURATED VAPOR PRESSURE (Mb) =

6.11*EXP 9.05*L
$$(\frac{1}{273})$$
 - $\frac{1}{T+273}$)

* USED WHEN FROSTPOINT/DEWPOINT REGISTERS FROSTPOINT (VALUES LESS THAN ZERO).

VAPOR PRESSURE (Mb) =

6.11*EXP
$$\left(9.05*L\left(\frac{1}{273} - \frac{1}{DEWPOINT+273}\right)\right)$$

RELATIVE HUMIDITY (%) =

100* VAPOR PRESSURE

L	=586 * T + 597
Т	= TRUE TEMPERATURE (C)
Р	= PRESSURE (Mb)
D	= DEWPOINT/FROSTPOINT PARAMETERS

We now turn our attention to the calibration to be used for the processing. Past experience has shown that the default coefficients (coefficients are omitted) used within the program should be 0.0, 1.0, and 0.0 i.e. slope equal to one, and the intercept and high order coefficient equal to zero. These default coefficients are replaced by the latest calibration coefficients which are entered as part of the VCO input data file. There are two advantages with this technique; the program does not have to be recompiled whenever there is a calibration change, and the VCO output may be adjusted or corrected by simply changing a coefficient in the file or temporarily through the input deck. 2.1.1.5 Sampling volume determination

The sampling volume is a fundamental calculation which must be performed before the particle number density may be determined. This volume is basically the "amount" of air per second a given probe is exposed to, while counting particles. Basically, the volume is the product of cross-sectional area (CSA) times distance, where the cross-sectional area is a function of probe. The CSA is defined as the product of the effective aperture width (EAW) and the depth of field (DOF) where the DOF and EAW are functions of channel number or class size. Figure 2.3 shows a pictorial representation of the sampling volume.

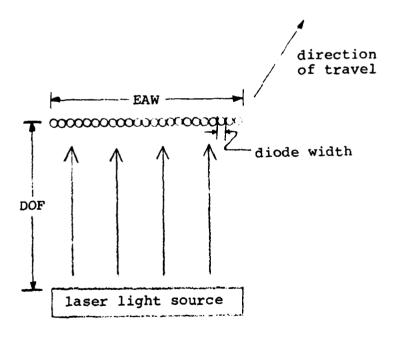


Figure 2.3: A pictorial representation of sampling volume

```
2.1.1.5 Sampling volume determination (cont'd)
          The calculation for each probe is shown below.
          1. Precip Probe
                     VOL = CSA · DIST
          where:
                     CSA = cross sectional area
                     DIST = distance travelled in one second
          and:
                     CSA = DOF \cdot EAW
          where:
                     DOF = depth of field (constant .264 M)
                     EAW = effective aperture width
                     EAW = W_{d} (23-N)
          and:
          where:
                     W_{d} = diode width (constant 300\mu = 3.10^{-4}M)
                     N = channel number
          this:
                     VOL = (.264) 3 \cdot 10^{-4} (23 - N) \cdot DIST
                     VOL = 7.92 \cdot 10^{-5} (23 - N) \cdot DIST
          or:
          2. Cloud Probe
                     VOL = CSA \cdot DIST
          where:
                     CSA and DIST have been previously defined
                    (CSA = DOF \cdot EAW)
```

40

And the second second

41

2.1.1.5 Sampling volume determination (cont'd)

now: DOF = the minimum of $\{6.1, L\} \cdot 10^{-2} M$ where: L = 0.095N²

and: $EAW = W_{d}(21-N)$

where: W_d = diode width (constant $20\mu = 2 \cdot 10^{-5}$ M

thus: $VOL = 2.0 \cdot 10^{-7} (21-N) (min{6.1, .095N²}) DIST$

3. Scatter probe

VOL = CSA · DIST

where: CSA = cross sectional area (a calibrated constant-latest 4.59.10⁻⁷M²)

thus: $VOL = 4.59 \cdot 10^{-7} (DIST)$

The distance (DIST) for the three equations is calculated quite simply.

DIST = vt

where: v = aircraft velocity
 t = time interval

The desired unit for distance is meters, so using velocity in meters/second, with a time interval of one second the equation reduces to 2.1.1.5 Sampling volume determination (cont'd)

A Charles and a construction of the

.

DIST = $[v(m/sec)] \cdot [1 (sec)]$ DIST = v, with v in units of m/sec

This simplifies the volume equations to

VOL (PRECIP) = $7.92 \cdot 10^{-5} (23 - N) v$ VOL(CLOUD) = $2.0 \cdot 10^{-7} (21-N) (min\{6.1, .095N^2\})v$ VOL (SCATTER) = $4.59 \cdot 10^{-7}$ (v)

with the volume in units of cubic meters.

2.1.1.6 Barwidth approximation

The width of each channel, or class size, (commonly referred to as barwidth) is unfortunately not constant for the cloud or precip probes. It is however, constant (2μ) for the scatter probe.

The barwidth of any cloud or precip channel may be approximated as one-half-the difference between the adjacent channel center diameters. Algebraically this becomes

 $BW_N = \frac{1}{2}(D_{N+1} - D_{N-1}) \text{ for } 2 \le N \le 14$

where:

 $BW_N = barwidth of channel N$ $D_N = center diameter of channel N$

The special cases are for class 1 and class 15.

 $BW_1 = D_2 - D_1$ for N = 1

anđ

 $BW_{15} = D_{15} - D_{14}$ for N = 15

Using the barwidth and center diameter for any channel, the upper and lower limits of the channel can be derived using

 $LL_{N} = D_{N} - \frac{1}{2} BW_{N}$ where: $LL_{N} = lower limit of channel N$ and $UL_{N} = D_{N} + \frac{1}{2} BW_{N}$ where: $UL_{N} = upper limit of channel N.$

2.1.1.6 Barwidth approximation (cont'd)

From these equations it can also be seen that

$$BW_N = UL_N - LL_N$$

The significance of these equations in terms of the 1D Particle Measuring System may be stated as follows: any particle, whose projected length is greater than or equal to a particular channel lower limit and less than or equal to a particular channel upper limit (that is, it is within a diameter class boundary), will be counted as a particle whose length is the center diameter of that particular channel.

2.1.1.7 Particle number density calculation

The particle number density is the fundamental variable in the liquid water content and radar reflectivity equation. KNOLLID calculates these densities, for each probe and each class size, once per second. The number density is then averaged over a specified interval. Before the densities are output, however, they should be normalized.

This normalization is suggested because of the changing class size. As the channel number increases, the center diameter, of course, increases. However, a more important consequence is that the channel width (barwidth) also increases. This implies that it is really not quite correct to compare densities of different channels within the spectra. To alleviate this problem the number densities of each class are normalized, i.e. divided by their barwidth. It should be noted, however, the normalized density is only used as a means of comparison (i.e. plotting). Whenever the density is used in a calculation (i.e. LWC), the unnormalized density should be used.

The unnormalized density is simply calculated as

 $N_i = COUNTS_i / VOL_i [counts/M^3]$

where: N_i = Number density COUNTS = number of particles VOL = sampling volume i = channel number

2.1.1.7 Particle number density calculation (cont'd)

The normalized density is

 $N_i = COUNTS_i / (VOL_i \cdot BWMM_i) [counts/M³per mm barwidth]$

where:

L

BWMM = barwidth in mm

2.1.1.8 Editing capability

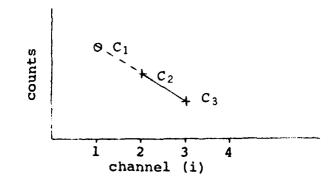
Examination of the raw counts for the 15 channels of any probe will show that at certain times the counts for a particular channel are invalid. (There are many reasons for this phenomenon which are not explained here; the cures, rather than the causes, are of concern to us and included in this section.) After looking at a few of the early 1D tapes, it became obvious that KNOLL1D would require some type of automatic editing capability.

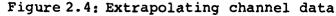
It was decided that the edit routine be designed to correct the immediate problem only. If the probe channels deteriorate considerably a more sophisticated editing technique will have to be implemented. This technique has proved successful over the past 5 years, and there is no reason to expect any major changes.

Presently in order to alter the values of a given channel, there must be valid adjacent channel data. That is, there must be good data on each adjacent side of the channel to be edited. Of course, channels 1 and 15 are handled differently; in these cases two valid channels are expected on one side (channels 2 and 3 for editing channel 1; channels 13 and 14 for editing channel 15.)

For channels 2 through 14, a geometric progression is assumed; A count of 1 is added to the two valid channels so that a channel with a count of zero can be considered valid. A count of 1 is subtracted from the final result. The equation used is

$$C_{i} = \sqrt{(C_{(i+1)} + 1) \cdot (C_{(i-1)} + 1)} - 1$$


where:


 $C_i = counts$ i = channel number ($2 \le i \le 14$)

Actually KNOLL1D uses the logarithmic representation of the equation $C_i = 10^a$

where
$$a = \frac{\{LOG(C_{(i+1)} + 1) + LOG(C_{(i-1)} + 1)\}}{2}$$

For channels 1 and 15 a linear distribution is assumed and the desired channel is found by extrapolation. Using the sample distribution as shown the equations for these channels are readily seen in figure 2.4

2.1.1.8 Editing capability (cont'd)

where $m = \frac{c_3 - c_2}{3 - 2} = c_3 - c_2$

and

 $b = c_2 - 2m = c_2 - 2(c_3 - c_2)$ $b = 3c_2 - 2c_3$

substituting

 $c_{1} = (c_{3}-c_{2})1 + (3c_{2}-2c_{3})$ $c_{1} = c_{3}-c_{2}+3c_{2}-2c_{3}$ $c_{1} = 2c_{2}-c_{3}$

reversing the subscripts for channel 15 the equation becomes

 $c_{15} = 2c_{14} - c_{13}$

An additional capability of the edit routine allows channels 1 and 2 to be edited if channel 3 is valid. When desired, this allows channels 1 and 2 to equal channel 3.

2.1.1.9 Data modification

During the last five years DPSI has worked with individual members of the Cloud Physics Branch in the area of PMS-1D data modification. The procedure finally implemented is the result of many trials and revisions of the work done by the Branch scientists. The goal was, ultimately, to increase the calculated liquid water content and the radar reflectivity because of certain design shortcomings.

The justification for this modification is two fold. There are "blind spots" associated with the 1D instrument. A blind spot may be defined as that portion of the spectra which lies between the limits of two probes.

When the instrument is measuring water droplets there are no blind spots present. It is the ice crystal shadow length, being reduced to equivalent melted diameter, that causes the gap. These blind spots are a function of particle type.

For example, when measuring needles the uppper limit of the Cloud Probe is 142 microns and the lower limit of the precip probe is 241 microns, then the 1D instrument is "blind" to particles in the 142 to 241 micron range. Obviously this could have a serious effect on water content and reflectivity calculations.

A reasonable distribution was obtained by using the data in channels 12 through 15 to calculate new channel 13 and 14 values. Then a log interpolation was done Letween channel 14

2.1.1.9 Data modification (cont'd)

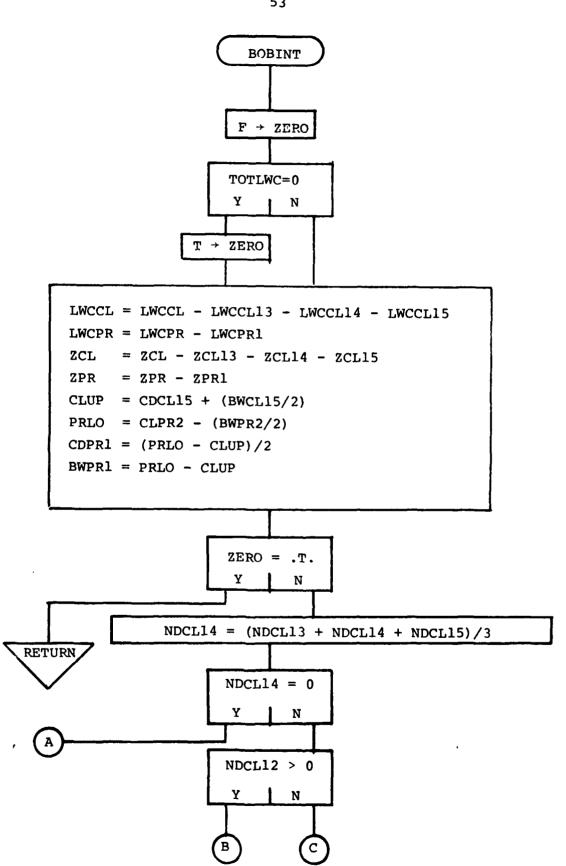
of the cloud and 2 of the precip probe to obtain the new 15 and 1 values. The center diameter and barvidth of channel 1 were recalculated to eliminate any overlap.

The following flowchart describes subroutine BOBINT of KNOLLLD which optionally does the data modification.

2.1.1.9 Data modification (cont'd)

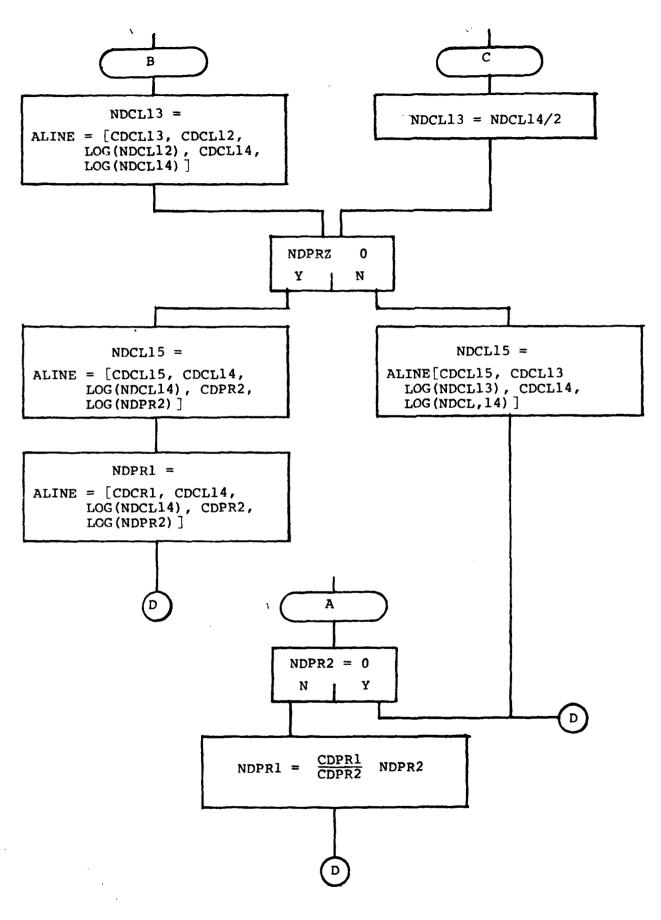
-

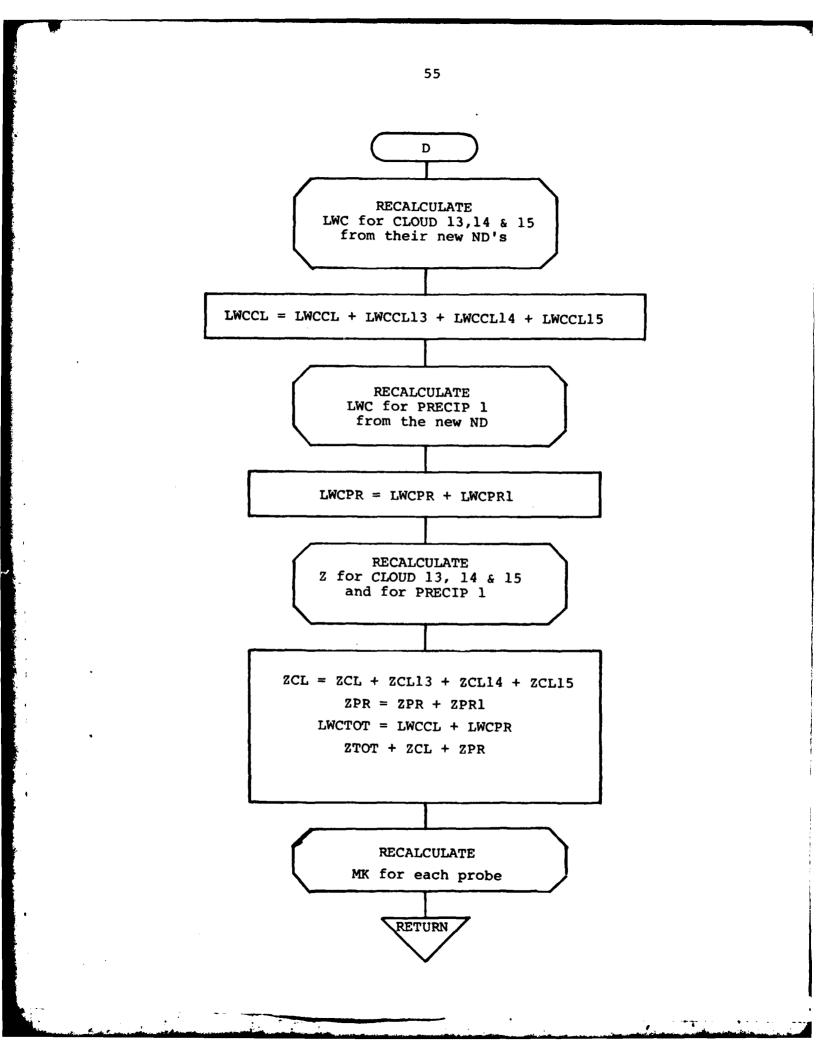
The abbreviations and terminology used in the BOBINT flowchart are described below:


Barwdith BW CD Center diamter ND Normalized Number Density LWC Liquid Water Content Radar Reflectivity Z Cloud Probe CL PR Precip Probe Total (Cloud & Precip combined) TOT Channel Number #

Variable names are formed by concatenating a symbol from each group. For example:

ZCL15 Reflecting for Cloud Probe Channel 15 NDPR2 Number Density Precip Channel 2 LWCCL Water Content Cloud Probe ZTOT Total Relectivity


FUNCTION ALINE:


ALINE (A, B, C, D, E) = 10.9 * (((C-E)/(B-D) * (A-D)) + E)

* Figure 2.5 : BOBINT Flowchart

• 7

2.1.1.10 Liquid water content calculation

The liquid water content (LWC) is calculated for each probe once per averaging interval using the average particle number density. In addition the total LWC is calculated, as the sum of the LWC from the Cloud and Precip Probes less any overlapping range. The equation used for this calculation is

$$LWC = \frac{\pi}{6} \rho \sum_{i=1}^{N} N_{i} D_{i}^{3}$$

where:

 ρ = water density (10⁻³ gm/mm³) N_i = number density for channel i D_i = center diameter for channel i 2.1.1.11 Median volume diameter determination

The median volume diameter is defined as: the diameter where the mass of all the particles smaller than it is onehalf of the total mass of the sample being considered. Figure 2.6 graphically depicts this definition.

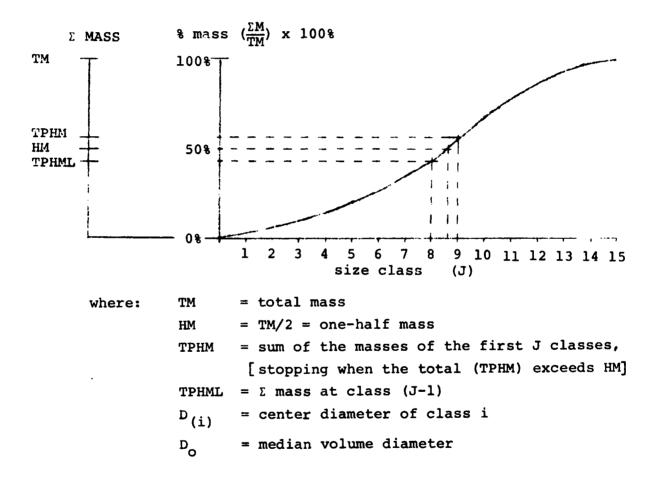


Figure 2.6 : Median volume diameter

2.1.1.11 Median volume diameter determination (cont'd)

 D_0 is found by summing the mass of each channel until the sum exceeds one-half the total mass. At this time all the variables listed in Figure 2.6 are known. The following interpolation formula is used for the D_0 calculation.

 $D_{O} = D(J) - BW(J) \cdot (\frac{1}{2} - \frac{(HM-TPHML)}{(TPHM-TPHML)})$

where: BW(J) = barwidth of class J

It should be emphasized that this calculation is performed using the average mass and average number densitites. These results may differ considerably from calculating D_0 every second and then averaging the one second median volume diameters. An example will clearly show this difference.

Assume the following distribution for a two second interval

	Second 1		Second 2		Average	
ch#	Mass	ΣΜ	Mass	ΣΜ	Mass	ΣM
1	.001	.016	.001	.001	.001	.001
2	.015	.016	.002	.003	.0085	.0095
3	.200	.216	0	.003	.100	.1095
4	0	.216	0	.003	0	.1095
5	.180	.396	.201	.204	.1905	.300
6	0	.396	0	.204	0	.300
7	0	.396	0	.204	0	.300
8	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
15	0	.396	0	.204	0	.300

The parameters previously discussed are found on the next page.

Second 2

Average

	TM	=	.396	.204	.300		
	НМ	=	.198	.102	.150		
	TPHM	=	.216	.204	.300		
	TPHML	=	.016	.003	.1095		
	J	=	3	5	5		
	j	Make		ng simplifying ass			
			$D(3) = 900\mu$	$I; D(5) = 1500\mu; BW$	$T(3) = BW(5) = 300\mu$		
For second 1:		1:	$D_{O_1} = 900 - 300 \left(\frac{1}{2} - \frac{.198016}{.216016}\right)$				
			$D_{01} = 900 -$	- 300(.591)			
For second			$D_{01} = 900 -$	- 300(41) = 900 +	+ 123 = 1023µ		
	2:	$D_{02} = 1500$	$- 300 \left(\frac{1}{2} - \frac{.10200}{.20400}\right)$	<u>)3</u>)			
			$D_{02} = 1500$	- 300(.54925)			
For the a	the av	the average	- 4	- 300(.0075) = 150	$00 - 2 = 1498 \mu$		
			$D_{0A} = 1500$	$- 300(\frac{1}{2} - \frac{.15010}{.30010})$	095) 095)		

2.1.1.11 Median volume diameter determination (cont'd)

Second 1

 $D_{o_A} = 1500 - 300 (.5 - .2126)$ $D_{o_A} = 1500 - 300 (.2874) = 1500 - 97 = 1413\mu$

for a straight in the second sec

2.1.1.11 Median volume diameter determination (cont'd)

Now let
$$\bar{D}_{O} = (D_{O_1} + D_{O_2})/2$$

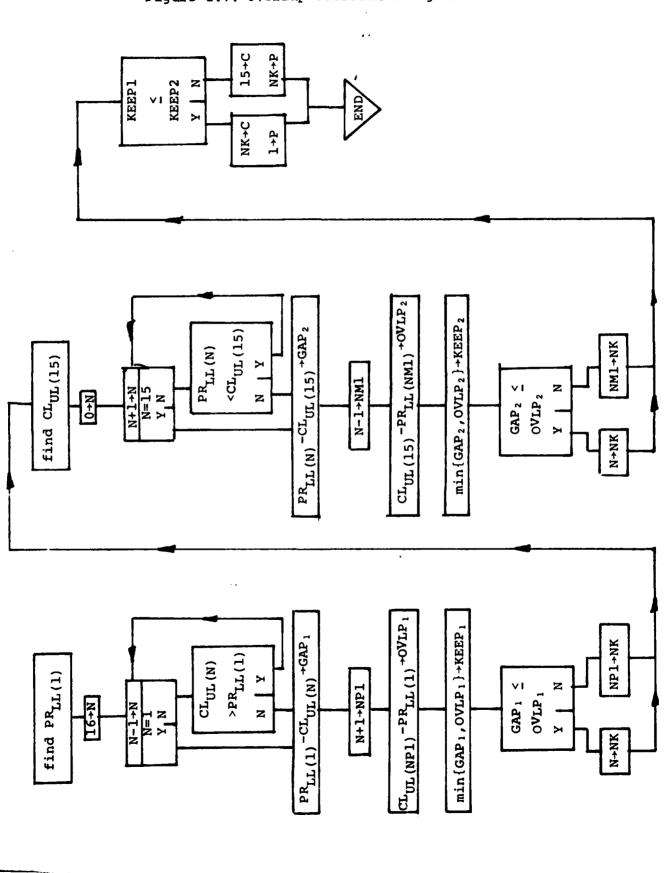
 $\bar{D}_{O} = (1023 + 1498)/2$
 $D_{O} = 2521/2 = 1260.5\mu$
But $D_{O_A} = 1413\mu$

Thus if the median volume diameter were calculated every second, a 10.8% difference would be introduced. 2.1.1.12 Radar reflectivity calculation

The radar reflectivity (Z) is calculated for each probe once per averaging interval using the average particle number density. In addition the total Z is calculated as the sum of the Z from the Cloud and Precip Probes less any overlapping range (see section 2.1.1.13). The equation used for this calculation is

$$15$$

$$Z = \sum_{i=1}^{15} N_i D_i^6$$


where:

 N_i = number density for channel i D_i = center diameter for channel i

2.1.1.13 Channel overlap correction

The total LWC or Z is defined as the contributions derived from all 15 loud and recip channels. However for some particle types there is an overlap between the upper cloud channels and the lower precip channels. This of course causes results somewhat higher than are correct.

An algorithm was written to eliminate these overlapping channels. It should be noted that calculations using a single probe include all fifteen channels. The overlap channel correction applies only to those calculations using both probes. The flowchart for this algorithm is found on the following page.

٠,

+ 1

Figure 2.7: Overlap correction algorithm

×

.

.

ŧ

,

2.1.1.14 Mass to reflectivity ratio

A useful parameter in the analysis of the PMS-1D data is the ratio of mass to radar reflectivity. This is calculated using the average mass and average reflectivity. Dimensionally, it is desirable to use the square root of the relectivity since M is a function of the diameter cubed and Z is a function of the diameter to the sixth power.

That is

$$K = M/\sqrt{Z}$$

where:

M is in grams/M³ & Z is in mm^6/M^3

Using the square root of the reflectivity allows the numerator and denominator to be weighted equally. In some cases it is desirable to use M in mg/M^3 . When this is the case, K is referred to as mK. This parameter is usually represented graphically, as the independent variable, where the mediam volume diameter is the dependent variable.

2.1.1.15 Form-factor calculation

The parameter form-factor which relates K to the total particle concentration is calculated as follows:

$$F = K/c \sqrt{N_{\tau}}$$

where:

K is defined in sec. 2.1.1.14 $c = \frac{\pi}{6} \ 10^{-3} \ \text{M/mm}$ $\begin{array}{c} 45\\ N_{T} = \int N_{i}\\ i=17 \end{array}$ $N_{i} = \text{counts}_{i}/\text{Vol}_{i}$ $\text{counts}_{i} = \text{raw counts in channel i}$ $\text{vol}_{i} = \text{sampling volume of channel i}$

The notation $i=17 \rightarrow 45$ indicates the following

- raw counts for the 15 Cloud Probe channels and 15 Precip probe channels are in 30 continguous locations
- an initial value of i=17 allows the first Cloud probe channels to be eliminated

2.1.1.16 KNOLL1D operating instructions

CONTROL CARDS DPSI,CM66000,T600,TP1. PROB. NO. NAME ATTACH, LGO, KNOLL1DBIN, ID=GLASS, MR=1. ATTACH, TAPE8, VCOCALS, ID=GLASS, MR=1. REQUEST, TAPE1, S, HI, MT, VSN=PMSXXX. REQUEST, TAPE2, *PF, SN=LYCPFI.* FILE(TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) LDSET, FILES=TAPE1, PRESET=ZERO. MAP, OFF. LGO. EXIT(U). CATALOG, TAPE2, PLOTDATA, ID=GLASS.* REWIND, TAPE 3, TAPE 9. COPY, TAPE 3. COPY, TAPE9. REWIND, TAPE6.** COPY, TAPE6.** 7/8/9 DATA CARDS 7/8/9 6/7/8/9

* FOR PLOTTAPE OPTION MUST HAVE REQUEST TAPE2 CARD

** FOR OPTIONAL OUTPUT

2.1.1.16 KNOLL1D operating instructions (cont'd)

DATA CARDS

CARD 1 - ID CARD

COL 1-10 FLT XYR-NN COL 12-20 DD MON YR COL 21-30 INPUT TAPE NUMBER COL 31-40 PLOT TAPE NUMBER COL 52-59 PMS ZERO SECONDS - HH:MM:SS

CARD 2 - NAMELIST SCOEF

ARRAY S(5) OF SOUNDING COEFFICIENTS (DEFAULTED INTER-NALLY).

CARD 3 - NAMELIST VCOEF - USED TO OVERRIDE VCO CALIBRATIONS

ARRAY C(3,13) CONTAINING THE VCO CALIBRATION COEFFI-CIENTS IN THE FOLLOWING ORDER: INTERCEPT, FIRST DEGREE AND SECOND DEGREE COEFFICIENTS. VCO'S ARE IN THE FOLLOWING ORDER:

- 1 INDICATED AIRSPEED
- 2 TEMPERATURE
- 3 EWER
- 4 TWCI-4
- 5 DEWPOINT/FROSTPOINT
- 6 LWC-JW
- 7 MAGNETIC HEADING
- 8 PRESSURE KISTLER
- 9 TRUE AIRSPEED
- 10 ICEING RATE
- 11 TWCI-1
- 12 TWCI-2
- 13 TWCI-3

CARD 4 - NAMELIST JWADJ

CONTAINS HEIGHT PROFILES FOR A JW-LWC ADJUSTMENT. ELEMENTS ARE:

- L NUMER OF LEVELS (DEFAULT 0-NO CORRECTION) (MAX 10)
- HT HEIGHT OF LEVELS IN KM'S (HT(1) GT HT(2) GT...GT HT(1))
 - XA ORIGIN OF LEVEL (ONE PER LEVEL)
 - SLA SLOPE FROM LEVEL (I) TO LEVEL (I+1) (L-1 SLOPES REQUIRED

2.1.1.16 KNOLL1D operating instructions (cont'd)

CARD 5 - OPTION CARD (ALL 15 FORMAT)

COL 1-5	
c 10	CARD DESIRED
6-10	
	2 = USE PMS CLOCK
11-15	
	0 = USE PRELIMINARY LITERAL
16-20	IPLT 1 = PLOT TAPE PRODUCED
	0 = NO PLOT TAPE
21-25	N2PROBE 2 = TWO CLOUD PROBES
	3 = TWO PRECIP PROBES
26-30	ITMP 0 = TEMPERATURE DETERMINATION BY VCO PROFILE
	1 = TEMPERATURE DETERMINATION BY STANDARD
	ATMOSPHERE
	2 = TEMPERATURE DETERMINATION BY RADIOSONDE
	PROFILE
31-35	JVCO - NUMBER OF VCOFIX CARDS DESIRED (0-10)
36-40	
76-40	BEFORE PROCESSING THE DATA
	<0 IS THE NUMBER OF RECORDS TO SKIP BEFORE
43 45	PROCESSING THE DATA
41-45	
	TIME, HEIGHT, LWC AND DO VALUES,
	0 = NO DECK
46-50	
	CONDENSED OUTPUT FORMAT (0-15)
51-55	
	0 = NO INTERPOLATION
56-60	IDMZ 1 = SUMMARY FILE OF DO,LWC AND Z VALUES
	PRODUCED
	0 = NO SUMMARY FILE PRODUCED
61-65	IVEL 1 = USE TRUE AIRSPEED
	0 = USE CALCULATED AIRSPEED
66-70	IFORM 1 = CONDENSED OUTPUT FORMAT PRINTED AND THE
	PLOT TAPE USES UNMELTED BARWIDTH'S
	0 = NORMAL OUTPUT AND NORMAL PLOT TAPE
71-75	
, 0	0 = STANDARD OUTPUT PRODUCES
76-80	ISCAT 1 = USE .9 FACTOR IS SCATTER CALCULATIONS
70 30	0 = .9 FACTOR NOT USED
	V7 FACTOR NOT USED

2.1.1.16 KNOLL1D operating instructions (cont'd)

- CARD 6 NEW FORMAT HEADER CARD (IF NFHEADR .EQ. 1) CENTERED LINE (A80) TO BE PRINTED AT THE TOP OF EACH NEW FORMAT OUTPUT.
- CARD 7 TYPE LITERAL LINE IF MXLINES > 0 MXLINES CARDS ARE REQUIRED HERE IN CENTERED A80 FORMAT. THESE LINES ARE PRINTED ON NEW FORMAT OUTPUT; BENEATH THE INTERVAL PARTICLE TYPE.

CARD 8 ONWARDS

- A) ANY DATA CARDS REQUIRED BY SWITCHED SET ON OPTION CARD JVCO 0 IMPLIES VCO PROFILES IN HERE ITEMP=2 IMPLIED RADIOSONDE PROFILES HERE
- B) TYPE, EDIT, HTOX, XTOD CARDS INTERSPERED IN HERE

TYPE (15 MAXIMUM)

COL 1-4 TYPE COL 6-13 HH:MM:SS (START TIME) COL 16-23 HH:MM:SS (STOP TIME) COL 25-26 CLOUD TYPE COL 27-28 PRECIP TYPE COL 31-35 AVERAGING INTERVAL (15) COL 45-64 LEFT JUSTIFIED PASS LITERAL FOR HEADER OF NEW FORMAT (A20)

EDIT (5 MAXIMUM)

COL 1-4 EDIT COL 6-13 HH:MM:SS (START TIME) COL 16-23 HH:MM:SS (STOP TIME) COL 26,28,30 PROBES TO BE EDITED (1,2,3) COL 31-54 CHANNELS TO BE EDITED (I3 FORMAT, 8 MAXIMUM)

HTOX (NO MAXIMUM)

COL 1-4 HTOX COL 6-7 TYPE CODE (ODD NUMBER) COL 9-10 EQUATION NUMBER COL 12-13 ARGUMENT TO BE CHANGED (1=M, 2=B, 3=BREAKPT) COL 15-30 NEW VALUE (F15.0)

XTOD (NO MAXIMUM) SAME AS HTOX

COL 12-13 ARGUMENT TO BE CHANGED (1=CO, 2=EX, 3=BREAKPT)

2.1.1.16 KNOLL1D operating instructions (cont'd)

Center Diameter & Barwidth Size Listings

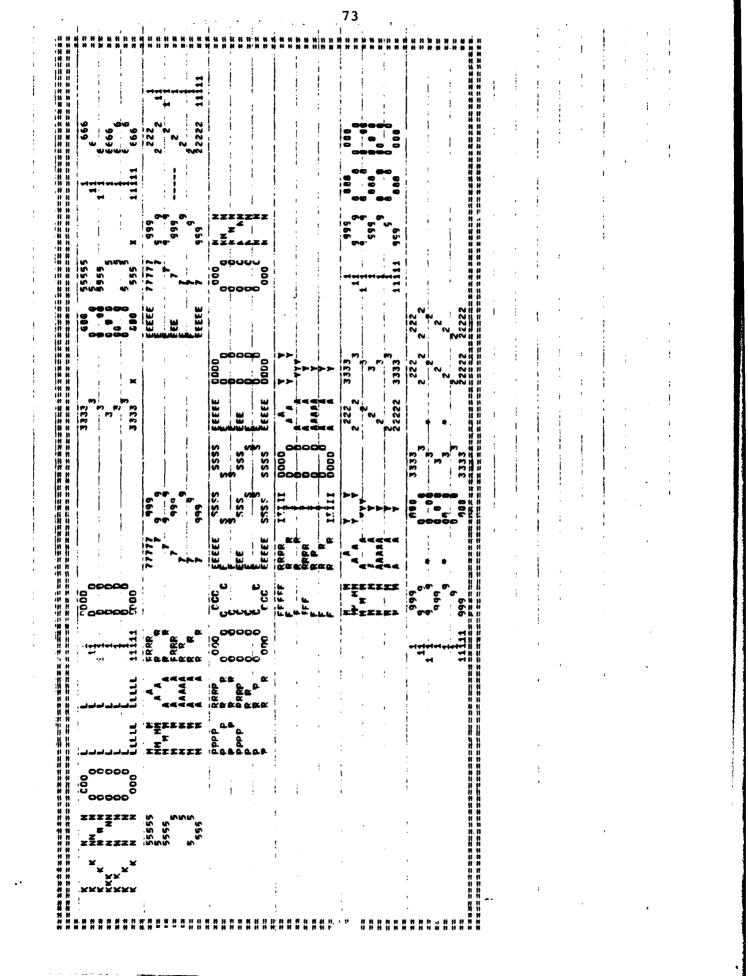
A special feature of program KNOLLLD is the ability to produce a complete listing of all the center diameter and barwidth parameters that may be used. By using a standard KNOLLLD deck with minor modifications a listing may be obtained which contains this information for each channel of the cloud and precip probes; for each particle type, melted and unmelted, with interpolation or without.

DATA CARD CHANGES OPTION CARD: COL 11-15 IDAT = -1 (RIGHT JUSTIFIED)

CONTROL CARDS DPSI,CM66000,T600. PROB. NO. NAME ATTACH, TAPE8, VCOCALS, ID=GLASS, MR=1. ATTACH, LGO, KNOLL1DBIN, ID=GLASS, MR=1. ATTACH, LIST, LISTDEFBIN, ID=GLASS, MR=1. FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) LDSET, FILES=TAPE1, PRESET=ZERO. MAP, OFF LOAD(LGO,LIST). EXECUTE. 7/8/9 DATA CARDS 7/8/9 6/7/8/9

2.1.1.16 KNOLL1D operating instructions (cont'd)

Output file


KNOLLID creates an optional output file, TAPE2, which is used by many other programs as their data base. This can be found in appendix 5. A listing of the VCO placement within this file will be found in appendix 6.

72

2.1.1.17 KNOLLID sample output

تربيدهم فالمتر التصميم ومرجو فالمتكا الأرامية

The following pages are KNOLL1D sample output.

and the second second

,	:					`, ` 	74		:			
:	;											
	02/23/00	22-22-51										
		i			1							
	FFOCESSED ON	:			, 1				•		!	
	55					i i !		1		• • • • •		: :
		:									6 i 1 7	:
	•											
ļ												
1		i										
•		1									t .	
		•	; ·	BRATIO	• •	1		1			•	
	F	X		C CALT				۰ با			!	
	5 MAP. 79	A/C CLOCK	KIPPED 1 0N1 1 0N1 1 0N1 1 0FF	NARY BY E VC	1			· ·				
			PMS247 20(5) S 104710N 0017011 0017011 0017011	PRELIMINARY		:	, , ,					
	FLT E79-21		0 OPTIONS INPUT TAPE 1 PMS247 0 FILE(S)/RECORD(S) SKIPPED 0 ATA MODIFICATION 1 ON PLOT - TAPE OUTPUT 1 ON OM2 LPPLOT CUTPUT 1 OFF SPECIAL DECK OUTPUT 1 OFF	DATA TYPE : PRELIMINARY Temperature determination by: YCC Calibratic	ı			1				
	FLIGHT INFO	N TINE	PTIONS INPUT FILE(S DATA PLOT ON2 SPECIA	DATA TYPE : tature detern								
	FLIGH	PMS ON	6 0 1 0 1	T ENPE A								
		!		1				!			!	

1				+					75				i						:		
		SE CONDS SE CONDS			SE CONOS SE CONOS SE CONOS										1	•		•	•		1
		RVALT - 1		RVALE 1	INTERVALI I Intervali1 Intervali 1			1				•			•	ι			i t		
: · .	. 1	GING INTE Ging Inte	GING INTE GING INTE GING INTE	EING INTE	CING INE	4		5 1		,			ı I								
•		ACER	AVERA AVERA	AVERA AVERA	AVERALING AVERALING AVERALING					•					: 	•	·				
										-		[1	1		1	•				
		r sken	SHCH	NET SNCM	LARGE SHUN LARGE SHON RAIN					1 1					•		•	,			
		1 <u>.</u>			. 1 . !							;) 		N .					i	
		PRECIP=0	PPECI7	PRECIP=0	PECIP=0							1			Ì		 t				
		• 1 • •						1							•	1					
•		NONS	SNOW	ON SNCN	NONS			 					I			;					
:	MA NU A ANALYSTS	HET SN		MET SNON LARGE SNON		•		•	• • •	,	1	I	:			:					
	AV 1	1010	CLO UD= 03 CLO UD= 05	CLOUD= 03	CLOUD= 05 CLOUD= 05 CLOUD= 01	!		•			2 4 - 4 -					,					
	NOT T ANT MG 2 T 20		:		 .	• •		`	!												
			20 1291 20 1431 20 1571	211221	22 824	;					•			-							
	PADTICLE	10 TYPE 19129122 19134180	29 11 21 39 20 13 61 88 20 15 81 45	21129338	21.32108		*				•										

and the second design of the s

ACS A	PARAMETER	I NI FREED	21 OPF	
+	INDICATED AIRSPEED	36068E+03	•1 064 0E • 00	-, 42766E-05
N	TEMPERATURE	588856+92	.10040E-01	
m	ENER	•0	*1 0000E+01	
4	THCI-4	.	-100006+01	
*	DEMPOINT	493876+82	20-38 546.02	9 .
•	LHC - JH	30268E+01	.610006-03	
•		.178825+03	36032E-01	
10	PRESSURE KISTLER	. 113285 + 04	992006-01	16490E-66
Ð,	TRUE AIRSPEED	65607E+02	.53490E-01	0.
10	ICING RATE	•0	•10000E+01	•0
11	THGI-1	•0	•1 000E+01	
12	THCI-2		•1000E+01	
	THC1-3	0.	.1060E+01	76
8999996	SOUNDING COEFFICIENTS S(1) = 9.308090E+00 S(2) = -1.815070E-02 S(3) = 1.308090E-05 S(4) = -3.761370E-09 S(5) = -4.079120E-13			
10	AT			PRECIP
	UTOUE MIUTH DEPTH OF FIELD (M) EFFECTIVE APETURE MIDTH (M)	H) • 020 • 061 (HAX) • (21+K) • NDH ···		• 300 • 264 • 23=#) • #D#
			:	
		•		· · ·

1 RAIN 1 -990 3 MET SNOM 2 1:150 -5 LARGE SNOM 1 1:150 7 SMALL SNOM 1 1:150 9 PULLET-RISETTES 1 1:150 11 COLUMNS 1 1:150 13 NEOLES 2 1:200 14 COLUMNS 1 1:200 15 PLATE FAMILY 1 1:200 16 PLATE FAMILY 1 1:200 17 AGGREGATE P + D 2 1:200 21 GRAUPEL 1 1:010 23 RIMED DEMORITE 1 1:010	TYPE KUMBER	**MTOX TABLE** NAME	FOUATION NUMBER	ADJUSTED M	cuass B	BREAKPOINT
FF 300 1 1.310 1.41 2.40 Live 5 sid 1 1.310 1.41 Live 5 sid 1 1.310 1.41 Live 5 sid 1 1.310 1.41 Live 5 sid 1 1.130 1.31 Liut 1 sid 1 1.130 1.31 Liut 1 sid 1 1.131 1.131 Liut 3 1 1.131 1.141 Liut 4 1 1.131 1.141 Liut 4 1 1.131 1.141 Liut 7 1 1.131 1.141 Liut 7 1 1.141 1.141 Liut 8 1.141 1.141		RAIN	• • •	1	.180	
Likef Sidi 1 1.159 1.16 SiAL Sicy 1 1.129 1.319 BILLET-REETTES 1 1.129 1.336 BULLET-REETTES 1 1.129 1.336 BULLET-REETTES 1 1.129 1.336 BULLET-REETTES 1 1.129 1.336 BULLET-REETTES 1 1.126 1.126 BULLET-REETTES 1 1.126 1.161 BULLET-REETTES 1 1.136 41.1 BULLET-REETTES 1 1.136 41.1 BULLET-REETTE 1 1.156 1.16 BULLETERTETE 1 1.156<	m	WET SNOW	4 N	•990 1:150	.180	
SIAL SIGN 1 1.159 710 NULET-ensErrtes 1 1.110 739 COLUMS 1 1.110 739 COLUMS 1 1.20 7.01 KEDICS 2 1.20 7.01 KEDICS 2 1.20 7.01 KEDICS 2 1.20 7.00 KEDICS 2 1.20 7.00 KEDICS 2 1.20 5.01 KEDICS 2 1.20 5.01 KEDICS 2 1.20 5.01 KEDICS 2 1.20 5.01 KEDICS 1 1.03 7.15 KEDICS 1 1.15 1.01	5		T	· ·	04 T .	
0LLTF-forETTES 1.4.19 1.313 0LUMUS 1 1.338 741 NEEULES 2 1.280 1.461 2 1.280 1.461 NLT 2 1.280 1.461 NLT 2 1.280 1.461 NLT 1 1.919 NLT 3. 166TEGATE 1 1.412 3. 166TEGATE 1 1.413 1.11 1 1.159 3.10 NLT 3. 1 1.159 3.00 3. 3. 3. 1 1.159 3.00 3. 3.	~	SMALL SNEW	F	1.150	- 190	
Columns 1 1:300 -716 KEDLCS 2 1:300 4 Le 1: PLATE 1 :370 :543 4 Le 1: PLATE 1 :370 :543 4 Le 1: FLATE 1 :370 :543 4 Le 1: FLATE 1 :370 :543 4 Le 1: FLATE 1 :370 :543 4 Le 3: Generalit 1 1 :310 :716 Generalit 1 1.139 :716 Generalit 1 :1.139 :716 Generalit 1 :1.139 :716 Generalit 1 :1.159 :106	σ	BULL ET -RASET TES	•	- 1 - 018		
13 MEOLES 1 1.100 M.L 1. 15 PLATE FAILLY 1 -930 -540 M.L 16 PLATE FAILLY 1 -930 -540 M.E 17 AGREGATE P • 0 2 -240 -540 M.E 16 Denois Faulty 1 -1.00 -740 -1.00 16 EaureL 1 -1.16 -1.00 16 EaureL 1 -1.18 -1.00 17 GaudeEL 1 -1.16 -1.00 18 Rivel Ogenosite 1 -1.140			•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NEEDLES			···3+040 ··· 1+080	
AGREATE P 0 1 -390 1 1 2 1.520 -440 1 1 2 2 2 2 2 2 2 2 1	12	PLATE FAMILY	1	938	• 549 • 119	
DEMORIF FAILY 1 1.030 .746 GRUUEL 1 1.159 .146 RINED GENORITE 1 1.158 .106	17	0 +	:	1	1550 440	1
RAUPEL 1 1.156 -110 R 1160 0EN0011E 1 1.156 -110	19			1.030	. 716	
	31) ,		1.150	.180	
	23	RIMED DEMORITE	•	1.150	.100	
		;				
			:		1	
				*	•	
	ı	•		:		
	÷		1 1 1 1			
				ı	1	
			L	, I	1	
	,	•		• • •	;	
					•	

• • •

	XTOD TABLF NAME	F QUATION NUMPER	ο.	DI A YETER Ex	- TARE A K PT (CRS12)	
RAIN		Ŧ	1+000E+00	1.000		
ŤĒ I	MET SNOW	+ N	1 • 000E+00 1 • 000E+ 50	1.008 .653	r, LE 1.000 MM	
ARG	LARGE SNTH			- 782 -		
SMALL	L SKEM	-1 0	4.000E-01 3.700E-01	-782 -670	нн 105°	
אור	BULLET-RCSETTES	40	2.560E-C1 "4.330F-01	.667	C. LE . 200 MH	
COLUMNS	MNS	4	4, 380E-91	1:000		
NEEDLES	LES	1	2.560E-01	. 670		۶
LAT	PLATE FAPILY		3.400E-01 3.400F-01		ни.000 .1.31. ;	
IGGR	aggregate P + D	~ N	3.408E-01 3.408E-01	.783	C.LE 1.000 MH	
)E NO	DENORITE FAMILY	- 1 -	2 ##00±=0 1	- 94 L * -		7
GRAUPEL	PEL	H N M	6.000E-01 - 4.900E-01 4.600E-01	- 910 - 670 - 900	- C. LE - 410 MM	8
3H I :	RIMED DENORITE	•	4.690E-01	006*		
			•			1 · · · · · · · · · · · · · · · · · · ·
		•				
						•
				•		•
			ţ			
					• • • •	
				1		
					· · · · · · · · · · · · · · · · · · ·	
					•	•
					•	-

, ¹ , ¹ . F : ÷ 79 5:2296403 9.9146-02 1.1266403 3.8726403 7.7166400 (7.7166+00) 5.7076+04 (9.7076+04) LWC (G/M++3) - 7:1936+08 CUM AVE (7-1936+08) 2(MM+6/M++3) - 3:981848 CUP AVE (3-631E+04) 0.00 574.04 264.00 4524.00 110.45 110.45 120.00 120.00 111.95 111.95 0.00 0.00 0.00 0.00 0.00 0.00 1.2006+03 2:9936+05 3.6056+01 4. 684E+03 1. 299E=01ł. SATURATED VAPORCES $\begin{array}{c} \mbox{ALTITUDE} (\mbox{PETERP} (\mbox{ALTITUDE} (\mbox{ALTITUD} (\mbox{ALTIUD} (\mbox{ALTIUD} (\mbox{ALTITUD} (\mbox{$ TENF (K) 1 -LHC (6/H++3) CUP AVE Z (HH++6/P++3) 00 (MU) NT (N/N++ 3) NK (N/Z++ . 5) LMC (G/M++ 3) 00 (MU) NT (M/M**3) AK (H/Z** 55) --AVE PATENTAL VAPOR (MB) PRESSURE -ENER LMAX (MU) FORM ·F··· -100 Ň ы o $\begin{array}{c} \mathbf{9} & \mathbf{9} & \mathbf{9} \\ \mathbf{9} & \mathbf{9} & \mathbf{9} \\ \mathbf{1} & \mathbf{1} & \mathbf{9} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{$ 7.58E-02 0: 2.49E-01 2.20E-01 C-T P --- P-R-C-B E --- --NO. CENS. LWC -- (N/M++3-HM) (G/M++3) 1.256-01 I F F R C B E * NC. CENS. LHC (N/P**3-HH) (G/M**3) .516-01 U .57F+(0) ÷ 8 1.5376409 1.756404 4.8466403 4.8466403 2.1566403 1.666403 1.666403 1.666403 1.666403 1.666403 1.656403 1.656403 1.6516403 1.6516403 . 646+02 6.21E+01 6.37E+01 275+02 C I F 4154 41265 41265 112265 112265 114265 114265 114265 114265 114265 1122649 122649 122649 122649 122649 122649 122649 122649 122649 122649 122649 122649 122649 122649 12265 12065 120 1-2-3-3-4------PAIN ZHET SNOW ZHET SNOW + FLT E79-21 ON 5 PAR 75
 1 SEGOND AVERAGE
 PARTCLE TYPES
 PART SEQUENCE ÷ ********************************* *********************** COUNTS FOHO ECHO COH! I ÷ * CCUNTS *** 2168 1552 1552 150 150 150 150 10 10 10 10 10 FLT-E79-21-ON------SECOND AVERAGE PAPTICLE TYPES t 0 - P. R. O - B. E. HC NO. DENS. LHC (N/M+F3-MM) 66/H++37 (6/H++3) ٠ 1914351 ÿ 0 8 E U D P R O B NO. DENS. 2,066406 2,076406 2,076406 2,1466406 2,1466405 1,0576405 2,176405 2,176405 2,176405 2,176405 2,176405 2,176405 2,176405 1. 90E+05 3. 81E+05 2. 46E+05 $\begin{array}{c} 0^{4} \text{ C} + 0^{4} \\ 9^{4} \text{ C} + 0$ 4. 80E+05 5. 42E+05 5. 11E+05 4. 72F+05 100+201 ł : ∍ > COUNTS EQHD FPS TIME COUNTS 354 PPS ON TIME 00100100 FPOCESED ON 05/23/00 C A T T E R P R O B F " C L O C OUNTS EOMD NO. DENS. LHC COUNTS EOMD CH (NUMR) (MU) (N/M**3-MM) (G/M**3) (NUMR) (WU) TONTONTOTTOTOTOT FNS TIME COUNTS 353 PMS ON TIME 05:00:22:00 FROCESSED ON 05:23:00 C A T T E R P R O B F C OUNTS EQMD NO. DENS. LHC (CH (NUMB) (MU) (N/M+*3-MM) (G/P**3) 2.58E-01(?.5%F-01) 4.45E-03(4.4%E-0?) 3.87E-03 1.90E+01 1.90E+00 745-91) 2.74E-0112 4.35640 9.0457405 3.34047405 5.3416409 7.3416409 7.4796409 8.4266409 8.4266409 4.4266409 8.4266409 4.646409 4.646409 4.646409 4.646409 4.0976408 9.9266408 1.9266409 3.376409 7.6806409 9.2166409 9.2166409 8.116409 2.85E+88 6.83E+88 2.62E+09 1.25F+09 1.00E+09 4.92E+05 7.92E+05 4.28E+09 1.38E+09 7.95E+08 START TIME 00=65=53 INTERVAL START TIME 19129123 00105154 SHG PHS * 2(MH++6/M++3) FK(H/2++.5) C0(H1CPONS) L HC (G / M** 3) E + + H/ 51 ₩ ¥ 19129122 AT (P209E) -INTERVAL A/C U 2 15 .

. . . .

 -1.9336F01
 3.014E*02
 1.150E*03
 9.1432E*02

 1.943E*01
 3.046E*02
 1.061E*03
 9.116E*02

 1.943E*01
 3.046E*02
 1.061E*03
 9.116E*02

 1.943E*01
 3.046E*02
 1.061E*03
 9.116E*02

 1.941E*01
 3.046E*02
 1.096E*03
 9.144E*02

 1.945E*01
 3.072E*02
 1.144E*03
 9.621E*02

 1.995E*01
 3.060E*02
 1.146E*03
 1.007E*03

 1.995E*01
 3.060E*02
 1.146E*03
 1.007E*03

 1.995E*01
 3.060E*02
 1.136E*03
 1.007E*03

 1.995E*01
 3.005E*02
 1.236E*03
 1.106E*03

 1.995E*01
 3.005E*02
 1.273E*03
 1.106E*03

 1.995E*11
 2.995E*02
 1.273E*03
 1.200E*03

 1.9926*01
 1.2995E*02
 1.273E*03
 1.200E*03

 1.943E+(1 2.962E+02 1.201E+03 1.187+63 1.952E+01 2.055E*02 1.245E+03 1.187+63 1.952E+01 2.012E+02 1.245E+03 1.197+63 1.1945E+01 2.015E+02 1.211E+03 1.191E*03 1.1945E+01 2.015E+02 1.2045E+03 1.161E*03 1.1995E+01 2.025E+02 1.2045E+03 1.257E+03 1.1995E+01 2.7595E*02 1.2045E+03 1.257E*03 1.1935E+01 2.7595E*02 1.2045E+03 1.267E+03 1.1935E+01 2.7595E*02 1.2045E+03 1.267E+03 1.935E+01 2.996E*02 1.2045E+03 1.267E+03 1.995E+01 2.996E*02 1.2045E+03 1.269E*03 1.1993E+01 2.996E*02 1.2045E+03 1.269E*03 1.1993E+01 2.996E*02 1.2045E+03 1.269E*03 1.1993E+01 2.991E*02 1.2045E+03 1.269E*03 1.1993E+01 2.991E*02 1.2045E+03 1.269E*03 $\begin{array}{c} \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{5} & \mathbf{$ 1 1 401E+03 1 .530E+03 1 .699E+03 1 .722E+03 1.2086403 1.1266403 9.1826402 8.1186402 2:0736:03 1:7506:03 1:7506:03 1:7506:03 UI AMETER (MICFONST --PPECIF TOTAL 1;2146+03 1 1,2206+03 1 1;1306+03 1 1,1306+03 1 1,0016+03 1 1.625E+03 1 1.4483E+03 1 1.538E+03 1 1.5595503 1.7825503 2.0745503 2.0745503 1.7605503 1.7535503 1.753703 1.07535 1.237E+02 1.221E+02 7.835F+01 1.1066+02 7.2606+01 0786+02 VCL UNE CLOUD SCATTER 0 1.93966401 1.99666401 1.99656401 1.99586401 1.9526401 1.9526401 1.9516401 1.926E+01 1.911E+01 1.905E+01 1.899E+01 2.0265.01 2.0565.01 1.7465.01 1.9375.01 1.756E+01 1.609E+01 1.497E+61 6.1516+00 6.3986+00 6.4056+00 2. 1416+01 1. 773E+61 13+3764 st 1.930E+01 1.865E+C1 1.947E+C1 1. 821E+ 61 1.033E+01 5.877E+00 1.270E+C1 1.667E+ 61 00 903E+1 914E+1 7.231E+ $\begin{array}{c} 6 & 3777 = 03 \\ 6 & 1777 = 03 \\ 5 & 5777 = 03 \\ 5 & 5777 = 03 \\ 5 & 5777 = 03 \\ 5 & 5777 = 03 \\ 5 & 5777 = 03 \\ 7 & 54957 = 01 \\ 5 & 5777 = 03 \\ 7 & 54957 = 01 \\ 5 & 5777 = 03 \\ 7 & 54957 = 01 \\ 5 & 5117 = 03 \\ 7 & 5107 = 01 \\ 7 & 5107 = 01 \\ 7 &$ $\begin{array}{c} \mathbf{4}_{*} 446\mathbf{f} - \mathbf{0}_{3} \ \mathbf{7}_{*} \mathbf{c} 0 \ \mathbf{9}_{*} \mathbf{c} \mathbf{0}_{*} \ \mathbf{5}_{*} 0 \ \mathbf{1}_{*} \mathbf{c} \mathbf{0}_{*} \ \mathbf{5}_{*} \mathbf{0}_{*} \mathbf{1}_{*} \mathbf{1}_{*} \mathbf{1}_$ 2.1F1E+02 1.998E+01 2.506E+02 .1 . 5 . 404 1=0976405 7.748E+02 2 . 7 U OE + Q E 3.152E+03 6.E67E454 TOTAL PEFLECTIVITTEMP**6/H+*3) FL OUD PRECIT TOTA 7.74.8E+02 2.70.8F+02 2.161E+02 1.997F+01 2.504E+02 2.1655+04 6.6675+04 1.152E+03 1.047E+0+ 1.4764001 5.38764001 5.977640274 5.97064037 5.8888640327 A.7356-03 2.1446-02 3.6946-03 538E-03 e. SCATTEP 1.004E-04 1 2. AAFF-04 7 1.118E-03 4. 0555-04 1.7175-05 . 65 2E-06 4 31E-05 L. 764F-03 1.616E-06 1 - 3 + 4 - UV 3 9.9496+01 1.00556+01 8.7266+00 6.9606+00 9.9606+00 9.9606+00 7.697F+00 8.263E+00 8.600E+f8 7.4316+00 5.7386+00 6.9946+00 A.977F+C0 6.8ADE+C0 5.423F+00 4.795E+00 5.958F+00 9-954E+00 7-917E+00 -354E+00 6.9266+00 5.3396+00 4.8136+00 1.336E+00 5.1 86E+00 3.382E+00 5.140F+00 2.2746-02 6.5586-03 .1936+00 .7166+00 4-1656+00 7.038F+PB 8-134E+C0 1-003F+01 *653F+68 5+467E+00 044F+00 6.879F+00 9.027E+00 A=644E+88 8= 8:3F+ P 3.8865+80 .156f+00 .328F-02 .9395+60 4.627E+00 .678E+C0 1.3505-01 2. 8 12E-02 •591F-01 ·0-3270* L. J06F-93 4.170F-01 1 9+3784s -7715+C TOTAL ENT (GM/M**3) Recip tota 6. σ 7.702F+08 5.177F+00 2.274F-02 5.730F-03 7.845F-02 7.2555400 7.8175409 8.2775400 7.83A5400 1.277F-01 9.851E-02 4.264E-02 .657E+00 .567E+00 .517E+00 <u>1 • 9376+00</u> 4 • F 21F + 90 .037F+ 90 5.330F+00 8 6.901E+88 •530F+00 2 8 5.555E+08 .661E+00 .471F+80 • 824E • 88 4.716E+00 4.031E+00 .734E+00 .12AF+00 .66.8E+08 .7585+00 +01F+00 • 332E+00 3455+00 10-J469. 4.2015+00 • 6 97E + 00 .7666+00 • 855E+ 00 9.0116+00 = 222E+08 • 394E + 00 9.1566+00 *849F+00 8.213E+08 4.4A3E+00 .177F+00 .975F-01 4.1705-01 .7766+ 9.3355.0 5.98.8E+ C ONTENT è, ã ف ۰. æ ĉ 2 ¢ s u Ň r • 2.569F-13 5 5.255F+03 6 2.445F-03 5 1.093E+00 1.093E+00 1.174F+00 1.266F+00 7.399F-11 6.945E-01 7.382E-11 3.665E-01 4.022E-01 4.423E-01 4.423E-01 5.452E-01 3.225E-01 3-3345-01 4-5535-01 3-1595-01 9-5975-02 1.5196-01 2.7736-02 9.7276-03 1.2926-02 5.4446-03 9.1095-03 3.7435-02 6.1615-02 3.4955-02 3 8.0895-03 5 2.1285-03 1.345E+00 1.1135+70 1.829E+88 2.139F+00 1.550E+00 2.141F+00 2.059E+30 1.196F+30 3.930F-01-* * -01 8.890E-01 6.518E-01 1.594E-91 6.478F-04 .195E+00 3.9955-81 .2A4E-11 519525-11 1.333F-0 3+896E-0 1+2641. 4.5855-0 D WATER CLOUD 5.3645 A.2 =0 F --- LIQUID SCATTER C 2-7575-02 7-6325-02 7-9105-02 2-7055-02 2-7055-02 2.578E-01 2.736E-01 3.872E-01 4.083F-01 1.261E-01 5.790E-02 3.145E-02 1.115E-01 3.251E-02 3.510E-01 3.434E-81 3.3836-01 3.1776-01 3.4526-01 3.84526-01 3.401F-01 3.626E-01 3.287E-01 2.755E-01 2.5116-01 1.824E-01 1.893E-01 1.458E-01 1.157F-02 9.359F-93 2.870E-01 1 10 2.990E-01 L-627E-02 3,3536-01 2.736E-01 1.654E-01 4.1296-02 4.037E-02 2.699E-02 1.209E-02 9.795E-03 1.010F-02 10-3624.5 + • 0 65E - 01 5.529E-91 5.54AE-01 3.4556-01 3.446E-01 3.691E-01 1.366E-01 3.271F-01 2.073E-01 2-3996-01 4.552F-02 59-5623.A 10-364444 3.377E-01 3.528E-19129129129 19129129 19129129 19129129 19129129 19129129 19129129 19129129 19129129 19129135 1912915 191291 1912915 191200000000000000000000 10-29141 19-29142 19123143 19129145 19129146 19129147 19129129152 19129159151 191291552 191291552 191291555 191291555 191291555 191291555 19130105 1913005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 1915005 44162161 19129149 67162161 9138114 01308101 TI ME

80

T

													44440888 641111111111222222222 533333333333	
12-623010911.	PATE	5 MAP 79	•60	•••• • • • • • • • • • • • • • • • • •	1674543210	••••••••••••••••••••••••••••••••••••••	10987 6542	1210123	1967991	12345678	901234	789012		
M E DB (MICFO 29121 1.126E+	S) M(GM/M3		н	•••				+	1 . T			0.		
• 9.1A2E+	8.477F+	6 C	a -1 a-1	••				• •	¥ •					**
+ + + + + +	ц, 4 1	. 675E+0	 	•				• •	* 2		•		2	71
129128 9.621E+	5.959E+	71 EF+0	 	, • ,				• •						
120130 91098E+	2 - 6.044E+	8+3686 *		• •			• •	• •			• •	- b		
1 1.054F+	5 6.879E+	ŝ	P-4	•	•		•	•	z		•	•	1	**
12 31 31 1.0 07E+	5 9.949E+	478E+0	⊷ ₽1	••	••		••	• •			••	20		
1.0A2E+ 1.17AF+	3 1:055E+ 7 A.726F+	2.	- -	••				* *		:				
129136 - 11200E+		04366415-	• •	•							• •			
129117 1.220E+		5.499F+8	4 -4	•	•		•	•	- 1		•	•	ł	*
1.187F+		3.8325.00	- •-1	••	. •		••	• •	ž			••		< ×
1.239E+ 1.190F+				•			•	+ +	* 2		•	•		
129142 1.1ALE+	~	-++ 0-0E+6	• •	• •			•		₩ ₩		• •			
1.1586+	0 4 0 4 0 4	3.525E+0 6.76AF+0	H F	•	•		•	+	¥ 1		•	• • !		31
129145 1.2676+		6.409E+0	4 6 -1	••	- •		••	• •			••	99		< ×
129146 1.252E+ 129147 1.167E+		6.676E+0 3.176F+0	1 1	•				• •	* *		: i• •		:	* *
129149 1.2446+		0+3968+0-		•				•	-		•	•		
1.269E4		5.757E+0	 	•	•		•	+	• * • • • • • • • • • • • • • • • • • • •		• •		1	
1.2 91 51 1.2 (9E+	5	3.395F+0	• •••		- •			•	I			<u>-</u>		. *
129152 1.223E4 127153 1.280E4	33 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		()				•	••	* I 	-	1 10 0	, 9 -		 **
3154 1.180E+	33	2.2P9E+0	• •	• •				•				0		
129155 1.211E+	5.4	2.3485+0	• ••• •	•			•	•			•	•••		×
12 91 57 1.194E+		1.752640		• •			•	• •	ج		• •	-		
29158 1.183E	3.5	1.5936+0		1• : :				• • •	T	, 1	••	0		*
150100 1.930E+	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.2536+0 6.871E+0	 	•	-		• •	•	× +		•			
30101 1.537E+	20	2.820E+0	н	•			•	+	.		•	•		×
130102 1.599E+ 130103 1.263E+		1.655E+0 7.702F+0	⊢⊢	1 0 (- + + 	E	4	10 1		. ~	
130104 1.320E+	5	4 - 30 9E + 0	4 144	• •		· · · · · · · · · · · · · · · · · · ·		• • •	: 1	ŀ	, 40	e e	•	
1.3346+		3.063E+0		•	•		•	+ +	I.		•	•		X
130107 1.166E+	200	1.3345+0	: •• ••(}	-			Ξ.	•	•		• •		2	
0:03 1.094E+	1	4. 3F4E+0	₽ (†	•	•		¥.,	+ •	-		• •	ې د .		
530110 1.6016+		7.74KF40	-1 þe	• •	e 1	I	b . 4	• •	- 1		•)		
30111 1.530E+		3.152E+0	• • ••	•	. •		τ.	•	•		•	•	2	
530112 I.0596+ 1.30113 1.7A2F+		2.165E+0 6.667E+0	⊨	•			i i i	E + 4	-	1	•	• •		*
130114 2.0736+		1.097F+0	4 b -4	••	- •		• •	•	.Σ		••	•••	20	< x
130115 1.7ADE+	N.	2.161E+0	►1	•	•	J.	•	+	•		- 7		<u>ر</u>	
	•		•		:				,	,		•		

.

2.1.2 Program KNlUTIL

KNlUTIL is a generalized tape utility program designed to operate on the PMS-1D input tape in order to verify the operation of the Knollenberg PMS 1D device. There are six different options the user may select. These options are listed here and further explained in the operating instructions found in section 2.1.2.1.

- 1. produce a decimal dump of a given number of files;
- 2. same as 1, above, except that the dump is in octal;
- produce a selective decimal dump specifying a particular set or sets of records;
- copy a tape specifying files and records to be copied;
- 5. produce a selective probe dump which will list only the channel counts of the selected probe.
- 6. produce a selective dump of the VCO channels only.

In addition to these options, three status files are created which may be listed at the users option. These files list in an easily readable format the three status words that appear in each record. Appendix 7 shows the format of these status words.

2.1.2.1 Program KN1UTIL operating instructions

CONTROL CARDS

```
PROB. NO.
DPSI,CM60000,T100,TP2.*
                                                      NAME
VSN, TAPE 1=TAPENO, TAPE 2=TAPENO.
ATTACH LGO, KN1UTILBIN, ID=GLASS, MR=1.
REQUEST, TAPE1, S, HI.
REQUEST, TAPE2, S, HI.
FILE(TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105)
FILE(TAPE2,RT=U,BT=K,MRL=1024,MBL=1024,RB=1,BFS=105)
LDSET, FILES=TAPE1/TAPE2, PRESET=ZERO.
MAP, OFF.
LGO.
EXIT(U)
REWIND, BPARAM, CPARAM, DPARAM. **
COPY, BPARAM. **
COPY, CPARAM. **
COPY, DPARAM. **
7/8/9
DATA DECK
7/8/9
6/7/8/9
```

- * IF NOT DUPLICATING A TAPE
 - 1. CHANGE TP2 TO TP1
 - 2. REMOVE TAPE2=TAPENO FROM VSN CARD
 - 3. REMOVE REQUEST TAPE2 CARD

** REMOVE THE CARDS IF STATUS WORD DUMP IS NOT DESIRED

```
2.1.2.1 Program KN1UTIL operating instructions (cont'd)
         DATA CARDS
         Decimal Dump - one data card
    1.
              cc 2-4
                             DEC
                             number of files dumped
              cc 5-7
                              record indicator
              cc 8-10
                                     1 = every record
                              i.e.
                                     2 = every other record
                                     6 = every sixth record
         ex. to dump decimally, two files every 10th record
                    -DEC--2-10
                                     - = blank
         Octal Dump - one data card
    2.
                              OCT
               cc 2-4
                              same as decimal dump
               cc 5-7
               cc 8-10
          ex. to dump octally, nine files every 100th record
                                     - = blank
                    -OCT--9100
          Selective Record Dump - n data cards (decimal only)
     3.
          card 1
                              REC
               cc 2-4
                              number of files dumped
               cc 5-7(rj)
                              record indicator
               cc 8-10(rj)
          cards 2...n (one card for each set of records)
                               starting record to dump
               cc 1-6(rj)
                               ending record to dump
               cc 7-12(rj)
          ex. to dump every 10th record
               from 125 to 350 and
               from 1000 to 1500
```

84

and the second of the second design of the second second

2.1.2.1 Program KNlUTIL operating instructions (cont'd) -REC--1-10 ---125---350 --1000--1500 - = blank4. Tape Copying - n data cards card 1 cc 2-4 DUP cc 5-7 number of files to copy cards 2...n (one card for each file to be copied) cc 1-6(rj) number of records to skip before copying cc 7-12(rj) number of records to copy ex. to create a tape of: records 701 to 750 from file 1, and records 25 to 50 from file 3, the data deck is ... -DUP--3 ----0 ----24----26 - = blank5. Selective Probe Dump (1 data card) cc 2-4 DEC number of files dumped cc 5-7 record indicator cc 8-10 i.e. 1 = every record 2 = every other record6 = every sixth record cc 15 selected probe BLANK/0 for regular decimal dump (OPTION 1) 1 for Scatter Probe only 2 for Cloud Probe only 3 for Precip Probe only 4 for VCO data only

2.1.2.1 Program KN1UTIL operating instructions (cont'd)

ex. to dump decimally, 2 files every 10th record for Precip Probe

-DEC - 2 - 10 - - - 3 - = blank

2.1.2.2 Program KN1UTIL sample output

Output details

The DEC (decimal) and SEL (selected) output listings are shown in figure 2.8 and are identical in format. The R= and F= indicate the record and file numbers respectively. The format of this output is the same as the 64 word record structure illustrated in Appendix 8.

The probe select option of the decimal output is shown in figure 2.9. In this case the VCO data was chosen (a 4 in column 15 of the DEC card). The first number on each data line is the PMS elapsed second counter followed by the probe designator, in this case VCO data. The thirteen VCO values follow. The real time clock (hours, minutes and seconds) output is at the end of the line.

The last set of output (Figure 2.10) is a listing of the status parameters. The literal B0, C0 or D0 denote the probe; Scatter, Cloud or Precip. The first column lists the elapsed second counter. The next column shows the real time clock. The number in parenthesis at the top of this column is the elapsed second corresponding to this time. Thus since this number is 2, the elapsed seconds corresponding to this time is two more than that given in the first column. The other columns are the status values corresponding to the elapsed second counter ending in that particular digit. Refer to Appendix 7 for a listing of the parameters monitored each second.

		88		
251 160 6631 3673 1586 1 1 1586 2 1 1485 114 22	962 6573 3999 2120 1 4 2095 1;2 91 2123 6697 3999 1;84 7 9 1;84 7 9 1;84 7 9	209 360 6554 4097 1485 193 75 1485 193 75 317 1 8 54 9 1'33 239 63 1'33 239 63	6 5 2 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	761 6613 4392
5064 0 4301 497	5004 0 4263 434 0 1 1 1 11 1 0 5004 0 4265 435 0 1 4265 435	5004 0 4 251 4 4 9 2 0 7 8 4 261 4 4 8 1 0 8 1 0 9 2 0 0 0 9 2 0 0 9 2 0 0 0 9 2 0 0		5004 0 4153 490 7004 0 4154 436
0 7 6 6 0 7 6 0 0 7 6 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0	-5 -1 -3 5 -3 <t< td=""><td>19 4361 6283 5211 1 2 3 3 2 1 1 2 3 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0 · · · · · · · · · · · · · · · · · · ·</td><td>0 7 1061 5983 5034 0 7 0 0 0 1 1 0 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 1 1 0 0 0</td></t<>	19 4361 6283 5211 1 2 3 3 2 1 1 2 3 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0	0 · · · · · · · · · · · · · · · · · · ·	0 7 1061 5983 5034 0 7 0 0 0 1 1 0 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 3 1 1 0 0 1 1 0 0 0
7073 F000			, , , , , , , , , , , , , , , , , , ,	
6 0 0 4 7 1 0 0 6 7 1 0 0 9 7 1 0 0 9	000 40 40 40 40 40 40 40 40 40	0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0	5322 0 0 0 0	55 53 50 54 50 55 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5
Figur	e 2.8: KN1UTII	Decimal & Selec	ted Output Li	sting
			e e e	

5	-	2	,							:		•	5	2		i	
17136116	, ,	, ,	= 9	, 0	6539	4234 U294	3186	1984 1984	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, co	5000 5063	2770		DAT 1	N 100	= 537	ECONDS
361	0	ь	5	ь	£535	7630	318.8	4864	52	Þ	6	5	22	A	150		1,
:3215	0	0	د	•	42	. 1636	62	87	5 2 3	0	5300	72	- 1 -1	-	100	ε	ECCADS
17132157	0	P	9	0	5423	9536	_3236_	4870	5235		6 . 61 .	2721	7137	DATA			ECONDS
1 3215	0	0	-	-	5	ות	3	87	523		ا ھ	Ξļ	•	-		ا م ا م	
1 32 15	-	0	c,	•	5	7 670	30	2		5	. ون	2	ina Lina	-			1,
16212	0	0	u	Ð	S S	6,	- CD	85	52	0	0	79	23	a 7 4	: 7	13	SUNCCE
17129137	0 C	00	0 0	00	535	7615	- 3199-	0.284			6664 6664	2794	7236	DATA			ED CN DS
71 29:	0	0	0		101	i n i n		6	5		6	29	2	A	151		L ONDS
7:2611	0	-	0	0	- F	7630	20	87	529	0	5	2800	7183	A	Ś	S C C	SO NO SE
7:2611	0.0	20	0.0	0	1440	7631	19 - 10 - 10	- 1-	625	00	2.3	9522 - 2612 -	7176			11 - 12 - 14 - 12 - 14 - 12 - 14 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	EC DA DS
17126116		-	-		6443	C274	3218	o oo	ר ח גיוני	 	6.667	2752	7172	· 11 ·	CON		SECOND
712611	-	5	5	5		7527	2		n 3		6 E	3765	7466	30 -11	ג' ניין ניין	U,U	1
712215	0	0		0	ŝ		15	(P)	523		£ 66 h	Ó,C	0	1		73	S
712215	-	-		-	⋍	71	5	o, k	523		6669	jد واح	co je	9		3	SUNDS
17122155					F321	7525	3159	4850	5625	- 0	6667	2600	7635	DATA	100 100 100 100 100	= 737 = 736	
1913	9		9	0	لك إمرا	100	52	01	530	0	0	5	28	DT	5	л С	Sche
1913	0	0	J	•	9.3	7627	5	1	জ		0	55	32	ET	د . ۲	31	
17119135	a e		 .	. .	5919 5926	തി	2525	1990 0 297	5305		5001	2562	5816	DATA DATA	222	14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	50102 500035 51
1.01.	-			6	8	10		00	626	 e	i i c	3	0	0		5	5 JA JA
11911		• •	.0	00	6.6	1	55	30.0	122			30	30	1	0	د	SCNOE
17116115		ə o	50	0 0	5858	7554	2593	4867	5289		5001	29162	6877 5874) () () () () () () () () () () () () () () () (SECONDS SECONDS
	4	c	e	-	- 10	a la	6612	2	20		c	96	S	4		t	
711215	, o	. 0	ب ر	, a	~ ~	20	2749	50	525	ა	20	5.0	9	AT	100	 	SONCE
17112155		0 0			6233	7403	2749	4901	5255	00	5001	6962 2462	7036	DAT A	ر 1 م م 1 د د	# 13F	SECONDS
110413	d	-	 	c		1.1	50	<u>ند</u>	57	G	00	N J	"			ی د	EC UVIS
1:0913	00	00		0	1. 1. 1.		58	5	52	•	2	5	Cot .	DAT A))		ECONDS
17:09:35	Э с	•	00	00	6536	1564	2564	4091 1604	5230	06	2000	3262	7342	DATA	ب م ب د	H 437	SECONDS
	,	,	•	•		a j		> '	, ,	2		2		ł	2	ر د	

and the second state of th

س س		~	-		ي. د		N	2	2	2	2			هم ب		-				ļ	-										ي ب	9	E	. ت		<u>ب</u> در		6		ام	c	6	53		
360	021	10	30		70	24	50	14 	30	2	10	0			50	50			9 F 3 C		900	30	70	500	א ה ר 	30	20	11	-		200	150	50	÷ 1			00	30	60	2	50	50	SEC		
191251	191241	191231	1322161	12121	191151	_131161	191131	121161	1 = 1 1 1 1	131101	191051	191041	191031	131621	191.0.01	130 è c E t	19:941		176/61				193 6 31		112221	133751	130741	191731	130721	19211	130751	131641	193631	133621	119.41	191611		•••		~ 1	199501	+°	14 1 F S ? (?)	,	
1508	1507	1507	1507	1537	1507	1507	1503	1307	1508	15(9	1507	1507	1507	1504	1507	1507	1507	1507	1502	1001	ວວ	10	0	\circ	D la	$\sim \circ$	0	U	90	ວໄຜ	1207	0	2	0	3 3) C	ŝ	0	0	01	، ب	~	د		
5 <u>5</u>	91	92	26 26	ŝ	29 29	26	91	, 6	91	56 26	26 26	ç,	9 20	بر ب	<u>36</u>	15	26	91	0 J - F	24	9 1 1 0	91	16	910	<u>.</u>	0 0 • ?	26	52	9.	<u>م</u>	0 0 V N	92	91	91 1	<u> </u>	0 ¥	91	91	16	91	91	12	-		
μα μα μα μα μα μα μα μα	130	1350			13.	13 ?!	1374	1367	1377	137:	135-	1300	1292	1323	1344	1356	1355	1363	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1000	1325	1347	1349	1362		1364	1336	15 36	1293	1308	1341	1356	1360	1361	4363	1300	1330	1351	1350	1374	1452	1233	~		
1151		11	 		1	1077	1144	. 1151	1153	1155	1129	1 1 7 7	1.53	1111	1131	1147	1158	1159	1161		1106	1129	1145	1156		1165	1131	1084	1069		1129	1155	1167	1171	1172	1121	1119	1144	1165	1167	1154		:4		1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		د. 1 ت	5	4 5 5	در . ک ار ک ار	1 - 14 - 15	15	1 75	1 55	155	155	ແມ່ ເບີ	155	مر هر کر دل کر ډر	155	155	155	155	- 1 		• 🕰 ກູ່ປາ ກູ່ປາ	155	1 55	1,1	4 55	- 14 5 5 5 5 5	155	155	155	155	ж Л Л Л Л	155	135	155	1 55	- н л Ј л Ј		155	1 5 5	155	153	155			
5 2755				, İ			N		~	2	2	N	N.	2		2	~		~ ~			N	~	~ ·			: 	N	N 1 F				2	~		N N		N	 	~	~ ~		•	l	
5 5 5 1 4	10	ب ب ب	51	5 .	n u) (T	5	13	15	51	51	51	! ; در					ļ	-												.			_	_	.			-				Ui 		
1262 24	''~	1 4	1	5			17	7	7	1	7	7	σ.		1					1		1	t,				•			- 1	5147 22 141 10				- I				•	- 1			'n		
931 15 15	1									{					1	;																1	1										L		i
507	.0	• C)	0	E. 1 (F	> C	2.0.2	507	508	507	507	507	505	C. (i C	507	507	507	507) C	5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	507	527		507	507	505	508		505		o	0	<u>ی</u> ، د	7 N 2 C 2 C		557	0	c		co	o,		•
91 91))	92	26	9 2	0 U	202	9 73 73	91	92	26	د و	5 G	26	22	91	-26 -	9 2	, 29, 1	5		0 1 1	91	91	9 Q 2		0 40 4 (c	\$9 2	16	91 91	<u>با</u> ب	9 9 7	<u>م</u> اً د	16	91 1		0 U V P	2 e	91	91	16	91 91	91	Q		
						the state of the s	F		gι	ar	·e	2		10			KI		נטי	TJ	ĽL	9	St.	at	-u	S	P	ar	a	me	et	er	·s				يلا المتعادي المالية المالية المتحد ومراسمتها المتعاسمة المتعالمين والمتعالمين والمتعاملين والمتعادين								

2.1.3 Program KNPLT1D

This program produces six different types of plots displaying the processed PMS-1D data in different forms. The input tape used is produced by program KNOLL1D (see appendix 2) for the tape format); it contains averaged data, one record per average interval. In addition the program can read a processed tape containing Learjet data. These tapes are preprocessed by another contractor and sent to LYC. We run HIAC1D on the reduced data tape to calculate additional parameters and create an output tape compatible to that of KNOLL1D.

Each plot type to be produced requires one plot request card. This card contains the information necessary to produce the plot (start time, stop time, etc.) with the appropriate title. The details of the plot request cards are included in the operating instructions.

To reduce plotting time and paper consumption the plots are produced on 105mm film. The following sections explain in detail the plots available and the calculations performed.

KNPLTID is a program requiring large computer resources. For this reason DPSI h it advantageous to write several small redundant programs to duplicate these plots. These programs (ex. PLTDO) use the KNOLLID processed tape (TAPE2) and generate the desired plots. Their sections will reference the following ones when appropriate.

2.1.3.1 Z-M scatter diagrams

This option produces two scatter diagrams of mass (M) in gms/M³ vs. reflectivity (Z) in mm⁶/m³ on a full log scale. The first plot uses Precip Probe data only, the second uses Cloud and Precip combined. Any mass value outside the range of 10^{-4} through 10^{+1} or less than a specified minimum value is not plotted. The reflectivity limits are 10^{-4} and 10^{+5} .

A least square logarithmic fit is calculated and drawn through the data. The equation of this line is included on the plot in the form

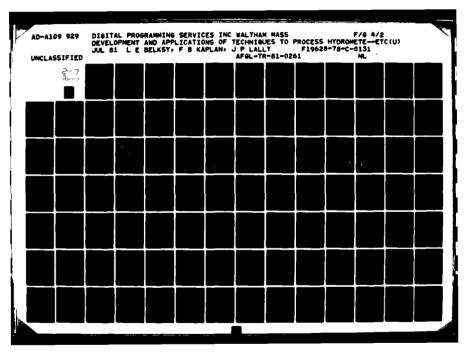
$$M = a Z^b$$

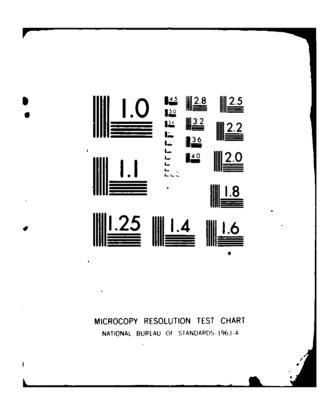
The output listing for this plot type includes the equation coefficients (both linear and exponential), the average Z and M values, with their standard deviations.

2.1.3.2 Z-M histograms

This option produces two histograms; the first mass (M) vs time and the second reflectivity (Z) vs time. The plots are produced using a semi-log scale. The Z and M plot limits are the same as those defined above. The time axis is expressed in units of seconds from a given start time. These plots restrict the data to five minutes only. Any data exceeding this maximum will be ignored.

Each plot has three traces, one per probe, with a different plotting symbol used for each probe. A square indicates data from the scatter probe, a circle represents cloud data, and a triangle is used for Precipitation data. The output listing shows only the number of points plotted per trace.


If the mass is outside a specified range, the plotted values for M and Z will have their points overplotted with an "*".


2.1.3.3 VCO histograms

This option produces three VCO histograms, each consisting of two lines. The VCO's plotted are: pressure, temperature, heading, dewpoint, acceleration, and J-W water content. The plots are used exclusively for system verification and are not published outside the laboratory. For this reason there is no title, pass or other identification on the plot. The time axis is similar to the Z-M histograms and also has the same five minute maximum.

The acceleration and water content plots have fixed scales; the others have a sliding scale with a fixed maximum range. The limits used for the sliding scale plots are a function of the data to be plotted. They are determined automatically by the program. The table below shows the pertinent axis information. The output listing for this plot shows only the number of points plotted.

PLOT#	vco	UNITS	SYMBOL	AXIS TYPE	AXIS LIMITS
1	pressure	mb	∆	sliding	30 mb max
	acceleration	g	+	fixed	-1 to +1
2	temperature	deg C	∆	sliding	12° max
	dewpoint	deg C	+	sliding	12° max
3	heading	deg	Δ	sliding	60° max
	JW-LWC	gm/M ³	+	fixed	1 to +.8

2.1.3.4 Density spectra

This option produces for a selected probe six plots per page of the \log_{10} of number density vs the equivalent melted diameter. The six pictures, rather than one, results from the fact that it is desired to examine this plot separately as liquid water content (LWC) increases. Thus the procedure is to first determine the combined LWC for the cloud and precip probes and determine, as a function of the LWC, which of the six plots is to be used to display the data; then the appropriate \log_{10} of the number density and equivalent melted diameter is retrieved to produce the plotting points within the plot selected. The LWC limits for the six plots are defined on the plot request card. The details of this card are shown in the operating instructions.

After all this data has been plotted additional calculations are performed. These calculations, (different types of averaging) are shown in the following ten steps.

1. Two parameters must be calculated before the averages can be calculated.

These are ...

ICNTX(N) and SUMX(N) for N = classes 1 to 15 ICNTX(N)SUMX(N) $\sum_{i=1}^{ICNTY(N)} ICNTY(N)$

where

ICNTX(N) = the number of samples in each class N

- note: The normalized density is being used at this time also ICNTMX is the maximum ICNTX(N)
- 2. "INSTRUMENT LOG (AVE DENSITY)"
 Calculated for each non-zero class i.e. only if ICNTX(N)>0

AVEINS(N) = SUMX(N)/ICNTMX AVEINSL(N) = LOG (AVEINS(N))

- 3. "EXPONENTIAL LOG (AVE DENSITY)"
 - a. Before this is calculated the True Ave Log Density is determined for each class where ...

 $ICNTX(N) \ge .9(ICNTMX)$

note: JJPTS = number of classes where above relation is true

using the equations

AVETRU(N) = SUMX(N) / ICNTX(N)AVETRUL(N) = LOG (AVETRU(N))

b. The set of data points (DIAM(N),AVETRUL(N))
for ICNTX(N) > 0 are linearly curvefit

note: IIPTS = number of classes where above relation is true

c. The slope (m) and intercept (b) are printed and expressed exponentially to satisfy the equation ...

No

$$N/M^3 - mm = N_0 e^{\lambda D}$$

where

= e^{2.3026(b)}

and

- $\lambda = 2.3026 \, (m)$
- d. The exponential Log (AVE DENSITY) is calculated and plotted for the full spectrum (classes 1-15)

using ...

1

AVEEXP(N) =
$$N_{O}e^{\lambda * DIAM(N)}$$

AVEEXPL(N) = LOG(AVEEXP(N))

where DIAM(N) = center diameter of class N

AVEEXPL(N) is printed only for classes where ICNTX(N) > 0.

4. "INSTRUMENT MASS AND REFLECTIVITY"

a. INSTRUMENT MASS

Calculated individually for each class where ICNTX(N)>0 using the instrument average density (AVEINS)

 $MINST(N) = \frac{\pi}{6} BW(N) * AVEINS(N) * DIAM(N)^{3}$

where BW(N) = barwidth of class N

Also the cumulative instrument mass is calculated as

 $TMI = \sum_{N=1}^{IIPTS} MINST(N)$

b. INSTRUMENT REFLECTIVITY Calculated individually for each class where ICNTX(N)>0 using the instrument average density (AVEINS)

 $ZINST(N) = BW(N) * AVEINS(N) * DIAM(N)^{6}$

Also the cumulative instrument reflectivity is calculated as

$$TZI = \sum_{\substack{N=1 \\ N=1}}^{IIPTS} ZINST(N)$$

5. "EXPONENTIAL MASS AND REFLECTIVITY"

a. EXPONENTIAL MASS

Calculated individually for each class where ICNTX(N)>0 using the exponential average density (AVEEXP)

MEXP(N) = $\frac{\pi}{6}$ BW(N) *AVEEXP(N) *DIAM(N)³

Also the cumulative instrument mass is calculated as

$$TME = \sum_{N=1}^{\text{IIPTS}} MEXP(N)$$

b. EXPONENTIAL REFLECTIVITY

Calculated individually for each class where ICNTX(N)>0 using the exponential average density (AVEEXP)

 $ZEXP(N) = BW(N) * AVEEXP(N) * DIAM(N)^{6}$

Also the cumulative instrument reflectivity is calculated as

 $TZE = \sum_{N=1}^{\text{IIPTS}} ZEXP(N)$

100

2.1.3.4 Density spectra (cont'd)

6. "CUMULATIVE PERCENT MASS"

$$CUMASS(N) = MINST(N)/TMI+TMASS(N-1)$$

where $(TMASS(N-1) = \sum_{i=1}^{N-1} CUMASS(i)$

7. "TOTAL MASS"

To account for integration from D_i to ∞ rather than from 0 to ∞ , the equation from SAMS #2 p 58*is modified.

$$MTT = M_{(>D_1)} = \frac{\pi}{6} N_0 \int_{D_1}^{\infty} D^3 e^{-\lambda D} dD$$
$$MTT = \frac{\pi}{6} N_0 e^{-\lambda D_1} \left[\frac{D_1^3}{\lambda} + \frac{3D_1^2}{\lambda^2} + \frac{6D_1}{\lambda^3} + \frac{6}{\lambda^4} \right]$$

letting

 $NTT = \frac{N_{o}e^{-\lambda D_{1}}}{|\lambda|} , \text{ since the slope } \lambda \text{ should always}$ be positive

the final equation becomes

MTT =
$$\frac{\pi}{6}$$
 NTT $\begin{bmatrix} D_1^3 + \frac{D_1^2}{|\lambda|} + \frac{D_1}{|\lambda|^2} + \frac{6}{|\lambda|^3} \end{bmatrix}$

If $D_1 = 0$ it can be seen that the equation is identical to that from SAMS #2 p 58*

$$\mathbf{MT} = \frac{\pi N_0}{|\lambda|^4}$$

101

2.1.3.4 Density spectra (cont'd)

8. "TOTAL REFLECTIVITY"

To account for integration from D_1 to ∞ rather than from 0 to ∞ , the equation from SAMS #2 p 55% is modified.

$$ZTT = Z_{(>D_1)} = N_0 \int_{D_1}^{\infty} D^6 e^{-\lambda D} dD$$

$$ZTT = N_0 e^{-\lambda D_1} \left[\frac{D_1^6}{\lambda} + \frac{6D_1^5}{\lambda^2} + \frac{30D_1^4}{\lambda^3} + \frac{120D_1^3}{\lambda^4} + \dots + \frac{360D_1^2}{\lambda^5} + \frac{720D_1}{\lambda^6} + \frac{720}{\lambda^7} \right]$$

letting
NTT =

the final equation becomes

 $N_{o}e^{-\lambda D_{1}}$

121

$$\mathbf{ZTT} = \mathbf{NTT} \left[D_1^6 + \frac{6D_1^5}{|\lambda|} + \frac{30D_1^4}{|\lambda|^2} + \frac{120D_1^3}{|\lambda|^3} + \frac{360D_1^2}{|\lambda|^4} + \frac{720D_1}{|\lambda|^5} + \frac{720}{|\lambda|^6} \right]$$

If $D_1 = 0$ this equation also reduces to that from SAMS #2 p 58*

$$zT = \frac{720N_0}{|\lambda|^7}$$

9. "MEDIAN VOLUME DIAMETER"
 (from SAMS \$2 p 62)*

$$\mathbf{D}_{\mathbf{0}} = \mathbf{3.67}/|\lambda|$$

- 10. When the particle type being analyzed is rain only the total mass and total reflectivity should be integrated from D_1 to 5 mm only. This is accomplished by subtracting the 5 mm to infinity value from the D_1 to infinity value for M and Z.
 - a. "MASS CONSIDERATION"

$$MTT = \frac{\pi}{6} N_0 \int_{D_1}^5 D^3 e^{-\lambda D} dD = \frac{\pi}{6} N_0 \left\{ \int_{D_1}^{\infty} D^3 e^{-\lambda D} dD - \int_5^{\infty} D^3 e^{-\lambda D} dD \right\}$$

from step 7 the D_1 to ∞ evaluation is

$$e^{-\lambda D_1} \left[\frac{D_1^3}{\lambda} + \frac{3D_1^2}{\lambda^2} + \frac{6D_1}{\lambda^3} + \frac{6}{\lambda^4} \right] = e^{-\lambda D_1} \left[\text{LODM} \right]$$

using the same analysis the 5 mm to ∞ evaluation is

$$e^{-5\lambda} \left[\frac{5^3}{\lambda} + \frac{3 \cdot 5^2}{\lambda^2} + \frac{6 \cdot 5}{\lambda^3} + \frac{6}{\lambda^4}\right] \neq e^{-5\lambda} \left[\text{UPDM}\right]$$

and finally

$$MTT_{(D_1:5)} = \frac{\pi}{6} N_0 \left\{ e^{-\lambda D_1} (LODM) - e^{-5\lambda} (UPDM) \right\}$$

B. "REFLECTIVITY CONSIDERATION"
 Repeating the previous analysis for reflectivity the final equation becomes

2.1.3.4 Density spectra (cont'd)

$$ZTT_{(D_1:5)} = N_0 \{ e^{-\lambda D_1} (LODZ) - e^{-5\lambda} (UPDZ) \}$$

NTT

For parallelism NTT may be defined as:

$$NTT = N_0 \{ e^{-\lambda D_1} - e^{-5\lambda} \} / \lambda$$

^{*} Hydrometer Parameters Determined from the RADAR DATA of the SAMS Rain Erosion Program; Plank, V. G. (1974).

2.1.3.5 Median volume diameter plots

This option produces three different sets of scatter type plots. A set consists of two plots, each done the same way only using different data; the first plot uses precip data only and the second uses precip data combined with cloud data. The three sets are described in the following pages.

$$D_{\rm vs} (Z/M)^{1/3}$$

For each averaging interval this plot calculates the ratio of reflectivity to mass, and then takes its cube root. This value is checked to insure it is within the horizontal axis limits of 10^{-1} and 10^{+1} . The median volume diameter, for the same interval, is checked to insure it is within the vertical axis limits of 10^{-1} and 10^{-1} and 10^{+1} .

After the data is plotted, a least square logarithmic fit is calculated and drawn through the data. The equation of this line is included on the plot in the form

$$D_{0} = a((Z/M)^{1/3})^{b}$$

The plot output listing includes the equation coefficients (both linear and exponential), the average $(Z/M)^{1/3}$ and D_o values, and their standard deviations.

 $D_{O} vs M/(Z)^{\frac{1}{2}}$

This plot is similar to the one previously discussed the only difference being the x-variable calculation. Here the ratio of mass to square root of reflectivity is calculated. The remaining calculatons, axis scales, and output are the same as the previous plot.

The procedure is a "follow-up" to the data modification technique shown in section 6.3.1.9. This plot differs from the previous two in that it uses every non-zero channel within an averaging interval. That is, for each averaging interval as many as 15 points may be plotted. (If Cloud and Precip data are being used, then there may be as many as 30 points plotted per averaging interval.)

The points are plotted in the following manner. For each averaging interval the 15 (or 30) class diameters are divided by the median volume diameter. These become the x-coordinates of the plotted points. The y-coordinate is determined by multiplying the number density of each class times the fourth power of the median volume diameter. This product is then divided by the calculated mass of the interval. If the density is zero, there is, of course, no point plotted. The plot is produced on a semi-log grid, with the x-axis being linear. After all the points are plotted, a least square exponential fit is calculated and drawn through the data. The coefficients of the equation are shown on

ND⁴/M vs D/D (cont'd)

the plot in the form

$$ND_a^4/M = a e^{b D/D}o$$

After the plot is produced, the calculations performed are outlined below.

1. Divide the x-axis into 21 bands

2. Each point plotted is categorized by its x-coordinate into one of these bands:

- a. the y-coordinate is accumulated with other values in the same band.
- b. the number of points in each banded is counted.
- c. when all the data has been categorized and summarized, the average y value for each band is determined.

3. The bands with a zero average y value are examined. This zero results because of one of two conditions:

- a. It may be that a particular band had no points (these are called "uncounted" or type 1 zeroes).
- b. it may be that all the y-coordinate for a particular band were zero (these are called "counted" or type 2 zeroes).

4. Each type of zero may appear in two places:

- a. as a surrounded zero (or consecutive zeroes) where they are surrounded by non-zero bands on both sides.
- b. as an ending zero (or consecutive zeroes)

ND₀⁴/M vs D/D₀ (cont'd)

The following examples show both cases.

example B. ending zero

example A.	surrounded	zero	
band#	<u>average y</u>		
2	1.24		
3	0	surrounded	zero
4	3.94		
5	0]		
6	o ∫	surrounded	zeroes
7	1.85		

-	-		
band#	average y		
1	0	ending a	zero
2	1.24		
3	3.28		
•			
•			
•			
18	1.29		
19	ך 0		
20	0 }	ending :	zeroes
21	ο		

5. An attempt is made to eliminate all the zeroes. The elimination technique used is dependent upon the type (1 or 2) and place (ending or surrounded) of zero. The hierarchy and technique used to eliminate these zeroes is shown on the following page.

ND₀⁴/M vs D/D₀ (cont'd)

zero(type and place) technique

1)	#2 surrounded	3 point running log mean
2)	#2 ending	extrapolation
3)	#l ending	extrapolation
4)	#1 surrounded	interpolation

a. Type 2 surrounded zeroes are removed using a three point running log mean; this changes the surrounding non-zero points also.

