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A Lightness Scale from Image Intensity Distributions
W. A. Richards

Abstract
A lightness scale is derived from a theoretical estimate of the probability distribution of image inten-
sities for natural scenes. The derived image intensity distribution considers three factors: reflectance,
surface orientation and illumination, and surface texture (or roughness). The convolution of the
effects of these three factors yields the theoretical probability distribution of image intensities. A use-
ful lightness scale should be the integral of this probability density function, for then equal intervals
along the scale are equally probable and carry equal information. The result is a scale similar to that
used in photography, or by the nervous system as its transfer function.
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WAR 2 LIGHTNESS SCALES

1.0 Introduction

A lightness scale is a rule for assigning numbers to the possible range of light intensities en-
countered in a natural world. Clearly the exact form of the scale will depend upon the objectives
.gf the sensing device. Because the possible range of intensities is quite large (108), most practical
lightness scales involve compressive transformations to limit the output (scale) range to 102 or so.
Common examples are the transfer functions used in photography, TV, or by the human eye.

One striking feature of these examples is that the scales characterized by the transfer functions are
remarkably similar, suggesting that each scale has roughly the same objective. Considering that both
TV and photography are aimed to please the human viewer, the root of the similarity has generally
been taken to be the transfer function of the human eye. Consequently, most theories of lightness
scales have begun by considering the constraints the visual mechanism imposes upon the stimulus-
response relation (Judd and Wysecki. 1975). For example, if the observed threshold intensity change
is proportional to intensity (Weber's Law), and one assumes that any just-noticeable-intensity change
corresponds to a fixed sensory increment, then Fechner (1860) argues that the resultant lightness
scale will be the logarithm of intensity. Stevens (1961), on the other hand, disputes this assumption
of a constant sensory increment regardless of sensation magnitude, and proposes a power law for a
lightness scale. Other assumptions about the mechanism have led to many other proposals (Van de
Gnnd. et al, 1971; Treisman. 1966: MacKay, 1963).

Yet in spite of the many different proposals. the resultant lightness scales arc still remarkably
similar over any 1000-fold range of intensities. Clearly, all of these competing assumptions cannot be
correct simultaneously in the same mechanism. Rather, they illustrate that there are many different
ways of achieving essentially the same lightness scale (Resnikoff, 1975). But why is the end result
always the same? Clearly, there must be some constraining influence independent of the mechanism
that is the major factor in determining the useful form of a lightness scale. This study proposes that
this factor is the probability distribution of intensities in the world as seen by any visual system.
whether it be an cy. or a camera. The mode of proctssing is irrelevant. What matters most is the need
to respond to the distributions of intensities in the world in an efficient manner, regardless of the exact
nature of the visual device (Marr, 1982). This reasoning thus leads to the following simple starting
point for a lightness scale:

Proposal: A useful lightness scale will be one that, on average, will sample the expected image
intensities in such a manner It optimize the encoding of the available intensil, information.

Thus, in contrast with the previous approaches. the present derivation simpl) asks %hat lightness
scale would optimize the information content of each intensity sample regardless of the nature of the
sensory mechanism. In any given scene, the distribution of intensity values will gencrall be quite
non-uniform, with intermediate "gray" values being the most common and "blacks" of 7ero intensity
and "whites" of great intensity occurring rarely. It then clearly makes sense to sample the middle
grays more carefully and the extremes less so. Such considerations yield a lightness scale where
the principal con,traints upon the scale will be the external properties of the world, rather than the
internal properties of the visual mechanism.

It



WAR 3 LIGHTNESS SCALES

2.0 Background: The Image Intensity Equation

To determine an optimal lightness scale first requires determining the probability distribution of
image intensities falling upon a reetina. Such distributions have not pre% iously been calculated for
the factors of interest here. Although many texts on geometrical optics describe how light is reflected
off surfaces (Keitz, 1971), they do not address the problem of how frequently one encounters any
particular image intensity value. Without knowledge of this latter probabiity distribution, we have
no way of specifying a scale (or transfer function) that will sample the image intensities in an optimal
manner. To solve for the expected probability distribution of intensities in the image, the image
intensity associated with any small surface patch must be calculated, and then the areal projection of
this patch on the retina must be integrated with all patches of similar image intensities. This total for
each image intensity value, relative to the total retinal area under consideration, will determine the
probability of encountering that particular image intensity value.

To proceed, we consider first the factors that affect the image intensity corresponding to any small
patch of surface as projected onto a retina. These include primarily the strength and spectral composi-
tion of the illuminant, its angular position relative to the viewer, the orientation and reflectance of
the viewed surface, its reflectivity function including textural, spectral and specular factors (Horn and
Sjoberg, 1979). These many factors combine together multiplicatively to produce the image intensity
1(N) associated with the patch of surface of reflectance (albedo) p(,), illuminated by a source of
strength E(X):

I(N) = p(X)E(X)(NL)R(o, 0) (1)

where the term (N ) reflects the orientation of the surface normal N and illuminant direction L
relative to the viewer (see Fig. 4) and where R(o, 6) is the reflectivity function that characterizes
the textural and specular properties of the surface. (Although the image intensity equation (1) is a
function of wavelength X, this dependence will be ignored in subsequent derivations.)

To simplify the recovery of scene properties from image information, it is desirable to remove the
effects of the overall illuminant strength by setting E(N) = 1. This normalization, together with
the multiplicative behavior of the remaining contributions to image intensity, generally leads to the
examination of intensity ratios (Helmholtz, 1910:Land and McCann, 1971). A useful lightness scale
will ther..ore be a ratio scale.

In sum. three factors are the primary contributors to achromatic image intensities: reflectance.
p: surface orientation and illuminant position (N • L); and the reflectivity properties of the surface.
R(a, 0), especially its textural properties. For each of these factors, probability density ft nctions can
be determined by calculating the relative retinal area associated with any given image intensity. Since
the three factors are independent, the desired probability distribution of retinal image intensities
will be the joint probability density function for all these factors, calculated by convolving the three
independent density functions.

The first objective will be to show that this resultant probability density function is roughly log-
normal and thus can be specified by two numbers-a mean and a standard deviation. I'he second
objcCti%'e will be to show how this log-normal distribution of image inlensitio; constrains the shape of
an ideal lightness scale.

7-,
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Figure 1. The envelope characterizes a possible distribution of image intens ities. Ideal sampling would require
the measurements be taken such that each interval has an equal area under the curve and hence is equally
likely.

