
AO-AL09 873 TRANSPORTATION SYSTEMS CENTER CAMBRIDGE MA F/S 17/7
STATISTICAL ANALYSIS AND TIME SERIES MODELING OF AIR TRAFFIC 0P--ETCIU)

OCT Al N J MEYERHOFF. G H WANG

UNCLASSIFIED TSC-FAA--1 FAA-EM-82-13 k



M



DOT/FAA/EMAdgl 3 Sttsia Anl is ndTm
DOT-TSC-FAA-81 -18SttsiaAnl is ndrm

Series Modelling of Air
Traffic Operations Data from
Flight Service Stations and
Terminal Radar Approach
Control Facilities:

00 Two Case Studies
Norman J. Meyerhoff

George H. Wang

Transportation Systems Center
Cambridge MA 02142

October 1981E
Final Report

This document is available to the public
through the National Technical Information
Service, Springfield, Virginia 22161.

US~ Departmn of lrnfans o

t Office of Systems Engineering Management
Washington DC 205910



NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern-
ment assumes no liability for its contents or use
thereof.

|I

NOTICE

The Unit%.d States Government does not endorse pro-
ducts or manufacturers. Trade or manufacturers'
names appear herein solely because they are con-
sidered essential to the object of this report.

I

-. . " -", rn . . . . . . . . ." 'Vn i 
'

. . . . . . . . . : - . . . r



Technicel Report Documenation Pege

1. 111"griNo. 2. Government Accession No. 3. Rocopeet's Caoaog No.

4. Title and Sulitstle IS. Report Dote

STATISTICAL ANALYSIS AND TIME SERIES MODELING October 1981
OF AIR TRAFFIC OPERATIONS DATA FROM FLIGHT 6. PormingOrgn.iz,,edn Cde

SERVICE STATIONS AND TERMINAL RADAR APPROACH DTS-522
CONTROL FACILITIES: TWO CASE STUDIES *. Performing Ogerniase. Report Me.

7. Author' s)

Norman J. Meyerhoff and George H. Wang DOT-TSC-FAA-81-18
9. Performing Orgwnisetion Nome end Address 10. Work Unit No. (TRAIS)
U.S. Department of Transportation FA259/R2119
Research and Special Programs Administration ii. cn,,c~e, ,enN.
Transportation Systems Center
Cambridge MA 02142 13. Type of Report end Period Covered

12. Sponsoring Agency Nome nd Address
U.S. Department of Transportation Final Report
Federal Aviation Administration Oct 1979-Sep. 1980
Office of Systems Engineering Management 14. SpensorngAgencyCode

Washington DC 20591 FAA/AEM-200

15. Supplementery Notes

)1. Ab ct

Two statistical procedures have been developed to estimate hourly
or daily aircraft counts. These counts can then be transformed into
estimates of instantaneous air counts. The first procedure estimates
the stable (deterministic) mean level of hourly or day of the week
patterns by statistical models. The second procedure estimates both
deterministic and stochastic periodic (hourly or day of the week)
patterns by stochastic time series models. Both statistical procedure:
have been used to analyze traffic at the St. Louis TRACON and Los
Angeles Flight Service Station.

0This report analyzes hourly variations in operations at the St.
Louis TRACON, for each day in four representative months in 1979. It
also analyzes daily variations for three months in 1979 of flight plan
activity at the Los Angeles FSS.

The results of these analyses are given preliminary interpreta-
tions, and are available for possible application to other facilities.
They are also available for other applications, such as estimation of
instantaneous air counts in hubs.'

17. Key Werds 1. Distribution Sttement

Terminal Radar Approach Control, DOCUMENT S AVAILASLE TO THE PUBLIC

Flight Service Station, Aircraft THROUGH THE NATIONAL TECHNICAL
IFORMATION SERVICE, SPRINGFIELD,Counts, Aircraft Operations VIRINIA2216,

19. Seurity Cleseif. (of this "pat 20. Security Cles! f. (of two page) 21. No. of Pages 22. Price

Unclassified Unclassified 59

F.n. DOT F 1700.7 (1-) Reproduction of completed page euthelzed

tt



PREFACE

At the request of the FAA's Office of Systems Engineering

Management, the Transportation Systems Center implemented a pro-

gram to estimate instantaneous counts of airborne aircraft over

the continental United States. Counts over Air Route Traffic

Control Centers (ARTCC) and Terminal Radar Approach Control Facil-

ities (TRACONS) are of special importance, since these counts

help system designers develop system tradeoffs and technical spe-

cifications for new equipment and computers to update or replace

those currently in the field (i.e., IBM 9020's in the ARTCCs and

Univac ARTS-3 in the TRACONS).