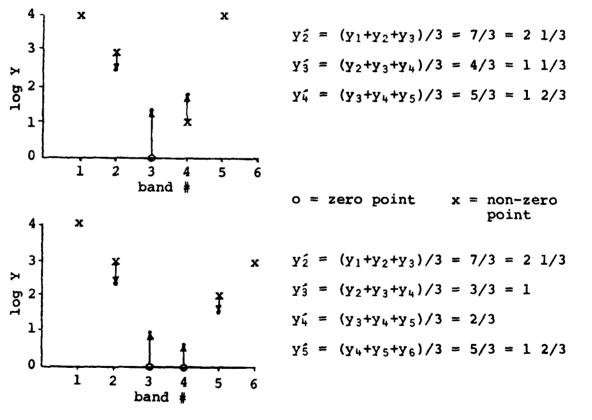


Figure 2.11 Examples of type 2 surrounded zero elimination

ND⁴/M vs D/D (cont'd)

b. Ending zeroes of types 1 and 2 are eliminated by extrapolating from the equation

$$y = ce^{[ax^2 + bx]}$$

The equation is a least square fit of four non-zero points immediately preceding or following the zeroes to be eliminated.

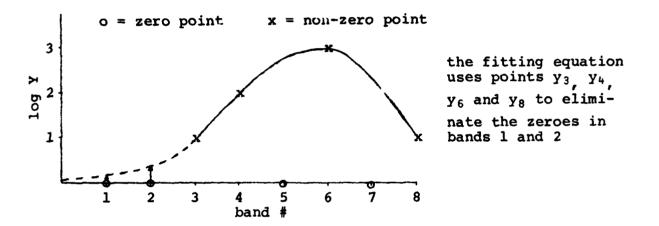


Figure 2.12 Example of ending zero elimination

Zeroes at the other end are eliminated exactly the same way using the four non-zero points preceding the zeroes to be eliminated.

c. Type 1 surrounded zeroes are removed using linear interpolation between adjacent non-zero values.



Figure 2.13 Examples of type 1 surrounded zero elimination

6. After the zeroes have been eliminated the results are shown in the output listing. The bands that had a zero average eliminated are flagged with a 1 or 2 indicating the type zero removed.

2.1.3.6 VCO plots

This option will plot any VCO versus any other VCO. With this option only, the calculated liquid water content (M) and calculated reflectivity (Z) for each probe are considered VCOs. This allows selected Z vs height or M vs height profiles to be plotted. The user has complete freedom to specify any VCO on either axis. Plots may be either in scatter mode or line mode, at the user's option.

If the plot of JW-LWC vs HEIGHT is specified, an adjustment option is available. This adjustment allows for all the data points to be shifted by some reference equation. To invoke this option certain adjustment parameters are necessary. These parameters are:

> L = number of levels XJ = origin of level SL = slope of level HT = height (meters)

This information is input via a namelist card. The operating instructions show the details. The adjustment performed follows.

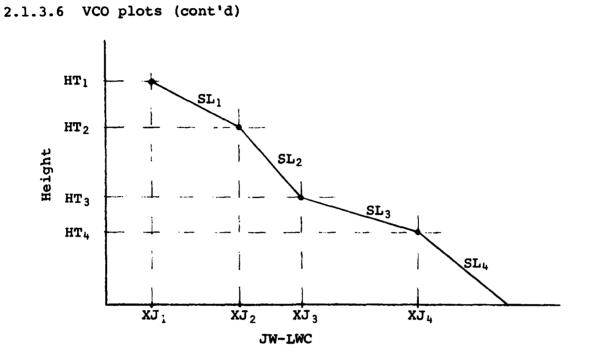


Figure 2.14 JW-LWC vs height adjustment

Determine the level (I) of each data point (J,H) such that $HT_{I+1} > H > HT_I$. Calculate the adjusted water content (JW) using the equation

$$JW = J - [XJ_{T} + SL_{T} (HT_{T} - H)]$$

Note: if height (H) is greater than the maximum height (HT_1) , than HT_1 is used in the equation for HT_I . The sign reversal will account for the correct JW adjustment.

2.1.3.7 program KNPLT1D operating instructions

CONTROL CARD

JOBNR, CM100000, T600, NT1, PK. PROB. NO. NAME REQUEST, TAPE39,*Q. DISPOSE, TAPE 39, *FM. PAUSE. PLS PUT WT NUMBERS IN DAYFILE PAUSE. PLS MOUNT DISK LYCPFI MOUNT, SN=LYCPFI, VSN=LYCPFI. ATTACH, CRT, CRTPLOTS. SETNAME (LYCPFI) LIBRARY (CRT) REQUEST, TAPE2, NT, E, VSN=LYCXXX, NORING. (FROM KNOLL1D) ATTACH, KP, KNPLT1D, ID=GLASS, MR=1. ATTACH, P0, PLOTLIB0, ID=GLASS, MR=1. ATTACH, P1, PLOTLIB1, ID=GLASS, MR=1. ATTACH, P3, PLOTLIB3, ID=GLASS, MR=1. ATTACH, P4, PLOTLIB4, ID=GLASS, MR=1. LDSET, PRESET=ZERO LOAD(KP, P0, P1, P3, P4)EXECUTE. 7/8/9 -DATA CARDS-6/7/8/9

2.1.3.7 Program KNPLT1D operating instructions (cont'd)

Data Cards

The first data card is the information card; it appears only once.

Each plot type requires a plot request card. These request cards are unlimited and have the same format. The cards are divided into 16 fields. Each plot type requires certain fields to be used; all the unused fields may be left blank.

card 1. information card

VAR	cc	FORMAT	FUNCTION
PLT	1-3	A3	plot type: PEN or CRT
CLK	5	Il	clock: 1=A/C 2=PMS
IOUT	7	11	0 = summary only 1 = date & summary
FLID	11-20	A10	flight id: FLT XYR-NN
	21-30	AlO	date: DD MON YR
OPT	45	11	0 = standard data 1 = LEARJET data
INT	49-50	12	averaging interval (OPT = 1 only)

cards 2...n plot request cards

cc	FORMAT	FUNCTION
1	Il	field l
3	Il	field 2
5-10	16	field 3
15-20	16	field 4
22-25	14	field 5

2.1.3.7 Program KNPLT1D operating instructions (cont'd)

cc	FORMAT	FUNCTION
27-30	14	field 6
32-35	14	field 7
37-40	14	field 8
42-45	14	field 9
47-50	¥ 4	field 10
52-55	14	field 11
57-60	14	field 12
62-65	14	field 13
67-70	14	field 14
72-75	14	field 15
77-80	14	field 16

Cards 2 through n may appear in any sequence, however, considerable time is saved if cards with same time limits are consecutive.

The following page, "Request card summary" shows the required fields for each plot type.

JT.

VCOPLOT 6 number start start stop h axis code type code h axis code h axis code h axis code type code h axis code type code type code type code type code type code type code	=4) right LWC LWC
DO start start pass httm minLWC maxEXP maxEXP	<pre>2; cloud 3; precip = number of plots (max=4) = LWC limits = bottom left, bottom right = middle left, middle right = top left, top right = minimum acceptable LWC = (minLWC).l0minEXP = (maxLWC).l0maxEXP = (maxLWC).l0maxEXP</pre>
SPECTRA 4 probe start stop max)b1 min)b1 min)b1 min)b1 min)m1 min)t1 min)t1 min)t1 max)tr max)tr max)tr	<pre>probe = 2; cloud probe = 3; precip number = number of plots (may min, max = LWC limits bl, br = bottom left, bottom ml, mr = middle left, middle tl, tr = top left, top right minLWC, EXP = minimum acceptable maxLWC, EXP = maximum acceptable maxLWC, EXP = maximum acceptable</pre>
VCOHIST 3 start dur	<pre>probe = probe = number = min, max = bl, br = bl, br = tl, tr /pre>
MZHIST 2 2 dur dur pass htkm minLWC maxLWC maxLWC	
SCATTER 1 1 start start stop pass httkm minEXP maxLWC maxEXP	time (hhmmss) time (hhmmss) ion in seconds number t (km).10 6.5 km = 65 atter
CC CC CC CC CC CC CC CC CC CC	start time (hh stop time (hhm duration in se pass number height (km).10 i.e. 6.5 km = l; scatter
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	start = stop = dur = pass = htkm = probe =

REQUEST CARD SUMMARY

** AXIS codes are shown in Appendix 6

1 soatter plot 2 line plot

Ił tl

type code type code

116

* * 2.1.3.7 Program KNPLT1D operating instructions (cont'd)

SCATTER PLOTS

This option produces two plots of LOG M vs. LOG Z. Plot one uses Precip Probe data only and plot two uses total data. A least squares linear fit is drawn through the data. The coefficients appear in the form M = A*Z**B.

INPUT CARD:

field	1	1	
field	3	start time	(HHMMSS)
field	4	stop time	(HHMMSS)
field	5	pass	(rj)
field	6	HTKM*10	(rj)
		i.e. 30 km	x = 300
		27.2km	ı = 272

HISTOGRAMS

This option produces two histograms, the first, LOG M vs. time, and the second, LOG Z vs. time. Each histogram contains three plots, one for each probe. The time axis is set for a 300 second maximum, however, less data may be plotted.

INPUT CARD:

field	1	2	
field	3	start time (HHMMS	SS)
field	4	duration seconds	(rj)
field	5	pass	(rj)
field	6	HTKM*10	(rj)

2.1.3.7 Program KNPLT1D operating instructions (cont'd)

VCO's

This option produces three plots with two VCO's per plot. The six VCO's plotted are not variable. They are: Magnetic Heading, LWC(JW), Temperature, Dewpoint, Pressure, and Acceleration. The scales for Acceleration and LWC(JW) are fixed at \pm lg and -.1 to \pm 8 gm/m³ respectively. The remaining VCO's have fixed ranges but the scale slides to plot as many points as possible. The fixed ranges are: Pressure (30 mb), Temperature (12°C), Dewpoint (12°C), and Heading (deg). The time axis is set for a 300 second maximum, however, less data may be plotted.

INPUT CARD:

field 1	,	3			
field 3		start	time	(HHMMS	S)
field 4		durati	.on se	conds	(rj)

DENSITY SPECTRA

This option produces six plots of number density vs. equivalent melted diameter. Each plot uses only data from the specified probe for six liquid water content bands. The LWC bands are variable but the probe must be the same for all six plots. If the particle type remains constant for the entire interval, an average line is drawn through the data. Also, the cumulative percent mass is superimposed on each plot.

119

2.1.3.7 Program KNPLT1D operating instructions (cont'd) INPUT CARD:

field l	4	
field 2	probe	(1=sc, 2=cl, 3=pr)
field 3	start time	(HHMMSS)
field 4	stop time	(HHMMSS)
field 5	min } BL	rj
field 6	max	rj
field 7	min } BR	rj
field 8	max	rj
field 9	min } ML	rj
field 10	max	rj
field ll	min } MR	rj
field 12	max	rj
field 13	min } TL	rj
field 14	max	rj
field 15	min	rj
field 16	max } TR	rj

The min and max values are the lower and upper limits of each LWC band. The LWC limits are in units of mg/M³ with the 10^{-3} exponent omitted. Since there are four columns per limit, the absolute range of limits is from $1 = .001 \text{ mg/M}^3 = 1 \text{ mg/M}^3$ to 9999 $\simeq 10.0 \text{ gm/M}^3 = 10^4 \text{ mg/M}^3$.

The two letter code BL, MR, etc. indicate which plot on the page is used. The plots are oriented as follows:

TL	TR
ML.	MR
BL	BR

2.1.3.7 Program KNPLT1D operating instructions (cont'd)

Less than six plots may be utilized by leaving the appropriate columns on the input card blank.

MEDIAN VOLUME DIAMETER

The Median Volume Diameter module produces seven plots of the following form.

D_{o} vs. $(Z/M)^{1/3}$ D_{o} vs. $(Z/M)^{1/3}$	Precip only
D_{0} vs. $(Z/M)^{1/3}$	Cloud & Precip
Dovs. K	Precip only
D vs. K	Cloud & Precip
ND ⁺ /M vs. D/D	Precip only
ND ⁴ /M vs. D/D	Cloud only
ND */M vs. D/D	Cloud & Precip

INPUT:

field	1	5	
field	3	start time	(HHMMSS)
field	4	stop time	(HHMMSS)
field	5	pass	(rj)
filed	6	HTKM*10	(rj)

.

VCO PLOT

This module produces a maximum of four plots per input card. The plots are any VCO, LWC, or X versus any other VCO, LWC or Z. There are two types of plotting: scatter or line. This option does <u>not</u> have a 300 point maximum, hence the plots can be run for an entire flight.

In the special case of plotting JW Liquid Water Content vs. Height an additional option is provided. This allows for all the data points to be shifted by some reference equation. The information for this adjustment is on a -\$ADJUST card. This card must immediately follow the input card which specifies the JW-LWC vs. HEIGHT plot.

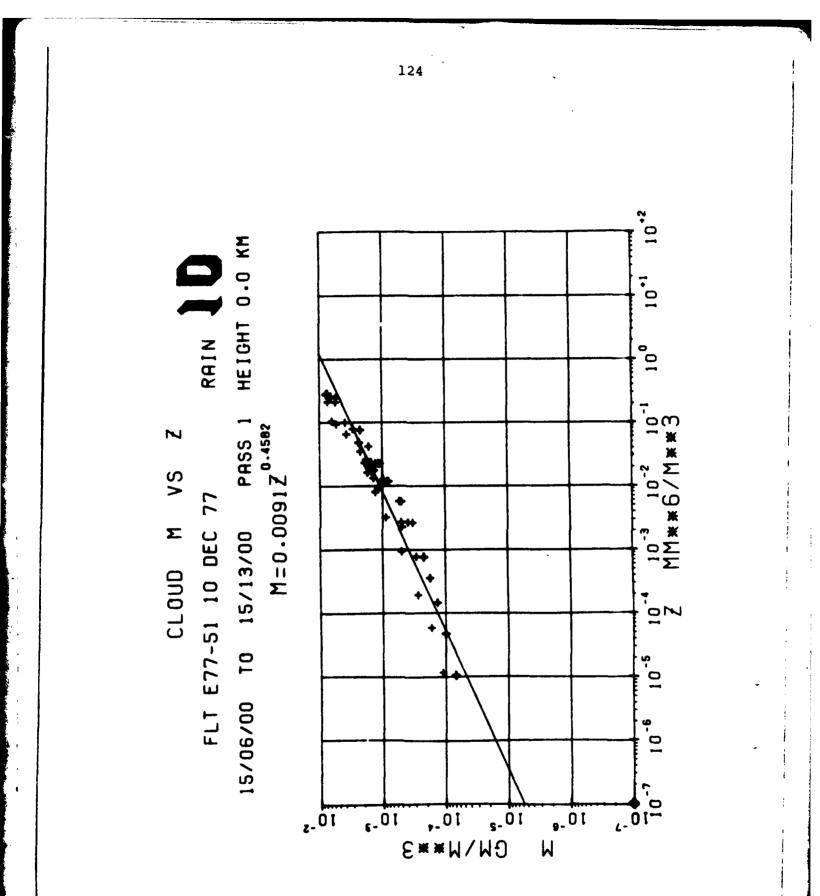
INPUT CARD:

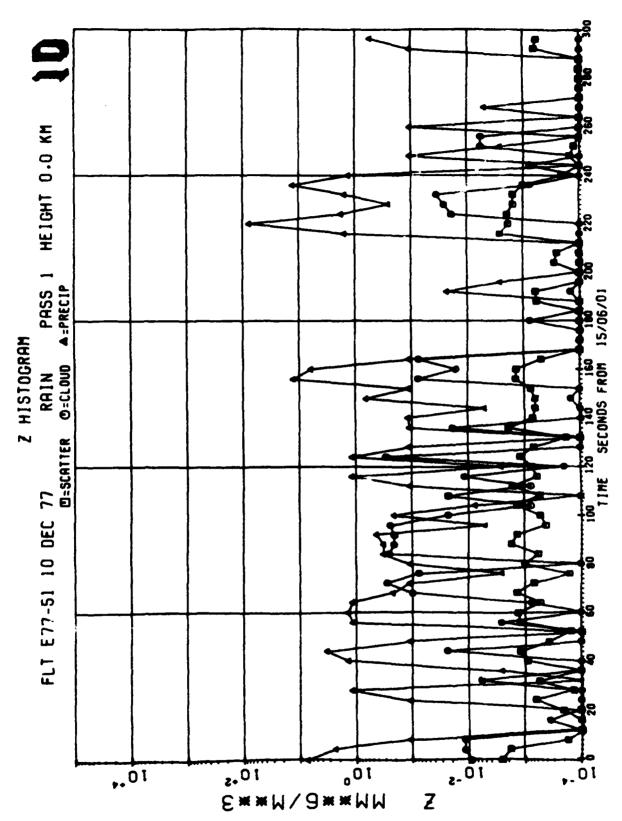
field l	6	
field 2	# number of plots this card	(4 max)
field 3	start time (HHMMSS)	
field 4	stop time (HHMMSS)	
field 5	horizontal axis	(rj)
field 6	vertical axis Plot l	(rj)
field 7	type	(rj)
field 8	horizontal axis	(rj)
field 9	vertical axis Plot 2	(rj)
field 10	type	(rj)
field 11	horizontal axis	(rj)
field 12	vertical axis Plot 3	(rj)
field 13	type	(rj)
field 14	horizontal axis	(rj)
field 15	vertical axis Plot 4	(rj)
field 16	type	(rj)
	- 4 *	(+)/

2.1.3.7 Program KNPLT1D operating instructions (cont'd)

JW-LWC ADJUSTMENT CARD

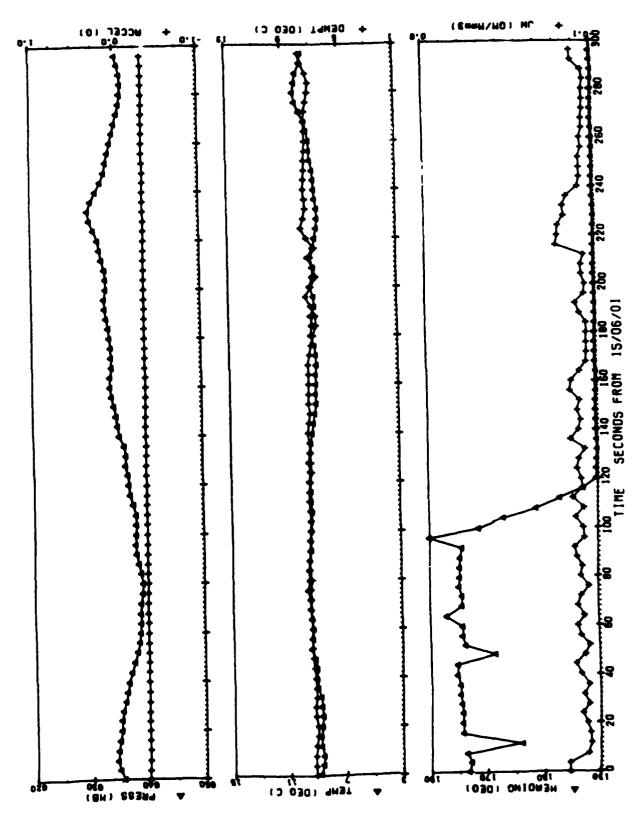
If a VCO plot request card specifies a LWC-JW vs. HEIGHT plot, (i.e. h axis code = 5, v axis code = 2, and type code = 0) the next card must contain the adjustment parameters. The required parameters are:

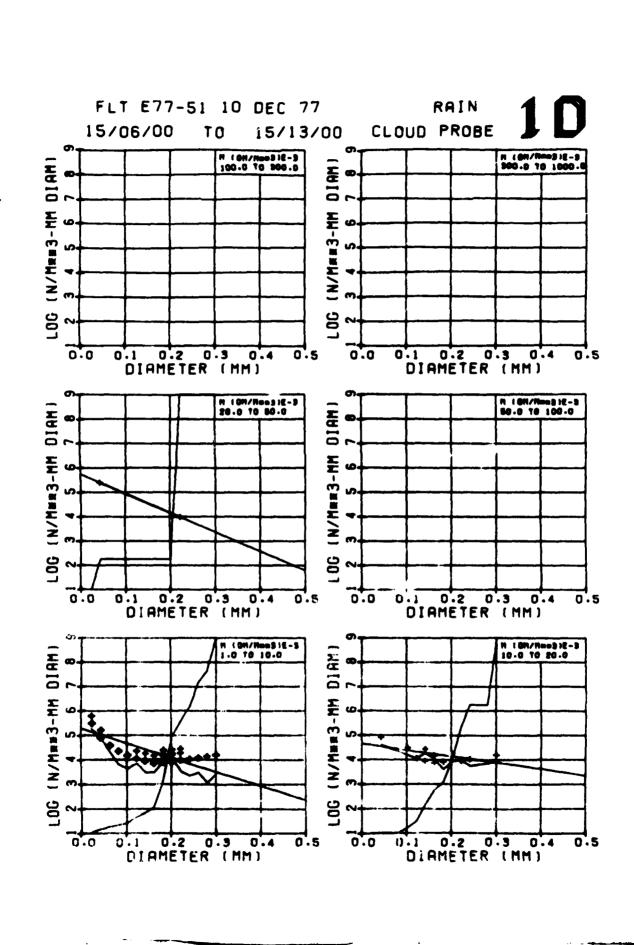

L = number of levels (10 maximum)
XJ = origin of the level
SL = slope of the level
HT = height (meters) at the top of the
level

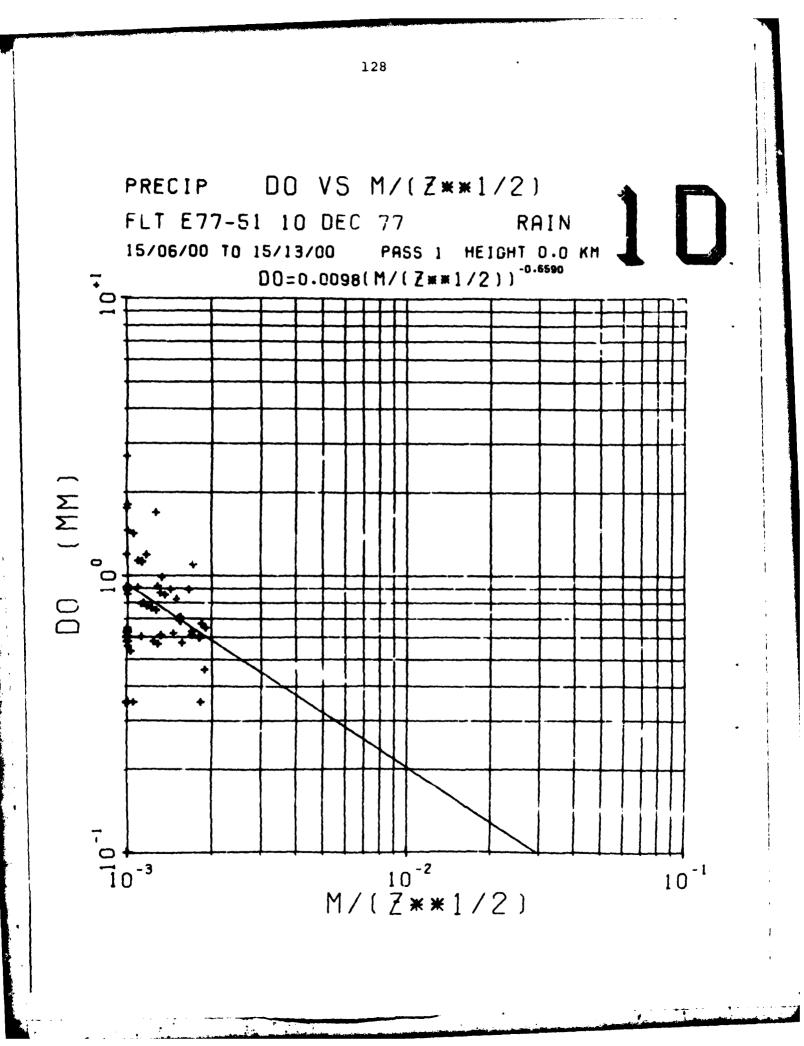

The card uses a standard namelist format with the control variable being \$ADJUST. If the option is not desired the card must be

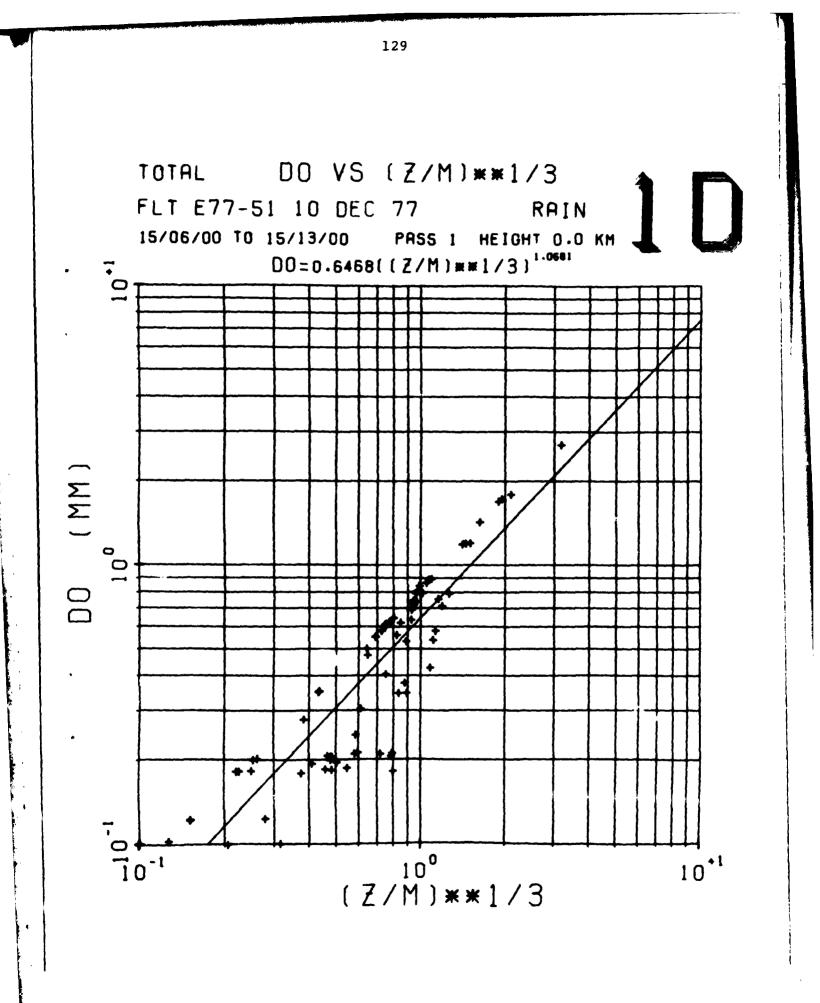
\$ADJUST L=0, \$END

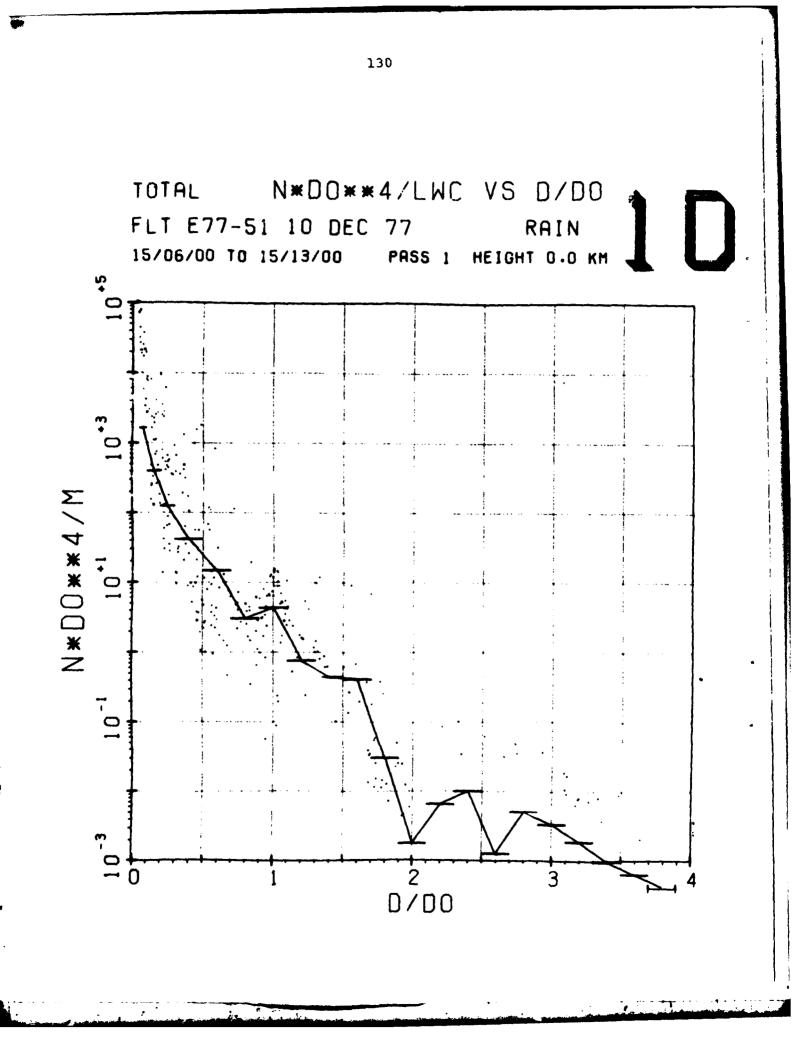
2.1.3.8 KNPLT1D sample plots

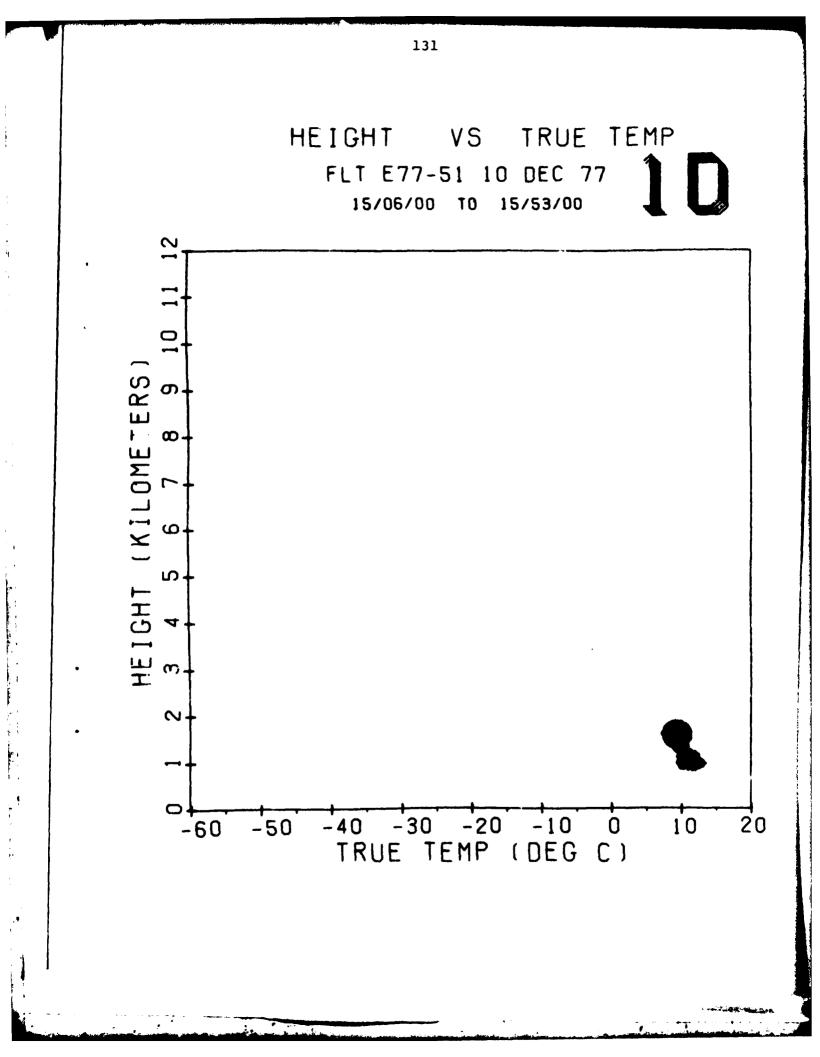

The following pages include KNPLT1D sample plots.

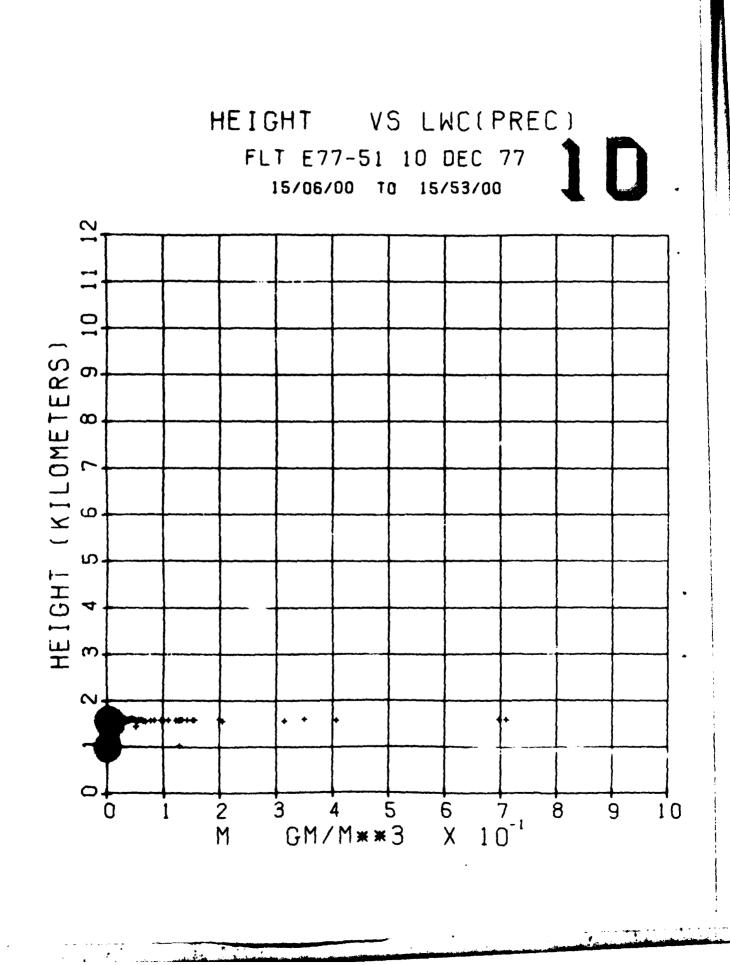





T


125





2.1.3.9 KNPLT1D sample outputs

NE.

¢

The following pages show sample outputs of program KNPLT1D.

				FLT E77-51 10 nEC-751 PROCESSED ON 06/22/78 AT-20-54-02		
	•	\$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	55 55 55 55 55 55 55 55 55 55 55			•
			00			
•	د ر. د د			VERSIUN 2.13.17		
:						

•

ł

. .

	44X[MUM LWC= 1.000£+10 6244S					35			
	MINI4U4 [HC= 1.000E-10 5.445			-3.162(7.96475-04) . 592(7.96546+00)		-2.937(1.1541E-03) .46612.9276E+00)		-2.831.(1.4749E=03) .468(3.1795E+00)	
•	0	נייזטבט ייייייי אונייייייי	<pre>Y = (4.58255-01)X + (-2.04185+06) Y = (9.0275-03)X** (4.53256-01)</pre>	Y LOG MEAN= Y LJG STD =		1) Y LOG MEAN=	<pre>Y = (3.5731E-J1)X + (-2.72496+00) Y = (1.86792-03)X** (3.571E-01)</pre>	4155-01)	
	5487+15950 57	ᠳ᠐ᠴ᠑ᠿᠧᠯ᠔ᢤ᠆᠂᠅ᡎᢓ᠆ᢘ᠐ᠯᠰ᠋ᡗᡒ᠂ᡣᢧᡄ᠐	LEAST SOURAE FIT		L <u>-</u> 45T-578466-427	X LJG FEAN= .030(1.0795E+07) 	LEAST SJUARE FIT	<u>x L95 vEANe - 29715.04155-01)</u> x L)o STD = 1.172(1.43655401) 	

			1		}		}	1 136	1	·	2					}			{	{	
	D GRAHS						ł		1		1	}	}								
	1.0005+1																			!	
	HAXIMUH LWG= 1.000E+10 GRAMS				1) 			, , , , , ,				•		
	T X F		ł									, F		к 1.					Ņ		
	07475 DT								•					1	i -		:		•		٠
	· 1.700E-		*											1		 			•		
	MINIMLY LUC= 1.000E-10 53445		: 			:						1	•	1	X	• t			·		
	6				1					- - 		}		`.		, 1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:				1						1	•					•	•		
	1 = 55Ve		•										1	· · ·					:		
•		-				-						,								į	
	=10224				.156.1		しこって			-											
		6256-51h100-52	75 POTHES USEN	4251 Siliba S	USSI SIMINI SI	-12-64[412-32-0	Salilla St														
		1.03 - H	T	52	1 1 227	<u> + ej- 7 - 7</u>	1 2 537														1
	4 S	E.G.	507	. . .	5	24	רנ														
	1 1		1	i (1	1 I	1		1		1	1	- 1	1	:	1			1	1

			•		M						
• •	RLUT 2 VC245 STAFT#15C510 "124TLC4= 300 PASS= 1 4T24= 0	 Las Solars Jury L		DEWOLINT 73 POLYTY JEED							

.

.

1 1
151300 151300 151300 151300 151300 151310 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10512 151300 10010 151300 10010 151300 10010 151300 10010 151300 10010 151300 10010 151300 10010 151300 10010 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 10000 151300 1000000 151300 100000
15100 1510
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

a la se anna se a se a se

7 139 7 1. 6515-02 -2. 2675-02 -2. 9655-02 3. 2125-92 -3. 3755-92 Z LANGENT EXPONENTIAL SUPPORT LANGENTIAL 3.9005-03 -6.6555-03-1.0225-02-1.4255-02--1.1476-06 3.1726-05 -2.1306-04 7. 6662-04 -1. 5386-03-2.012E+01-16-CLASSES WITH 80 PERCENT-MINIMUML 2 CLASSES WITH UD PERCENT MINIMUM 3.687E-01 ţ ł 1 ł 2.2576-02-1.849E-01 2.2706-02 ī SLOPE= -7.88 INTERCEPT= 5.73-SLOPF= -2.58 [NTERCEPT= 4.66 , ÷ • ċ • å • . 1 i 1 EXPONENTIAL M (43/H++3) 1.7342+00 9.374E-01 -4.558E+02 2.058E+01 -4.+51E+01 -1.2735+01 0.7352-01 7.535E-01 --6-5376-01 1.337E+01 1.1835+00 í ł 1 1 .~ 4.565E+04 -5.95138 ND= 5.396E+05 LAMRNA= -18.14157 1 i -MAX COUNT= COUNT= ł ł 1 THSTRUMENT N (MC/HT=3) 5.431E+00 2.0502-11 1.03454.00 1. 300F+ 00 #ÚN LAM97A= *** Í · ···· u ÷ e ! NTT= 7.109E+FT ė ę -----411= 2.723E+n4 ē c c ć ć ċ 1 (G+VG=M77)++aX3+0N = = NO+EXP*+(LAMB7A+D) = ţ .617 .202 EXADJENTIAL --- LOS (AVE N) 4.14372 4.14372 3.33172 3.57572 3.57572 3.51972 5.54771 5.39171 ..5.23571 -1.46372 22052.4 =00 5.37971 4.32371 4.76771 4-51171 12554.4 ±0u ÷, ļ 1 1 , INST JUMENT -- L C'S (A VE 4)---÷ サン・ドッチュノイ N/ 244 3 - 44 ZTT= 6.0075-01 ZT(T)/TT= 3.775-01 ZE(T)/ZTT= 3.3496-01 5.31165 51 06" 2 ļ ł ÷ SEST FIT ENGLISH NOITENCENTE ISEŧ i (10 3145512 .1) 153558-5-6-1-7.Ju 0.7 1.219 ł ļ -2541-Ì .153 . 1 5 3 1.003 .158 153 +11+ • 1 5 5 • حازرك £60.1-404°7 1.00 4 L 4 1 351-51NI(2-2-- HA 132. .013 122 -192-.167 -1.32 . 232 - 201-. 201 102-4 - 893 <u>454 Externetten 14155600 1-</u> ATT= 1.5555+01 <u>45(1)/477= 8.1335=02</u> 45(7)/477= 8.1335=02 POINTS 201241205 c o 0 13 SUMMATION CLISS + m 2 3.4 5 4 Ì ł

....

-

STAFT12530 255217327	E MSS = 1		VII THING LUCE 1.000E-19	É-19 52445	44XIMUM LWC= 1.0006+10 6RA4S
	0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1				
C V 2/4 - 235CIP 49 POLITS	nsEn	· · ·	•	••••	
· 5- }- s -A· <u>2²5-</u> 3N\$Hbs- <u>1</u> 5\$23	.u3376+û0)% + .10935-01) % **	.(: • • •		
LJJ 744= -,154(5,21552-21) LJG 577= -,156(5,21552-21)		Y LOG MEAN# Y LOG STD =	145(7,1141E-01) .167(1,5747E+00).	:	
511.10d ub 01332c > 1 LU	USEN.				
	+ X(12-2424*	(-6,593 <u>4</u> 5−61			
= - 3 3) = + 0 3 }	•	Y LOG MEAN= Y LOG STD =	123(7.5559E+01) .147(1.3964E+00)	· •	
		6 9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		· · ·	
alor on to					
6	D/An USA	AV	Y=N#DRFF6/M		
- 13u		69F HHH 155			
		6 0 6 6 6 	20005.	, , ,	

Advances in the first of the start

										- H			14	1																		
:					-				:															4 8	•	•			5 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			, , ,
-57,0000 -57,00000			3000	0000	0000	000	0000			-	1+0010	0000		0000			0000	0000		0000		0000		0000	000				8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			•
00	• • •	c (20			0	0	Z= COUNTED 75			*****	1	1 (0 	00		20							06	0	0	+	1= UNCOUNTER 7					
	2.240	2.40	5 C 7 C	20	20	50	3.0					N 1	ስ ሆ	00	00		00	00	20			201	00))))	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				•			
• 90e •	2.330	0.5°) دی اسب : •	• • • •	.70	63 (17)				06/0	0	30%	000		- M -	50	96.	.1°.		200				۰. ۲			•	t 0 9 0 1 1 5		5	
5.5	201-2	ich ri Phili	15	5	20	ີະ	21	5803FD			L L L				107.		-4.36 1.530	•		• •		• •	•		- 7 6 0					ł		
11	6	40		5	6	tè	÷				tafe:		; †	6	53	1	 				; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		2	10					1			۔ ۱.
••••••••••••••••••••••••••••••••••••••			• •				r C	A S D		Na °C	SAMPLES) e c		+ - - - - - -	T	ب ب م ا	 		Ţ		-	+							
11			<u>-</u>	17	• • •	-25	21			- 	CNE	, ,	~ 1	- -	N NC P	-10	 †:				1 2		19	20	t t							- I - I

						12															An one was constant on the second of the sec	
 5 MEAN=355(4.4203E-01)	-		+00)	AEA AEA			L'ANOREN L'ANOREN L'ANOREN		SNORED STORED		1940RE7	SNGFER	13NUF 87	[] 3 NUFEN [] 3 NOREN				CONDER Sector			140MC	1 68
 507 X			11)X + (-2,39052 13)X+* (-3,9155					HANNEL 13	HANNEL 15	44445L 1-1444	44 INEC 11 1 44NAEC 12 1	DHAINEL 13 DHANNEL 14 T	440NGL 15 1 440NGL 7 1	444M6L 4 1 461NSL 5 1	HANNEL 5 1		44.137L 11 1 44.447L 12 1	AANNEL 13 1		484455 11 1 484456 12 1	10100 11 11 11 11 11 11 11 11 11 11 11 1	404N-1 15 1
1)		DINTS USED		2				,	5, 50235			- 5.74737			11.50	- 15.620		58-32 TC			6 - 7 7 7 7 0 - 2 2 9 4	
-155(7.0145-01) -25 5(1. 6]345+44}		571 JE T	3	+ <u>-</u> 26564,6 38764 -36256,63876 -36266,6386			-90×0	20	= 0 C / C		= 16	=6c/c	=60/6	=00/C =00/C	= = = = = = = = = = = = = = = = = = = =	 	(I R			1 8 5 C V	= (c./c	5
1 1 1			4		$ \cdot $		*15:35:31 *15:35:31	151)6101			* 1-1)6167	154364654 151515.154	e	-15435485- +15135193	A1 00				***		, , , , ,	494

 $\frac{1}{2}$

					•										•				• •			• •			ट •			e e								-				•••			
						•			:					1																													
																													1.1744E+01) 5.6968E+01)		c c	. 2142	2.60072 2.60072	. 513F	. 1 5 - 0	. 46495	1100	3560	5213	2.74.29	-2.17012 -7.10226	9606.4	2.3014
16NORED		104E7	LOSEN		10+61	10 E E J		10×En	10 E E U	40F EJ	loken	ICPED	10867	UREU	LUED - LULL	IONER 10151			10% 50	40FEN			10±En	10kEn	10260				MFAN= 1.051(-		•633E+ñ	• 04 3E	• • • • • • • • • • • • • • • • • • •	• 4 2 2 4 4		5355-0	1-3-0-1				u-1122.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04 84 35 15 15 15 15 15 15 15 15 15 15 15 15 15	ANNEL 3	EL JUNIC IO	11. 1-NIA	ANNEL 12 ANNEL 13	ANNEL 14	ENNEL 35		4	CULL 6	ANNEL 7		4445L -17	ANNEL 11	ANNEL 12 ANNEL 13	ANNEL 12	ANNEL 15	ANNEL 1 ANNEL 2	1 JUZZA	ANNEL 2	D-111 12	2 1 JUNIO 1 JUNIO	ANNEL 15	ANNEL - 1	84N7L 19 84N7L 11	ANNEL 12				S 5(7) A		U1F	• 0 75 -	15	n 0 1. +	50						ບັບ ຄ	in.	
1 	1.5243	1242 4 • 3421	5.75.07	.1593 .6674	3.3765	1.3052	.2011	• • • • • • • • • • • • • • • • • • •	1.1023	7372	.3715. .3053	.6401	2744	5 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25	0115	53	3.5	1846.	. 9655	• • • • • • • • • • • • • • • • • • •	150	• 535 a	, 25J7 . 6681	5	5.92044					61+0	10	0		76		1.307	(1.16)	- 1, 7, 19	2.100	2.501 2.501) 2 • 7 0 0	1 7.363
=60/0					= 0 €			= 00/0		H 1			11 1	; # #	1 1 1			=60/0	= 6~/6	= 80/6	= 6070	= 3 1 / 6	m	~ ~	= 6 = 7 6	= 4 C / C	*(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		6(7,13475+97) • (4,422215+33)		155.0°	6 -	. (Pr	VI 187	5 (cs		1.1.1		09. 47 10	Ce)	uć · č · · · · · (z	
5112141		4 2	3	5112141 5412441	112	1.51			112145	1	212	2445	5112	5115 7115 7115	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5112145	1	2110	1121	+12+53	51121578	2.1	5+1-5+5	5122157* 2412457*	21	121	-16-2 <u>5</u> -20		550				171	203		5 8 6 2 - 1				5			1 5 1
AT P15	AT *1.		Ť	A7 • 1	* **	•		14		• •		Ī	+ 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 et 1 1 1	1,			1	AT "1	r -4	1	1. 1.					×		JANG	+	~ •	·	-	6	. · n		2	12			16

		} }				1	۹ ۱	j	ļ	1 1	1	•	ł	11		ł	
						144	1										
							1	•	}	1 1	- {				;		
											ł						
;																;	
	• • •								1			•					
		i i		· · · · ·					1							1	1
	(1	1							
	•						}				,						, , ,
1 (C)	:									:	ı.					·	
	7F50										•						
2011 2011 2011 2011 2011 2011 2011 2011	11:10014150 7500 6001120 7500						1										
3 N H B D 3 D F I H 3 H D F I H 3 H D F I H		•	• •	. ;	• • • •		{	• . • .	;	•							
A u 1									,	• • •	ł						
																•	
3. 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									1								
													•				. !
1	a .													.			
3 + 10 0 3 + 10 0 3 + 5 0 7 + 5 0 0 7 + 5 0 0	13104 1-25													:			
	5572+96 5572+96										}		Ì				
	1246 S																
10080																	{
							1	`>	2	2	5	Э	3	2	2	3	

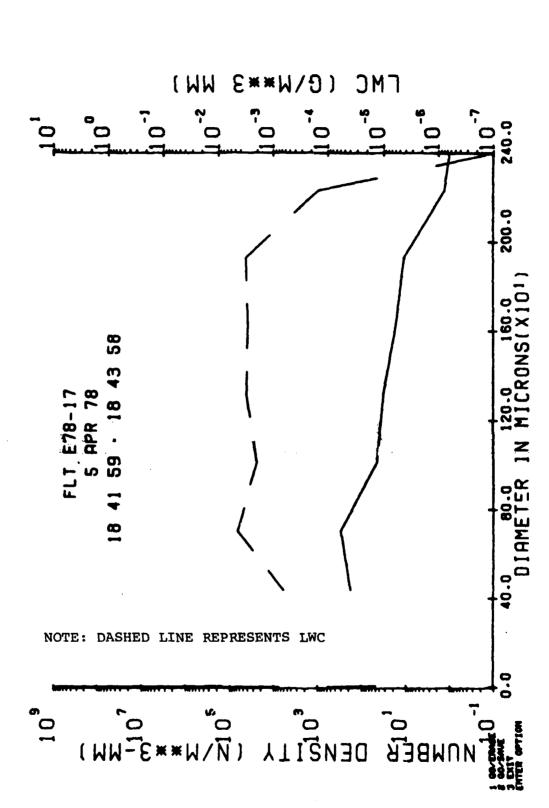
2.1.4 Program DENPLOT

DENPLOT produces dual plots of the log of normalized number densities and normalized (or unnormalized) liquid water content versus particle diameter.

This program is run interactively from the Tektronix graphics terminal. It uses the standard output tape from KNOLL1D (TAPE2). Operating instructions and a sample plot produced by DENPLOT follow. 2.1.4.1 DENPLOT operating instructions

ATTACH, TAPE1, PLOTTAPE NAME, ID=NAME, MR=1 ATTACH, LGO, DENPLOTBIN, ID=GLASS, MR=1 ATTACH, CRT, CRTPLOTS, MR=1 LIBARARY, CRT REQUEST, TAPE 39, *Q LGO

(EXECUTION BEGINS: FOLLOWING STATEMENTS REQUIRE USER RESPONSE)


NORMALIZED LWC=1,UNNORMALIZED=0 ... STARTING PROBE (1-SC,2-CL,3-PR) ... START TIME HH MM SS (-1-1-1 to stop) ... SIZE LIMITS (MU) ... LENGTH (IN SEC) OF INTERVAL TO PLOT ...

(EXECUTION CEASES WHEN -1-1-1 TYPED)

DISPOSE, TAPE 39, FM REWIND, TAPE 2 CAN BE USED TO SHOW THE DISTRIBUTIONS COPY, TAPE 2 USED IN THE PLOT LOGOUT

2.1.4.2 DENPLOT sample plot

DENPLOT sample plot on following page.

2.1.5 Program LST1DTAPE

LST1DTAPE was written to print our various values from KNOLL1D output tape (TAPE2). The values printed are: time, LWC, Z, D_0 , NT, F, TEMP, ALT, slope and intercept.

The values of LWC, Z, and D_o are for total values. NT totals are only those greater than one thousand. The slope and intercept are derived values. They are a result of a least square fit of normalized number density as a function of channel size for all non-zero Precip channels.

LSTIDTAPE performs many calculations. The following narrative will provide an output description and a mathematical analysis, refer to section 2.1.5.2 for a sample output.

Start time, TEMP, ALT, LWC, Z, D_o, NT and FF are self explanatory.

SLOPE AND INTERCEPT

A least square fit is made between the natural log of normalized number density and center diameter (in microns) for the Precip Probe. Channel one and any one in which the number density is less than ten are excluded. For printing purposes the INTERCEPT is printed as an antilog value.

S.E.E.

Standard estimate of error is calculated as the difference

2.1.5 Program LST1DTAPE (cont'd)

between the original data and the calculated line:

S.E.E = sqrt
$$\sum_{i=2}^{15} [(N_i - e^{(ax_i+b)_2})] / NPTS$$

 N_i is number density of channel i of the precip probe. a = SLOPE, b = INTERCEPT, x_i is the center diameter for channel i.

NPTS number of channels used, only those in which the number density is greater than 10.

AVE DEPT

The average distance between the least square fit line and the cloud probe values.

AVE DEPT = $\sum_{i=1}^{15} (N_i - e^{(ax_i+b)}) / NPTS$

 N_i and x_i are from the cloud probe, otherwise N_i , K_i , a, b and NPTS are similar to those values in S.E.E.

LWC % CLD

This parameter is simply the percentage of Cloud Probe LWC to the total LWC.

2.1.5 Program LST1DTAPE (cont'd)

LMAX

The largest sized particle in this sample.

PART TYPE

Particle type

The next entries are MEAN and STANDARD DEVIATIONS.

The time given is the elapsed time during which these samples were collected. The first line is the mean of all these values, the second line the standard deviations. The entries which are not printed with decimal points, were calculated as floating point numbers and then integer truncated. The table in the left corner is a KNOLL1D type table. All entries are the average of those which contributed to the table given above.

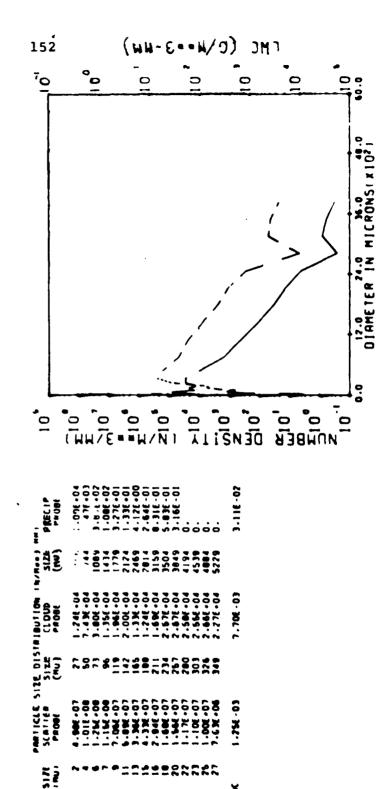
The plot is simply normalized number density as a function of channel size.

2.1.5.1 Program LST1DTAPE operating instructions

```
LOGIN,NAME,ID,TTYNUMBER,SUP
ATTACH,LGO,LST1DTAPEBIN,ID=GLASS,MR=1.
ATTACH,CRT,CRTPLOTS,MR=1
LIBRARY,CRT
REQUEST,TAPE39,*Q
ATTACH,TAPE1,PLTTAPE,ID=PLTNAME,MR=1
LGO
```

ENTER 30 CHARACTER MESSAGE ENTER CLOCK = A/C, 1 = PMS

* ENTER PASS START AND STOP TIMES (HH MM SS HH MM SS)


DISPOSE, TAPE 39, FM LOGOUT

* RECURSIVE LINE UNTIL AS MANY PLOTS ARE PRODUCED AS DESIRED. EXECUTION TERMINATES WHEN -1,-1,-1 USED FOR THE START TIME.

2.1.5.2 LSTIDTAPE sample output

LSTIDTAPE sample output can be found on the following page.

FF 51.077 [MTERCF 783 MAR 49 04 783 MAR 49 04 784 04 794 0			NI FF SLOPE NITR(FF) N/1003 FF NIT NITR(FF) N/1003 272 2.1 7.046-03 A120 272 2.1 7.046-03 A120 27 3.5 2.046-03 A120 3.5 3.5 5.0 1.427-03	DO NI Fr SL DPC NU N/N== 3 /NN /NN A42 A120 -22 -2.1 240 13290 -32 -3.5 220 13290 -32 -3.6 220 13260 -32 -3.5 220 13260 -31 -5.0	NT FF 51067 NN++3 4120 - 22 - 2-1 13290 - 32 - 3-5 13245 - 13 - 5-0	DO NI 15 50000 NU NURCO 17 5000 442 4170 22 2.1 260 112990 172 9.5 270 4054 19 5.0	Immediate Do NI Fr Store Immediate NU N/N++3 NU N/N++3 /NN Immediate A12 A12 .27 .21 /NN Immediate A12 A12 .27 .21 /NN Immediate A12 A12 .27 .21 /NN Immediate A12 .27 .21 .27 .50 Immediate A12 .27 .21 .27 .50 Immediate A12 .27 .26 .35 .50	L MC P DO N1 F SLOPF G/Max3 MMax6/Max3 MU N/Max3 //M //M G/Max3 MU N/Max3 MU N/Max3 //M .0212 0.16×00 442 4120 22 -2.1 .0455 5.06 13299 .32 -3.5 .0132 9.16×00 230 13295 .3.5 .0132 9.44×00 244 13295 .3.5
	10 10 10 10 10 10 10	-	: ????	00 M	MU M	I III III IIII IIII IIIIIIIIIIIIIIIIII	(Mec 7 00 MI 17 17 00 MI 0712 0212 0.16 00 242 4120 227 0.17 0132 0.17 0132 0.17 0132 0132 0132 0132 0132 0132 0132 0132	M.T. LMC 7 00 MT 77 00 MT 77 00 MT 77 00 00 MT 100 MT 100 00 MT 10

ž

and the second second second second second

2.1.6 Program VCOTIME

VCOTIME is a general plotting program available for use on any standard plotting device. Up to two parameters can be plotted in a time frame. In addition scatter plots of one parameter versus another may be done. When this option is used a linear least square fit line is drawn through the data.

VCOTIME uses tape 2 from KNOLLID as its data base and obtains pass times and plot information interactively from the user. It can plot all the VCO and meteorological parameters as well as the four probe LWC's, Z's and MK's. An additional feature of the program is the ability to generate log axis, optionally, instead of real.

2.1.6.1 Program VCOTIME operating instructions

COMMAND MODE

LOGIN,NAME,ID#,TTY#,SUP ATTACH,LGO,VCOTIMEBIN,ID=GLASS,MR=1 ATTACH,TAPE1,PLTTAPENO,ID=NAME,MR=1 (KNOLL1D OUTPUT TAPE) ATTACH,CRT,CRTPLOTS.* LIBRARY,CRT.* ATTACH,TEK,TEKLIB.** LIBRARY,TEK.** ATTACH,PEN,ONLINEPEN*** LIBRARY,PEN.*** REQUEST,TAPE39,*Q.* OR ** REQUEST,PLOT,*Q.* ETL,200. LGO.

ANSWER QUESTIONS IN USER MODE BELOW. WHEN DONE TYPE.

* OR **DISPOSE,TAPE39,FM. ***DISPOSE,PLOT,PL. LOGOUT

* USED WHEN MICROFICHE DESIRED

** USED WHEN OPERATING FROM TEKTRONIX GRAPHICS TERMINAL

*** USED WHEN PEN PLOTS DESIRED

2.1.6.1 Program VCOTIME operating instructions (cont'd)

USER MODE

User responds to questions by typing in response and pressing return button. Initially one question is asked about the plotting device then a series of questions are asked for each individual plot. Plotting is terminated when negative start and stop times are typed.

INITIAL QUESTION ASKED

INPUT PLOT DEVIECE (1=TEK OR CRT, 2=PEN)...

PLOT QUESTIONS ASKED

INPUT START AND STOP TIMES IN FORM HH MM SS HH MM SS.... USE NEG START OR STOP TIME TO END PROGRAM...

DO YOU WANT A SCATTER PLOT (TYPE YES OR NO) ...

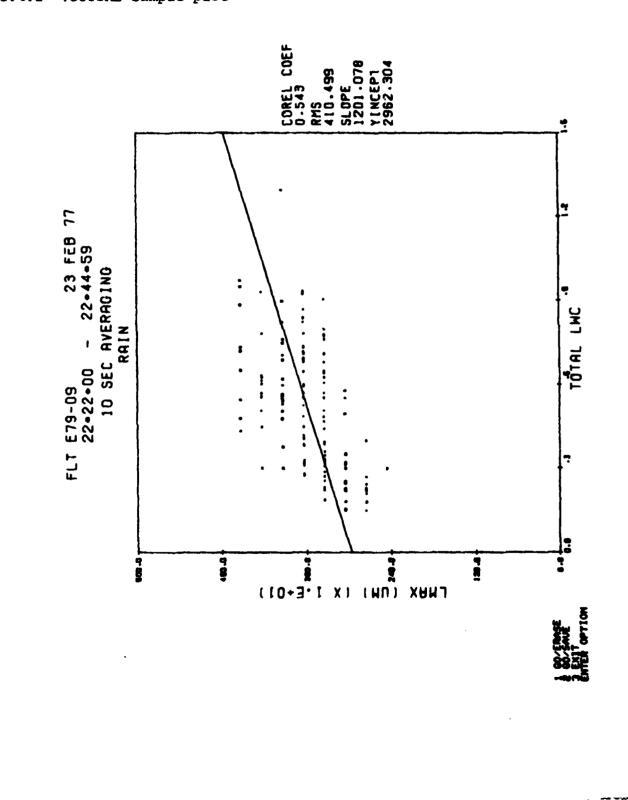
*INPUT # OF TIME PLOTS ON FRAME (1 OR 2)...

** INPUT PARAMETER # (1-37 NEG FOR LOG PLOT)...

** LIMITS OF PARAMETER ARE MIN TO MAX

- ** TYPE YES TO CHANGE LIMITS (NO OTHERWISE)...
- ** AND *** INPUT NEW MIN AND MAX (FREE FORMAT)...
- * ONLY USED WHEN SCATTER PLOT NOT DESIRED
- ** THESE LINES REPEATED WHEN SCATTER PLOT DESIRED OR TIME PLOTS ON FRAME EQUALS 2

*** OPTIONAL


2.1.6.1 Program VCOTIME operating instructions (cont'd)

Constanting of

ł

PARAMETER ID LIST

		DEF	AULT
<u>#</u>	PARAMETERS	MIN	MAX
1	PRESSURE (Mb)	1025.	275.
2	EWER (COUNTS)	0.	10000.
3	HEIGHT (M)	0.	10000.
4	TRUE TEMP (C)	-35.	15.
5	DEWP/FROST (C)	-35.	15.
6	JW-LWC (G/M**3)	0.	1.5
7	ICING RATE (COUNTS)	0.	10000.
8	TWCI-LWC	0.	1.
9	IAS (MIS)	0.	200.
10	MAG HEAD (DEG)	0.	360.
11	CAL AIRSPEED (M/S)	0.	150.
12	TRUE AIRSPEED (M/S)	0.	150.
13	TWCI-1	0.	10000.
14	SCAT LWC (G/M**3)	0.	1.
15	CLOUD LWC (G/M**3)	0.	1.5
16	PRECIP LWC (G/M**3)	0.	1.5
17	TOTAL LWC (G/M**3)	0.	1.5
18	SCAT Z	0.	1000.
19	CLOUD Z	0.	10000.
20	PRECIP Z	0.	100000.
21	TOTAL Z	0.	100000.
22	SCAT DO (MU)	0.	32.
23	CLOUD DO	0.	300.
24	PRECIP DO	0.	6000.
25	TOTAL DO	0.	6000.
26	SCAT MK	0.	100.
27	CLOUD MK	0.	100.
28	PRECIP MK	0.	100.
29	TOTAL MK	0.	100.
30	FORM FACTOR	0.	1.
31	NT (N/M**3)	0.	100000.
32	POTT TEMP (K)	250.	350.
33	DEWPOINT (C)	-35.	15.
34	SAT VAPOR (Mb)	0.	20.
35	VAPOR (Mb)	0.	20.
36	REL HUMID (%)	0.	100.
37	LMAX (MU)	0.	5000.

2.1.6.2 VCOTIME sample plot

ş

2.1.7 Program JWEXTR and JWPLOT

JWEXTR and JWPLOT are optional programs in the PMS-1D job stream. The purpose of these programs is to calculate the altitude, slope and intercepts used to make corrections to the calibrated JW-LWC values.

JWEXTR is the first program run. It strips off the time, calibrated JW-LWC and height values from the Kennedy tape. Since each seconds data will comprise only 3 CDC words an entire flight will comprise less than 1000 PRU's. This can easily be handled as on-line data by the stream.

JWPLOT is then run on this data at the Tektronix graphic terminal and a scatter plot of height versus JW-LWC is produced. On the plot can be viewed layers of points representing a pass during the flight. By lining up the cross hairs of the graphics terminal at the apex of the layers the program will automatically calculate the parameters necessary for the JW adjustment.

Section 2.1.7.3 graphically illustrates the before and after plots produced by JWPLOT. See section 2.1.3.6 for a description of the adjustment made. Operating instructions for these programs are found in the following sections.

2.1.7.1 Program JWEXTR operating instructions

```
DPSI, CM40000, T200, TP1, STMPK. ID NAME
ATTACH, LGO, JWEXTRBIN, ID=GLASS, MR=1.
VSN, TAPE1=PMSXXX. (KENNEDY 1D TAPE)
REQUEST, TAPE1, MT, HI, NORING, S.
FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105)
LDSET, PRESET=ZERO.
LGO.
EXIT(U)
CATALOG, TAPE2, PFNAME, ID=XXXX.
7/8/9
```

DATA CARDS		
CARD 1		
COL 5	ICLOCK	1 USE A/C CLOCK
		2 USE PMS CLOCK
COL 10	IFAS	1 USE TRUE AIRSPEED
		2 USE CALC. AIRSPEED
COL 11-15	NREC	# OF RECORDS TO SKIP
COL 20-27		PMS ON TIME (HH:MM:SS)

6/7/8/9

2.1.7.? Program JWPLOT operating instructions

NOTE: JWPLOT IS DESIGNED TO RUN INTERACTIVELY ON A TEKTRONIX 4014 TERMINAL

THE INITIALIZATION PROCEDURE IS AS FOLLOWS:

LOGIN, NAME, PASSWORD, TEL#, SUP. ATTACK, LGO, JWPLOTBIN, ID=GLASS, MR=1. ATTACH, TAPE1, JWEXTRDATA, ID=XXXX. ATTACH, TAPE3, JWADJDATA, ID=XXXX.* REQUEST, TAPE2,*Q.** ATTACH, TEK, TEKSIM, CY=?*** LIBRARY, TEK. ETL, 100. (EXTEND NORMAL CP TIME LIMIT) LGO. - USE THE FOLLOWING PLOTTING PROCEDURES DISPOSE, TAPE2, PR, IAC. ** LOGOUT

* OPTIONAL PREDEFINED JWADJ COEFFICIENTS

- ** FILE UNIT ON WHICH JWADJ PROFILE AND DATA SUMMARY IS PRODUCED
- *** USE CY=1 FOR TEKTRONIX #1, CY=2 for #2

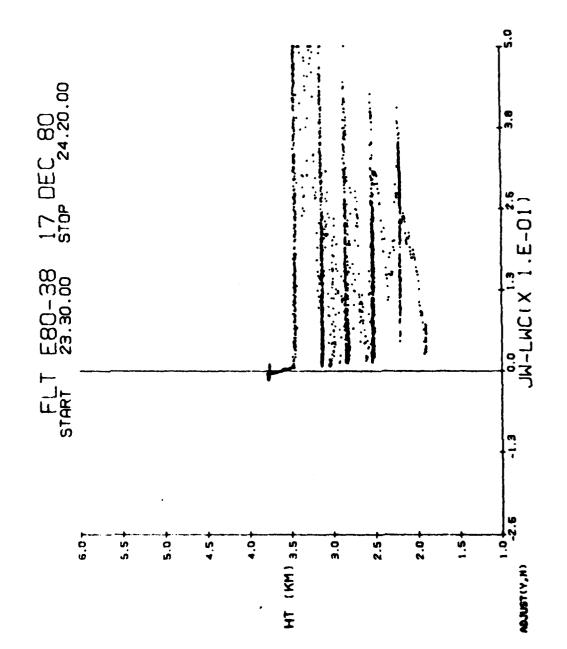
2.1.7.2 Program JWPLOT operating instructions (cont'd)

PLOTTING PROCEDURE FOLLOWS:

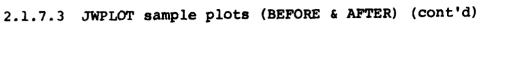
USER RESPONDS TO THE FOLLOWING PROMPTS

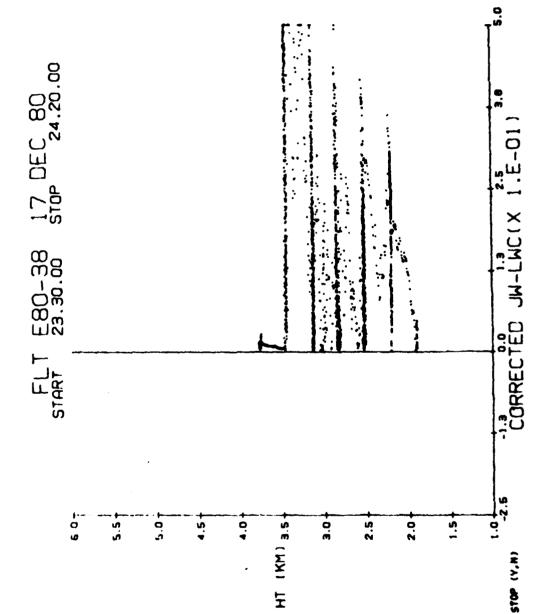
1 "ENTER IN THE START & STOP TIMES (HH MM SS HH MM SS) 2A "DEFAULT VALUES FOR HT(KM) ARE 0,10 DO YOU WISH TO CHANGE THE LIMITS? (YES, NO)" 2B "ENTER THE NEW LIMITS FOR HT(KM) (MIN, MAX)" 3A "DEFAULT LIMITS FOR JW-LWC ARE -.5,1.5 DO YOU WISH TO CHANGE THE LIMITS? (YES, NO)" IF RESPONSE IS YES 3B "ENTER THE NEW LIMITS FOR JW-LWC (G/M**3) (MIN,MAX)" 4 "ENTER IN FLT ID (FLT EXX-XX)" 5 "ENTER IN FLT DATE (DD MMM YY)"

After the flight date has been entered the raw JW-LWC vs. HEIGHT plot will be produced. When completed a prompt, "adjust (Y,N)", will appear in the lower left corner. A response of N will use the existing JWADJ profile supplied as TAPE3 to adjust and plot the corrected values.


A response of Y will initiate the adjusting procedure using graphic input. The user will respond to the light cross hairs by positioning the intersection at minimum LWC values of the layered data (see section 2.1.7.3). Care must be taken to input values in descending order by height. The positional values are entered by responding with an integer (1-9) without a carriage return. The process is halted by entering a 0 for the last integer.

2.1.7.2 Program JWPLOT operating instructions (cont'd)


When the adjusted JW-LWC plot is completed respond N to the "stop (Y,N)" prompt. Don't forget to dispose TAPE2 to obtain a copy of the JWADJ profile.


2.1.7.3 JWPLOT sample plots (BEFORE & AFTER)

Æ

for the second second the second

1.7	4	JWPLC)T s	amp	le o	קר אט אי-נאכ		~	2000 C	0331	52 752 n • 522 n • 5		en.e	~ .		1900			566	0.6		.1211		- 1455			- 1-	1648	-		-	.1442	.1551	203
						JH40		. (607 ne #7	. 6574	. 0573	.0497			. 0.61	. 0776	120	. 0437		1783	9999 1755	1476	1572	.1747	- 1717 - 1717	1744	. 1936		. 2030	526T ·	. 6332	. 2323	1000 · ·	.1996	. 1735
			30	<u>30</u> 157 164	33	AL Ţ (KH)	913	50	1,9104	3	1.5174 1.9094	18	3	, ,	1.90.64	1.9415	1.9296	1.5396 1.9548	1.9619	1.4841	1.9963	2.0196	2.1538	2.1440 2.4565	c. [b75	2.696	2 . 1 64	2.1177	2.1346	2.15 2F	2.1046	2.1867 2.1867	2,1960	2 • 5 1 5 5
T DEC A	30 60 21 0F	NT PROFILE	1, "LA"2)= .05		23, SLAD6)=(7	<u>Trans.</u>	F.		24 44 23	-	е н н	-				212 N 14	2 2 2	5. 5 F. 6	100	- ir	: الحوا الحوا		5		•	F :	2		F" F F - F		zt.z n in	н (л г (р	71 F 1	5
ELT _01-3317	STAPT 23 STOF 24	JM AU JUSTMEI	7.47, XA(21) =	17, X8(73)= 62, X4(74)= 52, X4(5)=	7.21, XA(b6)= 1.91, XA(J7)=	ADJ JH-LNC	· 1 425	• 426	- 376	2227	. 232	525	211		.125	96.	ւ այ,	. 365 . near		_, د_	6401	-	1-4	.1451	• • •		24/1	1652		1 22911		4	1 1 1	 جون
			(-1)	HT()3)= HT()4)= HT(P9)=	132	JH-LHC	. ut6g	• 666 6.5		. P566	474 L .	. 0 495	. 6456	. 5327	362	131		- 00	DF9.	. 1967	1377	1111 1223	.1711	.1784	1149	1784	110	2,37	. 1941	.2287	2365	5 10 1 1 • • • •	62.J	6647
			3 1			ALT (K4)	1.91.4	1.4175 4.9.5	5116 .	1.015	475.1	+0_0 +1	-	1 - 21 34	77.6.		1.9235	1.93+6	45 ft 1	1.9549	2:66.	2 • · 13 2 • 125		2 - 7 5 7 3	· · · 6.4	c.f767 0160		7.1115			9 • 4 16 9 • • • • • • • • • • • • • • • • • • •	1.41.		14 .
						T145			, 9 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1			• ` ->	-1. 57 F	ני ה'	in in i		1 (2) 2		1 1 1	» ج		~ *	, -J : :#*1	7 (r (;);		юч 47-е				(:;;		4 -4 4 _4	1 1.	

•

2.1.8 Program CHCOUNT

Program CHCOUNT compares the Forward Scattering Cloud Droplet (FSSP) and Axial Scattering (ASSP) Probes. This is done by comparison of channel counts generated by the FSSP and ASSP hardware. The probes size particles by counting the number of occluded diodes that result from a shadow caused by the interdiction of the particle with a focused laser beam. Use of the standard calibration range resolves these occlusions into 15 size ranges (channels).

Comparison of the scattering probes by channel counts is valid only when the calibration ranges for both probes are the same (during the testing flights this occurred approximately 25% of the time). It was determined that only channel counts of intersecting size ranges (between probes) should be used.

The comparison of total channel counts for coincident size ranges can indicate that the probes are looking at the same spectra. A more detailed analysis must be done by using some normalized routine to minimize functional differences between the probes. Several methods have been tried and it was decided to normalize each channel count probe cross sectional area and diode width, and the aircraft true airspeed. This gives the channel counts a volume representation and, when summed for coincident size ranges, a good comparative parameter.

No assumption can be made about the validity of the spectral representation for either the ASSP or FSSP probes;

2.1.8 Program CHCOUNT (cont'd)

outside data sources, in conjunction, would need to be used for that purpose. Statistical parameters, for comparison purposes, must necessarily be derived from the total volume for each probe.

Two parameters are calculated from the total normalized counts for coincident size ranges. They are as follows:

1 FSSP dispersion about the mean of total particles (FDIVM)

$$FDIVM = (M-F)/M$$

2 FSSP dispersion about total ASSP particles (FDIVA)

$$FDIVA = (A-F)/2$$

where:

A = total normalized counts for ASSP probe F = total normalized counts for FSSP probe M = (A+F)/2

FDIVM can best be thought of as a number representing how much the FSSP or ASSP contributes to the mean. A returned value of 1 indicates that the ASSP contributes everything while -1 indicates the FSSP does. FDIVA are values in the range (- α ,1) which indicates a relationship between the two probes. Equality returns a value of 0, ASSP domination returns a value tending toward 1 while FSSP domination tends

2.1.8 Program CHCOUNT (cont'd)

toward $-\alpha$. For example:

FDIVA = 1/2 means that A = 2xF

while

FDIVA = -2 means that F = 2xA

Program CHCOUNT provides a graphic representation of the above data. In addition it was decided to add a switch that would exclude channel 1 of ASSP, FSSP or both from all calculations. This is necessary since these channels are suspect, in some cases. Normal program operation is without this switch set.

A microfiche output of the probe spectra is included. Two plots are produced per pass segment (see sec. 2.1.8.2). The first is the normalized channel counts versus channel center diameter. The second is a cumulative sum of these normalized counts versus center diameter (for coincident channels only). This is a fair representation of how the spectral distribution contributes to the total value. Each plot contains data for both probes, on the same scaling, hence a direct visual comparison can be made.

Operating instructions for program CHCOUNT may be found on the following pages.

2.1.8.1 Program CHCOUNT operating instructions

CONTROL CARDS NAME, CM55000, T400, TP1. ID NAME VSN, TAPE=PMSID. REQUEST, TAPE1, S, HI, NORING, MT. ATTACH, CRT, CRTPLOTS. LIBRARY, CRT. REQUEST, TAPE 39, *Q. DISPOSE, TAPE 39, *FM. ATTACH, LGO, CHCOUNTBIN, ID=GLASS, MR=1. FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) LDSET, PRESET=ZERO. LGO. 7/8/9 DATA CARDS HEADER CARD COL 1-9 IDATE - FLIGHT DATE (DD MON YY) COL 11-16 ID - FLIGHT ID COL 17-20 NSKIP - NUMBER OF EOF'S TO SKIP BEFORE PROCESSING DATA COL 21-25 IPROBE - CANNISTER CONTAINS FSSP (1=CLOUD, 2=PRECIP) COL 26-30 ICLOCK - WHICH CLOCK TO USE (1=A/C, 2=PMS)COL 43-50 IH: IM: IS (PMS CLOCK-ZERO SECONDS) PASS CARD COL 2-9 IH: IM: IS - PASS START TIME COL 12-19 IH: IM: IS - PASS STOP TIME COL 21-30 INT - AVERAGING INTERVAL COL 31-40 ASCA - ASSP CROSS SECTIONAL AREA (MM**2) IN F10.4 FORMAT COL 41-50 FCSA - FSSP CROSS SECTIONAL AREA (MM**2) IN F10.4 FORMAT COL 51-60 ASIZE - ASSP DIODE WIDTH (UM) IN F10.4 FORMAT

2.1.8.1 Program CHCOUNT operating instructions (cont'd)

COL 61-70 FSIZE - FSSP DIODE WIDTH (UM) IN F10.4 FORMAT COL 71-75 CH1ASSP - CHANNEL ONE ASSP NOT USED WHEN = 1 COL 76-80 CH1FSSP - CHANNEL ONE FSSP NOT USED WHEN = 1 PASS LITERAL CARD COL 1-50 LITERAL - CENTERED IN THE FIRST 50 COLUMNS

FOR EVERY PASS CARD THERE MUST BE ONE LITERAL CARD FOLLOWING IT. USE AS MANY PAIRS OF PASS AND LITERAL CARDS AS NEEDED IN TIME INCREASING ORDER.

C54(MM#2) .3670 C54(MM#2) TRUF AIRSPEED(M/SEC) 85.7505 .2550 PASS 4 ACTIVE/DELAYED 200.0 COUNTS (N/CM##3-UM 50.0 100.0 150.0 9.0 50.0 20.0 30.0 SIZE (UM) 10.0 40.0

2.1.8.2 CHCOUNT sample plot

172

2.1.8.3 CHCOUNT sample output

CHCOUNT sample output on the following page.

			-3-7 07	CUH SUN	15+3+9*(3*64E+2)		i	1.64E+3(3.72 2.40C+1/7.77	2.636+3(3.73 2	2.256+313+24		2.76E+3(3.74E+5)			2.766+3 (3.746+5)		1 1 1 1 1				CUN SUM
			8	P*	364208.33		1076.39	562.50 555.56	437.50	119-06	- 6° 94	00.0	0.0								P# N/ (HN++ 2+ UN)
			٥.	UN SUN ESSP	1	796140					00111	•	_ J	121000 1 121000 1			 			•	
	5000 5380 2380		ILAL ASSP	NOL INC				736(716(1642) 462 1 402	1962	196		005			5000		TO TAL ASS	HUN HUN
NON NOT	8		ABOUT TOTAL	COUNTS	78669	1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155	19	63	2				> <		SON	8			ABOUT	COUNTS
PROBE COMPARISON	+15104148+ +15104148+ - DM (UH) C3A(MH++2)	EL AYEO	- ESP DISP.	SIZE RANGE		(1-5- 2-0)			1	- 4			<u>יף</u>			PROBE COMPACISON 296 Seconds Daia	+15109144+	DH (UY) CSA (MH+2)	LAYED	- <u>FSSP_01SP</u> -	SIZE RANGE
SCATTER P	2	ACTIVE/DELAYED			1 (2)	<u>-1-1</u> -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	<u> </u>	1	1 (2	1 12	1 (2)				1 (2)	ATTER	10		ACTIVE/DELAYED		
SSP/FSS S	i i i			CUN SIN	.11E+2(3.11E+2	5.65E+2 (5.65 <u>E+2)</u> 5.87E+2 (5.97F+2)	12+30E+27+++++++	******* (5 °93E+2)			*** (5 °94E+2) *** (5 °94E+2)	10	<u>(5.34E+2)</u>		** (5 . 946+2	455P/5522 51	-12101140.				CUN SIM
SA S	() () ()	4	L PARTICLE	2		- 5.65	Ī		<u> </u>			i i			1	A55 E79-44		04) (4M##2)		L_PAST ICLES	
	ASSP DM (U) CSA ()	PASS	JESEP-DISPA ABOUL JEAN DF LOLAL	(HD+2++KH)/h	310.63	254-72	2.72	2°72 1°75	0.33	20 m					90.0		ACED	CSA (4)	.2¢ #9	ESSE DISE. ABOUL HEAR JE TOLAL	4/ (MH++2+J4)
			מ ור. ובש א	121 121	220)			+35)	436)	1917	436)	1921	4361	1954	+36)					NET TUD	
			01 SP4 _98	CUM SUY	2281	4150) * * * * * *									DISP. A	CUM SUI
			-4522	COUNTS	228		2	~ -	0	- 1			d							ESSP	COUNTS
			-	SIZE RANSE	10.4 -0.5	- المدق - شدف الماق - شدف	develoard_	(13.0-12.) (12.0-12.])	(14.0-15.))	- (1.41-1.4.4)	(18.0-20.1) /20.1-27 11	(22.0-2+.1)	12-1-25-11	(50.0-23.0) (28.0-31.0)	(30.0-32.1)						35K42 3215

•

* 1

.

2.1.9 PMS-1D data tape archiving

A method of archiving the Kennedy tapes has been developed to copy six 800 BPI 7-track tapes onto one 3200 BPI 9-track tape. In this manner older tapes, not generally used, may be recycled to free much needed space in the tape cabinets.

The Cyber Control Language (CCL) and system routines of the CDC system are utilized in this procedure to successfully copy the six PMS-1D tapes onto one 9-track output tape. Since only two tape drives are required at any one time, priority levels for this job are not high and throughput time will be one day generally.

CCL is used to process any errors that occur during the job and will ensure all six tapes are successfully copied. If problems develop they will appear in the job day file. The job could then be resubmitted to copy only from the problem area onwards. This would save some duplication of efforts.

Once a successful tape is produced, program TESTIDCOPY can verify the copies. After a successful test, the six old PMS tapes can be recycled. The above archiving and testing should require at most 2-4 days throughput time to produce one output tape.

SET, R3=0. WHILE, R1.NE.0, COPYT2. SET,R3=R3+1. ** IFE,R3.EQ.1,ONE. ** TPCOPY, PMS#1. (KENNEDY TAPE) ** ENDIF, ONE. ** IFE,R3.EQ.2,TWO. ** TPCOPY, PMS#2. (KENNEDY TAPE) ** ENDIF, TWO. ** IFE,R3.EQ.3,THREE. ** TPCOPY, PMS#3. (KENNEDY TAPE) ** ENDIF, THREE. ** IFE,R3.EQ.4,FOUR. ** TPCOPY, PMS#4. (KENNEDY TAPE) ** ENDIF, FOUR. ** IFE,R3.EQ.5,FIVE. ** TPCOPY, PMS#5. (KENNEDY TAPE) ** ENDIF, FIVE. ****** IFE,R3.EQ.6,SIX. ** TPCOPY, PMS#6. (KENNEDY TAPE) ** ENDIF, SIX. COMMENT. FINISHED A TAPE COPY DISPLAY,R3. SET,R1=R1-1. ENDW, COPYT2. EXIT(U) WEOF2.

DATA CARDS

7/8/9

```
PROGRAM SKIP2(INPUT, OUTPUT, TAPE2)
     INTEGER DUM(8)
     BUFFER IN(2,1)(DUM(1), DUM(8))
     IF(UNIT(2))100,100,100
100 BUFFER IN(2,0) (DUM(1), DUM(2)
     IF(UNIT(2))100,200,100
200 STOP $ END
7/8/9
     PROGRAM HEAD2 (INPUT, OUTPUT, TAPE2)
     INTEGER HEAD(8)
     READ 1, HEAD
  1 FORMAT(8A10)
     WRITE 2, HEAD
  2 FORMAT(5X,8A10)
     BUFFER OUT (2,1) (HEAD(1), HEAD(8)
     IF(UNIT(2))100,100,100
100 STOP $ END
7/8/9
     PROGRAM WEOF2 (INPUT, OUTPUT, TAPE2)
     ENDFILE 2
     STOP $ END
```

n-mil nation 4

7/8/9

DATA CARDS (CONT'D)

```
.PROC, TPCOPY, VSNUM.
     COMMENT. NOW IN PROCEDURE TPCOPY
     UNLOAD, TAPE1.
     VSN, TAPE1=VSNUM.
     HEAD2.
     REQUEST, TAPE1, S, HI, MT, NORING.
     REWIND, TAPE1.
     FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105)
     COPYBF, TAPE1, TAPE2.
     REVERT.
     EXIT(s)
     WEOF2.
     REVERT.
     7/8/9
 *** TAPE2 HEADER CARD
**** HEADER INFORMATION CARDS - MAXIMUM OF SIX
     6/7/8/9
```

NOTES:

- * SET R1 TO THE NUMBER OF TAPES TO COPY. IT IS ASSUMED THAT SIX ARE TO BE COPIED INITIALLY: THUS ONLY THE HEADER FOR TAPE2 IS WRITTEN WHEN R1 IS 6. ADDITIONALLY, IF WE DESIRE TO RERUN PART OF THE JOB (6-R1) DATA FILES WILL BE SKIPPED BEFORE COPYING TO TAPE2.
- ** PMS NUMBER REFERS TO THE 1D DATA ID. AS MANY SETS AS REQUESTED BY R1 MUST BE INCLUDED HERE.
- *** THIS CARD ONLY INCLUDED WHEN R1 IS 6. WHEN USING THIS CARD PLACE A 7/8/9 CARD AFTER IT.
- **** AS MANY CARDS AS R1 MUST BE INCLUDED HERE. IN THE ORDER THEY APPEAR IN ** ABOVE. EACH INFORMATION CARD MUST HAVE A 7/8/9 CARD IMMEDIATELY FOLLOWING IT.

the second s

2.1.10 Program TEST1DCOPY

TESTIDCOPY was recently written to verify the archiving of PMS-1D data tapes (section 2.1.9). This program inputs the original and archived tapes, and produces octal dumps of variable numbers (user input) of records. These octal dumps are visually compared and verified. Operating instructions appear below; no sample output will be presented.

COMMAND DECK DPSI,NT1,T25. ID# ID NAME MAP,OFF ATTACH,LGO,TEST1DCOPYBIN,ID=GLASS,MR=1. VSN,TAPE1=PMSXXX. REQUEST,TAPE1,S,HI,MT,NORING. VSN,TAPE2=ARCHIEVENUMBER/NT. REQUEST,TAPE2,NT,NORING,E. FILE(TAPE1,RT=U,BT=K,MRL=1024,MBL=1024,RB=1,BFS=105). LGO. 7/8/9

1 DATA CARD

CC 1-5 NEOF(I5 FORMAT) - NUMBER OF EOF'S ON TAPE2 TO SKIP CC 6-10 NREC(I5 FORMAT) - NUMBER OF RECORDS TO DUMP

6/7/8/9

2.1.11 Program COPPMS

COPPMS is a general purpose copying program (for 1D data). It has been written to handle all necessary data manipulation. Once the data has been formatted, proper use of the appropriate control cards will give the desired tape format.

PMS 1D data is produced by the Knollenberg 1D device on board the C-130E aircraft used by AFGL. The on board Kennedy recorder stores data on a seven track, ^{8QQ} BPI tape. Each record consists of a 4 second buffer containing 1024 characters. Each character is in 4 bit BCD with 2 leading bits (totalling 6 bits per/character).

Program COPPMS buffers in binary the 1024 character record. A 256 word array of values (64 consecutive words per second) is created by taking each consecutive 4 characters, masking to zero the two leading bits (of each character) and doing the following internal conversion:

(4 character word)	001000	000100	000100	000001
	8	4	7	1

becomes

(value) $8 \times 1000 + 4 \times 100 + 7 \times 10 + 1 \times 1 = 8471$

The 256 word array of values must be suitably formatted for output. This is done by encoding the 256 word array into one of 103 words by using I4.4 format. At this point buffering out coding (of the packed characters) and the proper use

2.1.11 Program COPPMS (cont'd)

of the REQUEST control card (consult appropriate system manual) will result in the tape being formatted properly. In the above cases use of a nine track drive defaults to ASCII code, while use of seven track drive defaults to BCD.

Two other parts were considered in the writing of COPPMS. First, the whole tape is not always copied thus the use of passes was incorporated into the program. Second, data from more than one flight or non-consecutive data of the same flight can be written to a tape. In that case use of the elapsed second counter (when problems arise with the A/C clock) has no meaning. Therefore we must make sure the aircraft clock registers appropriate times. If the aircraft clock was not working properly we must use the elapsed second counter of the source data tape to generate correct times. The calculated time is written over the A/C clock before the data is encoded and buffered out.

2.1.11 Program COPPMS (cont'd)

Operating Instructions

Control Cards

*DECKID, CM40000, TP2, T200. ID NAME ATTACH, LGO, COPPMSBIN, ID=GLASS, MR=1. VSN, TAPE1=PMS###. REQUEST, TAPE1, S, HI, NORING, MT. VSN, TAPE2=TADENO. **REQUEST, TAPE2, S, RING, ... FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) FILE (TAPE2, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) LGO.

7/8/9

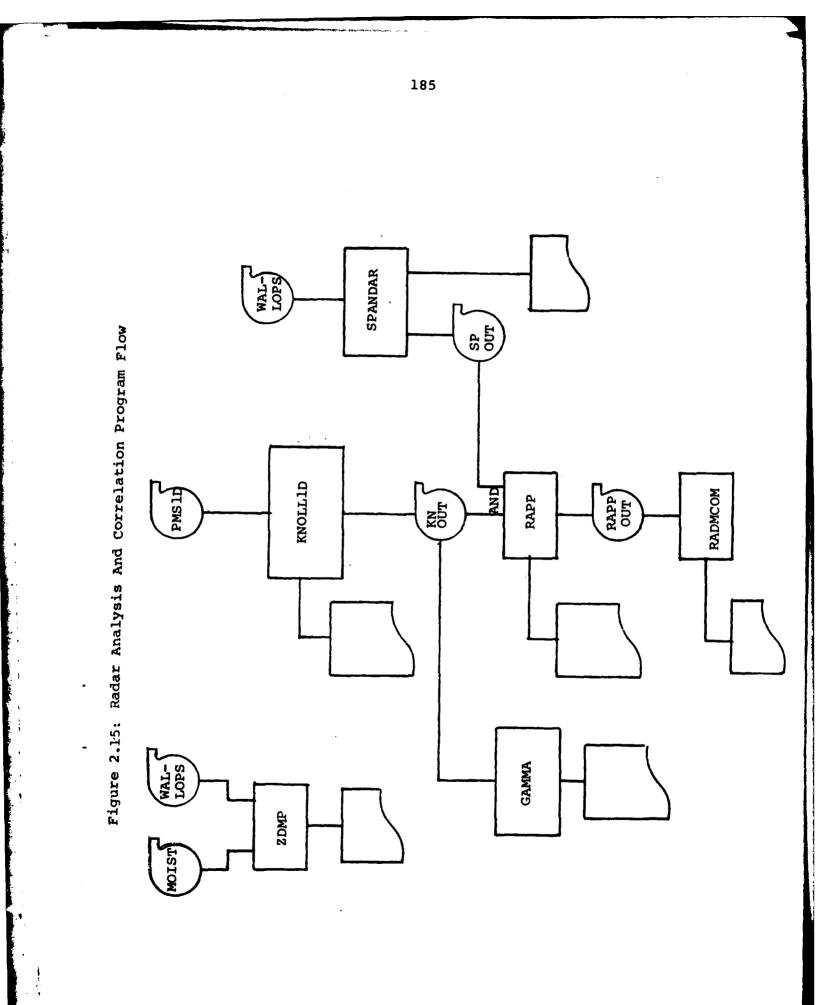
Option Card

COLUMNS	1-5	***NEOF
	5-10	ICLOCK(1=A/C, 2=PMS)
	13-20	PMS STRAT TIME (HH:MM:SS)
	-PASS CARDS-	(ONLY USED IF CLOCK=2)
IH IM IS	IH IM IS	(START & STOP TIMES IN
		TIME INCREASING ORDER)

* IF NINE TRACK TAPE DESIRED CHANGE , TP2, TO , TP1, NT1.

** USE PROPER PARAMETERS TO OBTAIN DESIRED FORMATING.

*** NUMBER OF END OF FILES TO SKIP BEFORE PROCESSING THE DATA. DATA IS WRITTEN OVER THE LAST END OF FILE MARK.


2.2 Radar analysis and correlation

The radar processing programs play an important role in the synoptic analysis of aircraft recorded data. A ground based radar can determine the mass present in a given amount of space. This mass can be transformed easily into liquid water content. The ability to obtain radar data in the same time and space of the aircraft observations enables an objective analysis of the 1D and 2D PMS devices.

Figure 2.5 shows the processing flow used in radar analysis. The data arrived at LYC in one of two ways; a 'moist' data tape from the Kwajalein missle range, or a preprocessed tape from Wallops Island. The Wallops Island tapes were first processed by program SPANDAR to obtain a compatible tape for analysis. Both tapes can be verified by program ZDMP which produces a data dump.

Program RAPP does most of the analysis work. RAPP uses a KNOLLID output tape along with a radar tape to produce comparisons. Program GAMMA uses a KNOLLID output tape and radar data tape to analyze water content and reflectivity. Program RADMCOM is a continuation of RAPP analysis LWC to reflectivity relationships.

A more detailed description of the individual programs can be found in the following sections.

,

2.2.1 Program RAPP

RAPP is the primary program used for correlating radar and aircraft data. The program accepts aircraft one second data produced by KNOLLID or HIACID and radar data in moist format (radar data from the Kwajalein missile range that has been preprocessed by another contractor) or Wallops Island data. Wallops Island data must be preprocessed by program SPANDAR to put it in a suitable format for program RAPP.

One second data is accepted and all averaging takes place within the program. Radar data is optionally accepted with some modifications as follows:

(a) If Wallops data - add 6.5 dBZ for everything except rain.

- (b) If Kwajalein data:
 - (bl) If ice below 4.6 km add 6.5 dBZ
 - (b2) If rain above 4.6 km subtract 6.5 dBZ

Program RAPP correlates data collected from the PMS 1D and 2D devices aboard the C130-E or the LEARJET with data acquired from a ground based radar. The correlated data is then plotted in a variety of ways:

aircraft "MK' vs. radar "Z"
 aircraft "Z" vs. aircraft "M"
 aircraft "Z" and aircraft "M"
 vs. time
 aircraft "Z" and radar "Z" vs. time
 aircraft "MK" and radar "Z" vs. time.
 aircraft "Z" vs. radar "Z"
 aircraft "M" vs. radar "Z"

where

M is liquid water content GM/M**3 Z is radar reflectivity MK is defined as 1000*M/√Z

The output listing consists of tabulated data points, correlation percentages for shifts of aircraft-radar matchings of ±3 seconds, and least square regression coefficients for plots 1, 2, 6, 7 listed previously. The graphical output uses 105mm film generated by a CALCOMP CRT plotter.

The following output description refers to the sample outputs produced by program RAPP (labelled 'A' to 'H').

PAGE A

Listing of input options. Top right hand corner lists the date, time of execution, and the version of RAPP used. Underneath are two lines of comments input on data cards, two cards of 42 characters each.

The next information printed is a listing of aircraft parameters; aircraft, date of flight, probe selected, clock selected and the aircraft running mean interval.

Following these are radar parameters, if needed, the collecting radar, radar offset distance, radar correction, minimum detectable signal, radar tape format, and the radar

running mean averaging.

Since there could be independent radar/aircraft running means, the program lists the final time shift caused by the running mean.

The program has a set of default limits which are used to set axis ranges and these are listed. Remember for scatter plots, a full size plot is made and then the data is "blown up" to fill the frame for a second plot, see the appendix.

At the bottom of the page is a listing of the pass parameters. Pass number 15 input. The radar time range is dependent on the aircraft time requested. It is a function of aircraft time, less the time it takes the aircraft to traverse the offset distance and finally the time shift caused by the interaction between independent running means. Of course the aircraft and radar times are also affected by the radar data available.

The aircraft velocity is calculated by taking the range, azimuth for the first and last times within the requested time period and then deriving the speed by the law of cosines.

The time offset, given in integer seconds, is the result of dividing the offset distance by airspeed. The aircraft time was already described. The LWC rejection is the input values per pass or default. Same for Radar. If any LWC

falls outside the range, the matching aircraft-radar points are ignored. The same for the radar.

The average height is given by the radar for the radar time period. The radar adjustment is a pass by pass adjustment to each radar DBZ. There is also a total adjustment as described earlier.

PAGE B & C

This is a printout of original aircraft data and the resulting running mean values. Notice at 08:32:33 the derived value exceeds the maximum LWC and therefore was ignored.

There are two sets of output for the aircraft data one set lists LWC, MK and Z, the other (PAGE C) lists LWC, NT and F.

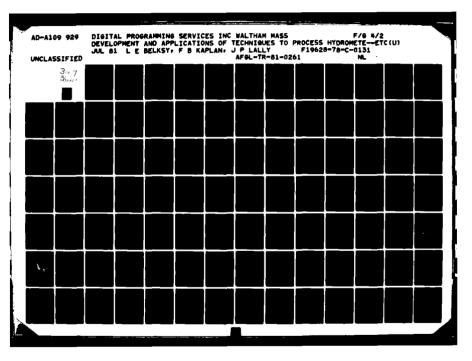
At the end of each set of aircraft data, the average of all accepted points is printed.

PAGE D

This table lists the original radar values, and of course their running mean. The page heading lists all the input options. The radar correction (top right) is the sum of the global correction and this pass' correction. The columns are self evident excepting the last two. The ICE/WATER is the dielectic constant for ICE/WATER ± 6.5 DB. See the specification letter for its

constraints. The last column unlabelled, is the point by point difference between the pass offset time and this particular second, note that almost all values are less than 0.5. The last line of output lists the average of accepted points, the RMS and the time shift.

The RMS is the error of this full time shift (15.22 - full value of 15 given on PAGE A). This RMS = 16.67 seconds. Normally this should cause alarm, but what is not printed is a page where the radar reversed itself and gave values of 13, -14, 16 causing this large number.


PAGE E

This page lists the cross correlation percentages for time shifts of \pm 3 seconds. The highest correlation determines how many seconds the data is shifted.

For each value, the six aircraft and one radar, the maximum and minimum are found along with their first four moments. These calculations are done twice, once for normal data and then for the common logs of the data.