3.0 The Normal Log Approximation

Lemma /. The most probable (mean) image intensity will be the product of the mean intensities of

the separate probability distributions of the N factors affecting image intensity and the variance of the
resultant joint probability distribution plotted on a iopI axis will be the sum of the squares of the N
independent variances (also measured in terms of log!).

The above lemma follows straightforwardly from the Central Limit Theorem, provided that each

density function is convolved on a Logl continuum (Bracewell, 1978). Note that the convolutions
cannot be performed on a linear continuum on I because intensities multiply, rather than add as
required in the convolution integral. The log transformation thus permits the addition of the pairs
of variables as each convolution is performed. As N increases without limit, the distribution will
therefore approach a Gaussian on a log! axis, which is the log-normal function. However, even for
small N, excellent approximations to the log-normal function can be achieved, provided that each
individual probability distribution has finite (positive) area, mean, variance and third moments. (Our
derived distributions will'atisfy these properties.)
. Because the mean image intensity is somewhat arbitrary, depending upon the normalization proce-

dure. the problem of defining a lightness scale based upon multiple, independent factors reduces to
finding the standard deviation of the Gaussian distribution defined on a logl axis. Our procedure.

then. will be to calculate the variances of the image intensity probability distributions arising from

three factors: reflectance. surface orientation and lighting direction, and textural shadow and to use
the sum of these variances (on logl) to define a Gaussian approximation to the distribution of image

intensities. Ibis prohahility distribtition, in turn can be ised to c(nstruct a ti-cMiil lightness .- ale. Prior

to estimating the three variances, the general stratcg. for creating a lightness scale will be considered.
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4.0 An Ideal Lightness Scale

Before embarking on a more exact probability density function for image intensities, it is helpful to
illustrate first why such a density function may be used to create a useful lightness scale. Assume that

the form of this ideal density function is Gaussian on a log! continuum centered about some mean
value 'av., Given this a priori Gaussian distribution of (log) image intensities, the problem is to decide
where on the (log) intensity continuum the sample measurements be taken, and specifically at what
intervals. Three constraints will be imposed:

1. Although each measurement will be centered at fixed positions along the logI continuum, the
value measured will be the total density within a window where the window sizes are such that
together the total range of intensities is spanned.

2. Each measurement will be independent of another. Thus the "windows" will not overlap.

3. The total amount of information should be maximized (over time).

The first two constraints merely define the nature of the "channels" that sample the range of inten-
sities. Referring to Fig. 1, the "carets" indicate the "centers" of nine hypothetical "channels" that
sample the Log! intensity continuum. The width of the "channels" is indicated by the vertical bars
placed under the Gaussian envelope.

Let P2 be the probability of an image intensity falling into the 2nd measurement "channel". Then
the expected value of p is

b
Sexp - !(ogI/lv..) 2dlogI) (2)

which is the cross-hatched area in Fig. 1. Tbe third constraint that the total measurement infomiation
U be maximized is equivalent to maximizing

N

H= -pog pi (3)

where Pi is defined as in (2). To maximize H, it can be shown that p, = p = k, where N is the
number of measurement samples or "channels" (Brillouin, 1962). Thus, the third constraint will be
satisfied if the area between the vertical bars in Fig. I are equal.

If image intensities are distributed normally, therefore, a reasonable choice for a lightness scale will
be to choose intervals that yield equal areas under the Gaussian envelope. For a ten-point scale, the
first log! value will be located at a log l/I~w value of -1.22, which would correspond to an I/a,,g
ratio of 3.9 for a natural log base. Continuuing this procedure, we obLain de lightness scale function
depicted in Fig. 2 (Gaussian assumption). 'the locus is a straight line bccause log-normal axes have
been chosen. (This relation between subjective scales and infoiration-rich variables has hk,en known
for some time (Zipf, 1949: Richards, 1967).
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Figure 2 Lightness scales constructed by integration of various theoretical density functions for image
intensities. The ordinate is in units of standard deviation, and thus a Gaussian probability distribution ot (log)
image intensities, such as in Fig. 1, will yield a straight line. A more plausible basis for a lightness scale is
the Xubelka-Munk theory of reflectance, which yields the curve labelled "K-M Theory". This result begins
to approximate a common scale (Munsell) shown at lefl

5.0 Estimating three independent density functions

As previously discussed. the Central Limit Theorem assures us that the combination of multiplica-
tive factors that contribute to image intensities will tend to produce a Gaussian probability density
function on a Log! continuum, as more and more factors arc considered. However, although the
approximate form of the final image-intensity density function is known, two paramctCs rcmain to
define the shape and position of the Gaussian: its mean and stand;ard deviation. These unknowns set
the horizontal position and slope of the straight-line lightness scale in Figure 2. Since by appropriate
normalization. the mean can be set to the midpoint of the scale, as it is in Figure 2. tie standard
deviation of the Gaussian remains the principle single unknown. How can this unknown b. found?

Our procedure will be to estimate the image intensity distribution for each of the :hree major
factors in the image-intensity equation (1). This will result in three separate probabiity density
functions (pdf). one for reflectance, another for surface orientation and illumination, and a third for
surface rotghncss or texture. The final distribution of image intensities %kill then be the :onvolution
of these three independcnt dcnsiy functions. i]he final lightness scale will bc the integral of this joint
probabilit. distribution function, suitably normalized.

_ ' i t
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If each of the individual density functions were approximately Gaussian, then the final joint-
density function could be obtained simply by adding together the standard-deviations (on log!) of
the component functions. However, because each factor, such as reflectance, cannot exceed 1, the
observed individual density functions will not be Gaussian. Furthermore, because of this assumption,
when the individual density functions are integrated, they will depart considerably from the straight-
line "ideal" lightness scale, as illustrated by the two broken curves in Figure 2. A "practical" lightness
scale will therefore not be a straight-line on a log-normal graph. To find its shape, numerical convolu-
tions of the three component density functions must thus be performed, once each function has been
estimated.'

5.1 Estimating the Density Function for Reflectance

As we examine the properties of materials in the world about us, we note that their achromatic
reflectances cover the range from black to white, with these two extremes corresponding to completely
absorbing materials (such as carbon black) to completely non-absorbing or light scattering materials
(such as snow or pure cellulose). It is not unnatural to view the intermediate grays as some mixture
of these two extremes, because absorption and scatter are the two primary properties that determine
the reflectance (albedo) of a material. For many natural materials, such as wood, grass or even silica-
based minerals, most of the scattering of light comes from the "white" substrate to which the added
pigment (or metallic impurities) provides most of the absorption. Many natural materials then may
be considered to be made up of two types of particles-a pigmented particle that is responsible for
the absorption, and a non-pigmented "white" particle that comprises the substrate and causes most
of the scatter. For such materials, the reflectance will depend upon the relative amount of pigmented
particles in the white substrate.