In the past, there has been limited effort to systematically

estimate counts. This report describes several important phases

in a new structured program to systematically estimate air counts.

A crucial step in the estimation of air counts is the estima-

tion of daily or hourly operations at FAA facilities. The prin-
cipal outputs from this study are statistical methods for predict-

ing hourly or daily operations with application to certain facili-

ties. Concurrent with this research, models to convert operations

to air counts have been developed, although these models are not

described in this report. The prediction of facility operations

is sufficiently important to FAA program planning to warrant a

separate, comprehensive report. This work was performed in FY'80.
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EXECUTIVE SUMMARY

Two statistical procedures have been developed to estimate

hourly or daily aircraft counts. These counts can then be trans-

formed into estimates of instantaneous air counts. The first pro-

cedure estimates the stable (deterministic) mean level of hourly

or day of the week patterns by statistical models. The second

procedure estimates both deterministic and stochastic periodic

(hourly or day of the week) patterns by stochastic time series

models. The foregoing statistical procedures have been used to

analyze traffic at the St. Louis TRACON and Los Angeles Flight

Service Station.

This study analyzes hourly variations in operations at the

St. Louis TRACON, for each day in four representative months in

1979. It also analyzes daily variations for three months in 1979

of flight plan activity at the Los Angeles FSS. The results of

these analyses are given preliminary interpretations, and are
available for possible application to other facilities. They

are also available for other applications, such as estimation of

instantaneous air counts.
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1. INTRODUCTION

The systematic estimation and prediction of characteristic

variations in air traffic operations at FAA facilities is needed

in order to help plan for future air traffic control systems,

programs and possible facility modification. Two important ex-

amples of these characteristic variations, or representative

patterns, are the changes in operations with day of the week and

hour of the day.

However, hourly or daily patterns, while important to many

applications, do not satisfy all requirements. Estimates of in-

stantaneous aircraft counts are required for many applications.

In the past, the methods for counting in-flight aircraft have

consisted mainly of reducing radar tapes (when available), count-

ing aircraft images on air traffic controller plan view displays,

or on some occasions, requiring the assistance of the Civil Air

Patrol to count in-flight aircraft. While there is merit in these

approaches, they also have their limitations. For instance, they

are costly. Therefore, mathematical models to convert FAA opera-

tions data to estimates of instantaneous counts have been developed

at the Transportation Systems Center. This report will concentrate

only on the analysis and modeling of daily and hourly operations

data at certain FAA facilities. Their conversion to counts of in-

flight aircraft will be discussed in a separate publication. But

the major impetus for undertaking the analysis of hourly opera-

tions data is to provide input to models which estimate instan-

taneous aircraft counts.

Useful information can be gleaned from analysis of daily or

hourly operations, and this information is relevant to interpre-

tation of instantaneous aircounts. The first part of this report

extracts weekly systematic patterns in daily instrument flight

rules (IFR) and visual flight rules (VFR) flight plan activity of

general aviation aircraft at the Los Angeles Flight Service Sta-

tion. This information is important because it identifies pre-

ferred days. For example, which weekdays tend to be busy and which



tend to be quiet, and which weekend days are busiest. This in-

formation is needed by the statistical survey designs used to ob-

tain data from flight service stations (discussed in another re-

port). Los Angeles FSS data is a necessary requirement to analyze

aviation activity (with and without flight plans) in the crowded

Los Angeles area. Since VFR activity data from different FSSs in

a limited region tend to be correlated with each other, the daily

variations of flight plan activity at Los Angeles must be typical

of neighboring flight service stations (and also similar to tem-

poral variations of itinerant GA activity at neighboring airfields).

The second part of the report develops models for systematic

patterns and peak activity in a TRACON. A model and related soft-

ware were developed and tested on data obtained from the St. Louis

TRACON. Hourly operations data, for each day in four representa-

tive months in 1979, was the input. The model predicts hub loading

on an hourly basis, and as indicated above, can be converted to

peak and average instantaneous aircount within each hourly inter-

val.

All models permit direct forecasting of their output. For

flight plan forecasts, the level of forecasting is daily, compared

with the FAA's annual forecasts of operations. The sensitivity of

the model is thereby improved.