PAGE F & G

List the least square fits of each parameter with their RMS. These values are all calculated and reported in log values unless otherwise indicated.

PAGE H

Lists each time plot as it is produced.

An additional rejection has been implemented within RAPP.

This rejection system ignores DBZ values within a given range if the associated PP-OP parameter is less than a certain value. (see below for table.)

To maintain program flexibility these rejection values must be input whenever this option is selected. Thus if the option is not selected, the program requires the standard input deck and will execute exactly as before. Only when the option flag is set, see section 2.2.1.2 for operating instructions, are there any processing differences.

Functionally, the table values are input and printed. When subroutine READ is called to verify the pass times, all values which will be rejected are printed with the appropriate identification. When subroutine RADFIL is called each radar value is checked and if it is rejected it is reset to below the nominal default value. Thus guaranteeing that it will not be used in the data analysis.

If the DBZ value is within the limits below, the accompaning PP-OP value must be greater than the one listed for that range.

LOWER	UPPEI	PP-OP VALUE
* * *	0.0	20.0
0.0	10.0	19.0
10.0	20.0	18.0
20.0	30.0	17.0
30.0	40.0	16.0
40.0	50.0	15.0
50.0	60.0	14.0
60.0	****	11.0
LOWER < DBZ <	UPPER	REQUIRES PP-OP > TABLE VALUE
Figure	2.16:	PP-OP value limits

2.2.1.1 RAPP sample output

RAPP sample output labelled 'A' through 'H' are found on the following eight pages.

			194				- - -
		VD RADAR				RADAR ADJUST 0.00	
	RAPP 4.00.03 08/09/79 12.46.15. USTNG VARTU	AIRCRAFT AND				AVERAGE HE IGHT 14485.12	
	PPUGRAME F VFRSIONE 4 RUN DATEF PPOCESSEDF	БОТН ТН1				J-CT10N Maximum 1.000E+04	
		NING MEANS		•		RADAR REJECTION Minimu ^m Maxim 1.6006-74 1.0005	
						45JECT TON HAXI KUH 5 1.0L0E-V1	
•						41N1HUH 410° LE-05	4
		SECOND(S)		HAXI4UH 1.0003E+13 1.0006+12	1.0000E+34	ATRC3AFT ST3P	
		MEANT 3 SEC	NETER	HAXI4UM 1.0092E	1.00	LT START 68129116	
		SUNNING	JISTANJE 1 3404.40 HETERS TTJN1 0.00 CTABLE RADAR SIGNAL AT 1 KL.ONETERI CDE1 1 LOE1 1 LEVAL 5C2 RADAR RÜNNING HEANT 5 3 HTAN SHIFTS THE AINJRAF DATA 1. HEAN SHIFTS THE RADAR 0ATA 2.		-04 	2FFS 15	
		CIP	NJE 8 330 4 RADAR SIGN RADAR SIGN - CR RADAR - CR RADAR - THE R HIFTS THE R HIFTS THE R HIFTS THE R	FOR PLOT LIMITS HINIMUS 1.0005	1.010000000000000000000000000000000000	R A7C Sfop velocity 197.05	
		AIKCMAFT:A DATE: 04 JJ78 PRDBE: 04 JJ_78 PRDBE: 0.0JJ + PRECIP CLOCK: STAVJA27 AVKAGIN5_INTERVAL FOP J	THE RUNG AND	S		A C A J 15 A 15 A 16 A 16 A 16 A 16 A 16 A 16 A	
		A L C C A FT & D A T C A A FT & D A T C A A FT & V C D D F = C 4 C C D C A 8 S T A V + A 6 C N 5		A A A A	A/C NT A/C NT A/C F RADAR Z	PA55 S	

a construction of the second s

in the second
	1 		ì																1	.9,	5	!		1						ī		i	;									
			1			•														1		-			•							1			•		1					
DERIVED	- 2623E-1	L 3 3 7 F	.1889E-0 56476-7	.319CE-0	.6664F-J	.5755E-0	• 6 5 6 5 6 - 6 5 6 2 5 5 - 6		-23535-0	• 69u25-0	- 2275c-1	• 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9-3-3-240	.9417:-0	-314E-u	• 99995 • 1 6 9 7 6 1 • 1	• • • • • • • • • • •	.35254-1	-37200- -37200-		.555c:-U	.83145-0	•15u4F-J	•73765-Ú		. 53226-0	. 3211-0			81245-0	.6252E-û	64575-0		.24315-U	L-32+2.	47865-9	93335+0		72425-0	70362-0	.95865+3 	1
DRIGINAL Z		-9253E	4 5965-0 • • • • •		.8042E-4	•2584E-0	.5/75. 	.566Jē-0	-2424E-0	.4975E-û	•0305E-6	• 4 4 5 5 5 5 - 6 5 7 5 4 6 - 0	1615E-4	-1754E-U	.4681E-0	•148/E-4 .75255-1	• - 2 6 7 4 E - 1	.42655-0	•3521E-	コードにってき	8447E-Ü	.84125-4	• ü823E-0	.8[10E-3			.7635+S	.4C99E-0		17355-6	.1626E-J	.5294E-0		.5635E-ú	E-37477.	.9142E-C	75748-0		1712E-0	-31729.	.16135-u 7:7.5-D	5
-DERIVED MK	I ROAFA	1.28785+02	.2615E+0 7510540	• 48 16 E + D	.44546+0	•4563E+D	• 4469E+0 66 33 64 3	• 22 (CTU • 44 11 F+ 0	.3327E+ 4	. ¿ 9 27 E+ B	.365646	• 50 67 54 4 • 5 20 2 4 0	.16195+D	.15225+3	0 4372 07 *	•1596E+0	.22C8E+0	.17 395+ 1	1010101	• 20 20 4 1 • 23 6 1 7 4 1	• 5 + 55 E + Ú	• 25 35E+ 0	. 2937E+ů	• 31 945 + J	-2007- -2367F+3		•1677E+u	.1423540	.17355.5	.14645+0	.1275E+ J	.1151E+0		.18755+0	.16765+3	• 1 594E+ 3	1+38252*	• 30 LAEF U		.16477+0	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	• 2 C 4 / E 4
DRIGINAL MK	G 4 1		577E+0	52085+0	0+3745	07515+0	59 33E + B 74 95 5 4 9	1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	20496+0	0+3278	236JE+0	1 2 1 1 4 C	89585 + 6 21495 + 6	1903E+C	0917E+0	0676540 2775546	0 + 12 9 1	1930E+C	14745+0) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	24975+0	25746+0	5456E+v	6581545 7560540		29535+0	0.544E+C	817E+0	21 J 22 4 1 1 8 8 2 5 4 8	12976+0	.1292E+C	.12375+6		1130 + C	.17535+L	.12523+C	1767540	2411-10 2266 46	3+322FT	4		• • • • •
UERIVED LMC	0-220	8392-	8382c-0	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	54925-0	53505-0	03565-0		120-0	555 - 6	515-0	0 - 1 - 2 0		95105-3	87252-0	315-0	.1]765-6	• 15115-0	.03525-0	9-12646 -	9745-0	9-37L44	.77135-0	• 6371E-U		.21505-3	.23465-0	• 33745-U	0 - : + c c t - 0 - : - 0 - c t - 0 c	23556-0	33665-0	.5350r-A	• 5340; • 0 27767 - 0	•13325-0	.23385-0	0-20274 .	.0302E-v	9-399CF -		0-342	• 73645 • °	ם ו יי
INITIAL REJECTION			•																																							
OPJ67NAL L ES		2.1201-202	- 0	.57146-1		-32n +6 -	• 3787E-6		• 4964F-0	·69705-0	• 3325E-0	• 49531-0	.15fli-D		• 9822F-U	• 9 3 4 4 E 4 0 9 2 2 5 4 1 - 0	• 53 605- U • 1 6 1 5 6 - û	.1398E-ü	•1132c-0	• 400/E=4	•5361E-0	.136+c-D	.38952-0	-73795+U	. 2426F-0	.39235-4	.612GE-0	. 43 - 65-J		.0125c-0	0-30400.	• 87 J4E-U	.72755-0	. 10 105-U	.29545-0	.43186-0	• 56555-6	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		.1662c-5	• 13605+0	
DATA ACCEPTED											 																										THE SNORED	1 CN051				
1 VERAGED TI 4E		2313156.0C	9131151.0	3 8 31 8 52 . ú 4 : 31 8 5 7 . ú	5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	3131155.3	1 + 31 + 56 • û	9.52.527°U	111159.0	3:32 1 C.C	3:32:1.0	3:32: 2.4		31.21 5.3	31321 6.0	31321 7.3		5 2 3 2 2 1 0 • û	3 2 3 1 1	3132112.0	3 4 32 4 1 4 • 3	9132115.0	5:32:126.4	9172117.0		3 4 22 4 23 • 3	3132121.3	3132122.0	521771 5140 5140 5140 5140 5140 5140 5140 514	3132125.3	3132126.0	9:32:27.0	3132123.G	2 4 4 5 1 5 7 4 4 2 1 1 2 1 3 3 4 0		3132132.3	3:32:33.0	3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3122136.3	9:32:37.6	2132138.5 	3 8 32 8 39.
AFCRAFT TIVE		2013215C	913115				10 21 1			34224	0:32tu		3 1 1 C 1 C		21,22 E.			· · · ·				31.52 11	113-11	152510		212512	-1-1-1-	5. 1. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.			313212	3: 22 %			::32:0	510015	12010	312216 212315	31 32 13	12	513215 	58.5785

.....

															1	96								
DEPIVED F		4.35662-01	4.44965-41		4.55566-31	4.72875-01	4.79195-01	4.6361E-JL	4.645cE-01	4.7926E-01	-4.6641E-UL	4.52765-01	4.4120E-01											
DRIGINAL		4.5563E-ù1 k_7699E-h1	4.3668c-31			4.8794E-01	4.85705-01	4.7131E-31	4.3481E-01	4 • 8 6 9 6 6 5 6 - 8 1	R.21536-01	4.5UJE-01	4.1526E-01	5.A3725-A1										
DERIVED	.13465.	• 21295+	.20265+	•14946+	• 37 336+	• 91 11 E+	1.98760E+J5 1.9821E+J5	64935+	.1787c+	.10596+ .6279E+	. 86 23 E+	-2159E+	• 64 54 E4									-		
CRIGTVAL	20264.	- 91 305	17617. 19885.	- 0390E	36326*	.815CE	• 63355 • 93555	.1272E	.0.52E	• 32 396 • 1506E	2665.	.6158	1.73495+05	4 . 703654 AG										
DEPIVED	2+55#15+0	52600	99916-0 23155-0	3-25842	04075-0	83945-0	2.13945-02	2+900	92955-3	91575-0 73885-0	553AE-1		29665-0										υ	
INITIAL REJECTION																			•					
DRIGINAL LHC	5-36765.	2. +5595-0	•1+155-0 •53966-0	125751 125751	• 1 • 5 • 6 • 6 • 9 • 1 6 E - 6	• öů35E-ű	• 30345-0 • 55275-0	•1725E-û	. 61172-0	0-36321*		. 4394E-0 .1364E-0	1.4732E-02	69736162		t t								
UATA ACCEPTEJ	1										a name of the state of the state of			a an a <u>here</u> ann an a stàirt								1 1		
4 VEJAGED 11 15	3 = 3 > 5 4 9 = 0	0 8 74 8 42 8 0	5152142.1 3132145.0	2 2 2 4 4 4 9		91 32 147.0	-3832848 -3853_849	0313215L.L	3132151.0	3132152.3	3122154.3	3:32:55.3 3:22:56.0	3132157.0											
HIRCKAFI TINC	31328	12010	31361 31361	8: -2 F	17210	31321	8132145	61324	31321	12016	3225	31321 31321	63132158 09132158					:		1				1

Construction and the start of the

i	¦ '	R i		وب	~ ~	2 9	u M		ا س		5 N		; ;	1		!	 1	* E	U L	0	د :
. 1		H			•••	"" 	- - - - -	3 M			۳.4 ۱	•	197		: i			:			
1	5	ENT	(3) (4)	, ,	ະ.	.	າມ •••						ECONDS -								+
	AR CORRI (IN D3)	CE/HA TE											S Z								
	RAD	H										00	15.2								
		ETECT			•••	0.00	30	30		<u>.</u>	00	00.	SKIFT OF								-
		τρ											1 1								
		JECTION											ON TIRE								
		D RE	100		20	160	98	56	9	5 10			8 A SE D								
		DERTVE					66	ĞĞ			36		366+00								
		IGINAL	162		λO.	a a	24	υ r	، سە	0 10	MN	210	667								
		OR IG	•							•••											
000		e	00	5.5	00			5.5	5	58	50	703	HIFT								
007-		RAPA 09										-16.7	THE'S							ġ	
MFTER		GHT ERS	481	684		824	475	475	120	+ 1 +	475	4475	S. 0F					1 9 8 1 1			
KI LO		HEIGH		1	ř ř	.	-	11			ਜੱਜ	.									
AT 1 00000		TION	1140	1810	N N	~ ~	38.20	4480	1820	5450	583J 617J	6490 68480	2		•						
-E 382		eL e Va De 3	ໜີ່ພ	101		in un	ທັທີ	ŝ	10.1	15.	15.	15.	.032		i			1			
ECTA4.	0S)	MJTH Grees	136	- 1 - 1 - 00 - 1 - 1	5 m M M	251	304	365	- 7 - 8 - 18	475	5 S 3	4.2570		• i							
14 GET 134E-	10	AZT S JF	13:	:1:		33	극극	11	1	33	4 7	177	ISTNIC		1	 		 1 1			
003-7 04 141 4	رم، اب	PANSE METER:		? N :	77	6.6	0 0		2	35	88	52597	E0 7 P		1					ì	
ATA F Z S	NTERVA				22	00	20	0 0			0 9		CCEPTE		:						
VED 3A	EAN IN	AGED Ime		27.0	29•0	130°76 137°06	2.5	4.1	36.3	9°.0	0.0		THE AC								
153C 153C	2 11	44220	31.32				***	22.16			3 8 32		1		;				1 1 1	1	
R		1.4	125			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1. 1. 1. 1. 1. 1.	:34	1.56 1.56	137		- 171 171	46Ê 3F			1		1	1		
ACOR	22028	K AD AR F I H	1.00		20		·? ·?	2 2 2	2 7 8 2 7 8		0130	3132	VE P.A		÷	-	1		i		

Ň.

•

UF SECONDS RADAR IS SHIFTED -3 -2 -2 -1 -1 -2 -2 -2 -1 -2 -2 -1 -2 -2 -2 -1 -2 -2 -2 -2 -1 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	u ⁻ 5.0005 300 R IS 541FFE0 -3 <	U ^U SEGONDS RUDAR IS SHIFTED	1 CADA2 A HUMIXM A HUMIXM A FUMIXM 2530 ARCA8	L 24F1 T141: 06123116 - 1042 T141: 10123100 - TMUN ADDE7TABLE LMC 1401 ADDE7TABLE LMC 2 05551 15 SECONDS	- 0013213d 10132137 1.005-36 1.005-31	ā	LTAUSS TA	LTA055 T& UC PROBELCLOUD + PR RADARE ALCCR TYPES GULL-ROSE	TH JUL TH		AVERAGING INT: 3 SECOND AVERAGING INT: 3 SECOND
EXAMINE STATISTLAT PARANTERS FOR THE 214 ACCEPTED POINTS FROM THE 214 POSSIBLE EXAMINA MAXIPUH MAXIPUH STEMESS KURTOSTS EXAMINA MAXIPUH STEMESS KURTOSTS EDMETERT EXAMINA MAXIPUH STEMESS KURTOSTS EXAMINA STEMESS KURTOSTS EGMETRIC EXAMINA STEMESS STEMESS KURTOSTS EXAMINA STEMESS STEMESS STEMESS EGMETRIC EXAMINA STEMESS STEMESS STEMESS EGMETRIC EXAMINA STEMESS STAGES STAGES STAGES EGMETRIC EXAMINA STEMESS STAGES ST	Sialistial Adautias For the 216 ADSERD POINTS FRON THE 214 POSSIBLE Raw SID De/ Mitanum Maitul Maitul Stemess Authosis Curtosis From From C L-1356+00 S.6276-72 1.0804-00 2.1325+10 -1.9594-01 5.0466-02 6.0046TAL C L-1356+00 S.6276-72 1.0804-00 2.1325+10 -7.7366-01 2.5046-61 6.6046TAL C -1.335+00 1.4135-31 -2.3956-50 -1.2577+31 -7.5246-01 -2.7366-01 6.6046TAL S.2335+00 1.4135-31 -2.306+90 -1.2776-31 6.6746-01 -2.0236-31 6.6046TAL S.2335+00 1.4135-31 -7.736-01 -1.206+90 -1.2776-31 6.6746-01 -2.0236-31 6.6046TAL S.2335+00 1.4135-31 -7.726-01 -7.5246-01 -1.4656-01 6.6046TAL S.2335+00 1.4135-31 0.6056-11 -7.206+90 -1.4656-01 -6.6046TAL S.2335+00 1.4135-31 0.6056-01 -1.4656-01 -2.0236-31 6046TAL S.2335+00 1.4135-31 2.0226-01 0.5146-01 -2.0236	1 5/11/5/1.1/1 AAXI-U1 SKEMMESS -U270SIS 1	11	SECONDS RADAR	IS	MA 4		SS COPATIC	A RO	0ATA 86.28 66.28	215 POINTS
ER HEAN STD DEV HT4INUH HAXIFUH SKEWNESS KURTOSTS c c J366400 5.6276-72 1.8886+60 2.1926+10 -3.0546-01 5.0466-62 c -1.336400 5.6276-72 1.8886+60 2.1926+10 -7.3766-01 5.60465-62 c -1.336400 5.6276-71 1.8886+60 2.1576+30 -7.3766-01 2.6616-01 c -1.336400 2.2796-71 -3.036400 -1.5776+30 -7.5246-01 2.46656-01 r -1.9045-01 -3.768-01 -7.5246-01 -7.5646-01 -6.6746-01 -6.6746-01 r -1.9046-01 -1.41362 5.44465+30 -1.2306+90 1.46576-40 -4.6566-01 r -2.9326-01 1.4150 -1.2306+90 -1.2065-01 -0.4656-01 -4.6566-01 r -2.9326-91 -2.9326-91 -2.9326-91 -0.5576+90 -1.2306-90 -4.6566-01 -4.6566-01 r -1.6536+01 -2.0276+90 -1.3226-91 0.7956-02 -0.44667 -4.6566-01 r 1.0966+02 1.3336+11 -2.7326+51	R.G. M. STD D.C.V MINIMUM MAXIFUI SKEMMESS KURTOSTS CJ366+00 5.6276-72 1.8886+00 2.1936+01 5.0466-02 -1.336+50 5.6276-72 1.8886+00 2.1936+01 2.65616-01 -1.336+50 2.2796-31 -2.5966+00 1.5796+10 -7.3766-01 2.6666-02 -1.336+50 2.2796-31 -2.5936+00 -1.2376+10 -7.3766-01 2.4666-02 -1.936+00 2.0766-11 -7.3936+00 -1.2376+10 -7.5246-01 2.46676+01 1.4362-01 5.7466-01 3.44676+01 -7.5246-01 2.46676+01 -2.0336-01 2.3365+00 5.74326+11 4.14650 5.444676+01 -1.2376-01 -2.0356-01 2.3366-01 5.7426-12 4.414650 1.3226-11 -2.0336-01 -2.0336-01 2.3366-12 -4.14650 1.3226-11 -5.7466-01 -2.0356-01 -2.0166-01 1.3176-12 5.9956-11 7.7326-12 2.4416-01 -8.6666-01 -4.6556-01 1.3176-12 5.9956-11 7.7326-12 2.4416-01 -8.6666-01 -5.5556-01 1.776-02 5.9176-12 </th <th>ER HEAN STD DEV HIVLNUH HAAIPU4 SKEMNESS KURTOSIS c136E+00 5.627 - 12 1.8886 + 50 2.132 + 50 5.646E - 01 2.651E - 01 c1335+00 2.627 - 11 -2.1935 + 50 -1.5375 + 11 -7.524E - 01 2.665E - 01 c1335+00 2.625 - 11 -2.1935 + 50 -1.6377 + 11 -7.524E - 01 2.465E - 01 c1335 + 00 1.4435 - 11 -2.736E + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c1335 + 00 1.4435 - 11 -2.736E + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c2335 + 00 1.4435 - 11 -2.7326 + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c2335 + 00 2.8952 - 11 -2.0275 + 50 -1.2377 + 11 -7.524E - 01 -4.659E - 01 c1406 - 02 1.3376 - 01 -7.7326E - 01 -1.6577 + 90 -1.6576 - 01 -4.659E - 01 d176 - 02 2.8956 - 11 -7.7326E - 11 -7.7376E - 12 -1.6576 - 01 -1.6566 - 01 1.776 - 02 1.776 - 02 3.7956 - 12 2.9176 - 02 3.7956 - 01 -5.5536 - 01 1.77</th> <th></th> <th></th> <th></th> <th>13</th> <th>L PARAMT SRS</th> <th>F03_7HE_214</th> <th>TG3EPTED POT</th> <th>"NT S 'FROM' THE "21 A</th> <th></th>	ER HEAN STD DEV HIVLNUH HAAIPU4 SKEMNESS KURTOSIS c136E+00 5.627 - 12 1.8886 + 50 2.132 + 50 5.646E - 01 2.651E - 01 c1335+00 2.627 - 11 -2.1935 + 50 -1.5375 + 11 -7.524E - 01 2.665E - 01 c1335+00 2.625 - 11 -2.1935 + 50 -1.6377 + 11 -7.524E - 01 2.465E - 01 c1335 + 00 1.4435 - 11 -2.736E + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c1335 + 00 1.4435 - 11 -2.736E + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c2335 + 00 1.4435 - 11 -2.7326 + 50 -1.2377 + 11 -7.524E - 01 2.465E - 01 c2335 + 00 2.8952 - 11 -2.0275 + 50 -1.2377 + 11 -7.524E - 01 -4.659E - 01 c1406 - 02 1.3376 - 01 -7.7326E - 01 -1.6577 + 90 -1.6576 - 01 -4.659E - 01 d176 - 02 2.8956 - 11 -7.7326E - 11 -7.7376E - 12 -1.6576 - 01 -1.6566 - 01 1.776 - 02 1.776 - 02 3.7956 - 12 2.9176 - 02 3.7956 - 01 -5.5536 - 01 1.77				13	L PARAMT SRS	F03_7HE_214	TG3EPTED POT	"NT S 'FROM' THE "21 A	
MK $() 36E+00$ $5.627E-72$ 1.8886 ± 6.0 $2192E+10$ $-3.054E-01$ $5.046E-62$ LMC $-1.33E+50$ $5.627E-72$ 1.8886 ± 00 $-1.579E+10$ $-7.376E-61$ $2.564E-01$ Z $-1.913E+60$ $4.0055E-J1$ $-7.539E+00$ $-1.554E-01$ $2.564E-01$ NT $5.233E+00$ $1.413E-J1$ $4.738E+60$ $-1.237F+JJ$ $-7.524E-01$ $2.465E-01$ NT $5.233E+00$ $1.413E-J1$ $4.738E+60$ $-1.237F+JJ$ $-7.524E-01$ $2.465E-01$ NT $5.233E+00$ $1.413E-J1$ $4.738E+60$ $-1.2322E-JJ$ $-1.653E+01$ $1.467E+uJ$ R $5.233E+00$ $1.413E-J1$ $4.738E+02$ $-1.3222E-JJ$ $-1.20E+J0$ $-2.902E+01$ R $-1.633E+01$ $5.762E+J1$ $-4.148E-J0$ $-2.932E+J1$ $-2.932E-J1$ R $1.096E+02$ $1.333E+J1$ $7.732E+J1$ $-9.557E+J2$ $9.795E-J2$ $3.064E-01$ R $1.096E+02$ $1.333E+J1$ $7.722E+J1$ $9.795E-J2$ $3.064E-01$ $-4.566E-01$ HX $1.317E-J2$ $5.797E-J2$	HK $(., 1)36E+00$ $5.627E-12$ $1.008E+10$ $3.195E+01$ $5.066E-02$ LMC $-1.335E+00$ $2.5279-11$ $-2.59E+00$ $-1.257E+10$ $-7.376E+01$ $2.561E-01$ Z $-1.919E+00$ $-3.792E+10$ $-7.37E+01$ $2.561E-01$ HT $5.233E+00$ $1.413E-11$ $4.738E+60$ $-1.237E+10$ $-7.524E+01$ $2.465E-01$ HT $5.233E+00$ $1.413E-11$ $4.738E+60$ $-1.230E+70$ $1.465E+00$ HT $5.233E+00$ $1.413E-11$ $4.738E+61$ $-7.320E+10$ $1.465E+01$ HK $1.096E+02$ $1.4132E+11$ $7.732E+11$ $1.557E+12$ $0.514E-01$ $-2.023E-01$ HK $1.099E+02$ $1.433E+11$ $7.732E+11$ $1.557E+12$ $0.795E-01$ $-2.023E-01$ HK $1.096E+02$ $1.337E-02$ $2.944E-01$ $-8.66E-01$ $1.6652E-01$ HK $1.096E+12$ $2.936E-01$ $2.595E-01$ $2.736E-01$ $4.6652E-01$ HK $1.096E+102$ $2.736E-12$ $2.944E-01$ $-6.653E-01$ $1.4652E-01$ HK $1.$	HK $()$ 36E+00 5.6276-72 1.888E+50 $2.132E+10$ $5.627E-12$ $5.625E-01$ Z $-1.332E+00$ $2.295-30$ $-7.576E-01$ $2.561E-01$ Z $-1.916E+00$ $1.413E-101$ $4.736E-01$ $2.656E-01$ NT $5.233E+00$ $1.443E-101$ $4.736E-01$ $2.656E-01$ $2.665E-01$ NT $5.233E+00$ $1.443E-101$ $4.736E-01$ $4.736E-01$ $2.652E-12$ $4.1485-01$ $2.665E-01$ NT $5.233E+00$ $1.443E-12$ $4.1485-00$ $-1.237E+14$ $0.465E-01$ $2.665E-01$ NT $5.233E+00$ $1.439E-12$ $4.1486-04$ $-1.237E+14$ $0.651E-01$ $-2.035E-01$ R $-1.633E+00$ $1.439E-02$ $2.956E-11$ $-7.32E+14$ $1.596E-01$ $-6.654E-01$ MK $1.096E-02$ $1.339E+14$ $7.732E+14$ $1.557E+12$ $2.941E-01$ $-6.654E-01$ R $1.736L+03$ $6.951E-02$ $2.941E-02$ $2.964E-01$ $-4.659E-01$ MT $1.736L-02$ $4.967E-02$ $4.976E-02$ $3.964E-01$ $-6.645E-01$ <td>PARANETER</td> <td>MEAN</td> <td>0 06</td> <td>HIVINUM</td> <td>HAXIMU1</td> <td>SKENNESS</td> <td>KURTOSIS</td> <td></td> <td></td>	PARANETER	MEAN	0 06	HIVINUM	HAXIMU1	SKENNESS	KURTOSIS		
LMC-1.33 x +502.279 x -31-2.546 x +00-1.579 x +30-7.376 x -612.561 x -01Z-1.945 x +004.005 x -11-3.393 x +00-1.237 x +31-7.52 x +012.465 x +01MT5.233 x +001.413 x -114.736 x -605.414 x +30-1.206 x +011.467 x +03MT5.233 x +015.762 x -124.146 x -01-1.322 x -316.51 x +01-2.465 x +03R-2.982 x -015.762 x -12-4.146 x -01-1.322 x -316.51 x +01-2.023 x -01R-2.982 x +015.762 x -12-4.146 x -01-1.322 x -316.51 x +01-2.035 x -01R2-1.63 x +015.762 x -12-4.146 x -01-6.51 x +14 x -01-2.035 x -01R2-1.63 x +012.655 x +11-2.027 x +10-1.557 x +129.795 x -01R1.096 x +021.339 x +117.722 x +111.557 x +129.795 x -01-9.64 x -01HK1.096 x +021.339 x +117.722 x +11.557 x +129.795 x -01-9.64 x -01LVC1.317 x -025.956 x -172.294 x -129.795 x -013.666 x -01	LMC-1.335+90 $2.279_{-}31$ -2.54670 $-1.2377+3$ $-7.5246-01$ $2.5616-01$ Z-1.94675-40 $4.0055-11$ $-3.3936+60$ $-1.2377+3$ $-7.5246-01$ $2.4636-01$ NT $5.2336+00$ $1.4135-31$ $+7.386+60$ $5.4146+30$ $-1.206+90$ $1.4676+40$ NT $5.2336+01$ $5.7022-32$ $-4.386-60$ $5.4146+30$ $-1.206+90$ $2.4656-01$ R $2.3336+01$ $5.7022-32$ $-4.386-60$ $-1.32225-91$ $6.5145-01$ $-2.0335-91$ R $2.3336+01$ $5.7022-32$ $-4.3486-61$ $-1.32225-91$ $-4.6536-01$ $-4.6536-01$ R $2.3336+01$ $5.77226+31$ $-5.6772+92$ $9.7956-02$ $-4.6536-01$ HK $1.0966+02$ $1.333926-91$ $7.73226+51$ $1.65772+92$ $9.7956-02$ HK $1.0966+02$ $1.3376-01$ $-2.0236-01$ $-9.6656-01$ $-9.6456-01$ MI $1.7366+02$ $1.7526+52$ $9.7956-02$ $-9.6656-01$ $-9.6656-01$ NT $1.7366-02$ $1.776-04$ $2.5926+15$ $9.3666-01$ $-5.5556-01$ NT $1.7966-02$ $2.6412-12$ $9.30376-01$ $-9.6666-01$ $-9.6565-01$ R $2.1796-02$ $2.54416-12$ $9.30376-01$ $-9.5556-01$ R $2.1796-02$ $2.54416-12$ $9.30376-01$ $-9.5556-01$ R $2.1796-02$ $2.54416-12$ $9.3676-01$ $-9.5556-01$	LHG -1.333+90 2.579-31 -2.546F91 -1.573E+10 -1.561E-01 Z -1.996+00 4.0055-11 -3.93E+00 -1.237F+1) -7.524E-01 2.465E-01 NT 5.233E+00 4.0055-11 -3.93E+00 -1.237F+1) -7.524E-01 2.465E-01 NT 5.233E+00 1.4195-01 -3.93E+00 -1.206+01 1.4657E+03 F -2.982E-01 5.7022-12 -4.748E-64 -1.3222E-01 6.514E-01 -4.656E-01 F -2.982E+01 7.732E+11 1.5772E+12 1.4657E-01 -4.650E-01 HK 1.096c+02 1.399E+11 7.732E+11 1.557E+12 9.795E-01 -4.650E-01 HK 1.096c+02 1.399E+11 7.732E+11 1.557E+12 9.795E-01 -4.650E-01 HK 1.096c+02 1.399E+11 7.732E+11 1.557E+12 9.795E-01 -4.656E-01 HK 1.736L-02 1.254C-12 8.177L-01 9.505E-01 -5.55E-01 K 1.736L-02 2.917E-12 2.917E-12 9.305E-01 -5.555E-01 K 1.736E-02 3.417E-02 <td< td=""><td>A/C HK</td><td><pre>4.336E+00</pre></td><td>- 12</td><td>1.5885+00</td><td>2.1925+10</td><td>-3.0546+01</td><td>5.0465-62</td><td>GEOME TRIF</td><td></td></td<>	A/C HK	<pre>4.336E+00</pre>	- 12	1.5885+00	2.1925+10	-3.0546+01	5.0465-62	GEOME TRIF	
Z -1.90.85+00 4.0055-J1 -3.3936+00 -1.2376+JJ -7.5246+01 2.4656-01 NT 5.2336+00 1.4135-J1 4.7386+60 5.4146+30 -1.206+90 1.46576+00 F -2.9826-01 5.7626-J2 -4.1486-61 -1.32226-31 6.5146-01 -2.0236-J1 R Z -1.6536+00 2.9595-J1 -2.0276+00 -9.6026-01 6.5146-01 -4.6506-01 R Z -1.6536+00 2.9595-J1 -2.02276+00 -9.6026-01 6.6746-01 -4.6506-01 R Z -1.6536+00 2.9595-J1 -2.02276+00 -9.6026-01 6.6746-01 -4.6506-01 MK J.0966+02 1.33936+J1 7.73226+01 1.55776+92 9.7956-02 3.0646-01 HK J.0966+02 J.33936+J1 7.73226+01 1.55776+92 2.9446+01 -8.6456-01 HK J.0966+02 J.33946+11 7.73226+01 J.55776+92 2.9446+01 -8.6456-01 LUC J.31776-02 6.79726-12 9.9565-01 3.6666-01 3.6666-01	Z -1.953E+00 4.0055-JJ -3.93E+00 -1.237F+JJ -7.524E-01 2.465E-01 NT 5.233E+00 1.4435-7J 4.738E+60 5.414E+70 -1.200E+70 1.4657E+40 F -2.338E+01 5.7622-12 4.148E-61 -1.322E-7J 6.514E-01 -2.033E-01 R 2 -2.3382+00 1.4135 -2.027E+30 -9.602E-0J 6.514E-0J -2.033E-0J R 2 -2.3382 5.7622-12 -4.1482-6J 1.322E-7J 6.514E-0J -2.033E-0J R 2 -1.3322E-7J 1.322E-7J 6.514E-0J -2.033E-0J HK 1.0966-402 1.3392E-1J 7.732E+JJ 6.514E-0J -8.645E-0J HK 1.0966-402 1.3392E-1J 7.732E+JJ 9.572E-7J 9.544E-0J -9.645E-0J LUC 1.731E-U 5.470E+0Z 2.944E-0J -8.645E-0J 1.775E-0J -5.553E-0J NT 1.751L-0D 4.506E-1Z 3.456E-0J -5.555E-0J -5.555E-0J 1.775E-0J -5.555E-0J K 1.751L-0D 6.541E-1Z 5.470E-0J 9.3656E-0J -5.5555	Z -1.395+C0 $4.0055-J1$ $-3.193E+00$ $-1.237F+JU$ $-7.524E-C1$ $2.465E-4U$ NT $5.233E+00$ $1.4135-J1$ $4.738E+60$ $5.414F+30$ $-1.20E+30$ $1.4657E+40$ F $-2.338E+00$ $1.4135-J1$ $4.738E+60$ $5.414F+30$ $-1.20E+30$ $-2.023E-01$ F $-2.338E+00$ $5.7626-J2$ $4.738E+51$ $4.732E+11$ $6.57F+30$ $-1.20E+30$ $-1.653E-01$ M $1.096E+02$ $1.339E+31$ $7.732E+51$ $1.557E+30$ $9.54E-01$ $-4.655E-01$ MK $1.096E+02$ $1.339E+31$ $7.732E+51$ $1.557E+32$ $9.79E-32$ $3.064E-01$ MK $1.096E+02$ $1.332E+51$ $1.557E+32$ $9.79E-32$ $3.064E-01$ MK $1.776E+02$ $1.77E-01$ $9.377E-01$ $9.575E-01$ $9.56EE-01$ N $1.775E+01$ $6.541E-J2$ $3.957E-12$ $7.376E-11$ $9.355E-01$ $1.956E-01$ F $5.417E-01$ $6.541E-J2$ $3.957E-01$ $1.096E-01$ $1.956E-01$ $1.956E-01$ R $2.417E-01$ $6.541E-J2$	ېد	-	31	-2.5465+30	-1.5792+30	-7.3765-01	2.561E-01	GEOME TRI C	
NT 5.233E+00 1.4135-31 4.738E+60 5.414E+30 -1.206E+90 1.467E+40 F -2.982E-01 5.7622-32 -4.148E-61 -1.3222-31 6.514E-01 -2.038E-31 R 2 -1.603E+00 2.8595-31 -2.027E+00 -2.035E-01 -2.038E-01 R 2 -1.603E+00 2.8595-31 -2.027E+00 -9.502E-01 6.574E-01 -4.659E-01 R 1.096E+02 1.3392E+31 7.732E+51 1.557E+92 9.795E-32 3.064E-01 HK 1.096E+02 1.3392E+31 7.732E+51 1.557E+122 9.795E-01 -8.645E-01 LUC 1.317E-32 5.956E-12 2.021E-13 2.67557E-12 9.795E-52 3.665E-01 Z 1.736E-02 1.254E-02 8.177L-64 5.797E-12 9.9565F-01 -8.656E-01	NT $5.233E+00$ $1.4435-71$ $4.736E+60$ $5.414E+30$ $-1.206E+90$ $1.4657E+40$ F $-2.982E-01$ $5.762E-12$ $-4.146E-64$ $-1.322E-71$ $6.514E-01$ $-2.923E-31$ R 2 $-1.633E+60$ $2.0659E-11$ $-2.027E+50$ $-9.602E-01$ $6.671E-01$ $-4.659E-01$ MK $1.096E+02$ $1.333E+131$ $7.732E+131$ $1.5577E+92$ $9.795E-02$ $3.064E-01$ MK $1.096E+02$ $1.333E-131$ $7.732E+131$ $1.5577E+92$ $9.795E-02$ $3.064E-01$ HK $1.096E+02$ $1.333E-131$ $7.732E+131$ $1.5577E+92$ $9.795E-02$ $3.666E-01$ UK $1.736E-02$ $5.956E-01$ $7.376E-01$ $9.365E-01$ $-9.665E-01$ K $1.794L+05$ $4.96/E+14$ $5.470E+04$ $2.592E+15$ $-3.044E-01$ $-5.553E-01$ K $1.794L+05$ $4.96/E-14$ $5.470E+04$ $2.592E+15$ $-3.044E-01$ $-5.553E-01$ K $1.794L+05$ $4.96/E-14$ $5.470E+04$ $2.592E+15$ $-3.044E-01$ $-5.553E-01$ K	NT $5.233E+00$ $1.413E-31$ $4.738E+60$ $5.762E-32$ $-4.148E-64$ $-1.322E-31$ $-2.023E-31$ F $-2.982E-01$ $5.762E-32$ $-4.148E-64$ $-1.322E-31$ $-2.023E-31$ R $2.985E-12$ $-4.148E-54$ $-1.322E-31$ $-2.023E-31$ $-2.023E-31$ R $2.463E+00$ $2.895E-11$ $-2.027E+30$ $-9.602E-01$ $6.674E-01$ $-4.6650E-01$ MK $1.096E+02$ $1.339E+31$ $7.732E+11$ $1.557E+92$ $-2.92E-32$ $3.064E-01$ MK $1.096E+02$ $1.339E+11$ $7.732E+11$ $1.557E+92$ $-2.92E-32$ $3.064E-01$ MK $1.096E+02$ $1.339E+11$ $7.732E+11$ $1.557E+92$ $9.95E-02$ $3.964E-01$ LUC $1.736E+02$ $2.991E-12$ $9.177E-04$ $5.95E-01$ $5.95E-01$ $5.59E-01$ $5.59E-01$ R $1.736E+02$ $2.544E-12$ $9.470E+01$ $1.776E+01$ $1.705E+00$ $1.956E-01$ R $1.77E-01$ $6.541E-12$ $9.307E-01$ $1.705E+00$ $1.956E-01$, Z 3,	-1.9385+00	5-11	-3.393E+00	-1.237F+]J	-7.524E-01	2.485E-01	GEONETKI C	
-2.9825-01 5.7626-12 -4.1486-61 -1.3225-71 6.5145-01 -2.0235-71 -1.6535+00 2.8595-71 -2.0275+30 -9.6026-01 6.6715-01 -4.6595-01 1.0966+02 1.3996+11 7.7326+31 1.5575+92 9.7955-72 3.0645-01 1.3175-32 5.9565-73 2.2915-33 2.6755-72 2.9415-01 -8.6455-01 1.7366-02 1.254c-72 8.1772-64 .5.7975-72 9.9565-61 3.8666-01	F-2.982E-015.7622-12-4.148201-1.3225-91 $6.5142-01$ -2.023E-01RZ-1.603E+002.899E-11-2.027E+00-9.602E-01 $6.671E-01$ -4.650E-01MK1.0966+021.337E-125.9562-132.6375-929.795E-02 $3.064E-01$ MC1.317E-125.9562-13 $2.291E-13$ $2.6375-92$ $3.064E-01$ $-8.645E-01$ LWC1.317E-12 $5.9562-13$ $2.291E-13$ $2.6375-12$ $9.795E-02$ $3.064E-01$ C1.7361-02 $1.254c-12$ $8.1774-04$ $5.592E+19$ $9.956E-01$ $-8.645E-01$ NT1.7941c+05 $4.96/E+14$ $5.4706+14$ $2.592E+15$ $-3.666E-01$ $-5.553E-01$ R Z $3.179E-02$ $2.541E-12$ $3.77c-11$ $7.376E-11$ $9.303E-01$ $-5.553E-01$ R Z $3.179E-02$ $2.541E-12$ $9.307E-01$ $1.705E+10$ $1.956E+01$	F -2.9822-01 5.7624-12 -4.1484-01 -1.3225-01 6.5142-01 -2.0035-01 R Z -1.6035+00 2.0595-11 -2.0276+00 -9.6026-01 6.6716-01 -4.6506-01 MK 1.0966+02 1.3334+31 7.7326+11 1.5575+32 9.7956-32 3.0646-01 MK 1.0966+02 1.3334+31 7.7326+11 1.5575+32 9.7956-32 3.0646-01 MK 1.3176-32 5.9562-32 2.29446-01 -8.6456-01 -8.6456-01 Z 1.7366-02 1.2546-32 8.1776-04 2.5926+35 -3.6666-01 -5.5556-01 M 1.7916-02 1.2546-32 3.3676-31 7.3766-31 3.77656-01 -5.5556-01 K 3.1796-02 2.5416-32 3.9566-01 -5.5556-01 -5.5556-01 R 3.1796-02 2.5416-32 3.9566-01 1.9566-01 -5.5556-01	,		1	4.738c+00	5.4145+30	-1.200E+30	1.4675+43	GEOMETRI C	
R Z -1.633E+00 2.859E-J1 -2.027E+30 -9.602E-01 6.671E-01 -4.659E-01 MK 1.096c+02 1.339±+J1 7.732E+31 1.557±+92 9.795E-32 3.064E-01 LWC 1.317E-J2 5.956E-J3 2.6375E-J2 2.641E-01 -8.645E-01 Z 1.736E-02 1.254c-J2 8.J77L-64 .5.797E-12 9.956F-61 3.866E-01	R -1.633£+00 2.8595-11 -2.027E+30 -9.602E-01 6.671E-01 -4.659E-01 HK 1.096E+02 1.333E+31 7.732E+31 1.557E+32 9.795E-32 3.064E-01 HK 1.096E+02 1.333E+31 7.732E+31 1.557E+32 9.795E-32 3.064E-01 HK 1.096E+02 1.333E-31 7.732E+31 1.557E+32 9.795E-02 3.064E-01 LWC 1.317E-32 5.956E-31 2.673E-32 2.675E-12 9.956E-01 3.666E-01 Z 1.736L-02 1.254E-32 8.177E-64 5.476E+14 5.476E+12 9.956E-01 5.558E-01 NT 1.791L+03 4.96/E+14 5.470E+14 2.592E+35 -3.666E-01 5.558E-01 R 1.791L+03 4.96/E+14 5.470E+14 2.558E-01 9.303E-01 1.958E-01 R 3.179E-02 2.541E-12 9.307E-13 1.376E-11 9.303E-01 1.958E-01 R 3.179E-02 2.541E-12 9.307E-13 7.376E-11 9.303E-01 1.958E-01	R -1.6335+00 2.8595-71 -2.0275+30 -9.6026-01 6.6716-01 -4.6596-01 HK 1.0966+02 1.3932+31 7.7326+31 1.55575+72 9.7956-32 3.0646-01 HK 1.0966+02 1.3932+31 7.7326+31 1.55575+72 9.7956-32 3.0646-01 LWC 1.3176-32 5.9562-72 8.1776-04 -5.7575-72 9.3766-01 -6.6456-01 Z 1.7366-02 1.2546-32 8.1776-04 -5.7926+15 -3.86666-01 -5.5536-01 NT 1.7916+05 4.96/66+14 5.4706+04 2.5926+15 -3.86666-01 -5.5536-01 K 3.1796-02 2.541E-12 9.3876-03 1.0966-11 1.7056+00 1.9566-01 R 3.1796-02 2.541E-12 9.3676-03 1.0966-11 1.7056+00 1.9566-01	Ľ	-2+9825-	- 12	485-6	-1.3225-31	6.5145-01	-2.023E-01	GEONE TP.1 F	
MK 1.096c+02 1.339±+J1 7.7326+j1 1.557±+J2 9.795E-J2 3.064E-01 LWC 1.317E-J2 5.9562-J? 2.2915-J3 2.6755-J2 2.9416-01 -8.645E-01 Z 1.7366-02 1.254c-J2 8.J77c-C4 .3.79?5-J2 9.9565-G1 3.866E-01	HK 1.096c+02 1.339±+31 7.7326+31 1.557±+32 9.795E-32 3.064E-01 LWC 1.317E-32 5.9562±-37 2.2917±-33 2.6375±-32 3.4566E-01 -8.645E-01 Z 1.7366±-02 1.254c±-32 8.1774±-64 5.7922±-32 3.9566±-01 -8.6456±-01 Z 1.7364±02 1.254c±-32 8.1774±-64 5.7922±-15 9.9566±-01 -5.5536±-01 NT 1.7941±+05 4.96/E±,14 5.4702±n4 2.5922±+35 -3.8666±-01 -5.5536±-01 F 5.4774±-01 6.3672±-32 3.3376±-31 7.3765±-71 9.3035±-01 -5.5536±-01 F 5.4776±-01 6.3677±-32 3.9376±-11 7.3765±-11 9.3035±-01 3.6561±-01 F 5.4776±-02 2.5441±-42 9.3076±-01 1.096E±-01 1.9564±-01 1.9564±-01	HK 1.096±402 1.333±+11 7.732±+11 1.557±+02 9.795±-12 3.064£-01 LWC 1.317E-J2 5.956±-75 2.2917-13 2.675±-72 2.941£-01 -8.645±-01 Z 1.736±-02 1.25+±-12 8.177±-64 5.797±-12 9.9565±-01 5.553£-01 NT 1.791±+05 4.96/E+J4 5.470±+n4 2.592±+15 -3.866±-01 -5.553£-01 F 5.477±+01 6.967£-32 3.937£-11 7.376£-11 9.303±-01 3.558±-01 R Z 3.179E-02 2.541E-J2 9.387£+03 1.096£-11 1.705£+00 1.958€+00		-1.6336+00	£-]1	• 0 27E+0	-9.602E-01	6.671E-01	-4.653E+C1	GEOME TRI C	
LWC 1.317E-J2 5.9562-J? 2.291F-J3 2.6755-J2 2.9416-01 -8.6452-01 Z 1.7366-02 1.254c-J2 8.J77c-64 .5.7975-J2 9.9565-61 3.866E-01	LWC 1.317E-J2 5.9502-J7 2.2915-J3 2.6755-J2 2.9416-01 -8.6456-01 Z 1.7366-02 1.254c-J2 8.J774-64 5.7925-J7 9.9565-61 3.86666-01 NT 1.7914-05 4.96/E+J4 5.4706+n4 2.5925+J5 -3.86666-01 -5.5536-01 F 5.4774-01 6.9676-J2 3.9376-03 1.0966-J1 9.36566-01 1.95866-01 AR Z 3.1796-02 2.5416-J2 9.3876-03 1.0966-J1 1.7056+n0 1.9586400	LWC 1.317E-J2 5.9502-J7 2.2915-J3 2.6755-J2 2.9416-01 -8.6456-01 Z 1.7366-02 1.254-J2 8.J776-64 .5.7975-J7 9.9566-01 -5.5536-01 NT 1.7916-02 4.96/6+J4 5.4706+A4 2.5926+J5 -3.8666-01 -5.5536-01 F 5.4776-01 6.9676-J2 3.9376+J1 7.3766-J1 9.3032-01 3.6586-01 AR Z 3.1796-02 2.5416-J2 9.3876-03 1.0966-J1 1.7056+A0 1.9586640 AR Z 3.1796-02 2.5416-J2 9.3876-03 1.0966-J1 1.7056+A0 1.9586640 AR Z 3.1796-02 2.5416-J2 9.3876-03 1.0966-J1 1.7056+A0 1.9586640	i	1.0966+02	1. 399 - + 11		1.5575+32	9. 795E-J2	3,064E-01	ARITHHET TC	
Z 1.7366-02 1.254c-12 8.177c-64 .5.7975-17 9.9565-61 3.866E-01	Z 1.7366-02 1.254c-J2 8.J77L-C4 .5.797E-T2 9.956F-61 3.A66E-01 NT 1.791L+05 4.96/E+j4 5.470E+n4 2.592E+J5 -3.866E-01 -5.553E-01 F 5.477E-V1 6.367E-J2 3.937E-J1 7.376E-J1 9.303E-01 3.658E-01 AR Z 3.179E-02 2.541E-J2 9.387E-V3 1.096E-J1 1.705E+N0 1.958E+00	Z 1.7366-02 1.254c-J2 8.J776-64 .5.7975-12 9.9565-64 3.A66E-01 NT 1.74165 4.96/E+14 5.4706+n4 2.5925+J5 -3.8666-01 -5.553E-01 F 5.477c-u1 6.3675-J2 3.937E-J1 7.376E-J1 9.3035-01 3.5585-01 NR Z 3.179E-02 2.541E-J2 9.387E-03 1.096E-J1 1.705E+n0 1.958E+00 NR Z 3.179E-02 2.541E-J2 9.387E-03 1.096E-J1 1.705E+n0 1.958E+00		?	1.3	.291F-J	2.6355-32	2.941E-01	-8.6455-01	ARTHMETIC	
	NT 1.7916+05 4.96/E+J4 5.470E+n4 2.592E+J5 -3.866E-01 -5.553E-01 F 5.477E-u1 6.367E-J2 3.937E-J1 7.376E-J1 9.303E-01 3.558E-01 AR Z 3.179E-D2 2.541E-J2 9.387E-U3 1.096E-J1 1.705E+N0 1.958E+00	NT 1.791c+05 4.96/E+J4 5.470E+n4 2.592E+J5 -3.866E-01 -5.553E-01 F 5.477c-u1 6.367C-J2 3.937E+J1 7.376E-J1 9.303E-01 3.558E-01 AR Z 3.179E-02 2.541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-02 2.5541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-02 2.5541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-02 2.5541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-02 2.9541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-02 2.5541E-J2 9.387E+U3 1.096E-J1 1.705E+N0 1.958E+00 1.9588E+00 1.9588E+00 1.9588E+00 1.9588E+00 1.5588E+00 1.9588E+00		1.7361-02	1.254c-12	ដ	· 5 · 79?5- 12	9.956F-61	3.A66E-01	ARI THME TIC	
NT 1.791L+03 4.96/E+J4 5.470E+A4 2.592E+J5 -3.868E-01 -5.553E-01	F 5.477E-V1 6.367E-32 3.937E-31 7.376E-31 9.363E-01 3.658E-01 AR Z 3.179E-02 2.541E-J2 9.387E-43 1.096E-31 1.705E+N0 1.958E+00	F 5.477E-V1 6.367E-J2 3.937E-J1 7.376E-J1 9.363E-01 3.658E-D1 AR Z 3.179E-D2 2.541E-J2 9.387E-V3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-D2 2.541E-J2 9.387E-V3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-D2 2.541E-J2 9.387E-V3 1.096E-J1 1.705E+N0 1.958E+00 AR Z 3.179E-D2 2.541E-J2 9.387E-V3 1.096E-J1 1.705E+N0 1.958E+00		0 +-	4.96/E+J4	- E +	2.5925+35	-3.8666-01	-5.5536-01	ARTTHMET IC	
F 5.477E-41 6.367E-32 3.937E-31 7.376E-11 9.303E-01 3.658E-01	R Z 3.179E-D2 2.541E-J2 9.387E-U3 1.096E-J1 1.705E+N0 1.95AE+00	R Z 3.179E-02 2.541E-J2 9.387E-U3 1.096E-J1 1.705E+N0 1.95AE+00		5. 477c-u1	<u></u>	7	7.376E-11	9.3035-01	3.6582-01	ARITHMETIC	
AR Z 3.179E-D2 2.541E-J2 9.387E-U3 1.096E-J1 1.705E+N0 1.95AE+D0			e e	1795-	- 71	.387E	1.096E-31	1.7056+00	1+958E+00	ARI THNE TTC	

	LYA355 FT JUL 76	- 60/80/61 _ DATE 1 _ 79/08/39 -
IFCAAFT II4E1 UB169116 - 08132138 Radak II4E1 J6129100 - 60132137	P3041 1 - L 010 + PRECIP	
1005577885 LMC 1.415-70 1005577885 LMC 1.605-31	RADARI ALCOR	
Nd	RTICLE TYPES BULL-LOSE / BULL-ROSE	
24344 Z VERSUS A/C Z 1.22140±40 (RÅDÅR Z) + 4.735325-02 5.217955-01 (A/C Z) + -4.152935-41	MITH AN RMS = 1.96698E-D1 WITH AN RMS = 2.25801E-01	
1.2204,2+06 2)	CO33ELATION: #7.11 PEP CENT	
LOTTING A/ 2 Z VERSUS A/ 3 4K 2.105915+00 /2 MK = 3.653235-02 (A/C Z) + 2.105915+00 /2 Z = 1.549126+00 (A/C MK) + -5.673196+00	WITH AV RMS = 5,433726-02 With Av RMS = 2,433726-02 With Av RMS = 2,091776-01	
ЧĞ ГНЁ ANTILOĞ FORM) 3,649235-02 3,649235-02 3 2,135915+00 (А/С Z) 5,649235-02	CORRECTATION 1 25.98 PER CENT	
Z VERSUS A/C 4K 455526-C2 (K40AR Z) + 2.1+6236+60 674376+66 (A/C 4K) + -5.612396+60		99
5.485525-62 2) ==================================	CG24ELATION: 32.95 PER CENT	
A/2 Z VERSUS A/2 VT 3.116692-01 (A/C Z) + 5.52732E+J0 2.43241E+C0 (A/C VT) + -1.49575E+01	WIT4 44 RMS = 6.75167E-92 WIT4 A4 RMS = 7.67567E-92	
WTILOG FORM) 3.115695-01	Crate Lation : 84.96 PER CENT	
VERSUS A/C 41 162-61 (240427) + 162+64 (4/C 41) + -	. 33:	
6 [Hc ANTILOG FORM) 3.79365E-61 3.826277+60 [RADAF, 2]	CORPELATIONS 74.61 PER CENT	
	4	

	AVERAGING INF 3 SECCAD
PLOITINS 1/2	
(USENS FAE ANTLINE 2014) File 45.173515412 (1997) File 45.173515412 (1997) File 45.173515412 (1977)	
PLÖTTING ÅADAP I verktigen og helder og helder og helder i som helder og hel	
4 11 41	20
PLOTTING A/2 - 2 /28/21/21 - 2 /28/21/21 - 2 /28/21/21/21/21/21/21/21/21/21/21/21/21/21/	
Ch. (USTAS 148 2011) 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	
FLOTTING FACEA TO GOVE OUT OF THE TANK TO THE TANK TANK TANK TANK TANK TANK TANK TANK	
ta biy c ta ta t	

Sector Street Street Street Street

AVERAGING INT: 3 SECOND AVERAGING INT: 3 SECOND			201		
LTA055 04 JUL 78 PRECIP RADATI ALCOR PARTICLE TYPES BULL-ROSE 7 BULL-ROSE					H
	VERSUS TIME VERSUS TIME VERSUS TIME VERSUS TIME	VERSUS TIME			
6123116 - 06132178 8123100 - 06132178 8123100 - 06132137 812 LWC 1.001-06 812 LWC 1.012-06 4 55CONDS	AND RADAR Z AND RADAR Z AND RADAR Z AND RADAR Z	AND RADAR Z			•
2455 1 11421 06123116 - 0 11904657 71421 06123116 - 0 4101404 40051748LE LMC 1 Minimuy 400575748LE LMC 1 Maximuy 400531 14 5ECONDS	-37 A/2 2 -07 A/2 4K 4.07 A/2 47	CH1 2/4 101			

2.2.1.2 Program RAPP Operating Instructions

RAPP CONTROL CARDS

JOBNN, CM110000, T200, NT1, TP1. ACT# NAME VSN, TAPE1=TAPEXX/NT. (TAPE2 IN HAICLD OR KNOLLLD) REQUEST, TAPE1, NT, E, NORING. VSN, TAPE3=TAPENO. (RADAR DATA TAPE) REQUEST, TAPE3, NORING, MT. ATTACH, CRT, CRTPLOTS, MR=1. LIBRARY, CRT. REQUEST, TAPE39, *Q. DISPOSE, TAPE39, *FM. ATTACH, LGO, RAPPBIN, ID=GLASS, MR=1. LDSET, PRESET=ZERO. LGO. EXIT(U) CATALOG, TAPE10, FILENAME, ID=PFID.* 7/8/9 -DATA HEADER CARD--DBZ REJECT CARDS (OPTIONAL) -COMMENT CARD 1--COMMENT CARD 2--PASS CARDS-6/7/8/9 *OPTIONAL - TAPE1 IN PROGRAM RADMCOM

2.2.1.2 Program RAPP Operating Instructions (cont'd)

- CARD 1 HEADER CARD
- CC 1 AIRCRAFT IDENTIFIER
 - 1 C138-E AIRCRAFT
 - 2 LEAR AIRCRAFT
 - 3 C138-A AIRCRAFT

CC 3 RADAR IDENTIFIER

- 0 SPANDAR RADAR
- 1 ALCOR RADAR
- 2 TRADEX RADAR
- CC 5-14 FLIGHT DATE (USED FOR FILM IDENTIFICATION)
- CC 16 PROBE SELECTED
 - **1** SCATTER PROBE
 - 2 CLOUD PROBE
 - **3 PRECIP PROBE**
 - 4 TOTAL (AS GIVEN BY KNOLLID)
- CC 21-30 RADAR OFFSET DISTANCE IN METERS (USUALLY 3000 FOR KWAJALEIN
- CC 31-40 RADAR CORRECTION (GIVEN IN DB)
- CC 41-50 MINIMUM DETECTABLE RADAR SIGNAL GIVEN AT 1 KILOMETER (IN DB UNITS)
- CC 53 0 IF THERE IS RADAR DATA (DEFAULT) 1 FOR AIRCRAFT DATA ONLY

2.2.1.2 Program RAPP Operating Instruction (cont'd)

- CC 55 0 USE STANDARD AIRCRAFT CLOCK (DEFAULT) 1 USE THE PMS BUFFER GENERATED TIME
- CC 57 FORMAT OF RADAR TAPE
 - 0 DATA IS IN FORMAT GIVEN BY PROGRAM SPANDAR (DEFAULT)
 - 1 TAPE IS IN MOIST GENERATED FORMAT USE FIRST RADAR ON THE RADAR TAPE
 - 2 TAPE IS IN MOIST GENERATED FORMAT USE SECOND RADAR ON THE RADAR TAPE

CC 61-65 AVERAGING INTERVAL FOR THE AIRCRAFT RUNNING MEAN

CC 66-70 AVERAGING INTERVAL FOR THE RADAR RUNNING MEAN

CC 71-75 NUMBER DBZ REJECTION CARDS (10 MAXIMUM)

CARDS #2-N+1 WHERE N IS THE NUMBER GIVEN IN COLUMN 75 OF CARD 1 (OPTIONAL)

CC 1-10 DBZ LOWER LIMIT (FLOATING)

CC 11-20 DBZ UPPER LIMIT (FLOATING)

CC 21-30 PP-OP VALUE (FLOATING)

CARDS # N+2, N+3 COMMENT CARDS

COLUMNS 1-42 OF EACH OF THESE CARDS CAN CONTAIN ANY TEXT. THIS COLUMN WILL BE PLACED ON THE TOP TWO LINES OF EACH

2.2.1.2 Program RAPP Operating Instructions (cont'd)

MICROFICHE IN VERY LEGIBLE LETTERS--READABLE TO THE UNAIDED EYE. THESE TWO CARDS ARE ALSO PRINTED ON THE OUTPUT.

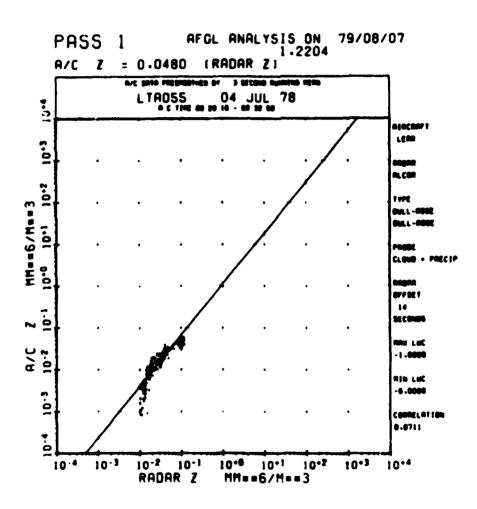
CARDS #N+4-N+K+3 WHERE K IS THE NUMBER OF DESIRED TIME FRAMES

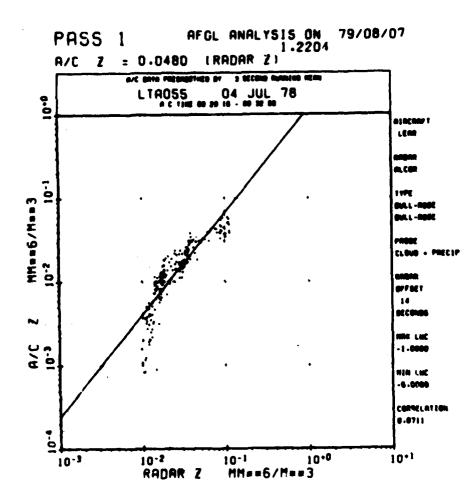
CC 1-2 PASS NUMBER

CC 4-9 PASS START TIME IN FORM HHMMSS.

CC 11-16 PASS STOP TIME IN FORM HHMMSS.

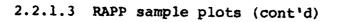
CC 21-30 SECONDARY RADAR CORRECTION

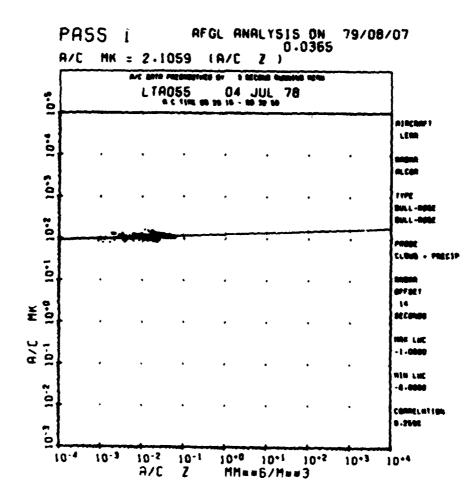

CC 31-40 MINIMUM ACCEPTABLE LIQUID WATER CONTENT (IN GM/M**3)


CC 41-50 MAXIMUM LIQUID WATER CONTENT (SEE 31-40)

CC 51-60 MINIMUM ACCEPTABLE Z VALUES (IN Z UNITS)

CC 61-70 MAXIMUM Z VALUE (IN Z UNITS)


AN IMPORTANT NOTE TO REMEMBER IS THAT THE TIMES INPUT FOR THIS VERSION OF RAPP PERTAIN TO AIRCRAFT START AND STOP TIMES. 2.2.1.3 RAPP sample plots

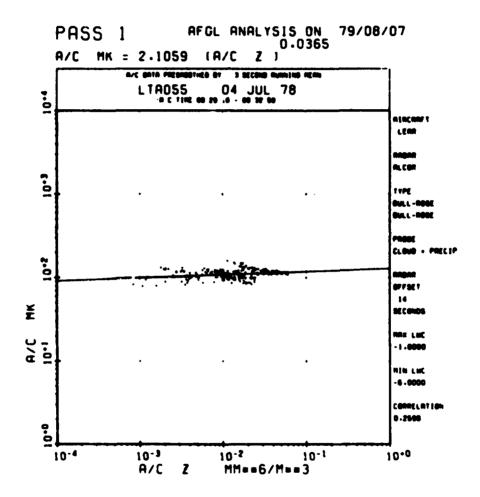


2.2.1.3 RAPP sample plots (cont'd)

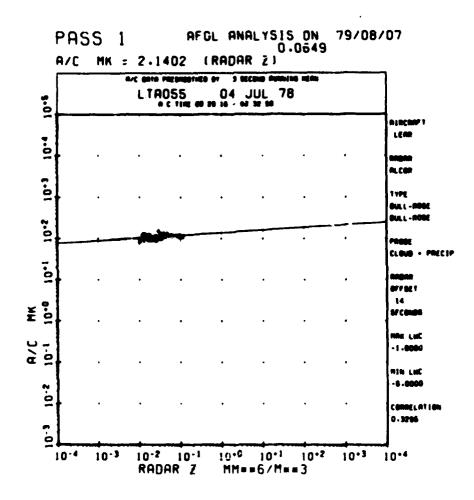
CLEARNER SHELL

2

1.


The second

208

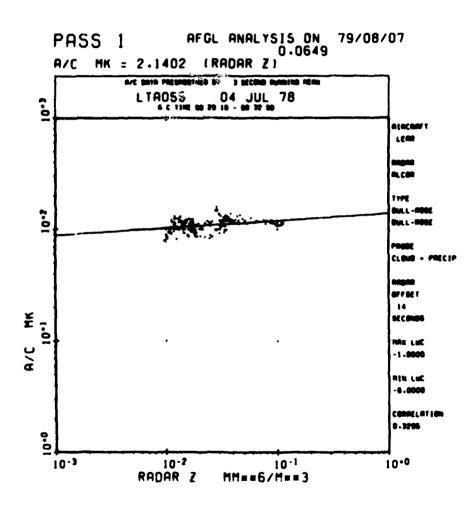

.

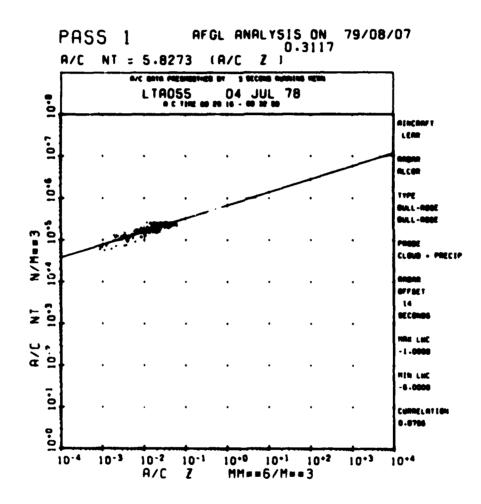
ويكسف والمستعم

2

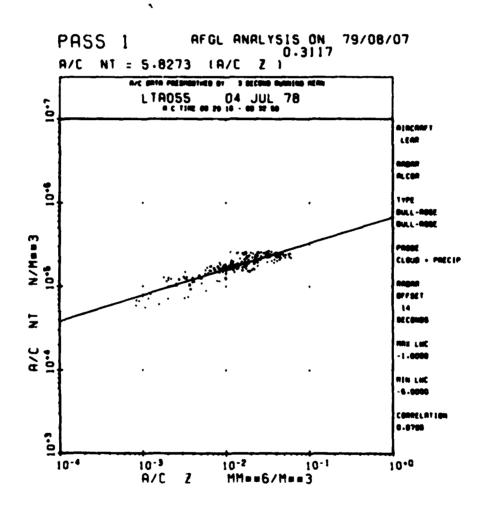
A Company of the second se

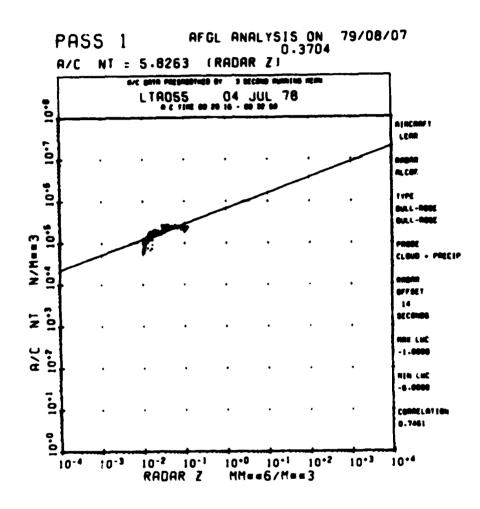
211

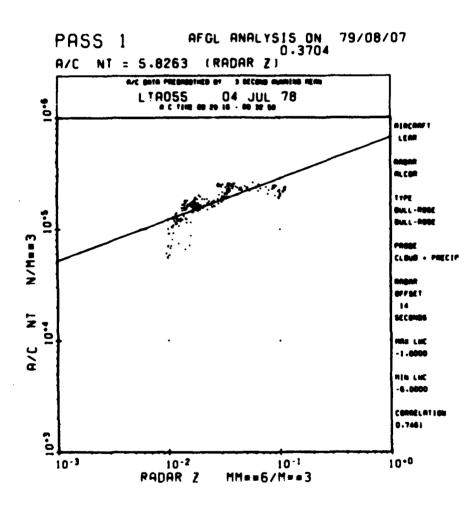

2.2.1.3 RAPP sample plots (cont'd)


Ì

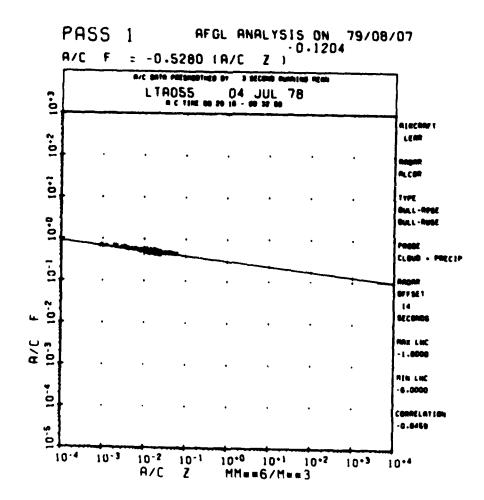
ł


10 I II


ŧ

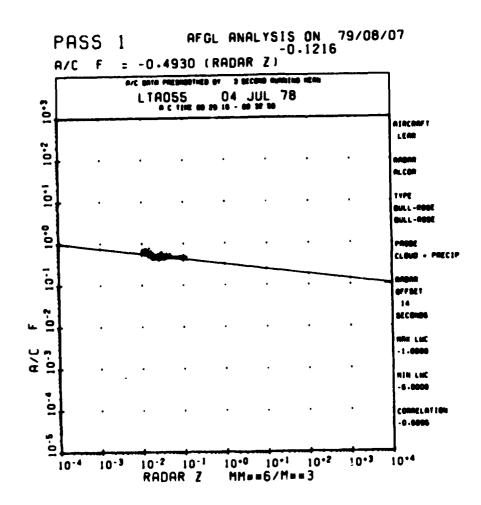


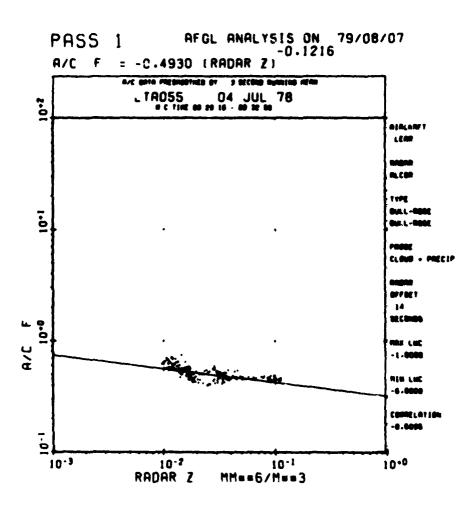
2.2.1.3 RAPP sample plots (cont'd)



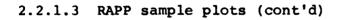
ŧ

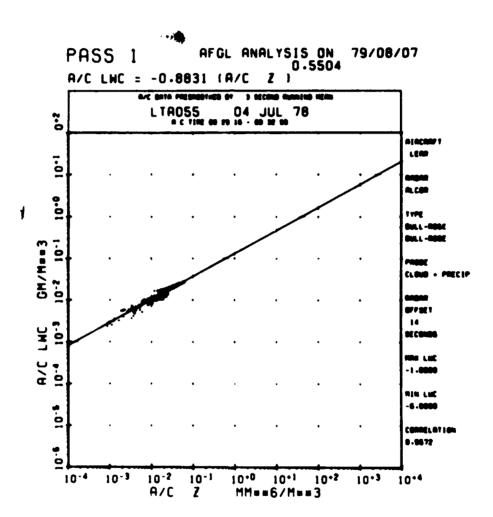
÷.,

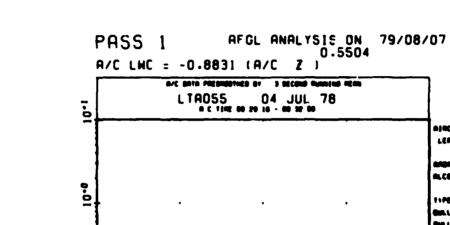

A substantian franchise of the

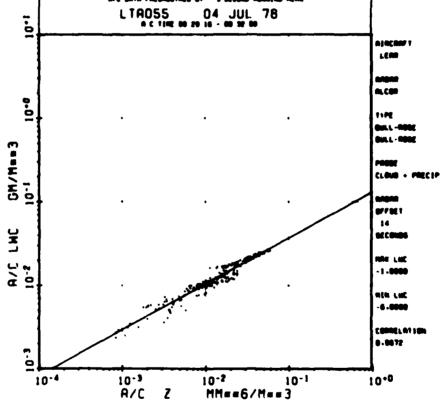

PASS 1 AFGL ANALYSIS ON 79/08/07 A/C F = -0.5280 (A/C Z) LTA055 04 JUL 78 10.3 LEM ----N.COR 10-2 TYPE -------1.01 -..... 14 SECONDS . MAR LHC A/C 10.0 -1.0000 NIN LHC -6.0000 CORRELATION -0.8459 10.1 10-3 A/C Z 10-2 10.0 10.4 10-1 MM##6/M##3

2.2.1.3 RAPP sample plots (cont'd)

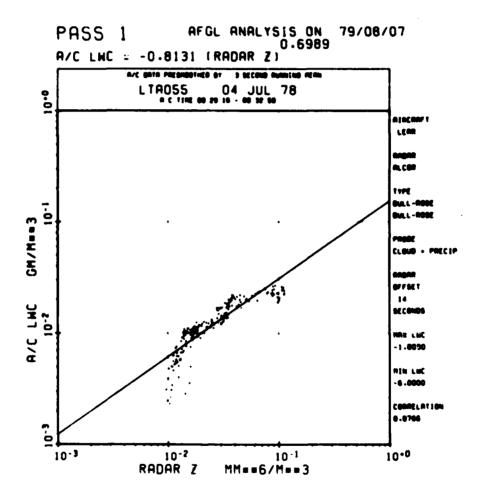

218

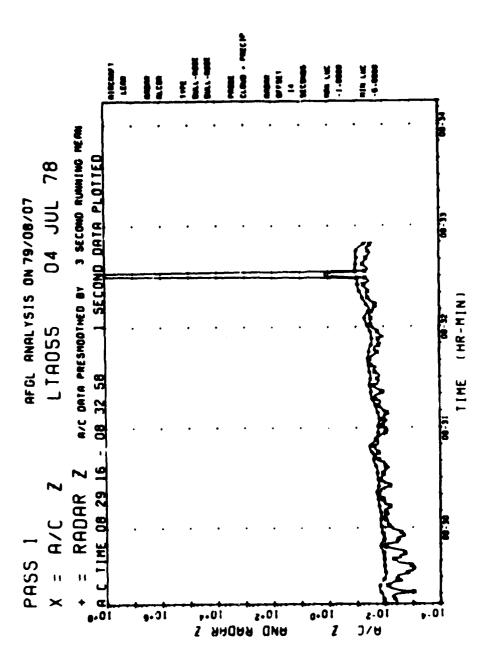

2.2.1.3 RAPP sample plots (cont'd)

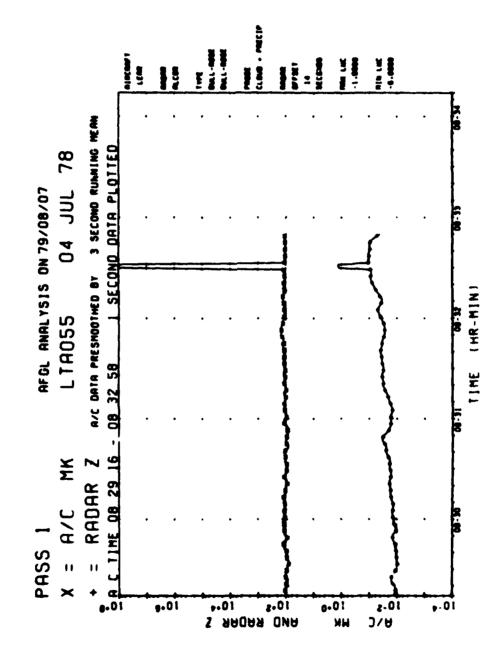


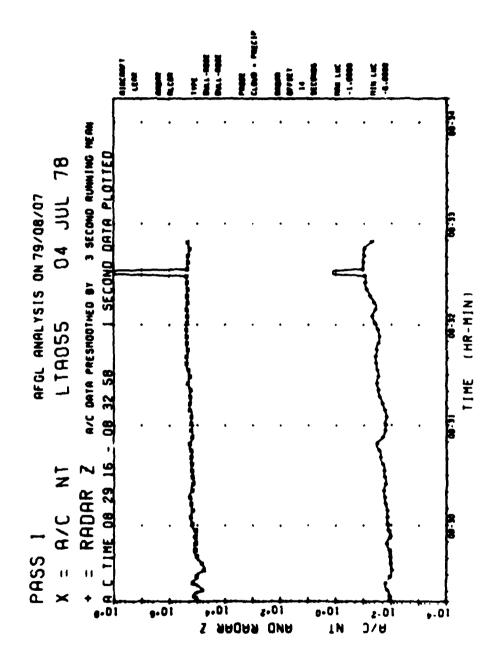

-

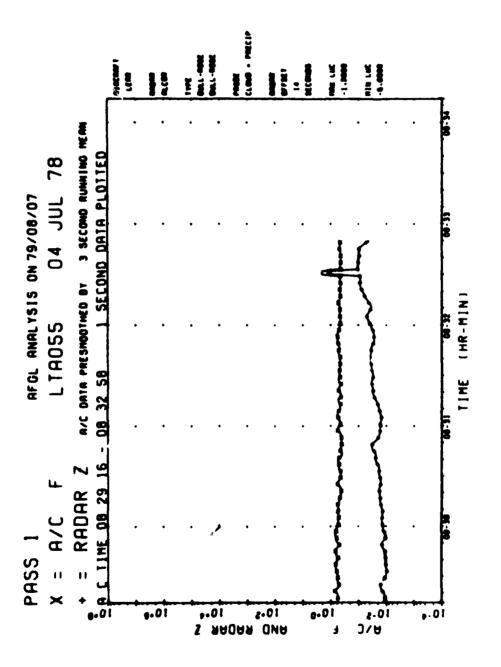
ź

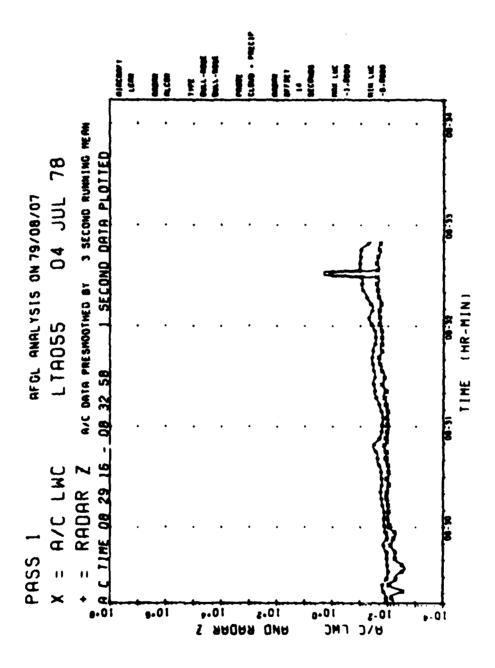



AFGL ANALYSIS ON 79/08/07 0.6989 PASS 1 A/C LWC = -0.8131 (RADAR Z) LTA055 04 JUL 78 2.01 010C0M LEAR 1.01 haghi ALCOR 0.01 TYPE BALL -BULL -GM/M=3 PRODUCT CLOUD . PRECIP 00000 errst 1 Я Ч 14 SECON! NNE LUC A/C -1.0000 NTH LIK -6.0000 10-5 CORDELATION 0.8766 9-0 10+4 10.0 10.1 10.5 10.3 10-4 10-3 10-2 10-1 RADAR Z MM==6/M==3


.....


2.2.1.3 RAPP sample plots (cont'd)


1996



A second s

. *

:

228

2.2.2 Program RADMCOM

RADMCOM has been written for the purpose of comparing three methods of calculating LWC from radar Z with the standard method now used in RAPP.

RADMCOM accepts the following paramters for each pass:

PASS
 A
 B
 KC
 KP
 MBAR

The PASS corresponds to the pass number used in program RAPP; It is used to find the correct data on the input tape _ tape 1 (tape 10 in RAPP). A, B are used to calculate RADAR LWC for each record in the pass in the following manner:

LWC = $A * (RADAR Z)^B$ (METHOD 1)

KC and KP are used to calculate LWC also,

 $LWC = KC * (RADAR 2) \cdot 5$ (METHOD 2)

LWC = KP * (RADAR Z).⁵ (METHOD 3)

MBAR is the average LWC for the pass in RAPP. One second differences of the RAPP produced LWC values to the mean are derived.

RADMCOM simply calculates and reports the above calculated

2.2.2 Program RADMCOM (cont'd)

LWC values, along with the RAPP produced one's, for every second. LWC means and standard deviations are then reported for the pass. Complete documentation can be seen on the following pages.

2.2.2.1 Program RADMCOM operating instructions

RADCMCOM compares the methods of calculating LWC from Radar Z with the standard method of program RAPP.

OPERATING INSTRUCTIONS

CONTROL CARDS

DPSI,CM40000,T250 ID# NAME ATTACH,LGO,RADMCOMBIN,ID=GLASS,MR=1. ATTACH,TAPE1,DATAFILENAME,ID=NAME,MR=1. LGO. 7/8/9

DATA CARDS (AS MANY AS NEEDED IN TIME ORDER) COL 1-2 PASS NO(12 FORMAT) 11-20 Α (F10.4 FORMAT) 21-30 В (F10.4 FORMAT) 31-40 KC (F10.4 FORMAT) 41-50 KP (F10.4 FORMAT) 51-60 MBAR (F10.4 FORMAT) 6/7/8/9

NOTE

PASS NO IS THE PASS NUMBER USED IN THE PREVIOUS RAPP RUN $LWC = A^*(RAD Z)^{**}(B)$ (METHOD 1) $LWC = KC^*(RAD Z)^{**}(.5)$ (METHOD 2) $LWC = KP^*(RAD Z)^{**}(.5)$ (METHOD 3) MBAR= AVERAGE RADAR LWC FROM RAPP 2.2.2.1 Program RADMCOM operating instructions (cont'd) TAPE 1 FORMAT (TAPE 10 FROM RAPP) END-OF-FILE MARKER PASS DATA SECTION* END-OF-FILE MARKER PASS DATA SECTION* END-OF-FILE MARKER END-OF FILE MARKER DATA SECTION HEADER RECORD** DATA RECORDS*** DATA RECORDS*** HEADER RECORD FORMAT WORD 1 FLIGHT ID - A10 FORMAT WORD 2 FLIGHT DATE - A10 FORMAT WORD 3 PASS# - INTEGER FORMAT WORD 4 START TIME OF PASS - INTEGER SECONDS WORD 5 STOP TIME OF PASS - INTEGER SECONDS DATA RECORD FORMAT WORD 1 TIME IN SECONDS WORD 2 A/C MK - REAL FORMAT WORD 3 RADAR Z - REAL FORMAT

232

WORD 4 RADAR M - REAL FORMAT

2.2.2.2 RADMCOM sample output

On the following two pages are RADMCOM sample output.

T

FA35 13	FLT 5 77-12	11 JAN 77 0715 138	TO 03:55:58	PAGE 6
i	(AUAN-M CAS) H HALAN	M=A+2: ++,5(DELTA M)	M=KC+ZL++.5(DELTA 4)	M=KP+ZF++,51 DELTA H
54149	د –n 2 (– 5 م م 4 6:	7.4755-22(-1.22)-12)	0-360(-7.]03E-0	69E-621 7.124E
2124120	3635 × 21×	21=1°C=5E=	1-7:308E-C	
315~151	5965-]_[-].['45-A	7.415E-02(-8.191E-03)	E-02(-5,359E-0	1 - 189
5154152 1154157	6. 785-27(-5.1/25-27) 6. 835-89(-6.6475-92)	7.41552(-9.5/45-03) 7.6635-52(-6.7685-03)	7.436F+02(+6.532E+03) 7.436F+02(+4.552E+03)	5+4005-421 1+0/15-42 5-6615-02(1+3225-42
3156156		375-121	1-4-8265-5	532E-U21 1.252E-C
3154155	•2276-w2(-5•2726-U	E-02(-1.069E	-7.131c-C	-
3154155	415-151-2 ⁺ 22	-321=3- <u>637</u> E=8	E=02(=2:	-968E=021 1:053E=U
3154 157	-12 (-5.2+0)	21-9.436E-D	12(-5.383E-E	.283E-62(1.068E-C
3154 158	E=# 21=2" 231E=U	1-12	121-2-10/E-0	
3154159	•1 •55-02 (-5• 4 •55	71	33E-0	5.532E-421 6.022E-13
21251. 1 21551. 1	9, 303	7 - 57251 - 571 - 19 5751 - 527 7 - 57551 - 571 - 1 - 3495 - 571	2(-1.12	21 6.9435-0
315516	F. 4E=F21=5=396E=3	21-9-1055-0	021-2-3-9725-0	5E=02 C 1 098
31551 3	5. E-, 2(-+.85"-0	2(-R.482E-B	21-6.9145-0	
1.	195-221-1.6925-0	3232 9-12	67E=021=3;589E=0	532E=021 1:376E+C
31551. 5	-021-4-6162-2	(-4,915E-F	14E-02(-1,999E-0	.4695-02(1.5156-1
3155166	U/E+02(-2°2 93E-3) C 20 C 1 20 2 2	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1945-121-121-1915-0 1975-222-5 2021 0	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4/ 5c - U 2/ -		4095-421 1.0315-1 0315-801 4.445-1
3455419	2(-+-2)6E-1	21-4-555E-0	2(-3.1422-1	60E-02(1.533E-1
315511	92 <u>:</u> = U 2 (- 1 -	35 56-021-3.7176-0	1-3-1175-0	21 2:048E=0
125111	¥€85-62	- 4-	2(-1.519F-U	221 1. 524E-F
3135117	1-1-5325	-115(+2*597E+	<u>1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</u>	1635-034 1 24499 5305-034 1 24499
3135113	/*?/YE=UC/***/C1E=U//	/*>3/6=~2(************************************	1 = 20/ E = 4 2 / E = 1 2 / E = 1 3	2 - 1 - 8485- 5 2 - 1 - 8665 - 5
3155115	925-02(-4.	2(-4.832E-0	02(-1.9165-0	(1.523E
315516	3466:1=120=_969:	537F=021=8.406 E	3904-6-	-024-111164E-C
3155117		4755-02(-1.305E-0	2(-1.713E-D	5.469E-02(7.019E-L3
13155118	r 7 UE - 4 2 1 - 5 + 3 - 4 E - J	<u> </u>	<u>0-37776-12</u>	120.
3155119	7F-N ((-3, 593E-6	62 (-1.23 JE-0	5395-0	223E-02(
3135129				34364021.12043640
3125161 Ttaki27	0. "ULT			
3155123	- 7996-02(-4.5)505		-5265-02(8.1055-0	
13155124	7555-171-6	<u>- 121-3, 319E</u>	745-021 0.3	1-1989 - 170-
3155125	.271 - 02 (-5.	2 (-7.	2 (-2 . 8	(1.284E-U
13155126	57. E=02(=3; 13LE=5	2(=1:379E=0	8-3698-6-13	331E-021 6= 392E-0
315512/	(-6.338E-0	7.8~56-22(7436-02)	1.29uE-0	~
3155123		1-1-9116-1-1	1=1	988E=UC (~ 5- 350E=0
3155123	<u> </u>	2 (-1.622E-7	61E-02(-1.246E-9	(3.917E-D
15155151		2 0 2 -0 2 (-1-2626-6		-121-1202-1
12155131	2(-5,7952-,	2(-1.20LE-C	2(-7.472F-D	8E-02 (8.167E-0
13135132	==0\$(=2:025.2L=	0=36-2°1=120	111-12-36-36-314	19f= J21 8: 091f=t
P.155133		2(-1.4		45-421 5.7366-6 42-424 5.95924
	555-121-314325-18 5	352291=121=2		-121 15936-V
	(-)/u-3/27	6 49 26 - U2 (-0• / 15E - U5)	C.4405-421-1.520-1.51	4.0/4E=LC1 1.340E-4C
			ί.	
			じって いう しい コームアングッ	

	PAGE 7	M=KP*ZK***5(DELTA M)	4.709E-02(-8.21vE-24)		4.4976-82 (-1.76.6-23) 4.4556-42 (-1.36.84.94	4.6556-021 6.2646-047 4.6976-021 3.863F-031	4.549E-02 (-3.214E-03)	4.6655-021 4.3335-641	4.4975-321-7,1425-437 4.4975-321-7,1425-437	12325-05 (-9: 553E-13)	4.395E-02(-5.031E-03)	4.7635-421 1.9175-63	4.806E=021 6.234E=73) 3.464E=031 6.924E=63)						
•	10 03155158	H=KC*2R**.5(DELTA 1)	6.185E-02(-1,559E-C2)	6.3296-02(-1,747c-12) 5.9076-02(-1,8966-62)	5.9076-02(-1.5862-02) 6.1156-02(-1.)716-02)	6.115E-021-1.3975-02) 5.907E-02(-1.324E-02)	<u>5.9756-U21-1.1.555-U27</u> 6.1856-02(-1.7466-12)	6.445E-42(-1.444E-42) 6.115E-42(-1.569E-02)	5.907E-02(-2.121E-02) 5.779E-02(-4.4A7E-02)	5.7726-02(-2.) 005-02)	5.772E-02(-1.681E-02) 5.467F=477=7.377=707	6.2576-02(-1.3026-02)	6.313E-02(-8.76E-03) 4.55[E-03(€.463E-,3)						
•	40 JAN 77 13159148	4=4+2R++,51 0: LTA M)	6.776E-r2(-z.°99E-02)	5.856E-42(-2,254E-E2) 6.511E-62(-2,564E-62)	6.511E-42(-2.194E-42) 6.671E-92(-1.628E-42)	6.5115-72(-1.9545-02) 6.5115-22(-1.6205-02)	6.5642-02(-1.6932-02) 6.7245-02(-2.2845-02)	6.6172-221-1.972E-UZ) 5.6745-021-2.316E-UZ)	6.541E-72(-2472)E-U2) 6.4 AF-12(-2472)E-U2)	6.416E-12(-2.634E-12)	6,4065-02(-2,514E-02) K_514F_7753-076F-071	81E-02(6, 8205-521-1, 3855-927 3, 4505- : 51 6, 9315-927		والمحافظة والمحافظة المحافظة المحافظة المحافظة والمحافظة والمحافظة والمحافظة والمحافظ والمحافظ والمحافظة والمحافظة				
•	FLT E77-02	ZATAR F (PAD M-MBAR)	4 .62 7E-12(-6.973F-42)	4.5826-021-7.6185-427 4. 116-22(-7.569:-02)	4. 32**	4 11.7-72(-6.682-02) 4.6835-02(-5.7175-92)	4.870E482(-5.750F482) 4.466-02(-7.1545-02)	4.0455-02(-6.955-72)	3.7855=21-7.6155-027	-22-		9556-	5:135542(-2.15055542) 9.13 6-02(3.1305-13)					1	
•••	EI SLAG		0115150 0115150	0.155140	.i55142 .155143	63155144 03155145	3155145	03155164 C115514	13155154 11155154		8 2155 153 2 3 1 5 5 1 5 4	3125	HEAd S. O.						

.

2.2.3 Program GAMMA

GAMMA is a radar and aircraft correlation program designed to help LYC scientists "fine tune" their melting equations by correlating their melted values with radar data.

GAMMA uses the KNOLLID output tape and raw radar tapes as its data base. Radar Db adjustments are made according to the specifications in section 2.2.1 See below for a list of processing by the program.

PROGRAM TO DETERMINE A GAMMA (1 to d) RELATIONSHIP USING A/C AND RADAR DATA

 Run 1D program with interpolation for 1 second data using "1 to d" for specified ice type.

1A. Save Z_{n} , M_{n} and N/M^{3} for each channel

- 2. Correlate Z_A and Z_R for $+/_3$ second adjust (Kwajalein data will have offset time Wallops none)
- 3. Reject Z_R points according to given minimum and maximum values and corresponding Z_A , M_A and N/M³ points.
- 4. Reject z_A (and M_A , N/M³) points according to given Z_A minimum and maximum values and corresponding to Z_R points.
- 5. Save the good Z_A , M_A , N/M³ and Z_R points.
- 6. Find mean Z_A , M_A , N/M³ and Z_R for given averaging period (save)

2.2.3 Program GAMMA (cont'd)

۲

- Using N/M³ (averaged, calculate Z and M for rain (physical size).
- 7A. (save, these parameters now designated Z* and M*)
- 8. Find λ for each averaging period where

 $\lambda = (Z_{\rm R}/Z^*) 1/6 \qquad (save)$

- Print λ, Z*, M*, k*, Z_A, M_A, k, Z_R for each averaging period.
- 10. Regression analyses on:

(1) λ vs Z* (2) λ vs M* (3) λ vs Z_R (4) k vs Z_R (5) k* vs Z_R (k = M_A/ $\sqrt{Z_A}$) (k*= M*/ $\sqrt{Z^*}$)

- 11. Using λ vs Z* equation
- 11A. Find λ for each averaged Z*
- 11B. Multiply rain mid size channel diameter time λ and then calculate M and Z with N/M**³ (designated M** and Z**)

11C. Regression analysis on k^{**} vs Z_p

3	Prog	ram GAM	MMA (cont	'd)				
	12.		catter d analyses	-	-			of
	13.	Print						
		E C E F	A. power B. RMS C. mean D. mean E. $\Sigma (x-\bar{x})$ F. $\Sigma (x-\bar{x})$ G. $\Sigma (x-\bar{x})$	y x) 2	on equat	ion y =	=x	
	14.	Plot - λ vs t	- x axis : time		(time), y axis		-	
	2 _R , 2	* + Z A	vs time		y axes	adjusta	ble	
	z _R ,z	**	vs time			Ŧ		
	k* +	k	vs time			n		
	M _A +	M**	vs time			••		

2.2.

į 4

2.2.3 Program GAMMA (cont'd)

Two assumptions were made about the tapes which helped facilitate its programming. First, we are only interested in the ICE cases, thus in calculating radar Z we do not need to insert code for the rain case calculations. Secondly, KNOLL1D will always be run with the "new output format" and interpolation flags set (1 in columns 55 and 70 of the option card). This generates an output tape with the unmelted center diameters on it although all calculations are done melted. We can do this because GAMMA is being used for the analysis of melting relationships and how they relate to radar data. In other words we are only interested in looking at non-rain data. One point should be made here; Lear data produced by HIAC1D does not have the above option thus an array must be maintained in GAMMA containing the rain case interpolated center diameters.

Program GAMMA accepts a pass from input then accepts or calculates the following parameters for each second of the pass (storing them in arrays for later usage):

Z_A melted aircraft Z (accepted from KNOLL1D output tape)
M_A melted aircraft LWC (accepted from KNOLL1D output tape)
K_A melted aircraft K (accepted from KNOLL1D output tape)
Z_{*} Rain aircraft Z (calculated from KNOLL1D output tape)
M* Rain aircraft LWC (calculated from KNOLL1D output tape)

2.2.3 Program GAMMA (cont'd)

K* Rain aircraft K (calculated from KNOLL1D output tape)

New calculated parameter $(^{Z}R/(4.45Z_{*}))1/6$

- Z** New calculated parameter: Z calculated based upon center diameter of physical size times λ
- M** New calculated parameter: same as Z** except LWC

K** M**/V2**

Z_R Radar Z (calculated from radar tape Db values)

A test of Z_A and Z_R is done by shifting +3 to -3 seconds and correcting them. At this point the Z_R data is shifted based upon the best correlation then data at every point of the pass is printed.

A set of LOG scatter plots is now produced with a least square fit line. The associated parameters for each plot are printed immediately following the data above. They are the following plots:

(1)	λ	VS	Z*
(2)	λ	vs	MA
(3)	λ	vs	ZR
(4)	ĸ _A	vs	ZR
(5)	K*	vs	ZR
(6)	K*:	evs	A

2.2.3 Program GAMMA (cont'd)

4

No further output is given per pass but additional plots are produced. They are

(1) time plot containing three parameters: $Z_{R'}$, Z_{A} and Z_{*} vs time

(2) λ vs time

(3) three time plots of two parameter each:

 Z_{R} and Z_{**} vs time

K* and K_A vs time

 M_{A} and $M \star \star$ vs time

Complete operating instructions and sample outputs are found in the following sections.

2.2.3.1 Program GAMMA operating instructions

CONTROL CARDS

DPSI, CM130000, T200, NT1, TP1 ID# NAME ATTACH, LGO, GAMMABIN, ID=GLASS, MR=1. REQUEST, TAPE39, *Q. DISPOSE, TAPE39, *FM. ATTACH, CRT, CRTPLOTS, MR=1. LIBRARY, CRT. *VSN, TAPE1=TAPENO/NT. REQUEST, TAPE1, NT, E, NORING.

**VSN, TAPE3=TAPENO.

REQUEST, TAPE3, MT, NORING.

LGO.

7/8/9

DATA CARDS

CARD #1

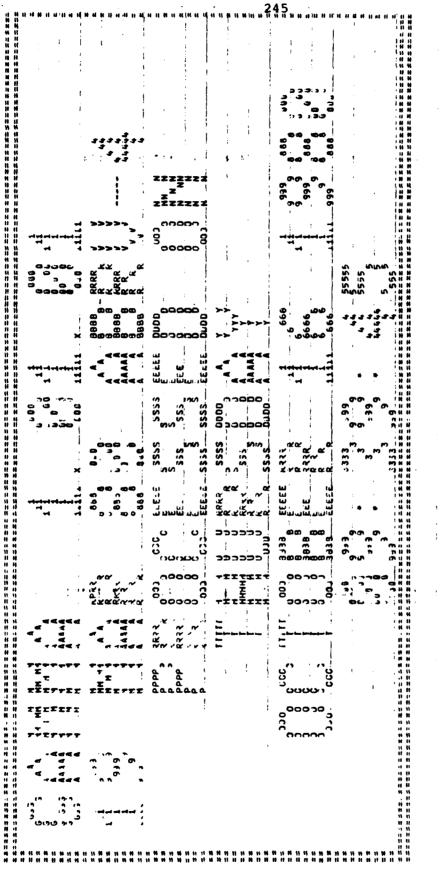
- col 5 IAC: 1-C130E, 2-LEAR JET, 3-C130A
 - 10 IPROBE: 1-SCATTER, 2-CLOUD, 3-PRECIP, 4-TOTAL PROBE USED
 - 15 IRAD: 0-SPANDAR, 1-MOIST (FIRST), 2-MOIST (SECOND) RADAR TYPE FORMAT
 - 20 LITRAD: 0-SPANDAR, 1-ALCOR, 2-TRADEX LITERAL USED
 - 21-30 ROFSET: RADAR OFSET DISTANCE IN METERS (F10.4)
 - 31-40 DBCOR: GLOBAL D6 CORRECTION (F10.4)
 - 41-50 DBMIN: MINIMUM DETRACTABLE DB (F10.4)

2.2.3.1 Program GAMMA operating instructions (cont'd)

CARDS 2-- (N+1) (N PASS CARDS) col 1-2 PASS#(12) 5-10 START TIME (HHMMSS) 13-18 STOP TIME (HHMMSS) 21-30 A/C ZMIN (F10.4) 31-40 A/C ZMAX (F10.4) 41-50 RADAR ZMIN (F10.4) 51-60 RADAR ZMAX (F10.4) 71-80 DB PASS CORRECTION (F10.4) 6/7/8/9

*KNOLL1D OUTPUT TAPE WITH OPTIONS "INTERP" AND "NEW FORMAT" SET.