To estimate the distribution of image intensities arising solely from reflectance changes, we there-
fore will follow Judd and Wysecki (1975) and consider an "ideal" achromatic material as one made up
of various portions of ideally absorbing pigment and an ideally scattering "white" substrate. By using
the Kubelka-Munk theory of reflectance, we can now relate the absorbing and scattering properties
of such a material to its reflectance. With a simple assumption about the distribution of pigment in
materials, the desired probability density function for reflectance can then be obtained.

Appendix I shows that for an opaque surface made up of fine particles in a clear medium, the
limiting reflectance of the surface can be described by the following relations between the pigment
concentration, C, and th absorbing power a, of the material. (The parameter a is the ratio of the
absorption coefficient of the ideal pigment to the scattering coefficient of the ideal substrate.)

Co Co 2(1 - C) '
IC+I (4)= -- (I_-C) (I l-- Ca I 4

Since the value of a will he fixed and is determined simply by measurements of the coefficients of
highly scattering and highly absorbing materials, the principle unknown in equation (4) is the %aluc of
'All calculation and convolutions were performed on an Apple 1I computer

riS - ~i - 4'
--
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the pigment concentration, C. However, C is itself a distribution function. To find the distribution
of reflectance p we must therefore have some knowledge of the distribution of pigment in materials.
Specifically, we need a probability density function (pd) for the pigment concentration, C. Once the
pdf(C) is known, we can apply Bayes Rule to determine the density function for reflectance, p:

d(C)
pdf(p) = pdf(C). - (5)

The simplest assumption about the distribution of pigment concentration is that it increases
monotonically to some asymptotic level, following a growth curve. This is most certainly the case
for many natural materials such as foliage, grass and trees, which occupy the largest portion of
our reflecting environment. Recognizing that the time for growth is much shorter than the adult
lifespan of a material, the density function for pigment concentration can be approximated by a
power relation:

pdf(C) = CO (6)

where the exponentO/ lies between 0 and I and C is defined over the same range. With this rather
weak assumption, Appendix I shows that the probability density function for reflectance will be

pdf() = 2 ' I'(1 - p)2(1-(

[a + (2 - 2a)p + p2]0+ 2  (7)

where a is a material constant describing the ratio of the scatter to absorption coefficients. This func-
tion is plotted as the smooth curve in Figure 3 for a = i and 0 = i. The histogram is an empirical
distribution of the reflectances of natural materials taken from a compilation by Krinov (1971). The
mean of both distributions is about .15.

The choice of the two parameters#3 and a can be justified independently of the good fit to Krinov's
measurements. First, the exponent for P should be considerably less that 1, in order that the "mature"
concentration of the adult material be the most common. Hlowever, P cannot be as small as zero.
otherwise the growth processes would not be represented. Given no other constraints, a 0 value of
j is the best compromise between these two undesirable extremes. (In practice. any / value ranging
from j to j will not significantly alter the lightness scale result, as shown in Appendix i.)

The choice of the scatter to absorption coefficient a. is dictated simply by measurements of
coefficients of highly scattering and absorbing materials, such as white and black (or dark gray)
paints. From Davidson and liemmendinger (1966). a maximally practical scatter coefficient is about
10. whereas the absorption coefficient of a black pigment will be about 100. A dark gra) pigment.
however, will have an absorption coefficient of about 10 to 20. Considering that the spectral absorp-
tion band of most natural pigments is not flat like carbon black, but rather confined to a portion of the
spectrum, their coefficient will be in the range 10 - 20. Although this coefficient is lower than that for
carbon black, it is important to note that a material consisting entirely of an absorbing pifment with
no scatter at all will appear black, regardless of the ah'orption coefficient of the pigment. The effect of
the absorption coefficient is merely to control the rate at which any increase in pipment conicentration

ohs]
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Figuft I. A comparison of empirical and theoretical probability distibutions of itlectance. The histogram
is an anpiuicsil distribution of the rellectances of natural matenals taken from a compilation by Krinov (1971)
"Me smooth curve is a theoretical probability distribution based upon an extension of the Kubelka-Munk

K theory.

causes a reduction in reflectance. With the scatter coefficient of the "white" substrate takc n as 10 and
the absorption coefficient of the pigment as 10 to 20. the parameter a will range from 0.5 to 1. The
former value was chosen to give a distribution of reflectances close to Krinov's.

The function described by equation (7) and illustrated in Figure 3 for 0. (3=~ is (our estimate
of the expected probability distribution of reflectance. On a logi scale. its variance is app)roximately
3.32 or 10. As shown in Appendix 1. this value is relatively insensitive to the choices for a and 8

When integrated. the reflectance-density function yields the curve labelled "K-I nheon" in Figure
2. Because of the upper bound of I placed upon reflectances. this curve rises rapidly abcve its mean
value, and more closely resembles the most common lightness scale-the Munscll Scale However.
for natural scenes, two other image-intensity factors must still bc evaluated before a fitial practical

M . --- ~ ------..------ I
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Figure 4. A hemisphere illuminated by an overhead source lying along L at 90P to the viewer's line of
regard V. As before, N is the surface normal and J is the flux emitted in the viewer's direction. The inset
defines the slant angle, a. Orthographic projections and Lambertian surfaces are assumed.

lightness scale can be constructed.

5.2 Surface orientation and lighting

A factor second to reflectance in producing image intensity variations is surface orientation relative
to the illuminant direction. These cffects arc characterized by the N • L term in equation (1). where

N is the (vector) orientation of the surface normal relative to the viewing direction V, and L is the

illuminant direction. (See Figure 4.) When sunlight strikes a uniformly reflecting sphere, the surface
perpendicular to the rays is intensely lit. whereas the parallel edge or the back side is dark or only
dimly illuminated by diffuse light. How do these illumination effects alter the expected lightness
scale? Specifically. we wish to calculate the probabilit) density function for surface effects so that

this probabilily distribtion may be convolved with the pdf for reflectance alone. 1"o cases of
illumination will be considered: extended and direct overhead.
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5.2.1 Extended Illumination

When the sky is completely overcast, as object is illuminated almost equally from all directions.
Reflectance and surface orientation relative to the viewer then become the two major factors in deter-
mining image intensity. For a surface of constant reflectance, image intensity will be a function solely
of surface orientation 2 .