This study accomplishes two main purposes. First, special

statistical models and procedures for the estimation of hourly

and day of the week patterns for air traffic activity were de-

veloped. Second, these statistical procedures were applied by

estimating hourly and day of the week patterns with selected air

traffic data.

A common practice in previous studies of temporal variations

in air traffic activity has been simply to plot changes in sample

data as a function of day of week or time of day. This approach

cannot provide reliable estimates of representative patterns in

air activity. This is becuase these estimates are adversely af-

fected by sampling variations. In this study, two statistical

2



approaches are proposed to estimate the average level and vari-

ances of these temporal patterns.

In the first approach, a simple model, similar to a one-way

analysis of variance model, is adopted for hourly or daily air

traffic data. One standard and two robust statistical procedures

are suggested to estimate the parameters of this model. The sec-

ond approach applies a time series modeling technique suggested by

Box and Jenkins (1970) to model temporal variation patterns for

air traffic data. This approach tailors a specific model for each

series. In general, it will provide a more suitable model to ex-

plain the temporal variations of a particular series than the model

obtained by the first approach. However, the second approach is

not economical if used to analyze a large set of air traffic data.

Both approaches have been applied to St. Louis TRACON data.

These empirical results indicate that there are diurnal variations

in the hourly data and weekly and seasonal variations in the daily

data collected from different seasons in the year of 1979. Their

estimated hourly and day of the week patterns provide valuable in-

formation for the estimation of instantaneous air counts (see

Meyerhoff (1980)) which can be applied to the planning of air

traffic control facilities and the airport capacity problem.

This study is organized into three sections. Section 2 pre-

sents our first statistical approach to estimate temporal varia-

tion patterns for air traffic activity. Section 3 presents Box-

Jenkins time series approach to model the stochastic behavior of

temporal variation patterns for air traffic activity. This ap-

proach is also applied to the estimation of daily models for flight

plan data collected from the Los Angeles Flight Service Station.

Summary and conclusions are contained in Section 4.

3



2. ESTIMATION OF HOURLY AND DAY OF THE WEEK PATTERNS
FOR SAMPLED AIR TRAFFIC DATA

In Section 2.1, we present some standard and robust statisti-

cal procedures to be used in this study and the reasons why both

of these two types of procedures will be used simultaneously in

the analysis of sampled air traffic data. In Section 2.2, these

statistical procedures are illustrated with estimation of hourly

and day of the week patterns with sampled hourly and daily air

traffic data.

2.1 STATISTICAL PROCEDURES

In applied statistics, statisticians usually face a problem

of choosing alternative statistical procedures in their analysis.

The general principle in guiding our selection of alternative tech-

niques are: (1) statistical properties of alternative techniques;

(2) the primary purpose of the study undertaken and; (3) computa-

tional costs and requirements associated with alternative proced-

ures. In this study, the primary goal is to estimate the represen-

tative (average) hourly or day of the week patterns for sampled air

traffic data. Therefore, those statistical techniques which will

give reliable location and scale estimates (average patterns and

variations around them for data under a wide variety of conditions)

will be adopted.

One of the difficulties in analyzing air traffic data is that

maverick observations invariably find their way into the data set.

These observations may be due to meteorological IPR weather condi-

tions, facility outages or other special events. These outliers

are values which in a dramatic way do not conform to the average

(typical) behavior of most observations. Planning a new facility

on the basis of an occasional outlier is, in general, not cost-

effective.

The most commonly calculated statistics are the mean and var-

iance of a batch of numbers. These two statistics are not robust

to a small fraction of the observations. For example, suppose we

4



have six numbers: 4, S, 3, 2, 4, 3. In this case, the arithmetic

mean of 3.5 seems to be a good description of the average number.

Suppose one more observation of 45 is added, the mean now jumps to

9.5. This value does not represent the major bulk of this data

set. This example illustrates that mean and variance are not ro-

bust in the sense that they are seriously affected by a single

large fluctuating observation.

One natural solution to this problem is to use robust statis-

tical methods. The statistical procedures whose results are not

dramatically affected by a small fraction of observations are

usually called robust statistical procedures. This example will

intuitively explain the reasons why robust statistical procedures

will be adopted in our analysis of sampled air traffic data.

The standard and robust statistical procedure adopted in this

study will be presented in the rest of this section.

Suppose sample operations data obtained at equal intervals

are designated by X where i = 1, 2, ...7, and j = 1, 2, ... 32.

In our case, i is the ith day of the week and j is the jth week of

the year.