**RADAR DATA TAPE.


فيتعرب والمحافظ ومسطون يكروه

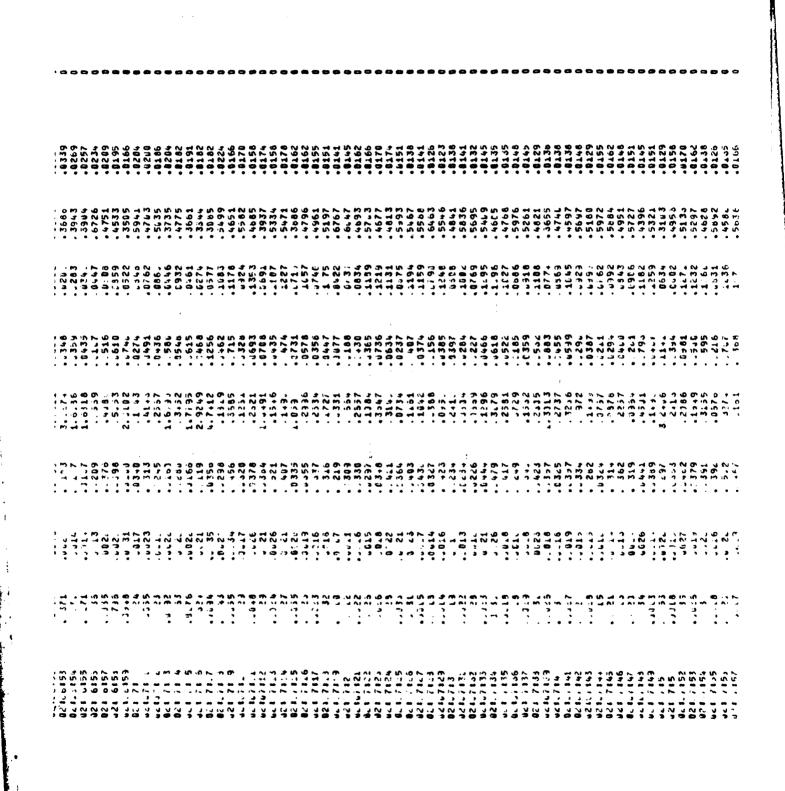
244

2.2.3.2 GAMMA sample output

ż.

The following pages contain GAMMA sample output.

ł


•

. • •

"1

		246	• ·
/1 6/8u			RADAK HEIGHT (M) 12465.35
P+3;KAM GAMMA V_R\$ION 1.01.01 P+3755560 on 1./16/8J T_146 09.39.45.			09 JJK4E CTION (+ 5L08AL) U.0440
		· · · · · · · · · · · · · · · · · · ·	Z ARCAR NIM XAM NIM Var 1994 - Jul - Jul -
			A/G Z Mi Max -+UB u6 406.000
	ð	LAJAR OFSLI DASTANGE Loralition 1.31134.2 db	STAT STOP STAT STOP State UL4.0131
		1 - 404 FO MAT Aluor Radar VD 3.644 040 451 - 4008 05544 Distance - 4.1344 DB Jorgeon -4444 01 Def.011342 DB	JEB 61.3 E1 81.8
			S S S S S S S S S S S S S S S S S S S

35	!	:		:	:				1				,																
КАЈА к Не IGHT (M) 12465.35					1																								
DB JJFRECTION (+ 3L08AL) V=U400					ZEJECTION Flag	•	0 9		;	• •		c) c		a c				•		0			•	•••			ə c) a
	FROM 145	9 • 2 ⊤ £		÷	ď	161	0229			214	178	1204	1234	219	214	240	1245	1229 1226	214	240	282	209	1229	1251	1245	240	219	1407	14.47
Z HAX v • U u D D	POINTS FR	2 17.9			~	•	••	•	•••	• •	••	•	••	•	••	•		•		•	•		•	•	••	•	•	••	
RADAR Miv M 0006 400	GUOD PO	4 4			GAMMA	. 3741	.4615	. 4773	. 4535	. 4432 . 469L	. 5571	. 3982	. 4937	- 4937	. 3376	1780° .	. 3547	. 5563	. 3958	9505.	. 3593	. 4675	.3561	. 52 . 0	• 30 v c •	. 4783	- 4868 - 46	- 100	
	THE 149	HLFT	IS USED		×*	•	.1076	11			623 1	735	.1106	1101	1990 A	6227 ·		0.854 1.63	. 656	. 0653	122	.1.66	. 6555	666°	10 10 1 10 20 1	.679.	4.5 27 22 74 2		
A/C Z Min Max Učed 4uč+u	FICEINTS JF	1 · 31	-2 SEC LAG		**	57	. 7 L 3	.1477		. 781 . 608	•	.0766	667	64¢		1247	.0164	55 2 5		. 723	.1244		F.	0		.	,	282.	
131 - 41 O	ELAITON COEFFIC	36.	₹		2	1 5522	, 5253 2429	555		165	133	1.51	253	3555		5+5	č. 71 15	1.3	. 52	1.2249	5 5 5 7 7		•••	. 295 <i>î</i>	 	ь ў.	. 3, 15 , 9, 5, 5	212	5
24049 445 5:0P 1 321.6	CORTELA	- 39-1		• • •	¥	176	. 375	69	382		***	321	[027	e 2 e	60 1 14 1 15	. 194		1 v 1 v 1 v	230	• 5 • 5 •	502 ·		• - 3 4 L	96E r •		• • • •	4 C L	. 217	- 76
9 0 2 1 - 61		ng st ⊧ • ∩i		4	T	•; 20				4825 -0.12-	6777.	• 62-		69.24 D-7				0 T 0	J. 23	0r27		0.2-	- 66	4 M - 1	. 29	.653.	1 02	2 : C - C - C	
4/ 5 5:00 14 5:5 814					Z A	2.2	¢č] €2		4	32	8.	L 8.							1								- . .		
PASS NU 51A L 21 61					i Inc	. n	021 611) 021 612)))			.o	1 1	ن ست		ഹ		•	0.							<u>u</u>	

- 1.55	•
1, 2, 72 []+ 3, 51, 51, 514[[]+9 -514[5]], 5	
RMS C064=L4TE3+ 1-	

1

5AMMA = (4118)A/C 2-34) MS ____22

-

1 -. 4+55) 4118)A/C 2-2414

ŧ

			1					,										,	I	r	I								24	9	:								i !				•			1
												•				÷							•						and a management of the second s							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				I			PTED Rejection Idar Rejection and ng radar Rejection
, c		• •	a			• •		. 0		•			• •		e di	• •			• a						•	•	•						•		.	•		• 6		-	•	•	•		•	0 - 200 F71 2 - 200 F71 2 - 20 F70 2 - 20 F700 2 - 20 F700
	- 4 4 06		.0155	15	15		9270	3) 1) a	. 8240	.0195	.0208	-1170	. 81.95		0200	- 8195	.0135	1	•		.8229		2	•••	•0295		0020.	3	0372	.0309				» a			1	10	.0182		2918.	0078.	• 82 (
		. 50.61	6484.	.6306	5072	- 5364	9764.	• 4699	. 4663	9292		. 4146	4131	.5425	5908	5404	. 4618 -	5077 .	4626	. 4760	. 5228	056	. 4952	. 4587	. 4665	. 5, 91	. 5243 .	• 50 < 5		5854	. 4237	. 3764	. 3533		ワンチま・	1201		9254	5062	.4736	. 58.5	.5365	5945	- 20 - P	2026 •	2007
6137		• ^			1234	5	1	m	2	1 M 1 M	12	5	• 1	ŝ	2		•	1415		1450	- 1256-	. 4013	6	. 1482		.1154	3	.1315	1 1 1 1	0451	5.6	-	20	1974	~ 6	n 0 	h 🖷		1	16	2	16	-		4	6464
		• :#	15	2021	300	3	1520 ·	. 4475	0757	116	3916	1931		. 518	212	ی۔ و ز	1	1.0	5	. 634	1537	. 1844		.1442		• 0665	67 62			170400	- 21	10		-	3			075	ŝ	3	4	•	. 285	0 F 0 F 1 2		
1416		1113			16 - 2 -	🛆	-	•			•	h + 1	. 60	1	8680	.1.1.		.6103	62+4	955.	1346-				- +664		Į٨.	-	71. 11.	2122	5	Ť	5	.		9660			N	50	.1146	.1714	ŝ,		7 167 1	· F34.
				345		911	100 2 .	5.7	-	• · ·		- 1	•		. Deb 8	63	• ·	- 13	۰.		••		••	۰,	- 204	5[+	• 15	• 515			. ~	. 573		1794		» c	5 1	•		. 5.5		. 762	٩.		- 030	• 374
		20 m	8 j 2 6	2	4825	6.28	6	9621	. u. 26		11	.0028	0 J 25	. • 25			20.34				• B · 31	6+	2440		• #034	8 7 J r .	d. d. k				82 0	1087	0111	8447			. Mard	.0.38	40.94	. 0137	• B • 36	5403.	J. 16			••027
			•		32			35			,	032	•		-	120			5	••*		. 3. 23	•	~		64 7	•	, , ,	2	•	1 I A		-	.# P IN H I I	, . ,	- 14	• •				× .	÷	N	•	•	4 1 1
	<pre>c 1 2</pre>			1				2	-			02 8L 8 8.1	62 tu o t. 2	64 6 8 1 3	421 - 174	421 81 5	421 at 16	424 64 7	tet.utt	428 31.9	uč 1. 012	1211 8161	821.01.2	021 81.5	Ucl 012.	4c1 81_5	8c 1. 0126	U. 1. 81č7			421 813.	b é tu a 132	421.0133	861 0134	Ľ 4				-	-	•	2	5	2.	• •	

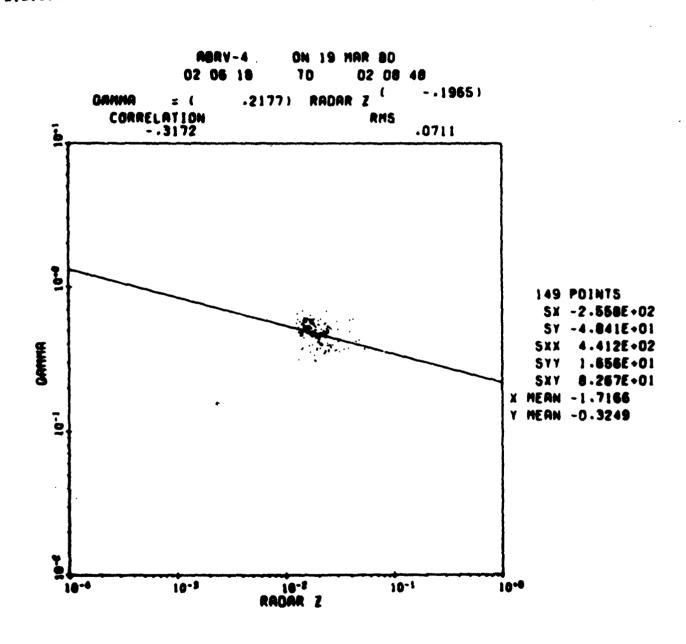
•

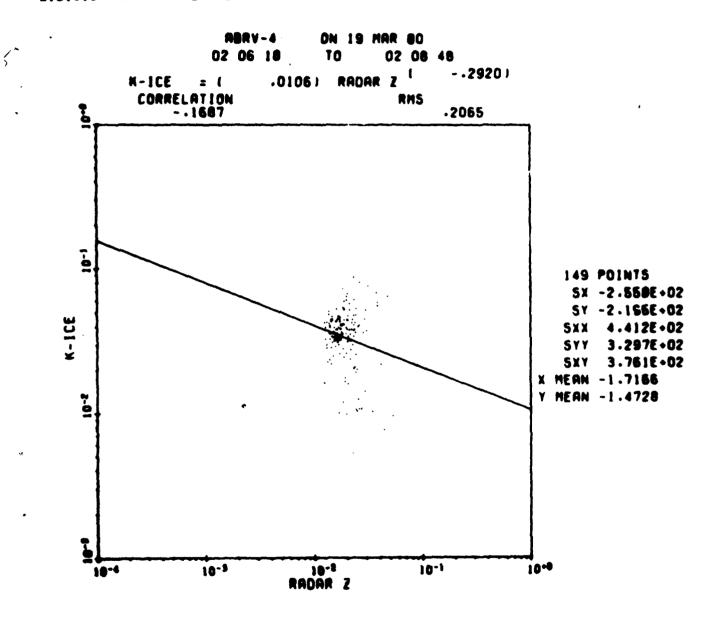

250 ************************* 1 1 -..965) - 16981 -. 2920) 2 6) RAUAR 2 - 3050) -. 3691) -61 33u0 63.1367 -252 7.456 +4. +23 5 -2.62.8 -393. . +58 131.54.54 -255.77.0 441.2335 ++- 230 4048 Z 301-14-RADAR Z 2401R 2 -.21,7) RADA2 2 S SADAZ Z .2020 LADAL Z -15971 LWC-13--. 3.14 - 4371 -. 1697 - 2621 14.6719 120.004 8× 6651 376 U665 27 . 37. 7 RNS • 741 Commutatium Jueffolint 1+9 PJI415 Jued RMS 6374 Comaleation 20 ffic.int 149 foimts JJED RMS []05 Commelandom (057FIC.INF 1+3 PJIMIS J.CO - 32+3 - 44-55 - 6 - 53. -1 4723 -219 4344 3234742 K-1): X - 44 N SANAS SAMMA. . * ÷ -K-10. = (K-G.a4MA = 1 K-KAIN = (ANNA 6 AM 1 B HEAN SX SXX SXY NEAN SX NCAN SX nEAH SX nean Sx Sxx Sxy XXS SXX XXS SXY SX1 SXI

- -

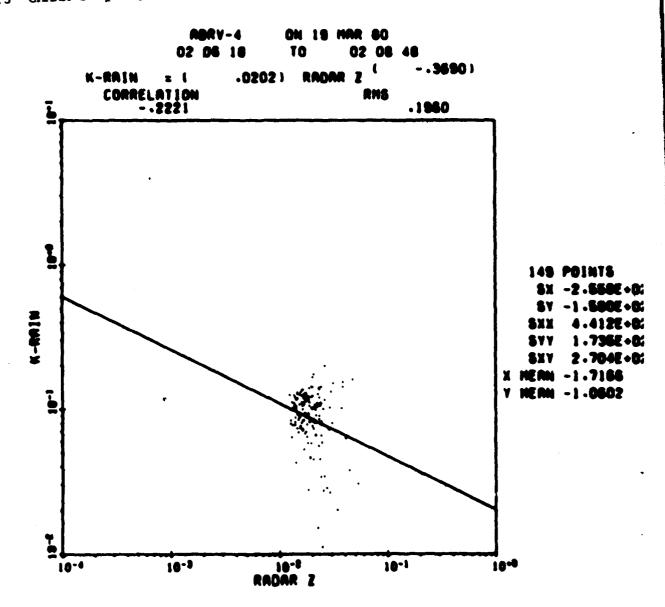
	CO-RELAITON COEFFIC-INT 49 PJINTS JED	- , 2421				·	•	
	, :	-1.7165 -1.7165 -266-77		•				1
	275 **************	3707 1444444444444		*** • • • * • * • * * * * * * * * * * *	****			
		•	۱ ۱ ۱		•			
		•		•		;		1
			1					:
		:					2	
			•	;				
			۱				•	1
								-
								1
		•			1		}	:
					ţ			
						i		:
	,							1
	i s i		• • •		·			
		- - - - -			:	!	•	•
	•					-		
	I							
: : : :	•			•		:		ı
	•	•	1				4 9 1 1	
		:						
				ı				

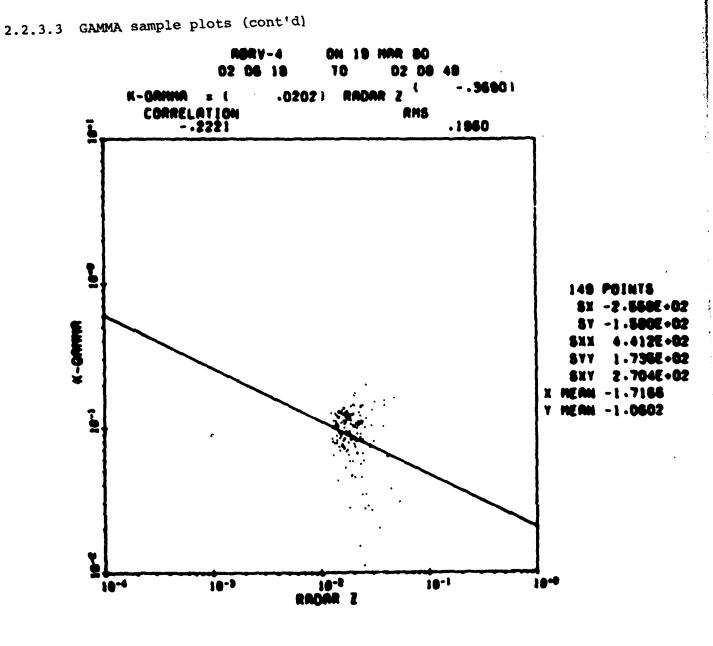
ABRY-4 ON 19 MAR SO 02 06 18 02 00 48 10 -4118)A/C Z-RAIN^C -.14551 GANNA = (CORRELATION -.9735 RMS .0172 Ĩ 149 POINTS 5X -6.194E+01 SY -4.841E+01 SXX 6.320E+01 CAMPA SYY 1.656E+01 SXY 1.467E+01 X MEAN -0.4157 Y MEAN -0.3249 10-1 10-0 10-1 A/C Z-RAIN 10-1 10-2 10-1

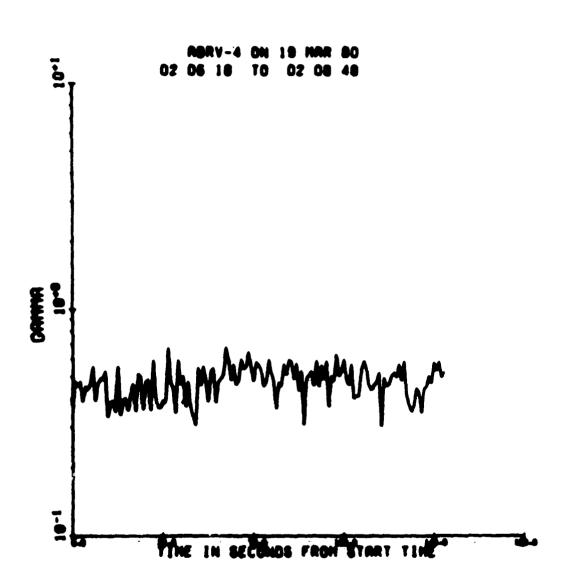

2.2.3.3 GAMMA sample plots

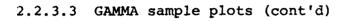


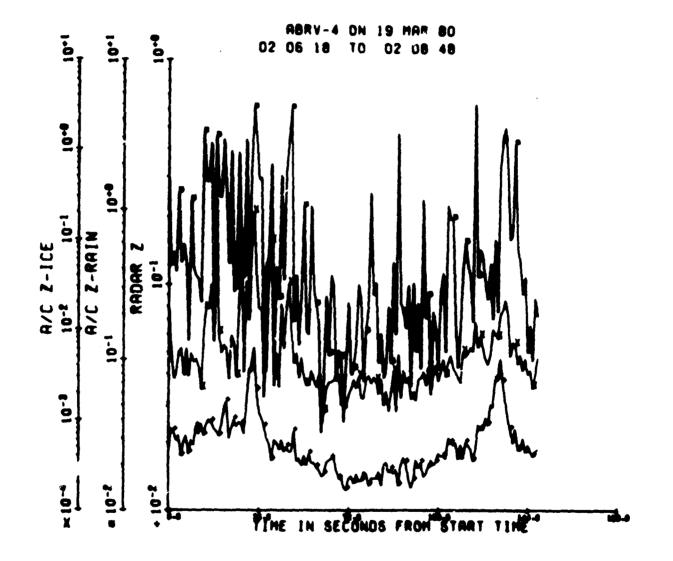
.

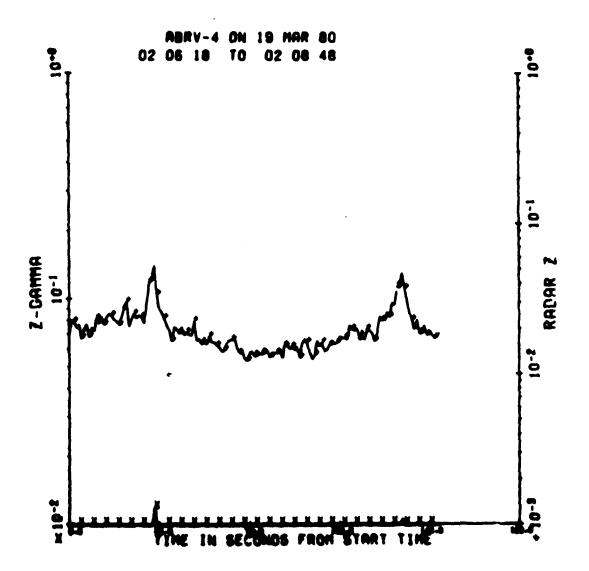

ζ


California Strike




ан. 17-л




<

<

2.2.4 Program SPANDAR

Program SPANDAR takes the IBM 360 generated radar correlation tape and reformats it into a CDC 6600 SCOPE-NOS/BE compatible tape. SPANDAR can only be run under the CDC 6600 batch processor via card input.

Input is the radar data tape (appendix 9) containing DBZ values generated during an aircraft sampling pass in Wallops Island vicinity. It is processed by the Applied Physics Lab at John Hopkins University before being sent to AFGL/LYC.

There are five different output options available from SPANDAR:

- 1. line printer plot of Z (TAPE2)
- 2. CDC 6600 data tape (TAPE3)
- 3. data summary printout (TAPE7)
- 4. tape listing formatted (TAPE8)
- 5. punched cards (TAPE4)

TAPE3 can be used as input to program RAPP for correlation with aircraft data; see appendix 10 for its format. SPANDAR operating instructions follow in the next sections.

2.2.4.1 Program SPANDAR operating instructions

Control Cards

JOBNM, CM65000, T50, TP2.* PROB NO. NAME REQUEST, TAPE1, L, MT, VSN=TAPENO. (7 TRACK - NO RING) REQUEST, TAPE3, MT, RING, VSN=TAPENO.* (7 TRACK - RING) ATTACH, LGO, SPANDARBIN, ID=GLASS, MR=1. FILE (TAPE1, RT=U, BT=K, MRL=5339, MBL=5339, RB=1, BFS=536) MAP, OFF LDSET, FILES=TAPE1, PRESET=ZERO. LGO. REWIND, TAPE8. FOR TAPE LISTING COPY, TAPE8. REWIND, TAPE2. FOR LINE PRINTER PLOT COPY, TAPE2. 6/7/8/9

* FOR NO OUTPUT TAPE REMOVE REQUEST, TAPE3,... CARD AND CHANGE TP2 TO TP1

Data Cards

NONE REQUIRED

2.2.4.2 SPANDAR sample output Output Description

The standard SPANDAR output format is a summary of all the data on the converted tape. The page headings specify which aircraft the radar was tracking and each block underneath specifies one correlated radar-aircraft track. For instance, in figure 2.17the Cl30 aircraft was tracked on 22 MAR 77 from 14:15:54 until 14:16:33 at an average height of 1400 feet. This track is referenced as pass 3.

Optional TAPE8 (figure 2.18) output is a complete listing of every item on the data tape. On the top of each page is an expansion of the pass summary block listing aircraft and times. The rest of the page is devoted to the tabular values given on the radar tape:

HH:MM:SS.F	time sample was collected (once a second)
Z(DBZ)	radar reflectivity
EL (DEG)	radar elevation in degrees
AZ (DEG)	azimuth in degrees
RSLRA (NM)	slant range to the aircraft in nautical miles
GRRA (NM)	ground distance to the aircraft in nautical miles
GR RA(KM)	altitude in kilometer

Optional output TAPE2 is a line printer plot figure 2.19 of radar reflectivity (Z) vs. time. The range of Z is -25.0 DBZ to +25.0 DBZ in increments of .5 DBZ. The program divides the data into one minute group with a series of bars, but does not cause a break in the graph. The time, the slant range, and the value of Z are printed to the side of each point plotted.

	- ·	3133 *****	LEAR	
			•••	
1	DATE PASS	?? M14 77 3 .		
	FPC4		•	
		:4:15:54.0 14:16:33.0		
	нт. Н	1400.2 FT		·
				·
2		22 HAR 77		• • • · · · · · · · · · · · · · · · · ·
	PASS	5		
	FROM .			
	10			
		1202.6 FT	··· • · · ···	· · · · · · · · · · · · · · · · · · ·
			••••••••••••••••••••••••••••••••••••••	· • · · · · · · · · · · · · · · · · · ·
3	DATE	22 442 77		
	. PASS FPO4			···
		14134114.0		
		14134128.0	• •	
		4303.0 FT		
•				
• · · · • •••	STAR	22 442 77	·· · ·	
	PASS	5		
	FROM	14134134.0	• • · ·	
л	T0	14:35:19.0		
5	Hf	. 4900.0 FT	••••	·
5			· · ·	· ••···•
-	-) ate Disc	22 MAR 77		
A	PASS	5		متعصف النعال المحتر الم
	FPOM	14135124.0		
	TQ. HT	.14135137.0		
		4903.0 FT		سيستعدن معدد
-				
	2455	. 22 MAR 77.	· · · · · · · ·	··· ···
		14:35:42.0		
	TO	14:37:58.0		· • • • • • • • • • • • • • • • • • • •
		440C.5 FT		
7	DATE	22 112 77		
	PASS	.7		
	FOOM	141571 5.0	• ••• •	• ••••
		141581 2.0		
	Th	1300.0 FT		
	• • •• ••			• · • •••
	DATE	22 MAR 77		
	PASS	7		
· · · · · · · · · · · · · · · · · · ·	FROM	141531 7.0		
	FROM TO	141531 7.0		- ·

Figure 2.17: SPANDAR output summary

115.7 Z(192) EL 13.6 C(25) RSKA (W) GR Z(10) 13.9 255.0 17.7 11.1 100.3 11.0 11.0 20.3 135 255.0 17.7 11.1 100.3 11.0 20.3 135 255.0 17.7 11.1 100.3 11.0 20.3 135 255.0 17.7 11.1 100.3 11.0 20.3 135 255.0 17.7 11.2 101.3 10.6 19.4 26.1 17.7 11.2 101.4 19.4 19.4 26.1 17.7 11.2 101.4 19.4 19.4 26.1 17.7 11.2 101.4 19.4 19.4 26.1 10.4 10.6 10.6 19.4 19.4 26.1 10.7 10.6 10.6 19.4 19.4 26.1 10.7 10.6 10.6 19.4 19.4 26.1 10.6 10.6 10.6 19.4 19.4 26.1 10.7 10.7 10.6 19.4 19.4 26.1 10.7 10.7 10.7 10.7 10.7 26.1	1156.7 21032) 61 126.0 A2 026.0 83.94 11.0 70.0 113.0 855.0 17.7 11.1 100.1 11.0 20.0 113.0 855.0 17.7 11.1 100.1 11.0 20.0 113.0 855.0 17.7 11.1 100.1 11.0 20.0 114.0 855.0 17.7 11.1 100.1 11.0 20.0 114.0 855.0 17.7 11.2 101.1 10.0 10.0 10.0 855.0 17.7 11.2 101.1 10.1 10.0 10.0 815.0 17.7 11.2 101.1 10.1 10.0 10.0 815.0 17.7 11.2 101.1 10.1 10.0 815.0 17.7 11.2 101.1 10.0 10.0 815.1 17.7 11.1 10.1 10.0 10.0 815.1 11.2 101.1 10.1 10.0 10.0 815.1 11.2 101.2 10.1 10.0 10.0 815.1 11.2 101.2 10.0 10.0 10.0 815.1 11.2 101.1 10.0 10									
		1 2 1 mi 1 5 C + F		1 (JE	30) Z	N SSLRA (N	G2 RA (R 0 K	ALT (FT)	T (
		.5154-			ć		.11	ċ	62.	- •
		5 155.	15.9	 - 	:	.11		5	52.	·
		5 156.	17.4.	1.5.	•	э 1).	10.	•	÷:	
		5 15 7.	1.11	1.1	÷	3 10.	10.	•	41.	و. •
		5158.			ď	9 10.	10.	÷.	č1.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 159.	19.1	1.2		1 1 1 1	13.		91.	••
$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		1.64.0			4	J 1 3•			69.	• • •
		::6: 1.	17.7	1.2		3 13.	10.		57.	. د . •
16 10 17.4 10.5 10 10.4 10.4 16 15 10 10 10.4 10.4 10.4 16 15 10 17.4 10.4 10.4 10.4 16 15 10 10.4 10.4 10.4 15 15 10.4 10.4 10.4 10.4 15 15 10.4 10.4 10.4 10.4 15 15 10.4 10.4 10.4 10.4 15 15 10.4 10.4 10.4 10.4 15 15 101.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 16 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4 10.4 10.4 15 10.4 10.4 10.4		:151-2-		. 1.2				19.6	57.	•
$ \begin{bmatrix} 5 & 5 & 0 & -15 & -15 & -11 & -$.61 3.	~	1.2		1 10-	16.	19.4	• 2• •	*
55 50 <td< td=""><td></td><td>10 1 - t</td><td>2 • S</td><td>•••••</td><td>.</td><td>2 11.</td><td>10.</td><td>19.3</td><td>• •</td><td></td></td<>		10 1 - t	2 • S	•••••	.	2 11.	10.	19.3	• •	
	$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	191			4.	11.		19.3		. e.
10 10 <t< td=""><td></td><td></td><td>Ô,</td><td>2 • 1</td><td>1.</td><td></td><td></td><td>19.1</td><td></td><td>•</td></t<>			Ô,	2 • 1	1.			19.1		•
			n u	•					• • •	•
5:1:0 15:0 10:1 10:1 10:1 10:1 5:1:0 15:0 15:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 0.0 0.0 0.0 5:1:0 15:0 10:0 10:0 10:0 10:0 5:1:0 15:0 10:0 0.0 0.0 10:0 5:1:0 15:0 10:0 0.0 0.0 10:0 5:1:0 15:0 10:0 0.0 0.0 10:0 5:1:0 15:0 10:0 0.0 0.0 10:0 5:1:0 15:0 10:0 10:0 10:0 5:1:0 15:0 10:0 0.0 10:0 5:1:0 15:0 0.0 0.0 0.0 <tr< td=""><td></td><td>0 7 9 0 • • • •</td><td>c د</td><td>4 -1 </td><td>4</td><td></td><td>10.</td><td>18.9</td><td>• 0 • 0</td><td></td></tr<>		0 7 9 0 • • • •	c د	4 -1 	4		10.	18.9	• 0 • 0	
55112 15.2 101.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15112	ŝ	1 2	1	. []	10-	18.9	- 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111 51	5	1.2	:	5 10.	10.	18.7	5.6	• •
6113.0 15.2 101.6 10.0 10.0 10.6 136.6 515.0 15.1 1.2 101.6 3.9 9.9 9.9 19.6 136.6 515.0 15.7 1.3 101.6 3.9 9.9 9.9 19.6 145.6 517.0 15.7 1.3 101.6 3.9 9.9 9.9 19.6 146.6 517.0 15.7 1.3 101.6 3.7 9.9 9.9 144.7 517.0 15.7 1.3 101.6 9.6 9.7 18.6 147.7 5126.0 $1.62.1$ 9.6 9.7 9.6 9.7 170.6 147.7 5127.0 $1.22.1$ $1.22.1$ $1.22.1$ $1.22.1$ $1.72.6$ $1.72.7$ 5125.0 $1.6.6$ $1.22.1$ $1.22.1$ $1.22.2$ $1.72.6$ $1.72.6$ $1.72.6$ 5125.0 $1.5.2$ $1.22.1$ $1.22.2$ $1.22.6$ $1.72.6$ $1.72.6$ $1.72.6$ $1.72.6$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25112	5.2	. .		5 11.	-10.		76.	•
6116.0 15.2 1.2 101.5 3.9 9.9 18.4 145 5115.0 15.1 1.3 101.7 9.9 18.4 145.4 5115.0 15.1 1.3 101.8 9.9 9.9 18.4 145.4 5119.0 15.7 1.3 101.9 9.8 9.9 18.4 145.4 5119.0 15.6 1.3 101.9 9.7 19.6 14.7 5119.0 15.6 1.2 101.9 9.7 19.6 14.7 5119.0 15.6 1.2 101.9 9.7 19.6 14.7 5120.0 15.6 1.2 102.0 9.7 106.0 117.0 5120.0 1.2 102.0 9.7 106.0 177.0 177.0 5125.0 $1.62.0$ 9.6 9.5 177.0 177.0 177.0 177.0 527.0 137.0 127.0 127.0 127.0 127.0 127.0 127.0	$614 \cdot 0$ $15 \cdot 7$ 1.2 $101 \cdot 7$ 3.9 9.9 $194 \cdot 4$ $145 \cdot 5$ $517 \cdot 0$ $15 \cdot 7$ 1.3 $101 \cdot 7$ 9.9 9.9 $194 \cdot 5$ $145 \cdot 5$ $517 \cdot 0$ $15 \cdot 7$ 1.3 $101 \cdot 7$ 9.9 9.9 $194 \cdot 5$ $145 \cdot 5$ $517 \cdot 0$ $15 \cdot 7$ 1.3 $101 \cdot 3$ 9.6 9.9 $194 \cdot 5$ $147 \cdot 5$ $172 \cdot 6$ $112 \cdot 6$	15113.	ŝ	1.2		6 13.	10.	18.6	76.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15114	5	. 1.2	-	6	•6	. 18.4	64,	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15115.	÷.	1.3	-1	7 9.	•	19.4	54	د . •
15.7 1.3 101.8 9.8 9.8 101.4 15.7 1.3 101.8 9.8 9.8 101.4 15.1 1.3 101.6 9.7 101.6 147 15.1 1.3 101.9 9.7 100.0 147 5121.0 15.6 1.2 102.0 9.7 100.0 147 5121.0 15.6 1.2 102.0 9.7 100.0 147 5121.0 15.6 1.2 102.0 9.7 100.0 177 5125.0 1.2 102.0 9.6 9.7 177.6 1171 5125.0 1.2 102.0 9.5 9.5 177.6 1171 517.0 113.6 1.2 102.0 9.6 177.6 1172 517.0 113.6 $1.22.6$ 9.5 102.6 177.6 1172 517.0 113.6 $1.22.6$ 9.6 9.7 177.6 1176 517.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6116.	3	1.3	-	7 3.	······································	. 18.3	45 .	
14^{1} 16^{1} <t< td=""><td>1472.6 1472.6 1472.6 5119.2 15.1 101.9 3.7 3.7 3.7 $14.7.6$ 1472.5 5121.2 15.6 1.2 102.2 3.7 10.6 1725.6 5121.2 15.6 1.2 102.2 3.7 10.6 1725.6 5121.2 15.6 1.2 102.1 3.6 3.7 106.6 1725.6 5125.0 1.2 102.1 3.6 3.6 3.6 177.6 1312.6 5125.0 1.2 102.1 3.6 3.6 177.6 1172.6 127.6 5125.0 1.2 102.1 3.6 3.6 177.6 1275.6 5125.0 117.6 117.6 117.6 1177.6 1275.6 5125.0 102.6 3.6 3.6 177.6 1275.6 5127.0 117.6 117.6 117.6 1177.6 1275.6 5127.0 117.6 117.6 117.6 127.6 127.6<td>6 :17.</td><td>10</td><td>£•4</td><td>4</td><td>в 9.</td><td>•6</td><td>19.1</td><td>e. M</td><td>•</td></td></t<>	1472.6 1472.6 1472.6 5119.2 15.1 101.9 3.7 3.7 3.7 $14.7.6$ 1472.5 5121.2 15.6 1.2 102.2 3.7 10.6 1725.6 5121.2 15.6 1.2 102.2 3.7 10.6 1725.6 5121.2 15.6 1.2 102.1 3.6 3.7 106.6 1725.6 5125.0 1.2 102.1 3.6 3.6 3.6 177.6 1312.6 5125.0 1.2 102.1 3.6 3.6 177.6 1172.6 127.6 5125.0 1.2 102.1 3.6 3.6 177.6 1275.6 5125.0 117.6 117.6 117.6 1177.6 1275.6 5125.0 102.6 3.6 3.6 177.6 1275.6 5127.0 117.6 117.6 117.6 1177.6 1275.6 5127.0 117.6 117.6 117.6 127.6 127.6 <td>6 :17.</td> <td>10</td> <td>£•4</td> <td>4</td> <td>в 9.</td> <td>•6</td> <td>19.1</td> <td>e. M</td> <td>•</td>	6 :17.	10	£•4	4	в 9.	•6	19.1	e. M	•
6119.2 55.1 1.3 101.9 9.7 10.6 142 6121.0 102.0 9.7 10.6 172 6121.0 102.0 9.7 10.6 173 6122.0 9.7 106.6 173 6125.0 102.0 9.7 106.6 173 6125.0 102.0 9.6 17.0 1736 1736 6125.0 102.1 9.6 9.6 17.0 1736 6125.0 102.1 9.6 9.5 1776 1737 6125.0 102.1 9.6 9.5 1776 1173 6125.0 102.16 9.5 1776 1173 1176 6127.0 137.0 1176 1176 1176 1176 6127.0 137.0 1176 1176 1176 1176 6127.0 137.0 1176 1176 1176 1176 6127.0 1127 1176 1176 1176 1176	11, 3 $101, 3$ $3, 7$ $3, 7$ $3, 7$ $10, 6$ $14, 25, 3$ $12, 10$ $1, 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$	1611.8	in	1.3	.:	•E . 8	•6	18.1	32.	• • •
$ \begin{bmatrix} 126.2 \\ 126.5 \\ 156.5 \\ 156.5 \\ 166.6 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 176.5 \\ 177.5 \\ 1$	6126.2 16.6 1.3 102.6 9.7 106.6 1729.6 6121.0 15.5 1.2 102.1 9.6 9.6 177.6 1312.6 61231.0 15.5 1.2 102.1 9.6 9.6 177.6 1312.6 6124.0 1.2 102.1 9.6 9.5 177.6 177.6 177.6 6125.0 1.2 102.1 9.6 9.5 177.6 177.6 177.6 6127.0 13.7 1.2 102.4 9.6 177.6 137.6 6127.0 13.7 1.2 102.4 9.5 9.5 177.6 1376.6 6129.0 13.7 102.4 9.3 9.3 177.6 1376.6 6129.0 13.7 102.4 9.2 9.2 177.6 1376.6 6129.0 132.6 9.2 9.2 9.2 177.6 1376.6 6129.4 9.2 1022.4 9.2 177.6 1376.6 13	10119	•••	1.3	1	е	•	1 9 . C	42.	÷.
6:21.3 15.5 1.2 16.6 1.72 $5:22.6$ 15.5 1.2 102.1 3.6 9.6 17.6 131 $5:23.3$ 15.6 1.22 102.1 3.6 9.6 17.6 131 $5:25.6$ 1.25 1.22 102.1 3.6 9.6 17.7 131 $5:25.0$ 1.22 102.1 3.5 9.6 17.7 177.6 177.7 $5:25.0$ 1.22 1.22 3.5 9.5 17.7 17.7 177.6 137.6 $5:27.0$ 13.7 1.23 102.4 9.3 9.3 17.6 137.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;		~	• •	·		420.	· • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$:16:21.3	٠	1.2	~	÷.		19.6	3.	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.	•		÷.	· e 9 ·	٠	9) 14	· · · · · · · · · · · · · · · · · · ·
5 124, C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+1	\$		~		. 6	٠	4 4 8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 12		1.2		13.	· e	٠	30.	د . • •
5:25.2 17.5 17.5 17.5 5:27.3 13.7 1.3 102.4 3.4 9.4 17.4 137 5:27.3 13.7 1.3 102.4 3.3 9.5 17.4 137 5:27.3 13.7 1.3 102.4 3.3 9.5 17.4 137 5:29.3 13.7 1.3 102.4 3.3 9.3 17.2 135 5:29.3 13.7 1.2 102.4 3.3 3.3 17.2 137 5:29.3 13.7 1.2 3.3 3.3 3.3 17.2 135 5:29.4 3.2 3.2 3.3 3.3 3.3 17.2 134 5:29.4 3.2 3.2 3.2 17.4 134 134 5:31.4 1.3 3.2 3.2 134 134 5:31.4 3.2 3.2 3.1 154 134	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 97		1.2	n .		• • •	٠	- - -	۶. •
5:27.3 13.7 1.3 102.4 9.4 9.4 17.4 137 5:28.0 13.5 1.03 102.4 9.3 9.3 17.2 125 5:29.0 13.7 1.2 1.25 9.3 17.2 125 5:29.0 13.7 1.2 9.3 9.3 17.2 125 5:29.0 13.7 1.2 9.3 9.3 17.2 135 5:29.0 13.7 1.2 9.3 9.3 17.2 135 5:29.0 13.7 9.3 9.3 17.2 134 5:29.0 1.2 9.2 9.2 17.4 134 5:31.0 13.4 9.2 9.2 17.4 134 5:31.0 13.4 9.2 9.2 17.4 134 5:31.0 13.4 9.2 9.2 17.4 134 5:31.0 13.4 9.2 9.2 17.4 134	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ŝ			2 J.	• E	17.	4 · · ·	
5 t78.0 13.5 1.3 1.0 1.3 1.7.2 1.25 5 t79.0 13.7 1.2 1.0 1.7.2 1.7.2 5 t79.0 13.7 1.2 1.7.2 1.7.2 1.7.2 5 t79.0 13.7 1.7.2 1.7.2 1.7.2 5 t79.0 13.7 1.7.2 1.7.2 1.7.2 5 t70.0 13.4 1.7.2 1.7.2 1.7.4 5 t71.0 1.7.4 1.7.4 1.7.4 1.7.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16191	٠		N. 1	4 •	• .			
5129.0 113.7 1.5 102.4 9.3 9.3 9.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 \$7.8.	٠				· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5129.	٠	₩) (• •1	102.	• •	•	•		
115131.] [3.4 1.3 112.4 3.2 3.2 1.2 17.4 154 ************************************	115131.1 13.4 1.3 102.4 3.2 3.2 3.2 17.1 1346. 115132.1 12.7 1.3 12.5 3.1 12.5 3.1 1334. 15.5 1334. 15.9 1334. 11513.3 12.8 1.3 152.4 3.1 9.1 16.8 1321.	116130			162.		• E	٠	ģ	
		115131	13.4	м , • • •	102.		•	•	• • •	\$. •
	115133.J 12.5 1.3 102.4 3.1 . 9.1 15.0 15.0 15.0	1151	/ • 2 •	•	1.1.		٠	•	**	

Figure 2.18: SPANDAR (TAPE8) output

...

265

-

and the second second second

i

いちょうさいしょ ままま ちょうりまれ よりょうし しゅまましょう しゅうしょう しゅうしょう しゅう ひょう ひっか ひろ ちっち ひろ アアアアアアアアア ひょう

for second and the second second

2.2.5 Program ZDMP

Program ZDMP was written to give a quick dump of radar Z values. The program was designed such that it could dump either moist radar data or the SPANDAR created output tape.

ZDMP strips off the Z values and outputs it in 1,5,and 10 second averages as well as pass averages for a given interval. Operating instructions for ZDMP appear below.

CONTROL CARDS

DPSI,CM40000,T150,TP1. ACT NAME ATTACH,LGO,ZDMPBIN,ID=GLASS,MR=1. VSN,TAPE3=TAPENO. REQUEST,TAPE3,NORING,MT. LGO.

DATA CARDS

CARD 1

COLUMN

1-20 ID INFO (2A10 FORMAT)

21-25 NSKIP(15):

NUMBER OF HEADER RECORDS TO SKIP BEFORE PROCESSING THE DATA

26-30 NRAD(15):

0 - SPANDAR RADAR USED

1 - MOIST RADAR (FIRST RADAR ON TAPE)

2 - MOIST RADAR (SECOND RADAR ON TAPE)

31-35 NTYPE(15)

0 - SPANDAR LITERAL USED

2.2.5	Program	ZDMP operating instructions (cont'd)
		1 - ALCOR LITERAL USED
		2 – TRADEX LITERAL USED
	41-50	DBCOR(F10.4) DBZ CORRECTION
	CARDS (2	-(N+1) - N PASSES
	1-2	NPASS(I2) - PASS NUMBER
	4-16	START AND STOP TIMES (HHMMSS.HHMMSS)
	17-20	IRACOR(14) = WHEN NOT EQUAL TO ZERO Db CORRECTION
		IS SET TO 6.5 (WALLOPS ICE DATA)

. See

2.3 PMS-2D Data Processing

The PMS-2D hardware configuration is described below.

<u>MC-130</u>

Two PMS-2D particle display systems with two size ranges (25-800 μ and 200-6400 μ) tied to dual Pertec (model F5640-9) digital recorders.

LEAR

Two PMS-2D particle display systems with two size ranges $(40-1280\mu \text{ and } 160-5120\mu)$ tied to a Pertec (model T7640-9) digital recorders.

The 2D Knollenberg has some important advantages over the earlier 1D model. Firstly, there are 32 sensors each exactly 25μ in diameter. The second dimension is achieved by taking readings over time so that a two dimensional picture of the shadow is made. The sampling rate is adjusted to the speed of the aircraft so that a reading would be taken every 25μ of length. That is, if the aircraft flies at 100 meters/sec, the sampling rate would have to be 4 megahertz. This exact ratio cannot be maintained perfectly, so the results are modified slightly in the computer according to the true airspeed of the aircraft. Like the 1D device, the output is turned on when a sensor is shut off, and continues until all sensors are back on, but this device will output the status of each of the 32 sensors every four-millionth of a second until all the sensors are back on. Thus the 2D device gives a picture of the particle(s) as subsequent readouts are placed together, and will not give incorrect results when two

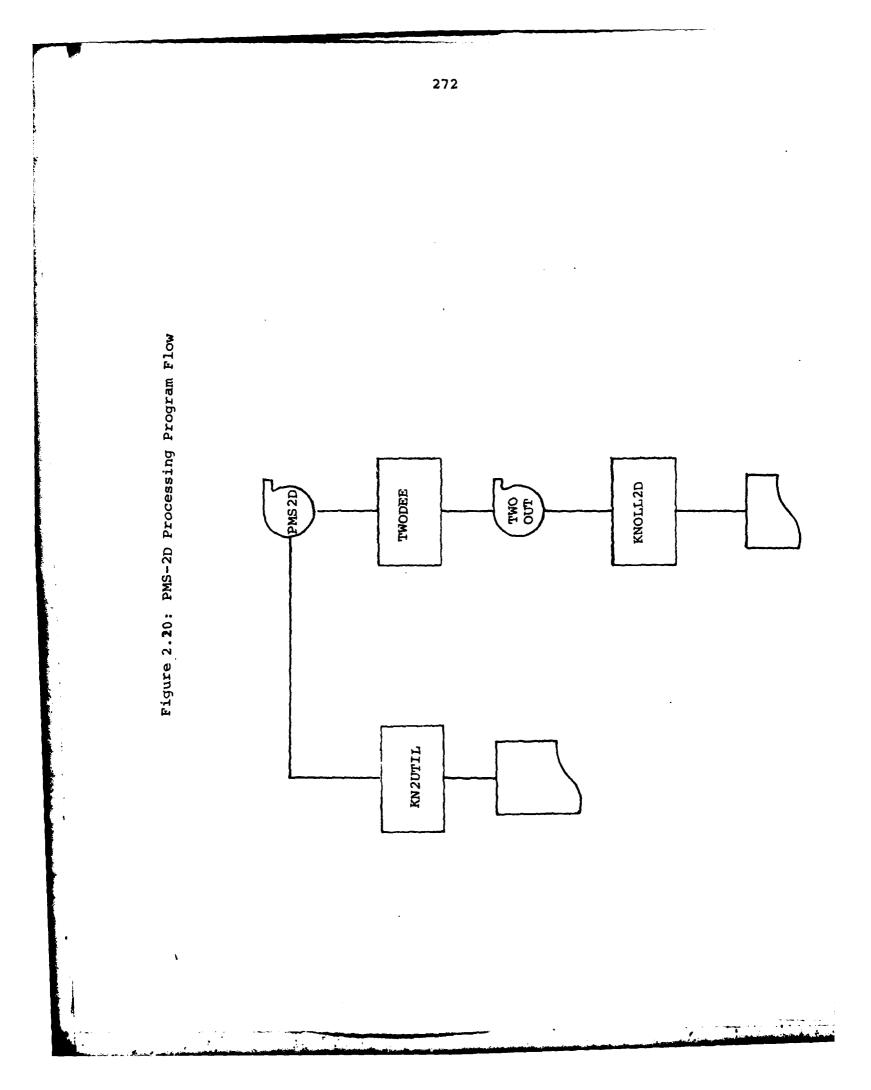
2.3 PMS-2D Data Processing (cont'd)

particles are seen simultaneously.

An additional advantage of the 2D system is the end rejection feature. If a particle occludes either ending diode, it is still recorded on magnetic tape. On the 1D system these particles are not counted and the data is lost.

The reason for this rejection is the philosophy of the 1D system; if the ending diode is occluded, there is no way to estimate the true particle length and it was felt, at the engineering design level, that it would be better to eliminate the particle rather than counting it as one with a lesser diameter. With that in mind, the end diode rejection feature was incorporated into the 1D system. An area of concern, however, is the number of particles being rejected; with the present 1D system there is no way to determine this. It may be of considerable consequence because the larger particles have the greatest probability of being rejected, and it is precisely these particles which will contribute heavily to the liquid water content and radar reflectivity.

DPSI designed and developed a new set of programs to analyze the data obtained from the 2D PMS Knollenberg devices. The details of this design follow in these sections. (see figure 2.20)


The 2D particle display system is a valuable source of data to LYC. Data is collected from two independent systems (one each on the MC-130 and Learjet) and recorded on magnetic tape using a nine-track Pertec recorder. Only the C130 tapes

2.3 PMS-2D Data Processing (cont'd)

are processed on the AFGL CDC 6600 computer.

These data tapes contain two types of records, composed of "fast" and "slow" data. The fast data records contain the 2D particle image slices. One dimension, the columns, is represented by the 32 diode array, the other dimension, the rows, by time; i.e. one row represents the diode status for 250 nanoseconds of time. This is true for the MC-130 aircraft; the Learjet row of data occurs every 125 nanoseconds because of the faster speed of the jet.

The slow data records occur once every ten seconds. These records contain VCO and analog information. In addition, selected 1D data is multiplexed into the 2D Buffer and also recorded in the slow data records. The exact information contained in these records is different for each aircraft.

2.3.1 Program KN2UTIL

The first area of concern when considering this system is verification of the data collected. KN2UTIL has two methods available to display the data for this purpose. Each has its own advantages and a definite place in the processing stream.

The 6600 line printer output is one means of displaying the observed particles. This printer should be utilized when there are a limited number of records to be examined, or when fast inspection of the data is vital to LYC. One might expect to get two or three of these computer runs per day using the line printer.

This limitation is due to the long record length, and it becomes impractical to print many records. Each record contains 1024 scans of the 32 diode array, yielding approximately 20 computer pages per record. A maximization scheme has been developed which allows three records to be listed using 20 pages. Even with this technique to reduce output lines, a 30 record listing produces 200 pages. Therefore, althought the line printer output offers faster results, its use will have to be limited.

Another method of displaying this data is utilizing the 105mm film plotter available at the computer center. There are, again, advantages and disadvantages of this technique. The primary advantage of using this medium is that several full records may be displayed on a single fiche. Utilization of the film copier available at LYC will provide any hard copies desired. In addition storage of the fiche is

2.3.1 Program KN2UTIL (cont'd)

much more desirable than storing cumbersome computer listings. The only drawback is turn around time. The computer center requires one full day for film processing.

DPSI designed KN2UTIL to take advantage of both media. At the user's option, the desired output device will be used. This allows for both speed and quantity, depending upon the circumstances for data verification.

Because the two record types are interleaved, each record to be listed may be specified in one of two ways, either by overall record number or by sequence number within type (fast or slow). If a tape consists of the following records, the record count is as shown.

	S	S	S	F	F	S	F	F	S	S	F	F	F	F	S) s	F	F	S	F
Record number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Slow sequence #	1	2	3			4			5	6					7	8			9	
Fast sequence #				1	2		3	4			5	6	7	8			9	10		11

Case A. To dump all of the above records either of the following methods should be used. 1. records 1-20 or 2. Slow records 1-9

and

Fast records 1-11

2.3.1 Program KN2UTIL (cont'd)

Records to be dumped are input via a \$SS card in standard namelist format. The record number technique uses prefix A; the slow record, prefix S; and the fast record prefix F. The control variable for the \$SS card is REC prefixed with this character, and suffixed with a B or E indicating beginning or end of dump. For the previous two cases the \$SS card should be:

Case A.

@\$SS ARECB=1, ARECE=20 \$END

or

@\$SS SRECB=1,SRECE=9,FRECB=1,FRECE=9 \$END

2.3.1 Program KN2UTIL (cont'd)

Case B.

@\$SS ARECB=8, ARECE=15 \$END

or

@\$SS SRECB=5, SRECE=7, FRECB=4, FRECE=6 \$END

where 0 = blank column

This program provides a means of verifying the correct operation of the PMS-2D devices. It also produces a data summary that is useful in the manual particle typing required for other analyses. KN2UTIL reads the standard nine track PMS-2D particle image tape (appendix 11 and 12). The program must be run through the 6600 batch processor. Output is in the form of a line printer listing and either CRT or line printer generated images.

To summarize, the following results are produced by this program:

A tape summary of all data recorded that includes
 a. record type (slow or fast)

277

2.3.1 Program KN2UTIL (cont'd)

- b. record length
- c. record number (absolute and by type)
- d. record time
- 2. A data listing by record type as specified
 - a. slow data line printer

b. fast data (on selected device)

- 1. line printer
- 2. 105mm microfiche

Operating instructions appear in the following section.

2.3.1.1 Program KN2UTIL operating instructions

CONTROL CARDS

DPSI,CM75000,T400,NT1. PROB NO. NAME ATTACH, CRT, CRTPLOTS. 1 LIBRARY, CRT. REQUEST, TAPE39, *Q. DISPOSE, TAPE39, *FM. VSN, TAPE1=TAPENO/NT. (TAPENO IS PMS-2D DATA ACQUISITION TAPE) REQUEST, TAPE1, PE, L, NR, NT. FILE (TAPE1, RT=U, BT=K, MRL=5576, MBL=5576, RB=1, BFS=560) ATTACH, LGO, KN2UTILBIN, ID=GLASS, MR=1. LDSET, FILES=TAPE1, PRESET=ZERO. LGO. EXIT (U) REWIND, SUM, SOUT, LOUT. COPY, SUM.² COPY, SOUT.³ COPY,LOUT. 4 7/8/9 DATA 6/7/8/9

1 REMOVE WHEN CRT NOT DESIRED (ID CARD COL 1-3 MUST BE BLANK) 2 REMOVE WHEN SUMMARY NOT WANTED 3 REMOVE WHEN SHORT RECORD LISTING NOT WANTED

4 REMOVE WHEN LONG RECORD LISTING NOT WANTED

2.3.1.1 Program KN2UTIL operating instructions (cont'd)

Data Cards

CARD 1 ID CARD

CC 1-3 PEN FOR CRT OUTPUT BLANK FOR LONG RECORD LISTING ON PAPER

cc 11-16 TAPE NUMBER

cc 21-26 FLIGHT DATE DDMONYR (NO SPACES)

CARD 2 OPTION CARD

cc 2-3 NUMBER OF END OF FILES TO PROCESS (DEFAULT=1)

cc 6-10 NUMBER OF ABSOLUTE RECORDS TO READ (DEFAULT=999999)

CARD 3 SS NAMELIST CARD*

cc 2-4 \$ SS

VALID VARIABLES

ARECB	ABSOLUTE BEGINNING RECORD
ARECE	ABSOLUTE ENDING RECORD
SRECB	BEGINNING SLOW RECORD TO BE LISTED
SRECE	ENDING SLOW RECORD TO BE LISTED
LRECB	BEGINNING LONG RECORD TO BE LISTED
LRECE	ENDING LONG RECORD TO BE LISTED

CARD 4

cc 2-5 \$END

CARD 5 TIMEFLAG NAMELIST CARD**

cc 2-9 \$TIMFLAG

VALID VARIABLES

TF CHANGE DEFAULT TIME FLAG CODE (DEFAULT IS TF = 0, 1, 0, 1, 0, 1, 0, 1)

CARD 6

cc 2-5 \$END

2.3.1.1 Program KN2UTIL operating instructions (cont'd)

* \$ SS cards are in standard NAMELIST format. When the ARECB and ARECE variables are specified all records whether they be long or slow that are between records ARECB and ARECE inclusively will be listed. (The ARECB or ARECE variable specifies the actual tape record number).

Specific short and/or long records may be dumped selectively by using the SRECB, SRECE, LRECB and LRECE variables. The example in figure 19 depicts the correct usage.

If the CRT option was selected then the long records will be put onto 105mm fiche.

** \$ TIMFLAG cards are in standard namelist format. TF is dimensioned as length = 8. Timing word is indicated by a bit pattern of 01010101 in bits 1-8 of any scan, however due to hardware problems it may be something different. The TIMFLAG cards are a means of changing the flag key <u>AFTER</u> it is known. If the incorrect pattern is 00101010 then the namelist cards should read:

> @\$TIMEFLAG @TF=0,0,1,0,1,0,1,0, @\$END

where e = blank column

2.3.1.2 Program KN2UTIL sample output

Output details

Figure 2.21 shows the tape summary that is produced whenever KN2UTIL is run. The listing shows the count of each record in terms of both total records and record type. Each long record (indicated by an L in column 1) has a probe identifier (CL for cloud, PR for precip) shown. All long records (particle data) must be 547 words in length. The short records (an S in column 1) must have a length of 86 words. A sync byte (should be 111), a clock time, and an elapsed second counter are all shown for each slow record. Any record that is not either 547 or 86 words is indicated by an X in the left hand column. These records are ignored by all other PMS-2D processing programs.

A short record summary is depicted in figure 2.22. These records contain ten 1-second VCO samples, status words for each probe, and five percent clock rate samples. The eight VCO's that appear at the bottom, are calibrated, and averaged (over 10 seconds) by KN2UTIL: they appear for convenience only and are a means of visually verifying the VCO hardware.

A long record line printer output is shown in figures 2.23 and 2.24. This output is quite lengthy, at one line per scan, a three record set uses approximately 16 pages. At the beginning of each record, the times (clock & elapsed), record count, and overload status are shown. The elapsed time (based on the current clock sample rate) between particles is also shown. Note if a record appears without an

2.3.1.2 Program KN2UTIL sample output (cont'd)

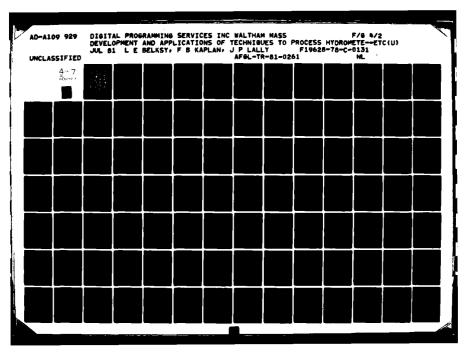
elapsed second count between each particle, there is a good chance that the time flag may be incorrect (see the previous section for a method to correct this). At the end of each record figure 2.24 the elapsed time between particles is summed and printed.

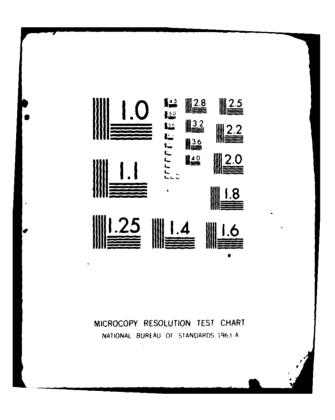
Figure 2.25 also depicts the long records using a difrerent media. Each record is shown on one 105mm frame. The information is identical to that on the line printer. The big advantage to this media is the amount of paper used. Whereas the line printer output has a faster (same day, usually) throughput time.

× ~	~				283		
ð	\$	· · · · · · · · · · · ·			and the second sec		
\$R	ECR = 0,						
ðsa	ECE = 30				· • ··· · ·.		
		-					
• - LR	264= -{} 9						
69	ECE - 30	•					- <u></u> _
•A.E	ECB =		Fig	gure 2	.21: KN2UTIL out	tput tape summary	
	EC=						-
•		y					
• \$E	ND						
•			. <u></u>				
0							
•							
		•					
•							
	ME FLAG IS						
T			<u><u><u> </u></u></u>				
•							
•			· · · ·		· •• • · · · · -		
••					· · · · · · · · · · · · · · · · · · ·	·····	
•				· · ·	· · · · · · · · · · · · · · · · · · ·	·····	
•	· · · · · · · · · · · · · · · · · · ·			· · ·			
•• •• •• •• •• • • •• • • • •• • • •• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			1	20143120		
•	1111 		SHORT		20143129,1	579.114	
•	1111	<u>1</u> <u>2</u> <u>3</u> . 4	SHORT	1 2 3	20143129,1	579.114	
		<u>1</u> <u>2</u> <u>3</u> . 4	SHORI	1 2 3	20143129,1 20143130,8 20147131,3	579 .114 540 .760 541 . 278	
	1111 CL P3 P2 CL P3 P2 CL P3		SHORI	1 2 3 	20143129,1 20143130,8 20143131,3 20143131,3 20143134,5 20143134,8 20143133,0	579.114 540.760 541.278 <u>544.496</u> 544.794 547.971	
			SHORI	1 2 3 	20143129,1 20143130,8 20143131,8 20143131,3 20143131,5 20143134,8 20143133,0 20143137	779.114 540.760 541.278 <u>544.494</u> 544.794	
	1111 CL P2 P2 CL P2 1111 CL		#SHORI #Short	1 2 3 5 6 2 7 8	20143129,1 20143130,8 20143131,8 20143131,3 20143131,3 20143134,8 20143133,0 20143133,0 20143139,2 20143141,5	579.114 540.760 541.278 544.704 544.704 543 543 543 543 543 543 543	
	1111 CL CL P3 P2 CL P3 1111 CL CL P2 22		#SHORI #Short	1 2 3 4 5 6 2 7 8 9	20143129,1 20143130,8 20143131,3 20143131,3 20143134,8 20143133,0 20143133,0 20143139,2 20143139,2 20143141,5 20143142,1	579.114 540.760 541.278 541.278 544.794 544.794 543 543 543 543 543 551.493 552.128	
	1111 CL CL P2 P2 CL P2 1111 CL CL 22 CL PR	- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13	#SHORI #Short	1 2 3 	20143129,1 20143130,8 20143131,3 20143131,3 20143134,8 20143133,0 20143133,0 20143139,2 20143139,2 20143141,5 20143144,8	539.114 540.760 541.278 544.794 544.794 543 543 543 543 543.195 551.493 552.128 554.827 555.692	
	1111 CL P2 P2 CL P2 1111 CL CL 22 CL PR CL	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 3 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \end{array} $	#SHORT	1 2 3 5 6 2 7 8 0 1 1 1 1 2	20143129,1 20143130,8 20143131,8 20143131,3 20143134,8 20143133,0 20143133,0 20143133,0 20143139,2 20143139,2 20143144,8 20143144,8 20143145,7 20143146,0	539.114 540.760 541.278 544.794 544.794 543 543 543.195 551.493 552.128 554.827 555.692 555.015	
	1111 CL P2 P2 CL P2 1111 CL CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 P2 CL	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	#SHORI #Short	1 2 3 5 6 2 7 8 9 10 11 12 2 3	20143129,1 20143130,8 20143131,3 20143131,3 20143134,8 20143133,0 20143133,0 20143133,0 20143139,2 20143139,2 20143144,8 20143144,8 20143145,7 20143146,0 20143146,0	539.114 540.760 541.278 544.464 544.794 547.971 543 549.195 551.493 552.128 554.827 555.692 556.015 550	
	1111 CL P2 P2 CL P2 1111 CL CL P2 CL	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array} $	#SHORT	1 2 3 5 6 2 7 8 0 1 1 1 1 2	20143129,1 20143130,8 20143131,8 20143131,3 20143134,8 20143133,0 20143133,0 20143133,0 20143139,2 20143139,2 20143144,8 20143144,8 20143145,7 20143146,0	539.114 540.760 541.278 544.794 544.794 543 543 543.195 551.493 552.128 554.827 555.692 555.015	
	1111 CL P2 P2 CL P2 1111 CL P2 CL P2 CL P2 CL PR CL PR CL PR	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 3 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	#SHORT	1 2 3 5 6 2 7 8 0 10 11 12 3 13 14 15	20143129,1 20143130,8 20143131,3 20143131,3 20143134,5 20143133,0 20143133,0 20143139,2 20143139,2 20143141,5 20143144,8 20143144,8 20143145,7 20143146,0 20143140,2 20143140,2 20143153,6	579.114 540.760 541.278 541.278 544.794 547.971 543 549.195 551.493 552.126 554.827 555.692 557 557 557 557 557 557 557 55	
	1111 CL P3 P2 CL P3 P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \end{array} $	#SHORT	1 2 3 4 5 6 2 7 8 9 10 11 12 3 13 14 15 16	20143129,1 $20143130,8$ $20143131,3$ $20143134,5$ $20143134,6$ $20143133,0$ $20143139,2$ $20143139,2$ $20143141,5$ $20143144,6$ $20143145,7$ $20143146,0$ $20143146,0$ $20143146,0$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143149,2$ $20143153,6$ $20143153,9$	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.704 543.9125 551.403 552.128 554.827 555.602 55.015 550 563.587 563.962	
	1111 CL P2 P2 CL P2 1111 CL P2 CL P2 CL P2 CL PR CL PR CL PR	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 3 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	#SHORT	1 2 3 5 6 2 7 8 0 10 11 12 3 13 14 15	20!43!29,1 $20!43!30,8$ $20!43!31,3$ $20!43!34,5$ $20!43!34,6$ $20!43!33,0$ $20!43!39,2$ $20!43!39,2$ $20!43!44,5$ $20!43!44,6$ $20!43!44,6$ $20!43!45,7$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!46,0$ $20!43!56,6$ $20!43!56,9$	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.278 541.278 541.278 541.279 543 543.28 551.493 554.827 555.692 55.693 563.587 563.952 556.871	
	1111 CL PR PR CL PR CL PR CL PR CL PR CL PR 1111	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ \end{array} $	#SHORT	1 2 3 6 2 7 8 0 1 0 11 12 13 14 15 15 15 15 17 18 4	$\begin{array}{c} 20143129,1\\ 20143130,8\\ 20143131,3\\ 20143134,6\\ 20143134,6\\ 20143134,8\\ 20143133,0\\ 20143139,2\\ 20143139,2\\ 20143139,2\\ 20143144,8\\ 20143144,8\\ 20143144,8\\ 20143145,7\\ 20143145,0\\ 20143145,0\\ 20143145,6\\ 20143145,6\\ 20143153,6\\ 20143155,6\\ 20143157,6\\ 20143150\\ 20143150\\ \end{array}$	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.474 543.195 551.493 552.128 554.827 555.692 554.827 555.692 555.692 555.51.16 550.557 560.630 563.587 563.952 556.871 567.656 560	
	1111 CL PQ PQ CL PQ CL PQ CL PQ CL PQ CL PR CL PR CL PR CL PR CL PR 1111 PR 1111 PR	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 3 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ \end{array} $	#SHORI #SHORT #SHORI	1 2 3 6 2 7 8 0 1 0 11 12 13 14 15 15 15 15 16 17 18 4 19	$\begin{array}{c} 20143129,1\\ 20143130,8\\ 20143131,3\\ 20143134,6\\ 20143134,6\\ 20143134,8\\ 20143133,0\\ 20143139,2\\ 20143139,2\\ 20143139,2\\ 20143144,6\\ 20143144,6\\ 20143144,6\\ 20143145,7\\ 20143145,0\\ 20143145,0\\ 20143145,0\\ 20143145,6\\ 20143153,6\\ 20143155,6\\ 20143156,9\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20144153\\ 201441,2\\ 201441,$	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.278 543.195 551.493 552.128 554.827 555.692 554.827 555.692 555.692 557.115 560.630 563.587 563.952 566.871 567.656 560 571.194	
	1111 CL PR PR CL PR CL PR CL PR CL PR CL PR 1111	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ \end{array} $	#SHORI #SHORT #SHORI	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	20143129,1 20143130,8 20143131,3 20143134,8 20143134,8 20143133,0 20143133,0 20143139,2 20143139,2 20143139,2 20143144,8 20143144,8 20143145,7 20143145,0 20143145,6 20143145,6 20143150 20143150 2014415,8	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.278 541.474 543.195 551.493 552.128 551.493 552.128 554.827 555.692 555.692 555.692 556.692 556.692 556.692 556.692 556.692 556.692 556.692 556.692 556.692 556.692 563.587 563.952 566.871 563.656 560 571.194 575.8(4)	
	1111 CL P2 P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 P2 CL P2 P2 CL P2 P2 CL P2 P2 P2 CL P2 CL P2 P2 CL P2 P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL P2 CL CL CL P2 CL CL CL P2 CL CL CL CL CL CL CL CL CL CL	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ \end{array} $	#SHORI #SHORT #SHORI	1 2 3 6 2 7 8 0 1 0 11 12 13 14 15 15 15 15 16 17 18 4 19	$\begin{array}{c} 20143129,1\\ 20143130,8\\ 20143131,3\\ 20143134,6\\ 20143134,6\\ 20143134,8\\ 20143133,0\\ 20143139,2\\ 20143139,2\\ 20143139,2\\ 20143144,6\\ 20143144,6\\ 20143144,6\\ 20143145,7\\ 20143145,0\\ 20143145,0\\ 20143145,0\\ 20143145,6\\ 20143153,6\\ 20143155,6\\ 20143156,9\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20143150\\ 20144153\\ 201441,2\\ 201441,$	579.114 540.760 541.278 541.278 541.278 541.278 541.278 541.278 541.278 543.195 551.493 552.128 554.827 555.692 554.827 555.692 555.692 557.115 560.630 563.587 563.952 566.871 567.656 560 571.194	

Figure 2.22: KN2UTIL short record summary

ł.	SREC= 13			F		•									
ALC CLOCK		-	5	E.		ų	ł	8	đ	J.	4	++			
20145120	- NCO 45-			4	7002		7266	5,46	2162	1025		2850	-6572-	PGT-64.06K	06 K 764 2
20145121	2.00A	. a	• •		۰C	1644	3735	5074	7108	1205	6618	7.962	E567	PRECIP	TOT=
20065022	20020	• •	• •	• •	· CT	1 1 1	125	200		1235		2462-	1954	PCT CLPCK	PEK-=-2
20145123	S. UUA	. 4) c		0661	1643	97.25	5033	7109	3525	4618	7 353	fe71	PRECIP	H
20145124	100 45	- - -			σ	1642	0255	5028	2444	1621-	1918	- 7456-	6550	PCT. CL	CEOCK = 761A
20145125	5.007	ت (יססי	1643	9734	5080	7111	3028	81é7	7354	6561	PPECIP	TOT=
-20145125-	STOD-	•			-0 802	-1643-	-355C	- 50.82 -	-2115	1926-	4618	7.852	655 E	PCT CLP	CLPCK = 7585
20145127	S, UUA	0	63	0	αı	1642	9755	5030	7119	3295	61.7	7956	£533	PRECIP	T0T=
-20145123	VCOSS	4	-	4	q	1947	3256	5092-	2119	3201	4619	2955	-9999-		CLOCK =
20145129	VCn S		C	0	3077	1640	9763	5092	7118	3025	4519	7363	6547	PRECIP	T0T=
			ļ	İ		STA	STATUS MON	Suaum			, 1 1		: 	ı	
						0ft0-13				:	1	- Sifi -03A	0.5 S		
DCT OV'L'		9	-		11	-		1 1	-	9	BRESCURE	ų	1-1-0	0345461	AB
20 TOTAL		•••	c		(2)	-		(11)	4	0 (1)	DEL PRESS	() ()	2•0	13E+00	E F
41 REF 4	6	630	2222		(I)	4			-	₽- •	da u	ļ	-8-0	236+61	050 0-
032 REF V	1 9	659	3 9, 9		(4)	-		(11)		0 +	DENPOTHT	T	1.1	115+62	05C C
-154 SUPP	1524	24	- 1527	1	(5)	- - -		111			LHC (JH		•		GH/M+
-12V SUPP	1220	20	1215		(9)	-1		(†1)	-4			AIFSP	2.7	7655+12	KNOTS
AEV SUPPeA	5924	2	5133		(2)	-		(15)	-		- 1	929		CCE412-	KNOTS
+5V SUPP-B	5008	38	5,55		(A)	-		(16)	4	T	HEIGHT		2.5	2.5796+04	AETERS
+15V SUPP		9	- 1436											•	•
MIRROR THP		5	34												


1000


-

LAC ARE SCONDS	ХЕС ВРЕС 35 37 Дата 37 37 Дата	SECONOS 2179-5867 45222 216169-5	LRE2 AREC 35 34 51 010 041 0	SECONDS
	Not CLOUM AND		OVERLOANT GLOUP AN ##X# 	410
2 6 1 2 9	XXX XX CLOTK= -510 4H7 CLOTK= -510 4H7	201469.45€C	XX CLOCK=4.078 412 CLOCK=4.078 412	
•¥ •	GL72K= .510 4HZ 0	L JE 4SE C		X X X X X X X X X X
	GLJJK= .510 4HZ F FL AP S F D XX XX XX XX XX XX XX XX XX X	1543,72 1555C 134 255C 2695,228 USEC		
CLOCK=4.077 447 157.25 USEC 1 51.00000000000000000000000000000000000	- 510 AHZ		ער ג זער אינער אינעריי גערייי גערייי גערייי גערייי	xx m
GLOCK=4.178 4HZ 129.71 USEC	0 1 1 1 1 1 1 1 1 1 1 1 1 1	и стана 1125-12 1112-11		
××××××× ××××××××××××××××××××××××××××××	= •510 «НZ	¥¥¥ Μ 4Σ Ν	CLOX************************************	H M3+FC M3+FC XXXX XXXX XXXX XXXX
		H I H H H H H H H H H H H H H H H H H H	СLD: К. С. С. 78 М. 4.7 • Т. Е. 4. 7. 7. 7. × X. X. X. X. X. X. X. X. X. X. X. X. X.	し しま こ う で し し し し し し し し し し し し し し し し し し
3L 00K+6, 173 4HZ 0 12A 49 USEC	ار אאא אאא אאא אאא אאא א	# L Σ	××××××××××××××××××××××××××××××××××××××	•

and the second sec

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 2 • 7 Al Pi Sim Vip	L L L L L L L L L L L L L L L L L L L		1 75.94 955.5 1 75.35 94.455.5 2 15.45 95.25 1 16.45 95.25 1 16.45 95.25 1 16.45 95.25 1 16.45 95.25 1 16.45 16.45 1 16.45 16.45 1 16.45 16.45 1 16.45 16.45 1 16.45 16.45 1 16.45 16.45 1 16.45 16.45	X X X X X X X
	Ο Γ ΝΗ ΝΗ Τ Ι Ν Ο	С С С С С С С С С С С С С С С С С С С	CLOCK= .510 442 *XXXXXX *XXXXXX *XXXXXXX *XXXXXXX *XXXXXX	XX 510)X= 510 X17 610)X= 510 X17 610)X= 510 X12 6 4 1 4 510 X12	: : : : : : : : : : : : : :
1 1 <td>Ο Ο Ο Ο Ο Μ+ Μ+ Δ+ Δ+</td> <td>252 401 C</td> <td>U U XXXXX U ↓ U ↓ XXX N N D ↓ D ↓ C U MU o U M o U M o M o M o M o M o M o M o M o</td> <td>Р ч ч ч ч ч ч ч ч ч ч ч ч ч</td> <td>60.07 USEC I M E * *</td>	Ο Ο Ο Ο Ο Μ+ Μ+ Δ+	252 401 C	U U XXXXX U ↓ U ↓ XXX N N D ↓ D ↓ C U MU o U M o U M o M o M o M o M o M o M o M o	Р ч ч ч ч ч ч ч ч ч ч ч ч ч	60.07 USEC I M E * *
CLOCK= 510 447 1 7 65 USEC ************************************	NU NU NU T T T S'0 70 70 CO. 86 86	Pa (X (X NU NU (X I I FIN FIN A	NU NU I I Ya Ya		
······································		() () () () () () () () () () () () () () () (マ 、 、 、 、 、 、 、 、 、 、 、 、 、	20 20 20 20 20 20 20 20 20 20	ר א האל אאאר א אאר א

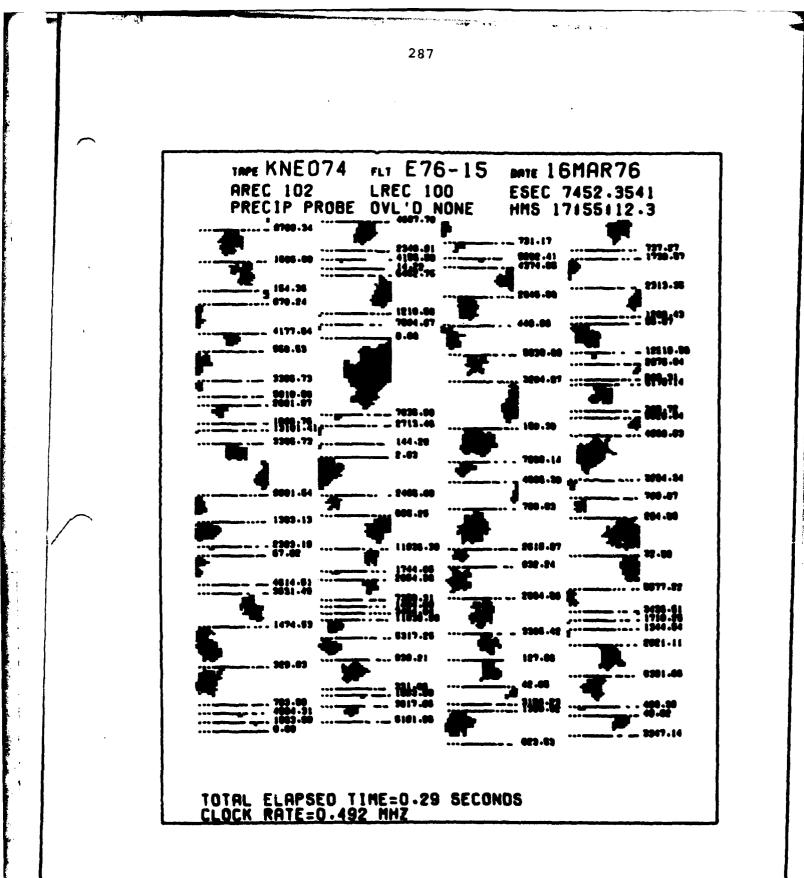


Figure 2.25: KN2UTIL microfiche output

2.3.2 Program TWODEE

The goal of TWODEE is to accept the PMS-2D data acquisition tape and convert the bit patterns into discrete particles described by fundamental parameters. The main problem is how to best determine which diodes can be combined to form a particle. The following sections describe the discrete steps necessary to achieve this objective.

2.3.2.1 Pattern recognition

This area of the program is concerned with transforming the 32 diode scans into actual particles or crystals. The technique developed uses the real time principle of onepass calculation; that is, while the particle is being determined certain key parameters are also being calculated. This means that after the initial pattern recognition pass, the definition of the particle will have been fully specified. The details of this particle definition, or "signature", are explained in the following sections.

The pattern recognition routine employs a string technique, where a string is defined as a series of consecutive occluded diodes. All the vital information required for each string is stored in one computer word, including (1) particle number or identification, (2) scan number, (3) beginning and (4) ending diode number, and (5) a linkage word. The information is stored as five 12 bit bytes within one 60 bit computer word. Routines are written in COMPASS to insert or extract a particular byte or bytes into the computer word. Although more programming is required using this bit manipulation; it is more desirable than using 5 separate words requiring 5 times as much storage.

Each new string found is checked with strings from the previous scan. If the string is adjacent to a previous one (see figure 2.26A) it is considered a string of the same particle. The new string identification byte must be copied from the previous string identification, thus identifying the new data as an extension of the previous. The old string linkage byte will have to be set to point to the new string word.

Two strings are considered adjacent when one of two

2.3.2.1 Pattern recognition (cont'd)

conditions exist: (1) If two strings have at least one common diode number occluded (the left-hand example of figure 2.26A shows diode #6 occluded in both strings) (2) If two strings have an ending occluded diode and a beginning occluded diode within one number of each other (the right-hand example of figure 2.26A shows the beginning diode #3 in the first string and the ending diode #2 in the second string). In figure 2.26B neither condition exists, and the strings are non adjacent.

<u>2345678</u>	<u>123456789</u>
OOXXXOO	OOXXXXXOO
0000XX0	XX0000000

X = occluded diode
0 = lighted diode

Figure 2.26A Examples of adjacent strings

00000XXX	
XXXX0000	

XXX000XXX 0000X0000

Figure 2.26B Examples of non adjacent strings

As the scanning progresses certain particles will merge with others (see the stellar example in figure 2.27). The recognition scheme using this definition of adjacent strings accounts for this perfectly, and the particle definition information will be combined. After all 1024 scans have been examined the particles are ready for the next processing step.

2.3.2.1 Pattern recognition (cont'd)

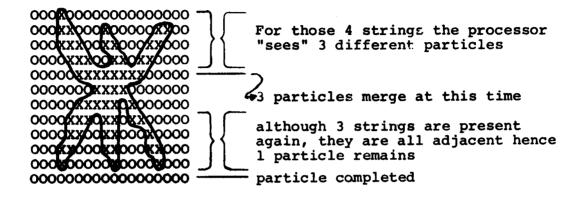


Figure 2.27 Particle merging

The reader should note that only completed particles are processed at this time. A completed particle is defined as a particle completely contained within the 1023 rows in the computer memory. If a particle has a contribution in the 1024th scan it is incomplete. The reasoning for this incompletion is that the particles may have additional strings in the next record. These particles are saved and if necessary merged with the next record. In either case they become the first particles processed in the next record.

When TWODEE was first written any two diodes are part of the same particle if they are immediately adjacent (touching) to each other.

However, in some ICE crystal forms, notably stellars, the laser beam passes completely through parts of the particle. Thus what is really one particle sometimes is processed as more. Therefore, a new method of particle definition was designed.

2.3.2.1 Pattern recognition (cont'd)

1

Expanded adjacency considers any two occluded diodes separated by at most one non-occluded diode as belonging to the same particle. Expanded adjacency is used only for ICE type crystals, while standard adjacency (original) is used for RAIN cases.

The increased adjacency criterion is simply a means of keeping shattered ice crystals together.

The right example, below, shows this.

Original Adjacency Requirement

Increased Adjacency Requirement

As can be seen from the example any string within the enclosed box is considered as part of the same particle. (The particle image is represented by the X's within the boxes).

2.3.2.2 Particle definition

A particle is said to be defined when eight fundamental parameters about it are known. These parameters are: area, perimeter, volume, horizontal projection, horizontal Feret projection, vertical projection, vertical Feret projection, and longest dimension. Five of these are either trivially calculated or a byproduct of the string technique of pattern recognition. The calculations are shown in the following sections.

Before proceeding to a description of these calculations we should discuss the problem of "lost data". When particles are reported, a time delay is caused by the writing of the timing mark to the buffer; this causes 1 to 2 scans to be lost. Indeed successive timing marks can be viewed without any data presented at all. A method has been developed to recreate this lost data.

Each scan of the PMS 2D data system is examined by the data acquisition system. If no diodes were occluded then a counter is maintained which states the number of blank scans seen. When a non blank scan is read, the counter is written to the magnetic tape in a specialized format. This eliminates writing many blank scans to the tape and thus saves tape and processing time in post flight analysis. However, when a non blank scan is detected and the counter is being written, one to two non blank scans are not recorded.

This problem has been handled in the past by using a statistical method to add area to each particle. This method

is described by Knollenberg in his PMS FINAL REPORT 1976. Additionally, some particles were never seen and were thus "recreated" by creating a particle of one diode. This occurs when there are two sequential counters reported on the output tape with no particles between them.

These methods did not take into consideration the loss of vertical projections, the possible changing of maximum length and a discrete manner to represent the lost area from each particle.

Many different techniques were discussed and the following method was determined to be the most suitable for our application. Note however that from one to two scans were being lost.

- A) If a particle had only one string adjacent to the timing mark, add two scans to the particle. The scan furthest from the original particle (row IR-2, where IR is row of the first string) has length one half the original string centered within the first string's range of diodes. The second scan added (row IR-1) is an exact image of the first string of the particle. See figure 2.28A.
- B) If a particle has more than one string on its first row, then duplicate that row about it. See figure 2.28B.

Various problems arose and are listed with their solutions:

- whenever a particle was of one diode long, it had one or two rows added alternately
- 2) if it was a created particle of one diode, it had only one row added or not every second time
- 3) if the only string on the scan was of length 2 or 3 only one diode was added on each scan

The replacement method for the one to two strings lost at the beginning of the particle proved to over-adjust the area of each particle. Branch scientists therefore derived a simpler and more efficient algorithm.

Since one to two rows are lost, add one row for every odd numbered particle, add two rows for every even one. Each row to be added will be one half the size of the succeeding row. For example, the first observed row is eight diodes long on an even numbered particle, thus two rows are to be added. The row closest to the eight diode scan is 8/2 = 4diodes long. The second row to be added is 1/2 the succeeding row (4 diodes) and is thus two diodes long.

An interesting fact is that these additional scans need not be centered in order to give accurate results. In rain cases, with the increase in area calculation, their being centered will provide invalid answers. Thus the added rows are left justified unless the right half of the particle touches diode thirty two (an end diode), in which case the particle is right justified over the succeeding row.

ţ

area added X Original area X	area added original area	XX XXXXX XXXXX
X area added X original area X		XXXXXXX
area added X original area X XXX		
Area added X original area XX XX		
X area added X original area XXX XXXX		
XX area added XXXX original area XXXX XXXXXX		

Figure 2.28A Example of Lost Data and Regeneration

original area	- x x x x xxx
area added	.

area added	~~	~~
original area	[–] xx	XX
	XX	ΧХ
	XX	XX
	Х	х

area adde		XXX	Х
original	area	XXX	Х
		XX	۲

area adde		Х	XXXX
original	area	^ x	XXXX
		X	XXX
		XX	C X
		x	

Figure 2.28B Example of Lost Data and Regeneration

2.3.2.3 Area

The area is the total number of diodes occluded by a particle

AREA = \sum number of diodes occluded

For other considerations of area, see Scientific Report¹ #1, Determining the Volume Represented by an Irregularly Shaped Cross-sectional area, 1 Apr 75.

2.3.2.4 Perimeter

The perimeter is calculated as an empirical constant times twice the sum of the horizontal projection plus the vertical projection. Figure 2.29 compares the actual perimeter with the calculated perimeter using

 $K_j = 1.$ P = 2(HP + VP)K, where $K_j = a$ constant for particle type j

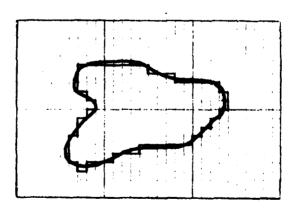
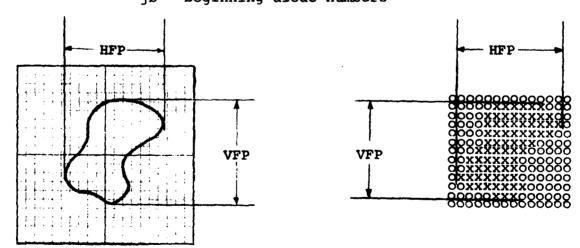
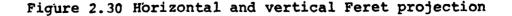


Figure 2.29 Perimeter calculation

¹Determining the Volume Represented by an Irregularly Shaped Cross Sectional Area; Belsky, Lawrence E. (1975) 2.3.2.4 Perimeter (cont'd)

The constant K_j should be calculated empirically since it may be too high for some particle types. Until that time K_j should have a value of one.


2.3.2.5 Horizontal Feret projection


Horizontal Feret projection (HFP) is the longest singular projection in the horizontal direction, i.e. the direction measured by the diode array (along the row) and not by time (along the column). This horizontal Feret projection (figure 2.30) is calculated by taking the largest occluded diode number less the smallest occluded diode number plus 1.

HFP = MAX(jf) - MIN(jb) + 1

where

jf = ending diode numbers
jb = beginning diode numbers

2.3.2.5 Horizontal Feret projection (cont'd)

It can be seen in figure 2.30. that the largest jf is 7 and the smallest jb is 2. Substitution into the HFP equation yields:

HFP = 13 - 2 + 1 = 12 diodes

2.3.2.6 Vertical Feret projection

Mathematically the vertical Feret projection (VFP) is similar to the HFP, the difference being the direction of measurement. Time is measured by scan number in the vertical direction. The VFP calculation is the last scan in which a particle appears, less the first scan in which it is see, plus one.

VFP = MAX(nr) - MIN(nr) + 1

where nr = scan number

Using figure 2.30 the VFP is calculated as ...

VFP = 12 - 2 + 1 = 11 diodes

2.3.2.7 Vertical projection

The vertical projection (VP) is defined as the sum of the partial vertical projections. Figure 2.31 shows this clearly. The equation for this calculation is

 $VP = PVP_1 + PVP_2$

where **PVP** = partial vertical projection

2.3.2.7 Vertical projection (cont'd)

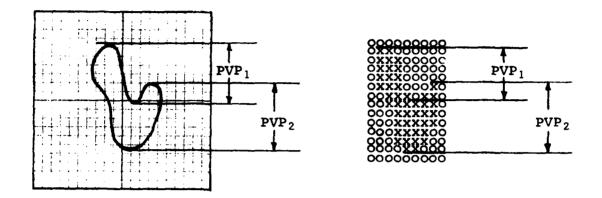


Figure 2.31 Vertical projection

The individual partial projections are quite cumbersome to calculate.

There is an easier way to calculate VP without calculating each partial vertical projection. VP can be ascercained by counting the number of strings that make up a particle. This can be seen by the following.

By examination of figure 2.31 it can be verified that

 $PVP_1 = 6$ and $PVP_2 = 8$

from this the VP is calculated by adding the partial projections:

VP = 6 + 8 = 14 diodes.

However, this is precisely the number of strings that describe this particle.

2.3.2.8 Horizontal projection

The horizontal projection (HP) is, of course, similar to the VP except for direction. A similar analysis can be performed to calculate HP. The particle is examined for strings, not in the "diode" direction, but in the "scan" direction. Again the number of strings found is precisely the horizontal projection.

2.3.2.9 Volume

The volume determination is an area where DPSI has done extensive research. The details and results of this work are published in a scientific report entitled "Scientific Report No. 1; Determining the Volume Represented by an Irregularly Shaped Cross-Sectional Area", 1 April 1975. The method of calculation and results are included here but the reader is referred to the original report for a complete substantiation of the conclusions. The method, simply stated, is to rotate a two dimensional cross-sectional area about its major axis, and calculate the volume generated. A correction is made for particle irregularity by dividing the area into two halves, one above and one below the major axis. Actually each half is rotated about the major axis, and a volume is calculated for each half. The final volume is the average of the two halves.

¹IBID

2.3.2.9 Volume (cont'd)

Consider an irregular shape in two dimensions, whose volume is desired:

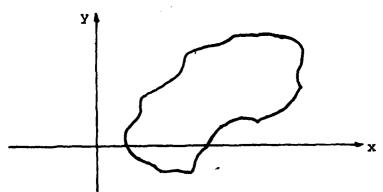


Figure 2.32 Irregularly shaped particle

First, we translate the axes to the center of gravity of the geometric shape. Since the shape is formed by both interior and exterior points, all points are considered. The coordinates of the center of gravity (x_G, y_G) are given by

$$x_{G} = \sum_{k} x_{i}/N$$

$$y_{G} = \sum_{k} y_{i}/N$$

where
$$x_i, y_i$$
 are the points along and inside the geometrical figure, and N is the number of x_i, y_i points.

We then form the new points x_i, y_i given by

2.3.2.9 Volume (cont'd)

$$x_i = x_i - x_G$$
$$y_i = y_i - y_C$$

Our new shape is unchanged by this transformation. The centroid now passes through the origin

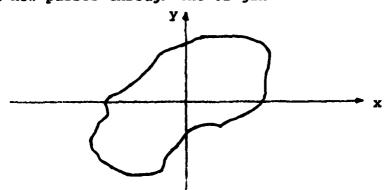


Figure 2.33 Origin at centroid

We now seek the major axis of the shape. This is done in order to rotate about the axis in order to find the volume. From Vector Mechanics (see Beer & Johston, STATICS AND DY-NAMICS, McGraw-Hill) the moments of inertia for the shape are given by

$$I_{x} = \int y^{2} dA$$
$$I_{y} = \int x^{2} dA$$
$$I_{xy} = \int xy dA$$

in the discrete case, these equations become

305

2.3.2.9 Volume (cont'd)

$$I_{x} = \Sigma Y_{i}^{2} \Delta m$$

$$I_{y} = \Sigma X_{i}^{2} \Delta m$$

$$I_{xy} = \Sigma X_{i}Y_{i} \Delta m$$

 I_x , I_y , I_{xy} can be computed at the same time x_G , y_G are done:

$$I_{y} = \sum (x_{i} - x_{G})^{2} = \sum x_{i}^{2} - 2x_{G}\Sigma x_{i} + Nx_{G}^{2}$$

Remembering that

$$\Sigma \mathbf{x}_{i} = \mathbf{N}\mathbf{x}_{G}$$
$$= \Sigma \mathbf{x}_{i}^{2} - 2\mathbf{N}\mathbf{x}_{G}^{2} + \mathbf{N}\mathbf{x}_{G}^{2} = \Sigma \mathbf{x}_{i}^{2} - \mathbf{N}\mathbf{x}_{G}^{2}$$

Similarly

$$I_{x} = \Sigma y_{i}^{2} - Ny_{G}^{2}$$

$$I_{xy} = \sum (x_{i} - x_{G}) (y_{i} - y_{G})$$

$$= \Sigma x_{i} y_{i} - x_{G} \Sigma y_{i} - y_{G} \Sigma x_{i} + N x_{G} y_{G}$$

$$= \Sigma x_{i} y_{i} - N x_{G} y_{G} - N x_{G} y_{G} + N x_{G} y_{G}$$

$$= \Sigma x_{i} y_{i} - N x_{G} y_{G}$$

thus we collect

$$S_{x} = \Sigma x_{i} \qquad S_{y} = \Sigma y_{i}$$
$$S_{x^{2}} = \Sigma x_{i}^{2} \qquad S_{y^{2}} = \Sigma y_{i}^{2} \qquad S_{xy} = \Sigma x_{i} y_{i}$$

2.3.2.9 Volume (cont'd)

then

$$x_{G} = S_{x}/N \qquad Y_{G} = S_{y}/N$$

$$I_{y} = S_{x^{2}} - (S_{x})^{2}/N \qquad I_{x} = S_{y^{2}} - (S_{y})^{2}/N$$

$$I_{xy} = S_{xy} - (S_{x})(S_{y})/N$$

we seek an angle of rotation θ , such that

$$u_{i} = X_{i} \cos\theta + Y_{i} \sin\theta$$
$$v_{i} = -X_{i} \sin\theta + Y_{i} \cos\theta$$

would force the new uv moment to vanish. That is

$$I_{uv} = \Sigma u_i v_i \quad \Delta m = 0$$

$$I_{uv} = \Delta m \Sigma [X_i \cos \theta + Y_i \sin \theta] [-X_i \sin \theta + Y_i \cos \theta] = 0$$

or

$$\sum (Y_{i}^{2} - X_{i}^{2}) \frac{\sin 2\theta}{2} + X_{i}Y_{i} \cos 2\theta = 0$$

substituting

$$(I_x - I_y) \frac{\sin 2\theta}{2} + I_{xy} \cos 2\theta = 0$$

or

$$\tan 2\theta = 2 \left[\frac{I_{xy}}{I_y - I_x} \right]$$

2.3.2.9 Volume (cont'd)

$$\theta = \frac{1}{2} \tan^{-1} \left[\frac{2 I_{xy}}{I_y - I_x} \right]$$

After rotating through the angle θ , we have

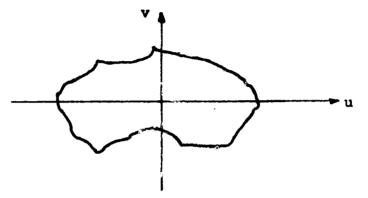


Figure 2.34 Particle rotated to major axes

Now in order to get the volume, we divide the area into two parts

a) all points (u_i, v_i) which lie above v = 0b) all points (u_i, v_i) which lie below v = 0

and rotate each half about the u axis. The resulting volume will be the average of the two rotated areas.

Pappus-Guldinus second theorem states: The volume of a body of revolution equals the generating area times the distance traveled by the centroid of the area while the body is being generated.

2.3.2.9 Volume (cont'd) $V = 2\pi \, \bar{v} \, A'$ where $\bar{\mathbf{v}}$ = the centroid component in the v-direction A' = area being rotated (since the u-axis bisects the original area, this area is one half ohe original area; A' = A/2) each centroid $\bar{\mathbf{v}}$ will be found as $\bar{\mathbf{v}}_1 = \Sigma \mathbf{v}_i / \mathbf{k}_1$ $k_1 = number of points \quad v_i \ge 0$ $\bar{\mathbf{v}}_2 = \Sigma \mathbf{v}_1 / \mathbf{k}_2$ k_2 = number of points $v_i \leq 0$ and assuming the areas A_1 and A_2 : Volume₁ = $2\pi \ \bar{v}_1 A_1$ $Volume_2 = 2\pi \ \bar{v}_2 A_2$ or Volume = π ($\vec{v}_1 A_1 + \vec{v}_2 A_2$)

2.3.2.9 Volume (cont'd)

CONSIDERATION OF THE AREA

As a result of the considerations investigated in Scientific Report #1, the area is best calculated by counting occluded diodes above and below the major axis. When an occluded diode center is conincindent with the major axis, it should be counted in both halves. This report, and the scientific report assumed length dimensions of 1. That is, the distance between diodes multiplied by the distance between successive diode samplings was 1. The final Volume should be

Volume = $\pi \ \overline{v} \ N \ (\Delta p) \ (\Delta x)$

where

Ap = distance between diodes
Ax = sampling distance, determined by Aircraft
speed (m/sec) multiplied by time of sampling
rate (sec)

CONSIDERATION OF THE ANGLE

The angle of rotation, θ , is given by

$$\theta = \frac{1}{2} \tan^{-1} \frac{2I_{xy}}{I_y - I_x}$$

In order to be sure that this rotation will yield the major axis (rather than the minor axis) the arctangent function will be required to produce a result between $-\pi$ and $+\pi$. If the function is limited to a range of $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, the angle will have to be modified by the sign of I_{xy} .