A major class of natural surfaces are those that act like a perfect diffuser. (These arc called
Lambertian surfaces.) For such surfaces, it is well known that the combined effects of surface orienta-
tion and illuminant direction are exactly cancelled by the foreshortening of the surface patch relative
to the viewing angle (Wysecki and Stiles 1967). The effective image intensity I per unit area is thus
simply proportional to the incident flux on the surface patch of interest. But if the illumination is
extended, then the total incident flux is constant everywhere on the surface and the distribution of
image intensities arising solely from surface orientation will be a spike at 1.

Thus, for Lambertian surfaces seen under extended illumination, surface orientation and lighting
will have no effect on the expected probability distribution of image intensities.

5.2.2 Oerhead Illumination
A second natural lighting condition is when the sun directly illuminates surfaces from overhead as

at "high noon". Figure 4 depicts the relations between the vieer V. the illuminant direction, L, and
tie normal vector to the surface, N. What is the expected probabilit distribution of image intensities
in this case?

To simplify the analysis, the following assumptions will be made:

i) the view is orthographic-i.e. there is a parallel projection onto the image;

ii) there is a uniform distribution for the slant of all surfaces relative to the viewer. The view of
sphere can thus be taken to represent this distribution:

iii) the surfaces are Lambertian;

iv)there is a 90P angle between the , jewer and the source (i.e., (V. L) = 0).

Referring to Figure 4. we see that the horizontal circles about the illuminant axis L will correspond
to loci of constant slant to the source, and hence reflect equal flux, %hcreas vertical circles (not shown)

about the viewer's axis V will have equal foreshortening. The net image intensity will be a combina-

tion of these two factors. The problem is to determine the loci of constant image intensity as seen by
the viewer and to measure their relative sizes, thereby determining the %cights that should be given to

each image intensity.

The derivation of this density function is given in Appendix II. Surprisingly, the result is quite

simple:

pdf(I) = I_ 2 1 (8)
2 'rhe undernealh surface of an object inm he illuminated to a lcscr devrmc thin the top, becauic the diffutc reflectance
of the ground is Iess than that or the ski Such differenceN will he ignored here

'1'
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where I represents the intensities arising solely from the variations in the [N. L] factor in equation (1).
This density function is shown in Figure 5 as the solid curve labelled E = 0. (The spike at E = I is
the previous case where all the illumination is extended.)

5.2.3 Orerhead plus diffuse illumination

In the more common case, diffuse illumination of surfaces will also be present. A portion of this
diffuse illumination may come from the sky, and a second portion may be reflected off the array of
surrounding surfaces. For simplification, we will assume that all of the diffuse contribution to image
intensities is reflected off surrounding surfaces. In this case, as shown in Appendix Ill, on the average,
20% of the total illumination will come from diffuse reflection. This diffuse light contribution can
now be included with the direct source illumination to calculate a new density function for overhead
plus diffuse illumination. The dotted curve labelled E = .2 in Figure 5 shows the form of this
function, which will be the one chosen to represent the contribution of the (N -L) factor in the image
intensity equation (I). The variance of this function is approximately 3 (on a logi), with a mean value
of 0.4.

5.3 Textured surfaces and shading

The third factor affecting the distribution of image intensities is the reflectivity function R(9, a).
Generally this term in the image-intensity equation is used to describe the specular properties of the
surface, which depend dramatically upon the surface orientation relative to the viewer and illuminant
direction. Hence the angular parameters 0, o (Horn and Sjoberg, 1979). However, because of its
highly directional nature (Torrance and Sparrow, 1967), specularities represent only a very small con-
tribution to the total distribution of image intensities. A much more important factor is the structure
of the surface itself, namely its roughness or textural quality.

Surface texture generally arises from three-dimensional "elements" that are the constituents of the
underlying two-dimensional surface seen at a much larger scale. Such "elements" may be blades of
grass, or leaves at many orientations, or the pebbles on a beach. Because the elements are three-
dimensional, they produce self-shading and shadows. In order to estimate the image intensity density
function for surface texture, it is necessary to model the effects of these small, three-dimensional
surface elements. Two such models will be considered. 'he first is a surface texture created by dis-
tributing cylinderical "matchsticks" on a planar sheet (simulating a "lawn"): the second is the texture
created by strewing spheres on a flat surface. 'Ibis latter model texture is particularly useful because
it captures the essential properties of many natural surfaces. For example. the resultant distribution
of intensities is a very good approximation to that actually measured for shrubbery. Our explanation
for this similarity is that within a sufficiently large region of the shrub (relative to ]edf silv) all orien-
tations of the leaf are equally likely and hcnce, each leaf can be mapped onto ,i different poititin of
a model sphere that represents that portion of the sh'uh. 'l' e fact that mosl shrubs (or teces) have

"- -- . l If
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Figure 5. Probability distribution functions of intensit) for various amounts of an extended source that.
together with an ovcrhead point source, illuminale a uniform distnbuuon of surface onentations Point source
alone: E = 0: 20,' extended illumination, E = .2: extended illumination alone: E = 1.

a round shape will further strengthen the success of the model when the image intensities are taken
from the entire object.

Figure 6 summarizes the probability density function for image-intensity arising from textured
surfaces that can be modelled either by spheres or cylinders lying on a planar substrate of the same
material. (Refer to Appedix Ill for derivations.) Both types of density functions are very similar, with
a sharp peak at the lower image intensities corresponding to the dark cracks or shadows between the
textural elements. (See Fig. C5.) The position and magnitude of this "spike" will. of course, depend
upon the density of the textural elements. The parameter S in Fig. 6 shows how the space between the
elements alters the resultant probability density function.