The statistical model in general form is:

Xij = Ui + eij (1)

where Ui represent the deterministic effect of the ith day of the

week and ei is assumed to be synmetrically distributed with zero

mean and variance a 
e
ei"

1
N i

ui  E X x i = l, 2, ...7 (2)
j=l N

i

and the variance estimator of U. is defined as:

N.
2 l 2a = E (X ij Ui )  (3)e i  j=l /(N i-l 13

where Ni is the number of observations of the ith day of the week.

!i



These estimators can be extended to estimate the location

(mean) and scale (variance) parameters of the distribution on the

ith hour of the day using hourly rather than daily samples. The

estimators described in (2) and (3) are commonly used and are re-

ferred to as a standard method.

The first robust statistical technique we use is the Box plot

and schematic plot. These graphical display techniques were sug-

gested by Tukey (1977). A Box plot displays a batch of data.

Nine values to represent ranges in a set of data are convention-

ally used: the upper and lower detached points, the upper and

lower outside points; the upper and lower side values; the upper

and lower hinges (these are the same as upper and lower quartile)

and the median. The configuration of a Box plot is shown in

Figure 1. The definitions of these summary measures are:

(1) Upper Hinge: The definition of Upper Hinge is identical

to that of the upper quartile, which is

widely used in statistics. The Upper

Quartile is the value such that 75 percent

of the observations are less than or equal

to the value denoted by Q3 ; while 25 per-

cent of the observations are larger than

Q3 "

(2) Lower Hinge: It is identical to the definition of Lower

Quartile. Lower Quartile is the value such

that 25 percent of observations are less

than or equal to this value, which is de-

noted as Ql.

(3) Upper Side It is the largest data value less than the
Value: upper hinge (i.e., Upper Quartile) plus

Midspread [Upper Quartile - Lower Quartile].

But if that value is less than upper quar-

tile, the upper side value is equal to

upper quartile.

6



A Detached point

+ u-- Outside points

Upper side value

Upper Hinge (UH) (Upper
Quartile)

Midspread (MIDSP) Median

Lower Hinge (LH) (Lower

Lower side value

TE Outside points

Detached points

FIGURE 1. THE CONFIGURATION OF A BOX PLOT
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(4) Outside Points: The definition of Outside Points are

data values between UH + 1.5 MIDSP and

UH + MIDSP or LH - 1.5 MIDSP and LH -

MIDSP.

(5) Detached Points: The definition of Detached Points are

data values greater than UH + 1.5 MIDSP

or less than LH - 1.5 MIDSP.

(6) Median: It is the value such that 50 percent of

the observations are less than it and

50 percent greater than it.

In this study, the Box plot technique is used to estimate the

empirical distribution of the ith day of the week or the ith hour

of the day. The merits of Box plots are as follows:

(1) They display the levels and variability of a batch of

data.

(2) They are resistant to bad data points and indicate the

numbers of bad data points in the plot.

(3) In the process of constructing a Box plot, outliers are

identified.

For comparison purposes, the Box plot for each day of the

week or for each hour of the day is displayed in the same figure

and this figure is called a schematic plot by Tukey (1977). This

displays the center and spreads of the empirical distributions for

each day of the week or each hour of the day, thereby providing a

preliminary model for the data.

The second robust statistical estimator for the mean Ui is

the trimean estimator. It is defined as:

= X( 1 4) 2X(1 /2 ) + X( 3/4) (4)

4

where, X (14) denotes the lower 25 percentile of the data batch

X ) denotes the median of the data batch

X(3/4 ) denotes the upper 75 percentile of the data batch.k ,



The variance formula for the trimean is defined as scaled

midspread (SMIDSP),

SX(3/4) - X(/4)
Var 1 1.349

The robust estimators considered here work well for symmetri-

cal distributions. If the empirical distribution is very skewed,

then a power transformation [Box and Cox (1964)] of the original

data should be used, and this robust estimator will be applied to

the transformed data. The location and scale estimators for the

original data can be obtained by transforming back from the loca-

tion and scale estimates obtained from transformed data.

Other types of robust estimators such as a trimmed mean can

be also used in this study. For computional purposes, this esti-

mator is not adopted in this study.

Finally, our strategy in the estimation of representative

patterns is as follows: (1) both standard and robust statistical

methods are applied to the representative patterns of interest.