2.3.2.9 Volume (cont'd)

In the former case, the resulting arctangent will be between $-\pi$ and π ; Dividing this result by 2 in order to obtain θ will yield

$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

which is proper rotation to insure that u will be the major axis and $v = u + \pi/2$ the minor axis.

Given N points (x_{i}, y_{i}) i = 1,2,3,...,N

compute

¢

$$S_{x} = \Sigma x_{i}$$

$$S_{y} = \Sigma y_{i}$$

$$S_{xx} = \Sigma x_{i}^{2}$$

$$S_{yy} = \Sigma y_{i}^{2}$$

$$S_{xy} = \Sigma x_{i}y_{i}$$

$$x_{G} = S_{x}/N$$

$$y_{G} = S_{y}/N$$

$$I_{y} = S_{xx} - S_{x}^{2}/N$$

$$I_{x} = S_{yy} - S_{y}^{2}/N$$

$$I_{xy} = S_{xy} - S_{x}S_{y}/N$$

$$\theta = \frac{1}{2} \tan^{-1} \left\{ \frac{2 I_{xy}}{I_{y} - I_{x}} \right\}$$

$$c_1 = \cos\theta$$

 $c_2 = \sin\theta$

then, for each original point (x_i, y_i)

compute

$$v_{i} = -c_{2}(x_{i} - x_{G}) + c_{1}(y_{i} - y_{G})$$

and form

$$S_{\mathbf{v}} = \Sigma |\mathbf{v}_{\mathbf{i}}|$$

$$k_{\mathbf{i}} = \text{count all } \mathbf{v}_{\mathbf{i}} \ge 0$$

$$k_{2} = \text{count all } \mathbf{v}_{\mathbf{i}} \le 0$$

then

$$\overline{v} = S_{1} / (k_{1} + k_{2})$$

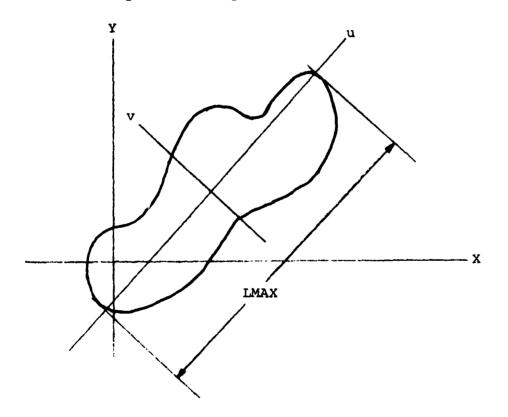
note:

Å.

 $k_1 + k_2 \geq N$

and

Volume =
$$\pi \bar{v} N$$


2.3.2.10 Longest dimension

•

The longest dimension, LMAX, will be found to lie on the major axis. The volume determination, discussed in the previous section, calculates this axis as the u-axis. In addition, all the x,y particle points are transformed to u,v coordinates. The longest dimension is simply the largest u-value less the smallest u-volume plus one. Mathematically this becomes

LMAX = MAX(u) - MIN(u) + 1

Pictorially this is represented as

2.3.2.11 Maximum length approximation

In some applications it becomes apparent that the particle volume is not necessary. In the interest of conserving computer time, the volume calculation will be performed optionally. However, the volume calculation does facilitate a simple and direct method of calculating maximum length.

DPSI developed the following maximum length algorithm. Ideally the particles for rain should be spherical, with a circular two-dimensional projection. From figure 2.36 it can be seen that the maximum length is simply LMAX \simeq (HFP + VFP)/2

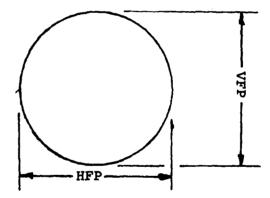
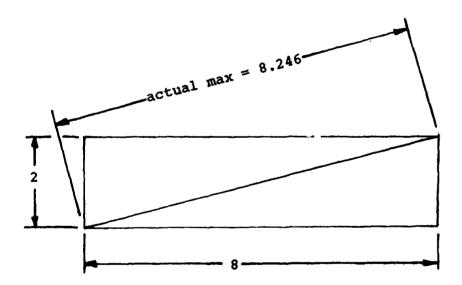


Figure 2.36 Maximum length, spherical particles

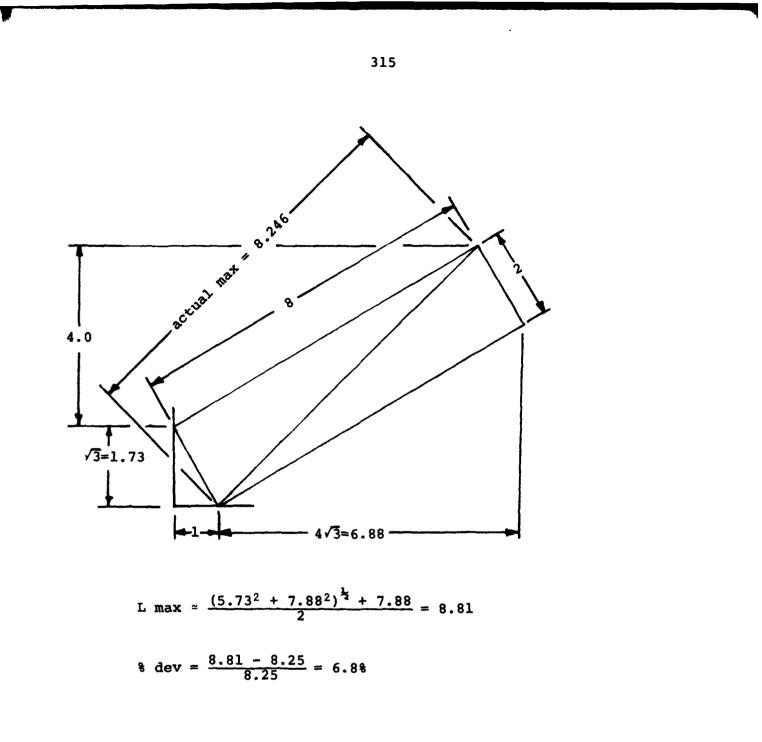
For columnar shaped ice crystals an additional problem becomes apparent. Particle orientation should be known, but, as this is a by-product of the volume calculation, it is unavailable. It can be approximated by examining the maximum Feret projection (MFP).

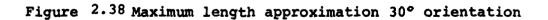

MFP = max(HFP, VFP)

2.3.2.11 Maximum length approximation (cont'd)

With MFP known, the maximum length can be approximated as:

 $LMAX \simeq (\sqrt{HFP^2 + VFP^2} + MFP)/2$


The following examples show the approximation accuracy for various orientations. Note that in all cases the deviation percentage from the three max lengths is considerably less than 10%.



L max $\approx \frac{(8^2 + 2^2)^{\frac{1}{2}} + 8}{2} = 8.12$

 $\frac{1}{8} \text{ dev} = \frac{8.12 - 8.25}{8.25} = -1.58$

Figure 2.37 Maximum length approximation 0° orientation

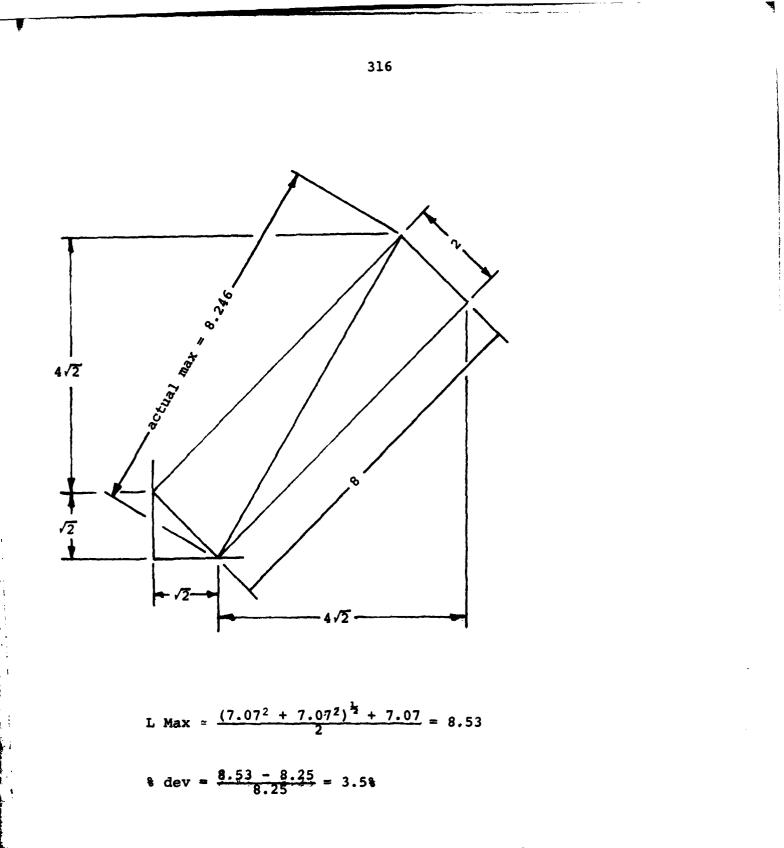


Figure 2.39 Maximum length approximation 0° orientation

During the original pattern recognition pass the fundamental parameters (see above) are calculated for particles that are not rejected; standard adjacent rain drops and extendedly adjacent ice crystals (see figure 2.40). Empirical testing has been determined a criteria for rejecting processed particles that are invalid because of equipment malfunctions, streakers, etc. This criteria is specified in table 2.1.

the Strange will be and the start

Figure 2.40: TWODEE adjacency examples

ANY OCCLUDED DIODE IN A POSITION MARKED BY THE SYMBOL "-" IS PART OF THE SAME PARTICLE AS THE OCCLUDED DIODE AT "X"

LOCATION OF AN ADJACENT DIODE

OCCLUDED DIODE

X

- -X--

EXTENDED ADJACENCY

-×-

STANDARD ADJACENCY

EXAMPLES OF TWODEE ADJACENCY TESTS

2.3.2.13 Program TWODEE operating instructions

CONTROL CARDS DPSI,CM65000,T2000,NT1. PROB. NO. NAME ATTACH, LL, TIMELFT. FILE(TAPE1,RT=U,BT=K,MRL=5576,MBL=5576,RB=1,BFS=560) (PERTEC TAPE) ATTACH, LGO, TWODEEBIN, ID=GLASS, MR=1. REQUEST, TAPE2, *PF. VSN, TAPE1=TAPENO/NT. LDSET, PRESET=ZERO, FILES=TAPE1. LOAD, LGO, LL. EXECUTE. EXIT(U) CATALOG, TAPE2, TWODDATA, ID=GLASS. REWIND, TAPE3. COPY, TAPE3. (SHORT OR LONG SUMMARY) REWIND, TAPE4. COPY, TAPE4. (PICTURE OUTPUT) 7/8/9 DATA CARDS 6/7/8/9

320

2.3.2.13 Program TWODEE operating instructions (cont'd)

Data Cards

CARD 1 IDENTI	FICATION CAR	D
cc 1-6	XYR-NN	FLIGHT ID (COL 1 MUST BE E OR L)
cc 11-19	DDMONYR	FLIGHT DATE
CARD 2 OPTION	CARD	
cc 5	NLEN	0 = FULL CALCULATION OF MAXIMUM LENGTH
		1 = APPROXIMATION OF MAXIMUM LENGTH
cc 6-10	NEOF	NUMBER OF END OF FILES TO PROCESS
cc 11-15	NOUT	0 = SUMMARY OUTPUT
		1 = FULL OUTPUT
cc 16-20	NRST	NUMBER OF FEET USED IN PREVIOUS EXECUTION (USED FOR RESTARTING JOB)
cc 21-25	NTSW*	0 = USE REAL TIME CLOCK
		1 = INPUT TIME OF FIRST SLOW RECORD
cc 76-80	NFEET	NUMBER OF FEET ON CURRENT REEL (DEFAULT 2400)
<u>CARD 3- N</u> PAS	SS CARDS	
cc 2-9	HH:MM:SS	SAMPLING START TIME
cc 12-19	HH:MM:SS	SAMPLING STOP TIME
cc 25	QTYPE	= I IF SNOW OR ICE IN PASS
		= R IS ONLY RAIN IN PASS
cc 30	DPROBE	= 2 SHUT OFF CLOUD PROBE
		= 3 SHUT OFF PRECIP PROBE

* IF NTSW=1 NEXT CARD MUST BE A TIME CARD IN FORMAT @HH:MM:SS WHERE @ = BLANK COLUMN

2.3.2.14 Program TWODEE sample output

Output Details

Figure 2.41 depicts the short particle tape summary listing. There is one row of information per record. This includes: record number and length, clock time, record number from the nine track tape, slow record number, sample time and rate, aircraft, probe and overload information, and also six VCO counts.

The full particle tape summary (figure 2.42) includes all of the above in addition to the fundamental parameters for each particle contained within the record. In this listing the header information is shown in the two half-lines at the top. Each full line contains the particle parameters.

Figure 2.43 is a picture summary showing 3 states of the particle reconstruction process. It is tape 4 from the operating instructions.

NUMBER	PARTICLE 	CRITERIA
1	Both	MORE THAN ONE PARTICLE BETWEEN SUCCESSIVE TIME MARKS
2	Both	REJECT CONSECUTIVE TIME MARKS AFTER KEEP- ING ONLY THE FIRST
3	Both	REJECT ANY PARTICLE WHOSE AREA IS GREATER THAN 1500 DIODES
4	ICE	REJECT IF VERTICAL FERET PROJECTION EX- CEEDS 30 DIODES
5	RAIN	REJECT IF VERTICAL FERET PROJECTION EX- CEEDS 31 DIODES
6	RAIN	REJECT IF THE FOLLOWING TWO CONDITIONS ARE MET: A) HORIZONTAL FERET PROJECTION LESS THAN 24 B) VERTICAL FERET PROJECTION GREATER THAN SIX TIMES HORIZONTAL FERET
7	RAIN	REJECT IF THE FOLLOWING TWO CONDITIONS ARE MET: A) HORIZONTAL FERET LESS THAN SIX B) NOT TOUCHING AN EDGE & VERTICAL FERET GREATER THAN THREE TIMES HORIZONTAL FERET
8	RAIN	REJECT IF AREA LESS THAN 0.4 TIMES HORI- ZONTAL FERET TIMES VERTICAL FERET
9	RAIN	REJECT IF AREA LESS THAN OR EQUAL TO 5 AND VERTICAL FERET PROJECTION LESS THAN THREE TIMES THE HORIZONTAL FERET PRO- JECTION
10	RAIN	 REJECT IF ALL THE FOLLOWING ARE TRUE A) AREA GREATER THAN FIVE B) MEND=0 C) VERTICAL FERET PROJECTION IS GREATER THAN OR EQUAL TO ONE AND ONE HALF TIMES THE HORIZONTAL PROJECTION, OR, VICE VERSA

Table 2.1: TWODEE rejection criteria

322

:

PARTICLE

RAIN

NUMBER TYPE CRITERIA

11	RAIN	REJECT IF THE FOLLOWING CONDITIONS ARE
		MET:

- A) AREA GREATER THAN 5
- **B) MEND GREATER THAN ()**
- C) VERTICLE FERET PROJECTION IS LESS THAN OR EQUAL TO MEND
- D) VERTICLE FERET PROJECTION IS GREATER THAN OR EQUAL TO ONE AND ONE-HALF TIMES THE HORIZONTAL FERET PROJECTION, OR, VICE VERSA.

12

- REJECT IF THE FOLLOWING ARE TRU
 - A) AREA GREATER THAN 5
 - B) MEND GREATER THAN 0
 - C) VERTICLE FERET PROJECTION IS GREATER THAN OR EQUAL TO TWO AND ONE-HALF TIMES THE HORIZONTAL FERET PROJECTION, OR, VICE VERSA.

NOTE: MEND=THE MAXIMUM OF THE NUMBER OF DIODES TOUCHING THE LEDT AND RIGHT SIDES OF THE SCAN.

Table 2.1: TWODEE rejection criteria (cont'd)

		0 0
	00000000000000000000000000000000000000	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	20000000000000000000000000000000000000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 6 6 6 6 6 6 6 6 6 6 6 6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6000 6000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6,255 6,255 6,255 6,255 6,255 6,255	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6265	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6265 5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52455 2225	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62555	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5326	
442 221221221 1767022 221 87195 3 1767021 1823 87195 3 12 37693199 512 221221224 1707021 1823 87195 3 12 37693199 512 221221224 1707021 1823 87195 3 12 37693199 512 221221224 1707022 1823 97195 3 12 37690199 512 22122124 1707022 140 87195 3 12 376901999 512 22122124 1707022 1119 87195 3 12 3799199 512 22122124 1707025 140 87195 2 27601199 512 22122124 1707025 31195 31195 2 27649199 512 22122124 1707025 31195 31195 326430199 512 22122124 1707025 7105 31195 2 256590199 51212212	6322	
512 22122122 , 1707021 1823 67195 3 12 37693139 512 22122124 17707021 1823 67195 3 12 37693139 512 22122124 17705021 1823 67195 3 12 37693139 512 22122124 17705021 1823 67195 3 10 376301199 512 22122124 1770323 91195 3 10 3764901199 512 221221244 1770923 91195 3 10 3764901199 512 221221244 1770923 31195 3 10 3764901999 512 221221244 1770923 31195 3 10 3764901999 512 221221244 1770923 31195 3195 2 2764901999 512 2212212644 1770926 30195 2 2764901999 512 2212212644 1770926 3066 31195 2 25643919999	6322	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6322 5	346
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	346
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6122 5	345
512 22122124.6 1703023 2119 63195 3 10 326909169 712 22122124.6 1700223 3119 63195 3 10 32690169 712 22122124.6 1700223 31195 7 2 35691699 712 22122125.6 1700225 3065 31195 7 2 76501699 512 722127.6 1700225 3065 31195 7 2 77630199 512 72122129.6 1700025 7065 31195 7 2 27630199 512 72125125.2 1700025 7065 31195 7 2 27630199 512 7212512312 7700225 792 83195 5 2	6322	346
F12 27:22:24.4 170323 7119 83195 3 10 32620159 7:2 22:22:27:24.4 170324 3119 83195 3 10 32630199 7:2 22:22:27:24.4 170325 366 83195 3 2 7750149 512 72:22:27:24.5 1703025 366 83195 7 2 7750199 512 72:22:27.5 1703025 366 83195 7 2 7750319 512 72:22:27.5 1703025 792 83195 7 2 85630199 512 72:22:27.5 1703026 792 83195 7 2 85630199 512 72:22:27.5 1703026 792 83195 2 2 85630199 512 72:21:23.5 17703027 1207 83195 2 2 85630199 512 72:21:23.5 17703027 1207 83195 2 2 2 3 2 512:23.5 1770327 1207 1207 1257 5 3 </td <td></td> <td>345</td>		345
712 22127124.4 170023 542 51195 2 25601024 542 51195 2 25601199 512 22122127.5 170025 546 51195 2 2 25601199 512 22122127.5 170025 566 51195 7 2 75601199 512 7212 170025 706 51495 7 2 756019999 512 7212 2717 1700025 705 63195 5 2 2 7919199 512 7212 2717 67195 7 7 2 7 2 7 7 2 7	6322 5	346
-12 212 212 212 212 213195 225191555 225191555 225191555 <td< td=""><td>5</td><td>346</td></td<>	5	346
1 1	2229 2229	546 246
	6322 5	346
512 22122127.5 1707026 792 87195 2 2 354308199 512 22122127.5 1707026 792 83195 5 2 2 35499199 919 2712 22122123.5 1707027 1705 83195 5 5 5 2<		346
142 2212212129 1100020 100 122 93102 93102 122 221231310 946 155 22122129 1100027 1207 1207 121 2212 2212 156 212 22122129.9 1702027 1207 121 21100 12 157 212212319 280702 123 2589 2 158 2589 12 25809120 2807020 12 158 2589 280702 120 280702 2807020000000000	6322	346
425 2512313 170002 1205 31195 3 4 425 2512313 28070129 135 91195 5 10130129 5 425 2512313 28070129 135 92589 5 6		345
512 22122123.9 280'029 135 92589 2 10 324203139 644		946
	6025 2	367 4245
		357
		367
- <u> </u>	5 5535 S	357
44444516884924-01	S	367
512 22422432.6 2800037 2122 92645 x 18 32620	5 6201 5	267 424

Z.41: SDOFC

	RECORD	162		CO 204 212						
Rate La L	H IMMISS.F	SRECKFREC	446L E-45	KRTE-XK	ACS PRORE	DVE R. DAD				
	0 128135. 0	DEL 1210318	도 네 (1) 데	06 MPT 95 835	V) P) T T	-14- 5				
	596209233			353-	ف	5540				
	A 25 A - 8 A	100	220	50	0ad	0ad	UNUSED	UMAX + 7 - 86	THETA	JHU JOY
	9 1 1	25	2	3	20	90	2/3	8 . 72	6.0 c	30.05
	54	en l	8		-		~	1146	، مت تو	3.6
	5 0 I	11 U 1 +1	- 0	0 9 H	υ (1	9 49 1	3 4		5 • •	00.00
	-1.					 	0	~	6. 1 S	1.00
		, , ,						20		•
	12	* 2		t d	: u	29	. 0	9.69	0.00	••
	15	13 N M	ι ο 4	a) a	- Q	6 •	п с	Б.91 е.57	.3 / -3 C -0 C	•
) (D	-	> ~	2	- C - C	0.00	6 B.
	-25		\$	~	5	~		7.53	0.00	⇒i.
	10 m2 10 m2		N 19	40 P)	r- #0	as M	~ ()		0 C 0 C	
	62		6	10	5	10	ن ،	11.73	0.00	
	2 2 2 2		-1 1	10		N 4	-	2.12		
22 9 14 11 15 0 15,32 0,010 0,010 72 9 53 15 15 15 15 15 15 15 72 9 15 15 15 15 15 15 15 15 75 9 15 15 15 15 15 15 15 15 75 9 15 15 15 15 15 15 15 15 75 15 15 15 15 15 15 15 15 75 15 15 15 15 15 15 15 75 15 15 15 15 15 15 75 15 15 15 15 15 15 75 15 15 15 15 15 15 75 15 15 15 15 15 15 75 15 15 15 15 15 15 75 15 15 15 15 15 15 15 75 15 15 15 15 15	1 A) 1 (1)		•	n I 4	••	24	10	8.45		ند د • •
	43 F 45		0 •	14	11.	· 15	c :	15.32	00°0	• •
	1.0		4 50	a 10	+ u	10	2 * 3	6.91	30.0	1) (L) • •
	-35		6	23	11	22	 	23.65	2.0	양
			מיי דב	3 D r1	51 J	54	0 C	11 • 7 5 9 • 2 4		••
	7.4-		9	21	Q	17	G	12.51	5	9
	3 0		-	4	- - 	4	e e	245		5
40 43 9 13 9 14 13 9 14 14 14 15 15 16 14 17 16 14 17 16 14 17 16 14 17 16 14 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17	1		4 10	4 () •	4 64	9 -1 1		10.55		د د
	.9 e 9		6) J	M .	ט ר ים	1 L • •	0	14 . 13	د. د ت ت	
	-16		t. 0	-			, , , ,	6.61	0.55	• •
7-5 11 12 13 7-7 14 14 14 14 7-7 15 14 14 14 7-7 15 14 14 14 7-7 15 14 14 14 7-7 15 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14 14 14 14 7-7 14	-21		5	a	6			σ	0.0	•
	9 1 1 1 1 1 1		4 4 4 4	r. 17 + 14	+1 u +1 +	12	1 3 T	J #		• •
BU 9 15 16 17 16 17 16 22 2 14 16 13 15 22 6.12 22 5 5 5 5 5 5 5 5 22 13 14 16 13 14 16 17 6.12 6.12 22 13 14 14 14 14 14 14 16 22 14 14 14 14 14 14 16 17 23 14 14 14 14 14 14 16 16 23 14 14 14 14 14 16 17 16 16 14 14 14 14 14 14 16 17 16 16 14 14 14 14 14 14 16 16 16 14 14 14 14 14 16 16 16 16 14 14 14 14 14 16 16 16 16 14 14 14 14 14 16 16 <	• •		7	-		-4	.,	1 -1	C . D	• •
	32		6	11	ی] ۲۰	21		15.32		•İ
72 13 12 16 23 1 15.35 7.4 26 5 5 7 6 2 3 6 7 26 5 2 6 2 3 6 6 7 4 4 4 4 4 4 6 7 6 6 4 4 4 4 4 6 6 7 7 6 6 4 4 4 4 4 4 6 6 7 6 6 4 4 4 4 4 6 6 7 6 6 3 6 4 4 7 6 4 6 6 3 6 4 4 6 6 7 6 7 3 6 4 4 7 6 4 6 6 3 6 4 6 6 7 6 7 6 3 6 4 7 6 7 7 7 7 4 6 7 7 7 7 7 7 7	2 4 1 1 1		N 43	ም መ	9	יטידט		9.11 9.91		
1 1 <td>80 e 1 14</td> <td></td> <td>() 1</td> <td>12</td> <td>4</td> <td>3</td> <td> </td> <td>100 1</td> <td>ب ن</td> <td>•</td>	80 e 1 14		() 1	12	4	3	 	100 1	ب ن	•
1 1 <td>9 (. 19 4</td> <td></td> <td>~~~</td> <td></td> <td>0 u</td> <td>~</td> <td></td> <td>20.2</td> <td>0.00</td> <td></td>	9 (. 19 4		~~~		0 u	~		20.2	0.00	
4 1 <td>134</td> <td></td> <td>12</td> <td>15</td> <td></td> <td>17</td> <td>• •</td> <td>e. r</td> <td>0•75 0•75</td> <td></td>	134		12	15		17	• •	e. r	0•75 0•75	
7 32 6 1 3 11.4 (0.00 3 4 32 6 1 6 1 0 0 0 0 4 32 5 6 1 6 1 0 0 0 0 3 76 1 22 1 2 2 2 1 0 0 3 76 1 2 2 1 2 2 2 0 0 3 75 5 5 1 2 2 2 1 2 3 44 9 1 5 5 5 5 5 5 3 44 9 1 5 5 5 5 5			-1 a	•1 /	••• J	~ * *	3.		ن ب ۲۰ و و	•
4 31 6 9 1 1 1 3 76 14 22 16 22 24 14 15 5 22 5 5 5 5 7 5 22 5 5 5 5 7 3 44 9 12 5 13	-37	(1) (1) (1)	0	1:	- v -	11	2) -= 	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31		9	6			, ,	ດ 		٠
3 44 9 22 9 23 . 22.62	25 C	22	10 t 1-	5 6	0	a. v V	• • • •	ະ ອ • •	- 0 - 0 - 1	
	-73	4	6	::	0.	n *1		2.6		•

FOR PARTICLE= 1	AREA - J	PERIM B	 HE		VFP 3	d -	9 m	ч м Х	LMAX 2.000	ECR 1.303	APR 1.000
××.							<u> </u>	, 4 4 1 1 1 1 1	9 6 8 9 9 9 1 1 7		
FOR PARTICLE= 3 22	22	22					ļ		6 0 5.500		1.000
21 XXXXX 22 XXXXX 23 XXXXX 24 XXXXX 25 XXXX 26 X				XXXXX XXXXX XXXXX XXXX XXX XXX XXX XXX				XXXXX XXXXX XXXXX XXXXX XXXXX			
FOR PARTICLE= 6 -10		14							3.500	====== 1.249	1.000
37 ! 38 !XX X 39 !XXXX		••• ••· ••	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 44 0 79 0 67 0 89 0 89 0 99 0 99 0 99 0 99 0 99 0 99	8 99 8 94 9 94 9 94 9 95 9 95 9 95	· · · · · · · · · · · · · · · · · · ·	XXXXi i XXXXi i XXXi i	1 11 1 11 1 11 1 11			
FOR PARTICLE= 8	33				P,	~	9		6.500	1.277	1.000
50 - XXXXXX 51 - XXXXXX 53 - XXXXXXX 54 - XXXXXX 55 - XXXX 55 - XXXX 60R PARTICLE - 10		2		8888	m	~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	000 E	- 382	1.000
58 ! 59 ! 60 !X X FDR PARTICLE= 11 27	27	8	, XXX i		9	•	+ 1X 1 1XX 1 1XXX 6	o	000,4.000		
44				XXXXX XXXXXX XXXXXX XXXXXX				XXXXX XXXXXX XXXXXX XXXXXX XXXXX	1		

RECORD 22 AT 20:44: 1.2

326

Figure 2.43: Picture summary

· · · •

بیست در در به و در در در میشند. است از با بازی بیشند مشیری مشیر

2.3.3 Program KNOLL2D

1

1

KNOLL2D takes the particle tape produced by TWODEE and quantifies it based upon user pass inputs, including determination of particle type. KNOLL2D generates concentration tables based upon each of the fundamental parameters discussed in the section on TWODEE. Using the largest diameter of each particle, it also produces a distribution similar to that produced by KNOLL1D.

2.3.3.1 Program KNOLL2D operating instructions

4

KNOLL2D CONTROL CARDS DPSI,CM65000,T200,TP2.* ACT # NAME ATTACH, LGO, KNOLL2DBIN, ID=GLASS, MR=1. REQUEST, TAPE1, MT, VSN=LYCXXX. REQUEST, TAPE2, MT, RING, VSN=LYCXXX.* MAP, OFF. LDSET, PRESET=ZERO. LGO. EXIT(U) REWIND, TAPE3, TAPE9. COPY, TAPE3. COPY, TAPE9. 7/8/9 -ID CARD--\$SCOEF--\$VCOEF--\$JWADJ--OPTION--TYPE-ATOD-XTOD-6/7/8/9

* IF NO OUTPUT TAPE IS DESIRED CHANGE TP2 TO TP1 AND REMOVE REQUEST, TAPE2 CARD

2.3.3.1 Program KNOLL2D operating instructions (cont'd)

KNOLL2D DATA CARDS

CARD 1 ID CARD cc 1-10 FLT XYR-NN (X MUST BE AN E OR L IN COLUMN 5) 11-20 DD MON YR 21-30 INPUT TAPE NUMBER 31-40 OUTPUT TAPE NUMBER CARD 2 \$SCOEF NAMELIST CARD FOR SOUNDING COEFFICIENTS. VARIABLE IS: S(J) WHERE J=1,2,3,4,5 AND HT = S(5) * PRES * * 4 + S(4) * PRES * * 3 + S(3) * PRES * * 2 +S(2) * PRES + S(1)CARD 3 SVCOEF NAMELIST CARD FOR VCO CALIBRATIONS. VARIABLE IS: C(I,J) I = 1 INTERCEPT, I = 2 SLOPE, I = 3 THIRD ORDER J VARIABLE 1 INDICATED AIRSPEED 2 TEMPERATURE 5 DEWPOINT 6 JW-LWC 7 NOT USED 8 PRESSURE (KISTLER) TRUE AIRSPEED 9 3,4,10,11,12,13 NOT USED CARD 4 \$JWADJ JW-LWC ADJUSTMENT PROFILES

> L HT(10) SLA(10) XA(10)

2.3.3.1 Program KNOLL2D operating instructions (cont'd)

CARD 5	OPTION CARD
CC 16-20	= 0 NO OUTPUT TAPE
	= 1 MAKE OUTPUT TAPE
CC 26-30	= 0 USE KISTLER PRESSURE
	= 1 USE BACKUP PRESSURE
CC 61-35	= 0 USE CALCULATED AIRSPEED
	= 1 USE TAS
CARD 6	EITHER A TYPE, ATOD, OR AN XTOD CARD TYPE
	(15 MAXIMUM - AT LEAST ONE)
CC 1-4	TYPE
CC 6-13	START TIME IN FORM HH:MM:SS
CC 16-23	STOP TIME IN FORM HH:MM:SS
CC 25-26	PARTICLE TYPE FOR CLOUD PROBE (12)
CC 27-28	PARTICLE TYPE FOR PRECIP PROBE (12)
CC 31-35	AVERAGING INTERVAL (15)
XTOD CARD	S DESCRIPTION (OPTIONAL - NO MAXIMUM)

The XTOD cards are used to change the default coefficients exponent (ex), or breakpoint (C) for each equivalent melted diameter equation. For example, to change the third exponent for particle type 23 (RIMED DENDRITES) from 1.0 to 0.9 the following XTOD card is required:

<u>cc</u>	VALUE	DESCRIPTION
1-4	XTOD	CARD CODE (FIXED)
6-7	23	PARTICLE TYPE
9-10	03	THIRD EQUATION
12-13	02	EXPONENT
15-30	0.9	NEW VALUE

2.3.3.1 Program KNOLL2D operating instructions (cont'd)

ATOD CARDS DESCRIPTION (OPTIONAL - NO LIMIT)

The ATOD cards are used to change the default coefficient exponent (ex), or breakpoint (C) for each equivalent melted diameter equation. For example, to change the third exponent for particle type 23 (RIMED DENDRITES) from 1.0 to 0.9 the following XTOD card is required:

<u>cc</u>	VALUE	DESCRIPTION
1-4	ATOD	CARD CODE (FIXED)
6-7	23	PARTICLE TYPE
9-10	03	THIRD EQUATION
12-13	02	EXPONENT
15-30	0.9	NEW VALUE

XTOD CARDS CHANGE THE DEFAULT MAXIMUM LENGTH TO EQUIVALENT MELTED DIAMTER EQUATIONS.

ATOD CARDS CHANGE THE DEFAULT AREA TO EQUIVALENT MELTED DIAMETER EQUATIONS.

2.3.3.2 Program KNOLL2D sample output

Output Details

The first type of output produced by KNOLL2D is similar to that produced by KNOLL1D. All references made are to figure 2.44.

- A) The number of one second data samples that were averaged to make this table
- B) the start and stop time of this interval
- C) flight identification
- D) particle typing indicators
- E) the channel number for reference
- F) the center diameter for this channel of this probe. It is calculated by melting the maximum length.
- G) the normalized density. It is calculated by computing the number of particles that would be detected by this channel size in a cubic meter of sample volume. Then for comparison with the other channels it is normalized by dividing it by the channel barwidth.
- H) The liquid water content for this channel above are only repeated once for each channel of each probe. F, G, and H, cloud on the left, and the precip probe on the right.

and the second and the second second

- I) The set of calibrated VCO and VCO derived values. The basic VCO values are PRESSURE, DEWPOINT and TRUE AIRSPEED. HEIGHT is calculated from PRESSURE. TEMPERATURE and JW-LWC are both VCO's that are adjusted by airspeed. The C AIRSPEED is a calculated value given by PRESSURE, PRESSURE GRADIENT and TEMPERATURE.
- J) The column under REJ is the number of particle used for computation in each channel when end rejection is applied. TOT is the total number counted in this channel Thus TOT-REJ= number of particle touching an end diode. There is one table for each probe.
- K) Under each probe is a summary of various meteorological parameters. There is also a set for the TOTAL, this is the total of Cloud and Precip combined
 - 1) M liquid water content
 - 2) Z derived radar reflectivity
 - 3) D0 median volume diameter
 - 4) MK ratio of M to the square root of Z
 - 5) SAMPLE (SEC)

how many seconds elapsed collecting data for this average. This is the sum of the timing marks between all the particles that made up this average.

There are five different ways of categorizing two dimensional particles; maximum length, horizontal feret projection, area, average projection ratio, and equivalent circle ration. The relationships between these categories is illustrated by KNOLL2D. There are five pages of distribution matrices, two per page, one for the cloud probe and one for precip (see figures 2.45-2.49. They demonstrate the relations between any two of these categories. These matrices are given once per pass and are therefore pass totals. References are given to figure 2.45.

A) The pass that generated this data

B) Sampling start and stop times

C) x axis parameter

D) Probe

E) Particle type used

F) Total number of sampling seconds (see K-5 in figure 2.44)

G) Totals of this row and which "channels" were used in these totals, values are sums of number density

H) y axis parameter

I) Number density of all particles fitting in this x,y intercept is given in scientific notation, i.e. $uv + z = uv.x \ 10^{z}$. The "+" sign can take on the following

values and meanings:

- + positive exponent
- * positive exponent and only one particle made up this entry
- negative exponent
- _ (underline) negative exponent and only one particle made up this entry
- *J) Size limits of this row, i.e. channel 01 has those particles whose maximum length is one or two diodes long
- *K) same as J for the columns
- L) same as G for the columns
- * for maximum length, horizontal feret projection, and area these limits are number of diodes. for the ratios they are non-dimensional numbers

The last part of a KNOLL2D printout is a comparison of LWC, Z and other parameters for a complete pass, calculated by different methods. The method used for the first section was maximum length. Thus the first of these three comparisons is also calculated by maximum length, the second by horizontal Feret projection, the third and last by area. The

output is shown in figures 2.50 and 2.52 and is identical in format to the first section figure 2.44. The difference between these outputs is that these pass averages are centered one per page and have the plot type descriptor above it.

MNTEVAL START 18 :37:29 E77:29 E77:29 STOP 15 :37:29 E -10^{-10} -10^{-10} STOP 15 :37:29 E -10^{-10} -10^{-10} 25:21 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 0 -10^{-10} -10^{-10} -10^{-10} 25:21 0 0 0 0 0 -10^{-10} -10^{-10} 25:21 0 0 0 0 0 0 -10^{-10} 25:21 0 0 0 0 0 <	22 42 7 7 9 1 HELTED 11 AMETER) HELTED HELTED 1 2 6 6 10 1 2 6 10 10 1 2 6 10 10 1 2 1 10 10 1 2 10 10 10 1 1 1 10 10 1 1 1 10 10 1 1 10 10 10 1 1 1 10 10 1 1 1 10 10 1 1 1 10 10 1 1 1 10 10 1 1 1 10 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 10 1 1 1 1 1 1<	D1 C </th <th></th> <th></th>		
ANTICLE SIZE DISTRIBUTTINS (NUMBER 444 3-44 70010ALEN ANTICLE SIZE DISTRIBUTTINS (NUMBER 444 3-44 70010A) PECPADE	MELTED TIAMETER) MELTED TIAMETER) MELTED TEMETER) MELTED TEMETER 1.2455-01 1.2455-01 1.2455-01 1.2455-01 1.2455-01 1.2515-02 1.2515-02 1.4515-02 1.4515-02 1.4515-02 1.4515-02 1.4515-02 1.4515-02 1.45515-02 1.45515-02 1.45515-02 1.45515-02 0.556315-02 0.614335-01 0.614335-02 1.41125-01 1.41125-01 1.41125-01 1.41125-01	KFT 503 (145 103 (155 103 (11 103 (11 103 (11 103 (11 103 (11 103 (11 103	()	CC 1014 CC 101 CC 10
0 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 7/// 2 675-04 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 1.8215-03 1 1.8215-03 1 1.5515-02 1 1.5515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.1125-01 1 1.1125-01 1 1.1125-01 1 1.1125-01</td> <td>1 1<td>0 řiti. i i</td><td></td></td>	0 7/// 2 675-04 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 8715-03 1 1.8215-03 1 1.8215-03 1 1.5515-02 1 1.5515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.4515-02 1 1.1125-01 1 1.1125-01 1 1.1125-01 1 1.1125-01	1 1 <td>0 řiti. i i</td> <td></td>	0 řiti. i i	
9.90 0	2.6775-01 НГІ6НТ 1.2455-01 0.865800 € 1.8715-03 0.44051105 4.9515-03 0.4400111 1.5715-03 0.410011 1.5515-02 1.4125-02 1.4545-02 0.4140 1.4545-02 0.4140 1.4545-02 0.4140 1.4545-02 0.4140 0.4545-02 0.4140 0.56316-02 0.4126 0.6316-02 1.4125 1.4125-01 1.4125-01 1.4125-01 1.4125-01 1.4125-01 1.4125-01	KFTERS) 903 (1056 C) -10 (1056 C) -10 (1056 C) -10 (11/56 C) 10 (11/56	N	
9.56540 155544 1.57574 1 155574 1.57574 1 1.5574 1.57574 1 1.5574 1.57574 1 1.5574 1.57574 1 1.5574 1.57574 1 1.55774 1.57674 1 1.55774 1.57674 1 1.55774 1.57674 1 1.55774 1.57674 1 1.57574 1.57674 1 1.55774 1.57674 1 1.55774 1.57674 1 1.55774 1.57674 1 1.55714 1.57774 1 1.55714 1.577764 1 1.55714 1.577764 1 1.55714 1.577764 1 1.55714 1.577764 1 1.57514 1.577764 1 1.57514 1.577764 1 1.577764 1.577764 1 1.577764 1.577764 1 1.577764 1.577764 1 1.577764	1.255577 0.875503 1.875503 7549540195 2.735503 0.4401175 2.735503 0.4401175 1.651507 1.4185650 1.455502 0.4180 1.455502 0.4180 1.455502 0.4180 1.455502 0.4180 1.455502 0.4180 1.455502 0.4180 0.556316-02 0.4180 0.6612 1.11250 0.6612 1.11250 1.11250 1.11250 1.11250 1.11250	(13-K) (056 C) (165 C) (165 C) (1455 C) (1455 C) (1455 C) (1455 C) (1455 C) (1455 C) (1455 C) (1455 C) (1455 C) (1555 C)		0 M M H J N H J S S H S H S H S H S H S H S H S H S
7 2 2 5 1 5 5 1 5	L 25 7 15 - 03 2 7 15 - 03 1 45 4 5 - 02 1 45 5 5 - 02 0 2 5 5 3 1 5 - 02 0 2 6 14 7 5 - 02 0 2 7 7 5 - 01 0 2 7 7 5 - 01 0 2 7 7 5 - 01 0 1 1 1 2 5 - 01 0 1 1 1 1 2 5 - 01 0 1 1 1 1 2 5 - 01 0 1 1 1 1 1 2 5 - 01 0 1 1 1 1 1 2 5 - 01 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TH/SEC 12 TH/SEC 13 TH/SEC	• • • • • • • • • • • • • • • • • • • •	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2 2 2 5	2.7735-C7 C AIP SPETD 1.5515-72 T AIR SPETD 1.4515-72 Jw-LW1 6.1475-72 Jw-LW1 6.1475-72 Jw-LW1 1.1555-72 Jw-LW1 6.1475-72 Jw-LW1 1.155-72 Jw-LW1 1.155-72 Jw-LW1 0.1555-72 Jw-LW1 1.1555-72 Jw-LW1 1.1125-73 Jober 110 1.1125-73 Jober 110	(H/SE7) 13 (H/SE5) 12 M/H++3)		43 N H 3 Q Q H G H G H G
355.5 0 0 3557.5 5.013540 556.5 0 0 3557.5 5.013540 556.5 0 0 3557.5 5.01564 556.5 0 0 3557.5 5.01564 556.5 0 0 3557.5 0 5.01564 556.5 0 0 0 3557.5 0 5.01564 556.5 0 0 0 0 357.5 0 5.01564 556.5 0 0 0 0 0 5551.7 0 5.51764 556.5 0 0 0 0 0 2.521764 0 5.51764 556.5 0 0 0 0 0 0 0 0 7.4467 556.5 0 0 0 0 0 0 0 7.4467 556.5 0 0 0 0 0 0 0 0 556.5 0 0 0 0 0 0 0 0	1.5515-72 1.15575-72 6.1575-72 6.1575-72 6.1575-72 6.1575-72 6.1575-72 6.1575-72 6.1575-72 7.4-10 7.4-1 7.4-100 7.4-100 7		••	
856.5 0 0 355.5 1.55664 556.5 0 0 451.9 0 556.5 0 0 451.9 0 556.5 0 0 551.7 1.55664 556.5 0 0 551.7 0 0 736.5 0 0 551.7 0 0 736.5 0 0 551.7 0 0 736.5 0 0 0 551.7 0 0 736.5 0 0 0 0 1.55664 0 736.5 0 0 0 0 0 0 0 0 736.5 0 <	1.1.2.5.5-72 6.14.7.5-72 0. 5.631£-02 5.631£-02 2.035.7765+04 3.5175+04 3.7765+03 3.7765+03 1.1127-07			
6, 5, 5, 0 $0, -0, -0, -0, -0, -0, -0, -0, -0, -0, -$	6.1475-72 0.20 5.6916-02 1.5.6916-02 2.0965-01 3.5176+03 3.7765+03 1.1125-07 I.1125-07 I.1125-07			
556.5 0 0 655.5 0 0 5251.7 1.50664 556.5 0 0 5551.7 1.50664 0 5551.7 0 0 736.5 0 0 5551.7 0 0 5251.7 0 0 5554.7 0 0 5551.7 0 0 5551.7 0 0 5551.7 0 0 5551.7 0 0 5551.7 0 0 5551.4 0 0 5551.4 0 <	1 5.631£-02 2.6531£-02 0. 1.5.631£-02 2.0365-01 3.7765+04 3.7765+03 1.1125-07 1.1125-07 INFNSVATIOM			201040
556.5 0 0 5751.7 0 756.5 0 0 5751.7 $1.595E+7$ 756.5 0 0 5751.7 $1.595E+7$ 5551.7 0 5751.7 $1.595E+7$ 575.5 0 0 $2.036E-7$ 575.5 0 0 $2.77E+0$ 5751.7 0 0 $2.77E+0$ 5751.7 0 0 0 5751.7 0 $0.51.6$ 0 5709.6 0 0 0.700 570.7 0.746 0.776 0.726 570.7 0.716 0.776 0.726 570.7 0.716 0.776 0.726 570.7 0.716 0.776 0.726 570.7 0.716 0.776 0.726 570.7 0.776 0.776 0.726 570.7 0.776 0.776 0.776 570.7 0.776 0.776 0.726 $570.$	<pre>3. f31E-02 0. 5. F31E-02 0. 1. 5. F31E-02 3. 517E-01 3. 776E+03 3. 776E+03 3. 776E+03 1. 1125-07 1. 1125-07</pre>			
656.5 0 551.7 0 736.5 0 0 551.7 $1.595E+n$ 736.5 0 0 551.7 0 551.7 0 0 0 0 5151.7 0 0 0 0 5176.5 0 0 0 0 5176.5 0 0 0 0 5170 0 0 0 $1.146E+0$ 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0 51.0 0 0 0 0 0	0 5.631£-02 0 2.631£-02 3.5176404 3.7765+03 3.7765+03 3.7765+03 1.1125-07 1.1125-07			040
736.5 0. 551.7 1.5956+0 756.5 0. 2.0366-0 5/4**5 0. 3.5176+0 5/51.6 0. 3.5176+0 5/51.6 0. 3.5176+0 5/51.6 0. 3.5176+0 5/51.0 0. 3.5176+0 7.466-0 3.7776+0 55.5 0. 7.466-0 3.7776+0 5709 16:17:46 6.5174 7.465 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0 5.7164 7.466-0	I 5.631E-02 0. 1.074L 2.036E-01 3.517E+04 3.776E+03 3.776E+03 1.1125-07 INFNEMTION			
••3) 0. 2.0365-7 ••3) 0. 2.7754 ••3) 0. 3.51754 ••5) 0. 2.13556 ••5) 0. 1.1456 ••5) 0. 1.1466 ••6 1.1466 1.1466 ••7 2.865 1.1466 ••6 1.1466 1.1466 ••7 2.866 1.1466 ••7 2.870 1.1466 ••7 2.866 1.146 ••7 2.866 1.166 ••7 1.146 1.146 ••7 2.870 1.176 ••7 1.1100 1.1166 ••7 1.146 1.176 ••7 1.146 1.176 ••7 1.1166 1.176 ••7 1.1166 1.1766 ••7 1.1166 1.2756 ••7 1.1766 1.1766 ••7 1.1766 1.1766 ••7 1.1766 1.1766 ••7 1.1166 1.1766				
6/4433 0. 2.0386-7 5/4435 0. 3.51764 7.55 0. 3.51764 7.55 0. 7.466-6 5.57 0. 7.466-6 5.57 0. 7.466-6 5.57 0. 7.466-6 5.57 5.77 5.465 5.57 5.77 5.465 5.70 16.17 1.48 5.70 16.17 1.08 5.77 5.74 5.766 5.77 5.767 5.766 5.77 5.77 5.766 5.77 5.77 5.766 5.77 5.77 5.766 5.77 5.77 5.766 5.77 5.7166 5.766 5.77 5.7196 5.7166 5.77 5.7166 5.7166 5.75 5.756 5.7166 5.756 5.756 5.7166 5.756 5.756 5.7166 5.756 5.756 5.7166 5.756 5.7566 5.7166 <	2.0365-01 3.5176+04 5.7765+03 5.7765+03 3.7765+03 1.1125-07 1.1125-07			
3.5176+0 3.5176+0 0 0.700 1 0.700 1 1.146 1 0.700 1 1.146 1	S-77694			
District Contract of the state of the	5.7755+03 5.7755+03 1.1125-07 1.125-07			
0.900 0.900 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 7100 16.17 71100 1000 71100 1000 711100 1000 7111100 1000 71111100 10000 7111111111111111111111111111111111111	INFO:20112:00:00:00:00:00:00:00:00:00:00:00:00:00			
INTERVAL START 15:37:45 STOP 16:77:48 STOP 16:77:48 STOP 16:77:48 TCL 0 U 0 0 0 9 E///// //// R E C 1 0 0 C L 0 U 0 0 0 9 E///// //// R E C 1 0 0 C L 0 U 0 0 0 9 E///// //// R E C 1 0 0 STOP 10:759 2.7196:45 1.3595-03 464.3 1.3916:43 1.3916:40 2.7196:45 1.3595-03 464.3 1.3916:45 2.7196:45 1.3595-03 464.3 1.3916:45 2.7196:45 1.3595-03 464.3 1.3916:45 2.7196:45 1.3595-03 464.3 1.3916:45 2.7196:45 1.3595-03 464.3 1.3916:45 2.7196:45 2.71156:44 4.1257:40 4.12577:40 4.1257:40 4.12577:40 4.12577:40 4.	INFO::::::::::::::::::::::::::::::::::::		; ; ;	-
INTERVAL START 15 137 145 STOP 16 177 148 STOP 16 177 148 TCLE 512E D_157P_145 CL 0 U 0 D 9 Q E//// PD++ *N0-DENS +* LMC +* +E2MD++ PN0-DENS PD++ *N0-DENS +* LMC +* +E2MD++ *N0-DENS 2 2 12575+0 5 13595-03 2 2 1257+0 6.0455-13 2 2 15570 4 6.617+3 464.3 1.7595+05 5 5.1155-14 9.3595-03 2 455.4 6.617+3 464.3 1.5607+03 2 6.7357+0 5.73155-0 2 1.55510 1.1105-22 1.55510 1.39955+03 2 455.4 1.39975+0 2 1.39975+03 2 4557-1 5 5.7155-10 2 1.5567-0 2 1.39975+0 2 2.557.5 2 1.39975+0 2 2.557.5 2 1.39975+0 2 2.557.5 2 1.39975+0 2 2.557.5 2 2.5	NF72437101		*******	
STOP 16:77148 STOP 16:77148 AFTICLE SIZE DISTELAJTIONS (NUMBER/4005-M4 EQUIVALEN $7/7$ L O U 3 D Q Q E V N (NUMBER/4005-M4 EQUIVALEN) $7/7$ L O U 3 D Q Q E V N (NUMBER/4005-M4 EQUIVALEN) $7/7$ L O U 3 D Q Q E V N (NUMBER/4005-M4 EQUIVALEN) $7/7$ L O U 3 D Q Q Q EV/// $7/7$ L O U 3 D Q Q Q EV/// $7/7$ L O U 3 D Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q		PARTICLE TYF CLI RATN	PES	
AFTICLE SIZE DISTRIAJTIONS (NUMBER/4** 3-M4 EQUIVALEN		I NA I		
/// L 0 U 3 P Q Q 9 E//// R C I P P *EG M0** ** LWG ** LWG ** ** EM0** ** N0-05NS 5*.3 2.719E+65 1.3595-03 464.3 1.331F+0 156.9 1.759E+04 5.3465-03 1255.4 6.521F+0 156.9 1.1759E+04 5.3465-13 1255.4 6.511+0 756.4 1.1185-14 1.1185-12 1555.4 5.511+0 256.7 2.115E+34 9.3505-03 2057.4 5.511+0 256.7 2.115E+34 9.3505-03 2057.4 1.370F+0 256.5 1.3395E+03 1.5507-03 2057.4 1.370F+0 355.5 1.3399E+03 1.5507-03 2057.4 5.5511+0 355.5 1.3399E+03 1.5507-03 2057.4 5.5511+0 355.5 1.3399E+03 1.5507-03 2057.4 5.5511+0 355.5 1.5505-03 2057.5 1.3715+0 355.5 1.5505-03 20557.5 1.3715+0 355.5 1.5505-03 20557.5 1.3715+0 355.5 1.55057.5 1.55057.5 1.55057-0 355.5 1.55057.5 1.55057.5 1.55057.5 1.55057-0 355.5 1.55057.5 1.55557.5 1.555577.5 1.55057.5 1.55057.5 1.55557.5 1.55057.5	T HELIED JIAYETER			ToTAt- Constr-
EG PORT NO-DENS NO-DENS NO-DENS 55-3 2.7196+05 1.35096 1.31740 127.2 2.7196+05 1.35096 4.122740 156.9 6.0426404 6.0446-03 1255.4 4.122740 256.7 2.1156+04 1.1186-03 1255.4 6.61740 256.7 2.1156+04 1.1186-03 1255.4 6.631540 256.7 2.1156+03 0.3505-03 2057.4 5.631540 256.7 2.1156+03 0.3505-03 2057.4 1.3706+03 256.7 2.1156+03 1.2756-03 2057.4 1.3706+03 256.5 1.33996+03 1.6507.4 1.3706+03 1.3756+03 356.5 1.33996+03 1.6507.4 1.3756+03 1.3756+03	11113 6 0 2			CLOUD PRESIP
07.2 1.7595405 5.515-0 1.52740 56.9 6.0425404 6.0345403 1.52740 56.9 6.0425404 6.0345403 1.52540 56.9 6.0425404 6.034540 6.031540 56.9 6.0425404 6.034540 6.031540 56.7 2.1155404 9.3505-03 2057.4 6.631540 56.6 2.1155404 9.3505-03 2057.4 5.631540 56.6 1.3395403 245743 1.375403 21675 56.6 1.3395403 245745 1.337540 215740 56.5 1.13995403 1.15775403 215740 1.337540 56.5 1.13995403 1.4567403 2137540 1.337540 56.5 1.13995403 1.5775403 2137540 1.337540 56.5 1.13305403 2857454 1.3375403 1.337540 56.5 1.13305403 2857454 1.335540 1.335540 56.5 1.13305403 2857454 1.335540 1.335540		100 VOG13	77 RE	J T07
56.9 6.0422404 6.0442403 1245.4 6.491740 96.4	HOUSE TO THE THE THE THE THE THE THE THE THE THE			- 442
96.4	9-36-12 5	DEG C) -4		1 244 10 1
50.7 2.115E+34 9.350E-03 2057.4 6.571E-3 95.6 5.474E+93 4.1275-03 2457.9 1.379E+3 25.6 1.399E+43 1.660 ⁻ 03 2457.6 1.317E+0 25.5 1.555E-0 25.5	1 2.44JE-53 DEWDINT	- - - - - - - - - - - - - - - - - - -	.27 15	
75.6`````5.474F+T3 &.127E-U3 245?.9 1.377F+J 56.6 1.339E+Ù3 1.660C+U3 285?.6 1.317E+O 86.5````C. U.	219 J E0-3061-1 1	MISECI 13	• 44 5	~
56.6 1.3396443 1.6605403 2352.6 1.313540 66.5377776 7.6565640	1 41-5 - 1	(M/SEC) 12	• 6 3	5. 20 5
		(E++=/=	-1	. N 5
				200
	1.553.5-9			1
56.5 0. 0. 5251.7 5.562E-3	1.3736-0			
96.5 0	teb elames (C.1.1014).			
		•	;	2 0
+3} 3.9*8E-02 1.4895+0	1 1.4495			
5/4+*3) 9.232E+07 2.075E+0	3+3365+0			
	5 - 222 - C			
		•	•	

,

۱

١.

475127011AL 529 519 960 - 509 0000 PRABE RAIN 418. J79 SECOND 511 102 950 - 505 000 970 100 111 121 114 125 115 1 2 6 7 6 7 6 7 6 7 6 7 7 7	SAMPLE TOTAL G 1 107AL G 34.5 34.5 14.7 14.7 12.12 55-1 19-1 19-1 19-1 19-1
$ \begin{array}{c} 11 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 $	
2-1 57-1 67+2 92+1 25+1 25+1 2-1 64-2 42-1 39-3 45+1 50+0 1-2 13-1 94-2 71-1 27+9 24+1 26+0 1-2 13-1 14-1 15-1 77-1 27+0 92+0 99-1 1-2 13-1 14-1 21+0 27+0 92+0 99-1 15 - 1 14+2 51-2 7_1 37+1 11+0 31-0 15 - 1 14+2 55-2 51_2 34+1 64+1 14+0 10-1 (17 - 1 (19 - 2 (19	
1-2 1-2 71-1 71-1 24+1 27+1 92+1 <	
4-2 51-2 1/1 1/41 1/41 5/42 1/40 5/42 1/41 1/42 10/1 - 1 (1/2 - 2 2 2 2 2 2 2 2 2 2 4 2 3 4 - 2 2 4 2 4 2	
25) (27) (29) (-31) 25) (27) (29) (-31) 25) (28) (30) (30)	
2.726+03 7.416+02 1.345+02 2.575+01 7.676+00 2.946+00 0. 46443 4.606447 2.406402 6.406404 8.466404 0.	
rrtzontal-feret projection	SAMPLE 50TAL 01+16
	50+1 34+1
	27-1
(3 - 1 6 - 2	13-1
13 - 1 ¢وېستېنې د د د د د د د د د د د د د د د د د د	
7-2 (17 - 1 4-2	67+2 54-2
	43-2
	2-42 2-42
$1 - \frac{1}{2} - $	36-1
(1
26 + 41 37	

	SFCO	101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 1	2+21 2+25 2+21 2+21 2+21 2+21 2+21 2+21
16)(25)(39)(54)(70)(90)(110)(130)(160)(190)(27 E+C3 1.24E+G3 3.19E+02 7.59E+01 2.36E+01 8.13E+ 1.45E+03 6.10E+02 1.672+02 4.28E+01 1.51E+01 0 PRECTP PROGE 1.614 414 PRECTP PROGE 11.412* 11 PRECTP PROGE 11.412* 12* 11	77) (750) (280) (****) +00 02.04E+00 02.04E+00 13* *14* *15* *16*	T0TAL
11-1		54-1 24-1 13-1 13-1 73-2 73-2
-2 27-2 54-2 42-2 11-3 45-2 11-3 37-2 11-3 39-2 39-2 10-1 59-2 42-9 31-2 12-2 13-2 85-3 39-2 51(25)(40)(55)(71)(91)(111)(131)(161) 51(25)(79)(54)(Figure 2.46: KNOLL2D	-3 21-3 11-7 1) (221) (251) (281) mple data) (***)	10000000000000000000000000000000000000

•

And the second second

	T0TAL 01-15		- 32+2	55+1	30+1	19+0 29+0	19+ J 56-1	12-1	20-1	1		TOTAL 01-15	59-1	1-22	13-1	73-2	69-2	43-2	37-2	34-2	7-00		
	SECOND SAMPLE				++ ++ 	17 - 13)	(77 - 57 -	~ ~ • •	n n 1 1			6 SECOND SAMPLE		1			••••	•••	~ ~ • •	27 - 24)	,, I		
	418+ 416+ 1))			22					. t t 2 . 5) (2 . 6)		+15+ +16+									.a	0.	•
	*-+71+-+81+- +2) (2-2) (2- 5) (2) (2-3) (2-4) (2	·0	*************************						· ···· ···		n e bulle de la companye de la companye de la companye de la companye de la companye de la companye de la compa	sample d		
MATPICES	NIV6 3800d		and a financial designment of the second	1						8) (1:9) (2-0) (2-1) (2- 2) 9) (2-0) (2-1) (2-2)	- 0 - 0 0 0	PP095 RAIN 9* 410* 411* 41		-					*		.47: KNOLL2D	· •	•
DISTRIBUTION	C 0		1		61_2	87_2				5) (1.6) (1.7) (1.6 .6) (1.7) (1 .8) (1.9	85+01 1.11E+ 5.115-01 0	p# #g0# #46*		,	:	•			•		Figure 2		
PASS 1	104 624 4684 104 624 4684		5+3 ¢ 0+0 ±	5+0 15+3 5+e 74-1	11	1-1 76_2 3-1 10_1	2-1-03	0_1		.3) (1.4) (1 .4) (1.5) (1	1.866401 1.4 +01 5.116-91	10N 24710 1649 4554 4064		 	, ,			and a second and a second a second	-		21-3 (1.4)(1.5) (.4)(1.5)(1.6)		•
677	PROJECT T		21+1	0++3 + +3 +	12+0	75-1 2		-12_1 2 12_1	:	1)(2.1)(2	192+3? 2 4-31E	PR9JECTI PR9JECTI				•					1) (1.2) (1		

FULTWLEWE CIPCLE 4410 6:14-022-01% -01% -05% -05% -07% -06% -00% -11% -11% -12% -13% -14, - 1 7:53 578 11% 564 514 1440 15-1 6:00 92+1 75-1 564 51-1 11-1 13+1 554 56-1 11-1 13+1 554 56-1 11-1 13+1 554 56-1 11-1 13+1 12+1 12+1 12-1 15-1 12-1 12-1 12-1 15-1 12-1 13+1 12+1 12-1 15-1 12-1 13+1 12+1 12-1 15-1 12-1 13+1 12+1 12-1 15-1 12-1 13+1 12+1 12+1 12-1 15-1 12-1 13+1 12+1 12+1 12-1 15-1 12-1 13+1 12+1 12+1 12-1 15-1 12-1			
7 7	riitvalent Cipcle aatio 24-432-404 - 4054 - 4054 - 4074 - 4084 - 4094 - 4124 - 4124 - 4134 - 4144	418.979 SFCOND SAMPL	4 1
11.1 11.1			36+3 14+3
9:0: 0:0: 0:0: 0:0: 0:0: 0:0: 0:0: 0:0:	75+7 53+2 11+2 67+4 21-1 46+1 17+2 86+1 26+1 14+0 15- 4 440 8244 7644 3644 48+7 32-	, i	32+2-2-21+2
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	ered series and the series of	न न । । के ना	- 12+2
Note: Static			
1 1			28+0
12-1 10-1 12-1	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19+0
11 20.1 <		~ ~ 	12-1
IE 001 5.405 02 5.445 01 3.395 02 6.476 01 4.705 01 4	6 - (1-0)(1-2)(1-4)(1-6)(1-8)(2-0)(2-2)(2-4)(2-6)(2-8)(3-0)(3-2)(3-4)(3-6) - (1-0)(1-2)(1-6)(1-6)(2-0)(2-0)(2-6)(2-4)(2-6)(3-6)(3-6)(3-6)(3-6)(3-6)(3-6)(3-6)(3	•0)-(4.0)- •0)(4.2)	
Four WLENT GIRCLE RATIO PPECTP PROBE RAIN $1.2 \times 1.3 \times 1.4 \times 1.5 \times 1.6 \times $	11E+33 5.49E+02 5.14E+61 7.93E+06 9. 0. 0. 0. 0 11E+33 5.49E+02 5.14E+61 7.93E+06 9. 0. 0. 0. 0		
$\begin{bmatrix} 1 & -2 \\ 21 & -3 & -5 \\ 21 & -3 & -5 & -5 \\ 21 & -3 & -5 & -5 \\ 21 & -3 & -5 & -5 \\ 21 & -3 & -5 & -5 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 21 & -2 & -5 & -2 \\ 11 & -3 & -2 & -5 \\ 11 & -2 & -2 & -2 $	cie +12* *12* *04* *65* *06* *07* *08* *09* *10* *11* *12* *14	15* *16* 460-976 SECOND SAMPL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 A=1 2-1 A=1 -11_3		50=1 34=1
11.3 $75-2$ $54-2$ $43-2$ 14 $73-2$ $73-2$ $73-2$ $69-2$ $69-2$ $113-14$ $100-2$ $110-14$ $100-24$ $110-14$ $1100-14$ 11	t 21-3 26-1 1		
69- 6	5 11_3 75-2 54-2 53-2 43-2 13-2		73-2
11.1 42-2 42-2 (19 - 20) 54 11.3 25-2 20-2 (71 - 20) (73 - 24) 47 11.3 25-2 20-2 77-2 (73 - 24) 47 11.3 25-2 19-2 17-2 (73 - 24) 47 11.3 27-2 39-2 (27 - 29) 34 10.10(1.2)(1.4)(1.6)(1.0)(2.1)(2.2)(2.2)(2.2) 39-2 (31 - 32) 39 11.1(1.2)(1.4)(1.6)(1.0)(2.0)(2.2)(2.2)(2.2) 19/2 (31 - 32) 11 11.1(1.2)(1.4)(1.6)(1.0)(2.0)(2.2)(2.2)(2.2) 11 12 12 11 11.2)(1.2)(1.9)(2.0)(2.2)(2.2)(2.4)(7.6) 11 12 12 12 12 11.1(1.2)(1.6)(1.6)(1.0)(2.0)(2.2)(2.4)(7.6) 10.6 11 12 12 12 12 11.2)(1.2)(1.9)(2.0)(2.2)(2.4)(7.6) 10.6 10 11 12		14	69-2
11.3 2:-2 20-2 21-2 21-2 21-3		11	
3 3			47-2-15
6 (31 - 32) (31 - 32) (31 - 32) (31 - 32) (1.1) (1.2) (1.4) (1.6) (1.6) (2.3) (2.2) (2.4) (2.6) (2.4) (2.6) (2 - 22	34-2
	6	data (31 - 3	17-1

0151F97*0UFION MATRICES *27* c010 00006
--

	· ,	•									
	•	•									
				1	: : : :	•	•			-	
			•						I	1 1 1	
				•			•	·	•		
							;				
				1							
	11N8I¢1SIC	ON 9Y MAXT	HUM LENGTH				i ,	•			
			-				, .	2 4 5 6 6 7 6			
#7 F -SECOND -01-85	1481	1202-351-		E4 IGH1 I	INF7241TION		PARTICL ^e CL : RATU	TYPES			
	STOP	15177					. •I				
44	ICISIO 32IS	EGWON) SNOITCHI	ER/4#* 3-MM	EQUTVALENT	MFLIEJ JIANETE	ER)			1 -		
	5 4 6	1////3 E	с с 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0	ւ. Ծ.	;					
0 • 4 5	E • 3	5015-0		1.4005444		EIGHT	EPS)	7.23	8635 1	5130 132	132
- 2	.639E+0 .522E+0	963E-3	2 2	•673540 •591543		10000 10000 10000	n (r	7.04 1.94		369311 123 - 252	
	151F+J 4535+3	3. F^55-13 1.0915-02	· 1654.1 2053.4	6105+0 2566+0	6. 353E-03	4°01NT AI? SPEF	(156 C) (M/SFC)	-33.93	N. (1)	123 123	- 1 4 - 1
:	.932E+0	- 235E-J	55	0+300+0 0+300+0	. 4745-J	AIS	~	1 ° °		16	6
934	• 5 2 2 E + 0	961E-1	1 3 7	- 71 95 + 3	24%-0	•	-		5	6 9	
3 456.5	•859540 •692544	1-3254 9165-1	ມີຄ	.E56E+0 .348E+1	0-3665. •735-0					94 61 47 51	
1 556	.7295+0	6915-0								31 41	
520 520			5 5	• 1						10 10 10 10 10 10 10 10 10 10 10 10 10 1	1
4 705	.7335+0	4915-1	5	.459 ⁻	6-1967.					35	i i 1
5 755	• 0 • 2 • 0 •	. F 16 E - U	ф.,	.7905-0	• 53 35 • 0	0 1 4				n	:
(SH/H==3)	.7552-0			.3225-0		95 1E -					
SNCallel	• 555E			56		• 23 45 + 0 • 23 45 + 0				1	
44 (4/340,51 58 431 5 (557)	5E-0 479		•	C.	,	.2965-0	•				
									*		
) 					1	
	-		Figure	2.50:	KNOLL2D sample	ole data				ł L	
	1				:					: !	
		•			,						

	77 77 71 <td< th=""><th>KNOLL2D sample data</th></td<>	KNOLL2D sample data
CONTAL FERET PODECTION	12.1 12.1	Figure 2.51: KNO
TNOZIJOH YE NCITUEIJIO	#77 SECOND PASK START 15: 70:00 \$STOD 15: 27:149 \$VK-27 PARTICLE SIZE DISTO19JFTONS (NUMB /////C L 0 U 7 P 9 0 3 E//// 1 77.5 1 77.5 2 77.5 2 77.5 2 77.5 3 3.37657435 1 7.5 2 7.5 2 7.75 3 3.37657435 3 3.37657435 2 1.14156.95 2 2.7725.03 3 3.37657435 3 3.37657445 3 3.37657445 2 3.37657445 3 3.37657445 3 3.37657445 3 3.765774 3 3.765774 3 3.765775 3 3.765775 3 3.765775 3 3.765775 4 1.4726404 4 1.4726404 5 1.4726404 5 1.4726604 5 <	

, . <u>.</u>

	Telsio	AB NOL		-FL IGHT I	NFDE41TLOK			TYPES				
0-SEFOND - 0A	STO STO	1513010 16137149		£77-23			CLE RAIN					Ħ
20 PARTICLE	SIZE DISTR	FICHS (E2/H#=3=HH	I P P R	LTED JIANET 3 5////	FR)			CL0	TOTALC OUD	COUNTS-11	d
	* -10	1255 1255 1255	* EC # C # * EC # C # * EC # C # * EC # *	*N0-0ENS*	* 140 *	- 111	1	Ň	REJ 19694 2	707 21591	- REJ 587	F01-587
H (C)	• • • • • • • • • • • • • • • • • • •	• 2 45 F - 0	345	• 5 3 4 5 + C	• 94 36	TEMPERATURE	(DEG C)		- 6124 -	7661	262	
61 4 61 4 61 4 61 4 61 4 61 4 61 4 61 4	.5385+9 .751E+3	. 7405-0 .8785-0	355	.0215+0 .830E+3	• 577E-P	EVPOINT AIR SPEC	· (DEG ?)	c	2956 2471	2749	154	345
- 6 - 103.8	• 1515+3	4736-1	158.4			TAIR SPEED	(M/SEC)	m 1	1122	1531	56	
5.0	C+1654.	- 52CE-3	N.			Ĩ		•	- 258 -			j
	.7375+0	. 663E-0 . 1 60E-9	31,2	• • •					517 517	155 73	29	53
	.7645+0	. 2246-0	101						s ti	1	12	121
,	.7775+J	. 437E-0 .032E-0	47 F					•	. 0	21		 M
	•	•	វ័រ		•0		•			i M	~~	• •
14	• • •	•	11	9.		< <	•	!	•	-1	3	ں
24/4	.333E-0			.137E-0		• 233E-				ι 		
~/>****	-3168-	-	;	1 1 1 1 1 1 1		. 32 6F + 0	-		1 1			
						8785+0						
(4/344 °S 4PLE (S <u>4</u> 0	55-0 973		•	449E-0 0-375		.7375-0	1 1 1 1 1 1 1	1 • •	• • •			
• .		•		5								
			****	*****			*****	******	******	******	******	*****
				1								
				•								
		•			•					!		
			Fig	gure 2.52:	: KNOLL2D S	ample data					,	
	-					:				-		
				4 1 1	1					,		ļ

2.3.4 Program COPKNE

COPKNE is a special utility program written during this contract period. It copies segments of several PMS-2D data tapes onto a single tape. In addition it has the ability to fix the recorded A/C time of each copied slow record. This is critical when non-consecutive data is copied and the clock is bad.

There are three times associated with each 2D slow record. The A/C clock; the elapsed second clock and the "record" time in elapsed seconds of the slow record. The "record" time of the record is taken from the elapsed second clock when the slow record is recorded, while the elapsed second time is the time at which the ten second buffer began. Thus, a nine second difference exists between the two. COPKNE has been written to key on any one of these three record times. When the A/C clock is bad the "record" time of the first slow record of the tape, must be input. The program will internally handle the nine second difference in elapsed time. In addition, before writing out this copied record, the buffer will be altered to contain the correct A/C time.

COPKNE operating instructions follow:

2.3.4 Program COPKNE operating instructions

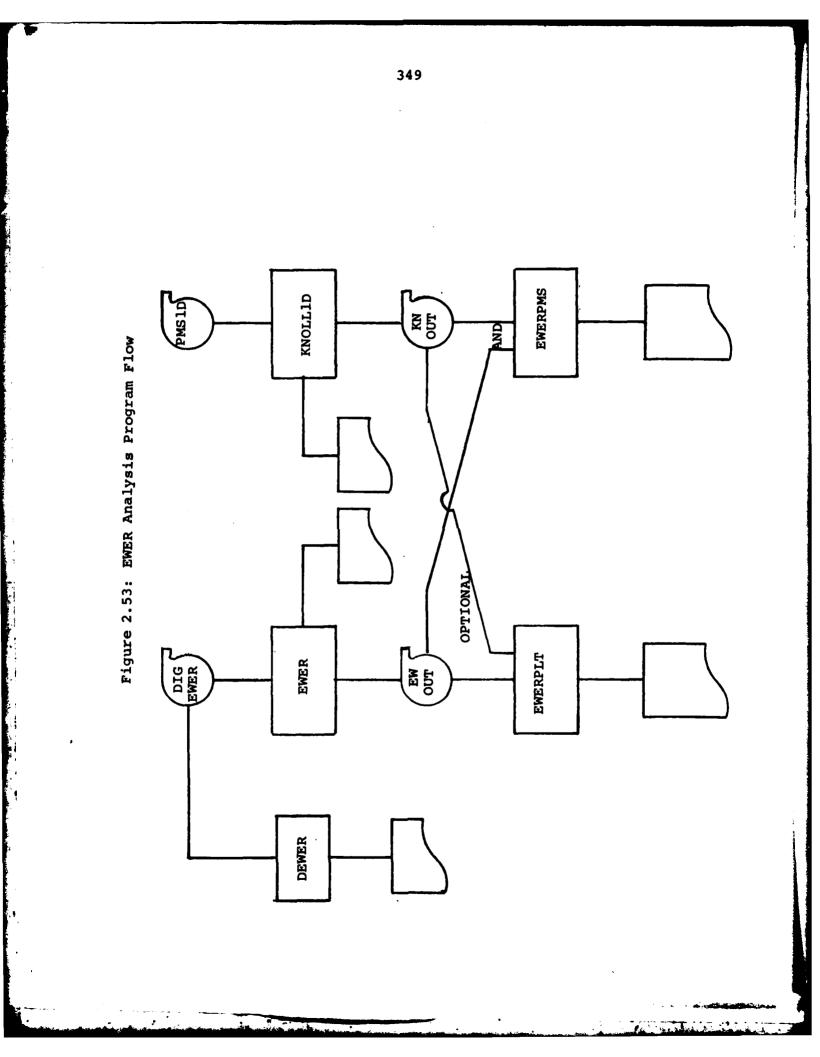
COMMAND CARDS

DPSI,T300,NT2. ID# IDNAME ATTACH,LGO,COPKNEBIN,ID=GLASS,MR=1. VSN,TAPE1=KNEXXX/NT. VSN,TAPE2=OUTPUTTAPENUMBER/NT. REQUEST,TAPE1,PE,L,NORING,NT,NR. REQUEST,TAPE2,PE,L,RING,NT. FILE(TAPE1,RT=U,BT=K,MRL=5576,MBL=5576,RB=1,BFS=560) FILE(TAPE2,RT=U,BT=K,MRL=5576,MBL=5576,RB=1,BFS=560) LGO.

7/8/9

DATA CARDS

CARD #1


сс	5	ICLOCK	-l=A/C CLOCK
			2=RECORDED PMS TIME ON FIRST SLOW RECORD
			3=RECORD TIME OF FIRST SLOW RECORD
сс	10	IPOS	1=POSITION TAPE2 AT END OF PREVIOUSLY COPIED
			DATA
cc	20-25		PMS ON TIME - THIS OPTION USED FOR ICLOCK=
			2 or 3 (ALWAYS USE RECORD TIME OF FIRST
			SLOW RECORD ON TAPE1 - NOTE THAT RECORD
			TIME = RECORDED A/C TIME + 9 SECONDS)
CAR	DS 2-(1	N+1) -	N PASSES IN TIME INCREASING ORDER
cc	1-6		START TIME IN FORM HHMMSS
сс	8-13		STOP TIME IN FORM HHMMSS
6/7	/8/9		

2.4 EWER analysis

As outlined in the following diagram EWER analysis requires step-by-step procedures to analyze the data. First the analog recorded tapes are processed at AFGL producing digital equivalents. Program DEWER can then be run to determine the status of the system and to show the data time intervals. Program EWER is run on those time intervals, producing a printed output as well as a plot tape for further analysis. Using the EWER plot tape program EWERPLT can be run to produce long pen plots of selected values. Optionally a KNOLLID produced plot tape can be run with EWERPLT to produce comparison plots of EWER LWC and KNOLLID LWC values.

Program EWERPMS requires both the EWER and KNOLL1D produced output tapes. This program produces plots of EWER versus KNOLL1D data, and shows the correlation of EWER and PMS LWC.

A detailed explanation of the individual programs can be found in the following sections.

2.4.1 Program DEWER

ř

с. с.

•

1

. **!**

DEWER is a utility program to verify the digitized data tape from analog EWER data. DEWER dumps the condensate and reference voltages for 3 detectors as well as the four VCO's associated with the device. (see section on EWER).

These values are in the form of raw counts and are dumped to the line printer. Visual analysis can then determine if major fluctuations exist.

2.4.1.1 Program DEWER c ating instructions

DEWER OPERATING INSTRUCTIONS

LALEW, CM65000, T200, TP1. ACCT # NAME VSN, TAPE1=EWERTP. (DIGITIZED TAPE) REQUEST, TAPE1, MT, L, NORING. ATTACH, LGO, DEWERBIN, ID=GLASS, MR=1. FILE (TAPE1, BT=E, RT=S, MBL=2040, MRL=2040, RB=1, FL=2040, BFS=206) LDSET, PRESET=ZERO. LGO.

6/7/8/9

<u>en.</u>

352

2.4.1.2 DEWER sample output

\$/2111	6161	FILE: WR#1	2 240	RECORDS	1	CH/FRF Sysid:							
	• • ••• • •••											•••	
MSEC	i	2	3	6	~5 ′′′	6	7	9	9	10	11	12	13
91 0	279	280	272	275	280	279	281	79	279	1893	-551	-181	-730
144	282	280	272	282	200	279	272	282	283	1094	-517	-182	-726
375	277	279	282	274	277	276	275	282	280	1894	-532	-182	-739
60 9	279	28 0	278	277	276	283	278	779	290	1893	- 524	-175	-718
842	278	275	279	278	248	276	277	279	279	1893	-521	-184	-727
76	242	277	272	276	272	279	282	288	217	1893	-528	-184	-728
307	276	277	273	271	282	273	284	160	283	1894	-531	-184	-732
540	275	276	280	274	278	275	278	28 Z 27 g	288	1894	-519 -539	-180 -174	-722 -713
772 6	277 277	278 286	244	279 275	281	287 273	284	209	274	1893 1893	-517	-184	-729
238	201	275	279		249	279	289	- 79	281	1893	-538	-179	-716
471	275	284	274	28€ 274	278 242	274	283	785	272	1894	-527	-187	-734
703	282	269	285	284	276	277	285	274	281	1893	-518	-179	-720
936	281	283	279	266	279	285	277	64	281	1894	-542	-181	-719
169	275	277	292	275	285	~ 278 ~	281		284	1894	-520	-183	-726
401	280	275	290	281	279	2 81	279	278	274	1894	-529	-182	-723
634	275	282	248	280	280	280	275	277	1894	-547	-177	-728	595
867	277	27 8	284	278	280	260	282	276	283	1893	-538	-174	-721
99	281	277	288	277	276	279	275		- 282	1894	-509	-179	-717
332	276	276	27 8	277	276	274	286	77	279	1893	-531	-179	-720
565	284	- 27 2 -	283	275	276-	- 777	280	280	276	1893	-526	-177	-722
748	286	277	283	289	278	282	283	285	281	1893	-540	-181	-726
31	283	275	277	275	287	272	285	284	280	1893	-513	-180	-722
264	285	272	291	277	270	281	269	298	285	1893	-517	-176	-719
497	272	271	279	274	251	278	278	293	280	1894	-529	-184	-722
730	277	Z84	286	26E	282	2 60	275	782	288	1893	-530	-182	-731
963	275	- 268		280	579	277	277-	278	284	1894	-534	-176	-719
196	281	280	285	273	275	274	278	284	281	1894	-524	-176	-724
428	277	27 8	277	279	282	251	277	281	279	1894	-526	-179	-720
662	278	277	279	275	284	275	280	~79	261	1894	-523	-175	-718
895 127	272 275	277 272	279	276	282	273	281 278	280	279	1894	-512	-176	-720 -725
361	~ 279	- 276	275	273	277	277	282"	281	276 277	1894	-526 -528	-179 -182	-729
592	271	240	279	279	282	281	275	" 281°' 279	281	-1894' 1893	-534	-178	-723
826	276	280	280	279		.275	288	- 278	275	1894	-515	-176	-722
58	278	267	283	285	272	281	289	76	2 88	1894	-532	-173	-721 .
291	273	279	238	283	258 -	276	286	285	272	1894	-538	-190	-736
52 4	275	287	275	276	283	276	280	°81	272	1893	-527	-185	-728
756	275	276	274	2 80	- 282	278	278	271	284	1895	-537	-181	-726
989	273	275	275	286	285	2 80	287	281	282	1793	-519	-176	-718
222	276	298	275	272	289	280	280	77	274	1894	-519	-181	-717
453	269	277	288	278	200	276	277	280	277	1894	-538	-179	-725 `
687	280	253	277	276	279	277	282	282	275	1694	20	-181	-728
919	260	284	286	282	217	276	279	81	278	1893	- 520	-179	-722
152	278	257	280	278	275	283	281	~84	2 84	1894	- 525	-180	-723
385	277	275	278	277	276	278	282	281	2 8 O	1893	-538	-17E	-724
61 8	277	281	294	275	277	278	236	-85	281	1894	-537	-177	-728
850	270	276	272	284	276	277	279	781	278	1894	- 527	-180	-728
83	278	288	272	275	261	272	285	-76	273	1893	-525	-185	-734
31 6	241	275	277	287	273	282	278	270	285	1894	-525	-178	-718
549	270	287	282	279	272	273	282	279	281	1893	-523	-182	-723
781	280	272	286	280	277	288	285	.79	290	1894	-536	-174	-722
14 249	275 281	282 279	275	288	273	274	284	277	275	1894	-532	-182	-723
480	241	279	27 A 29 4	288 279	277 279	279 281	285 279	281	282	1894	-518	-177	-726
714	270	294	278	219	786	201 775	289	A 0 A 1	282	1894	-523	-177	-727 -717
		·				•		- 1			- 1 i i i		

And a set on the set of the set of the

and the second sec

2.4.2 Program EWER

EWER is a data reduction program for calculating and reporting various detector and sensing parameters from the EWER device. From these calculated parameters LWC values are calculated and reported for each of the three detectors.

The input data for EWER comes from analog tapes which are recorded during flights of the Cloud Physics instrumented MCl30-E aircraft. Post flight processing of the analog tapes produces digital data tapes. It is this digital tape which is used by program EWER. EWER starts at the beginning of the tape and processes all the data until two consecutive END-OF-FILE marks are found. Subsets of these digital tapes may be used as directed by user input.

There are four significant parts to program EWER. They are as follows:

1. Masking out and sorting the data in counts

An input data record consists of 204 CDC 60 bit words. Each consecutive 12 bit byte represents one word of data and must be reformatted internally into 1020 CDC words per record. Each word represents a count stored in a special format. Since 12 bits are used these words can represent values from 0 to 4096. These 12 bits represent a two's complement number. Thus if a value is greater than 2047, it has 4096 subtracted from it, resulting in the realistic value range of -2048 to 2047 (-10 to +10 volts).

2. Counts to volts conversion

A straight linear mapping of counts to volts is done where:

```
2047 → 10 volts
-2048 → -10 volts
```

The equation used is:

VOLTS = (.004884005) * counts + (.002441765)

Volts are stored in a separate word array. Both arrays of volts and counts are maintained for later usage.

3. Sensing parameters calculated

Freestream pressure (TORR) = A_1 *volts+ B_1 Delta Pressure (TRRR) = A_2 *volts B_2 Freestream Temperature (°C) = A_3 *volts+ B_3 Gap (cm) = A_4 *volts+ B_4

Calibration coefficients appear in table 2.2. For reporting purposes Pressure and Delta Pressure are given in MB units; using the relationship 1013.25 MB = 760 TORR.

4. Detector moisture content calculations

Three detector LWC's are calculated as follows:

DELTA-PRESSURE(TORRS)	=	-4.98525 + VOLTAGE2425
PRESSURE (TORRS)		85.176 + VOLTAGE + 145.951
TEMPERATURE(C)	-	~9. 9 96 + VOLTAGE + 3.346
GAP(CN)	=	689 # VOLTAGE + 3.95

Table 2.2: EWER VCO calibration coefficients

(1) $COEFF = \frac{373*P10*PRESS*N}{K1*GAP*TEMP*(PRESS+DPRESS)}$ (2) $VAPOR = COEFF(LOG_e(I_V-I_R))$ (3) $COND = COEFF(LOG_e(I_C-I_R))$ (4) LWC = VAPOR - COND

Where:

Pl0 = 805.; water density in gm/M³ @ 1 atmosphere, 0°C N = .45; collection efficiency K1 = 150; absorption coefficient in CM⁻¹ PRESS = Freestream pressure in TORR'S DPRESS = Delta pressure in TORR'S GAP = GAP in CM'S TEMP = Freestream temperature in Kelvin degrees (calculated value +273.16) I_V = vapor moisture attenuated intensity step (counts) I_C = vapor and condensate attenuated intensity step (counts) I_R = reference intensity step (counts)

NOTES

(1) COEFF is valid for all the detectors for a given time (2) If $I_V - I_R \leq 0$ set VAPOR = 0 (3) If $I_C - I_R \leq 0$ set COND = 0 (4) If LWC ≤ 0 set LWC = 0

The previous calculations are all incorporated into program EWER.

The capability to process subsets of the available data was included. This has two beneficial effects: First, computer processing time is reduced. Second, the amount of disk storage necessary for the retention of this data is minimized. This allows the data to be kept "on-line" which lessens throughput time necessary for running subsequent analysis programs.

All derived parameters can be written to an optional output tape. This tape is used by other analysis programs and eliminates the need to create a data base for each usage. 2.4.2.1 Program EWER operating instructions

EWER CONTROL CARDS LALEW,T350,TP1. ID # ID NAME ATTACH,EWERBIN,ID=GLASS,MR=1. REQUEST,TAPE2,*PF. VSN,TAPE1=TAPENO. REQUEST,TAPE1,NORING,MT,L. FILE(TAPE1,BT=E,RT=S,MBL=2040,MRL=2040,RB=1,FL=2040,BFS=206) LDSET,PRESET=ZERO. LGO. EXIT(U) CATALOG,TAPE2,PLTNAME,ID=GLASS. 7/8/9

EWER OPTION CARDS

LITERAL	COL 1-80
	(CENTERED ON EACH PAGE OF OUTPUT)
IPLOT	COL 1
	(1=PLOT TAPE PRODUCED,0=NO PLOT
	TAPE)
\$VCALCO	COL 2-8
	(REQUIRED)
VCO CALIBRATIONS MAY BE CHAN	GED BY INSERTING
VALUES OF ARRAY CALIB, SEPERA	TED BY COMMAS. (OPTIONAL)
\$END	COL 2-5
	(REQUIRED)
START STOP	COL 1-6 and 8-13
	(PASS START AND STOP
	TIMES-AS MANY AS DESIRED
6/7/8/9	MAY BE USED)

					250	'	•	1	·	
					359		·			
					1					
	· · ·					:				
2.4.2	.2 EWE	R sample	e output	• .		1				t :
		•								
						;				, ·
										· ·
						•				
	i									
						ł				
					ł	Y.		-		• •
	មួយ មួយ សូល ភូមិ		• • •					, ·		
										l.
										•
	یا سر استا استا ا						5			
		նեւ առնեն։ Այնեւ ներանց 	-	•		••	1 -	• .		:
			Nità	ì				с.		:
	32333	77	1			:	t			1
			, v. C			ł ,				4
		7 3 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	FINAL RATA			•				
	7 3 3 3 7 3			· •						
			Ē	•		1				
:	[μ, μ, 1:1:10,		a .	1	15 15 1 11	i		i		
		1 u I, <u>1</u> u	17 FrB	<u>د</u>				1		
				ι. •		ì				1 1 1
			Constants	~						
				-		•				
	r I									
	:					İ				
			1975 - 19	-) = [TA-P(T(20) 	1				
			. ú	775	1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·				
				151141163P						•
					~ 4 + ਦ			1		
	н н			; ;						
	t	ł			ļ		i .	1		

FFTECTGE : MERE STANDIV

.....

A Filmbris	. 654 1.1c7 1.1c7
	• 6-3 4 • 3 • 7 4
	a - 1 - 1 - 2 - 1 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
a firste se interne	
	FAGUTURANE (VELTS) -1.551 .178 .633 .308 4.675 .654 BEFEURANE (VELTS) -7.424 .314 -3.774 .346 -3.644 1.167
	(

1484.

ŝitte - *

٤ • • • داو

אבינייבואט בעבביל

							:				3	6	0						1						•		1 1				1		1				ļ
	N N C	2.63		2.61	•	2.57	٠	٠	ÿ	2.68	Ģ	•		٠	÷.	٠	in,	2.61	ġ	.	ف	ŝ	4	2.55	2.62	2.59	2.é3	2.63	٠	٠	•6		٠	٠	2.51	2.61	2.62
0 - <u>-</u> ,	DEC C	1 × 1	5	42	10	-P.57	-8-63	-6.41		€ 4 ° 8 -	- tota	69-1-	12.3-	67-9-	2	÷.		4	- 25-3-	۳,	1. 1	ŝ	-61.3-	- C . J 3	10.42	-8.61	-2.42	17.5-	- 6 · · · 3 ·	m.	1	ドオ・ビー	4	-	1	- 1.65	-8.73
L C C C C C C C C C C C C C C C C C C C	HB	21.2	19.1	510.43	-521+66-	522.30	. 520+54-	519.49	521.95	521.35	÷ 21 • 25	524.54	522.54	510.43	5 20 • 39	524+46	519-13	519.49	518.43	523.19	520.19	521.60	522.65	519.49	13.1	2]	14.7	19.4		19.4	21+5	519.13	21 - 3	14.7	1-61	21.5	23.
		5.12	÷.	•				0		4.32		· ^•	-	۳.	÷75	•	4	Τ.	5.11	-	j.	ビク・コ	7	4 F = 5	1	4	2	4			-:	5.11	د ر •	7		-	U 1 1 1
106 J	ACI 15	c.1.9		9.711	515	9.27b	5. 312	6°113	C. ; L5	6. 2 C F		5 . 1(4	5ª C23	3	2. c 13	5. 1 74		5. 31F	5 - 5 - <u>3</u>	• 32 • 5	5.152	5.265		5,2 *5	~~* * *5	5	G 1 4 9 9	5 .] (3		1 JE 85	5- 421	č.	5	£32*5	-	£ 3,2 °5	٠.
C515C706 CC 75 W	גין זי		N	•	10.	e.1	1.1.	2.239	•	÷ ۲ د	•	÷	-13	U.	- 1		11	7.941	•	*	1.573	-	-71	£.27P	192°5	44.	-	1.4	- 4	۰.	йч 41 •	A.]5R	•••	(). ().		11 N N N N	7.025
1 1 1 1 1	SI TUN	4.713	5-12-4	4.410	44.72	4.347	4. 247	4.142	4.131	4.651		141.44	261.4	4. i A 8	110 I 10 1	8.7 L • 7	- 4244	4.400	L. 125	4.474	4.275	4.410	40275	4.757	4 . 6 . 5	4.41]	4.576	4. 764	· 803 *** -	4.450	9 H H P	÷.	121.1	101.4	3.629	4 1 C	0172.1
Pice C	NUA STUN	3	11	~		3.878	2	5	*	е. С	4.744	× .1 . 4	4.373	N 1 .	++ 2+9	4. 15F		4.147	4.156	F F C * *	62[**	4.1.17	4.133	4. 2.4 3	21	4.155	4.127	7.3FA	- 2	3. 995	142	41014	4.763	4.147	3. A. J.	4.127	1
	VPLTS	2, 51, 7	2.165		2.424	P. 194	5. 276	2. 232	2. 195	2.042	24 75 6	2 - 3 - 5	2.129	2. CA 5	3.4 19.8	2.0 34.2	2.022	: • [0] • :	2. 127	142.5	74 1F 4		Z- 19A	5° 47	2, 294	5·11 5	2.129	1.2.5	·· é. 125	2.129	5. 27.6	3. 212	2* 2 23	7.154	54 S. H	7.139	•
		Ľ.		₹.	5	1.472	1.7		1- 645	4 ° ° 7	1.374	1 • 5 P 7	2.971		1. EAS	077.07	1.5.0	0.2.4	1.0 4	ŝ	2.074	er.	7	4 . ATF	بلک •	4 • 6 3 •	• 5	12	4	ч. •	• 8.4	****		4 5- •	+ A.	ь е •	
	Let 14-1		.123		142	l, 7 7 1	- 777 -	1937 -	881 *	• •	+	1.5.7	062°	7	• • •	· * * •	159	えんず。		.44.	5:11	•			127 •			325 .		1.1.	4.1.	7. H Ci -	• 16.1	~~~			• 1-17
		.1.0	251.		-178	U - 1 1 - 1 1 - 1	6 1 4 4 1	6 14 14 1	1	41 5 7 7	-121-		. : 14	.117	5-1-	5,5.0		.164	. 1 . 7	30.0	.198	111.		4. U +1 •1	C 11 4 •		28	.17.	- K25+			0:1.	51 F •	+ 6	. : . 7		ר. מי יי
Ji. 1		•	5 Y I *	• 4				at .		5 a t a	22.7	8 5."	.125	• 1 - 7		7.1.		ď ! .	. 191			101.		.)16	5.31.	111.	.1.			-1:1-	* ~			<u></u>	1144	• •	
، ۳۳ ۱۹۹۵ میں ۱۹۹۹ میں	- 		そうに、	C 4 2 *			. 742	173.		7.1		12.	.107		• 7 17 •				. 196	►:	. : ? 6	N	- • 5 d	e	8.74 -	ני ד י	- 52. •				1-2-	L .	5.5	•		(J J T	••••
:	•	72.4122.57	• 11 :• . 12		22344225	22524545	3134817.5	5 1 1 1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2	353 - 553 - 51	*. *** : ** 2.	32,4223,43	3:1-1:3.	32,47230		322 4 1 4 1	•••••••••••••••••••••••••••••••••••••••				32. 4823 •	31141134	28) 4826 •		4125.	3814826.72	• 2 • 2 2 2 4 5 2 2 2	28 - 22 2 2 2 7 7 2 2	211221022	2:14:17.6~		29]4814.12		1111-112 ° 21			いるいとうおさ じおこ	38] 482 9 • 91

1 i

1111

EWER Sample Output (cont'd)

71

π.

2.4.3 Program EWERPLT

Program EWERPLT can plot, against a time axis, up to 2 lines of data. The data types are optionally chosen from the available parameters (see below). Each half hour's worth of data is plotted on a 60 inch grid. The program automatically produces these grids until the data is exhausted.

- 1) Voltages nine voltages are available. They are the condensate, reference and vapor voltages for three detectors.
- 2) VCO's The four VCO's are delta-pressure, pressure, temperature and gap.
- 3) LWC Three calculated LWC's (see the sections on program EWER).
- 4) PMS-1D total LWC

The ability to plot PMS 1D LWC content values is included within program EWERPLT. With this a direct visual comparison of EWER and PMS data can be made. Either detector LWC values can be utilized with the total probe LWC's, generated by program KNOLL1D, to produce 10 x 60 inch comparative plots. The format of these plots are controlled by user directives. They decide if a scatter plot or a line plot is to be produced. If all points are to be plotted, the LWC axis limits and literals, and finally the smoothing interval desired (straight arithmetic average).

CONTROL CARDS LALEP, CM65000, T200. ID# ID NAME ATTACH, TAPE1, PMSPLTTAPE, ID=NAME, MR=1.* (TAPE2 FROM KNOLL1D) ATTACH, TAPE2, EWERPLTTAPE, ID=NAME, MR=1. (TAPE2 FROM EWER) ATTACH, LGO, EWERPLTBIN, ID=GLASS, MR=1. ATTACH, PEN, ONLINEPEN, SN=SHARED, MR=1. LIBRARY, PEN. REQUEST, PLOT, *Q. DISPOSE, PLOT, *PL. LGO. 7/8/9 OPTION CARDS CARD # 1 COL 1-10 FLIGHT ID COL 11-20 LEFT AXIS LITERAL COL 21-30 RIGHT AXIS LITERAL* COL 31-35 AVERAGING INTERVAL(15 FORMAT) CARD # 2 COL 1-2 LEFT AXIS PLOT NUMBER (12 FORMAT) ** COL 6-15 LEFT AXIS MINIMUM VALUE (F10.2 FORMAT) COL 16-25 LEFT AXIS MAXIMUM VALUE (F10.2 FORMAT) COL 26-30 LEFT AXIS PLOT FORMAT NUMBER (15 FORMAT) *** CARD # 3 RIGHT AXIS CARD - SAME AS # 2 ABOVE 7/8/9 6/7/8/9 OPTIONAL ** PLOT NUMBERS AS FOLLOWS: 2 DETECTOR 1 CONDENSATE VOLTAGES

3 DETECTOR 1 REFERENCE VOLTAGES

4 DETECTOR 1 VAPOR VOLTAGES

- 5 DETECTOR 2 CONDENSATE VOLTAGES
- 6 DETECTOR 2 REFERENCE VOLTAGES
- 7 DETECTOR 2 VAPOR VOLTAGES
- 8 DETECTOR 3 CONDENSATE VOLTAGES
- 9 DETECTOR 3 REFERENCE VOLTAGES
- **10** DETECTOR 3 VAPOR VOLTAGES
- 11 DELTA-PRESSURE IN TORRS
- 12 PRESSURE IN TORRS
- 13 TEMPERATURE IN CENTIGRADE
- 14 GAP IN CENTIMETERS
- 15 DETECTOR 1 LWC IN G/M**3
- 16 DETECTOR 2 LWC IN G/M**3
- 17 DETECTOR 3 LWC IN G/M**3
- 18 DERIVED DETECTOR LWC IN G/M**3
- 19 BEST DETECTOR LWC IN G/M**3
- 20 PMS DERIVED LWC IN G/M**3
- *** PLOT FORMAT NUMBERS AS FOLLOWS:
 - >0 LINE PLOT WITH A SYMBOL EVERY N'TH POINT DEPENDING ON NUMBER CHOSEN
 - =0 SCATTER PLOT OF ALL POINTS
 - <0 SCATTER PLOT WITH EVERY N'TH POINT PLOTTED DEPEND-ING ON NUMBER CHOSEN

2.4.4 Program EWERPMS

EWERPMS is a program to graphically illustrate the correlation between EWER and PMS 1D generated LWC values. Program EWERPMS uses two input tapes. They are the KNOLL1D and EWER produced plot tapes which contain all necessary comparison data. The program is run interactively through INTERCOM and produces microfiche plots of PMS and EWER detector data.