For the case of a planar surface textured by abutting spheres of identical size and reflectance, with
uniform illumination, the "gap" between the spheres corresponds to the shadowed region and con-
tributes to 1/8h of the total image intensity distribution. ("his is the "spike" in Appendix Figure B2.)
'Ihus. the major contribution to the density function for "pebbled" textured surfaces comes from the
surface of the spherical elements. As shown in Appendix Ill, this portion of the prohahility density
function (pdf) may be approximated by the rather simple formula:

AhI-
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1.0- CORRUGATEDA

SURFACES
.01 S-10

.6- 
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cc PEBBLED SURFACE
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.6 a

.4

.2

INTENSITY

Figure 6. (A) Probability distribution or intensity values for a surface texturcd by cylinders and illuminated
by a henmispheric source, such a the sk) I1ach curve is for a different separation of the cyfinders. with the
pap IS) measured in radius units. (II) Distribution of intensity values for a surface '*pebbled" b) abuttng
spheres, illuminated by an extended overhead source such as the sky Refer to Appendix Ill. Fig. C's for a
aclnpan"~ of the model with an image intensity distribution taken from a natural object.

pdf(I) = 11- P2) (9)

This function is plotted ~ts the curve To on a Log! axis in Figure 7. ihe dashed curve Iabclcd T2 is the
contribution from the p,. and C is the combined rcstliL The Mean of this combined texture density
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Figure 7. The probability distribution of (log) intensity values for a surface pebbled with closely packed
spheres (T) The components T , and T2 describe the densit) functions for image intensities arising from the
surface or the gap between the spheres, respectitel). The dashed curve, labelled 'J. is the joint intensity
distribution function for the pebbled texture and an overhead iltuminant.

function is 0.46 and its variance (on log!) is about 3z.

6.0 The Derived Lightness Scale

We now have obtained image-intensity density functions for the three major factors that cause
intensity variations in an image: reflectance, surface orientation and illumination, and surface rough-
ness. Missing are intensity variations due to sources: specularities, the sun. the sky and cast shadows
(other than those due to surface texture). The distribution of these variables is difficult to estimate
but is expected to be small as compared with the three previous factors. For example, the 2 deg
sun occupies only 1/7000th of the total sky and can be considered a singular intense point. More
relevant intensity variations are the cloud patterns and North-South hentispheric variations in the sky.

However, een these amount to only about 30% on the average (Wysecki and Stiles, 1967). It is this

value which will be taken as a token estimate for source variations.

Table I summarizes the expected means and variances for the major factors that create intensity
variations in an image. We now are in a position to calculate i joint probahility density runction for

all these factors by successive convohltion of their individual distributions (equations 7. 8, 9). The
resultant probability density function is shown in Fig. 8. With source variation excluded, this density
function has a mean of 0.025 and variance of Rix. 'I he rcsultant lightness scale i, the int:gral of this
function, as shown by the broken line.

- + ,-", '° • • . - 21- - - . -
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TABLE I

Dsflectaace 0.1 - 0.2 lOx

Uurface OrientatLon OiW
21MLnatlon .4

SK11ourntus .4a .

Tom 0.020 lk

Figure TI. Table i. Sitmmary of the expected means and variances of the separate major factors that create
intensity variations in an imue.

7.0 Relation to Empirical Photometric Scales

To determine whether the preceding analysis captures the major factors that contribute to the
image-intensity distribution function, it is necessary to compare the derived probability function with
empirical mcasurements. Two kinds of photometric data arc of interest in this regard. 'lhc first is a
comparion with the distrihution of photometric measurements made by Jone% and Condit tl'149) for
a large number of scenes. The second explores the relation between the derived lightness scale and the

.... .. + i : ... ... ... .. ... ... .......... II I --- ...,<_ _+



WAR 17 LIGHTNESS SCALES

.001 .003 .0, .03 S .1 0.0
11111 IITERIIT Y

FipUre 6. Threc-factor probability density function for image intensities (solid line) resulting from the

convolution of intensity variations introduced by reflectance, surface orientation and surface roughness (texture).
The ogive is the integral of this function, and is the theoretical lightness scale. The pluses describe the Naka-
Rushton neural transfer functio.

Munsell Scale.

7.1 The Jones and Condit Measurements

In the 1940's. Jones and Condit of Fastman Kodak (1949) obtained data on the luminances and
luminance scales of 121 outdoor scenes. The luminance scale was defined as the ratio of the maximum
to the minimum luminance. The luminances were measured with a portable, telescope-type visual
photometer with a small field of view. The values of luminances found in different regions of one
typical outdoor scene is shown in Table II. Note that the range of the measurements is ahlost 200 to 1.

Figure 9 is a plot of the distribution of the range of luminances found in the 121 scenes studied.
The mean range is 160z, with some values as high as 700 to 1. ITo estimate the range expected from
the theoretical three-factor distribution of intensities, we must recognize that Jones and Condit were
attempting to measure a practical maximum for the intensity range in scenes t)pically photographed.
Their choice of scenes, and the measurements taken on each scene are therefore not random.

Nevertheless, one constraint on their selection was that all scenes yielded at least a 30 to I luminance
range. since this is the lowest range measured. Presumably the sky (or illuminant) was measured
in each outdoor scene, and hence the greatest lower bound on the luminance measured was .033
(= 1/30) relative to the maximum scene.

Returning to Figure 8. we then deduce that the remaining measurements Aer confined to the left
portion of the image intensit% distribution below die value .0.33. The mean of this portion of the

-. .
it
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distrihtitin or the luminance range is the dashed curve of Fig. 9. 'Ibis is a qtuitc reasonable match to
the Jones and Condit data, considering estimation errors involved.
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TABLE I I

LUMINANCE VALUES IN AN OUTDOOR SCENE 3

Are" NO. Description of Area Luminance in ft-L.

I mite cloud 3500

2 Blue sky 1350

3 Grass 1000

4 Side of stone bridge in sun Bo0o

5 Water in sun 460

6 Stone bridge in open shade 300

7 Tree trunk (1) 13S

a Bridge in heavy shade 33

9 Tree trunk (2) 33

10 Heavily shaded portion of tree is

Lt=NhR UGICMS 195

FrmJones and Condit (1949)

* Figure T2. Table II.

Le
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7.2 The Munsell Scale

The Munsell Scale for lightness is one of several that characterize the relation between reflectance
and the subjective brightness as seen by a "typical" human observer (Judd and Wysecki, 1975).
Although the Munsell Scale is defined by a fifth order polynomial, good approximations can be found
using rather simple formulae, especially considering the wide variations between the proposed scales.
(For example, the original system by Priest, Gibson and McNicholas (1920) used a simple, square-
root relation.) Undoubtedly, a rather simple relation could also be found to describe the integral of
the complex convolutions required to construct the "ideal" lightness scale depicted in Fig. 8. Such a
simple expression would give no insight, however, into the factors that underlie the scale and which
give the scale its basic shape.