If the results obtained by both procedures are similar, then the

standard method is recommended; (2) On the other hand, if the re-

sults obtained from the standard method are quite different from

the results obtained by those robust procedures, then there are

two paths we can follow: (a) the results obtained by robust sta-

tistical methods is recommended. This is because these procedures

have a built-in property to be resistent to bad data points and

robust to the deviation from the assumed model of probability dis-

tribution; (b) further research should be taken to understand

those reasons which may cause the occurrence of these bad data

points. Then an alternative model should be specified for this

data set. This approach is not economical in analyzing a large

amount of data because it is tailor-made model for a limited num-

ber of important data sets.

9
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2.2 EMPIRICAL RESULTS

2.2.1 Flight Plans Filed at Los Angeles Flight Service Station

The daily number of (IFR and VFR) flight plans filed at the

Los Angeles Flight Service Station were processed for the period

June to August 1979. They were supplied on Form 7230-13 by the

Los Angeles FSS. These data are plotted in Figure 2 and Figure 3,

which summarize, respectively, the variations in VFR and IFR

flight plan activity for each day in the cited interval. There

exist weekly cycles in the data over this sample period. The

standard statistical method and the robust procedures described

in the previous section are employed to estimate deterministic

(fixed) day of the week patterns for VFR and IFR flight plan data.

The estimated patterns and other related summary statistics of the

data are presented in Tables 1 and 2. The graphical displays of

schematic plots for the VFR and IFR day of the week patterns are

shown in Figures 4 and S, respectively.

From these empirical results, several interesting findings

can be summarized as:

(1) On the average, the peak day of the week for VFR is

Saturday while the peak day of the week for IFR is

Friday.

(2) The number of IFR flight plans filed on a week-day is

larger in general than those filed on a weekend. How-

ever, on the average, the number of flight plans filed

in the weekend and Friday for VFR is larger than those

in the rest of the week.

These observations verify our expectations. IFR activity is

primarily business-related, so the number of IFR flight plans

should decrease on weekends. Many VFR flight plans are filed by

private individuals, so VFR activity should increase as the week-

end approaches. (Many individuals leave the Los Angeles area on

weekends.)

10
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(3) From Tables I and 2, observe that there are some posi-

tive associations between the peak (i.e., max) flight

plan counts for each day of the week and their corres-

ponding location estimates (i.e., mean levels).

(4) To measure the variability of the data around their mean

level, the coefficients of variations for each day of

the week are computed and presented in Table 3. The

coefficient of variations (C,V.) of IFR for each day of

the week are uniformly smaller than those for VFR.

Operationally, daily variations in VFR activity tend to

be larger than IFR because the former are more sensitive

to weather.

2.2.2 Hourly Operations at St. Louis TRACON

This section summarizes the result of statistical analyses on

operations data at the St. Louis TRACON. The St. Louis TRACON

records hourly operations for each day of the year in manual form.

These operations are disaggregated in various ways, such as by

type of aircraft. The analyses described b',f were applied only

to the total aircraft count. The procedures are equally applicable

to disaggregated counts. They can also be applied to any TRACON

tabulating its operations in the manner described.

Manual data supplied by the St. Louis TRACON were automated

at TSC, then analyzed using specially developed software. Daily

data from the middle month of each season of the year was supplied

(i.e., February, May, August, November). The assumption is that

the middle month is representative of its season, e.g., February

is representative of January and March. Experience indicates that

the middle month of three consecutive months is representative of

the two adjacent months. To have performed the same analyses for

12 months would have been costly.

Hourly operations data at the St. Louis TRACON for each day

in February, May, August and November, 1979, are displayed in

Figures 6 and 7, respectively. It is hoped that a study of hourly
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data collected for one month from each of the four seasons will

provide insight into the changes in levels and variability of

hourly patterns of the day due to seasonal variations. Four hourly

patterns (from 8 to 24 hours) of a typical day estimated from four

different sampled months data are reported in Tables 4 through 7,

respectively. Figures 8 through 12 display representative hourly

patterns for February, May, August and November and all four months

combined. From these empirical results, the major characteristics

of hourly patterns in different seasons can be summarized as fol-

lows:

(1) The peak hour of the day is from 17 to 18 hour, i.e., 5

to 6 p.m. This is true for all sampled monthly data con-

sidered here.

(2) The peak hour of the morning period (defined by the range

8 a.m. to 12 a.m.) is in the interval from 9 to 10 a.m.

Again, this morning peak pattern remains the same for

all of the monthly data examined in this study.