PMS data is treated as a function of a EWER detector (user input) for a given averaging interval and each point is plotted separately during the pass. A least square fit line of the resultant scatter diagram is calculated and plotted. A few parameters are listed, as follows: correlation coefficient between EWER and PMS data; root mean square error estimate of the least square fit line; the least square fit line and slope and intercept and finally the respective means of the EWER and PMS devices

We should expect a good correlation of the data since similar atmosheres are being examined. We should also expect, if the equipment is working properly, slopes close to 1. This need not be the case however. Several factors can cause the slope to deviate from 1 while at the same time maintaining a good correlation.

For instance, particle typing is not necessary for the EWER detectors since the particles are melted down by the equipment and a LWC value is physcially derived at through voltage levels. On the other hand the Knollenberg device sizes then and leaves the LWC calculations to post processing

programs such as KNOLLID. The KNOLLID calculation is made by algorithmically taking those measuremencs and obtaining a LWC value dependent on subjective particle typing. Even when the chosen particle predominates, erroneous results can occur since all particles must be treated similarly. While the slope may deviate, we would expect the behavior tendency to be reflected in a good correlation.

Empirical data has shown very good correlations between EWER and PMS calculated values. However, we desire a second method of determing just how good this correlation truly is.

One good method might be an analysis of the difference of the EWER and PMS values. Ideally we would expect a mean and variance of zero but we know that this will not be the case. Using the theoretical assumptions below we can calculate a confidence region for the mean value of this difference array.

An assumption we must make is that the variance of the EWER and PMS devices are equal. This is not a difficult assumption since those devices are attempting to measure the same distribution. Another assumption is that the true regression (without sampling variations) has a slope of 1.

ومحمد والمحمد و

It can be shown that:

(1)
$$T = \frac{\overline{D} \sqrt{N-1}}{\sqrt{\Sigma (D_i - \overline{D})^2}}$$

Possesses a students T distribution with N-l degrees of freedom.

Here: N = number of EWER, PMS pairs

$$D_i = X_i - Y_i$$

 $X_i = EWER$ values
 $Y_i = PMS$ values
 $\overline{D} = D_i$ mean
 $\overline{X} = EWER$ mean
 $\overline{Y} = PMS$ mean

Substituting in X and Y for D we see that:

$$T = \frac{(\overline{X} - \overline{Y}) \sqrt{N-1}}{\sqrt{\sum (X_{i} - \overline{X})^{2} + \frac{\sum (Y_{i} - \overline{Y})^{2} - 2}{N} \sum ((X_{i} - \overline{X}) (Y_{i} - \overline{Y}))}}{(\overline{X} - \overline{Y}) \sqrt{N-1}}$$
$$\frac{(\overline{X} - \overline{Y}) \sqrt{N-1}}{\sqrt{VAR(X) + VAR(Y) - 2(\sum X_{i}Y_{i} - \overline{X} \sum Y_{i} - \overline{Y} \sum X_{i} - \overline{X} \overline{Y})}}$$

All of the above values are now calculated by EWERPMS.

(1) Pgs. 58-63, "Some Applications of Statistics to Meteorology", Panofsky and Brier, Pennsylvania State University, 1958.

Using the T value and the symmetry of the T distribution we then determine the probability that the magnitude of the true mean difference is greater than that of the calculated mean difference. In other words we will calculate a probability T prob that $|\overline{D}_{true}| > |\overline{D}|$.

The ultimate desire here is to use the EWER device to help fine tune the PMS values. When we attempt to make these changes it will be good to have a history of T prob, \overline{D} and VAR(D) values. We can then compare the new distributions and should see a drop in the magnitude of these parameters changes.

It must be pointed out that we are not making any claims about the precision of either method for determining LWC. We are only making claims about the consistency of the two methods when compared to each other.

Operating instructions appear in section 2.4.4.1.

2.4.4.1 Program EWERPMS operating instructions

COMMAND MODE

LOGIN, NAME, ID, TTYNUMBER, SUP ATTACH, CRT, CRTPLOTS, MR=1 LIBRARY, CRT. ATTACH, TAPE1PFNAME, ID=IDNAME, MR=1 (KNOLL1D OUTPUT TAPE) ATTACH, TAPE2, PFNAME, ID=IDNAME, MR=1 (EWER OUTPUT TAPE) ATTACH, LGO, EWERPMSBIN, ID=GLASS, MR=1 REQUEST, TAPE39, *Q. REQUEST, TAPE3, *Q.

ENTERED USER MODE - RESPOND TO QUESTIONS BELOW

DISPOSE, TAPE 39, FM. DISPOSE, TAPE 3, PR, IAC. (DISPOSING OUTPUT TO AC TERMINAL) LOGOUT 2.4.4.1 Program EWERPMS operating instructions (cont'd)

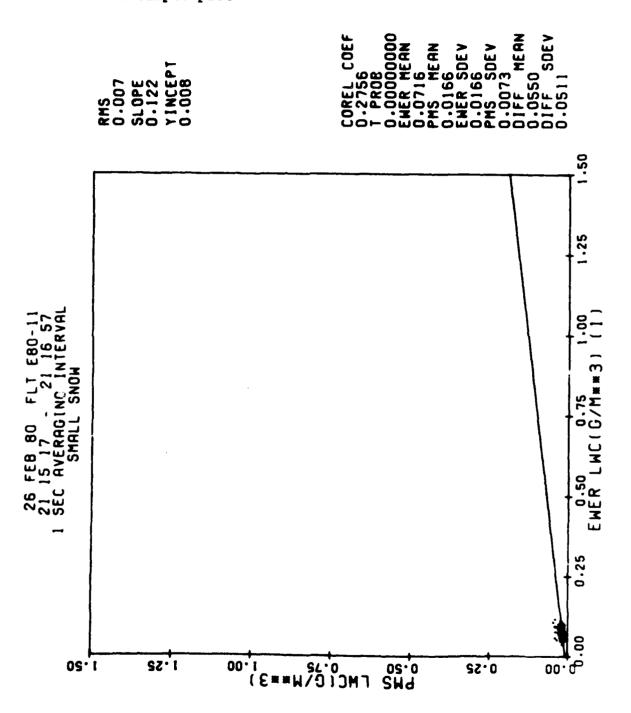
USER MODE

INITIAL QUESTION ASKED (ONE TIME):

"INPUT FICHE LITERAL..."

RESPOND WITH UP TO A 42 CHARACTER LITERAL TO BE PHYSICALLY PLACED AT THE TOP OF EACH MICROFICHE PRODUCED BY THIS RUN.

PLOT QUESTIONS ASKED (THESE QUESTIONS ARE ASKED AS A GROUP, FOR EACH PLOT REQUESTED, UNTIL A NEGATIVE START TIME IS INPUT, WHICH CEASES THE RUN):


* "INPUT START TIME (-1 -1 -1 TO STOP)..."

* "INPUT STOP TIME..."

"INPUT EWER DETECTOR (1,2,3)..."

"INPUT AVERAGING INTERVAL(1-60)..."

* INPUT TIME AS 3 INTEGERS IN FREE FORMAT (IH IM IS)

2.4.4.2 EWERPMS sample plot

.

2.4.4.3 Program EWERPMS sample output

FLT ERG-11 26 FER 80 24126105 TO 24128152 AGG F + 0 13 SFC AVERAGING INTERVAL DETECTOR 7

PHS LWC = (-.0636) * EWER LWC + .0262

CCRFLATION COEFFICEINT = -.5142 T PROBABILITY = 1.2E-05 RMS = .0613 (T VALNE = 7.989 DF(N-1) = 10) PMS EWFP DIFF ME AN .0133 .1850 .1718 VARIANCE .0900 .0001 .0046 .0016 STANDARD DEVIATION .0115 .0680

 FLT F80-11
 26 FER 80

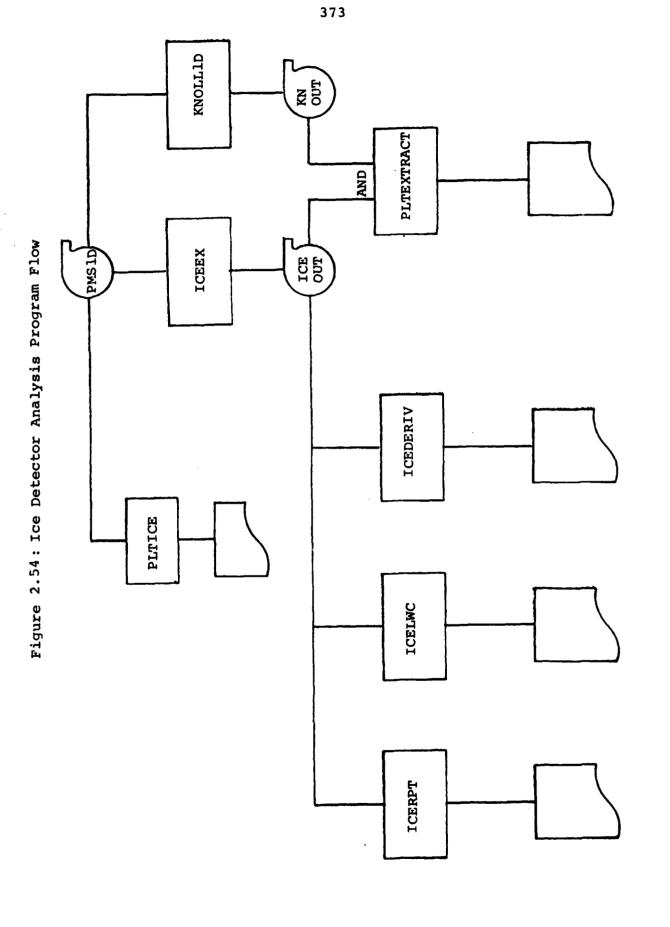
 24172125
 TC
 24134142

 LAPGE SNOW
 13 SEC AVERAGING INTEPVAL

 DETFCTOF 3

PMS LWC = (.5988) * EWEP LWC + -.0325

CORRELATION COEFFICEINT = .6213 T PPORABILITY = 1.5E-01 .0201 RMS = (T VALUE = 1.601 DF(N-1) = 7) FMS EWER DIFF MEAN .1037 .2274 .1237 VARIANCE .0007 .0007 . 418 STANDARU DEVIATION .0257 .0266 .2045 4


2.5 Ice detector analysis

DPSI developed succeeding ice detector analysis programs during this contract period.

Aboard the C-130E, a Rosemount model 871FA ice detector is mounted vertically on the tip of the aircraft wing and data is forwarded to the VCO's and then to the PDP8 on-board the aircraft.

The icing rate is compared with radiosonde observations, liquid water content, particle distributions, temperature, dewpoint, airspeed, etc., to determine the correlation between icing rates and the ambient characteristics. The main reason for performing this analysis is to determine icing probability.

The following sections describe the programs that we developed and the analysis performed. A visual diagram of their interaction can be seen in figure 2.54.

میں میں انجم

a a un congres a con A constructions

T

1

and the second second

2.5.1 Program PLTICE

In order to facilitate program design of the icing rate system PLTICE was written to plot the data as a function of time. PLTICE plots the raw counts (0-9999) on a ten-inch Y-axis, with x being scaled to 60 seconds per inch. One hour's data is plotted per fram for the duration of the flight.

PLTICE proved invaluable in the design of an analysis algorithm and can still be used to verify the proper working of the ICE detector for individual flights. Operating instructions appear below.

DPSI,T100,NP1. ACCT # NAME ATTACH, PEN, ONLINEPEN. LIBRARY, PEN. ATTACH, LGO, PLTICEBIN, ID=GLASS, MR=1. REQUEST, PLOT, *Q. DISPOSE, PLOT, *PL. VSN, TAPE1=PMS#. (KENNEDY TAPE) REQUEST, TAPE1, S, HI.MT, NORING. FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1.BFS=105). LGO. 7/8/9 1 DATA CARD CONTAINING MINIMUM ICING COUNT VALUE TO USE (INTEGER-FREE FORMAT). MAXIMUM VALUE USED IN PLOTTING WILL BE MIN + 10000.

6/7/8/9

2.5.2 Program ICEEX

A flight was made on 06 DEC 79 in order to collect data using the Ice Detector device. As a "quic! look" method to examine the data, a plotting program PLTICE was written (see section on PLTICE). This plot coupled with KN1UTIL VCO listing made it possible to derive certain empirical relationships between the recorded data and the behavior of the Ice Detector.

Cloud Physics scientists formulated these relationships on 19 DEC 79. Updated version of this memo is given in appendix 14. The following description of ICEEX uses these concepts.

Data from the ice detector is given in VCO position ten of the PMS 1D Kennedy tape. Program ICEEX reads this tape, identifies the modes, eliminates erroneous/redundant points, and produces an edited output tape. The Kennedy tape format is described in appendix 2 of this report.

ICEEX inputs a flight identification, a namelist card to change the default VCO calibrations, and a set of start stop time ranges.

For each start and stop time range the first standby mode is found by performing a three point running mean until this average is within 200 counts of 5250. The midpoint of this mean is then put onto the output tape with a code word equal to one. The next step is to find the "trigger value", the first count whose value exceeds 6000. Thus this marks the transition from standby to sensing mode (by ignoring the detecting mode completel7). When this time is

2.5.2 Program ICEEX (cont'd)

found (no averaging is used - only the raw count) the data record is sent with a code word equal to two. Now the ice detector is considered to be at the start of the sensing mode. Until the counts go below the "trigger value", exceed the maximum 9818 counts, or degrade into four consecutive "bad points", every data point is written to the output tape with a code word equal to three.

The cycle of finding the standby mode, trigger value, and then all sensing values is repeated until a time value exceeds the input stop time.

This inputting of start and stop times is terminated by the end of input cards or an end of file on the PMS1D tape.

Every point in the sensing mode is verified by extrapolating from the previously read two points. If the input value differs by more than 400 counts from the extrapolated value, the extrapolated value is used. The extrapolating method is designed to compromise between changing direction and having the data rise rapidly. The extrapolated point C(i) is given by

C(suggested) = ((C(i-2)+C(i-1))/2+2*C(i-1)-C(i-2))/2

Since ICEEX lists, on the printer, each value as it is being written to tape, an asterisk is printed to denote the fact that it is a "calculated" and not a "true" value. Every second worth of extracted data, as well as PMS 1D raw counts,

377

2.5.2 Program ICEEX (cont'd)

is written in groups of 59 words to its output tape (see appendix 13).

A Star Star Star

```
ACT #
DPSI, CM60000, T500, TP1, NT1.
ATTACH, LGO, ICEEXBIN, ID=GLASS, MR=1.
VSN, TAPE1=PMSTAP.
                      (KENNEDY)
REQUEST, TAPE1, S, HI, MT.
VSN, TAPE2=OUTTAP/NT. (LYC WORKING TAPE)
REQUEST, TAPE2, PE, N, RING, NT.
FILE (TAPE1, RT=U, BT=k, MRL=1120, MBL=1120, RB=1, BFS=115)
LDSET, PRESET=zero.
LGO.
7/8/9
CARD 1
                  FLIGHT ID (FLT XYR-XX)
           1-10
     COL
          11-20
                   FLIGHT DATE (DD MON TR)
                  CLOCK 1=A/C ,2=PMS
             25
                    TAPE 1=PMS ,2=TU10
             30
          52-59
                    PMS ON TIME IN FORM HH-MM-SS
          $VCOCHAN$ NAMELIST CARDS
CARD 2
          (SEE VCOEF IN KNOLLID)
CARD 3
          $JWADJ$ NAMELIST CARDS
          (SEE JWADJ IN KNOLL1D)
REMAINING CARDS
          START, STOP TIME IN FORMAT
          HH-MM-SS-HH-MM-SS
          START STOP
6/7/8/9
```

2.5.2.1 Program ICEEX operating instructions

2.5.2.2 Program ICEEX sample output

ICEEX sample output on the following page

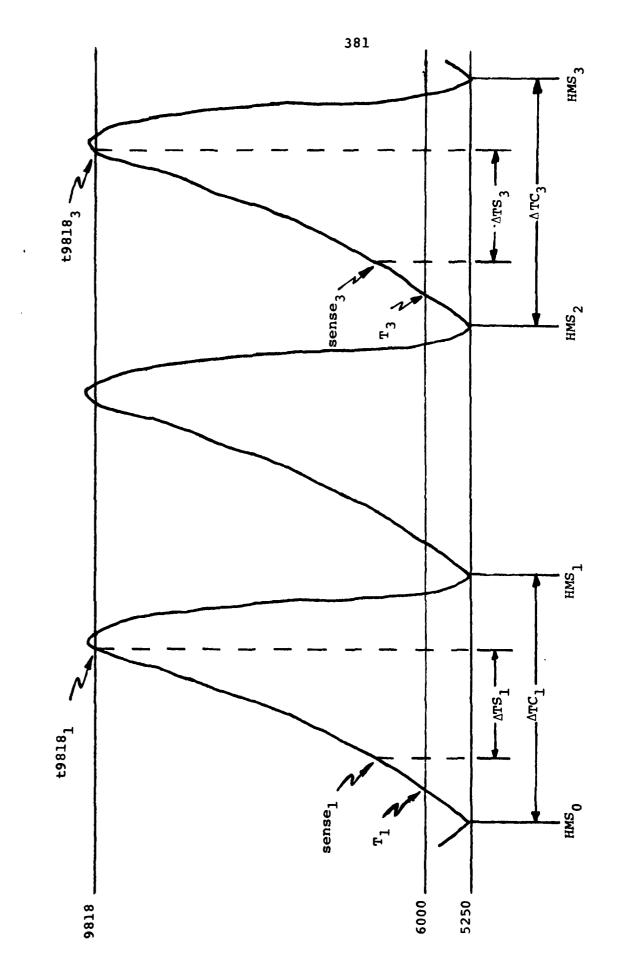
NAME

	, JODE		00	.00	00		00	- 80	00	- 00-	00		00	- 8	90		00	- 00		37	9			00		- 00	00	- 66	90	- 00	00		00	1 80	00	- 80	00		00	- 90	00	
	ONGITUD	20		00	00	00	00	00	00	00	9	00	00	g	00		00	00			-	õ	20	00	0	00	00	- 00	00	00	00	2	00	- 20	00	-00	00	ģ	00	5	8	
	LON	0	c	0	0	P	0	0	C	0	c		0		0	0	c	c	9	0	0	0		0	2	L	0	0	0	6	8	þ	0	-		: E	د	5	00	0	9	
	DE		83	00	00	00	00	100	00	00	00	00	00	00	00	00	00	00	00	- 01	00	- 00	00	00	00	- 00	00	00	00	00	00		00	00	00	00	00		00	00	00	
	E.		00	0	8	00	0	.00	00	00	00	00	00	00	00	00	00	00	00	00	00	20	00	00	00	2	00	00	0	00	00	g	0	8	00	6	90	00	00	00	0	
			ė		0	0		0	0	9	a	0	0	0	9	0	0	0	_	È.	a	0		-	ے	'n	G	:	•••	0	0		ت	0	0	6	S	ø	00	Ģ	ن	
0	TAS	-62	G.	-60	.60	09.	. 9.	09.	09.	19.	σ	16 g	109.7	19.	99•	0°.	69	Ň	12.	2	12.	12.	Ň	2	12.	-	-	1	N.	²	-		~	Å.	113.1	5	113.1	113.5	113.4	+	Ř	
00 00 0	ALT	16	51	52	53	53	5	ŝ	5	52	56	15	5	58	58	59	60	52	86	86	86	5	67	22	87	51	88	69	86	86	91	5	91	5	92	56	5	96	5984	8	66	
PMS START	-	145.3	5.4452	20442	743.5	743.3	742.8	4.547	741.9	- 21113	740.7	748-1	739.6	1.25.1	738.4	- 137.7	737.2	713.6	713.2	713.1	712.E	712.5	712.2	712.1	712.1		711.6	710.2	705.5	2'504	208.9	702.6	708.4	70200	707.6	29202	706.5	783.7	702.4	- 20204	701.5	
d 66 66	ENP		5	510	6	614	-4.85	19.74-	-4-77	-4:75				5	- 44, 98		-54.13	-6. 39	-64,41	-9.64	-6.47	- 25-20 -	-64.52	- 9" - 22	-6, 58	-6.61	-6,61		-6.68	-66:72	-6.77	-64.82	-6.84	-64.85	-6.88	10	-6.89	12	-7.32	1		
00 TO 99	TRUE	-9, 21	-8.21	-8, 12	-7.93	01'8-	-8.16	0 £ ° R -	-8.22	-8. 25	-8.32	03-8-	-8.32	07.8-	-3,40	-3:25	-3.61	-9°73	-9.76	-96-	-9.81	-9.81	-9,82		-9 . ðí	- 08.6-	-9.77	- 08-6	-9.79	-94.96-	-9.77	64.6-	-9 ° 79	- 20.6-	-9 - 84	-96 -9-	to•6-	-91-01-	-10.20	2		
00 00	r H	01.	•10	- 80 -	.05	- 03	50.0	21.	10 ·	40.	.63.	50-	• 02	10.	+00-	07	13	78	81	81	79	76	77	76	74		-•69	70	65	62	63		64		68	71	75		-1.02	-1.02	-1.05	
FRON	5	120	.32	32	•29	.35	~ E .	14.	M	1	.45			240	-47	64.	84.		• 48	• 64	•73	12.	.58	•94	•65	- 63	. 61	-22	.68		.76		• 73	- 92	62.	11.	•64	-		₩	.18	
TIME	1CE 0	5	7590	2	56	6	26	10	65	85	00	27	M	σ	ŝ	m	88264	0	S	3		•	6199	0	S.	÷	7067*	đ٩.	66 09	6348	6543	81 19	6879	7256	7350*	7373*	7378*	-6115		6275	6351	
100 X		31	32	- ME	46	35	36		38	6 M	04	14	40	53	44	5	9	17	6-4	50	51	- 25	23	54	5	36	57	50	88	- 60	10		12	13	¥ 4	51	16	52	28	-62	30	
UAN NAL	E.	55	53	52	55	52	55	52	52	55	55	52	52	52	R	55	55	56	56	35	56	56	56	36	56	5		21	57	5	57		57	5	57	5	53	F	57	ħ	57	
~		22	22	22	22	22	22	-22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22		22	22	22	22	22		22			
FLT E00-1	ODE	SENSE	SENSE	SENSE	SENSE	SENSE	SENSE	- SENSE -	SENSE	SENSE	SENSE	SENSE	SENSE	- SENSE -	SENSE	SENSE	SENSE	ONTS ++	TRIG	- JENSE	ENS	-SENSE-	SENSE	SENSE	SENSE	SENSE	SENSE	STND	TRIG	SENSE	SENSE	SENSE	SENSE	SENSE	SENSE	SENSE	SENSE	- ONLS -	TRIG	6	SENSE	

.

2.5.2.2 ICEEX Sample Output

2.5.3 Program ICERPT


Data from the ice detector is very dependent on the frequency at which the heating cycle is initiated and the rate at which the ice is collected during detecting mode. Program ICEEX separated the various operations data from the unnecessary background information. The tape is, in effect, broken down into discrete cycle intervals. Each cycle consists of the standby, trigger, and all of its detector values in the same sequence.

Thus the first analysis on the extracted data should concentrate on the rate of ice accretion and number of cycles. ICERPT is written to do this. There are two output files one for data collected during each individual cycle and another for data collected over the whole pass.

Refer to figure 2.55 and table 2.3 for the following discussion. A complete cycle is defined as the time from one standby condition to the next $(\text{HMS}_{i-1} \text{ to HMS}_i)$. The length of the cycle is $\text{DTC}_i(\Delta \text{TC}_i)$. Sampling time is defined as the time of trigger plus seven seconds to the time at which 9818 counts are exceeded $(\text{DTS}_i \text{ or } \Delta \text{TS}_i)$. One parameter of interest is the average rate of ice collection (in counts) and it is found by:

RATE =
$$\begin{bmatrix} N-1 \\ i \leq 2 \end{bmatrix} (C_{i+1} - C_{i-1})/2 / (N-2)$$

This equation minimizes one second fluctuations in the collection system.

.

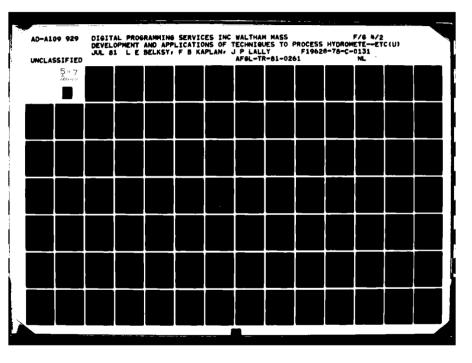
Figure 2.55: Icing Cycle

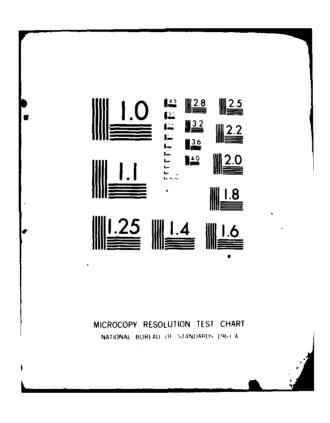
• 7

1

.

Ĩ


382


2.5.3 Program ICERPT (cont'd)

HMSi	TIME AT WHICH STANDBY MODE OCCURS FOR CYCLE i. MARKS THE ENDING OF CYCLE i
Τ _i	IS THE TIME DURING CYCLE I AT WHICH COUNTS \geq 6000 IS NOTED
SENSE	IS THE START OF SENSING MODE (SENSE = $T+7$)
т9818 _і	IS TIME AT WHICH COUNTS > IS NOTED, OR THE FOURTH CONSECUTIVE BAD POINT IS FOUND
dtc ⁱ	IS THE TIME OF THE CYCLE DTC _i =HMS _i -HMS _{i-1} READ THE 'D' AS 'DELTA'
dts _i	IS THE TIME OF DATA COLLECTION (DTS ₁ =T9818 _j -SENSE ₁) READ THE 'D' AS 'DELTA'

HMS IS FOUND WHENEVER ABS((COUNT_{j-1}+COUNT_j+COUNT_{j+1})/ 3-5250) < 200

Table 2.3: Symbol definition for program ICERPT

2.5.3.1 Program ICERPT operating instructions

JOBNM, CM65000, T100, NT1. ID # NAME ATTACH, LGO, ICERPTBIN, ID=GLASS, MR=1. VSN, TAPE1=LYCXXX. (TAPE WRITTEN BY ICEEX) REQUEST, TAPE1, NT, NORING, E. LDSET, PRESET=ZERO. LGO. EXIT (U) REWIND, TAPE8, TAPE9. COPY, TAPE8. COPY, TAPE8. COPY, TAPE9. 7/8/9 -----DATA CARDS IN FORM *HH MM SS HH MM SS ------6/7/8/9

THE ASTERISK REPRESENTS AN INITIAL BLANK. THESE ARE PASS START AND STOP TIMES IN TIME INCREASING ORDER.

2.5.3.2 Program ICERPT sample output

ł

Table 2.4: Parameter list for program ICERPT

A SUMMARY OF ALL THE CYCLE DATA COLLECTED WITHIN A PASS. A CYCLE IS SAID TO BE WITHIN A PASS WHENEVER FOR THE PASS START AND STOP TIMES \leq SENSE₁ < STOP AND START < T9818₁ \leq STOP

1.	INPUT START TIME	
2.	INPUT STOP TIME	
3.	SENSE	(FIRST CYCLE IN PASS)
4.	T9818 ⁻	(LAST CYCLE IN PASS)
5.		PRESSURE AT SENSE
6.		PRESSURE AT T9818
7.		TEMPERATURE AT SENSE
8.	T ₂	TEMPERATURE AT T9818 n
9.	AVE H	SJM OF ALL f(P) DIVIDED BY NUMBER OF POINTS USING f AS THE STANDARD ATMOS- PHERE MODEL
10.	AVE P	SUM OF ALL g(H) DIVIDED BY THE NUMBER OF POINTS USING g AS THE STANDARD ATMOSPHERE MODEL
11.	AVE T	AVERAGE TEMPERATURE
12.	AVE D	AVERAGE DEWPOINT
13.	AVE JW	AVERAGE JW-LWC
14.	JWSTD	STANDARD DEVIATION OF JW ACROSS THE PASS
15.	AVE TAS	AVERAGE TRUE AIRSPEED
16.	NUMBER OF CYCLES	
17.	SUM MASS	NUMBER OF CYCLES TIMES 0.02 GRAMS PER CYCLE (SUBJECT TO CHANGE)
18.	TOTIM	SUM OF ALL DTS ₁ (READ 'D' AS 'DELTA')
19.	MASS RATE	SUM MASS DIVIDED BY TOTIM
20.	AVE RATE	SUM OF ALL RATES DIVIDED BY THE NUMBER OF CYCLES

2.5.3.2 Program ICERPT sample output (cont'd)

٩

FASS SUIMARY USED 23-14-32 TO 31-29-15 AT FIRST SENSING FOINT . PRESS 715.3 TEHP. •1 AT LAST SENSING POINT PRESS 674.7 TEMP 3.4 AVERAGES PEIGHT PPESSURE TE PERATURE DEWPOINT JW-LW TOUE AIRSPEED - -----38 219.17 STO DEV .15 ____ - ---NUMBER OF CYCLES 71 TOTAL TIME -79665. MASS RATE --++-0 AVE RATE -.04 11 N.,

2.5.3.2 Program ICERPT sample output (cont'd)

Table 2.5: Parameter list for program ICERPT

**********DETAIL OUTPUT*********

ONE LINE IS PRINTED FOR EACH CYCLE ENCOUNTERED DURING A PASS

1.	CYCLE #	
2.		
3.	DTC	('D' IS READ AS 'DELTA')
4.	Pi	(PRESSURE AT HMS ₁)
5.	AVE H _i	(AVERAGE HEIGHT FOUND BY SUMMING THE f(P) EVERY SECOND) (f(P) IS STANDARD ATMOSPHERE MODEL)
6.	T,	(TEMPERATURE AT HMS ₁)
		(AVERAGE JW ACROSS HMS 1-1 TO HMS 1)
8.	JWS	(STANDARD DEVIATION OF JW ACROSS THE CYCLE)
9.	AVE D	(AVERAGE DEWPOINT)
10.	AVE TAS	(AVERAGE TRUE AIRSPEED)
11.	LAT _i	(LATITUDE AT HMS _i)
12.		(LONGITUDE AT HMS ₁)
		(IN FORM HH:MM:SS)
14.	т9818 <mark>.</mark>	(IN FORM HH:MM:SS)
15.	DTS,	(READ THE 'D' AS 'DELTA')
	RATE	(WHERE $R_{j}=0.5*(COUNT_{j+1})-COUNT_{j-1})$

. . .

2.5.3.2 Program ICERPT sample output (cont'd)

ł

<pre></pre>	
	5.0
252,52 00-00-00 10-00-00 00-55-49 	• 2 - 5• 1 • 5 • 2 - 3• 6 • 5
	• 6-14, 2 • 4 • 8 - 3 4 4

1

.

2.5.4 Program ICEDERIV

ICEDERIV was written to study one facet of ice detector analysis. That is a comparison of how ice detector VCO values (counts) vary over time with the amount of water observed by the JW-LWC and PMS-ID axial probe devices.

The analysis first concerns itself with the rate at which the VCO readings (ice detector counts) vary; in other words the derivative of the ice detector VCO values. The first problem with numerically calculating a derivative is in choosing the neighborhood over which it is to be computed. The second problem is that this derivative calculation is extremely sensitive to minor fluctuations in the neighborhood in which it is computed.

The solution to the first problem is to calculate the derivatives over various time intervals and deduce the best one to use. The second problem requires a smoothing function to be applied to the data and then utilize a derivative method to realize the rates of change.

<u>APPLIED ANALYSIS</u>, by C. Lanczos (Prentice Hall 1961) pages 321-324 gives a method to smooth the data and to compute the derivatives. The following is a mathematical description of the icing rate calculation algorithm encoded in program ICEDERIV.

The method calculates a smooth polynomial of degree 2K (where K is the number of points on each side of the point at which the derivative is to be computed) and then develops

1

its derivative. The general formula for the derivative of f at x with K neighbors on each side for equally spaced one second data is then

 $f^{1}(x) = \sum_{\alpha=-K}^{+K} \alpha f(x+\alpha) / s \sum_{\alpha=1}^{K} \alpha^{2}$

The above formula works for $K \ge 2$.

This method requires the point which the derivative is to be computed to be in a neighborhood of K points. Thus for the first two and last two points the general formula fails.

The way to derive these values is to compute a least square second degree fit and use its normal equations:

 $f^{1}(1) = (-21f(1)+13f(2)+17f(3)-9f(4))/20$ $f^{1}(2) = (-11f(1)+3f(2)+7f(3)+f(3))/20$

The last two points (xmax, xmax-1) are comparably calculated

 $f^{1}(xmax) = (21f(xmax-13f(xmax-1)-17f(xmax-2)+9f(xmax-3))/20$ $f^{1}(xmax-1) = (11f(xmax)-3f(xmax-1)-7f(xmax-2)-f(xmax-3))/20$

ICEDERIV was originally written to accept an ICEEX output tape, and for each data point calculate the derivative, using 2, 3, 4, 5, 6, and 7 neighboring points. The table printed by ICEDERIV is broken at every new icing cycle and contains the ICE count, time and derivatives.

Cloud Physics Branch scientists determined that a 2 point derivative was sufficient for our application; thus the remaining rates were deleted from its output.

Since the comparison is to be made with JW-LWC or PMS 1D AXIAL these other two parameters were added to the table. These data sources are also subject to one second "noise" and were smoothed. A five point smoothing formula is given in APPLIED ANALYSIS pages 316-320.¹ The reasoning used for five points and not a higher number is that these LWC devices give "INSTANT" readings and as such they do give verifying answers from second to second. A longer smoothing interval would hide the data behavior while a short period would simply average the sample "noise".

For any given point x, the smoothing formula is:

 $f_{smooth}(x_i) = [-3f(s_{i-2}) + 12f(x_i-1) + 17f(x_i) + 12f(x_{i+1}) - 3f(x_{i+2}]/35$

for the first two points $f(x_1)$, $f(x_2)$:

 $f_{smooth}(x_1) = f(x_1 + \Delta^3 f(x_1) / 5 + \Delta^4 f(x_1) 3 / 35)$

 $f_{smooth}(x_2) = f(x_2) - \Delta^3 f(x_1) 2/5 - \Delta^4 f(x_1) 1/7$

¹Applied Analysis, by C. Lanczos (Prentice Hall 1961), pages 321-324.

where:

$$\Delta^{4}f(x_{1}) = f(x_{4}) - 3f(x_{3}) + 3f(x_{2}) - f(x_{1})$$

$$\Delta^{4}f(x_{1}) = f(x_{5}) - 4f(x_{4}) + 6f(x_{3}) = 4f(x_{2}) + f(x_{1})$$

for the last two points $f(x_{max})$, $f(x_{max-1})$:

 $f_{smooth}(x_{xmax}) = f(x_{xmax}) - \Delta^3 f(x_{xmax}) \frac{1}{5 + \Delta^4 f(x_{xmax}) \frac{3}{35}}{f_{smooth}(x_{xmax-1})} = f(x_{xmax-1}) + \Delta^3 f(x_{xmax}) \frac{2}{5 - \Delta^4 f(x_{xmax}) \frac{1}{7}}{where:}$

$$f(x_{xmax}) = f(x_{xmax}) - 3f(x_{xmax-1}) + 3f(x_{xmax-2}) - f(x_{xmax-1})$$
$$f(x_{xmax}) = f(s_{max}) - 4f(s_{max-1}) + 6f(x_{xmax-2}) - 4f(x_{xmax-3}) + f(x_{max-4})$$

All the above equations in addition to the liquid water calculating module (for the JW-LWC and AXIAL probe devices) from KNOLL1D were encoded into ICEDERIV.

An additional feature of the program is the calculation of total pass LWC. Subroutine SIMPSON calculates the total water content measured during every icing cycle. SIMPSON uses two separate methods. SIMPSON's and the trapezoidal rules of numerical integration are used (see: "Introduction to Numerical Analysis:, by F. B. Hildebrand, pages 91-95).

Totals by both methods are calculated for the following: JW-LWC, JW-LWC smoothed data, PMS-1D LWC, and PMS-1D LWC smoothed data. Answers are presented at the end of the output for each icing cycle.

2.5.4.1	Program I	CEDERIV operating	instructi	ions	
	CONTROL C	ARDS			
	DPSI,CM10	0000, T400 ,NT1.	נ	ED#	ID NAME
•	ATTACH, CR	r, CRTPLOTS, MR=1, S	N=SHARED.		
	LIBRARY,C	RT.			
	REQUEST, T	APE39,*Q.			
*	VSN, TAPE1	=LYCXXX/NT.			
	REQUEST, TA	APE1,NT,E,NORING.			
	LGO,PL=999	999999.			
	EXIT(U)				
	DISPOSE, TA	APE39,FM.			
	REWIND, TA	PE2,TAPE3,TAPE4.			
	COPY, TAPE	2			
	COPY, TAPE	4			
	COPY, TAPE	3			
	7/8/9				
	6/7/8/9				
*	OUTPUT FI	LE FROM PROGRAM I	CEEX		
	DATA CARD	S (AS MANY AS NEE	DED IN TIM	ME ORDER)	
	CC	D	escription	1	
	1-2	MIN-PMS PROBE MI	NIMUM CHAN	NNEL # TO	USE
•		(12 FORMAT - DEF	AULT ZERO))	
	3-4	MAX-PMS PROBE MAX	XIMUM CHAN	NNEL # TO	USE
		(I2 FORMAT - DEF	AULT 15)		
*	11-16	START - PASS STO	P TIME IN	FORM HHMM	ISS
*	18-23	STOP - PASS STOP	TIME IN H	FORM HHMMS	SS
*	31-35	FCYC - FIRST PAS	S CYCLE (1	(5 FORMAT)	i
*	36-40	LCYC - LAST PASS	CYCLE (15	5 FORMAT)	
	46-50	PLIT - PASS IDEN	TIFIER (AS	5 FORMAT)	
*	either or	both pass times	and cycle	numbers n	nay be used.

: .

١

 \cdot .

2.5.4.2 Program ICEDERIV sample outputs

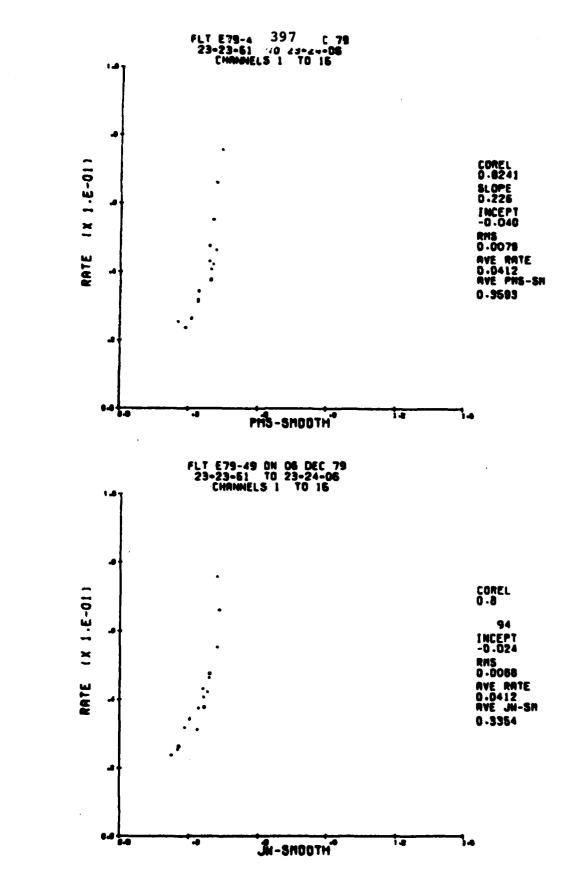
ICEDERIV now produces the following output (PLEASE NOTE THAT THE PREVIOUS SECTIONS AND THOSE OF KNOLLID ILLUSTRATE THE METHODS INVOLVED IN MAKING THE APPROPRIATE CALCULATIONS.

- A. Standard Output File for every cycle
 - 1. second by second listing of the following parameters ICE COUNT
 - 2 PT RATE
 - * JW-LWC
 - * JW-LWC (SMOOTH)
 - * PMS1D-LWC
 - * PMSlD-LWC (SMOOTH) PMS MVD DEWPOINT DEPRESSION (TRUE TEMP - DEWP) PRESSURE ALTITUDE TRUE TEMPERATURE TOTAL TEMP
 - 2. Simpson's and trapezoidal rule calculation for each of the four LWC's above (*)
 - 3. mean values of DEWPOINT DEPRESSION through TOTAL TEMP in the list above. Also the DEWPOINT DEPRESSION and TRUE TEMP standard deviations.

2.5.4.2 Program ICEDERIV sample outputs (cont'd)

4. Calculated least square fit lines and correlations of the following pairs:

- ·	PMS-LWC
-	JW-LWC
-	JW-LWC (SMOOTH)
-	PMS1D-LWC
-	PMS1D-LWC (SMOOTH)
	-

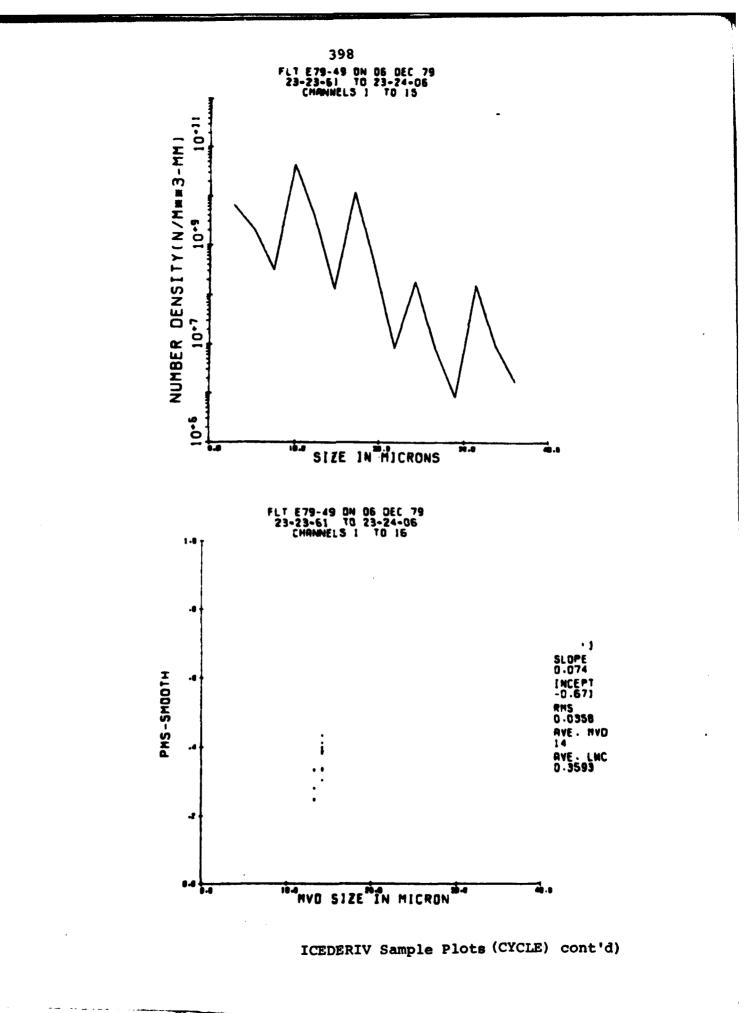

- B. TAPE2 Output File Cycle summary data file containing one line of data for each cycle above.
- C. TAPE3 Output File Pass summary data file containing averages for every cycle within a pass.
- D. TAPE4 Output File Contains a one line summary of least square fit line coefficients for every cycle
- NOTE: B and C above contain most of the parameters found in A-1

Additionally ICEDERIV produces graphic output on 105mm microfiche. The following plots are produced.

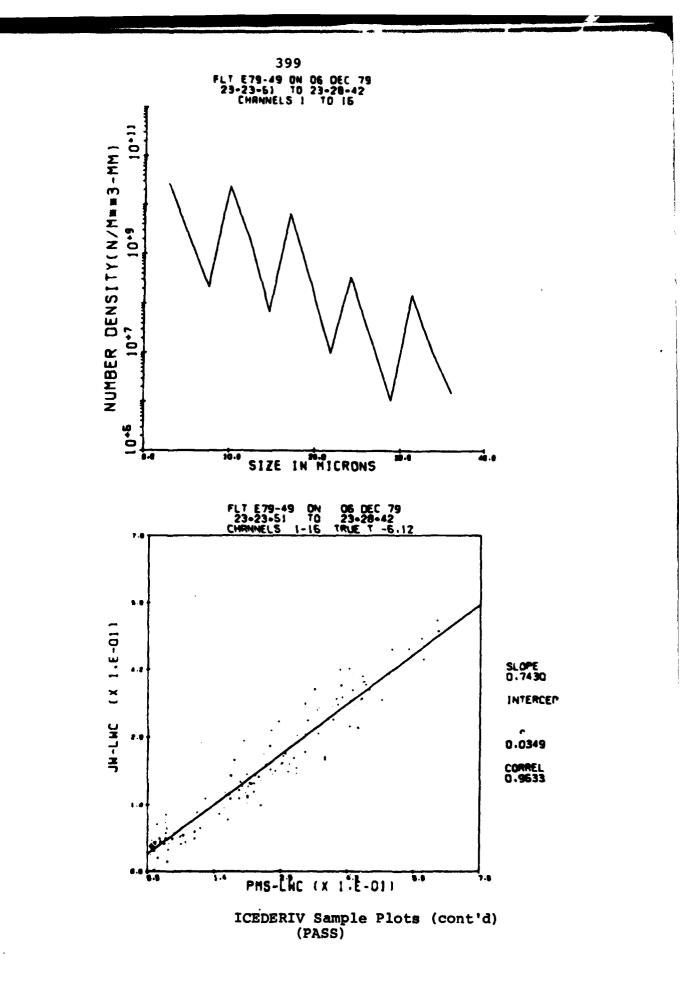
- A. FOR EVERY CYCLE OF A PASS
 - 1. Log normalized number density vs channel size
 - 2. Scatter plot of PMS 1D-LWC (SMOOTH) vs channel size
 - 3. Scatter plot of JW-LWC (SMOOTH) vs channel size

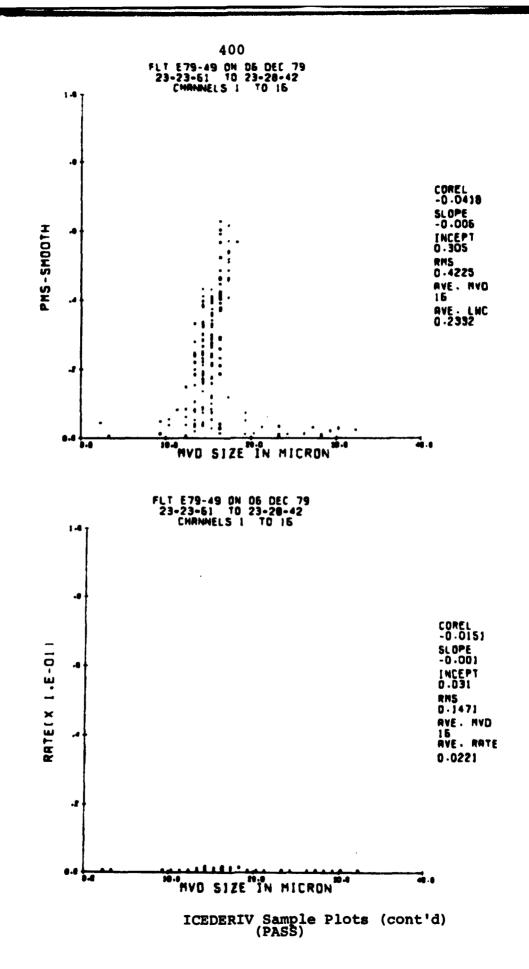
2.5.4.2 Program ICEDERIV sample outputs (cont'd)

- 4. time plot containing: rate, PMS 1D-LWC (SMOOTH), and JW-LWC (SMOOTH)
- 5. rate vs PMS1D-LWC (SMOOTH) scatter plot
- 6. rate vs JW-LWC (SMOOTH) scatter plot
- B. FOR EVERY PASS
 - 1. scatter plot of JW-LWC vs PMS1D-LWC
 - 2. Log normalized number density vs channel size

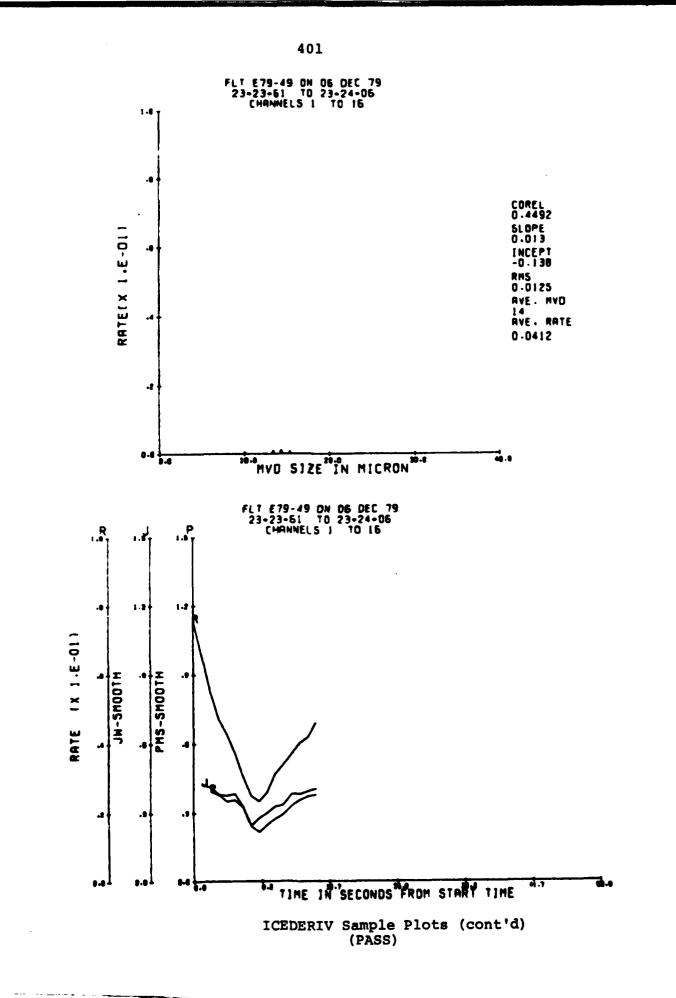

ICEDERIV Sample Plot (CYCLE)

•




ĺ.

. Sta



and the second business and

:

SECONDS ICE	~	PJINT	J.H.J.	JW Sw0nth	(1-51°e		CAM Link1	0 ± bb ± č Ú - M c	Lin	12211341- 1451 H	ــ ــ داار ـ د اار	TOTAL		
		1								CC 1611	. U			- 76-76-67
	785782	1012 01		2020		1019	. 4 .			3122.62	5.40			74-35-64
				2528	F 25 H				11		- 2 - 57		 - 	9223646
				1:35				-11.22		312. 56	- 5, 65	-1		24-35-46
1	3423	1		3.44		1525			1.		12 2 2 2 2 4 4 1			- 21235261
				1316	1167 .	9024.	1.6	-1.16 57	•		-5.61	-1.55		2 75-48
	1869	1	1	442I.	1231		191			02:2212	.12 .	-1.54	:	69-52-52
~	32 22.	46 • 3, 36	1	• 53 •	. 5.15		224	-1 . 566	25° - ° 5	124.7J	-5.67			24-15-50
TRAP	TRAP ZOILTAL CJL	: ۱۰۱	1 65	1.15	÷12 1	3.122 7.122		-1.06	7J• ć9	312 7 . +2		-1.52	N - N - N	1
5									•					
CORRELATION	TINN COEFF	COEFFICTINTS	1						 			1		
	i I											, , ,	 	
	.7254	54		- - - -	JH-FHC	TAT-SHE SA	C014							
•	295	1 29		нс	1-1-0-1-		L.MC							
r											-	ł	-	
5	JM-LAC = CORFELATION	: -: NO	. 372U				921 .				•	•		
	SHA SHA			1505								 		
	;		:	•					!	•	t			•
ł	2415		.755	- ×	SH3+HC-	(- ; ť?tt -							
	INV. RMS	•	:				1						- k	1
	P.ATE =	Ē	-2194	- K	HTC0M86		0202		:					
I	242 - 232	, 		ti		-	-		6 1 - - -		: · i	ţ		
			:	•	:		·		•					
	R4TE ====================================	i	2 2 2 C 4		لائد-14	- + - (1971							•
	265, 285	5		.0165		1 1 1			1			•	*	-
				F 										
	RATE T COMPELATI	NO	. 7532	¥	1-14-54-6	+ -	5 5 1							
	263. 2M5 -			.5164 7	•		TCEL	ICEDERIV Ban	Bample Out	Output			:	-

ź

			11.				ALT	PEESS	TOTAL TE4P	TEUE 1	FUE T	JEWP -	1 0 0		194-11 14 194-11 14	ور 13	
	2132149 2213	0125122 T. 12	15	2	• •	11111.		1 1 1 1	15.	с т .	1:2*	•	1	**			1
	2136147 2213	11_5 2214010 			- × C	125JC		51.	т. М	5	31	•	* *	ς.	-	4	
	1122 2212111	119122 2217611	9 19 19 19		(#*)			•	• •	÷ _		•		-	Ē		•
	3137135 -2313	P146363-6-1	6 d		• •••			1.	• •	; ;;			- 66	- 4	Ī		
	3133123 2313	11.6 2317613	1:	32 7	<u>~</u>		· •	:	•		5	•	-	16		4	
	3133124 2313	#151 823 12:13	9 10 1	120	14			:	٠		9) 43	1.	×.	-		33	:
	3844846 2394	1 5 2 31 - 1 1 2	75	1	• •			÷.	٠	4	1	-	u –	11 1		¢.5	
	3142105 2315 7153551 2315	212.12.21.212	: :+ + :: :				253047		٠			٠	•	uc. 1 • • •			
	41() 461)41(110+102 0+13 948 7480 -84 8			-1 4	•1+253	2528.5	: 1	• 1			• •	4.4	~ -		1 N	
	4163 5616418 4184 88 9184 88				• •		()()) ())		•	•	2.0		J 0	C u			
	7145171 2112 2124 2123 212								• ,	5 # 10 4 10 1 10 1 10						1 I 2 I	:
	31 44 126 231 4	217 231 24 24 24 24 24 24 24 24 24 24 24 24 24	- u	1.04			•		•		1 G	•	ι	. 0	. 1		
	3187122 2316	7112 2112 2112			• •		• •	•	• •				u H				
	3167156 2316	115 231-81C	- • •	1.01	. .		•	•	•		- -		1 - 4				1
	226-386-285 226-386				- Q.		<u>ہ</u> ،	: t	• •								
	7126 6616m11	115 12 TO 10 TO 10	1				N 101 40		•						- F		
					4 4				• •						- 1-		
	3151127 2315	11:2 23:51:4	: .		· •		0.0000		•					L N			
	3152129 2115				, e		-8-6-5		∎ 1. •						- 1		
	715111 2715	11251257171	-		,									1			(
	3153135-2315	5154 22153th			• +		4-46-44-	- 201 -							-		7
<pre>119914 219512 2157113 1253 16037 177 177 177 177 177 177 177 177 177 1</pre>	3154135 2315	11 2315511	. 2						• ••	-5-5	C 5 7		. U	- 4 -			0:
1111 2115114 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 2135111 21351111 21351111 21351111 21351111 213511111 2135111111 2135111	315614. 2315	5153 2315615	#8	- 2525-	سه ر				, 				- 4				-
11113 21151 219511 219511 21911 <	3157136 2315	7174 2315714	13		· 14	.17.5	3123	6.00 ×		-5.F	170.	۲. ۲.					
1195105 21151-17 2411 125 125 111 125	3152102 2315	1:2 2315611	€. ₹ 1 -	25-01-		1. 2. 2. 2. 2. 2.	-3121	10		-2-5-	: 273:				1]
1111 2411.17 111.17	3153135 2315	115312313611	5. 5	- 1- 3	• 4	. 7564	3171	0.0	-	-5 ° F	.0.3	-1-1	e				
01113 241112 241114 211	51Ec étié51E	-1 ² 6-24 Pc é Pu	5d	-3-6-6-	44		-275-	5					4				
001113 241212 241212 2551 1051 112 112 111	-1CL133 2440		t	. 255.	۴.,	•16rsc	3112.	• • •	4	5 * 5 *	.033	-1.4		4 T		ل ه ۲	
07711 241017	4841813 2480	11:2 241:112	22		1152	1341 °	3127-	:68	4	= = = = = = = = = = = = = = = = = = =	- 151:0	L.	1103	e.		4 R -	:
07711 241775	+102144 2410	2178 241,215	12	5	155	.16641	3462.	6٤.		ت • ب	112	-1.?	.111	-		¢ 1	
07111 2417113 14 714 7104 7114	1852 189085	243-248-612		b i	1 1 1 1 1	4.55.55.7	-34512	61.5	1 1 1					•		4 F	
		1154 241,713 	,, ,, ,		1097	••[]]••	7 L L F .	61.		2 • 2 -	• 0 3 9		.011	۴ . –	-	u t	
17 17 <td< td=""><td>0162-421601a</td><td>6121152 .6c1.</td><td></td><td>h : .</td><td></td><td></td><td>-37-3-</td><td>14 13 - 42 - 1</td><td>10 17; 1 11 1</td><td>i 63 - 1 8- 1</td><td>1.2.</td><td></td><td></td><td>÷4 -</td><td>T</td><td></td><td>1</td></td<>	0162-421601a	6121152 .6c1.		h : .			-37-3-	14 13 - 42 - 1	10 17; 1 11 1	i 63 - 1 8- 1	1.2.			÷4 -	T		1
<pre>127104 24127145 11 11010 10557 7314 7694 114 557 014 11 551 110 12 117 10 17 14</pre>	41 C D 1 D 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C				- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1241	1145	• 42 4 8 4				5 I I		J (-	(j. 1	
1 2 1 2 1	2162 951225								•			• • •			-	4 16 1	•
1111 2111 21292 2527 3227 4599 417 459 417 459 417	2152 5011215 2152 5011215	31/3143 4°1/		 	500		31 31 21 31					•	3). (-		بر	
11 2	2142 / J2124-		•				3121		1	6 + 3 • 1 • 1		•••	-	D- 0			1
23335 2412011 2412014 11.000 3225 603.9 11.000	21+2 h41/217	11//11/ 11/11		. r	1 1 1 1 1 1	~	5124	• · · · · · · · · · · · · · · · · · · ·		 	2 · 3 ·			0 (. U	
23155 2412415 24129154 1.1000 (5990 (5990 (5900 (10						1912 1 1 1 1 1		5 C	•				• • •				{ ;
$ \begin{array}{c} \textbf{1} \textbf{2} \textbf{1} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} \textbf{2} 2$	2192 221221	1 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• •	•	1	1 1 1 1 1							~	· ·		1917	
	+123152 2412	5152172212	·		5	1					. C] .			, <u>-</u>		U	
(13)157 7415 1:2 2415(15) 7.1429 74756 7526 41227 6954 413 455 413 413 417 475 17 475 17 1455 112 125 113 113 125 1	413C113 2413	113 2413011	•										× 7	• •		L.	,
u3112: Pu13117 241377 17-1557 14721 1412 4645 1712 4644 11 451 456 11 47 4 47 4 41 1 451 12 17 4 13117 2413256 9 1111 451 14 17 51 12 17 14 17 15 11 12 17 14 17 15 11315 2413216 2413217 1 13215 2413217 2413117 5 125 1 13315 541311 5 135 1515 1515 152 1 125 1 12 17 13 11 12 17 13 13119 2413116 2413116 2413117 5 125 1 1331 5 125 1 125 1 12 17 13 14 17 13 14 1311 15 12 13 1331 5 125 1 125 1 125 1 125 1 125 1 125 1 125 1 125 1 125 1 125 1 12 17 13 14 17 15 1 12 17 13 14 17 15 11 12 17 14 13111 15 125 1 1331 15 125 1 12	+131155 2+13	1-2 2-1 1(15	• • •-	1 4 2 -	1 A 4 1					5	1.24		11 1 C 1 - 1				
#13101 7-13117 20132156 9 1111 LELES 1775 1775 2004 11 157 -1 157 -1 156 14 14 17 15 #13216 24132157 24132159 1 1.951 75666 44257 33714 6674 -1.7 55 -1.7 510 12 17 14 #13317 24137156 24132179 3 3735 56476 44277 32714 6677 560 517 12 17 12 17 14 #133199 24137156 24137179 3 3755 75617 1725 140757 2417 560 11 12 17 14 #133199 24137156 24137179 3 24257 764757 21256 760 11 12 17 14 #133199 24137176 24137179 3 24257 772 14077 11257 780 15 17 17 15 17 15 #133199 2413717 24137179 2413752 775 7217 1127 1257 1127 15 17 17 15 17 15 #133199 2413117 241517 1 112 111 2 241577 1127 12577 1127 117 117 117 117 117 117 117 117 	1112 -241E 4M	LIPE Zulali	1		2904	, 44 41		5		5					÷	י י שי	
(13212) 2413217 2417217 1 1,000 7556 4273 3314 66 41. 46. 41. 45. 41. 41. 41. 11 12 17 4 (13214) 2413716 241311 5 3.337 46416 76 6 4726. 640.6 -16. 2.913 7.911 12 17 4 (1317) 2413716 241311 5 3.200 6676 44767 4201 (2011) 1.15 14 17 4 (1316) 2413716 2413717 1 1322 1 1337 24.1 (120) 1.27 14 17 19 14 17 14 14 17 14 14 14 14 14 14 14 14 14 14 14 14 14	4132801 2413	11-7 2413210	.5	.111.	4-47			c .		11	. [5 7		151	3			
413146 2413145 241214 133193 2413146 241314 133193 2413146 241314 13319 2413146 241314 133149 2413146 241312 133149 2413146 2413312 133149 2413146 2413312 133149 2413146 2413312 133149 2413146 2413312 133149 2413146 241315 133149 2413146 241315 133149 2413146 241315 133149 2413146 241315 133149 2413146 241315 1411 7 941 1511 1411 1411 1411 1411 1411 1411 1411	413212s 2413	2120 2411212	-	.100	, , n n t t	5			;;	u.		-1.7		ں -		1	
<pre>#133103 24137116 24131111 5 .2002 .46276 .4757</pre>	4132146 2413	21-5 2413214	~	. 333	÷1+3+.	يد ت			-1.	• 11	110.		.11.	12		1	
4133127 2413176 24132124 3 .8337 .212 .724 LCEDEKIV Sample Output (Cont W) 123 14 17 4 4134412 2413417 2413411 7 72 12037 12427 12427 1256 417 14 17 15 17 4 4134412 241541 9 2414411 7 9.1 1466 77 17 17 167 1467 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	++33+03 24+3	78.6 2487382	; ;	1000.	56.283	1.54			1		Ċ	12140	E	÷ ۲		45	,
133149-7413417-24134172 0 19152 0 19 12000 0 19120 0 193477 14200 0 1400 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2193227 2413	2122172 9212		. 533 -	- 2.1	72.44		N N	ЪF	cpu	Ū,	٦	101°	5		15	
•134110 241541 3 2414111 7 9 Sites and size (2014) 40 41 51 10 41 10 41 10 10 10 11.	*133149-5453	38:125#83555	۱ ۲		こくっこ	しっとら	- - 	* 7-1-	•		ч. •	٠	י זי נ		1		
4834856 24834844 2483485120, -1772422 21.41 -0046 -11, -41.41472 -742 -207 - 41 4835813 2485813 2485813 248582 - 14.41, - 04.5 -0500 -000024.441.42011,24.455 4835846 2483947 2485845	+134110 2410	11-1-2 F 1-	r.		5 1 1 2 1 2		127.	e.	4	£.	•	•	111.	٠.	_		
a bi and set of the set of t	4134156 2413 		• •	, . ,	ι. 		• •	÷.,	.: .	e .	۰.	•	• •	÷ •	-		
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-		1		-	•		,	•	٠		• •	-4 r *	1	
		•		•		1			,			•		•	•		

404 ł 1 r (34E) 00000 HIUUNS-SHC dans asidul Dinna- R. Ľ, - 1 שםc COTO F14451 Lines UG dignI.J<mark>u</mark>gs Omt+Ska COUAF. FIT LINES • L (μγ.) LEAST Ξ JN-SHOOLH **₹**41 ≦ ŀ TLOPE í י ניחפָף דונעידיין -נאט 0 01640 019 1-2 d_ CNI 30014, . 5-1/aT -7.7532 3.6413-1. 0 v 2 1.1263 - 31692 1:7151 1.3365 - 5732 1.1000 1 1.7672 - 6595 - 5:279 4200. 43041 247-34c JH--HC 3625 .6444 1641 .0150 7112- :0231--. 0113 -3451 - 0112 V: יו חסב 3713 165 5664 5367 :215 3693 3731 CVCLE NO 269 8

25123125 2512178

1.15

	! ! .	· • • i	2 - 5 6 5 1 - 1			405		· · · · ·	1	• • • •		· · ·	• •,
1													, I ,
								l i					,
	1 0EP	1.55 <u>7</u>	! . !								i,	1	i .
										1	•		
ł										: •			
	-A3			i .						;		•	•
	i	• .•	k +						: 1	1.			
i													
!	· اب	1								j ·			
	101A1										•	:	
;	AL T (M) :: 74 , 5		• • •						1 1	I.		. (F	
;	F	1212								1 · · ·		jt j	
1	55-01-2-	*12%1.801*12J*114								i i		(cont'd)	
	- Y	121											
	Press Press Press	5-1-9							•			Output	
•	i i	:							•	!		on	
:	PHS 5-057-	1100 •										ple	
. 	4										:	Sample	
. DATA	Shq 2 V	<u>ий</u> 0 •							i i				
SURMARY	JH 5-023:	0 × F 7 G							İ		•	ICEDERIV	
2 nue											. :	CEI	
2 A SS	395	-10.										-	
											1		1
	4V. 	· · ·									1		
•	مال مال مال مال مال مال مال مال مال مال	22											i
		11									•		
	A	Di- Ut									(
	TOTAL SYCLES	2											
		1											
•	510P 714E 24135142										!		
	S 1.52	-251								i .	. ;		
:	1	651					i t	!		:	÷	•	
	START TIME 24126137	25131153						1		1	•		
,	:	25					•	I		•			i
	PASS PASS PASS			;	1		:	1					
	-			i i	•		l				:		i

2.5.5 Program ICELWC

ICELWC was written to compare ice detector values to the LWC values as derived from the PMS-ID particle sizing system.

ICELWC calculates five different parameters based upon PMS-1D and ice detector values. These calculations are then tabulated with VCO information. A line is printed for every second that the ice detector is in the sensing mode.

A. DEPTH OF ICE

This is the depth of ice that would accumulate on the ice detector if all the water in the ice detector's sampling volume were to form ice. The amount of water is determined by a LWC measurement device.

 The sample volume for the ice detector is its length (1") times its width (1/4") times velocity times time

 $VOLUME(m^{**3}) = 0.0254m^{0.0063m^{*}velocity(m/sec)^{time(sec)}$

- 2. LWC is amount of water per cubic meter (g/m^{**3})
- 3. calculate how much water was seen in ice detector sample volume

ICE (gm) = VOLUME (m**3) *LWC (g/m**3)

4. convert the ice to a volume (density of ice is 9.17E-7
gm/m**3)
VOLUME(m**3) = ICE(gm)*9.17E-7(g/m**3)

2.5.5 Program ICELWC (cont'd)

5. remove the length and width components from the volume thus giving the depth in m**2

DEPTH (m) = VOLUME $(m^{*3}) / (0.0254 \times 0.0063)$

- B. CHANGE IN DEPTH DELTA DEPTH = DEPTH(i) - DEPTH(i-1)
- C. RATE OF ICE ACCRETION RATE = (COUNT(i+1) - COUNT(i-1))/2.0
- D. CHANGE IN RATE DELTA RATE = RATE(i) - RATE(i-1)
- E. RATIO OF DELTA DEPTH TO DELTA RATIO RATIO = DELTA DEPTH/DELTA RATE

At the end of every cycle a correlation of DELTA DEPTH vs RATE is calculated. Also reported is the ratio of the difference in counts of the last count in the cycle and the first sensing point divided by the total LWC of the sensing mode. This gives the number of counts per gram of observed water.

The above procedure is repeated using the JW-LWC values instead of the PMS. Operating instructions appear in the following section.

2.5.5.1 Program ICELWC operating instructions

COMMAND CARDS

DPSI,T200,NT1. ID# NAME ATTACH, LGO, ICELWCBIN, ID=GLASS, MR=1. VSN, TAPE1=LYCXXX/NT. (TAPE 2 FROM ICEEX) REQUEST, TAPE1, E, NT, NORING. LGO. 7/8/9 DATA CARDS CARD # 1 LCHAN (LOWEST PMS CHANNEL TO USE - 15 FORMAT) COL 1-5 6-10 UPCHAN (UPPERMOST PMS CHANNEL TO USE - 15 FORMAT) 11-15 *IDATE (INDEX TO SCATTER PROBE CALIBRATIONS-15 FORMAT) CARDS (2-N+1) (N PASS CARDS IN TIME INCREASING ORDER) COL 1-8 IBEG (START TIME IN FORM - HH:MM:SS) 10-17 IEND (STOP TIME IN FORM -HH:MM:SS) 21-30 JWADJ (JW OF SET VALUE - F10.0 FORMAT) *IDATE= 1 CREATION TO 31 JUL 1978 2 1 AUG 1978 to 22 JUL 1979 3 23 JUL 1979 to 29 NOV 1979 4 30 NOV 1979 to 27 APR 1980 5 28 APR 1980 to 29 DEC 1980 6 30 DEC 1980 to 8 APR 1981 7 9 APR 1981 ONWARDS

and the second second second

٠ . 944 - 32 945 - 32 94 945 - 32 94 945 - 32 945 - 409 01-544 01-544 01-544 01-544 01-544 01-544 01-544 01-544 01-544 01-544 01-544 DT-SH4 FNS-10 PHS-10 PHS-10 PHS-10 DT=SH4 PHS-10 FHS-10 DI-SH4 DT=SH4 PHS-10 PHS-10 DI-SM9 **DI-SH4 PHS-10** PHS-LD 01-S OI =SHd PHS=10 ļ 2 ŝ -1.52E-09 -3.676-09 -3.256-08 5.356-09 2.676-09 -1.63c-09 R. 65E-1C 3.102-09 -1.572-69 2 • 33c - 03 -3.326-08-4 . 456 - 68 - 5 . 556 - 68 64 - 3 80-314:I: =7.77E=ES 5-07 ł PATIO 5.25 -9.77 ÷ Ì 1.205+12 1.11c+12 1.985+12 2.175417 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 2-142-12 1.965+17 2.005+17 2.005+17 1+236-1 1.755+u? 4.575+r7 1.5427C2 2.45+12 1.435+62 21+3 5.61=+11 1.34=+11 1.6454 -----1.216412 ITASET 9.642+11 21+3 11+314.9 5,90E4 3+326.52 RATE Tut.T i į 7.964016403 7.964016403 7.164016403 7.164016403 7.164016403 .21+3_82116. 6.40 NE 45 6.442312 783 f. 5110 F 407 R. 60977E+F3 M 6 4 1 シュキュ ミロのこりょう E . 54 970 E 493 7-875456457 F.53PP E+U3 8.797552 +03 Clture 10. 2428124672 550, 5+03 Sarie and 113-1522 · 1 1 COUNT 5.1c4F. د، • 2 p ð 5-53775555 5-742575555 5-742575555 6.172552247F 6.77255244F F.55453 4.2 5.E2147E4.F 5. E 654EL + F A 5.543 AGE + E 8 0.96591646 P 6. 21975408 5.453354LR 6.2 376c+r8 6.2175EE41E 6.2 An44= 41 5 6+2 30 73 4 F F.60044F4CR F.L2884F+[8 544101919*3 6. 71996458 5.713387458 5.F7375778 6.5525L+62 33+3±626 5±3 9-22361 64-8 a,+29⊾8°+2F f.55760r+uE 6.2545554577 F5255+F 6489r + £ 5.5 Ň 1 , j 4.50595551 4.17-31-514 4.23-513-51 4.22-38-4 3. 4356. E-11 3. 4362 8-11 3. 4362 8-11 5. 537 8-11 5. 537 8-11 4.564905-11 1.--Tu-_+1+/-+1 --7219,5-'-I 1==1 9/2. 1 - 1 - 1 - 1 4.3.151-11 4.f22055-n. :. / 01. 1E-1 842275-7. -- 12129n--• 1-1-11:52.52.55 4.2460 C H J . ŀ 9. ETU 1.-32. b=... 6 . . 1 E + 7 5.1 د 2 ĩ - 1 -• Þ. . 3 6 - 10-00-10-2 2 - 10-00-2 2 -3.4 4.437 5-15 7.431617557555 3.43665522-15 3.43665522-15 3.4776.441.- 15 3.7751-759=70 3.49734692-15 1, 7419-17-197 1, 163, 892-15 3, 1936-1518-15 *.1461-557- 5 *. 7957-34E- 5 nin tit 4. FuECT, 3c- 12 3. 94.51 577 1-1 5 3. 94.51 577 1-1 5 3.25713937276 2 1:1-1-1 THAT HLC 2.-71º Ch. . • ? و 1۲ - (ر r | CORRELATION 속iq nm Holbidulon Wilmine Droinm 31.0 0 1111 20 CVCL SECON

Sample Output INELWC

2 ഹ ທີ

ATIO OF

2.5.6 Program PLTEXTRACT

Program PLTEXTRACT produces pen plots which contain icing data on the top half of the paper and two lines of VCO plots on the bottom half. The VCO data is triggered by icing cycles. VCO buffers are filled only when in an icing cycle. The buffers are then plotted and flushed when one-half hour of data has been stored.

PLTEXTRACT was written as a means of verifying the extraction program (see ICEEX). PLTEXTRACT plots the extracted data on the same scale as PLTICE. This enables the PLTEXTRACT to be overlayed on the PLTICE graph and a visual check of the extraction process made.

The usefulness of the PLTEXTRACT plot is more than simply data verification. VCO information or various LWC parameters can be plotted at the bottom and LYC scientists can use this information to help them derive empirical relationships.

Operating instructions appear on the following pages.

And the state of the second state

411

2.5.6 Program PLEXTRACT (cont'd)

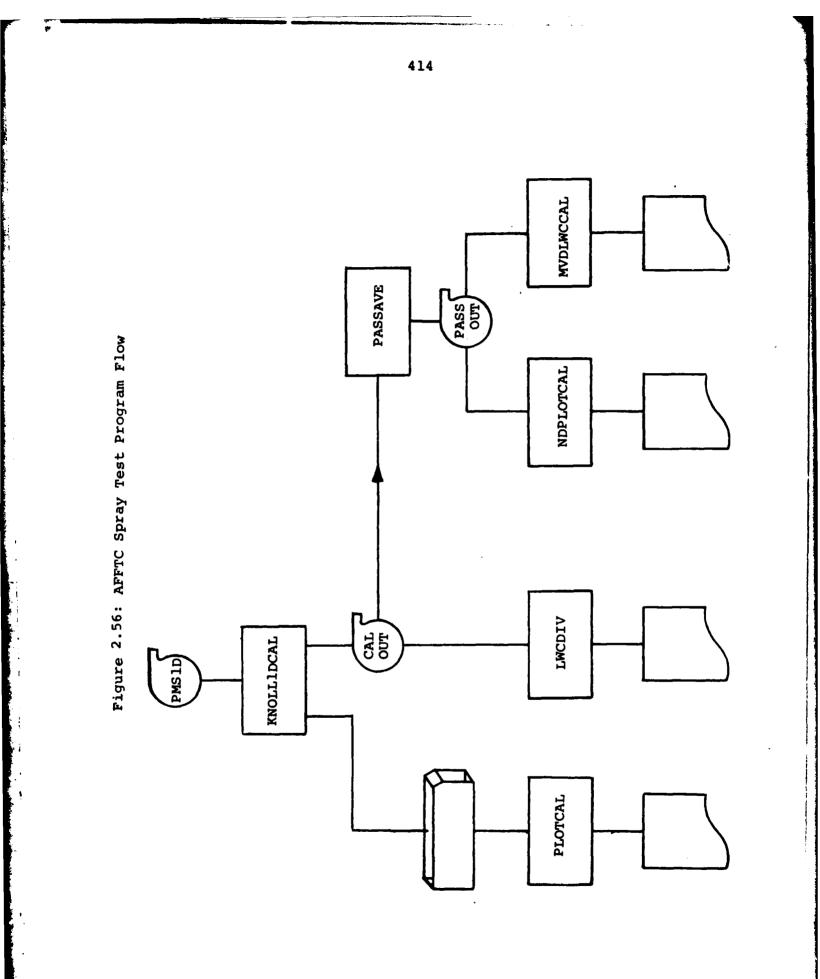
.....

and the second second second second second second second second second second second second second second second

and the second second second second second second second second second second second second second second secon

CONTROL CARDS DPSI, CM130000, T200, NT2. ID # ID NAME ATTACH, LGO, PLEXTRACTBIN, ID=GLASS, MR=1. ATTACH, PEN, NEWOFFPEN, SN=SHARED. LIBRARY, PEN. REQUEST, TAPE 39, *Q. VSN, TAPE1=TAPENO/NT. (ICEEX PRODUCED OUTPUT TAPE) REQUEST, TAPE1, NT, NORING, E. *VSN, TAPE2=TAPENO/NT (KNOLL1D PRODUCED OUTPUT TAPE) *REQUEST, TAPE2, NT, NORING, E. LGO. 7/8/9 DATA CARDS CARD 1 COL 1-10 FLIGHT ID (FLT EXX-XX) 11-20 FLIGHT DATE (XX-XXX-XX) CARD 2 COL 1-12 PLOT #1 LITERAL CARD 3 COL 1-12 PLOT #2 LITERAL CARD 4 (FREE FORMAT) PLOT #1 ID NUMBER PLOT #2 ID NUMBER PLOT #1 MINIMUM VALUE PLOT #1 MAXIMUM VALUE PLOT #2 MINIMUM VALUE PLOT #2 MAXIMUM VALUE

6/7/8/9


2.5.6 Program PLEXTRACT (cont'd)

* OPTIONAL PLOT ID CODES NUMBER DESCRIPTION 1 TOTAL TEMPERATURE (FROM TAPE1) 2 JW-LWC 3 TRUE TEMPERATURE *1 4 ASSP PROBE LWC (FROM TAPE2) CLOUD PROBE LWC 5 PRECIP PROBE LWC 6 7 TOTAL PROBE LWC 8 LOG ASSP PROBE NT 9 LOG CLOUD PROBE NT 10 LOG PRECIP PROBE NT 11 LOG TOTAL PROBE NT 12 ASSP PROBE DO CLOUD PROBE DO 13 14 PRECIP PROBE DO 15 TOTAL PROBE DO 16 ASSP PROBE DO TIMES LWC (FROM TAPE2) 17 CLOUD PROBE DO TIMES LWC ut 18 PRECIP PROBE DO TIMES LWC 11 19 TOTAL PROBE DO TIMES LWC 11

2.6 AFFTC spray test

During April and September 1980 the Air Force Flight Test Center (AFFTC) at Edwards Air Force Base conducted a set of nozzle spray tests. These tests consisted of flying the MC130E behind a KC135 tanker and measuring water and ice spray striking the PMS devices mounted on the wings of the MC130E aircraft.

The following is a description of the programs that DPSI developed to help them create a data base. The resultant meteorological data about the size distributions and liquid water content can then be used to design/utilize nozzles to test icing rates on various aircraft.

In the state of the state of the state of the

2.6.1 Program KNOLLIDCAL

Program KNOLLIDCAL is a unique version of KNOLLID used in the analysis of the spray test data gathered during the KCl35 tanker and MCl20E aircraft.

Most of the data will fall into the sampling range of the axial scattering probe. This probe is not used in any "total" calculations from the PMS-1D post processing system. This system was designed to provide values in snow situations and the axial device is only accurate in rain studies. Thus, in order to be able to properly analyze the spray test data a special version of KNOLL1D was developed, KNOLL1DCAL.

All "total" values (LWC, Z, MK, NT, D0, and LMAX) include the axial probe. There is inherent sampling overlap between the axial and droplet probes. The upper limit of the axial sampling size is 32 microns, while the lower limit of the droplet probe is 13. To eliminate this problem, channel one of the droplet probe is not used in the "totals" thus raising the droplet lower limit to 33 microns which results in a one micron gap. Additionally, the unnormalized number density was required to show the actual counts per unit of volume (meter cubed) for each discrete class. As a result, the number densities given in the output are not normalized. The format of the output is unchanged from the standard KNOLL1D format.

2.6.1 Program KNOLL1DCAL (cont'd)

There are only a few differences in the operating instructions of KNOLLIDCAL as opposed to the procedures used with the standard KNOLLID. KNOLLIDCAL does not use the automatic processing of the VCO calibration coefficients. Therefore it is not necessary to attach TAPE8 to the VCOCALS file. The program requies that the proper calibration values be included in the namelist VCOEF contained in the submitted job deck.

All other procedures are the same as outlined in section 2.1.1. An additional output deck is produced by KNOLL1DCAL for use with program PLOTCAL. A description of this deck is outlined below.

NUMBER PARAMETER

1	TIME IN FORM @HH@MM@SS WHERE @ = BLANK
2	AVERAGING INTERVAL IN SECONDS
3	LWC (IN FORMAT E15.6)
4	D0
5	SEPARATION DISTANCE (F10.0)
6	FLOW RATE (F10.0)
7	BLEED RATE (F10.0)
8	FLIGHT ID (A10)
9	DEWPOINT (F10.0)

Table 2.6: KNOLLIDCAL output 'Deck' (TAPE4)

2.6.2 Program PLOTCAL

Program PLOTCAL is a useful program to graphically determine relationships between various parameters of the AFFTC spray test samples. PLOTCAL uses as data a 9 word record produced by KNOLLIDCAL specifically for this purpose. A description of this record can be found in 2.6.1.

PLOTCAL will accept from input 3 parameters, a plot literal and two integers defining values which are to be compared. A pen plot will be produced for each input card. The relationships are illustrated as a scatter plot, one point for each record produced by KNOLL1DCAL.

```
418
2.6.2 Program PLOTCAL (cont'd)
       DPSI, T200, CM60000, NT1.
                                           ACT #
                                                            NAME
       ATTACH, LGO, PLOTCALBIN, ID=GLASS.
     * VSN, TAPE1=LYCXXXINT.
       REQUEST, TAPE1, E, NORING, NT.
       ATTACH, PEN, ONLINEPEN.
       LIBRARY, PEN.
       REQUEST, PLOT, *Q.
       LDSET, PRESET=ZERO
       LGO
       EXIT(U).
       DISPOSE, PLOT, PL.
       7/8/9
       DATA CARDS (1-N)
    ** PLOT LITERAL, X AXIS VALUE, Y AXIS VALUE
```

6/7/8/9

1

* KNOLLIDCAL PRODUCED OUTPUT DECK (TAPE4)

** TABLE FOR INPUT RECORD IN SECTION 2.6.1 NOTE: VALUES OF 1, 2, 8 SHOULD NOT BE USED 2.6.3 Program LWCDIV

Program LWCDIV plots the divergence from the mean for a set of LWC data points against a time axis.

LWCDIV is an interactive program designed for use under INTERCOM with either a direct plot to a Tektronix terminal or disposed from a terminal to the microfiche plotter.

Two plot types can be produced, that is, either standard arithmetic or a geometric averaging. Also displayed on the plot, along with the pass data, are the following statistical parameters: mean, standard deviation, set minimum and set maximum.

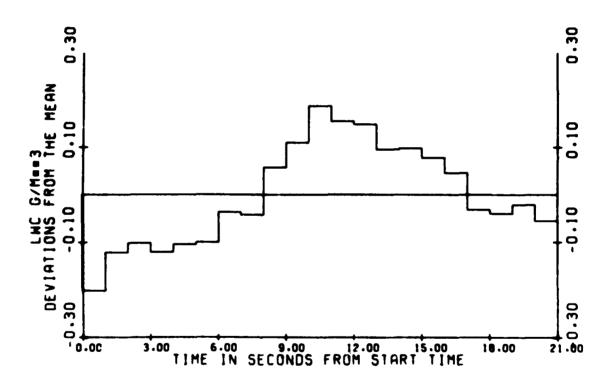
Operating instructions and sample plot appear on the next page.

2.6.3.1 Program LWCDIV operating instructions

J

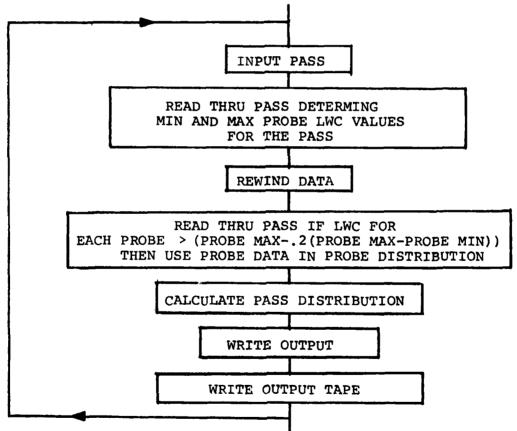
1

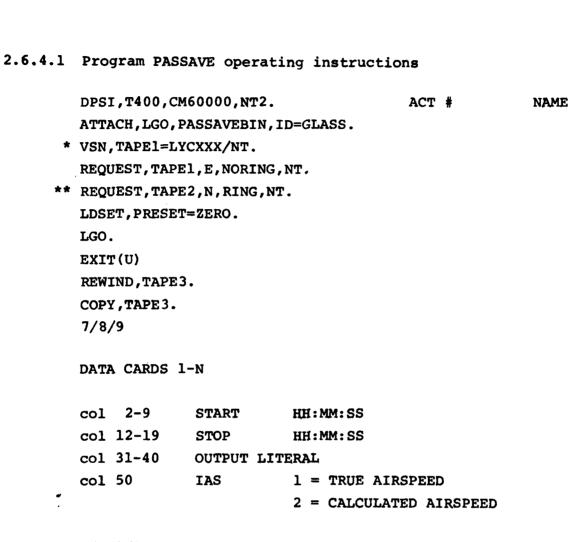
LOGIN, ID, ID#, TTY#. M, PLS MOUNT DISK LYCPFI. MOUNT, VSN=LYCPFI, SN=LYCPFI. SETNAME, LYCPFI. ATTACH, TAPE1, PLTNAME, IDNAME. REQUEST, TAPE39,*Q. ATTACH, LGO, LWCDIVBIN, ID=LALLY. ATTACH, CRT, CRTPLOTS, SN=SHARED LIBRARY, CRT. LGO.


TTY WILL RESPOND WITH FOLLOWING PROMPTS:

INPUT CLOCK(1=A/C, 2=PMS)... INPUT STAT TIME(HH MM SS)... INPUT TYPE OF AVERAGING(1=ARITH, 2=LOG).... INPUT LENGTH IN SECONDS OF INTERVAL TO PLOT... INPUT PROBE(1=SCATTER, 2=CLOUD, 3=PRECIP, 4=TOTAL)... 1=CONT, 2=STOP...

AFTER STOPPING TYPE FOLLOWING:


DISPOSE, TAPE 39, FM. LOGOUT 2.6.3.2 LWCDIV sample output



2.6.4 Program PASSAVE

The AFFTC spray test program requires a full distribution for a given flow and bleed rate as well as separation distance. During a sample run, however, it is impossible to align all three 1D probes in the plume of the spray. A method was designed to give a full average distribution by extracting and using probe data while in the plume. This method is described below.

PASSAVE outputs a total distribution and various meteorological parameters (see the sample output in section 2.6.4.2). An output tape is produced containing the average data.

6/7/8/9

.

* KNOLLIDCAL PRODUCED OL TPUT TAPE (TAPE2)

** PASSAVE PRODUCED OUTPUT TAPE (SAME FORMAT AS THE KNOLLID OUTPUT TAPE)

2.6.4.2 Program PASSAVE sample output

AFFTC SPRAY TEST STUBY BY AFEL

SAMPLE 1

FLT E00-26 BN 18 SEP 00 FRON 17:12:50 T0 17:13:20

H20 FLOU(OPN)	AIR PRESSURE(PSI)	SEPERATION BISTANCE(FT)
15	35	100

PRESSURE(NB) 437.01	ALTITI 6552		ENPERATURE -13.79		[POINT(C) 22.43	TRUE AIRBP(138	
	Pí	ATICLE SI	E DISTRID	UTIONS (NUM)	jer/H++3)		
	SIZE	SCATTER	81ZE~	CLOUD	SIZE	PRECIP	
	(NU)	PROBE	(80)	PROBE	(NU)	PRODE	
	3	1.284E+04	23	1.057E+04	350	9.140E+01	
	6	4.9032+04		4.712E+05	647	4.353E+00	
	9	1.558E+07	7 62	3.198E+05	944	٥.	
	12	1.405E+07	7 82	1.968E+05	1241	0.	
	15	8.466E+04	102	1.219E+05	1538	0.	_
	18	5.939E+04	122	8.784E+04	1835	5.377E+00	
	21	3.895E+04	142	6.857E+04	2132	0.	
	24	2.8048+04	5 161	3.048E+04	2429	0.	
	27	2.072E+04	5 181	2.472E+04	2724	0.	
	30	1.367E+04	201	1.672E+04	3023	0.	
	33	1.2158+04	221	1.187E+04	3320	0.	
`	36	1.063E+06	5 241	9.888E+03	3617	0.	
	39	1.3812+04	260	8.533E+03	3914	0.	
	42	1.146E+04	280	4.662E+03	4211	0.	
	45	8.701E+05	5 300	4.448E+03	4508	0.	TOTALS (NO PRECIP)
LUC(8/N++3)		3.1942-01	}	7.385E-01		2.011E-02	1.231E+00
Z{}##+6/#++	3)	2.5758-02	2	1.527E+01		2.064E+02	1.529E+01
K(N/Z++.5) NED D(NU)		1.983E+00 34	•	2.402E-01 176		1.400E-03 1813	3.148E-01 140

2.6.5 Program MVDLWCCAL

and the second second second second second second second second second second second second second second second

-

1

Program MVDLWCCAL, using PASSAVE produced data, will produce a scatter plot of total LWC versus the mean volume diameter, one point for each input record.

An entire flight can be represented on one pen plot, making an overall analysis of the flight possible. Beside each point is an integer (1-9) representing a given combination of aircraft separation, flow and bleed rate at that time. The exact combination is defined as follows:

Table 2.7: MVDLWCCAL table

VALUE	SEPARATION	FLOWRATE
1	100	7
2	100	10
3	100	15
4	200	7
5	200	10
6	200	15
7	300	7
8	300	10
9.	300	15

Operating instructions appear on the following page.

2.6.5 Program MVDLWCCAL (cont'd) Operating instructions DPSI, T200, CM60000, NT1. ACT # NAME ATTACH, LGO, MVDLWCBIN, ID=GLASS. * VSN, TAPE1=LYCXXX/NT. REQUEST, TAPE1, E, NORING, NT. ATTACH, PEN, ONLINEPEN. LIBRARY, PEN. REQUEST, PLOT, *Q. LDSET, PRESET=ZERO. LGO. EXIT(U). DISPOSE, PLOT, PL. 6/7/8/9

* PASSAVE PRODUCED DATA TAPE (TAPE2)

2.6.6 Program NDPLOTCAL

Program NDPLOTCAL takes the data tape produced by PASSAVE and makes one plot for every record of the tape. The plot produced is the log normalized number densities versus channel diameters. The plot is done using only the data of the scatter and cloud probes. An example of this plot can be found in section 2.6.6.2.

All processing is done automatically, with one exception. A record in AlO format is read from input for each record on the data tape. This contains the sample literal which is printed at the top of the plot. Also displayed at the top of the plot are flight date and number as well as sampling period start and stop times.

2.6.6.1 Program NDPLOTCAL operating instructions

DPSI,T200,CM60000,NT1. ACT # ATTACH,LGO,NDPLOTCALBIN,ID=GLASS. * VSN,TAPE1=LYCXXX/NT. REQUEST,TAPE1,E,NORING,NT. ATTACH,CRT,CRTPLOTS. LIBRARY,CRT. REQUEST,TAPE39,*Q.

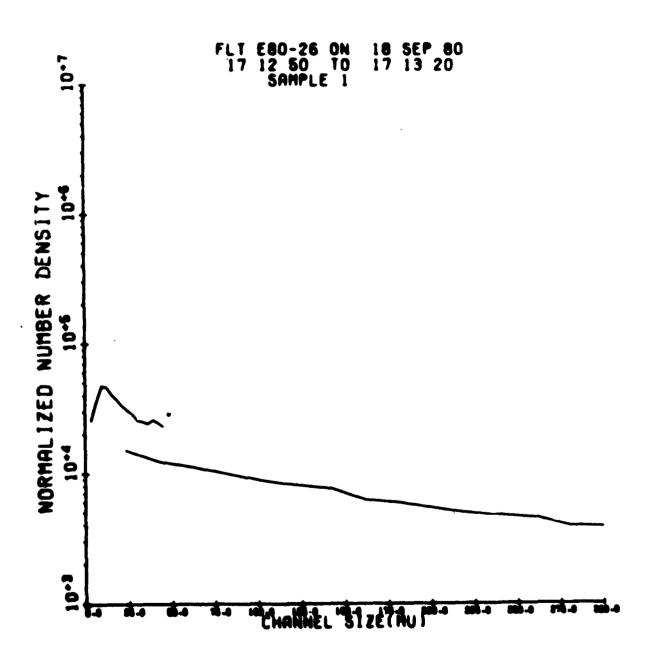
LDSET, PRESET=ZERO. LGO.

EXTI(U). DISPOSE, TAPE 39, FM.

7/8/9/

** DATA CARDS (1-N)

col 1-10 PLOT LITERAL


6/7/8/9

- * PASSAVE PRODUCED OUTPUT TAPE (TAPE2)
- ** INPUT A LITERAL FOR EACH PLOT PRODUCED. PLOTS ARE PRO-DUCED UNTIL DATA CARDS OR AVERAGED RECORD ARE EXHAUSTED. PLEASE NOTE THESE LITERALS MUST APPEAR IN THE SAME ORDER AS THE OUTPUT PRODUCED BY PASSAVE.

428

NAME

2.7 Miscellaneous programming

2.7.1 Program HIACLD (Learjet interface to the LD system)

Pre-processing of Learjet data is done by another contractor. Cloud Physics branch receives a preprocessed 9-track tape of calculated parameters. To make this data available to the 1D processing stream program HIAC1D is run.

HIACLD takes this 9-track tape and produces an output and output tape identical to those of KNOLLLD. Whatever parameters that are not provided are derived by HIACLD.

The use of this program makes it unnecessary to include redundant code in the 1D processing system programs. HIAC1D operating instructions appear in the following section.

2.7.1.1 Program HIACLD operating instructions

LALH1,CM50000,T400,NT2.* ACT# NAME ATTACH, LGO, HIAC1DBIN, ID=GLASS, MR=1. VSN, TAPE1=TAPENO/NT. REQUEST, TAPE1, PE, L, NR, NT. VSN, TAPE2=TAPENO/NT. ** REQUEST, TAPE2, RING, NT, N. ** FILE (TAPE1, RT=U, BT=K, MRL=1150, MBL=1150, RB=1, BFS=120) MAP, OFF. LDSET, FILES=TAPE1, PRESET=ZERO. LGO. EXIT(U) REWIND, TAPE3, TAPE9. COPY, TAPE3. COPY, TAPE9. 7/8/9

-DATA CARDS-6/7/8/9

* IF NO OUTPUT TAPE IS DESIRED CHANGE THE NT2 TO NT1. ** IF NO OUTPUT TAPE IS DESIRED REMOVE THESE CARDS.

NOTE: TAPE2 IS FORMATTED THE SAME AS TAPE2 OF KNOLLID

CARD 1 HEADER CARD COL 1-6 FLIGHT ID COL 9-10 NUMBER OF END OF FILES TO SKIP BEFORE PROCESSING COL 15 = 0 NO INTERPOLATION =1 INTERPOLATION

2.7.1.1 Program HIACLD operating instructions (cont'd)

COL 20	= 0 NORMAL OUTPUT
	= 1 NO STANDARD OUTPUT FILE
COL 25	= 1 CA DERIVED INPUT TAPE
	= 2 HP DERIVED TAPE
	= 3 IBM DERIVED TAPE

CARDS 2-(N+1)	(N PASSES)
COL 2-9	START TIME HH:MM:SS
COL 12-19	STOP TIME HH:MM:SS
COL 23-25	PASS NUMBER (INTEGER FIELD)
COL 26-30	AVERAGING INTERVAL (INTEGER FIELD)
COL 33	FIRST PROBE TO BE EDITED
COL 34	SECOND PROBE TO BE EDITED
COL 35	THIRD PROBE TO BE EDITED
COL 36-37	CHANNEL TO BE EDITED
COL 38-39	NEXT CHANNEL TO BE EDITED
*	
*	
*	
COL 62-63	N-1 CHANNEL TO BE EDITED
COL 64-65	N CHANNEL TO BE EDITED

2.7.1.2 HIACID Sample Output

STA B

ł

•

ļ

HIACLD sample output on the following two pages.