In the case of the Munsell Scale, the linking assumption is that the human visual system will
optimize the spacing between reflectaiwe f &'nples seen under uniform illumination to match the ex-
pected distribution of reflectance ,-. the world. If he does this. then the Munsell Scale should be
very similar to the scale created by integrating the image-intensity distribution for reflectance, p. This
is simply the integral of equat , (7), wlich 's plotted in Fig. 2 as the dotted loci labelled "K-M
Theory". Qualitatively, the fit is eood and within the range of proposed lightness scales. A near-
perfect fit can be had by aeting lk 'Yts of surface orientation (not shown).

I

8.0 Relation to Biological Transfer Functions

One important use of a lightness scale is to describe how image intensities should be transformed so
that any one value is equally likely. Such a transformation thereby gives the most efficient sampling of
the input If the visual system is to code image intensity by neural firing levels, then the most effective
transfer function should result in each level being equally likely (Laughlin, 1981). In this way, the
amount of information per signal will] be maximized. The mapping of possible image intensities onto
a range of neural activities is thus equivalent to defining an internal lightness scale. It should not be
surprising, therefore, to find that the theoretically derived lightness scale is a good approximation to
the neural transfer function.

The Naka-Rushton relation (Naka-Rushton, 1966) is one of the most widely-used neural transfer
functions (Normann and Werblin, 1974: Hood, et al., 1979):

V/V ° = IC/(Cl + o') (10)

where V is the retinal response relative to its saturation value V, I is the light intensity and o and e
are constants.

Figure 8 compares the three-factor lightness scale with the Naka-Rushton equation setting the
exponent e = I, V° = 12.5 and a saturation constant o = 3. The ogive is the theoretically derived
curve that includes variations in image intensity due to surface orientation, texture and reflectance.
The' plusses. which are calcul~atcd from the Naka-Rushton relation (equation 10). fall clo<c to the
theoretical lightness scale function. A similar result has been noted by Laughlin (1981) in the con-

- m, .. ... .... ...... ...... ..... . . : :" - ']¢-r . ..... .i - ... " ...... .r .-r - ' - - .... ' it'
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trast response function of first order interneurons of the insect compound eye. It appears, therefore,
that the neural mechanisms that determine the visual transfer function are optimal for information
procesing.
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APPENDIX I

Derivation of Reflectance Density Function

Consider an opaque surface made up of fine particles of pigment embedded in a clear medium. As
diffuse light strikes this surface, a portion of the flux will be reflected back, whereas another portion
will pass into the layer either to be absorbed or to pass through. At the next deeper layer, again a por-
tion of the light will be reflected back towards the surface and the remaining portion will be absorbed
or transmitted through. For any arbitrary layer, there will be two factors that decrease the amount of
light passing in to the next layer: absorption K and backward scatter S. These two coefficients are
constants of the material comprising the surface.

The calculation of surface reflectance requires solving two differential equations for the net amount
of light flux that leaves the surface. The general solution to this problem was first found by Kubelka
and Munk in 1931. A special case of their solution is when the material itself is so thick that any
further increases in thickness will not change the net flux leaving the surface. This condition is
very suitable for most opaque natural objects and yields the following theoretical relations between
absorption K, scatter S, and surface reflectance, p.

p = I + K/S - (IK2/S 2 + 2K/S)i (Al)

For an "ideal" achromatic material, its pigment will scatter no light, whereas its embedding
medium or substrate will absorb no light (Judd and Wysecki, 1965). Since the pigment has no scatter,
its scatter coefficient is Sp = 0. Similarly, an ideal white substrate will absorb no light, hence its
absorption coefficient Ks = 0. Thus, the pigment provides all the absorption Kp and the substrate
is responsible for all the scatter, Ss. If the fraction of pigment in the mixture is C, then the net
absorption coefficient in the mixture will be C . Kp, and the scatter coefficient will be (1 - C). Ss.
The value K/S for the mixture will then be:

K/S = C .Kp/(I - C) . Ss (A2)

Letting the two material constants Kp/Ss be represented by the single material constant, a, we have

K/S = Ca/(1 - C) (A3)

Substitution into equation Al yields text equation (4):

cP_ c Ca 2(1 - C) (A4)
p -C)l + (1 (+-)' CO

The final density function for reflectance p. then follows the derivation given in the text.

Since the density function (7) for reflectance has two free parameters. a and /. it is of interest
to determine how sensitive this density function is to the choice of these values. "1o fit Krinov's

. - , -. -. " -, - . ... . . . .. ... I.-.. . .... ..
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APPENDIX II

Derivation of Density Function for Surface Orientation and Illumination

All. 1. Overhead Illumination Alone

Given the condition of an overhead point source and a spherical Lambertian surface viewed at 90"
to the source direction (as shown in Fig. 4), the flux J& along any horizontal circle at angle 0 to the
illuminant direction L is given by

J = R. F. (Ne- L) = R. F- osW (Bi)

where N is the surface normal. To determine the flux J,. in the direction of the viewer, we find the
projection of. J onto V:

Je, = J# -(N. V) = Jeow (B2)

The net image intensity e, per unit area will then be J,. corrected for the foreshortening of the
surface patch. This foreshortening will be proportional to (N. V) = coso, yielding

If'. = JVo/coao = J6

or from equation (BI)

iso = R. F coa=/1 (13)

The orthogonal (horizontal) circles about L thus correspond to loci of constant image .nrtensity for
Lambertian surfaces, regardless of the viewer's position.

To calculate the distribution of image intensities, we must now measure the area of the loci of con-
stant Je, as projected onto the image plane. Imagine that each of the circles of constant 1 is replaced
by a ribbon or band of thickness e. The projected width will then be less due to foreshortening, which
is equal to (N. V) = cow. For a sphere of unit radius, the total projected area of Ae of a ribbon
located at altitude e will thus be

12

A f=e.J_ inf cow dO (84)

where wsinf is the arc length and cosodO is proportional to the foreshortened area. (The angle 0 is
the angle between N and V as projected onto the horizontal plane-see inset to Figure 4.

Because cow is a function of 0 and 0, this relation must be determined before integration. For a
unit vector N = 1, the inset to Figure 4 shows that
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cow = sin .cosO (115)

Substituting this relation into (B4) and performing the integration, we find that

Ae = o- u" ain 2f (136)

The area Ae is thus proportional to the frequency of the image intensity along the locus where e is
constant. But sinO can be determined from equation (B3), remembering that coaf = (N • L):

ine (1 -C2) 1/ = [1 -- (_)]1/2 (87)

Normalizing the image intensities to the maximum on the surface by multiplying all l by R • F,
equations (B6) and (B7) can be combined to yield the following normalized probability distribution
for image intensities:

pdf(I) = [I - 12  (118)

This simple expression thus describes the expected density function for image intensities of
Lambertian surfaces due solely to direct overhead illumination. It is plotted as the solid line in the
upper graph of Figure BI.

A I1.2. Overhead Plus Extended Illumination

To calculate the image-intensity density function for a Lambertian sphere illuminated by a point
source overhead plus an extended source, we must first determine the relative strength of the diffuse
illumination. If this diffuse illumination arises solely from reflection off surrounding surfaces, then the
density function of Fig. 3 (equation 7) provides a basis for estimating the diffuse light contribution
relative to the original (point) source. This function (7) describes the probability of finding an object
of reflectance p. To calculate the total of light reflected by all objects of reflectance p, we merely
multiply the probability of finding p times p itself and sum over all p's:

Teffea - J pd(p) p dp (B9a)

Note that if all objects had a reflectance of 1, then the total incident light will be

Tiicidet = •,M0 pf(p) -dp (09b)

T 11 11



28

00
I I

WTINSlTY. 2

0 im W

NORMAIZED ITD lY, X

Figure B. The upper solid line shows the intensity disuibution function for a single overhead point source
illuminating a uniform distribution of Lambertian surfaces. If extended illumination is also present, then
the intensities are shifted to the right as indicated by the dashed line where 25, additional illumination
everywhere is added as an example. When this new distribution is normalized so the maximum intensity is
1, the lower curve results, which is the expected image intensity disiuibution for an illuminant consisting of
an overhead point source and plus an extended light source. These functions are also replotted in Fig. S on
a logi intensity axis

The fraction of diffuse light relative to the strength of the direct light is thus T, efircgdl/Tin, dent.

Numerical integration of text equation (7) yielded an estimate of 20% for the contribution of ex-
tended illumination to the total. (Note that this corresponds to the mid-point of the Munsell Scale.)

To visualize how extended illumination will modify the probability distribution of image intensities
for a hemisphere of constant reflectance, refer to Fig. Bla. The solid curve describes pdff(l) for
overhead illumination alone. If an extended illumination of 25% of the source intensity (U = 1) is
added everywhere to 1. the new pdf will be shifted to the right as indk:atcd. Renormalization of this
curve so the maximum I is I will result in the new pdf described in Fig. Bib.

4
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To quantify this result, let E be the fraction of the total source illumination due to extended
sources, and I be the intensity due to the overhead source plus surface orientation, ,. The
combined illumination F at any surface point will be

F ' E -. 1,. + (I - E)I (111O)

To calculate the new probability density for I'; let I,,.. equal 1 to normalize I and then solve
equation (BIO) for I:

I =f (I'- E. - )/(I -E) (BI )

Since pdf(I) 'is known from equation (138), substitution of(BI 1) yields

pdf(I') = I ( -rr E )2(12
r-E • 1 - E"(B12)

for I' > E, otherwise 0. Note that this density function is 1 at I' = E and zero where I' = 1.
To normalize the areas of pdf(J') for different fractions of extended illumination, we may divide by
(1 - E) to give the following general equation for the intensity distribution resulting from extended
and point overhead sources:

(I - [E I-E

for I > E. otherwise 0. Text Fig. 5 illustrates the form of this density function for no extended
illumination (E= 0) and for 20% extended illumination.

- .. . .. . .. .I 4- '|
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APPENDIX III

Derivation of a Density Function for Texture

Two models for a textured surface are considered: one with the texture elements consisting of
identical cylinders lying parallel on a flat surface of the same material, and illuminated from overhead,
and the second texture created by closely packed spheres.

Although the utility of the "pebbled" surface model is emphasized in the text, it is simpler to derive
its image-intensity density function by first considering the surface corrugatcd by cylinders. This
approach has the further advantage of revealing the similarity between the density functions obtained
from quite different model surfaces.

AIII.l A "Matchstick" Surface

If cylindrical matches lie on a surface and are locally parallel, illuminated from above by a distant
extended source such as the sky, then the significant variable is the cylinder separation measured in
terms of the cylinder radius. The situation is depicted in Fig. Cl. which is a cross-sectional view of a
plane perpendicular to the cylinder axis.

The large hemisphere represents the overhead sky. The small circles are the ends of Lambertian
cylinders, each of identical reflectance and size. Letting our coordinate axis begin at the center of the
second circle, consider a point p on the cylinder located at a horizontal distance V from the top of the
cylinder. Point p will be illuminated by the entire sky less that portion 0 below its tangent plane, and
less that second portion that is occluded by the adjacent cylinder. The intensity profile 1(y) along
the cylinder will thus be:

1(y) = Or - 0 - O)/W

0 < Y< I (Cl)

where

0 = arc sin(y) (Cla)

= ate an(l/B) - artan[md/Al (Clb)

where

A = S-+ 2-- Y

6,'
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Figure C1. Cross-ectional view of three cylinders seen on end beneath a hemisphere of uniform illumination,
suchi a the sky.

and

B-= [42 + CM20 _ 1/2 (Cic)

A similar geometric analysis yields the following relation for the illumination of any point lying on the
ground planes in the gap between the cylinders:

=i - 2arctan- - 2ardan!)/w (C0)
A

< <<(S +1)

where A is as before in (Cib). If the reflectance of the ground plane is not the same as that of the
cylinders, we may calculate the image intensity profile for an overhead observer. Four such profiles
are shown in Fig. C2 for cylinder separations of 0.5, 1, and 2 radius units.

.Two features are worth noting about these profies. First. the intensity distribution along the
cylinder surface is not affected appreciably by the neighboring cylinder, except at the edge. An
excellent empirical approximation to this proflec is the relation 1(y) = (I1 31 2)l /1. Second, in the
region or the gap between the cylinders the intensity is rather constant, especially for sepirations, less
than twice the cylinder diameter. To a first approximation, this portion of the intensity profile can be
described by the following relation, which is dependent only on the gap size S:

I~)=I - (3/4r (0i)
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I < Y<(8+1I)

These approximations will become useful in the case where the textured surface can be modelled by
spherical pebbles lying on the ground plane.