C Marilou LLA C C H192 H
4β3 1 <
- -
4β3 4β3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4β3 h h h h h h h h h h h h h h h h h h h
4β3 4β3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4β3 4β3 1 1 1 1 1 1 1 1 1 1
Output
0

54161-7-	7-1011	70 	-11 78 101AL 1 JUL 78 101AL	. <u>40 /•69595-11</u> Z 1•695954b1		SAT TAS	- 1//.61 H/SEC 11.26 KM	TEMP	24(.19 MB -41.4(DEG	1	
PAPTICLE TY	5 - 5 - 4	1 HCI:S	65 101AL CNJ 101AL INTERFO	ATE C		1-1-10-10-10-10-10-10-10-10-10-10-10-10-	1°-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	TMCI TMCI	-33.04 DEG 1 9.60 GM/M	NE LONGITJO	.
CL TIRVETES		H+-DeHSJTY		JIAHETER		NM-DENSITY	LHC	DIAMETER	TOTAL	NH-DENSITY	LNC
	STRUTT S	1407755559197 5.3242458	547 2=3	MICKUNS 23.5	COUNTS 207	NO/H++3-NH 1.746E+18	3474443 147895-62	HICKUNS 186. u	-		6H7H445
		52 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	1.8736-24	38.5		5.1206447	2.009E-62	231.2 358 5	SUCI .	2.8132+U5 1.8165+65	1.424E-41
ſ			3+5525-05	51.4 53.8		1.0305+07	1.685c-UC	395.0			3.4665-02
			6.2365-73 F.645F-23	75.5		7.355E+06 5.499F+36	1,9,25-02 2,0725-02	14.8 467.1		9.477E+(3 1.065E+U3	1.9145-02
			7.52 26-13	91.6		3.9666+96	2. 658E-62	516.7		2.379E+03	8.322E-03
		61+3926+7	7.67 55-03 7.7565-13	115.1	382	2.490E+U6 2.378E+D6	1,736E-02 2,634E-02	564° 5	26		•••
		117	/•5485-15 6.4/25-13	139.1	1.5	2-591E+36 2-1435+36	2.9485-02 2.8592-12	535.2 695.7	 - -		•••
2		2.4	1255-U	1-1-1		2.29454.6	3. 67 3E = 42	136.9			
	5	5.5545 + 7 F	7.914E-33	157.1		Z-1366+116 7-99255566	1486-0 4126-0	776+9 515+0			
	5.5	9 + 1 · 5 · 7	6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	17 3. 50	27	4.523E+36	3.9.115-62	654.2	a		
LOTAL	a T É a		8.742E-12	TOTAL	1579		3.936Ê-i 1	TO JAL	4(58		3. 451E-C1
	=Nf 2*2;		= 1.2555-23	∂ •261 = 432•6		2*9513E+12 4*144E+16 Z=	1.7312+0.	C0= 262.	4 UN=	8-3201E+8	Z= 1.707E+31
	111111111	11111111111	//////////////////////////////////////	12		H) (C	(HH++67H++3)	(11111111)		15 ***/0N1	//////////////////////////////////////
1 112	51.1	AN F-II	101-11	LHS 6.7753E-L		GM/H**3 TAS		FRES	24C.19 NB	1	00.0
	- 1212		76 1074L 1074L	<u>2.1.73368+11</u> 31.177.38	HICKONS		97.1		-41.48 DEG -33.15 DEG	DEG C WIND DEG DEG C LATITUJE	
17575-11 17575-11		HCNS	1 h	<u> </u>	+12 +12 ELS 1401	F	9°2	1MC1			
ما با 15 ليون بر ت						F		-014450-	10140	NH-DENS 27 Y	
		WW-2++W/0N	6M/M* * 3	AICKONS	ŝ	NH- 2++W/ON	5 H / H + 3	MICFONS	s	MM- 8++H/ ON	6 M/H++ 3
		5•5525•56	3+6465-26 1+5552-34	23.5 38.2		1.5095+18	1+ 93 4E -U 2	1876 V 631. é		<u>9. 1765405</u> 2.9916+05	3, 9445 - 72 1, 514E - 01
		6-13-16-6	3.4835-03	51.4 63.5	159	1.6362*37 1.1536407	1.647E-62	355e u			8, 8385-02 4, 469E-02
			6.715-13 6.8335-93	75.5 86.7	139	7.5752406	1.9595+22 1.4335-62	414°C			1.8195-UZ
		614.010.15	7-5855-23	, D' I		3.6652+46	1.925-32	516.7			•
		5 • • • • • • • • • • • • • • • • • • •	6.4765-J5	163.1	101	2+9955+16 2+81/25+16	2.456E=U 2	1 1 1 1 1 1	• •		
		1. 37-+1.9	5.6955-13	1.0.3		2.2613+76	2.471E-02	653+2	د ،	•	•
	• : ifr ™ € =	1.000000000000000000000000000000000000	7.603E-03	1535 I 147.7	25	Z.451E.445 1.456E.436	3. 2345-62 2. 4325-02	736.4	د د		• • • •
11 23 11		5.7344 - 18 	7-3655-93 6-3245-43	157.1° 166.3°	H	ACID Sample	le Output	(cont'd)			3 .5
			0-1100		;				•		• 1
<u> </u>		1 10 1 1 1 1 1 1 1	7.5565-02	TOTAL	1431		3.48cE=0.2	10140	46.79		3.457E=31
									" ¥	8.75246+11	

2.7.2 Program FILTER

Persistance in data (non-independence) has always created speculation on the validity of collected meteorological data. Using a method similar to an application in communication (improving signal-to-noise ratios), a power spectrum of the data can be found using a finite Fourier series. Basically this involves subtracting the mean value from each individual data point. The power spectrum of the deviations about the mean are compared with that of white noise (a white noise spectrum is the result of completely independent fluctuations).

Program FILTER uses as data the standard KNOLLID plot tape. Accepting from input any number of ascending order pass times the total LWC values are stripped off, taking a maximum of 600 points. For each interval 4 plots are produced: centered LWC values, autocorrelation coefficients, unfiltered power spectra, and filtered power spectra. Sample plots can be found in section 2.7.2.2.

The first plot, centered LWC values, plots every pass point along a distance in kilometers and a parallel time axis. The range of the y-axis is input before each pass time to allow for data expansion. A header, repeated for all four plots, is displayed at the top of the plot and contains information necessary for proper data evaluation.

The remaining three plots are defined by their respective equations below. In all three plots the number of points displayed is equal to 1/10th the original number of data points. The autocorrelation plot is placed along an axis

2.7.2 program FILTER (cont'd)

identical to the first plot, however only 1/10th the range. The axis for the power spectra, cycles per kilometer, is determined by considering every two points

An expected autocorrelation plot would start about .9, descending rapidly along the x-axis. If the data was truly independent the unfiltered power spectra would resemble an exponential curve (white noise). The filtered power spectra is determined by factoring the unfiltered by a reciprocal red noise spectra. The resulting graph would indicate any increased higher frequencies in power by a spike in the plot.

The equations used in the calculations are outlined on the following page.

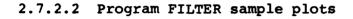
2.7.2 Program FILTER (cont'd)

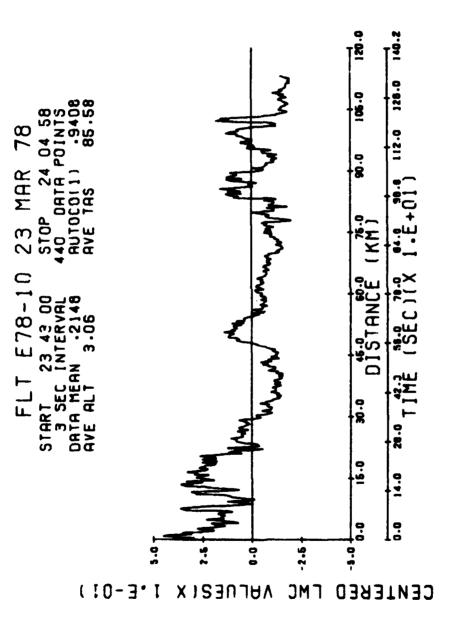
Equations

*

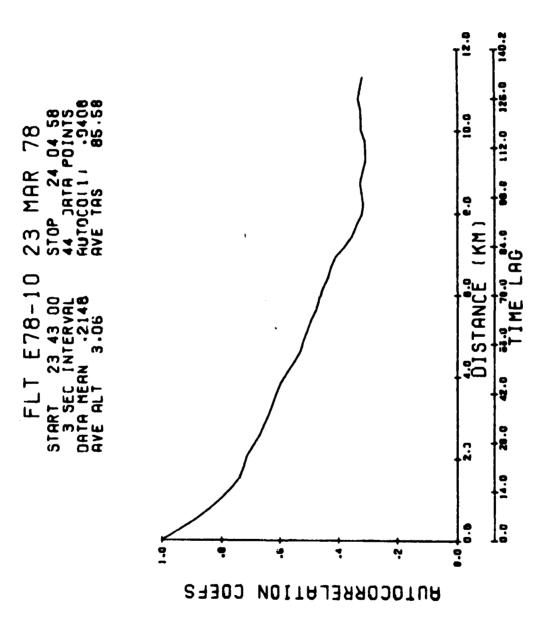
npts
1) Mean =
$$\frac{\sum_{i=1}^{N} x_i}{N}$$

2) Variance = $\frac{\sum_{i=1}^{N} x^2_i}{Npts}$
3) Autoco_N = $\frac{\sum_{i=1}^{N} x_i x_i + n}{(npts-n) variance}$

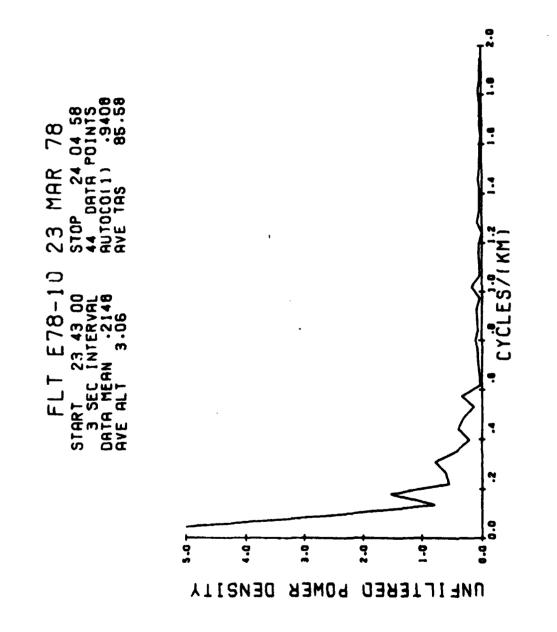

4) Unfiltered_N = 1 + 2
$$\sum_{i=1}^{n \log - 1} Autoco_{N} Cos(iN\pi) + Autoco_{n \log} Cos(n\pi)$$


5) Filtered_N = Unfiltered_N
$$\left[\frac{1+Autoco_1^2 - 2Autoco_1 cos(\frac{N\pi}{nlog})}{1-Autoco_1^2}\right]$$

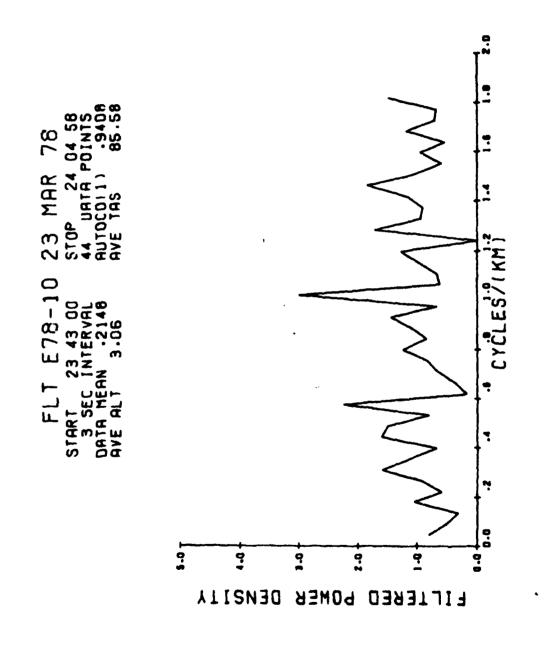
2.7.2.1 Program FILTER operating instructions


DPSI,CM65000,T45,NT1. ATTACH, LGO, FILTERBIN, ID=GEASS, MR=1. ACCT. # NAME *VSN, TAPE1=LYCXXX/NT. REQUEST, TAPE1, E, NORING, NT. ATTACH, CRT, CRTPLOTS. LIBRARY, CRT. REQUEST, TAPE 39, *Q LDSET, PRESET=ZERO. LGO. EXIT(U) DISPOSE, TAPE 39, FM. 7/8/9 DATA CARDS CARD #1 (REQUIRED) ZMIN, ZMAX (FREE FORMAT) ZMIN-MINIMUM PLOT LIMIT FOR CENTERED LWC VALUES ZMAX-MAXIMUM PLOT LIMIT FOR CENTERED LWC VALUES CARDS 2-(N+1)(N PASSES IN ASCENDING TIME ORDER) COL 1-8 PASS START TIME HH:MM:SS COL 10-17 PASS STOP TIME HH:MM:SS 6/7/8/9

*KNOLL1D PRODUCED OUTPUT TAPE



. . .



2.7.2.2 Program FILTER sample plots (cont'd)

2.7.2.2 Program FILTER sample plots (cont'd)

A State of the second second

and and

2.7.2.2 Program FILTER sample plots (cont'd)

2

Sec. 2.

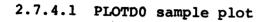
2.7.3 Program FLTPMS

FLTPMS was written to produce a replacement for the PMS-1D tape (should one be needed). It does so by reading an RTX/8 TU-10 flight tape, reformatting the data to be compatible with KNOLL1D, and writing the reformatted data onto a new tape. It is commonly run in batch mode.

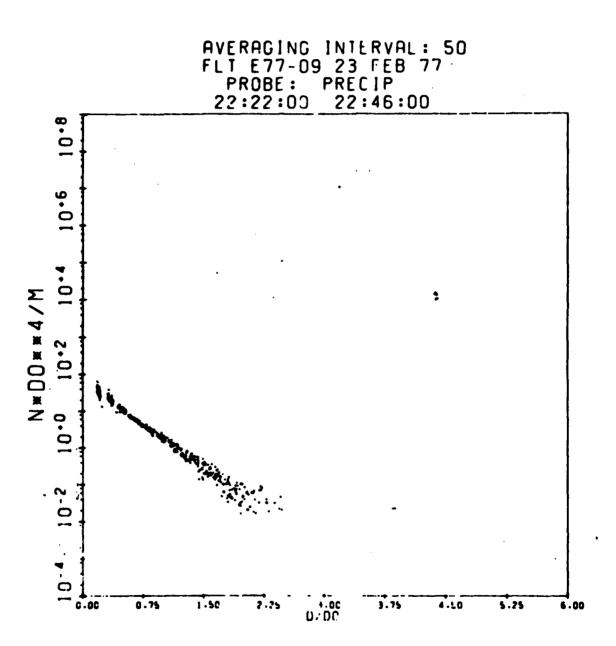
FLTPMS requires an RTX/8 TU-10 flight tape as its input tape. The format for this is shown in Appendix 15

The output tape produced has the same format as a PMS-1D data tape (see appendix 2).

Program FLTPMS operating instructions


JOBNM, TP2, CM65000, T100. PROB NO. NAME REQUEST, TAPE1, S, HI, MT, RING, VSN=TAPENO1. (KENNEDY TAPE) REQUEST, TAPE3, MT, S, VSN=TPAENO3. (FROM RTX/8) ATTACH, LGO, FLTPMSBIN, ID=GLASS, MR=1. FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) FILE (TAPE3, RT=U, BT=K, MRL=1135, MBL=1135, RB=1, BFS=116) LDSET, FILES=TAPE1/TAPE3, PRESET=ZERO. LGO. 7/8/9 6/7/8/9

2.7.4 Program PLTD0


Program PLTDO was written to read the PMS tape and plot $N*D_0^4/M$ versus D/D_0 . Where:

N is normalized number density (NUMBER/M**3/MM)
D₀ is the median volume diameter (in MM)
M is the liquid water content (in MG/M**3)
D is the equivalent melted diameter (in MM)

PLTD0 is run interactively using INTERCOM. It produces a microfiche plot. This program duplicates one of the many plots produced by KNPLT1D which cannot run interactively because of central memory requirements.

Barriss and the state of the second

445

for the second second second second second

2.7.4.2 PLTD0 operating instructions

LOGIN, NAME, PASSWORD, 861XXXX, SUP ATTACH, CRT, CRTPLOTS. LIBRARY (CRT) REQUEST, TAPE39, *Q DISPOSE, TAPE39, *FM ATTACH, LGO, PLTD0BIN, ID=GLASS, MR=1. ATTACH, TAPE1, KNOLL1DTAPE, ID=NAME, MR=1. LGO.

ANSWER QUESTIONS ABOUT START AND STOP TIME

REWIND, TAPE2 COPY, TAPE2 LOGOUT

2.7.5 ^r ogram VHPLOT

Program VHPLOT produces calibrated pen plots of reflected PMS-1D VCO and status word data as read from the Kennedy tape. Since any set of five different VCO/STATUS values can be plotted on one frame, and one frame may have up to one hour's worth of data, this program may be used to visually demonstrate the error of one piece of equipment in relation to others.

Input to VHPLOT is via cards through the CDC 6600 batch processor and the input tape is the same as the one used in KNOLLID and KNIUTIL. Output consists of both tabulated data and CALCOMP pen plots. Plot output may also be routed to the Tektronix graphics terminal.

2.7.5.1 Program VHPLOT operating instructions

CONTROL CARDS

÷

JOB, CM60000, T200¹, TP1. ACT. NAME REQUEST, TAPE1, S, HI, VSN=PMSXXX. ATTACH, LGO, VHPLOTBIN, ID=GLASS, MR=1. ATTACH, PEN, ONLINEPEN, MR=1. DISPOSE, PLOT, *OL. MAP, PART. FILE (TAPE1, RT=U, BT=K, MRL=1024, MBL=1024, RB=1, BFS=105) LIBRARY (PEN) LDSET, FILES=TAPE1, PRESET=ZERO. LGO. 7/8/9 DATA CARDS 6/7/8/9

¹ ALLOW APPROXIMATELY 60 sec/hour/frame

2.7.5.1 Program VHPLOT operating instructions (cont'd)

Data Cards

CARD	cc	DESCRIPTION
1 2 3	1 2-10 2-6	aircraft model A or E \$ CHANGES CALIBRATION CARDS* \$ END INSERTED HERE AS REQUIRED
4 through	(n+3)	for n frames (MAXIMUM ONE HOUR DATA PER FRAME) (CARDS MAY BE IN ANY TIME SEQUENCE)
	1-6	START TIME HHMMSS
	8-13	STOP TIME HHMMSS
	25	PLOT ONE TYPE**
	29-30	PLOT ONE CODE
	35	PLOT TWO TYPE**
	39-40	PLOT TWO CODE
	45	PLOT THREE TYPE**
	49-50	PLOT THREE CODE
	55	PLOT FOUR TYPE**
	59-60	PLOT FOUR CODE
	65	PLOT FIVE TYPE **
	69-70	PLOT FIVE CODE

- * CALIBRATION CONSTANTS AND AXIS LIMITS (IN COUNTS) CAN BE CHANGED
- ** TYPE SPECIFIES WHETHER A PLOT WILL BE V (FOR VCO) OR H (FOR HOUSEKEEPING), THE CODES ARE ON THE FOLLOWING 3 PAGES

** · ·

2.7.5.1 Program VHPLOT operating instructions (cont'd)

CALIBRATION CARDS

There are three control variables that may be used with the \$CHANGES namelist input. The variables shown below allow the calibration coefficients and axis limits to be changed as needed.

- VCOA(I,J) controls any changes pertinent to the MC130A VCO's
- VCOE(I,J) controls any changes pertinent to the MCl30E VCO's
- HSVL(I,J) controls any changes pertinent to the housekeeping data for either aircraft
- I = 1 specifies calibration intercept
 - = 2 specifies calibration slope
 - = 3 specifies minimum counts
 - = 4 specifies maximum counts
- J = 1-13 for A model VCO's
 - = 1-9 for E model VCO's
 - = 1-30 for housekeeping data from the PMS-1D status word code

2.7.5.1 Program VHPLOT operating instructions (cont'd)

PMS 1D VCO CODE

<u>C130A</u>	<u>J</u>	<u>C130E</u>
Progettee	1	
Pressure	1	ΔP
ΔP	2	Temp
Mag Head	3	EWER
Temp	4	UNUSED
Event/Cloud	5	Dewp/1011
LWC/JW	6	LWC/JW
Rain	7	Mag Head
Tacan Bearing	8	Pressure
Tacan Distance	9	true airspeed
Acceleration	10	
Dewp/1011	11	
Ice	12	
Pitch	13	

PMS ID STATUS WORD CODE

+15v. supply voltage +15v. supply voltage -15v. supply voltage precip probe status +5v. supply voltage element 24 voltage element 1 voltage electronics temp. +5v. supply temp mirror temp. mirror temp. 12 CODE ы m 15 Q 18 21 24 27 30 თ -15v. supply voltage +15v. supply voltage +15v. supply voltage +5v. supply voltage cloud probe status element 24 voltage element l voltage +5v. supply temp. electronics temp. mirror temp. mirror temp. 14 3 S 11 23 Ь ω 17 20 26 29 CODE laser reference voltage scatter probe status +15v. supply voltage -15v. supply voltage +15v. supply voltage size range selected +5v. supply voltage electronics temp. +5v. supply temp. probe temp. probe temp. 10 13 16 22 25 CODE 5 19 -~ 28 msec œ σ 0 ŝ Q ~ 2 m 4

msec = PMS elapsed second clock modulo 10

Program VHPLOT Operating Instructions (cont'd)

2.7.5.2 VHPLOT sample output & plot

Output Description

The output from VHPLOT consists of two sections (figures 2.57 and 2.58). Figure 2.57 is the input option section. The first line consists Of a particular start and stop time and identification of the aircraft producing the input data. The next part describes the particular plots selected. In this example the lowest frame to be plotted (plot 1) is temperature (TEMP), and the limits of calibration are from 0 to 10,000 counts. The calibration for this plot is

TEMP = $.32616E-7(counts^2)+.0095(counts)-49.05$

Figure 2.58 shows a calibrated listing of each plotted value. The first two columns show the elapsed seconds. The columns of VCO values are self explanatory. An important note is that since any particular housekeeping value occurs once every ten seconds every other housekeeping value is listed. However the one selected for plotting is indicated by the word "VALUE" next to it.

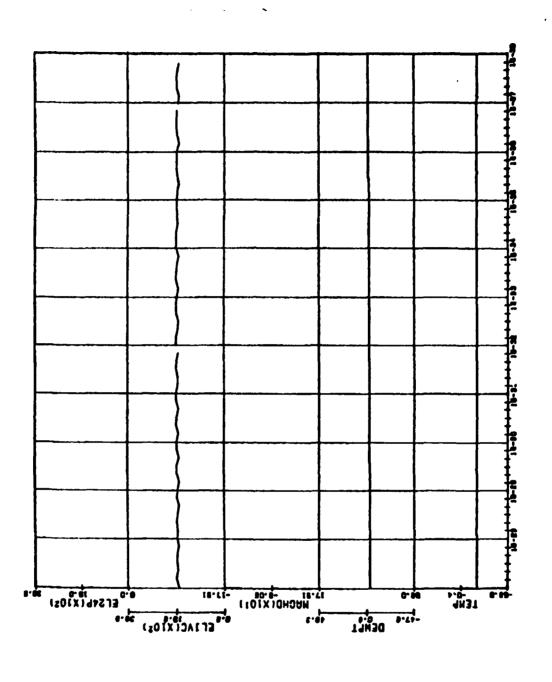
The plot output (figure 2.59) shows how each of the plots is offset so that each axis limit can be easily read. Any fluctuation in any of the housekeeping curves is an indication of an instrument problem.

2.7.5.2 VHPLOT sample output & plot (cont'd)

Ì

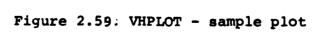
1

PLOT 1 IS VCC				یت	0 1000	MAXIMU =13000.0000
INT_RCEPT=	*******		.0101	1-11-0044	3.1000	* 4X1 49
PLOT 2 IS VCC	NU4352 5	LABEL	LEC DEWPT			
INTERCEPT=	-47.51+9-	SLOPE= -	.0197	MINIMUM=-		MAXIMUM=10000.0000
PLOT 3-15+CO						44XI4U M=10000.0000
	1/ J. US/ 4	361			J+3400	HAX140 ##10000000000
PLOT 4 IS HSKE	NUMPER 8	LABEL	LED EL1VC			
						- MAXI4H4=-3000.0000
-						
PLOT: 5-15-HSKF						
INTERCEPT=	0.7000	SLOPER	1.0000	HINI HUN=	0.3000	MAXI4UM# 3000.0000


Figure 2.57: VHPLOT - Input option section

SEC		U. E	<u></u>	æ.,	• .	•	
31	271	5 1			1 427 - 00 VAL UE	1726.00	
					61.11 61.11	> ~	
			• ~	0.00 • •	553.]	00.6	
	1221	17.5		6.6	7 2 9 . 3		
	1271	7.5		ŝ	142.0	1.0	1
787	1 c t 2 st i 2	-17.72	-2, 37	طع		2023.00	
				r 4 r 1	0.000 64.0		
99	22		: .	9 9 9	6 • 3		
	1271	17.5	2	6.7	£4.00	•	
26	1221	17.5	~	7.0	0.564		
1 1 1 1 1	121	17.7	•••	ť,	1 MOV - 00 - 1 M V - 00	•	
	1221	17.7	Ň,			• -	
30	127:	~ ~ ~		, 	144.1		
10	27	17.5		F.9	956.0		
66	\$22	17.6	Ň		92	9.6	
66	1271	17.5	-2.35	σ. 		177.00	
	1221		Ň,			•	
10	1271	 			0.004	~	
-20	1221	0 .C	ໍ່ຄໍ		1255.00	,	
	1271	5.0		£.3	954.0	- 00.6	
151	127	7.5	°.	7.1	65	-	
96	1221	7.5	•	ر. م	143.0		
17	1221	5	۰ به	0°7	1957+JJ	5.00 	45
							5
) (5 4		17	1454.00	
	. ~ .	?``	-2, 32	66°75	4.33		
	1 27:	7.3	. .	6.6			
10	1231	7° • •	ň,	ເັ້	3.60 5.62	3352.0UALUE	
 	1.7.1			τ. 			
2	122	~			143.0		
	127	7.5	~	7.0	5•0	5	
	1221	7.5	\$	f. 9	536.0	•	
61	1 271	2.7	n° a	57.01	ದ್ ಕ ತ್ರಾ		
			ů N				
			: ~		471.0		
	121	:5		•	1 313 . 49	0.0	
5 2	127	7.5	•	ų.	₽53 .0	0.6	
5	:22:	17.5	λ.	0 ° °	775.3	•	
					1957.33		
	27.5		`~	5 M 5	5 45 . 4		
5.0	261	17.5		i io ir	0.00		
	1268	1 v 1	~	- 64.75	ۍ	?	
31	121	-1	~	· 45	64.]] 55.55	9.0	
32			2.58: VHPLOT -	 calibrated listin 	ng 1+32+39VALUE		
5 5 5 2 5 5 2 5 5 2 5 5 2 5 2 5 2 5 2 5		• • •			553.1		
		•			70.0	`	
36	\$ 2.4	· · · ······· 26°26- · · · ······	· .		144.3		
37	:128	17.	-2.30	٠	56.0	•	
33	12-61	^	~ •	4 I I	96 .	1465.06	,
Зэ́	10.	• · ·	N P	ς.	6 6 6 4 6 9 9		
•	•	•	~	و • •			1

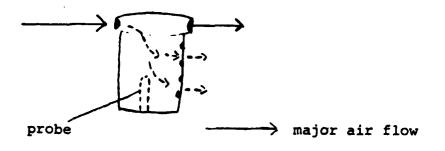
and the second second


. Which with in which we down

ومقتر معتانين ورواني ومنافر ورواني ومنافرة

.

•.]



1 GO/EPASE 2 GO/SAVE 3 FXIT Enter Option

Π.

2.7.6 Program TEMPCK

AFGL Cloud Physics Branch scientists requested a program to aid them in the investigation of an algorithm to correct faulty temperature readings. The temperature probe used in the airborne data collection system is a Rosemount probe, model number 102CA24. As illustrated in the following diagram air enters the front of the probe through a small opening in the top. Most of the air, and thus the particles that entered with it, are intended to be exhausted through the main vent located at the top of the back. The air flowing outside the vertical airfoil of the probe creates a drop in pressure at the smaller outlets along the back. This produces a small but steady flow of air downward into the device past the sensing probe. However the smaller particles in the atmosphere are able to 'turn the corner' with the air, flowing into the device and past the probe, thus wetting the sensing device.

----> minor air flow

As air passes over the wet probe the resulting cooling produces a reading lower than the air's temperature. This is easily seen in a cloud when the temperature indicated is lower than the dewpoint; a physically impossible situation. Thus the objective of program TEMPCK is to develop criteria for determining correction need and correction factor. This program uses data in the Scatter Probe range (2u-30u) only.

Program TEMPCK determines the Scatter Probe concentration value (probe number density, a value greater than 25, to indicate flight within a cloud. The correct temperature is calculated as $T(^{\circ}C)$ + Delta. Delta is calculated as outlines by Lenschow & Pennel as follows:

> A FACTOR Use T = Total temperature (O C)

$$A = \frac{0.000586}{1 - 0.00094T}$$

D value D = $(L \cdot SVP)/(RW \cdot A \cdot T^2 \cdot PRESS)$

Delta Dl= D/(D + 1) Delta = Dl . RECOVERY . TAS² / (2. CP .UNITCK)

Result

T calculated = T + DELTA

Constants:

RW = 1.10226 E-01 CP = .240 RECOVERY = 0.972 UNITCK = 4.186E03 SVP (saturation vapor pressure) $SVP = A_0 + A_1 T + A_2 T^2 + A_3 T^3 + A_4 T^4 + A_5 T^5 + A_6 T^6$

where

 $A_0 = 6.107799961$ $A_1 = 4.436518521E-01$ $A_2 = 1.428945805E-02$ $A_3 = 2.650648471E-04$ $A_4 = 3.031240396E-06$ $A_5 = 2.034080948E-08$ $A_6 = 6.136820929E-11$

Because it takes time for the probe to become wet when in a cloud, the Delta Factor is incremented from .1 Delta to 1.0 Delta in intervals of .1 every second. Thus entering a cloud:

Temp=T(^OC) + (Delta Tenths)

where tenths = .1, .2. .3. ..1.0

Conversely when exiting a cloud the Delta Factor is decremented from .9 to 0.0 for clear air.

The reference temperature is calculated the same as true temperature in program KNOLL1D and considers the effect of aircraft velocity upon the probe. The resulting corrected temperature should be more accurate as it considers both the drop in probe pressure and probe wetting.

The relative humidity is calculated, as in KNOLLID, by taking the percentage of the vapor pressure over the saturation vapor pressure. However the values will differ from those of KNOLLID as program TEMPCK calculates an approximate vapor pressure using a sixth order polynomial (see report #36).

There are two vapor pressures calculated in TEMPCK. One is for the given true temperatures and the other the calculated temperature. The saturation vapor pressure is, by definition, the vapor pressure that would be present at the temperature which would bring a given parcel of air to saturation. Thus the saturation vapor pressure uses the indicated dew point as its basis.

Using the function F(X) to indicate the vapor pressure at a given temperature the calculations are as follows:

VP (Vapor pressure)= F(temp)CVP (calculated vapor pressure)= F(Ctemp)SVP (saturation vapor pressure)= F(dew point)

RH (relative humidty) = 100 * VP/SVP CRH (calculated relative humidty) = 100 * CVP/SVP

The following is a brief description of the output produced by TEMPCK:

The first page of output contains information describing the probe used and the clock and airspeed options. The calibration coefficients for the 5 VCO's are also displayed.

Using the flight date as an indicator the VCO coefficients are automatically determined in the same manner as in program KNOLLID. If the user wishes to use different values they can be obtained by use of the namelist VCOEF in the control deck.

The Scatter Probes characteristics are also a function of the flight date. To define the probe used, the user must input the type of probe (ASSP or FSSP), its location (Scatter, Cloud, or Precip cannister), and if the optional channel size is desired (2.4u instead of 2.0u).

The output is formatted to include column headers at the top of each page followed by sixty seconds of data. Left to right, the output contains the following information:

> Time Pressure (mb) Altitude (M) Air speed (M/sec) either TAS or CAS JW-LWC (g/m**3) Concentration (N/cc) MVD (u) mean volume diameter Scatter LWC (g/m**3)

True temp ([°]C) Corrected temp ([°]C) Dew point/Frost point ([°]C) Corrected temp-Dew point ([°]C) Relative humidity (mb) Calculated humidity (Mb) D (Delta-temp factor) Status (clear, cloud, enter, exit) 2.7.6.1 Program TEMPCK sample output

FLT E90-35 05 DEC 80 PROBE TYPE . . . ASSP PROBE LOCATION . . SCATTER

A-C CLOCK USED PMS ON TIME . . 00 00 00 AIR SPEED . . . CAS

VCO CALIBRATION COEFS

 VCD
 TYPE

 2
 DEW POINT
 = -.491E+02 + .950E-02 * COUNT + .322E-07 * COUNT**2

 5
 IND TEMP
 = -.500E+02 + .104E-01 * COUNT + -.440E-07 * COUNT**2

 6
 JW-LWC
 = -.330E+01 + .637E-03 * COUNT + 0. * COUNT**2

 8
 PRESSURE
 =\$.114E+04 + -.101E+00 * COUNT + .500E-07 * COUNT**2

 9
 TRUE AIR
 = -.500E+02 + .500E-01 * COUNT + 0. * COUNT**2

·:. •

SAMPLE OUTPUT CONTINUED ON NEXT PAGE

						FLT E89-35	1-35 45	DEC 89							
TINE	PRESSURE	ALT	CAS	3	CONC	NVE	LUC	TEMP	CTEMP	0P/FP	1C-1D	RH	CRH	9	STATUS
21 23 00	630.61	3581.913	95.19	.630	47.961	18.496	.0277	-5.45	-3.54	-3.94	. 40		96.7	.7678	100 LOUD
	650.81	3579.531	95.80	994	61.654	11.064	.6428	-5.54	-3.62	-3.93	15.		97.4	.7612	CLOUD
	651.01	3577.149	95.90	. 686	227.466-	11.945	.1989	-5.48	-3.56	-3.94	. 38		96.8	.7649	CLOUP
23	651.01	3577.149	96.41	.246	392.625	12.097	.2749	-5.37	-3.41	-3.94	.53		95.7	.7721	CLOUD
	651.01	3577.149	95.98	.258	361.874	11.771	.3028	-5.29	-3.34	-3.92	.58		95.2	. 7773	CLOUD
23	651.01	3577.149	95.79	.223	319.644	11.567	.2538	-5.27	-3.32	-3.96	.58		95.2	.7796	CLOUD
23	651.01	3577.149	96.34	.228	349.958	12.459	.3466	-5.32	-3.36	-3.86	.50		95.8	.7752	CLOUD
21 23 07	-0	3578.340	95.81	.250	369.627	12.191	.3437	-5.24	-3.29	-3.84	.55		95.5	.7866	CLOUD
23	651	3577.149	94.68	.205	239.379	11.999	.1996	-5.16	-3.26	-3.79	.53		92.6	.7852	CLOUD
23	658.91	3578.340	94.15	.144	207.105	12.179	.1916	-5.23	-3.35	-3.76	Ŧ.		96.6	.7805	CLOUD
21 23 10	651.01	3577.149	94.21	.201	305.303	12.142	.2804	-5.27	-3.39	-3.76	.37		96.9	.7781	CLOUD
23	650.91	3578.340	94.52	.258	344.521	12.368	.3345	-5.29	-3.41	-3.76	.35		97.9	E977.	CLOUD
23	659.91	3578.349	95.17	.697	25.633	12.567	.0261	-5.43	-3.53	-3.74	.21		98.3	.7669	CLOUD
21 23 13	651.11	3575.958	96.16	617	-12.	18.028	.0015	-5.45	-3.79	-3.75	.05	115.6	99.6	.7658	EXIT
23	651.11		96.77	025	11.456	19.651	1288.	-5,36	-3.78	-3.78			199.9	9122.	EXIT
23	651.11	3575.958	96.79	825	2.502	13.671		-5.36	-3.98	-3.83	15		101.3	.7720	EXIT
23	651.01	3577.149	96.75	030	.926	8.957		-5.32	-4.13	-3.88	25		112.2	.7754	EXIT
21 23 12	651.01	3577.149	97.45	032	0.000	9 . 9 9 9	9 . 9 9 9 9	-5.11	-1.10	£6°£-	17		1.14	.7897.	EXIT
23	658.91	3578.346	97.38	028	999.9	9.99	8.000	-4.97	-4.15	-4.92	13		1.101	.7927	EXIT
23	658.71	3580.722	96.86	127	9 . 699	8.868	8.8988	-4.82	-4.21	-4.89	12		9.141	.8835	EXIT
23	650.61	•	96.71		999.9	9.99.9	0.000	-4.69	-4.29	-4.19	19		9.991	.8127	EXIT
23	658.61	3581.913	96.20	926	8.888	9.99.9	9.999	-4.62	-4.42	-4.28	• ·		101.2	.8168	EXIT
23	658.41	3584.296	96.22	028	9 9 9 9 9	9.99.9	9999.9	-4.59	-4.59	-4.37	22		101.9	.8216	CLEAR
23	658.41	3584.296	96.34	028	000.0	9 . 8 9 9	9.9999	-4.52	-4.52	-4.48	94		1.001	0.0000	CLEAR
23	659.31	3585.487	96.22	028	9.9.9	9 . 9 9 8	9 . 9 9 9 6	++ ++	-4.44	-4.58	• • •		98.8	8.8989	CLEAR
21 23 25	658.51	3583.194	96.28	027	9.999	9.99.9	9999.9	54.4-	-4.43	-4.68	.25		97.9	9.999.9	CLEAR
23	658.41	3584.296	96.14	027	9.969	999.9	6.666.	-4.43	-4-43	-4.80	.37		96.9	9.999.	CLEAR
23	650.61	3581.913	96.44	027	9.09.9	9.99.9		-4.51	-4.51	-4.91	46.		96.7	0.9990	CLEAR
21 23 28	650.61	3581.913	96.25	627	9.999	9.999.9	9 . 9 9 9 9	-4.57	-4.57	-5.01	ŧ.		96.3	9.9999	CLEAR
23 2	650.81	3579.531	ŗ,	028	999.9	999.9	9.999.9	-4.70	-1.71	-5.13	.43		96.4	9.999.	CLEAR
	650.71	3580.722	96.36	630	999	999.9	9.999.9	-4.75	-4.75	-5.23	.48		96.9	9.999	CLEAR

.

2.7.6.2 Program TEMPCK operating instructions

```
DPSI,CM60000,T60,TP1. ID# MAME
ATTACH,LGO,TEMPCKBIN,ID=GLASS,MR=1.
VSN,TAPE1=PMSXXX.
REQUEST,TAPE1,S,HI,NORING.
FILE (TAPE1,MRL=1024,MBL=1024,RT=U,BT=K,RB=1,BFS=105)
ATTACH,TAPE8,VCOCALS,ID=GLASS,MR=1.
MAP,OFF.
LDSET,PRESET=ZERO.
LGO.
7/8/9
```

DATA CARDS

CARD#

14-1 14-1 14-1

1	FLIGHT	DATA	
	COL		FORMAT
	1-10	FLIGHT ID	FLT EXX-XX
	12-20	FLIGHT DATE	DD MMM YY
	30-37	PMS ON TIME	HH MM SS
2	OPTION	CARD	
	COL		
	5	PROBE TYPE (OASSP,1FSSP)	i i i i i i i i i i i i i i i i i i i
	10	LOCATION (1SCATTER, 2CLOUD	,3PRECIP)
	15	# OF EOF'S TO SKIP	
	20	0USE TAS 1CAS	
	30	1USE A/C CLOCK, 2PMS CLO	OCK
	35	DIODE SIZE (020U,12.4U])
	40	PLOT TAPE INTERVAL (15 FORMA	AT)
3	\$VCOEF	\$END (F	REQUIRED)

2.7.6.2 Program TEMPCK operating instructions (cont'd)

منابع المتأكلات مرجعا المراجع

4-N PASS CARDS (TIME INCREASING ORDER)
COL 1-17 HH MM SS HH MM SS
7/8/9
6/7/8/9

3. Airborne data collection

The airborne data processing work described in this report is limited to the PDP8E only. The airborne data processing on the Aeromet Learjet is not included. The requirements for the Learjet (its inputs and outputs) are however, quite similar to those used on the MCl30E.

The airborne PDP8E consists of the following equipment:

- 1) 32K core memory and CPU
- 2) Twin Dectapes (non interruptable)
- 3) Tektronix I/O Screen/Keyboard
- 4) Input or output ½" magnetic tape
- 5) GE Terminet Printer/Keyboard
- 6) A to D Converter

Figure 3.1: Configuration for airborne PDP/8E

• -

3. Airborne data collection (cont'd)

There also exists a PDP8E at LYC, similar to the airborned PDP8E, and used primarily for program development. The configuration of peripheral hardware on the LYC computer is not the same as that on the airborne machine. At LYC, there is neither an A to D converter nor a GE I/O Terminet printer/keyboard. The DECwriter is used to input and the Centronicx printer for parameter hardcopy. Thus no VCO or hard-wired input comes into the computer directly. At LYC, inputs which are necessary for debugging are simulated by patch boards, or the reading of output tapes back into the computer.

In addition, there are significant differences in the IOT (input-output transfer) commands. The IOT's are the commands the programmer uses in order to obtain, make ready or output parameters from or to core locations. A complete list of these IOT's in numerical order will be found in appendix 19. The reader should note that certain IOT's are not available on the LYC computer (PMS and VCO inputs). More importantly, the programmer is cautioned that a particular IOT will execute quite differently on the two computers (see IOT 6031 as an example). Both computers use the same IOT's for the magnetic tape device. The appendix is divided as follows:

appendix 19A: All IOT's except magnetic tape handlers

appendix 19B: Magnetic tape IOT's

3.1 RTX/8 Overview

RTX/8 is an event driven, multi-programming, device independent real-time executive system. The basic program unit supported by the system is known as the "user program". User programs run under control of the executive (RTX8) and may use a powerful set of system directives which allow them to queue I/O requests and continue execution (CPU/I-O overlap at user level), manipulate event flags, trap on event declarations, communicate with other user programs via global event flags and start or stop other user programs. 3.2 Real time operating system - RTX/8

The main function of the real time system is to collect PMS, VCO, TWCI, EWER and INS data at the appropriate times, and to record these parameters on the TU-10 magnetic tape. All these data are received every second and stored in 4 second records.

The real time program, itself, is a complete operating system. It will automatically handle program interrupts for the various VCO's, the PMS inputs, the magnetic tape, the GE printer, the down-link system, the CRT, the EWER controller, the TWCI, and the INS ststem. Furthermore, it will also allow input and output to an operator who can start or stop any of the various tasks.

This monitoring is accomplished by use of a subsidiary user program ("MNSI") which is controlled by the RTX/8 real time system. To write more user programs or modify any existing user program, the details of RTX/8 should be well known. 3.2.1 RTX/8 General structure

The RTX/8 system involves three levels of programming based on the tri-state interrupt hardware of the PDP-8.

LEVEL I:

At level I there are no restrictions on program operation; all instructions are executable and operation cannot be interrupted. A level I program may opt to enter level II. Level I is automatically entered whenever an interrupt occurs at level II or level III. If an interrupt occurs at level I, there is no response to it and unless level II is entered in time, it will be lost.

All interrupt handlers operate at this level as does any non-interruptable routine such as the reading of PMS data. Level I is the most efficient level of operation since there is no overhead involved, but should be avoided whenever possible as interrupts may be overlooked.

LEVEL II:

Level II is the executive level of operation. This is known as the "Monitor". All scheduling, timing and data transfer occur at this level. In level II all instructions are executed, as in level I, but at any time processing can be interrupted by an external device, causing an immediate entry to the level I interrupt decoder. Once the interrupt is handled, the processor returns to where its breakpoint level II with all registers restored. Thus, the interrupt has no effect on the level II program other than to slow it down.

3.2.1 RTX/8 General structure (cont'd)

Whenever a level I or level II routine wishes to run another Level II program, it puts that program's entry location on the level II queue. These programs are executed in the order they were queued on a time available basis. Upon exit from any level I or II program, the level II queue is checked and the next job is run. If there are no level II tasks which need servicing, the processor enters level III.

LEVEL III:

The basis of level II is the execute queue. When there are no jobs to run in level II, the execute queue is examined. The execute queue contains a list of all currently active user programs in order of their priority. If there are no users currently active, it contains null job; a program which merely displays a pattern of lights on the front console. Thus, whenever RTX/8 has nothing to do at level I, II or III, null job is running.

Level III is interruptable as is level II; any external interrupt will cause a return to level I, but in addition, the level III user can generate an interrupt by the execution of certain instructions known as IOT instructions. These instructions are recognized by the level I interrupt handler which will with proper instructions direct the processor to various level II routines. Thus, these 'user directives' are employed by the user to communicate with the 'executive' in level II.

3.2.1 RTX/8 General structure (cont'd)

Each of these commands causes the monitor to perform a particular function. These functions deal with input/output, timing, address modification, delays, stopping and starting jobs and other functions which would cause chaos if the many users of the system were to handle them on their own. In this way, the 'Monitor' is able to supervise any function which affects more than one user and assures that users do not conflict. For instance, suppose two users wanted to use the printer. Without monitor control, the messages would mix and be garbled. The monitor will allow the highest priority user to complete a job before the other user may being. Also, the ability to halt the processor or leave the monitor system is taken away from the Level III user. There are presently nineteen user directives supported by RTX/8.

Level III is a very inefficient level of operation, due to the tremendous overhead in handling user directives and the need to restore all the major registers upon each return to this level, but it is the only level at which multiple programs can run asynchronously.

3.2.1 RTX/8 General structure (cont'd)

Each of these commands causes the monitor to perform a particular function. These functions deal with input/output, timing, address modification, delays, stopping and starting jobs and other functions which would cause chaos if the many users of the system were to handle them on their own. In this way, the 'Monitor' is able to supervise any function which affects more than one user and assure that users do not conflict. For instance, suppose two users wanted to use the printer. Without monitor control, the messages would mix and be garbled. The monitor will allow the highest priority user to complete a job before the other user may Also, the ability to halt the processor or leave the begin. monitor system is taken away from the Level III user. There are presently nineteen user directives supported by RTX/8.

Level III is a very inefficient level of operation, due to the tremendous overhead in handling user directives and the need to restore all the major registers upon each return to this level, but it is the only level at which multiple programs can run asynchronously.

3.2.2 Processor Management

The CPU is given to the user program at the head of the execute queue. Each user runs for a time slice (.25 seconds) and is then moved to the end of the queue. The system is not totally event driven due to this timeslicing approach. User programs which have just become eligible to compete for CPU time (waiting for an event which just got declared or a freshly activated program) are placed into the execute queue by priority.

Device requests are granted on a first come first serve basis. No more than five requests are allowed to stack up for any one device. If a user program attempts to use a device which is overstacked the user is moved to the event queue to wait for an event to be declared when the number of I/O requests is down to a predetermined number (currently two). This prevents a program from crashing the system by continuously making device requests, a common bug in a real time program.

3.2.3 Event Processing

RTX/8 is an event driven operating system. That is, all communication between various tasks in the system is accomplished by changing the state of the event flags. For example, when the PMS buffer fills, a particular event (buffer full) is declared and the appropriate flag is set. Any user program can respond to this event and clear the flag when the processing is complete.

Three levels of event flags are supported by RTX/8. They are:

- a) system level
- b) global level
- c) local level

The system events are used mainly for input/output states and timing considerations and should be of no concern to the user. Global events are defined as events common to separate user programs, such as liquid water content calculation complete, and the various programs (e.g. plot LWC, print LWC and calculate LWC) can act accordingly. Local events are used within a single user program to indicate the completion of a dependent routine (e.g. completion of output string). Each user program has its own local event word.

The following event related directives are supported by RTX/8.

CEVENT	clear event flag specified
SYNC	<pre>wait until event flag specified is declared (set)</pre>
EVENT	declare specified event (set event flag)
TEVENT	test event flag specified
ITRAP	install "trap" on specified event (a trap causes control to be passed to a specified area in the user program when the event is declared)
RTRAP	remove "trap" on specified event
TRAPE	return from a "trap"

A complete list of user directives will be found in appendix 20.

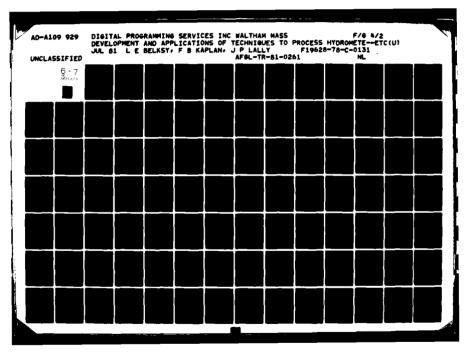
Event words are used to store the contents of all the event flags. The twelve system event flags are stored in the event word SEVT. GEVT contains the twelve global event flags. The local level event flags are stored in word 6 of each task status block (TSB see section 3.2.5.1).

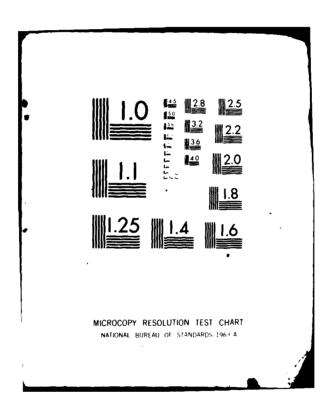
Currently the defined event flags (system and global) are as follows:

System Internal Events 'SEVT': event #'s 1-12

flag or event #	meaning
1 2 3 4 5 6 7 8	CRT input QIO's back to allowable number CRT output QIO's back to allowable number DLK output QWO's back to allowable number LPT output QIO's back to allowable number magtape QIO's back to allowable number unused DLK buffer almost empty
	DLK = downlink

flag or event #	meaning
9	LPT buffer almost empty
10	CR hit on CRT input
11	timer done for LPT output
12	timer done for CRT output


Global Level Events 'GEVT': event #'s 13-24


flag or event #	meaning
13	fresh processed KN buffer
14	new LWC ready
15	PMS-1D buffer filled (unprocessed)
16	screen erased
17	FPP done - restarts user program
18	control/C struck on keyboard
19	start 'UNIT' on VCO calibrations
20	'UNIT' done with VCO calibrations
21	LWCD done
22	time for downlink to run
	(every minute on 30 second mark)
23	unused
24	unused

There are three basic methods employed in order to execute special routines after event completion:

- a) by interrogating the global or local event word
- b) by automatic execution of a trap routine
- c) by waiting for completion of the event

The first technique is employed when alternative routines can be executed and a decision is made based upon completion

of the various events. The second is done when the event completion should always "trigger" a special routine to be executed (as in drawing axes after screen erase). The last is done when the programmer desires to wait until the event is complete before executing anything else.

To inquire about the status of an event (remembering that local events are numbered decimally from 25 to 36) the following code is used:

TAD	EVENTN	/EVENT NUMBER TO AC
tevent		/EVENT INQUIRY
RETURN1		/EVENT NOT COMPLETE
RETURN2		/EVENT COMPLETED

The automatic execution of a routine can be accomplished using the "trap" concept within the QIO block or by the automatic execution of a routine which is event-triggered. Most automatic execution is the direct result of input/output and the trap capability is included for ease of programming. Other automatic execution will have to be utilized by the event trigger. The QIO trap will be executed every time the QIO is given, and is employed by

- a) placing the first word address of eight word block in word 5 of the QIO block
- b) placing the first location of the special routine in word 6 of the QIO block
- c) executing the TRAPE command at the end of the special routine

```
3.2.3 Event processing (cont'd)
```

i

The use of the event trigger which will execute every time the event is completed requires the programmer to include the following

Somewhere in the program initialization:

	TAD ITRAP	TRAPN	/ADDRESS	OF	TRAP	BLOCK	IN	AC
	•							
	on with t	he program						
TRAPN,	.+1							
	K		/EVENT NU	JMBE	R			
	.+2		•					
	EXEC1		/SPECIAL				LOC	2.
	0		/EIGHT WO					
	0		/BLOCK FC	DR M	ACHIN	NE		
	0 0		/STATUS					
	0							
	0							
	0							
	õ							

Somewhere in the main body of the code:

EXEC1,	• • • • • •	/EXECUTE	SPECIAL	ROUTINE
	•			
	•			
	TRAPE			
	•			
	•			
	•			

The routine starting at EXEC1 will be executed EACH and EVERY TIME the event is declared!

In order to execute the TRAPE command, the monitor must be told of the location of the eight-word machine status block. To do this:

> TAD TRAPN+2 /ADDR. OF 8 WORD BLOCK IN AC TRAPE JMP . /INVALID BLOCK GIVEN

If it is desired to continue after the trap and not return to the interrupted state then:

CLA			
DCA	I	TRAPN+2	ZERO STARTER WORD
TAD		TRAPN+2	
TRAP	E		
•			/CONTINUE WITH CODE
•			
•			

When the programmer desires to stall further execution until an event is complete, he should place the event number in the accumulator and use the SYNC command, as

TAD SYNC	EVENTN	NUMBER TO AC COMPLETION
•		
•		
on with	the program	

3.2.4 Input/output queuing

I/O is done by queuing a request using the QIO directive. This request is made to a logical unit number which is translated by the system into a physical unit number. An event flag may be associated with the request if the user program wishes to wait for or be notified of I/O completion. CPU/IO overlap is supported since users must wait only for the request to be <u>queued</u>, not for I/O completion. (completion can be detected, as mentioned above, by associating an event flag with the request)

The RTX/8 system cannot allow a user to perform I/O directly because of the time consumed and interrupt returns on these IOT's. Instead the user programs a "directive" to accomplish the I/O requirement; the directive, in turn, is translated by the monitor and executed.

The directive uses a logical unit which the monitor translates into an I/O device. This translation can be altered when a peripheral device is malfunctioning so that the I/O can be handled on another peripheral device. The user's peripheral unit is referred to a logical unit number (lun) and the actual physical device is called the physical unit number (pun). Of course some I/O requests (plot, rewind tape screen erase, etc.) are inherently device-dependent and are ignored by devices that cannot execute them properly. All devices will handle the two basic functions of write (function 1) and read (function 2).

To use the Queue function, the user places an I/O block location in the accumulator and exeuctes a QIO. This packet

location is the first word address of a nine word block. The words are as follows:

word 0: function 1: lun 2: tape error status word (tape only) 3: 0 (used by monitor) 4: event number to declare upon completion 5: eight word block location (for saving state at time of TRAP) 6: address to trap to on completion (g is none) 7: I/O buffer address 10: negative word count

The following tables are assumed

	FUNCTIONS		LUN'S	
1	write	0	system only	1
2	read	1	CRT input	2
3	plot	2	CRT output	3
4	screen erase	3	DLK output	4
5	hard copy	4	LPT output	
6	rewind	5	Magtape	

ERRORS				
1	invalid lun			
2	illegal event			
3	device locked			
4	device inoperative			

Immediately after a QIO is executed, the accumulator should be queried. If it is zero the I/O has been queued but not necessarily executed. If it is non-zero, the accumulator contains the ERROR number (see table). In order to verify the actual execution of the I/O request, the user will have to use the SYNC command (see appendix 20) then check word 2 of the block. At the present time only tape commands can have an error (i.e. line printer and CRT devices will NOT have an error code in word 2 at completion). In the event of a tape error the tape status word is placed in this word 2.

Word 4 contains the EVENT number (see the discussion on EVENT); an event number is required if words 5 and 6 are specified; words 5 and 6 are used for an automatic trap on event completion, where word 5 is the first word address of an eight word block for storage of machine state and word 6 is the location in the user's program where a special routine (trap service routine) is to be executed after the QIO completion.

Words 7 and 10_8 are used for the information to be input/ output; word 7 is the first word address of the locations being read or written, and word 10 is the negative length.

TEKTRONIX OUTPUT

أندهوا أكاريه ومنالي

The various 8-word QIO blocks for Tektronix output are:

Alphabetic	Line	Plot alpha	Screen	Hard Copy
Output	Plot	in graph area	erase	Screen erase
1 1 0 0 E Z Z1 CH1 -L1	3 1 0 E Z Z1 CH2 -4	3 1 0 0 E Z Z1 CH3 -L3	4 1 0 20 20 z Z1 not used not used	

When plotting a line segment:

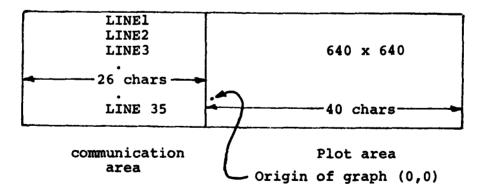
Ε

OLDY = y-coordinate of first point of line segment OLDX = x-coordinate of first point of line segment NEWY = y-coordinate of second point of line segment NEWX = x-coordinate of second point of line segment

A line will be drawn from (OLDX,OLDY) to (NEWX,NEWY) each coordinate bounded by 0 to 640

When printing alphanumeric in plot area:

PRNTX = x-printing coordinate of first character; x is bounded by 0 and 39 (indicating characters to be skipped from beginning of line)


= event number; if no event is to be flagged, set E to 0.
event number must be 1610 if screen erase or hard copy
is used; E must be specified if Z is specified

- Zl = block storage address; to be used only whe Z + 0.
 Zl is the first of 8 locations the monitor uses in storing the machine state. Zl is also used in TRAPE.

Raster Flash location, X,Y.

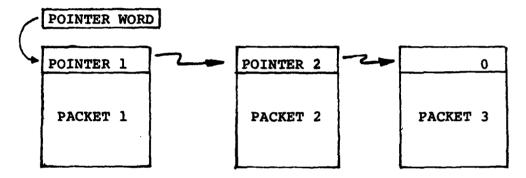
The system retains the coordinates of the next printing character in locations X and Y on page 0, field 0. X is started at 0 and stepped by 16_{10} for each character. Y is started at 767₁₀ and decreased by 22_{10} for each line advance.

Tektronix Screen layout

There are 35 lines for printing; those lines which are printed in plot area appear half way between lines printed in communication area; that is, Y takes on values 767,745,723,...,41,19 while plot lines have values 756,734,712,...,30,8.

The user need not concern himself with Y and X as they are automatically advanced. With printing in the plot area, the user specifies

> 1 ≤ PRINTY ≤ 35 0 ≤ PRINTX ≤ 39


The monitor will calculate the correct rasters for x,y.

For graph identification, 5 lines will print below the graph: lines 31, 32, 33, 34, 35. Also line 30 will be cut by the x-axis, if drawn. To label the top of the ordinate use x = 1, y = 1 as the coordinates of the first character.

3.2.5 Data base structure

and the second second second

All packets are queued in linked lists with the first word of one packet pointing to the first word of the next. In this way, packet order can be rearranged without moving large blocks of information. Dynamic storage is also linked together and a packet of any size can be parcelled from or returned to the linked list. All linked lists including dynamic memory are restricted to data field 3 (DATFLD).

The last packet in any linked list contains a zero.

3.2.5.1 Task status block 'TSB' or 'USB'

In DATFLD; fixed in core one for each task in system 308 word block Word Function 0 linkage word for queuing 1 priority (1-256) task status: (bit 9-waiting for event, 10-serving trap, 2 11-active) 3 event no. if waiting for event head of task trap list 4 head of trap queue 5 6 task local event word 7 task initial starting address machine status word (field & mode) 10 PC 11 12 Link & EAE mode contents of user location 10 13 14 contents of user location 11 15 MQ 16 AC 17 SC logical unit vectors into 20 Logical Unit Table 0 1 table containing physical 21 Logical Unit Table 2 3 Logical Unit Table 4 5 unit 22 Reserved for future development 23 Reserved for future development 24 25 taskname 4 char in sixbit 26 taskname FPPAPT address (free core F3) 27

3.2.5.2 Device status block 'DSB'

In DATFLD, fixed in core
one for each device on system
 (note: terminals are considered to be 2 devices)
108 word block

Word Function

0	Link to I/O packet queue		
1	Status word	11 active	
	bit	11 active 10 locked	
	•	9 shut down	
		8 QIO's overstacked	
2	function		
3	I/O buffer add	dr	

4 WC

5 physical unit no. (PUN)

- 6 owner of locked device (TSB addr)
- 7 entry point for driver initialization

3.2.5.3 I/O packet

In DATFLD, executive dynamic storage one for each outstanding I/O request, in linked list by device released to free core list upon I/O completion 138 word block

Word Function

0	-13 (block length for exec storage routines)
1	link to next I/O packet (0 if end of queue)
2	function
3	logical unit number (lun)
4	addr of error word in task area
5	TSB addr
6	event to set on completion (0 if none specified)
7	addr to save machine state at time of trap
10	trap addr (0 if no trap requested)
11	I/O buffer addr
12	-WC

I/O buffer addr is the address of an I/O buffer in the \underline{task} area

DSB	I/O	I/O	I/O
	pack	pack	pack

up to 5 packets may be queued for each device

3.2.5.4 Trap blocks

In DATFLD, exec dynamic storage one for each trap requested, in linked list by task can be "once only" trap meaning when trap is executed the trap block is returned to free core

2 types:

Executive Level Traps

once only traps in linked list headed by "XLT" (exec trap list)

word Function

- 0 -4 (WC)
- 1 link to next entry
- 2 event to trap on
- 3 trap addr (a level 2 entry point into executive)

XLT	trap	trap	trap
	block	block	block
			L

Task Level Traps

can be permanent or once only in linked list by task, list headed by TSB word 4

word Function

- 0 -5 (WC)
- 1 link to next entry
- 2 event no. to trap on; bit 0 set for once only traps
- 3 addr to save machine state at time of trap
- 4 PC for trap service

3.2.5.4 Trap blocks (cont'd)

			· · · · · · · · · · · · · · · · · · ·
TSB	trap	trap	trap
	block	block	block

if a trap occurs while task is servicing a trap, the trap which just occurred is queued into a linked list of outstanding traps by copying the trap block and linking it to a list headed by TSB words.

3.2.5.5 Clock blocks

In DATFLD, exec dynamic storage
used to mark off a specified time interval and declare an
 event at the end of the interval
one for each MARKT directive or system level mark time
returned to free list at end of time interval
in linked list headed by 'CLOCKQ'

word Function

- 0 -5
- 1 link to next entry (0 means end of list)
- 2 event to declare on completion
- 3 -# ticks left
- 4 TSB of task which issued MARKT (relevant only for task local events)

CLOCKQ	clock	clock	clock
	block	block	block
I wanted a state of the state o		la seconda de la companya de la companya de la companya de la companya de la companya de la companya de la comp	

3.2.5.6 Floating point processor

One of the most significant changes to the structure of the original RTX/8 operating system was the installation of the floating point processor (FPP). The FPP is capable of performing mathimatical calculations at speeds much greater than the previously used software floating point package. In addition to the speed increases, the FPP requires no software decoder as did the F.P. package.

The FPP device handler installed in the final version of the RTX/8 system is a product of extensive testing and debugging. The handler has been designed to allow multiple users. If a job is using the FPP and a second user requests its use too, the second job is put into a queue and 'held' until the first job terminates device use. The second job is then run.

During development of the FPP handler, a few problems were encountered. Perhaps the most perplexing was related to the processing of PMS 1D data while the FPP was inoperation.

RTX/8 operates the FPP in 'interleaved' mode; which allows both the PDP-8/E and the FPP to run simultaneously by sharing data breaks. The problem with this mode however is that the PDP-8 is running at half speed. When the PMS signals data ready, RTX/8 enters level 1 to process the data; if FPP is running, the PDP-8 cannot finish PMS processing before the next KNOLLENBERG interrupt. To alleviate this, the PMS handler halts the FPP to achieve full speed operation. When the

3.2.5.6 Floating point processor (cont'd)

PMS routine is done, the FPP is restarted where it left off.

The flow chart of the entire FPP device handler is displayed in figures 3.2 - 3.4. The format of the Active Parameter Table is given in table 3.1.

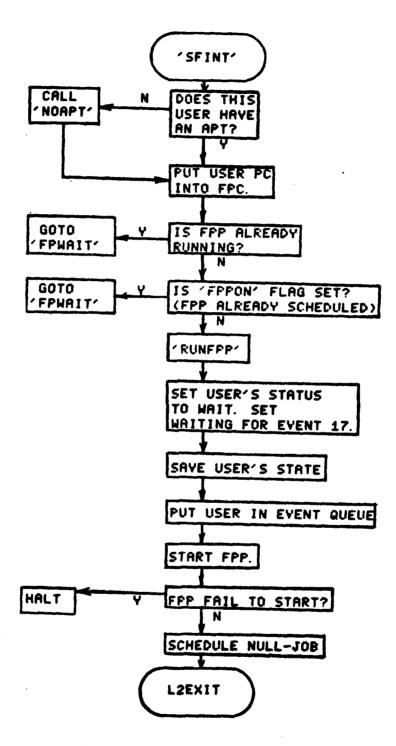


Figure 3.2: FPP device handler FPP initialization routine

497

.

i.

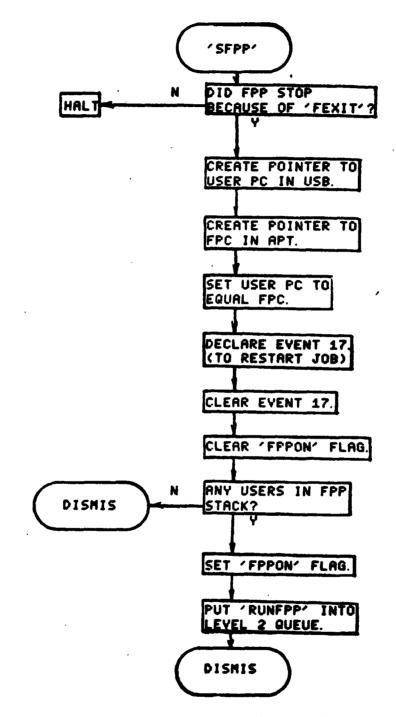
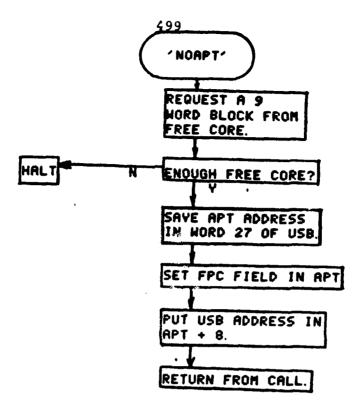
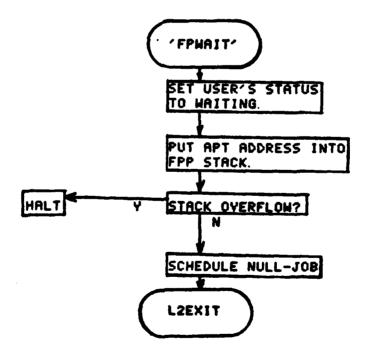




Figure 3.3: FPP device handler FPP interrupt completion routine

Create APT from free core

:

1

Put user into FPP stack

T

4.1

Figure 3.4: FPP device handler

3.2.5.6 Floating point processor (FPP) (cont'd)

In DATFLD (free core). One for each user requiring FPP use.

l
s field
(FPC)
onent
i

Table 3.1: Active Parameter table

3.2.6 PDP/8E interrupt monitor

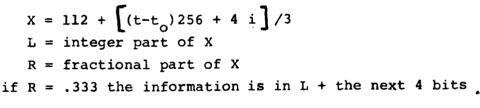
The PDP-8 interrupt monitor is a modified M1703 card installed in the PDP-8 computer at AFGL. By attaching an oscilloscope to the appropriate leads on this board the interrupt timing of the real time system can be modified.

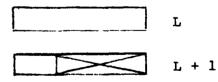
Lines:

- USER(Blue): This line is taken off the Omnibus and is low when the PDP-8 is in user mode
- ION(Green): This line indicates whether the interrupt system is on or off. (low is on)

When these lines are looked at with a two channel scope in ADD mode, they produce a three level picture of the interrupt timing corresponding to the three levels of real-time operation. This is an invaluable tool in troubleshooting hardware as well as software problems.

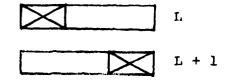
3.2.7 Data retrieval

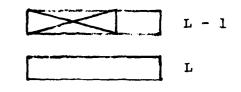

It can be seen from the following output allocations of the TU-10 tape buffer that the retrieval of a specific value can be quite difficult. The following functions are given to isolate the desired quantities:


(a) From the fast VCO data (appendix 1)
1. let t = time desired
2. let t_o = time at beginning of block
3. let k = one of the 14 desired words

location = 14 $(t-t_0) + k$

(b) From the Knollenberg PMS and VCO blocks


(appendix 18 & 8)
1. let t = time desired
2. let t_o = time at beginning of block
3. let i = item desired (1-64, as in appendix 8)



if R = .667 the information is in the right 8 bits of L, and the left 8 bits of L + 1 3.2.7 Data retrieval (cont'd)

*

if R = 0, the information is in the right 4 bits of L - 1 and in L

(c) From the status words (appendix 18)
1. let j = item desired (1-30)
X = (j-1)/3
L = integer part of X
R = fractional part of X
set t = t_o + 3R, and set

i = 48R + 17

and follow the procedure of (b)

3.2.8 Building the operating system

The RTX8 system is compiled in four sections:

- RTX8 The real time executive and Dynamic storage covers memory fields 0 and 3. Conditional assembly: AIRPL = 0 for Hanscom version (RTX8H) and AIRPL = 1 for Airplane version (RTX8). All development is done on RTX8H and then recompiled as RTX8.¹
- SYSLIB RTX8 systems library. Includes: systems interpreter, magtape program, print program and PLOT program. Unconditional assembly. Occupies field 1.
- LWC Includes liquid water content calculation program and program 'UNIT' to calculate the VCO's for printing. Field 2. Unconditional assembly.
- LWCFTC FPP functions used by LWC. (Field 2). Includes FPP I/O output conversions, SQRT and LOG functions.

To load the system, all binaries should be on Dectape 1 including RTX8.BN, SYSLIB.BN, LWC.BN and LWCFTC.BN.

R ABSLDR + *A:RTX8,SYSLIB + *A:LWC,LWCFTC (ALT MODE) .SA SYS RTX8 0-7577,10000-17577,20000-27577,30000-33000,5=0 + .R RTX8 +

To get back to OS8 from RTX8, type CTRL/K

3.2.8 Building the operating system (cont'd)

NOTES:

i

¹RTX8 must be assembled with the K option using PAL 8

506

3.2.9 Operating instructions

- 1. Mount system tape on dectape 0
- 2. Turn Tektronix screen and hard copy unit on
- 3. Put 7470 in switch register
- 4. Press: a) LOAD ADDRESS
 - b) EXT ADDRESS
 - c) CLEAR
 - d) CONTINUE

There should now be a '.' on the screen

5. TYPE: R RTX8 (there must be a space between the R and and RTX8) There should now be an '*' on the screen.

The '*' means RTX8 is waiting for a command

- 6. When RTX is started it will ask for the date. TYPE in the date in the form DD-MMM-YY. Also add the flight number.
- 7. PUT console knob on AC this will display a rotation of lights on the computer

Commands recognized by RTX8

- CTRL C causes an * to be printed on the screen and gets the attention of RTX8 as programs can be turned ON or OFF
- CTRL E erases the screen and positions printing cursor back at the top left hand of the screen. No hard copy will be printed
- CTRL P prints what is on the screen on the hard copy unit and erases the screen
- CTRL K return control to OS/8 keyboard monitor
- CTRL U deletes current input command string

3.3 Real time aircraft processing: user programs

The RTX8 is actually an operating system rather than an executing program. It has, built into it, the capability to take all inputs from VCO's and PMS, to record them onto magnetic tape, to display parameters on the printer, to plot parameters, etc., all within the constraints of real time. It has a further capability to execute subsidiary, or user programs. To execute any user program the operator enters the "ON" command followed by the appropriate user program name.

The following list summarizes the current user programs available within RTX/8. Note that the two starred user programs are not directly executable by keyboard initiation. MNSI can be called only by the monitor. UNIT is only called (as needed) by the USER program PRINT. Details and operating instructions of the remaining user programs are detailed in the following sections.

New user programs may be added by updating the user count (on page 0) and installing a user status block (USB) describing the job into the USB list in DATFLD.

Present users

- MNSI* The systems interpreter. This user activates the keyboard and starts and stops other users according to commands from the keyboard
- TAPEwrites the contents of the RTX/8 buffer onto magtapePRINTprints selected parameters on the line printer

3.3 Real time aircraft processing: user programs (cont'd)

UNIT*	A sub-user initiated by PRINT which calibrates the
	raw VCO data and sends it to the print buffer
LWCD	Computes liquid water content from the raw probe
	counts
PLOT	Plots the LWCD values on the Tektronix screen
DPMS	Allows real time Knollenberg printer dumps
CHECK	Reports end elements values below a certain level
TWCI	Displays TWCI data on the printer

* special user programs (not directly executable via keyboard)

3.3.1 User program TAPE

Program TAPE assumes the VCO input in the form shown in appendix 1, and it assumes the PMS data coming in at a rate of 256 characters (4 bits) per second. The output on magnetic tape is in the form shown in appendix 18.

Operating instructions

- 1. Put a tape on the TU-10 (make sure tape drive is on-line)
- 2. TYPE: ON, TAPE+

To terminate this program

TYPE: OFF, TAPE+

Possible errors could be:

TAPE - ERROR magtape hardware error or no write ring

RTX/8 - magtape the magtape unit does not respond to hung/off line RTX/8 check 'ONLINE/OFFLINE' switch 3.3.2 User program LWCD

The total liquid water content is calculated using the following equation:

$$LWC = \frac{\pi}{6} \rho \sum_{p=1}^{2} \sum_{i=1}^{15} N_{i,p} D_{i,j,p}$$
 in grams/M³

where

p = 10⁻³ mg/cm³
p = probe (Cloud = 1, Precip = 2)
i = channel (1-15)
j = particle type (1-5) input parameter

 $D_{i,j,p}$ is the channel diameter cubed. To minimize execution time the program has these values stored in a 150 element three dimensional table. (5 types x 2 probes x 15 channels)

 $N_{i,p}$ is the particle number density for a given channel; the program calculates this value as shown

$$N_{i,p} = \frac{count_{i,p}}{vol_{i,p}}$$

where

count_{i,p} = observed PMS particle counts
vol_{i,p} = sampling volume

The program obtains the observed PMS particle counts directly from the PMS 1D double buffer.

The sampling volume calculation is shown in section 2.1.1.5. To save time and eliminate repetitive calculations the program determines this volume in two steps. (Note that in section 2.1.1.5 the sampling volume is defined as the product of the cross sectional area times the distance travelled during the sample period.) The cross sectional areas have all been stored as a two dimensional table within the program. This table contains 30 entries (2 probes x 15 channels). The distance travelled is calculated in the program as the product of velocity (an input parameter) converted to meters/second times the sample period (an input parameter).

The particle types used in LWCD are

- l Rain
- 2 Wet snow
- 3 Large snow
- 4 Small snow
- 5 Bullet-Rosettes

LWCD, additionally, performs several auxillary calculations. These include: radar reflectivity (Z), form factor (F), MK and number totals (NT). 'LWC', 'Z', 'F', and 'MK' are sent, in ASCII, to the output buffer used by program PRINT and in fixed point, single precision (with a scaling factor) to the PLOT program. These values are calculated in the following manner.

$$Z = \sum_{p=1}^{2} \sum_{i=1}^{15} N_{i'p} (D_{i,j,p})^{2} \quad \text{in } mm^{6}/M^{3}$$

note N and D have been previously defined

<u>MK:</u>

The ratio of liquid water content to the square root of radar reflectivity can be expressed as:

$$MK = \frac{1000*LWC}{(Z)^2}$$
 with LWC in grams/M³
and Z in mm⁶/M³

Form Factor:

Form factor requires an intermediate calculation, NT. This is defined as:

$$NT = \sum_{i=2}^{15} N_{i,1} D_{i,j,1} + \sum_{i=1}^{15} N_{i,2} D_{i,j,2}$$

This is essentially the same as the LWC computation except channels 1-4 of the Cloud Probe are omitted. Once NC has been derived, form factor is calculated as:

$$F = \frac{MK}{\frac{\pi}{\zeta} (NT)^{\frac{1}{2}}}$$

Stability factor :

ł

Given the form factor, and concentration (NT) the stability factor is calculated as:

 $S = (NT)^{\frac{1}{2}}/F$

Operating instructions

TYPE: ON,LWCD+

VELOCITY: HARDWARE INPUT OKAY?

If the true airspeed is to be used, type "Y". If keyboard input is desired, type "N". If "N", the system responds with

VELOCITY:

Type the velocity in knots

PARTICLE: HARDWARE INPUT OKAY?

If "N", RTX-8 types:

PARTICLE TYPE (1-5)?

Select the proper particle type:

į

1

. 1

-1

1

1 = RAIN 2=WET SNOW 3=LARGE SNOW 4=SMALL SNOW 5=BULLET-ROSETTES

PROBE:C,P, or B?

Select Cloud Probe, Precipitation Probe, or B for both.

3.3.3 User program PRINT

į,

This user program sends one line of information to the GE Terminet printer each time the Knollenberg buffer fills (every four seconds). This contains calibrated VCO readings, a time code, LWCD results and a particle distribution. A brief description of each of the output parameters follows:

РТ	Particle type (R=rain, W=wet snow, L=large snow, S=small snow, B=bullet rosettes)
ET	Elapsed time as read from PMS-1D buffer
TIME	From Stancil Hoffman time code generator. Hours, minutes and seconds (HH:MM:SS) are included on
	line 1, seconds only appear on lines 2-15
ALT	Altitude in kilofeet: calculated as a fifth degree
	polynomial from the Kistler pressure reading
TEMP	Temperature in degrees centigrade
MAGH	Magnetic heading in degrees (0-360°N)
Dewpoint	in degrees Centigrade
TAS	True airspeed as read from the TAS computer
JW-LWC	reading from the Johnson-Williams device
EWER	LWC reading as output from the NOVA computer
LWC	liquid water content results
Z	radar reflectivity from user program LWCD
MK	M/\sqrt{z} ratio
F	form factor computation
ICED	raw ice detector value
NT	number totals

The particle distribution is displayed as one minute sums for the 15 PMS size channels. Note that the 45 sums that appear are sums of a one minute interval ending at the

```
3.3.3 User program PRINT (cont'd)
```

time associated with the data. This is in the output format shown in figure 3.5, the first set of sums are for particles during 12:03:00 to 12:04:00.

Operating instructions

- Turn Terminet printer <u>ON</u> The switch is on the back and at the right as you face it.
- 2. Press the LOCAL button hit a carriage return and make sure there is a 1 in the print column light.
- 3. Position paper so it will begin printing at the very top of the page.
- 4. Press the ON LINE button, the READY light should be on if everything is all set.
- 5. To activate the PRINT program type ON, PRINT

NOTE: The PRINT program will only print LWC, Z, MK, F, NT if the LWCD program is on. Otherwise only the VCO and probe counts data will be printed.

TN	x. xx x. xx x. xx x. xx x. xx	XX 517 X XX X
	××××	XX 517 X XX X
ICED	XXXX XXXX XXXX	XXXX XXXX XXXX XXXX XXXX
Ēų	xx.x xx.x xx.x xx.xx xx.x	X.XX XX.X XX.X XX.X XX.X XX XX.X XX
MK	x. xx x. xx x. xx x. xx x. xx	x. xx x. xx x. xx x. xx x. xx x. xx
23	. XXXE±XX . XXXE±XX . XXXE±XX . XXXE±XX	. XXXE+XX XXXE+XX XXXE+XX XXXE+XX
LWC	xx.xx xx.xx xx.xx xx.xx	XX.XX XX.XX XX.XX XX.XX XX.XX XX.XX
vco1 vco9	6 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7	6 7 6 7 6 7 6 7 6 7 9 7 9 7 9 7 9 7 9 7
vcoı	v v v v	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹
ET	SEC SEC SEC SEC	SEC SEC SEC SEC SEC
SEC	HH: MM: SS SS SS SS SS	SS SS SS SS SS SS SS SS SS
Ъđ	TT TT TT	TT TT TT TT TT
PREC	dddd dddd dddd dddd	dddd dddd dddd dddd dddd dddd dddd
CLOUD PREC	2222 2222 2222	2222 2222 2222 2222 2222 2222 2222 2222 2222
SCAT	5555 5555 5555 5555 5555	SSSS SSSS SSSS SSSS SSSS SSSS

14 15

m

13

CLOUD PREC PT

SCAT

CH

-

 \sim

Figure 3.5: Printer Output Format

SSSS = Scatter probe counts CCCC = Cloud probe counts PPPP = Precip probe counts HH = 2 digit hours

1

MM= 2 digit minutesSS= 2 digit secondsSEC= PMS elapsed secondV1...V9= VCO calibrated values

3.3.4 User program PLOT

This user program plots the data output by the LWCD program on the Tektronix CRT. This includes LWC, F, S, MK and I. The operator can choose any one of these parameters to be plotted; if M is chosen, a choice of three ranges is avialable. The axes are drawn on the right half of the CRT, leaving the left side for operator dialog. Each plot is labelled with function, time, maximum value and date so it can easily be identified. Each tick mark on the ordinate represents one minute. On the abcissa a tic represents one-fifth of the maximum. After five minutes, the plot fills up and automatically a hard copy is made, the screen erased and new axes are drawn and labelled. A new plot is also generated whenever the screen is erased by operator dialog filling the screen, or a control/E or control/P function.

If any data exceeds the plot maximum, an interpolation is done and a line drawn to where the line would have left the plot area. This also occurs when the data returns to the range of the plot.

3.3.4 User program PLOT (cont'd)

Operating Instructions NOTE: This program plots data generated by program LWCD. PLOT will not run unless LWCD is first activated.

ON,PLOT⁺ PLOT:K,F,M,S, OR I?

Respond with the desired plot parameter followed by a carriage return (+). If the operator reply was anything but M; an asterisk will be printed in the left margin, the axes will be generated and plotting will commence. If the operator reply was M the system responds with

RANGE:

1: 0-10 2: 0-1.0 3: 0-0.1 SELECT RANGE:

. Respond with either 1,2, or 3 followed by a carriage return, selecting the range best suited for the current weather conditions.

At any time the plot or range may be changed by typing:

OFF,PLOT + +P (Control/P to erase screen & make copy) ON,PLOT +

continue with desired parameters

3.3.5 User program DPMS

RTX/8 user program DPMS is included with the operating system to enable real time printer dumps of Knollenberg data.

When DPMS is started (by typing 'ON DPMS'), it aborts users PRINT and LWCD (displays a message if users did in fact abort) so they cannot compete for printer and FPP use.

DPMS is restricted to dumping only one fourth of the Knollenberg buffer available. This is due to the amount of data and the speed of the printer. DPMS determines the print parameter by sensing the PDP8 front panel switch.

<u>Bit 10</u>	<u>Bit 11</u>	Parameter
0	0	VCO
0	1	Scatter
1	0	Cloud
1	1	Precip

1 = SWITCH UP0 = SWITCH DOWN

Printer output is paged with a heading indicating the data parameter followed by 60 lines of data. At any time the parameter may be changed by changing bits 10 and 11. At that time, a form feed and new heading will occur.

DPMS is terminated as any other user program: 'OFF DPMS'. LWCD and PRINT must be re-initialized if desired.

3.3.6 User program CHECK

User program CHECK is started by typing 'ON CHECK'. Its function is to monitor end element values. If an end element drops below 3.0 volts, a message is displayed on the Tektronix screen.

The end element error message appears in the form:

PP: EEEE = XXXX

Where:

PP		CL for CLOUD PR for PRECIP	
EEEE		EL01 for end element #1	
		EL24 for end element #24	
xxxx		the value in error	
	DPMS	is terminated by:	

OFF DPMS

and the second second second second second second second second second second second second second second second

3.3.7 User program TWCI

User program TWCI will reproduce the TWCI report on the GE Terminet printer. When started, TWCI will turn PRINT off so output is not garbled. No other operator intervention is necessary.

Every 4 seconds TWCI will copy the TWCI report to the printer. The top of each page is a heading, followed by 60 lines of data. Program termination is accomplished via the OFF command. The PRINT program must be restarted. 3.3.8 Special User program MNSI

MNSI is the keyboard monitor and allows interfacing the operator to RTX/8. MNSI carries out the ON and OFF commands and also requests the date/flight at system start up.

MNSI is not directly controllable by the operator in regard to its running. When RTX/8 is started, MNSI is put into the execute queue and runs automatically. To turn off MNSI would result in a locked system, that is, RTX/8 would not respond to the operator. RTX/8 would have to be restarted.

3.3.9 Special user program UNIT

and the second second second second second second second second second second second second second second second

UNIT is very much like MNSI in that it is not controlled directly by the operator. UNIT is used by the PRINT program to calibrate the VCO's.

When the Knollenberg buffer is full, PRINT sums the probe counts and then declares event 19 to start UNIT. When the calibrations are complete, UNIT declares event 20 and PRINT sends the data line to the printer.

- 4. In-house computers
- 4.1 The LYC PDP8E computer

The PDP8 computer at LYC consists of the following equipment

- 1) 32K (MOS memory and CPU)
- 2) Twin Dectapes (non interruptable)
- 3) Tektronix I/O Screen/Keyboard
- 4) Input or output 3" magnetic tape
- 5) Dec-writer
- 6) Bootstrap loader in read-only memory (ROM)
- 7) Centronics printer
- 8) High speed paper tape reader

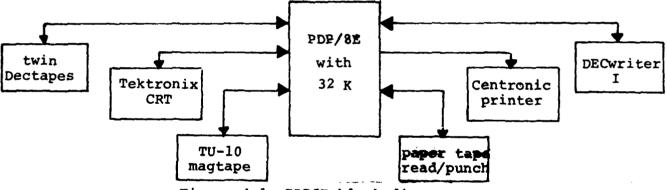


Figure 4.1: PDP8E block diagram

The magnetic tape is usually utilized as an output device (PAL8, CREF) but can be used as input, especially with program QWIK4 which can read either TU-10 or Kennedy tapes. Program generation for the aircraft computer is performed at LYC, so that the computer is predominantly used for program compilation, testing, and technician training.

The reader is referred to appendix 19 for the IOT's used for the LYC PDP8E.

4.1.1 OS/8 operating system

OS/8 is a sophisticated operating system designed for the PDP-8/E. Besides the monitor facilities, OS/8 includes a library of powerful system programs which allow the user to develop programs using Fortran IV and assembly language.

To bring up OS/8, the PDP8/E must be bootstrapped:

Turn the power key to the "on" position. A DECTAPE with the OS/8 operating system (see below) must be mounted on DEC tape drive unit 0, write lock, REMOTE. The switch register must then be set to 7470₈. Lower then raise the "HALT/SINGLE STEP" keys. Press "LOAD ADDR", "EXT LOAD ADDR", "CLEAR" and "CONT". The DECTAPE will spin and the terminal will respond by typing a monitor dot "."; OS/8 is running the keyboard monitor.

Any system or user program can be run from this point. At any time if a program "bombs", OS/8 can instantly be restarted by this boot proceedure. Detailed instructions on the OS/8 operating system may be found in the "OS/8 Handbook".

A list of the DECTAPES and their titles that are used on the Cloud Physics PDP8/E is given in table 4.1. The contents of each tape are included in a file on the DECTAPE and can be accessed by typing:

.DIR +

4.1.1 OS/8 operating system (cont'd)

and the second second

TAPE NO		TITLE		
1	*	SYSTEM WORK TAPE		
2	*			
3	*	QWIK4 AND PLOT		
4	*	MAINDECS DIAGNOSTICS		
5	*	MORT'S TAPE		
6	*	BACK UP		
7	*	A/C BACK UP		
8		RTX/8 DEVELOPMENT		
9	*	FORTRAN IV SYSTEM		
10	*	BASIC		
11	*	FLAP TAPE		
12		RTX/8 TAPE		
13		LWC TAPE		
14		FORTRAN PROGRAMS		
15		TKPLOT		
16		WORKING STORAGE 1		
17		WORKING STORAGE 2		
18		WORKING STORAGE 3		
19		WORKING STORAGE 4		
20	*	BACK UP		

 indicates the tape contains the OS/8 operating system and can be bootstrapped

Tabe 4.1: Lab DECtape Listing

4.1.2 Centronics Printer

The line printer on the LYC PDP-8/E Computer is a Centronics 703. It is a bidirectional dot matrix printer capable of printing 180 characters per second.

The 703 is designed around the 8080A microprocessor which allows many factory options. Our printer contains the Electronic Verticle Forms Unit (EVFU) option, which should be loaded prior to device use.

An assembler program was written which will set the printer to a standard 66 lines per page. 'VFULDR' is contained on two DEC tapes which would most commonly be in use when the printer facilities are desired. Tape number 1 (system work tape) contains the source (VFULDR.PA) and core image (VFULDR.SV); tape number 9 contains just the core image. To run this program, boot up the appropriate tape and type:

.R VFULDR

the machine responds with:

"VFU loader

Ready printer and press return"

The printer must be turned on (left rear of machine), the paper adjusted to the top of form, then selected on line, the user may now press carriage return on the DECwriter.

The Centronics should then print:

"VFU LOADED"

529

4.1.2 Centronics printer (cont'd)

-

:

ы. Л.

and the VFU led will light. VFULDR will now re-boot the OS/8 monitor.

4.2 FORTRAN IV

This chapter will describe the FORTRAN IV system available on the LYC PDP-8/E computer. The steps necessary to create and run a FORTRAN program are described in the next few sections, however it is assumed the reader has prior knowledge of FORTRAN programming.

OS/8 FORTRAN IV provides full standard ANSI FORTRAN IV under the OS/8 operating system. The FORTRAN IV package requires a hardware environment consisting of a PDP-8/E with 32k of memory, a console terminal and a mass storage device. The system is designed to employ a KE8-E Extended Arithmetic Element, FPP-8/E Floating Point Processor, and any bulk storage or peripheral I/0 device.

The FORTRAN system is highly optimized with respect to memory requirements, and an overlay feature is included that can permit programs requiring up to 300k of virtual storage. The library functions permit the user to access a number a laboratory peripherals, to evaluate a complete set of transcendental functions, to manipulate alphanumeric strings, and to output to the Tektronix graphics terminal or the calcomp incremental plotter.

4.2.1 FORTRAN system components

OS/8 FORTAN IV is a system of five programs. (table 4.2) Each program is a necessary part of the system and must be run in proper sequential order.

A. TECO - text editor

B. F4 - FORTRAN IV compiler

- 1. PASS1
- 2. PASS2
- 3. PASS20
- 4. PASS3
- C. RALF Relocatable Assembler
- D. LOAD Relocatable binary loader
- E. FRTS FORTRAN Run-time system

FIGURE 4.2: OS/8 FORTRAN IV system

A FORTRAN IV program written by the user is called a source program, to distinguish it from the various object programs generated by the OS/8 FORTRAN IV system. (see figure 4.3). Source programs are prepared on-line by means of the system editor, TECO. 4.2.1 FORTRAN system components (cont'd)

فالمرد والمكتم فالمكرد

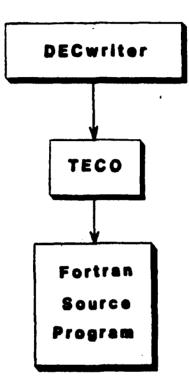
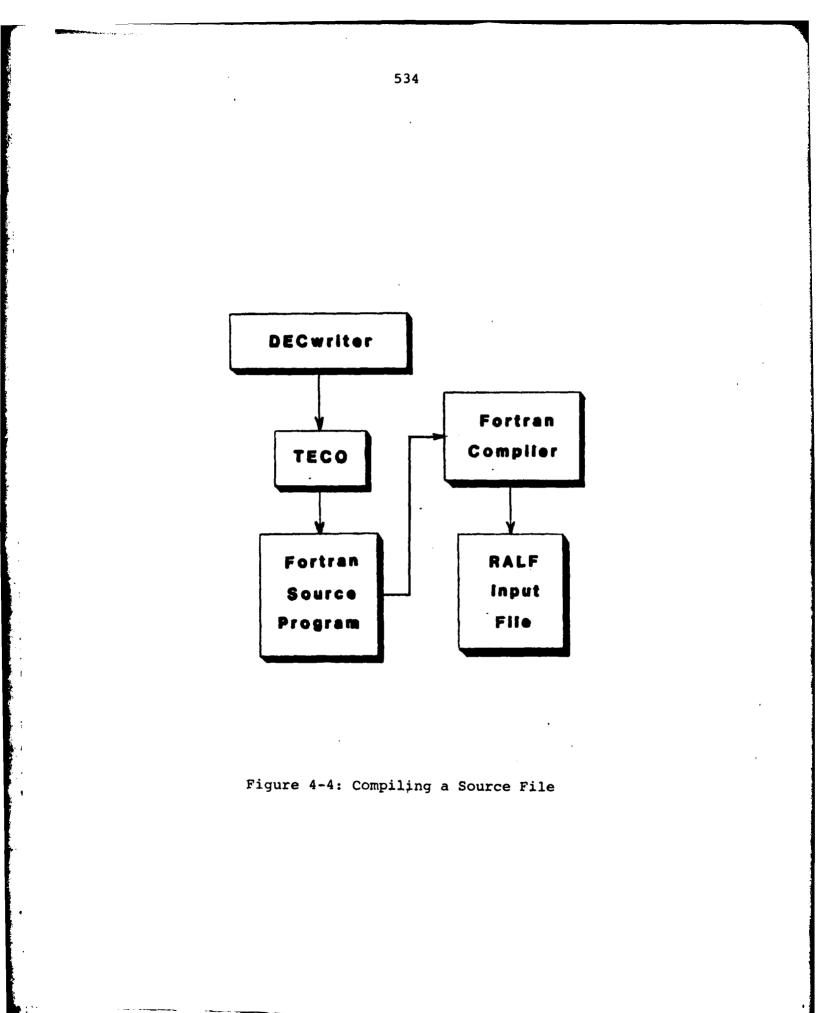


Figure 4-3: Preparing a FORTRAN IV Source File


4.2.1 FORTRAN system components (cont'd)

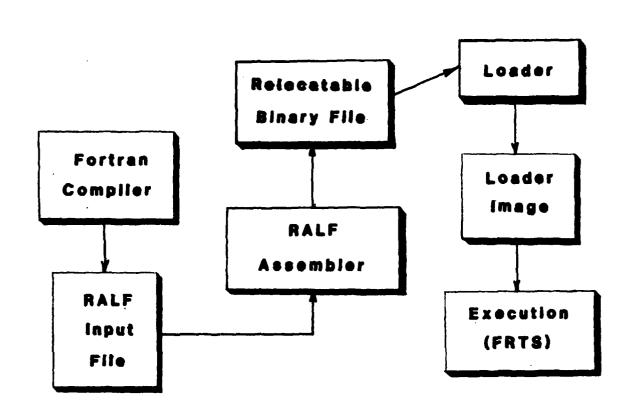
Once a source program has been prepared, it is supplied as input to the FORTRAN IV compiler, F4, which translates each FORTRAN statement into one or more RALF (Relocatable Assembly Language, Floating Point) statements and produces an output file containing an assembly language version of the source program.

Compilation errors are printed on the DECwriter in two letter codes. (see "OS/8 Handbook, pages 8-14 for F4 error messages). If a source listing has been requested, the errors are printed, after the line in error in plain English.

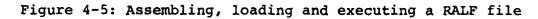
The RALF assembly language output produced by the compiler must be assembled by the RALF assembler. During assembly each RALF Assembly Language Statement is translated into one or more instruction for either the PDP-8/E computer or the Floating Point Processor and an output file is created containing a relocatable binary version of the assembly language input. (See figure 4.4)

The relocatable binary file produced by the RALF assembler is a machine language version of a single program or subroutine. This file, called a RALF module, must be linked with its main program (if it is a subroutine) and with any other subroutines or functions, including subroutines from the system library, that it requires in order to execute. The OS/8 FORTRAN IV loader, LOAD, accepts a list of RALF module specifications from the DECwriter and builds a loader image file containing a relocated main program linked to relocated versions of all subroutines and library components that the mainline requires to execute. (see figure 4.5)

4.2.1 FORTRAN system components (cont'd)


The loader image file is an executable core load, complete except for run-time I/O specifications. It may be saved on the DECtapes and run at any time. The loader also provides for an optional core load map that indicates memory allocation of the individual routines loaded. The overlay feature of the loader permits certain user defined modules of a program to be stored in the loader image file during execution and read into memory only as needed, which effectively provides a tenfold increase in maximum program size. (See figure 4-5)

The loader image file is read and executed by FRTS, the FORTRAN RUN-TIME SYSTEM. FRTS configures an I/O supervisor to handle any FORTRAN input or output request. The run-time system assigns I/O device handlers to the I/O unit numbers referenced by the FORTRAN program, allocates I/O buffer space, and also diagnoses certain types of run-time errors; Such as, I/O errors, numeric underflow/overflow, hardware malfunctions, etc. Run-time errors are indicated at the DECwriter; fatal errors cause the program to abort, however.


The system provides complete error traceback to identify the full sequence of FORTRAN statements that terminated in the error condition.

The compiler, assembler, loader and run-time system each accept standard OS/8 command decoder option specifications. "OUTPUT1,OUTPUT2,OUTPUT3 < INPUT1,...,INPUT9/OPTION"

Options are alphnumeric characters preceeded by a slash. They can be anywhere in the command line, but usually placed on the right.

.

In the state of the state of the state of the

4.2.2 TECO-Text Editor

OS/8 TECO is a powerful text editing and correcting program that runs under the OS/8 operating system. TECO may be used to edit any form of ASCII text such as program listings, manuscripts, correspondence and the like. Since TECO is a character-oriented editor rather than a line editor, text edited with TECO does not have line numbers associated with it, nor is it necessary to replace an entire line of text in order to change one character.

Writing a FORTRAN program begins with the text editor. TECO is called by typing:

.R TECO +

and responds with an asterik "*", the OS/8 prompt. Editing with TECO is actually very simple. All commands are one or two letters with or without arguments. The following table briefly illustrates some commonly used TECO commands.

ERdev:filnam.ex	Open for <u>READ</u> (input) 'filnam.ex' on device 'dev'			
EWdev:filnam.ex	Open for <u>WRITE</u> (output)'filnam.ex on device 'dev'			
Y	Clear the text buffer, then read the next page from input			
P .	Write the text buffer to output Read the next page from input			
L	Move the character pointer (cp) to the beginning of the next line			
T	Type the content of the text buffer from the cp to the be- ginning of the next line.			
Itext	Insert mode. All subsequent chara- cters are placed before the cp			

4.2.2 TECO-text editor (cont'd)

Stext	Search for string 'text', cp positioned after search string
J	move the cp to the beginning of the text buffer
FStextl\$text2\$	search for sting 'textl' and replace with 'text2'
EX	write text buffer to output. copy remaining input to output, close Input/Output. exit to OS/8 monitor.

Table 4.2: TECO Command Summary

note: all commands are separated by one 'ALT MODE' key (which echos as a dollar sign) and a command string is terminated by two consecutive altmodes.

For more information regarding TECO, see the "OS/8 Handbook" pages 2-132.

4.2.3 F4 FORTRAN IV compiler

The FORTRAN IV compiler accepts one FORTRAN source language program or subroutine as input, examines each FORTRAN statement for validity, and produces a list of errors plus a RALF assembly language version of the source program, along with an optional source listing. A job which requires more than one module (i.e. subroutine) must have each program compiled separately, then combined using the loader. F4 terminates by chaining to the RALF assembler automatically unless it was requested to exit to the monitor after compilation. The compiler is called by typing:

.R F4↓

F4 responds with the Command Decoder prompt, the asterik "*". The file/option specification line is entered as:

dev:RALF.RL, dev:LIST.LS<dev:FTCODE.FT/(options)

terminated with a carriage return. The compiler accepts four options. Any run-time options recognized by RALF,LOAD or FRTS may be specified to the compiler.

OPTION

OPERATION

A return to keyboard monitor after compilation. RALF is not called

F produce a RALF listing on 'dev:LIST.LS'

N do not include error traceback faciltities (decreases memory requirements)

Q optimize cross-statement subscripting during compilation.

Table 4.3: F4 Compiler Options

4.2.3 F4 FORTRAN IV compiler (cont'd)

i

تعديد كمريطين ومعارك للتسريل و

Any errors detected by the compiler are reported on the DECwriter in short form (see "OS/8 Handbook", pages 8-14). If a listing is requested, the errors are printed in english.

4.2.4 RALF - relocatable assembler

The RALF assembler accepts one RALF assembly language program or subroutine as input and produces a relocatable binary file, called a RALF module, as output. An optional listing of the assembled input file is also available. RALF terminates an assembly by exiting to the keyboard monitor unless it was requested to chain to the loader.