To calculate the probability density function pdf(l) for image intensities of a corrugated surface of
cylinderical matchsticks, we now apply Bayes' rule as before:

ON) = p(y) -dy/dI (C4)

where dy/dI can be determined by equations (CI) and (C2) or their approximations. Note that A~Y)
will be constant because the sampling of image intensities will be at fixed increments in y for the
orthographic view.

Fig. C2 shows how the density function varies for surfaces textured by cylinders spaced at intervals
S. Note that the image intensity density function rapidly approaches a spike for cylinder separations
greater than three times their radius. The greatest range in the intensity distribution occurs for S 0.
where the cylinders abut one another. Here the mean value is 0.8 and the variance is 1.2z (on a log!
scale).

AlII.2. A "Pebble" Surface

Consider next the case where the surface roughness can be approximated by identical spheres lying
on a ground plane. As seen from above, the appearance in a small region may be depicted as in Fig.
C3. Note that when the spheres abut one another, the triangular region ABC includes the entire
intensity profile of the configuration because similar triangles will completely cover the surface. The
approach will be to determine first the probability density function for the triangle ABC, and then to
explore the effect of increased separation of the spheres upon this distribution.

Profile A: The intensity profile of A is determined by the angle of the tangent plane along A. Ibis
profile is at most that of two abutting cylinders whose axis is perpendicular to the plane of A. The
cylinder profile is given in Fig. C2a. and is replotted in Fig. C4 as curve A. The actual profile along
A will lie below that of C2a, because the tangent plane will intersect spheres F (and its counterpart
F). Although this reduction in the illumination can be estimated in principle, it is not important
except near the juncture of the two spheres where the illumination is small. To a first approximation,
therefore, the intensity profile oflocus A will be that of Fig. C2a.

Profile C: Again, this profile will be estimated by making the cylinder approximation as before and
ignoring the intersection of the tangent planes with the neighboring spheres. The upper bound on the
profile C is thus that for a cylinder separation of(31/ 2 - 1) = 0.7. This profile will be intermediate
between that shown if Figs. C2b and c. The correct profile has been replotted in Fig. C4 for the lOCus
C.

¢" 4

f:'



33

ii

yA

00

to C

I ____ ___.....__ 0--0
to D

DISTANCE, y

iure C2. Intensity profiles aionS a msurf comnprised of cylinders. In .4, the cylinders touch one ancther:
in B the separtion is 0.5 radius units: in C. 1.0 units and D. 2 radius units, Note that the profle slonj the
cylinder mrface is relativel) independent of pp ie.

Profile B: Recalling that in Fig. C2 the illumination in the gap between cylinders is essentially a
function of gap width only, we can use this relation (C3) to estimate the profile of the gaps between
adjacent spheres. Where locus B intersects A. the gap is zero, and so is the illumination, as shown in
Fig. C4 at the unit distance 31/2 . As we proceed along the locus B toward C. the incrcase in gap size
will increase the illumination of the ground plane to its maximal value at C located .13 units rrom the
edge of the sphere. Again. this latter estimate is too high because the occlusion by spheres adjacent

4
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Figure C3 Overhead view of a portion of a surface pebbled with identical Lambenian
spheres The intensity profiles of the loci A. B and C a shown in Fig. C4.

to the tangent plane has not been taken into account. Nevertheless, it will serve as an estimate of the
illumination profile along B.

The three profiles A, B. and C now describe the intensity profiles at the boundaries of the basic tri-
angle that covers a "pebbly" surface of Lambertian spheres. To characterize the intensity at any point
within this basic triangle, we note that in the sphere itself, the profile everywhere is essentially the
same function of its radius, since the profiles A and C are very similar over the region 0 to 1. Using
the approximating Isy) - (I - y3/2)1/2, we then find that the distribution of image intensities on
the sphere will be:

pdl(Is) = 2(1 _ 12)1/3 (C5)

if p(Iq) is plotted on a Log! axis. Because the sphere itself occupies very close to 7/Szhs of the area of
the triangle to an overhead viewer, equation (C5) represents the major portion of the image intensity
density function due to this type of roughness. (ibis function is plotted as the curve T, in Fig. 7.)

To determine the added effect of the dark gap between the spheres, we use the approximation for
the gap illumination I = (I -- .75s) and note that the gip width. S is roughly proonrtinal to the
di.tance travelled along B from A to C. But since the gap width is proportional to the area of the gap
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Figure C4. Three intesit profiles along the abutting spheresh ihown in Figure C3.

for a given fixed increment along B, we can find that the image intensity distribution function in the
gap is roughly:

• top 0 < I <.5 (C6)

where a logI axis is used. This distribution function is the lower lip on curve "T2" in Fig. 7 having a
weight of 1/8th, corresponding to the area of the gap relative to that sphere.

The total of curve "T" in Fig. 7 is thus the combined image intensity density function for both the
gap and the sphere. (The same function is replotted on linear axes in Fig. 6b.) This envelope is thus
an estimate of the intensity distribution that might be measured for a surface "pebbled" with roughly
identical, closely-packed spheres. As the spheres move farther apart, the density function for intensity
variations due to surface roughness must approach a spike at 1.0-i.e.. the surface will be smooth and
have a single intensity value everywhere. The upper curves in Fig. 6 give an indication of how fast a
rough surface becomes smooth.

AIIl. An Empirical Tet

To insure that the image intensity density function for surface roughness shown in text Figs. 6
and 7 is an adequate model for a class of naturally textured scenes, a frontal photo of a leafy section
of a rhododendron hush was taken and the image digitized. Fig. CS shows the resulting intensity
histograms as the irregular smooth curve, superimposed upon the "pebble" surface model which is

-- ---' .. .. t = -- .. ... .. . . ..."= ' ; " l -- - = , m .. . .,. J l I I ..• J ,.Z ., It
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the dashed curve taken from Fig. 6b. Note that the charactrinstic "spike" due to the shadowed
portions of the leaves is captured by the model. Considering the simplifying assumptions made in
the derivation (as well as in the choice of sene!) the theoretical image intensity density function for
textural variations can be considered adequate.
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Fge lA oaxnpmo beween an empirically measured imale itensity diation for a roughly textured
surface and the "pebble" iturface modell The smoothi curve is the iwtnsity hisingram for the itiododendum
buqh Ahoin in the. lop porio of the figurc The pebblc-xurtdcc prediction is the dashecd line takcn frlbm Hill
6b (couctesy, of . D Illoffman).
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