RALF honors three options:

OPTION OPERATION

G After assembly, chain to the loader, then to the Run-Time system L After assembly, chain to the loader, but not the Run-time system

> If a listing file has been specified in the command line, surpress the listing and produce only the symbol table

> > Table 4.4: RALF Options

RALF is called by typing:

.R RALF +

Т

and responds with an asterik. The command line appears as:

dev:RALF.RL,dev:LIST.LS<dev:RALF1.RA,...,dev:RALF9.RA/(options)</pre>

4.2.4 RALF - relocatable assembler (cont'd)

If more than one Input is specified, they are combined into one module and assembled as if it were one file.

When an error is detected, the error code (see "OS/8 Handbook" pages 5-38 for RALF error codes) and the line in error are printed on the DECwriter. If a listing was requested, the error code appears before the line in error.

For more details on the RALF assembler and how to code Floating Point programs, see the "OS/8 Handbook", chapter 5 and pages 8-15 to 8-20.

4.2.5 LOAD - relocatable loader

The OS/8 FORTRAN IV loader accepts up to 128 RALF modules along with any necessary library components, to form a loader image file that may be loaded and executed by the run-time system. This is accomplished by replacing the relative starting location of each section (module) with an absolute core address. Absolute addresses are also assigned to all entry points defined in the input modules. Once all RALF modules and library components have been assigned to some portion of memory and linked, absolute addresses are assigned to the relocatable binary text and to the externals.

The overlay feature of the loader facilitates running programs which are too large to fit into memory, allowing programs which require 300K of memory to run in less than 32K actual core memory.

An overlay is a set of subroutines stored on a bulk storage device. When any subroutine in an overlay is called by the mainline or other subroutine, the entire overlay is read into memory, where it generally replaces another overlay of equivalent size.

Overlays are variable-size portions of memory reserved for specific sets of overlays. FORTRAN IV permits eight levels, 0-7. Level 0 is always present in memory, and contains the mainline, common blocks, PDP8 mode code, and library components.

Levels 1 thru 7 each may contain up to 16 overlays, one of which is core resident at any given time during execution.

4.2.5 LOAD - relocatable loader (cont'd)

As execution begins, overlay MAIN is loaded into level 0 and started. Other overlays are read into memory when one of their constituent subroutines is called. No two overlays from any given level are ever co-resident simultaneously.

To call the loader, type:

.R LOAD +

Load will respond with an asterik. The command string appears as:

dev:IMAGE.LD, dev:MAP.LS<dev:PROG9.RL,..., dev:PRO9.RL/(options)</pre>

IMAGE.LD is the loader image output file. MAP.LS is the loader symbol map output file. Possible run-time options are:

OPTION

OPERATION

- C Continue the current line of input on the next line. The command decoder only permits nine input files per line. This option circumvents this.
 G Treat the current line of input as the last and chain to the run-time system.
- L Accept the single input file on this line as an alternate library, used in place of the system library.
- O Close the current level, and open the next sequential level for input.
- S If a symbol map has been requested, include system symbols.

U Ignore the rules governing subroutine calls between overlays

TABLE 4.5: LOAD OPTIONS

4.2.6 FRTS - FORTRAN run-time system

The OS/8 FORTRAN IV run-time system reads, loads, and executes a loader image file produced by the loader. It also configures a software I/O interface between the FORTRAN IV program and the OS/8 operating system, then monitors program execution to direct I/O processes and identify certain types of run time errors. The run-time system is called automatically to load and execute the loader image file produced by the loader whenever the "G" option is specified to the loader.

The run-time system is able to accept file I/O specifications. This allows the user to write a source program which refers to an I/O device as an integer constant or variables. This program may be compiled, assembled and loaded into an image file. This image file may be run any number of times each time specifying different physical I/O devices. Thus logical unit #8 may refer to the DECwriter in one run, and the line printer in another run.

To call the run-time system, type:

.R FRTS+

FRTS calls the command decoder and responds with an asterisk. The run-time system accepts two classes of input. (1) the load module to be executed. (2) Run-time file assignments. To define the image file, type:

*dev:IMAGE.LD/(options)

4,2.6 FRTS - FORTRAN run-time system (cont'd)

Possible options to FRTS are:

OPTION OPERATION H Halt after loading, but before executing the program. Pressing 'cont' switch starts the program.

Е

Ignore the following run-time errors

- a. Illegal subroutine call
- b. Reference an external in an overlay
- other than in the form 'JSR EXTERN'
- c. Reference to an undefined symbol

TABLE 4-6: Run-Time System Options

Once the image file has been defined, FRTS returns with another asterisk to accept I/O specifications. Four out of nine possible I/O unit numbers are initially assigned by FRTS.

I/O UNIT	INTERNAL HANDLER
1	paper tape reader
2	paper tape punch
3	line printer
4	DECwriter
5	
6	
7	user defined
8	
9	

TABLE 4-7: FORTRAN I/O Unit Assignment

To associate a device with a unit number type:

dev:/n

where "n" is the unit number, and "dev:" is any name of a non-directory device (LPT:,MTA0:)

4.2.6 FRTS - FORTRAN run-time system (cont'd)

To define a file structured data file type:

dev:file.ex/n for previously created files
dev:file.ex</n for non-existeant files.</pre>

In any case, only one file or device specification is permitted on each line, and no more than six directory devices files may be created by the Fortran program. A specification terminated with an ALTMODE starts the Fortran program.

4.3 Post Flight Processing

The post mission data reduction system is a series of programs which read PMS 1D or PDP-8/E flight magtapes and perform various lookup and display options. Specific time intervals may be retrieved. These programs are used on site for a preliminary data analysis prior to (and sometimes instead of) processing on the AFGL CDC 6600 mainframe. Some programs were written in PDP8 assembler and others in FORTRAN IV.

4.3.1 Programs written in Assembler language

4.3.1.1 Program QWIK4

QWIK4 performs a quick look type dump for all 1D PMS and PDP8 data tapes from the MC130E. The dump printed by the program includes time printouts, raw and calibrated VCO's, total probe counts, and certain values derived from this data.

The program may be run in two different modes. The first mode dumps the entire tape printing averages over a specified interval. The second mode allows flight time or elapsed time to be used to locate a record. This feature will be useful in locating the start of a sampling run or any time interval of interest

Operating instructions

Mount the magtape to be dumped on unit 0 with the write enable ring removed to prevent any possible corruption of data.

Turn on the GE Terminet printer, press the 'ON LINE' button and be sure that the paper is free to feed.

Respond to the OS/8 dot (.) by typing "R QWIK4" (return)

When QWIK4 is started it will print

QUICK-LOOK PROGRAM FLIGHT TAPE (F) OR KENNEDY TAPE (K)?

Respond by typing F if the magtape is a PDP8 generated flight tape of K if the tape is from Kennedy tape recorder in

the PMS system. Terminate input with a return.

NOTE: all inputs to QWIK4 are terminated with a return.

FLIGHT NO., DATE?

Enter the flight number and date or a string of up to 30 characters which identifies the tape. The program then asks

ALL (A) OR SPECIFIED (S) TIMES?

Respond with A to dump the whole tape starting at the tape head's current location. The program will not rewind the tape to the load point before dumping. This is useful if the program fails to locate a specified time interval. The operator may position the tape to the approximate time desired using the off line controls on the TU-10. The A option may then be used to determine what was recorded on the tape. There is one small problem associated with this procedure. When the off line controls are used to forward space or backspace the tape, the TU-10 does not stop on an even record boundary. Therefore the first few seconds of data produced by the program should be ignored if the tape has been moved with the off-line controls. The program will detect this error condition and print

!!!INCORRECT MAGTAPE RECORD LENGTH!!!

This printout is normal after the tape has been moved with

the off-line controls, however it should only print once. The first read done by the TU-10 will reposition the tape head to the beginning of a record and subsequent records should be readable without generating this error. If this printout repeats continuously, the tape is not in the correct format and any results printed by the program will be incorrect.

The S option allows the operator to specify a time interval on the tape to be dumped. If this option is selected the program then prints

CLOCK (C) OR ELEAPSED (E) TIME?

Type C to use the flight time clock to look up records or E to use the PMS buffer elapsed time. The program will attempt to find the specified time interval no matter where it is on the tape and will minimize tape motion as much as possible. If the tape has gone beyond the time interval desired the program will backspace as necessary to rewind the tape to the load point before each run.

After the operator has specified which clock to use the program will print

START TIME

Respond by typing the starting time for the dump in the form SSSS to specify a four digit elapsed time in seconds or

HH:MM:SS to specify a flight time. The program will then print

STOP TIME

Respond with the stop time in the same form used for the start time

The program now asks

AVERAGING INTERVAL (SECS)

This question is printed for both the specified time interval and dump all times mode. Respond with the number of seconds to be shown in each printout.

The program then begins calculating averages over the specified time interval and printing a report for each interval. Contained in each printout are the start and stop flight and elapsed times for that interval, average VCO values, average values of parameters derived from the VCO's and <u>total</u> probe counts.

Some sample printout is contained in figure 4.5.

The program may be restarted from the beginning by setting the switches to 0200 and pressing HALT, ADDR LOAD, EXT ADDR, LOAD, CLEAR, CONTINUE.

QUICK-LOOK PROG	RAM		- · · · ·					
FLIGHT TAPE (F) A OR E? E				<u>.</u>				
FLIGHT NO.; DATH ALL (A) OR SPEC:			11.30 JAN 76					
CLOČK (C) OR ËLI	APSED	(E) TIME? E						
START TIME 555 STOP TIME 555					• • •			
AVERAGING INTER	VAL (SE	ECS) 1			· · · · · · · · · · · · · · · · · · ·			~
· · · · · · · · · · · · · · · · · · ·				•• •• •• • • • • • • • • • • • • • • •				
******	****	**************************************	42.242.242.242.242.242.242.242.242.242.	ka ziek ziek ziek ziek ziek ziek ziek ziek	(1); 1); 1); 1); 1); 1); (1); 1); 1); 1); 1); 1); 1); 1); 1); 1);	: 2012 2012 2012 2012 2012 2012 2012 201	10 after after after after after after 	***
		*	QUICK-LOOK DU					
			C130E PMS1D	* *				
		والا وأدهوا لوجي ومحادث والارام	કાલક એક પ્લા એક એક એક એક એક એક એક એક			~		
FLIGHT INFORMAT	100		4 65000	D AVERAGE		ـ ، بيت مو		
ELIGHT INFUKNAL.	1 O M		I SECON AIRCRAF		F	LAPSED	IME	
E76-06 30 JAN	76		START	STOP	5	TART	TOP	
			22:59:14	22:59:14	•••••	555	555	
VCO	RAW	CONVERT	ED		TOTAL	PROBE	COUNT	S
	705/	-44 376 4	ME)					
DELTA PRESS	<u>3956</u> 3247	-44.276 ()	ويستخلف ويستخب ويستجدك ويستكله ومشالا المستخلف فستحد	UHF	INNEL	<u> </u>	CL	E
PRESSURE	7775	742.737 (MB)		- 1	7	0	4
DEWPOINT	2699	-21.454 (4	0	8
LWC/JW	4969	6. 278 ()	5/M**3)		3	. e	0	2
MAG HEADING	1748	117.201 (DEG)		4	2	0	
					<u> </u>			-
						2	0	
HEIGHT		34 (FEET) 31 (KNOTS)		···· ··· · · · · · · · · · · · · · · ·	7 8		1	
IND HISPEED TRUE AIRSPEED		27 (KNOTS)			8 9	1	0 0	
TRUE TEMP		10 (DEG C)		· · · · · · ·	10	. I 19	0	
	· · ·				11	1	à	
· · · · · · · · · · · · · · · · · · ·					12	3	<u>0</u>	
					13	2	Ö	
· · · · · · · · · · · · · · · · · · ·					14	1	1	-
					15	0	.0	
								• •• •
			١					
	· -					•		
	NTERVA	L**						
**END OF TIME T						· •· •· ···		
**END OF TIME I ALL (A) OR SPEC	1 - 1				· · · · · · · · · · · · · · · · · · ·			
**END OF TIME 1 ALE (A) OR SPEC	11160							
		Figure 4.5	: Program QWI	K4 Sample	0 u tput			
		Figure 4.5	: Program QWI	K4 Sample	0 u tput			

والأقداد والمتعققين كالالاستار

Alternatively the program can be restarted from the "ALL (A) OR SPECIFIED (S) TIMES?" question by setting the switches to 0000 and pressing HALT, ADDR LOAD, EXT ADDR LOAD, CLEAR, CONTINUE.

The following error messages may print out during execution of QWIK4.

printout	possible cause(s)	recommended action(s)
TIME INTERVAL OUT OF RANGE	time specified not on tape	use "A" option to see what is on tape
END OF TAPE	time specified not on tape	rewind tape and try another time interval
!!!MAGTAPE PARITY ERROR!!!	bad tape, bad TUlO	try another tape; if the printout is in- frequent it may be ignored; however if data looks bad this is the cause
!!!INCORRECT MAG"APE RECORD LENGTH!!!	bad tape (unlikely) question asking if tape was Kennedy tape (PMS) or Flight tape (PDP8) was answered in- correctly tape head was not on even re- cord boundary due to operator moving it using off-line controls	start program at 0200 and answer question correctly no action necessary simply ignore results

Some errors will not be detected by the program. Following is a list of the conditions and recommended actions.

disposition	possible causes(s)	recommended action(s)
TU10 "rocks" and will not locate time speci- fied	bad times on tape	use "A" option to dump tape
program will not load	bad system tape unkmown	try backup system tape notify DPSI
program "hangs up"	unknown	record AC, PC, MQ and notify DPSI
program halts	unknown	record AC, PC, MQ and notify DPSI

Table 4.8: QWIK4 errors

4.3.1.2 Program KNMON

Program KNMON was written for testing and verification of the PMS-1D interface. It also allows the associated M1703 card to be checked out. Any desired channel selected by the operator may be monitored. Every second the PMS-1D system sends 64 four digit words to the computer. Actually the PDP-8E receives its data one digit at a time in 1/256 second intervals. However it takes one second for the 64 words to become available. Each second the value of the selected channel is printed. Refer to appendix 8 for the table of PMS channels.

To operate the program

1. Respond to the OS/8 dot by typing "R KNMON (return)

2. After KNMON is started it will print

KN CHANNEL

Respond by typing the Knollenberg channel to monitor (from 1 to 64) followed by return.

3. To select another channels set SR to 0200 and press 'HALT', 'LOAD ADDRESS', 'EXTD ADDR LOAD', 'CLEAR', 'CONTINUE' then continue from step 2.

4.3.1.3 Program PLOT

Program PLOT was written for calibration and general plotting at LYC. A modified version has also been generated for use on the airplane with input on the Tektronix keyboard and output on the CRT and GE printer.

Program PLOT will

- (a) plot an x-y table on the Tektronix plotter; the table is inputted at the Decwriter. If desired, the x and/or y values can be modified by logging them in order to produce a linear-linear, a linearlog, a log-linear or a log-log plot.
- (b) generate the x values automatically after a specification of the first x and x-step is given
- (c) allow the user to select the low and high values of x and y to be used on the plot
- (d) plot each point with +; the user can choose whether or not to connect the plotted points with a line
- (e) label the plot with an alphabetic description
- (f) plot a least square best fit curve to the data (first or second degree), and print out the fitting function
- (g) generate a table of deviations of the least square fit to the original data, and calculate the RMS error
- (h) allow the user to modify the data, limits and descriptions and replot, with a new least square fit, without having to retype the entire x-y table.

4.3.1.3 Program PLOT (cont'd)

In order to execute program PLOT, and perform the many optional capabilities, the following step-by-step procedure should be executed:

1. Mount Dectape 136 on unit 0, write enabled and remote

2. Switches set to 7470

3. Press Addr-load, Ext.-addr-load, Clear, Cont

4. Computer responds with a dot

5. Type R PLOT

6. Within 22 seconds the computer responds with PLOTTING PROGRAM

- 7. IS X ON LOG SCALE?
 If the x-data is to be logged base 10, answer Y otherwise N
 8. IS Y ON LOG SCALE?
 If the y-data is to be logged base 10, answer Y otherwise N
- 9. IS DELTA X CONSTANT? If the x-data (before taking logs) is equally spaced, answer Y, otherwise N
- 10. If delta x is constant, the computer will request X-START and DELTA-X, as X-START?

Type the starting value and return,

DELTA-X?

Type the difference between successive x-values and return

11. The computer responds with

ENTER X, Y TABLE

or ENTER Y TABLE (for constant delta-x)

4.3.1.3 Program PLOT (cont'd)

- 12. For each value input the computer will first print the index number (1,2,3,...etc) If only y-values are being inputted, the user will type the y-value followed by a return; if both x and y values are being inputted, the user will type the x-value, followed by a comma, followed by the y-value and a return.
- 13. When all values have been inputted, type 1E35 return
- 14. The computer will respond with

LIMITS OF X ARE XXXXX, XXXXX which indicate the low and high values of the x-table.

Then it prints

TYPE LIMITS TO USE

The computer expects two numbers, separated by a comma, the first number is the value of x at the left end of the plot; the second is the value of x at the right end of the plot. There will automatically be 10 divisions in this range. If the first limit typed is unacceptable (larger than the limit found) or if the second limit typed (smaller than the limit found) is unacceptable, step 14 is repeated.

15. Step 14 is done for Y

16. The computer will print

CONNECTING LINE?

If a line is desired between points in the order they were typed in, answer Y. An answer of N will eliminate the connecting line.

17. The computer will respond

TURN ON PLOTTER, TYPE DESCRIPTION

Type a description to be printed on the bottom of the

560

4.3.1.3 Program PLOT (cont'd)

plot. This description is limited to 67 characters. A rubout will respond with a carriage return, and the user should type the entire description over again. Make sure plotter is on, and "on-line" before pressing return.

18. The plot will be made. At its conclusion, the computer will ask

LEAST SQUARE FIT?

If a curve fitting the data is desired answer Y; otherwise answer N and proceed to step 22.

19. The computer responds

DEGREE(1 OR 2)?

Degree 1 is a straight line fit; degree 2 is a quadratic fit. Respond either 1 or 2. Any other response will force step 19 again.

- 20. The fitting curve will be plotted. The least square polynomial will be printed
 - (a) at the top of the plot, and
 - (b) on the Decwriter
- 21. The computer then asks

DEVIATIONS?

If the table of x, y, calculated-y, deviation-y and RMS is desired, answer Y; otherwise answer N

22. The computer will ask

REPLOT?

If the data is to be modified, eliminated, or extended, or if another plot is to be made changing either x or ylimits, or the description, or the fitting function, respond with Y; otherwise respond N and proceed at step 6

4.3.1.3 Program PLOT (cont'd)

23. The computer will ask NUMBER?

If there are no changes go to step 23(c).

(a) The computer expects the index number of the data point being changed. It will accept an index number one greater than the length of the table (omit the number corresponding to 1E35) with the assumption that the table is being extended. The table may be extended repeatedly by entering an index number equal to one more than the previous maximum number. If the number typed is invalid, step 23 is repeated. After the number is accepted, the computer will type X,Y =

Respond with the value of x, a comma, the value of y and return. Step 23 will be repeated. The data being typed will be logged according to responses made in steps 7,8

CAUTION: DO NOT ENTER 1E35 FOR THE LAST NUMBER. The program knows how many points there are in the table.

(b) If a value of x,y is to be eliminated, after its index number has been accepted, and X,Y = has printed, type

1E35,1E35 return

(c) When all changes have been made, answer NUMBER? with 0 return The procedure restarts at step 14

4.3.1.3 Program PLOT (cont'd)

ERRORS

- 1. Alphabetic errors: If an error is discovered before return is pressed, and the information was alphabetic, as in steps 7,8,9,16,17,18,19,21,22, type the rubout key; the computer will respond with a carriage return; retype the entire response, beginning with the first character.
- 2. Numeric errors: If an error is discovered before a comma or return is pressed, and the information was a number, as in steps 10,12,14 and 23, type the rubout key; the computer will not respond (automatic feature of the 27 bit floating point package); then type the entire number over again, beginning with the first character. CAUTION: If two numbers were being inputted, separated by a comma, the rubout will erase the CURRENT NUMBER ONLY.
- 3. Incorrect responses to Y or N: The computer will specifically look for the Y. Any character other than Y will be treated as N except a carriage return, which should be used only after a character has been typed.

RESTART ADDRESS: 0200

4.3.1.4 Program HSKPNG

HSKPNG will dump PMS 1D housekeeping information to the GE Terminet printer onboard the MC130E aircraft. To run, type: .R HSKPNG

The following message will appear on the Tektronix screen

"HSKPNG--1D HOUSEKEEPING DUMP" "SET SR, HIT CONT" "SW0=A, SW1=D, SW2=P"

1. Either one or two probes may be selected by raising the appropriate switches. To dump the

Axial scatter probe set switch 0 Cloud'droplet probe set switch 1 Precipitation probe set switch 2

After probe selection press the 'CONTINUE' switch. If the TU-10 isn't at load point, the tape will be rewound.

2. "START TIME-"

Enter:

- A) <CR> to dump entire tape OR
- B) HH:MM <CR> to start the dump at a specific time. (NOTE: IF INPUT TIME IS PRE FLIGHT, "*** TAPE STARTS AT HH:MM ***" WILL PRINT, AND YOU'LL BE ASKED START TIME AGAIN.)

4.3.1.4 Program HSKPNG (cont'd)

3. "STOP TIME-"

If you entered <CR> for start time, this question will be omitted.

Enter:

again.

- A) <CR> for no stop time. (DUMP TO END OF FILE) OR
- B) HH:MM <CR> to stop the dump at a specific time (NOTE: IF THIS TIME IS PAST THE END OF FILE, AN ERROR MESSAGE WILL PRINT AT THE END OF FILE. IF THERE IS NO END OF FILE, YOU WILL NOTICE THE TAPE ADVANCING TO END OF TAPE.)
 When the tape reaches the stop time, "END OF INTERVAL" will be printed, and you'll be asked 'START TIME-'

At any time, switch 11 on the switch register may be flipped up to suppress line printer output and then send real time and eleapsed time to the Tektronix screen. This can be used to omit certain data from the output. Setting switch 11 back to a 0 (down) resumes line printer output.

TU-10 ERRORS

If the TU-10 encounters an error while reading, a tape error message will be printed on the screen. The TU-10 error number will be stored in the AC, and the program will halt. Press continue to resume operation.

4.3.1.4 Program HSKPNG (cont'd)

•

Possible error messages are:

PARITY ERROR END OF FILE END OF TAPE INCORRECT RECORD LENGTH

ERROR NUMBERS

BIT	ERROR
0	ERROR FLAG
1	TAPE REWINDING
2	BOT
3	SELECT REMOTE
4	PARITY ERROR
5	EOF
6	INCORRECT RECORD LENGTH
7	DATA REQUEST LATE
8	EOT
9	FILE PROTECT
10	READ COMPARE ERROR
11	ILLEGAL FUNCTION

COLUMN HEADINGS

+15S PTMP SIZE REFV -15S ETMP +5S STMP	AXIAL +15v. supply voltage probe temperature size range selected laser ref. voltage -15v. supply voltage electronics temp. +5v. supply voltage +5v. supply temp.	DROP & PRECIP +15S +15v. supply voltage MTMP mirror temperature EL01 element 1 voltage EL24 element 24 voltage -15S -15v. supply voltage 5tmp +5v. supply temp. +5S +5v. supply voltage ELRT electronic temp +15S +15v. supply voltage
5TMP +15S	+5v. suppiy temp. +15v. supply voltage	ELRT electronic temp +15S +15v. supply voltage
PTMP	Probe temp.	MTMP mirror temp

		566	****				
•	+15C FTHP	500 1	6156- ETHP	+58	51n¤	+.155,	ftmp
20152141 Gul	1.1.1 2 111	1111 4933	2178 3555	.0109	2023	H7.44	J531
	05.55 0109	2025 4743	0531 2337	,4931	2181	0555	0109
J10 19.132119			D531 2340 D531 2336				
120 19132129	0655 A10a	2029 475.3	0531 2335	4933	2147	0555	0109 J108
	0555 0108		9631 2334				
Job 19:32:59	0555 0108						
	0555 0107	2029 4781	D531.2324	4931	2112	0555	0107
J70 19.133119	0655 0107	2025 4785	.D531 2321	.493 J	2102	0555.	0107
JYO 19:33:39			D531 2317				
J7U 13+33137			10531 2314 0530-2311				
110 15:33:59			D531 2309				
	0555 A106	2029. 479,7	0531-2304	.4931	2049	6555	6105
130 19:34:19	05.55 <i>0</i> 105	2025-48.01	D531 2300	4931	2 03 5	0555	J105
	0555 0105	2029 48.05	0.530 2298	4930	2027	0555	0105
153 19:134:39			D530 229H				
170 19:34:59	05.55 2104	2027 4511	D531 2291	.4931	2005	0555	D104
L/U			1531 2264				
193 19:35:19							
	0554 .01.04	2029: 4315	D531-2277	4932	0967	1.555	0103
219 19: 35: 39			0530 2275				
			0531-2271				
230 19:33:59	1555 0102		1531 2268 1531 2264				
259 15:36:19			1531 2261				
			15.31 2258				
272 19::36:39	1555 0101						
			-1-5312252				
2,3 19:36:59			1531 2250				
318 19:37:19	0556 0100		1-532 2246				
			1532 2241				
3:3 19:37:39						1-556	
_			1533 2235				
353 19.:37:59			1533 2233				
378 19:38:19			1.534.2230				
3/4 17.400417			1534 2227 4534 2225				
358 19:38:39			4534 2222				
			4.535 2218				
413 19:33:59			4535 2217				
			1.535, 2214				_
438 19:39:19	1560 0093 1560 0398	2036 4715	1536 2210 1536 2208	455).	1781	1-5-5-3	3056
450 19:39:39			4837 2235				3059
			13.36 2203				
473 19.:29:59			1537 2230				3059
	1552 0395	2035-4931	1537. 2197				
470 19:40:19	15.				-	1561	
510 19:140:39	15 15 4.3.1	.4 Program	m HSKPNG ou	tput		1561 1562	
			1538 2186	:9759			
523 19:40:59	1462 0101	2341 4773	45.39 2184	4963	1715	1553	7727
	1563 2102	2041 4975	4 539- 2161	.4 96 1	1713	1563	J101

4.3.2 Programs written in Fortran IV

4.3.2.1 KNOL1D

Introduction

KNOLLD is a PDP8/E Fortran IV program which has been developed for the Cloud Physics Branch to obtain quick and informative printer display of aircraft data from the lab PDP8/E computer.

KNOLLD will accept an input tape from either the PMS 1D Kennedy recorder or the PDP8/E TU-10 flight tape. The output device is the line printer and an example may be found in figure 4.6. Note however, the example contains one 'block' of data, whereas, KNOLLD prints two per page.

Operation

The KNOLLD program is currently stored on the "Fortran System" DECtape (#9), the source code is on tape 14, "Fortran programs". To run KNOLLD, tape #9 must be mounted on unit 0 and the operating system booted up. The TU-10 or Kennedy tape should be mounted on the magtape drive, set to unit 0 and on-line. In response to the OS/8 monitor dot on the DECwriter, type 'EXECUTE KNOLLD.LD'. FRTS will load and start running KNOLLD.

KNOL1D begins by asking a battery of questions:

4.3.2.1 KNOL1D (cont'd)

"PDP-8/E KNOL1D VX.YY"

1 "FLIGHT NUMBER?" THE FLIGHT NUMBER IS ENTERED IN THE FORM "EYY-NN"

2 "TAPE FORMAT?

- 0 PMS
- 1 TU-10 (RAWINS)
- 2 TU-10 (FPPINS)
- 3 TU-10 (SEMI-INS)"

THE TAPE FORMAT MAY BE PMS OR TU-10 (SELF EXPLANATORY), <u>RAWINS</u> IS FOR TAPES WITH INS FORMATTED LAT/LON. <u>FPPINS</u> IS DATA CONVERTED TO FORTRAN FLOATING-POINT, <u>SEMI-INS</u> IS THE CURRENT FORMAT AND CONTAINS LAT/LON IN BINARY FORMAT-ADJUST FORM.

3 "A-D BUFFER?

0 = NEW (> APRIL 80) 1 = OLD (< APRIL 80)" IN APRIL 1980 THE A-D BUFFER FORMAT WAS CHANGED. FLIGHTS BEFORE APRIL 1980 ARE #0, OTHERWISE #1.

4 "FLIGHT DATE?" THE FLIGHT DATE IS ENTERED IN THE FORM "DD-MMM-YY"

5 "MAG HEADING DEVIATION = 0.0, CHANGE?" THE MAGNETIC DEVIATION IS PRESET TO ZERO AND MAY BE MANUALLY CHANGED TO ACCOMODATE FLIGHTS IN AN INFINITE RANGE OF LATITUDES AND LONGITUDES. AN ANSWER OF "Y" RESPONDS WITH:

4.3.2.1 KNOL1D (cont'd)

- 6 "CHANGE TO?" THE USER NOW ENTERS THE NEW MAGNETIC DEVIATION IN DEGREES.
- 7 "AVERAGING INTERVAL IN SECONDS?" THE NUMBER OF SECONDS TO AVERAGE PER BLOCK OF DATA (i.e. 60 SECOND AVERAGE).
- 8 "START, STOP TIMES (AS 'HHMMSS HHMMSS')?" ENTER START AND STOP TIMES AS INDICATED. TO PROCESS AN ENTIRE TAPE TYPE: "000000 9999999".
- 9 "PARTICLE TYPE: HARDWARE INPUT OK?" IF HARDWARE INPUT OF PARTICLE TYPE (ONLY TU-10 FLIGHT TAPES) FROM THE C130 EVENT SWITCHES IS DESIRED, TYPE "Y", OTHERWISE MANUAL RESPONSE IS NECESSARY, AND ...
- 10 "PARTICLE TYPE (1,2,3,4,5)?" ENTER THE NUMBER 1-5 CORRESPONDING THE APPROPRIATE WEATHER CONDITIONS.
 - 1 = RAIN (DEFAULT FOR PMS TAPES)
 - 2 = WET SNOW
 - 3 = SMALL SNOW
 - 4 = LARGE SNOW
 - 5 = BULLET ROSETTES

11 "COMMENTS?"

TWENTY-FOUR CHARACTERS ARE RESERVED FOR ADDITIONAL USER COMMENTS 4.3.2.1 KNOL1D (cont'd)

TAPE errors are reported on the DECwriter terminal, and could be parity errors, incorrect record length and end of tape/file. When KNOLLD has reached the stop time, it will return to question 8.

571

4.3.2.1 KNOL1D (cont'd)

B

©

D

E

F

G

H

FLIGHT ID FLIGHT DATE INITIAL AIRCRAFT AND ELAPSED SECONDS DATA AVERAGING CYCLE COMMENTS

INITIAL LATITUDE AND LONGITUDE

PARTICLE TYPE; HARDWARE OR USER INPUT

AVERAGED VCO'S; RAW AND CALIBRATED

SUMMED SCATTER, CLOUD AND PRECIP PROBE COUNTS

PROBE CHANNEL SIZES NUMBER/METERS**3 - MN BANDWIDTH

SCATTER, CLOUD AND PRECIP PROBE HOUSEKEEPING STATUS WORDS

VARIOUS SELECTED PARAMETERS

Figure 4.6A: KNOLLD.FT sample output section definitions

LAT B 22	стр	р с Ц Ц Ц	101 7 N	0 9 5 6E+04 0 11 0.0E-01	13 0	15 0. DE-01		21 0.06-01	0 23 0 0E-01 222 0 25 0 0E-01 242	27 0. 0E-01			LHC 0 00E-01 6/Mr3		MIND 0 00	TAS 6	HEIGHT TRUE T
2:59-58 ESEC 0	FROEE COUNTS		оо • • • • • (ш	• • • •	0		00 00	0 0	0 0 0 0	0 0	0 c	>	(()	+5VS 5TMP +155 PTMP	4027 15 470 223	ELRT +158	4586 3699 14 89 2468 4942 2661 1493 278
FLIGHT E79-28 TATE 23-MAY-79 (A) 20	D LABEL D RAW CALIBRATED	TAS 542 548 NOTS	64 64 0	1 1001 (1002) 0 0 0 0000112 1 1000 1010 4315 -6 0 1060 0	4974 -01	2836	TAS 3465 133 2	DETECTOR O O O	- THCT (CTKL) 0 0 0 0 0001154 	(ETR2) 0 0 0 0 0	4 DELIAP 5143 7.9 MB		PROBEHOUSEFEEFING	ETMP		+15% MTMP EL01 EL24 -15% 51MP	280 4 2606

Figure 4.6: Sample KNOLID output

572

.

l

4.3.2.2 Program KN1UTL

Introduction

A PDP8/E Fortran program was written during this contract period, and can generate line printer output of RAW tape data. Program KNlUTL will read a flight or PMS 1D magtape and dump user selected areas of the Knollenberg buffer.

KNIUTL accepts user input from the DECwriter terminal as to which type of tape to process and what area of the tape to list. Currently, KNIUTL will process either a PMS 1D tape or a TU-10 flight tape (in any of three formats: RAWINS, FPPINS, SEMINS), and dump VCO, scatter probe, cloud probe or precip probe data.

Operation

The source of KNlUTL is stored on DECtape 14; the image file is on tape 9. To run KNlUTL mount tape 9 on unit 0, write enable, boot-up the OS/8 monitor and type 'EXECUTE KNlUTL.LD'. FRTS will load and start running KNlUTL, which will respond by identifying itself:

"K N 1 U T L V X.YY FLIGHT ID/DATE?"

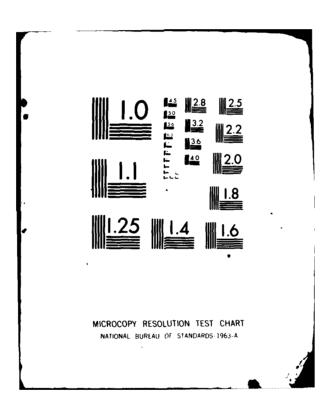
where the user enters the flight ID and data in a 78 character alpha-numeric field. Next the tape type is defined:

```
4.3.2.2 Program KN1UTL (cont'd)
```

```
"TAPE FORMAT?
0 = PMS l = TU-10 (RAWINS) 2 = TU-10 (FPPINS)
3 = TU-10 (SEMINS)"
```

respond by entering the one digit which corresponds to the tape mounted on the TU-10 drive.

"A TO D BUFFER? 0 = OLD; 1 = NEW"


If the tape is a TU-10 tape, the A-D buffer type must be defined. Enter 0 if the flight is before APRIL 1980, and a 1 if it is after APRIL 1980. Finally the option parameter is entered:

"OPTION? 1 = VCO 2 = SCA 3 = CLD 4 = PRE"

Enter the number 1-4 to indicate the Knollenberg buffer section desired.

Selected data will now be printed on the Centronix printer in paginal form, with a heading appearing at the top of each page.

	77 35							
-								
	┝						i	

4.3.2.3 JWPLOT.FT

One of the liquid water content measurement systems used by Cloud Physics' onboard the MCl30E aircraft is known as the "JW" (Johnson and Williams). While the device is a good means of measuring LWC, it has problems. As aircraft pitch changes during climbs and decents, it will produce values below zero. DPSI has developed a program (JWPLOT) run on the CDC computer which will correct JW data on the Tektronix CRT. The problem with this correction process is the time required to correct one flight, approximately one hour per plot. Two plots are generated per flight. The CDC computer has only two Tektronix CRT's, each having a twenty minute time limit. This makes JWPLOT unfiar to other users. A new version of JWPLOT has been developed to run on the PDP8/E computer. It was taken directly from the CDC version and modified where necessary to operate under DEC FORTRAN IV.

Running JWPLOT is a little different than other Fortran programs in that it requires a DECtape data file. The data file tape must initially be zeroed. This is accomplished through PIP. With tape #9 on unit 0, and the data file tape on unit 1, write enable, type:

.<u>R PIP</u>+ * A:</Z\$ (ALTMODE PRODUCES DOLLAR SIGN)

The tape on unit 1 is now zeroed. Type

.<u>R FRTS</u>+ *<u>JWPLOT</u>+ *A:JWPLOT.DF</8\$ (ALTMODE)

4.3.2.3 JWPLOT.FT (cont'd)

Sec. 20

 This generates a data file on unit 1 called JWPLOT.DF. On the following pages is a JWPLOT dialogue and sample plots.

The PDP8/E JWPLOT program is constructed from eleven programs.

JWPLOT	main code
CORE	memory device buffer
RMTA0	PMS tape processor
TEKLIB	Tektronix library
CONTIM	seconds to H:M:S subroutine
INPUT	accepts start/stop times flight ID/date
DISPL	displays plot area
JWCORR	JW correction subroutine
SCALE	scales x,y coordinates to plot area
READT	returns one second of JW/ALT data per call
LINEAX	draws x or y line axis

JWPLOT, CONTIM, INPUT, DISPL, JWCORR, SCALE and READT are taken directly from the CDC code. RMTA0, CORE and TEKLIB are commonly used PDP8/E library routines. LINEAX is a newer version of the line axis routine previously used on the PDP8/E. Running JWPLOT is as any other Fortran program except that a data file is necessaryfor corrected JW. J W P L O T --- VERSION: 1.00.0

ł

CALIBRATION DATE IS 26-SEP-80, CHANGE VALUES? (Y/N) <u>Y</u> ENTER THE JW-LNC CALIBRATION (A, B, C) -3. 68, 417. 4E-4, 0. 0 3. 68000E+00 7. 40000E-04 0. 00000E-01 ENTER THE PRESSURE CALIBRATION (A, B, C) 1132. 0, -. 0992, -. 1649E-6 1. 13200E+03-9. 92000E-02-1. 64900E-07 ENTER THE TAS CALIBRATION (A, B, C) -50.0,.05,0.0 5.00000E+01 5.00000E-02 0.00000E-01 ENTER THE IAS CALIBRATION (A, B, C) -637.94, 1866, -. 9991E-5 6. 37940E+02 1. 86600E-01-9. 99100E-06 ENTER THE TEMP CALIBRATION (R, B, C) -50. 74, . 0098, . 2525E-7 5. 07400E+01 9. 80000E-03 2. 525005-08 RAW DATA OUTPUT? (T/F) E USE CALCULATED TAS (T/F) F INPUT THE START AND STOP TIMES (HH MM SS HH MM SS) 00 00 00 99 99 99 DEFAULT VALUES FOR HT(KM) ARE 0.0, 10.0 DO YOU WISH TO CHANGE THE LINITS? (Y/N) Y ENTER THE NEW LIMITS (MIN, MAX) 0.0,5.0 DEFAULT LIMITS FOR JW-LWC ARE -0. 3, 1.5 DO YOU WISH TO CHANGE THE LIMITS? (Y/N) N ENTER FLT ID (EXX-XX) E80-04 ENTER FLT DATE (DD-MMM-YY) 28-JAN-80 ----

Figure 4.7: JWPLOT dialogue

a marine Million

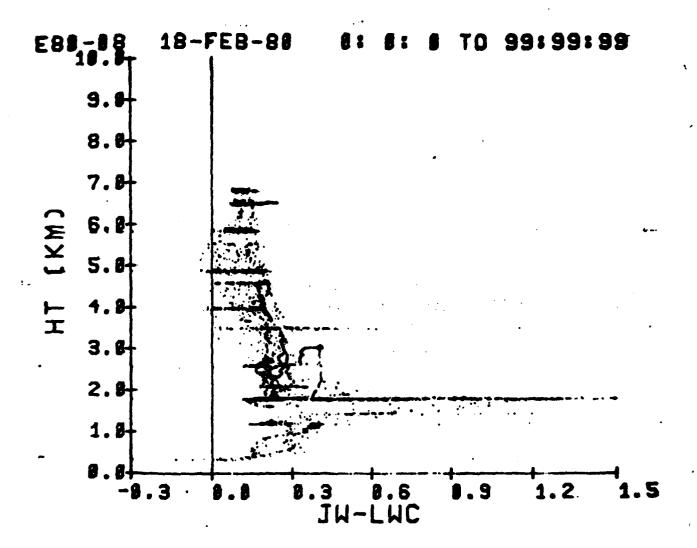


Figure 4.8A: JWPLOT sample output - uncorrected

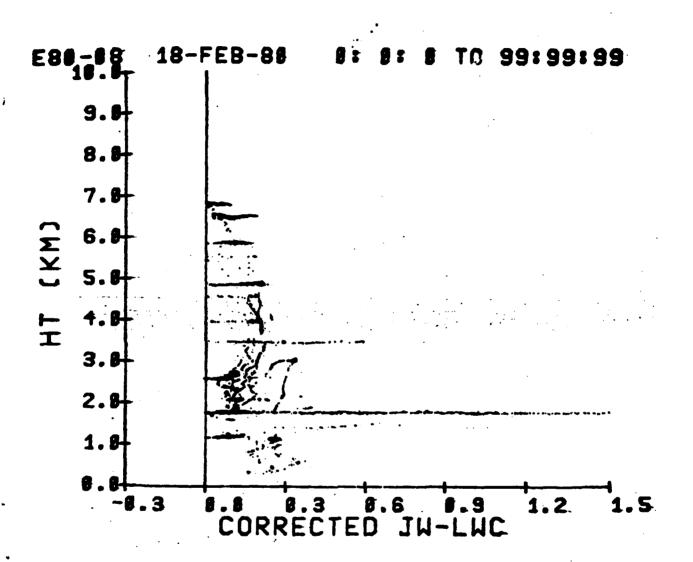


Figure 4.8B: JWPLOT sample output - corrected

4.3.2.3.1 CONTIM.FT

CONTIM is used by JWPLOT and will convert total seconds to "HH:MM:SS".

CALL CONTIM (SECS, TIME)

where:

SECS are total seconds TIME is a two element array which will contain "HH:MM:SS"

4.3.2.3.2 INPUT.FT.

San State State State

INPUT is another JWPLOT subroutine which will accept from the user:

- (1) start and stop times (HH MM SS HH MM SS)
- (2) new height (km) limits
- (3) new JW-LWC limits
- (4) flight ID
- (5) flight date

This information is returned to JWPLOT through common memory.

4.3.2.3.3 DISPL.FT

DISPL is used in JWPLOT to draw the plotting area of the JW graph. Flight ID, flight data, start and stop times are draw at the top; x and y axis are drawn and labelled. Whether the plot is corrected or uncorrected data is indicated at the bottom.

4.3.2.3.4 JWCORR.FT

JWCORR is used in JWPLOT to perform the JW-LWC correction. By building a table of intercept points using the Tektronix cross-hairs (identifying true zero values), JWCORR can subtract or add the proper offset to align the JW-LWC data points to zero.

4.3.2.3.5 SCALE.FT

SCALE is used to program JWPLOT to scale JW/HT data points to the plotting area and to ensure that no points fall beyond x and y limits. If so, the points are set to extreme x and y values and plotting occurs on the graph boundaries.

4.3.2.3.6 READT.FT

READT was developed for JWPLOT to return one second data from a PMS 1D flight tape. READT uses the RMTA0 subroutine which processes four second tape data; however for each call to READT, a pointer (KNBASE) to the current second's data is incremented to the next second. After four calls (four seconds of data), READT reads another tape record

4.3.2.3.6 READT.FT (cont'd)

and resets KNBASE to second #1. Errors are detected by READT and generate an error message on the DECwriter terminal:

"TAPE ERROX X"

Where X is the error (1-7)

Error codes are then returned to JWPLOT for further processing. (i.e. END OF TAPE CONDITION).

4.3.2.3.7 LINEAX.FT

LINEAX is a Fortran subroutine which will draw and label an x or y axis on the Tektronix CRT. It replaces an older version also called LINEAX. The major differences being: (1) numbers plotted on the y axis are at 0° angles as is the x axis, and (2) axis max and min limits are scaled down automatically by LINEAX to ensure a maximum field width of 4 characters for each tic mark numeric-label. 4.3.3 Fortran subroutines

There is a set of Fortran (also written in RALF) subroutines used on the PDP8/E for processing aircraft data.

- (1) RMTAO: was written in RALF assembler to convert PMS 1D or TU-10 flight tapes to Fortran format
- (2) CORE: was received through the "PDP-8 Software News" Fall 1980 magazine. CORE enables Fortran IV to execute the ENCODE and DECODE functions not possible before in PDP8/E Fortran IV
- (3) SCANT: was developed to eliminate the drudgery of processing tape errors when using RMTA0. SCANT also very quickly searches tapes for start times.

4.3.3.1 Subroutine RMTA0

1

RMTAO is a RALF coded subroutine used by Fortran programs to read PMS 1D and TU-10 flight tapes. Since its inception, many revisions have been developed to make RMTAO an extremely versatile addition to the Fortran library. RMTAO features include:

- 1) processes PMS or flight tapes
- 2) seven diagnostic error codes
- 3) five tape functions (expandable to eight)
- 4) TU-10 tapes include LAT/LON and event word data
- 5) economical memory resources

RMTA0 requires six arguments per call:

CALL RMTAO (A1,A2,A3,A4,A5,A6)

where:

Al = 276 element array tape buffer

1-64	Second	1	
65-128	97	2	Knollenberg buffer see appendix 8
129-192	69	3	
193-256	99	4	
257-258	•	1	
259-260	12	2	Latitude/Longitude (in radians)
261-262	••	3	
263-264	**	4	
265	**	1	,
266	11	2	event word data (1 thru 5)*
267	**	3	
268	*1	4	

4.3.3.1 Subroutine RMTA0 (cont'd)

 269-270
 Second 1

 271-272
 " 2
 SIGN & ID data word for LAT/LON

 273-274
 " 3

 275-276
 " 4

* event word codes

1 = RAIN

- 2 = WET SNOW
- 3 = SMALL SNOW
- 4 = LARGE SNOW
- 5 = BULLET ROSETTES

A2 = tape format

- 0 = Kennedy tape
- 1 = TU-10 tape
 - INS data in RAW format
- 2 = TU-10 tape INS in FPP format
- 3 = TU-10 tape INS in semi-FPP format

A3 = A-D buffer tape

0 = OLD (BEFORE APRIL 1980)

1 = NEW (AFTER APRIL 1980)

A4 = tape error code

CODE MEANING

0	NO	ERROR

- 1 PARITY
- 2 END OF FILE
- 3 INCORRECT RECORD LENGTH
- 4 BEGINNING OF TAPE
- 5 DRIVE OFF LINE
- 6 END OF TAPE * (AT EOT, RMTA0 AUTOMATICALLY PERFORMS
 - A REWIND
- 7 BLANK TAPE READ

```
4.3.3.1 Subroutine RMTA0 (cont'd)
A5 = - number of second to process for READ (FUNCTION 0) OR
+ number of records to space forward or backward
        (FUNCTIONS 3 and 4)
A6 = tape drive function
```

CODE MEANING

0	READ A RECORD AND CONVERT TO FPP
1	REWIND DRIVE, TURN OFF LINE
2	REWIND DRIVE
3	FORWARD SPACE
4	BACKSPACE
5	
6	UNUSED, PRODUCES 'OFFLINE' #1
7	

The source file of RMTAO is on tape #14 and is called RMTAO.RA.

4.3.3.2 Subroutine CORE

The CORE subroutine, received from "PDP-8 Software News" Fall 1980 Magazine, is a RALF coded program which will create a memory I/O buffer accessible via Fortran READ/WRITE commands. CORE requires only one call to define the I/O unit number. More than one call will produce unpredictable results.

CALL CORE (u)

Where: u is the I/O unit to assign the memory buffer (not previously used in system configuration our system uses Unit 5)

A write to the memory device is like printing on the terminal. A read will transfer the buffer to Fortran as through the characters were typed on the keyboard.

ENCODE - Simulated feature

A number can be written to the memory device using a numeric format (I,F,D) then read back using alphanumeric format (A).

example: NUMBER=12.3 WRITE (5,10) NUMBER 10 FORMAT (F6.2) READ (5,20) ALPHA 20 FORMAT (A6)

At this point, Alpha = "12.3"

The ENCODE function is particularly useful as demonstrated by the NUMBER subroutine (on the following page).

4.3.3.2 Subroutine CORE (cont'd)

2.2

DECODE - Simulated feature

Virtually identical to encode, decode will convert an alphanumeric string to number format.

.....

ALPHA=6H 14.67 WRITE (5,10) ALPHA 10 FORMAT (a6) READ (5,20) NUMBER 20 FORMAT (F6.2)

NUMBER is now set to 14.67

4.3.3.3 Subroutine SCANT

Every job run on the PDP8/E computer which processes aircraft data tapes requires TU-10 drive control. Every job must also process tape error messages, should an error occur during execution. Most jobs handle data in a time frame; that is, within a start and stop time. For these reasons DPSI has developed a RALF subroutine (SCANT) to handle magtape overhead control.

Subroutine SCANT interfaces the user Fortran IV program with the RMTA0 (read magtape 0) subroutine. SCANT features include:

- 1. reset, read and scan functions
- 2. common memory communication block
- stop time detection and start time not located
- 4. full tape error diagnostics in simple English
- 5. aircraft clock rollover algorithm

All communication variables and parameters are passed through common 'A'. This common block contains the following:

KNBUF	Knollenberg tape buffer
KNBASE	PTR to current second in KNBUF
FORMAT	tape format (PMS/TU-10)
ATOD	ATOD buffer type
ERROR	RMTA0 error code
SECCNT	number of seconds to process (1,2,3,4)
CURSEC	current second
RECORD	current tape record

4.3.3.3 Subroutine SCANT (cont'd)

STARTT search start time STOPT search stop time FIRSTT first time on tape FUNCT SCANT function TERROR SCANT error code

Internal time is always maintained in total seconds (H*3600 + M*60 + S) as in variables CURSEC, STARTT, STOPT, FIRSTT. Whenever time is printed, as in error messages, it is converted back to a normal format (HH:MM:SS). When a rollover condition occurs, 24 hours (86400 seconds) is added to CURSEC, therefore if a start time greater than 23:59:59 is specified, it too should include a 24 hour rollover, i.e. 25:05:00.

The three functions RESET, READ and SCAN of subroutine SCANT are selected through an arithmetic variable, FUNCT:

FUNCT.LT.O RESET

rewind tape drive and read record one. FIRSTT is set to the first time on the tape.

FUNCT.EQ.0 READ

one second of tape data is read. *

FUNCT.GT.0 SCAN

the time in STARTT is searched for in whatever direction necessary.

* One tape record contains four seconds of data. When a record is phyiscally read, KNBASE is set to second 1, (=0); when a READ is processed, KNBASE is incremented to second 2 (=64), second 3 (=128), second 4 (=192), second 5; next record is read, and KNBASE is set to 0.

4.3.3.3 Subroutine SCANT (cont'd)

If SCANT intercepts a search error, it reports it through another arithmetic variable, TERROP.

TERROR.LT.0 the stop time (in STOPT) has been exceeded by the last read. *

TERROR.EQ.0 no error

TERROR.GT.0 the start time (in STARTT) has not been located. It could be either before FIRSTT or after the EOF, EOT or BTR.

* A stop time will result if a) the stop time has been passed, b) or if an EOF, EOT or BTR has been detected. ERROR will contain the actual situation. See section 4.3.3.1 for RMTAO error codes.

After each call to subroutine RMTAO, SCANT interrogates the tape error word, a non-zero value calls the error message processor. These are seven possible errors:

1) PARITY

displays error message "HH:MM:SS PARITY ERROR ON RECORD: XXXX" the next record is read.

2) END OF FILE (EOF) displays error message "HH:MM:SS END OF FILE AT RECORD: XXXX" if SCANT was currently searching for a start time, TERROR=1. If the EOF occurred during a read, TERROR=-1.

4.3.3.3 Subroutine SCANT (cont'd)

- 3) INCORRECT RECORD LENGTH (IRC) displays error message "HH:MM:SS INCORRECT RECORD LENGTH ON RECORD: XXXX" the next record is read
- 4) BEGINNING OF TAPE (BOT) no error message, used for search function. If BOT is hit twice in a row during a search, TERROR=1.
- 5) OFF-LINE "*** TU-10 OFF-LINE... FIX AND PRESS RETURN!" Correct the tape drive problem and press the keyboard return key.

6) END OF TAPE (EOT) displays error message "physical end of tape" the end of tape marker has been sensed. If SCANT was currently searching, TERROR=1. If the EOT occurred during a read, TERROR=-1.

7) BLANK TAPE READ (BTR) displays error message "BLANK TAPE READ (HH:MM:SS)" The last read took too long, and therefore no data is on the tape. If SCANT was currently searching TERROR=1. If the BTR occurred during a read, TERROR=-1.

4.4 Tektronix plotting package

When the Cloud Physics Branch received the Fortran IV system, processing of aircraft data was virtually unlimited. Almost anything done on the CDC could be done on the PDP8/E except plotting.

Fortran IV will support a Calcomp plotter which was in division property, but there was no interface. Cloud Physics also had a Tektronix graphic terminal but Fortran IV did not support one.

DECUS (Digital Equipment Corporation Users Society) catalogue contained a Fortran IV plotting package for the 4010 terminal at only reproduction costs (\$40). Cloud Physics purchase this software and it has been incorporated into the system library.

4.4.1 TKPLOT.RA

TKPLOT is a DECUS plotting package designed for PDP8/E Fortran IV and a Tektronix 4010 terminal. It is compatible with DEC Calcomp software and includes facilities to save plots in a data file and then retrieve them later or send to a Calcomp plotter. TKPLOT contains the following subroutines:

XYPLOT	moves the pen to x, y coordinates specified with pen up or down
PLOTS	plotting package initializer
FACTOR	reduces or increase plotting image scale
WHERE	returns current x,y coordinates
PLEXIT	terminate plotting session
PAGE	user plot annotation subroutine
SPAGE	produces a hard copy of the CRT image
SYMBOL	plots a string or special character at the coordinates specified

XYPLOT, PLOTS, FACTOR, WHERE, PLEXIT and SYMBOL have Fortran standard calls and are referenced in the "OS/8 Handbook" on page 8-128. PAGE and SPAGE were included to allow manual annotation of a completed plot. PAGE has no arguments. Simply execute:

CALL PAGE

The Tektronix terminal will respond by illuminating the cross-hairs and beep the bell. PAGE has nine functions:

4.4.1 TKPLOT.RA (cont'd)

move (without drawing) Μ draw a line D draw a line with an arrowhead Α draw a point Ρ enter horizontal lettering mode L enter verticle lettering mode V quit annotation (no hard copy, no saved plot) Q save display (hard copy, plot saved in data file) continue (no hard copy, plot saved in data file) S С

More information on TKPLOT may be found in the TKPLOT reference manual.

SPAGE is the same as calling PAGE and typing S for save plot. This feature allows a program to run by itself and produce hard copies.

4.4.2 Subroutine CROSS

Subroutine CROSS is a RALF coded routine which has been added to the Tektronix plotting package, TKPLOT. When called from Fortran IV, CROSS will illuminate the Tektronix crosshairs. The user then positions them and signifies he/she is done by typing a character on the keyboard.

At this point, CROSS calculates the x,y coordinates of the cross-hair intersection (scaled to current limits) and returns them along with the coded character. Calling sequence is:

> INTEGER CHAR REAL X,Y CALL CROSS (CHAR X,Y)

Where:

CHAR = character type X = x coordinate Y = y coordinate

On the following page is a list of keyboard characters and their corresponding codes. 4.4.2 Subroutine CROSS (cont'd)

•

.

ł

а

CHARACTER TYPED	NUMBER RETURNED
0	0
2	2
3	3
4	4
1 2 3 4 5 6 7	1 2 3 4 5 5
6	5
8	7 8
8 9	89
9	2
A	17
B C	18
C	19
D E F	20
E	21
G	22 23
H	24
I	25
Ĵ	26
ĸ	27
Ĺ	28
M	29
N	30 31
Q	31
P	32
Q	33
R S T	34
5	35
Ť	36
U	37
V.	38
H	39 40
X	40
Y Z	41 42
۷.	42

Table 4.9: CROSS character codes

4.4.3 Subroutine NUMBER

NUMBER is a Fortran subroutine which will plot the value of an integer or real variable on the Tektronix CRT. The plotting package received from DECUS did not contain this subroutine which left us unable to numerically annotate CRT plots. DECUS TKPLOT only included a symbol plotting routine, which is to say; 'alpha string plotting routine'. The original NUMBER routine developed by DPSI converted the number to alpha string, then called SYMBOL to plot the variable. With the addition of CORE (see section 4.3.3.2) to our PDP8/E library, NUMBER has been revised to use the CORE routine which increases the flexibility of plotting images. Call to NUMBER is:

CALL NUMBER (X, Y, H, N, A, F)

Where:

X,Y	x,y coordinates					
H	height of digits					
N	number to plot (integer/real)					
A	angle					
F	format (max field length =12)					

Example:

X Y H N A F CALL NUMBER (1.0, 1.0.0.5, 3.1415, 0.0, 6H(F8.4))

Note: the format must appear as it would in a normal format statement; parentheses must be present and Hollorith format must be used.

4.4.3 Subroutine NUMBER (cont'd)

•

The DEC version of NUMBER Plots only integer or real formats. DPSI's version of the NUMBER subroutine will plot in any format (MAX 12 characters) i.e. F5.2, I7, E11.3, 1PE10.1, etc.

4.4.4 Subroutine LINEAX

LINEAX is a Fortran IV subroutine designed to draw and label an abcissa or ordinate axis on the Tektronix terminal. LINEAX was originally written by DPSI for use on the CDC 6600 computer, and then modified for use on the PDP8/E system.

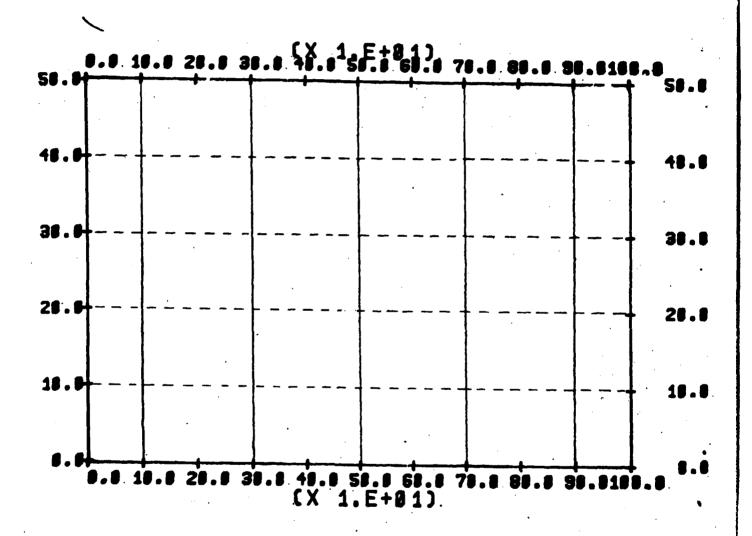
LINEAX is extremely versatile and capable of drawing an axis of variable length and size. Features include:

- 1) label right or left of axis
- 2) selectable symbol and tic size
- 3) automatic exponential scaling of tic values

LINEAX requires ten arguments for each call. NOTE: the plotting package must be initialized by calling plots (CALL PLOTS), and the encode/decode feature must be assigned by calling CORE (CALL CORE(5)). Call to LINEAX is:

CALL LINEAX (X,Y,LENGTH,ALPHA,NUMCHR,AXIS,START,STOP, CYCLE,SIZE)

Where:

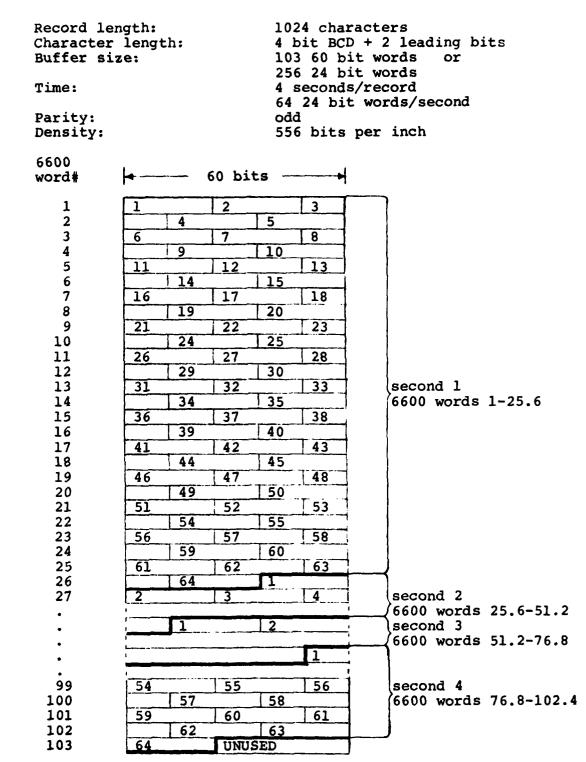

х	x coordinate of left end of axis
Y	y coordinate of left end of axis
LENGTH	length of axis in inches
ALPHA	axis alphanumeric in ALPHA
NUMCHR	number of characters in ALPHA +NUMCHR = label left of axis -NUMCHR = label right of axis

4.4.4 Subroutine LINEAX (cont'd)

and the second state of the

AXIS	axis orientation				
	0 = x axis				
	l = y axis				
START	starting axis value				
STOP	ending axis value				
CYCLE	number of divisions				
SIZE	alphanumeric label size				

The following figure is an example of LINEAX axis.


Figure 4.9: LINEAX sample plot

, 602

			υ	CALIBRAT	TION	
VCO CHANNEL	SYMBOL	DESCRIPTION	INTERCEPT	SLOPE	3RD TERM	UNITS
1	IAS	Indicated Airspeed (a/c Pitot static)	- 695.67	.207	11516E-4	knots
7	TEMP	Total Temperature (Rosemount)	- 49.05	.0095	.32616E-7	о °
£	EWER		0	ч	0	counts
4	TWCI	TEMP2 (fluid & water mix in measuring sensor)	0	Ч	o	counts
Ŋ	DEWP/FROS	Dewpoint (Cambridge 1011)	- 50.02	.0104	43953E-7	с °
9	LWC-JW	Liquid Water Content (Johnson Williams)	- 3.3	6.37E-4	0.0	gm/m ³ co
٢	MHEAD	Magnetic Heading (a/c Compass)	180.0	036	0.00	No
œ	K-PRES	Air Pressure (Kistler)	+1135.76	1005	.50014E-7	qu
6	TAS	True Airspeed	- 50.0	+0.05	0.0	m/sec
10	ICING RATE		0.00	+1.0	0.0	counts
11	TWCI	CTRl (reference frequency)	0	1	0	counts
12	TWCI	TEMP1 (temp of carrier fluid in ref. sensor)	0	г	0	counts
13	TWCI	CTR2 (measured frequency)	0	1	0	counts

ومالا مأو علام والمكافرة اللاحم والمطاعرة والمتركم والمتكافية المكتمونة والمعاومة والمعاومة

Appendix 1: VCO's recorded on C-130 PMS-1D system

For a complete description of the 64 word block refer to appendix 8.

Appendix 2: Kennedy tape record format

CODE	PARTICLE TYPE
1	RAIN
3	WET SNOW
5	LARGE SNOW
7	SMALL SNOW
9	BULLET-ROSETTES
11	COLUMNS (4:1 ASPECT RATIO)
13	NEEDLES (7.5:1 ASPECT RATIO)
15	PLATE FAMILY
17	AGGREGATE PLATES & DENDRITE
19	DENDRITE FAMILY
21	GRAUPEL
23	RIMED DENDRITES

NOTE: EVEN TYPE CODES ARE USED INTERNALLY IN THE PROGRAM

· Appendix 3: 1D Particle Type Codes

	• • • • •	· · · ·	· · · ·	• •		
TYPE	**HTOX TABLE**	EQUATION	ADJUSTE	CLASS	BREAKPOINT	r
NUMBER	NAME	NUNBER	M	B	CN)	
1	RAIN		.990	.18C		
3	WET SNOW	1 2	.990 1 150	.180 .180	N LE 24	• •
5	LARSE SNOW	1	1.150	.180		
7	SMALL SNOW	1	1.150	.180		
9	BULLET-ROSETTES	1	1.018	.318		
11	COLUMNS	1	1.302	.761		
13	NEEJLES	1 2	200 1.280	3.040 1.080	NLE 1	•
15	PLATE FAMILY		•938 1•076		N LE 3.	•
17	AGGREGATE P + D	1 2	.940 1 200	• 550 -• 440	NLE 3	•
19	DENDRITE FAMILY	1	1.030	.716		
21	GRAJPEL	· · 1	1.150	.180		
23	RINED DENDRITE	1	1.150	.180		

Appendix 4A: Particle Number Adjustment Coefficients (HTOX TABLE)

NA'HE'	F XTOD TABLE**		EQUATION	EJ MELTEO UIAMETER 30 ex	LAMETER Ex	BRE AKPT		
RATY-	•		1	1.00JE+00	1.606	·	ł	
	WET SYOW	•	-1	1 000E+00 1.360E+00	1.000 .653	C C	1. 000	T.
LARGE	PONS	•	+	4 - 3 0 0 E - 01	. 782			
.	SMALL SNOW	ł	4 10	4.600E-01 3.700E-01	. 782	C FE	• 500	7
in the second se	BULLET-ROSETTES	, s , s , s , s , s , s , s , s , s , s	74 (V)	2.560E-01	. 667 1. 640	C LE	• 208	5
COL JHNS			1	4.380E-01	1.560			
NEEDLES		:	: •••	2.550E-01	.670	:	i	
PLATE	FAMILY			3.400E-01 3.400E-01	. 783	CLE	1.000	Ŧ
363	AGGRESATE P + 0	, F		3.400E-01 3.400E-01	. 783	С Г С	1.000	
DENDRITE	TE FAMILY	;	، جا	3 4002-01	. 790			
GRAJPEL	:	·	N M	5.000E-J1 4.900E-01 4.600E-01	. 910 . 680 . 900	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•410 1•350	7 7 1 2
RIMED	DENJRITE		4	4.6005-01	.900			

Appendix 4B: Equivalent Melted Diameter Coefficients (XTOD TABLE)

,

607

WORD	CONTENTS
1	TIME @HH:MM:SS@
2	CHANNEL 16 COUNTS (INTEGER)
3	LARGEST PARTICLE SIZE (INTEGER-MU UNITS)
4	PARTICLE TYPE [(SCATTER*100+CLOUD)*100 +PRECIP]
5	AVERAGING INTERVAL (INTEGER SECONDS)
6	OUTPUT OPTION (0=ABRES, 1=AFWL)
7	INTERPOLATION SWITCH (O=OFF, 1=ON)
8	FLIGHT ID FLT E78-01
9	FLIGHT DATE @DD@MON@YR
10-54	NORMALIZED CHANNEL NUMBER DENSITIES *
55-67	CALIBRATED VCO VALUES
68-71 72-75	PROBE LWC TOTALS **
72-75	PROBE Z TOTALS **
76-79	PROBE DO VALUES **
80-83	PROBE K VALUES **
84	FORM FACTOR
85	NT
86-130	CHANNEL CENTER DIAMETERS ***
131-175	CHANNEL BARWIDTH'S IN MM ***
176-220	CHANNEL LIQUID WATER CONTENTS *
221	POTENTIAL TEMPERATURE
222	DEWPOINT
223	SATURATED VAPOR
224	VAPOR
225	RELATIVE HUMIDITY

- * ARRANGED IN ORDER (15,3), 15 CHANNELS OF SCATTER, CLOUD THEN PRECIP
- ** IN THE ORDER OF SCATTER, CLOUD, PRECIP THEN TOTAL PROBE
- *** ARRANGED IN ORDER (3,15), CHANNEL 1 OF EACH PROBE FOLLOWED BY CHANNEL 2 OF EACH PROBE, ETC...
- **e** SPACE

Appendix 5: KNOLL1D (TAPE2) Output Format

WORD	KNPLT1D AXIS CODE	NAME
55	1	PRESSURE
56	2	EWER
57	3	HEIGHT
58	4	TEMPERATURE
59	5	DEWPOINT
60	6	LWC-JW
61	7	LWC-IR
62	8	LWC-TWCI
63	9	INDICATED AIRSPEED
64	10	MAG HEADING
65	11	CALCULATED AIRSPEED
66	12	TRUE AIRSPEED
67	13	TWCI-1
68	14	LWC SCATTER
69	15	LWC CLOUD
70	16	LWC PRECIP
71	17	LWC TOTAL
72	18	Z SCATTER
73	19	Z CLOUD
74	20	Z PRECIP
75	21	Z TOTAL

Appendix 6: KNOLL1D (TAPE2) VCO Placement

-	m	9	6	12	15	18	21	24	27	30
precip probe status	+15v. supply voltage	mirror temp	element l voltage	element 24 voltage	-15v. supply voltage	+5v. supply temp	+5v. supply voltage	electronics temp	+15v. supply voltage	mirror temp
	7	5	8	11	14	17	20	23	26	29
cloud probe status	+15v. supply voltage	mirror temp	element l voltage	element 24 voltage	-15v. supply voltage	+5v. supply temp	+5v. supply voltage	electronics temp	+15v. supply voltage	mirror temp
*	Ч	4	2	10	13	16	19	22	25	28
scatter probe status	+15v. supply voltage	probe temp	size range selected	laser reference voltage	-15v. supply voltage	electronics temp	+5v. supply voltage	+5v. supply temp	+15v. supply voltage	probe temp
ending digit of second	0	ı	2	e	4	S	و	7	œ	6

ł

;

1

Appendix 7A: PMS 1D status word allocation

Status word

¢

ł

•

1

Parameter

1	Percent overload
2	diode #1 reference voltage
3	diode #32 reference voltage
4	-15v. supply voltage
5	-12v. supply voltage
6	+5v. supply 'A' voltage
7	+5v. supply 'B' voltage
8	+15v. supply voltage
9	mirror temperature

Appendix 7B: PMS 2D status word allocation

 3	m	4	5	و	2	8	6	10	10 11	12 13		14	15	16
		1.4750	TWCI		LWC-	HEAD-	TWCI TWCI LWC- HEAD+PRES- MAC	Ű	LCING	TWCI	TWCI	TWCI	min	hru
 CUT	JUST	EWER	TTEMP 2	DEWE	MC	ING	SURE	CHI	RATE CTR-1 TEMP1CTR-2	CTR-1	TEMPI	CTR-2	sec	CH 16 counts

the first state of the state

32	с С	15
31	ch	14
30	сч	13
29	ch	12
28	ų	11
27	ch	10
26	ch	6
25	ch	8
24	ch	2
23	ch	9
22	ch	2
21	ch	4
20	ch	m
19	ch	7
18	ch	ч
17	status *	
	scatter	

1.

91	2	
48	ch	15
47	ch	14
46	ch	13
45	ch	12
44	ch	11
43	ch	10
42	ch	6
41	ch	8
40	ch	2
39	ch	و
38	ch	S
37	ch	4
36	ch	ო
35	ч с	7
34	ch	
33	status *	
	cloud	

64	ch	15
63	ch	14
62	ch	13
61	ch	12
60	ch	11
59	ch	10
58	ch	σ
57	ch	80
56	ch	2
55	ch	و
54	ch	Ś
53	ch	4
52	ch	m
51	ch	8
50	ch	
49	status *	
<u> </u>	precip	

Appendix 8: PMS/VCO Output Block

TAPEl	(SPANDAR)	
PARITY:	EVEN	
DENSITY:	800 BPI (7 TRACK)	
RECORD:	VARIABLE LENGTH	
TIME:	1 SECOND PER DATA	RECORD

تعريفه والمعر والمعاشين ومطارككم والا

1

The SPANDAR input tape consists of multiple sets of: 1 header record followed by many data records

HEADER RECORD (28 bytes)

BYTES	TYPE	DESCRIPTION
6	8 bit EBCDIC	A/C type (6 char)
2	fixed binary	Run ID Number (pass)
2	N _	Day of Scan (DOY)
2	17	Year of Scan (2 digits)
2	11	Scan Number
2	"	Time of Scan (hours)
2		Time of Scan (minutes
2	"	Number of data records
4	floating point	Time of Scan (seconds)
4	60 <u> </u>	Nominal Altitude (feet)

DATA RECORDS one per second (40 bytes)

2	fixed binary	Greenwich Time (hours)
2	11	Greenwich Time (minutes)
4	floating binary	Greenwich Time (seconds)
4	n – –	Average Reflectivity (dbz)
4	**	Elevation (degrees)
4	89	Azimuth (degrees)
4	"	Radar Slant Range (nm)
4	98	Ground Range (nm)
4	"	Ground Range (nm)
4	11	Altitude (feet)
4	**	Altitude (km)

Appendix 9: SPANDAR Input Tape Format

TAPE 3

TYPE:	SCOPE	E-NOS/BE	STANDARD
RECORD:	VARIA	BLE LENG	STH
TIME:	1 SEC	COND PER	DATA RECORD
HEADER RE	CORD	LENGTH 2	2 WORDS

WORD 1 ZERO OR DAY OF YEAR WORD 2 FOR SPANDAR TAPE

DATA RECORD LENGTH 7 WORDS (DISPLAY CODE)

SPANDAR output tape consists of multiple sets of header record followed by a variable number of data records

FORMAT	DESCRIPTION
2X	blank
13	GMT (hours)
13	GMT (minutes)
F7.3	GMT (seconds)
F9.0	radar slant range (meters)
F8.3	azimuth (degrees)
F7.3	elevation (dgrees)
F9.0	altitude (meters)
F7.1	reflectivity (dbz)
F6.0	counts (forced to zero)

Appendix 10: SPANDAR Output Tape Format

Data collected by the cloud and precip PMS-2D data acquisition devices are written to tape by a PERTEC recorder. The data collected by either device is double-buffered to minimize loss of data.

There are two kinds of records written to this tape, slow and fast.

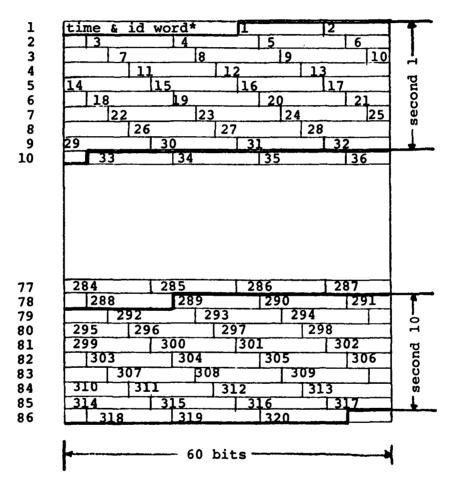
Slow data records are 86 CDC 6600 words long and contain the real time clock value and VCO readings for each second. One slow record is written every ten seconds and thus contains ten seconds worth of data.

Fast data are the records produced by the PMS-2D buffers, and are 547 60 bit words in length. These records contain the results of 1024 scans of the 32 diodes. Each scan is a binary representation of each diodes state. If when scanned a diode was on, a zero is recorded; if off, a one is recorded. In order to minimize data written, all blank scans are counted and when the next particle is detected, the number of blank scans is written onto the tape. This counter is prefaced by a bit pattern of 10101010 to differentiate from a regular diode scan. The first scan has the elapsed second counter, overload status and a probe indicator. If one buffer is being written to tape and the other buffer for this probe is also filled, the probe is said to be overloaded.

Appendix 11: PMS-2D Particle Image Tape Description

. 1

RECORD LENGTH:		bit scans bit words
SCAN RATE:	1 every	250 nano- maximum


6600 WORD#

1	time & id word * so	can 1
2	scan 2	scan 3
3	scan 4	scan 5
2 3 4 5 6 7 8	scan 6	scan 7
5	scan 8	scan 9
6	scan 10	
7	scan 11 scan 12	
8	scan 13 scan	14
9		can 16
10	scan 17	scan 18
539	scan 1009	scan 1010
539	scan 1009	scan 1010
540	scan 1011	<u>13Call 1012</u>
541	scan 1014 scan 1015	
543	scan 1016 scan 1	017
544		1019
545	scan 1020 sci	
546	scan 1022	scan 1023
547	scan 1024	
	60 bi	ts

* see appendix 12C for time and id word description

RECORD LENGTH: 322 16 bit words 86 60 bit words RECORD TIMING: 1 every 10 seconds

6600 WORD#

and the second second

بمساحظتهم وعجزت والأستانة أأسرتني بالتقر الأنت وتتكر الألاتين والمستحسب والاعكمال تنزع بالتمر ومسر

t

1

.6

* see appendix 12C for time and id word description

Appendix 12B: MC-130E/Lear PMS-2D Slow-data Record Format

TIME BYTES

byte #

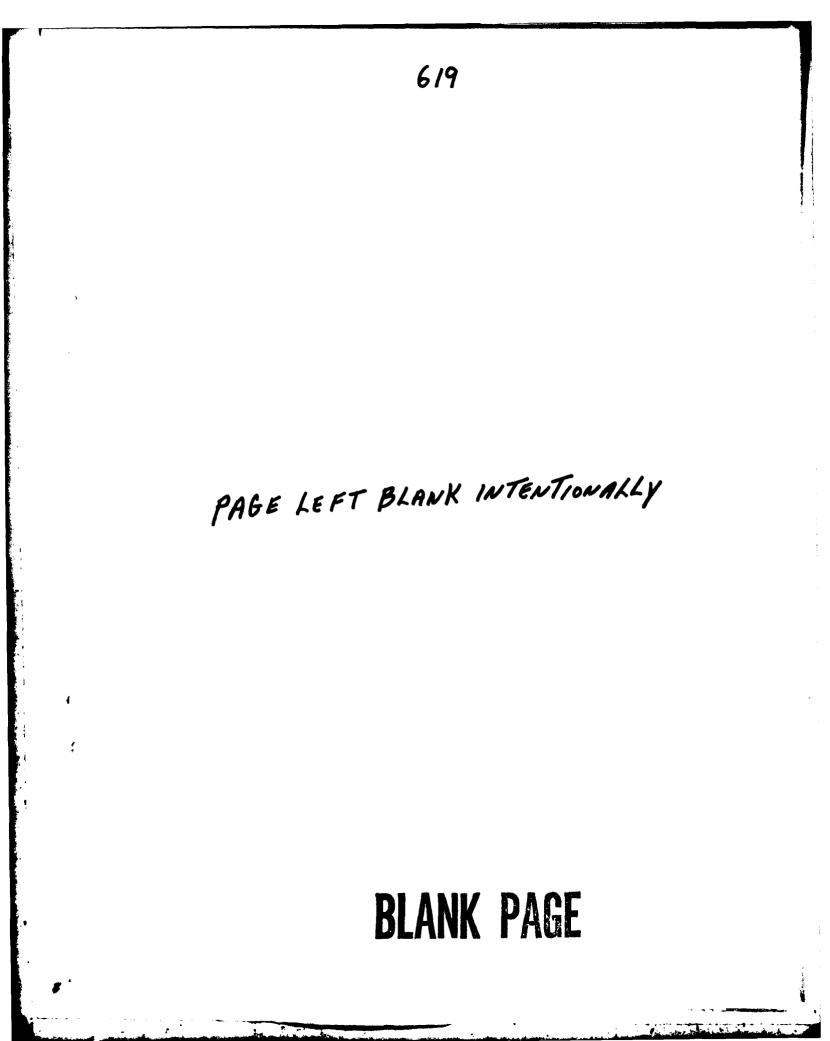
- 1
 - 2
 - 3

а.	
-	

elapsed	seconds	x	1000	elapsed seconds x 100
elapsed	seconds	x	10	elapsed seconds x 1
elapsed	seconds	x	0.1	elapsed seconds x 0.01
elapsed	seconds	x	0.001	Id 4 Id 3 Id 2 Id 1

note:	AVATV	"seconds"	digit	ie	4	bit '	RCD	

IDENTIFICATION BITS

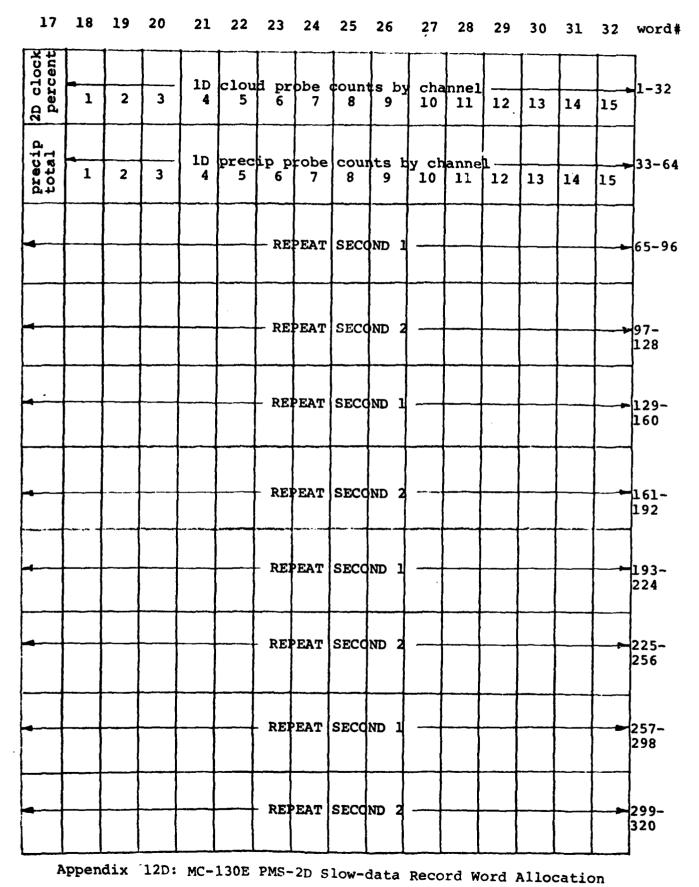

	FAST	SLOW	
	C130E	C130A	DATA
Id 4	data		
	source	1000	σ
Id 3	data	•	one '
	source	×	
Id 2	overload	seconds	all
Id 1	overload	s C O	

Id 4 = 1, record from cloud size probe
Id 3 = 1, record from precip size probe
Id 2 = 1, cloud size probe overload

Id 1 = 1, precip size probe overload

note: Id 4 and Id 3 may not be one in the same record

Appendix 12C: MC-130E/Lear Time & ID Word Description


sec.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	unused sec.10k	elapsed seconds	32 bits parallel	digital input	1	2	3	4	vco 5	cha 6	nnel: 7	8	9	10	11	12
2	cloud u	precip e status#1 s	cloud total 2D p	precip d total 2D	1	2	3	4	5	6	7	8	9	10	11	12
3	cloud status#2	precip status#2	#1 slow analog t	1>	1	2	3 .	4	5	6	7	8	9	10	11	12
4	cloud status#3	precip status#3	#2 slow analog	#10 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
5	cloud status#4	precip status#4	#3 slow analog	#11 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
6	cloud status#5	precip status#5	#4 slow analog	#12 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
7	cloud status#6	precip status#6	#5 slow analog	#13 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
8	cloud status#7	precip status#7	1 110	#14 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
9	cloud status#8			#15 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
10	cloud status#9	precip status#9		#16 slow analog	1	2	3	4	5	6	7	8	9	10	11	12
•	Appendix 12D: MC-130E PMS-2D Slow-data Record Word Allocation															

620

In marker and and and the second

3

¥.

J

.

RECORD FORMAT: SCOPE-NOS/BE VARIABLE MINIMUM 12 WORDS, MAXIMUM 512 RECORD LENGTH: **RECORD TYPE:** BINARY WORD DESCRIPTION 1 TIME OF RECORD IN FORM HH:MM:SS.F (DISPLAY CODE) 2 SLOW RECORD AND FAST RECORD NUMBER IN FORM WORD 2 = \tilde{SLOW} + 10000 + FAST (BINARY) 3 SAMPLE TIME IN MS (BINARY) CLOCK SAMPLING RATE-PERCENTAGE 4 (BINARY) 5 PROBE (BINARY) 6 OVERLOAD INDICATOR (BINARY) 7 KISTLER AND BACKUP PRESSURE IN FORM WORD $7 = KIST \pm 10000 + PRESS (BINARY-VCO COUNTS)$ 8 PRESSURE GRADIENT VCO COUNTS (BINARY-VCO COUNTS) 9 TEMPERATURE VCO COUNTS 10 DEWPOINT VCO COUNTS 11 TRUE AIRSPEED 12 JW-LWC VCO COUNTS 13 AREA IN SQUARE DIODES-NEGATIVE IF EDGE REJECTION (BINARY) 14 PERIMETER IN DIODES 15 HORIZONTAL FERET PROJECTION IN DIODES (BINARY) VERTICAL FERET PROJECTION IN DIODES 16 17 HORIZONTAL PROJECTIONS IN DIODES 18 VERTICAL PROJECTIONS IN DIODES 19 VERTICAL EDGE (IN DIODES) 20 MAXIMUM LENGTH IN DIODES *21 THETA ANGLE OF PARTICLE ORIENTATION *22 VOLUME IN CUBIC DIODES

.

512 VOLUME IN CUBIC DIODES

* NOT USED WHEN LMAX APPROXIMATION MADE

Each record consists of the 12 word identification block and then up to 50 particle descriptions, each 10 words long. One fast input record to TWODEE can generate one or more of these records. The length of each output record is determined by the number of particles in each fast input record.

Appendix 12E: PMS-2D Particle Tape Format

WORD CONTENTS

J

1	TIME OF RECORD (IN SECONDS)							
2	FLIGHT IDENTIFICATION							
3	FLIGHT DATE							
4	LATITUDE (NOT USED AS YET)							
5	LONGITUDE (NOT USED AS YET)							
6	TEMPERATURE (TRUE IN DEGREES CENTIGRADE)							
7	TEMPERATURE (TOTAL IN DEGREES CENTIGRADE)							
8	DEWPOINT (IN DEGREES CENTIGRADE)							
9	JW-LWC (UNADJUSTED GM/M**3)							
10	PRESSURE (MILLIBARS)							
11	TRUE AIRSPEED (M/SEC)							
12	ICING COUNT							
13	CODE 1=STANDBY RECORD, 2=TRIGGER RECORD,							
	3=SENSING RECORD							
14	ALTITUDE (METERS)							
15-29	CHANNEL COUNTS FOR CHANNELS 1-15 OF THE SCATTER							
	PROBE							
30-44	CHANNEL COUNTS FOR CHANNELS 1-15 FOR THE CLOUD							
	PROBE							
45-59	CHANNEL COUNTS FOR CHANNELS 1-15 OF THE PRECIP							
	PROBE							

ALL VALUES ARE IN FLOATING POINT FORMAT. RECORD IS 59 WORDS LONG WRITTEN BY A FORTAN BINARY WRITE STATEMENT (WRITE(UNIT)LIST)

Appendix 13: ICEEX Output Tape Format

Data collection by ice detector can be characterized by three distinct modes of operation.

- 1) sensing mode
- 2) detecting mode, and
- 3) standby mode.

These modes occur in the sequence listed. The standby mode however, can be triggered manually at any time.

A. In the sensing mode the probe is signaling that ice is accumulating on it. The counts will range in the mode from 6250 to 9818. (The latter value being equal to 4.8 volts at which point the accumulation of ice triggers the detecting mode). If icing rates are very low it is possible that the probe will remain in the sensing mode, i.e., never accumulating enough ice to go into the detecting mode or the ice will evaporate and counts will decrease in value to approximately 6250.

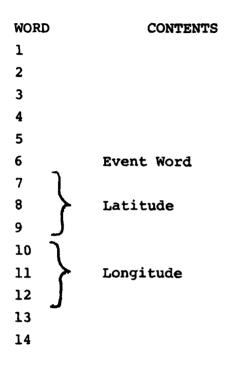
In the detecting mode, an ice signal is generated and heating cycle is initiated. During this period random counts are generated. Typically values under 5000 are generated (see C) for a number of seconds. All these data (i.e., exceeding 9818 and less than 5000 counts) are to be disregarded as data, but to be used as the indicator of a change from the detecting to standby mode.

The standby mode follows the detecting mode and has a range of counts from 5350 to 5150. The most frequently observed values is 5250 counts. In this mode all ice

Appendix 14: Memo of 19 DEC 79 on Ice Detector

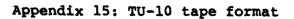
has been removed from the detector, and the DC current to the probe has been cutoff. Typically this mode lasts under 2 seconds.

The time needed for the ice detector to return from standby mode to the sensing mode depends on icing conditions, ambient temperature and airspeed. With moderate icing 7-10 seconds are typical. The return to the sensing mode occurs when counts equal 6250.


- B. It is possible while in the sensing mode for apparently random counts to be generated; that is, 9818 counts has not been reached nor exceeded and apparently random signals, (similar to those occurring when the instrument is in the detecting mode) are observed. Following the occurrence of these random counts, the counts recorded return to values indicating the unit is still in the sensing mode.
- C. Random counts are sudden large excursion in magnitude. Since these occur primarily in connection with the change from sensing to detecting mode and frequently occur with voltages exceeding 5V, causing a rollover in counts, (i.e., numbers > 9999 begin at 0001) it is useful to add 10000 counts to all values < 5000.</p>

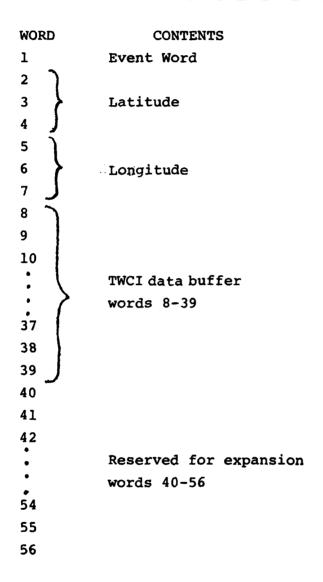
1

J


Appendix 14: Memo of 19 DEC 79 on Ice Detector (cont'd)

A to D Buffer (OLD: before April 80)

4


Repeated 4 times per second

Ç

100

A to D Buffer (NEW: After April 80)

١

i

ļ

l second Data

Appendix 15: TU-10 tape format (cont'd)

A State State State

KNOLLENBERG BUFFER

WORD

1 Second Data (repeated 4 times per record)

225 226 227 228 229	elapsed seconds IAS TEMP EWER TWCI TEMP2	
230	DEWP	
231	JW/LWC	
232	MAGH	
233	AIR PRES. KISSLER	
234	TAS	
235	ICE DETECTOR	
236	TWCI CTR1	
237	TWCI TEMP1	
238	TWCI CTR2	
239	MINUTES/SECONDS	
240	PRECIP#16/HOURS	
		SCATTER
		PROBE
241	HOUSEKEEPING	
242	CHANNEL #1	
243	#2	
244	#3	
245	#4	
246	#5	
247	#6	
248	#7	
249	#8	
250	#9	
251	#10	
252 253	#11	
253 254	#12 #13	
254 255	#14	
256	#15	

Appendix 15 TU-10 Tape Format (cont'd)

KNOLLENBERG BUFFER

WORD		
257	HOUSEKEEPING	CLOJD
258	CHANNEL #1	PROBE
259	#2	
260	#3	
261	#4	
262	#5	
263	#6	
264	#7	
265	#8	
266	#9	
267	#10	
268	#11	
269	#12	
270	#13	
271	#14	
272	#15	
		PRECIP
273	HOUSEKEEPING	
274	CHANNEL #1	PROBE
275	#2	
276	#3	
277	#4	
278	#5	
279	#6	
280	#7	
281	#8	
282	#9 *20	
283	#10 #11	
284	#12	
285 286	#13	
286	#14	
287	#14 #15	
400	サエフ	

£

.

Appendix 15 TU-10 Tape Format (cont'd)

BUFFER WORD # PARAMETER 1 DATE (YYMMDD) 2 TIME (HRMNSC) 3 CRYSTAL TYPE NUMERIC CODE (CLOUD PROBE) 4 CRYSTAL TYPE NUMERIC CODE (PRECIP PROBE) TRUE AIRSPEED $(m \ s^{-1})$ 5 PRESSURE (mb) 6 7 ALTITUDE (km) TEMPERATURE (°C) 8 9 DEWPOINT (°C) 10 WIND SPEED (m s^{-1}) 11 WIND DIRECTION (°) 12 LATITUDE (DEG AND FRACTIONS) 13 LONGITUDE (DEG AND FRACTIONS) 14 TRUE HEADING (°) 15 J-W LIQUID WATER (g m⁻³) 16 TWCI $(g m^{-3})$ 17 UNUSED 18 UNUSED 19 MAX CRYSTAL SIZE IN MICRONS 20 ASP WATER CONTENT ($q m^{-3}$) 21 CPS WATER CONTENT ($g m^{-3}$) 22 PPS WATER CONTENT $(q m^{-3})$ 23 ASP REFLECTIVITY $(mm^6 m^{-3})$ $(mm^6 m^{-3})$ 24 CPS REFELCTIVITY $(mm^6 m^{-3})$ 25 PPS REFLECTIVITY 26-70 RAW COUNTS FOR 15 CHANNELS OF 3 1D PROBES (SCATTER, CLOUD, PRECIP) 71-115 NON-NORMALIZED DENSITY FOR CHANNELS 1-45 (# m⁻³) (SCATTER, CLOUD, PRECIP) 116-160 LIQUID WATER CONTENT FOR CHANNELS 1-45 (g m^{-3}) (SCATTER, CLOUD, PRECIP) 161-205 EQUIVALENT MELTED DIAMTERS FOR CHANNELS 1-45* (um)

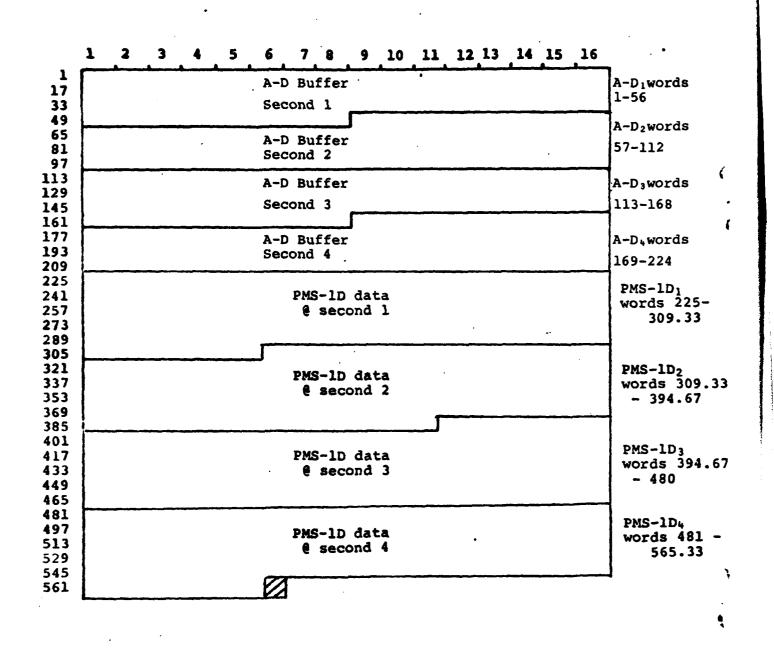
* EQUIVALENT MELTED DIAMTER IS GIVEN FOR CHANNLE 1 ALL THREE PROBES, THEN CHANNEL 2

Appendix 16: AEROMET 205 Word Processed Data Tape

	RECORD LENGTH: TIME:	210 words (60 bit) 1 record/second
	PARITY:	bbo
	DENSITY:	variable
-	WORD	PARAMETER
	1	FLAG fixed to 7777.
	2	DATE $(731222.) = 22$ DEC 73
	3	TIME $(24157.) = 02:41:57$
	4	SEC fixed to 1.
	5	TAS (m/sec)
	5 6	PRES (mb)
	7	ALT (km)
	8	TEMP (C)
	9	Water content (gm/m ³) (Scatter Probe)
	10	Water content (gm/m ³) (Cloud Probe)
	11	Water content (gm/m ³) (Precip Probe)
	12	Radar reflectivity (mm ⁶ /m ³) (Scatter Probe)
	13	Radar reflectivity (mm ⁶ /m ³) (Cloud Probe)
	14	Radar reflectivity (mm ⁶ /m ³) (Precip Probe)
	15	Total counts (Scatter Probe)
	16	Total counts (Cloud Probe
	17	Total counts (Precip Probe)
	18	TWCI water content
	19	TWCI freql
	20	Dewpoint ^{(°} C)
	21	No. Density (SZD/m) (Scatter Probe)
	22	No. Density (SZD/m) (Cloud Probe
	23	No. Density (S2D/m) (Precip Probe)
	24	TWCI freq2
	25 [°]	TWCI templ
	26	TWCI temp2
	27	largest particle size
	28	average particle size
	29	JW-LWC
	30	particle type code
	31-75	counts for size channels 1-45
	76-120	unormalized Number Density for size classes 1-45 (SZD/m ³)
	21-165	water content for size channels 1-45 (gm/m ³)
1	66-210	equivalent melted diamter for size channels 1-45 (u)

Appendix 1g: Aeromet 210 Word Processed Data Tape

631


ì

7

11

Ŧ

J

Appendix 18: TU-10 tape format with 'NEW' A-D buffer

632 -

IOT	A/C COMPUTER	LAB COMPUTER
6301	WAIT FOR GE INPUT	WAIT FOR TEKTRONIX INPUT
6306	READ GE INPUT	READ TEKTRONIX INPUT
6311	WAIT FOR GE OUTPUT	WAIT FOR TEKTRONIX OUTPUT
6316	SEND GE OUTPUT CHAR.	SEND TEKTRONIX OUTPUT CHAR.
6661		WAIT FOR CENTRONICS OUTPUT
6666		SEND CENTRONICS OUTPUT
6321	WAIT FOR TWCI INPUT	
6326	READ TWCI INPUT	
6341	WAIT FOR DOWNLINK OUTPUT	
6346	SEND DOWNLINK OUTPUT	
6144	READ INS DATA LOW ORDER	
6153	SKIP IF INS DATA READY	
6154	READ INS DATA HIGH ORDER	
6164	READ INS SIGN & ID	
6073	SKIP IF EVENT WORD READY	
6074	READ EVENT WORD	

Appendix 19A: RTX8 IOT's

i

Į

IOT	Mnemonic	Description
6701	LWCR	Load word count register
6703	LCAR	Load current address register
6705	LCMR	Load command key register
6706	LFGR	Load function register and execute
6712	CLT	Clear transport's master registers
6714	RMSR	Read main status register
6716	RFSR	Read function register and status
6721	SKEF	Skip if error flag is on
6722	SKCB	Skip if controller not busy
6723	SKJD	Skip if job done
6724	SKTR	Skip if tape unit ready
6725	CLF	Clear controller and master

ê

ł

ì

Appendix 19B: PDP8 Magnetic tape IOT's

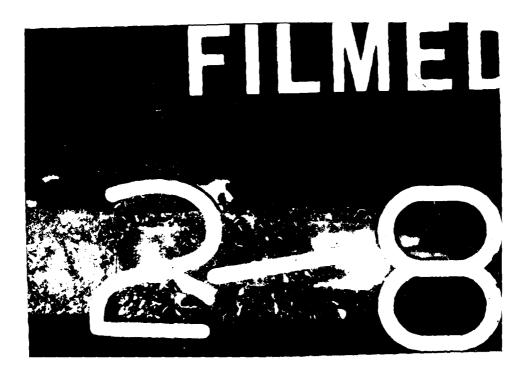
Constant States

634

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

.

Directive	Octal Code	Function
QIO	6001	queue an I/O request
EVENT	6002	declare an event
PEEK	6003	move exec core space to task area
POKE	6004	change a core location
RTRAP	6005	remove trap
SIEZE	6006	seize device
MARKT	6007	mark time
SYNC	6010	wait for event
ITRAP	6011	install trap
TRAPE	6012	exit from trap
RUN	6013	run task
ABORT	6014	abort task
ALUN	6015	assign logical unit to physical unit
TEVENT	6016	test event flag
CEVENT	6017	clear event flag
CHMSW	6020	change machine status word
DQUE	6021	remove user from Execute queue
FINT	6022	call floating point processor
SPREAD	6023	read switch register


Appendix 20: RTX/8 user directives

635

K

ĭ

.