(3) In general, the shape of the hourly patterns for differ-

ent sampled months are similar but the levels of hourly

patterns vary with different seasons. For example, the

levels of hourly patterns in August is the highest and

the hourly pattern in February is the lowest among these

four sampled monthly data. This implies that there is

some seasonal variation in the levels of hourly patterns

for operations in the St. Louis TRACON. These regular

hourly patterns for the different sampled months has its

origin in the observation that pilots' habits are fairly

regular. This regular pattern is an important prerequi-

site for forecasting and also for inferring operations at

other TRACONS.

(4) From Tables 7 to 10, the variability of the hourly pat-

tern in August is less than those estimated from the rest

of three sampled months. This is because the weather at

this time of the year is relatively good, i.e., VFR.
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For planning and comparison purposes, convert the day of the

week and hourly patterns (in levels) into an indexed form. The

day of the week pattern in index form can be calculated in the

following manner:

(1) Compute the overall mean from the means of the ith day,

i = 1, 2, ... ,7, i.e., 7
U= U

1 i=l -

(2) Divide the mean of ith day Ui by U, i.e.,

S1U = 1, 2, ...7.

(3) Multiply Ui by 100.0 and the resulting figure is the

index number for the ith day of the week. The sum of

the index numbers for the seven days of the week is

equal to 700.

The index form of hourly patterns can be computed in the same

way as the index number for the day of the week patterns except

that the notation of the ith day is replaced by the notation of

the ith hour and the periodity of 7 is replaced by the periodity

of 16.

Following these procedures, the day of the week and hourly

patterns in index form are presented in Tables 8 and 9, for the

Los Angeles Flight Service Station and St. Louis TRACON operations.

Tabulated operations at any TRACON include only those aircraft

in contact with the TRACON and within the boundary of the TRACON

(or several miles beyond the boundary). Normally, this includes

hub IFR or controlled VFR flights.

The St. Louis TRACON does not exhibit two distinctive opera-

tions peaks - one in the morning and another in the afternoon - as

are observed in other TRACONS (and ARTCCS). Such a bi-modal pro-

file is typical of a commuter morning and evening "rush hour" pat-

tern. The St. Lou.s TRACON also has this pattern, but aircraft

arriving from other time zones smooth out this pattern. Hence,

St. Louis is typical of other TRACONS in Central time zones. More
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analysis would be required to confirm this observation, although

similar patterns have been observed in ARTCCs within the Central

U.S. (Meyerhoff, 1979).
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3. STATISTICAL TIME SERIES MODELS AND FORECASTS
FOR SAMPLED AIR TRAFFIC OPERATIONS DATA

In the last section, statistical procedures were proposed to

estimate representative (average) hourly and the day of the week

patterns for sampled air traffic data. However, the major draw-

backs of these procedures are:

(1) They fail to describe stochastic behavior (changing

patterns) of the data over the sample period.

(2) In the estimation of the location parameters of our in-

terest, the estimates are not precise because we neglect

the information of the serial correlations contained in

the sample data.

In order to remedy these problems, a time series modeling

technique proposed by Box and Jenkins (1970) will be introduced

and illustrated with sampled air traffic data later in this sec-

tion. The main advantage of time series modeling approach is that

it can describe both deterministic (fixed) and stochastic (chang-

ing) components in the data. However, the disadvantage of this

procedure is:

(3) the implementation of this method generally requires

sophistication in statistics.

(4) the construction of a fitted model requires relatively

higher computation cost. However, once the model is

constructed, the person exercising this mode need not

possess special skills in statistics.

3.1 AUTOREGRESSIVE AND INTEGRATED MOVING AVERAGE (ARIMA) MODELING

METHODOLOGY

Suppose time series data are observed at equal intervals and

are denoted by X1 , X2, X3 ... Xt.1, Xt , Xt+1 ..., XN. B represents

a back shift operator such that BXt = X t_. A class of seasonal

models for Xt proposed by Box and Jenkins (1970) is written as:

0 1 (B) 2 (Bs)(I-B)d (1-Bs ) Xt(x) = ° + 1 (b)6 2 (BS)e t  (5)
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where:

(1) el(B) and e1 (B) are polynomials in B of degree p and q,

respectively. All of the roots of el(B) and el(B) lie

outside the unit circle.

(2) 2 (B
s) and e2 (B

s ) are polynomials of degree p and Q,

respectively, in Bs. The periodicity in the data is

denoted by s. For example, s=12 for monthly data and

s=7 for weekly cycles. All roots of 02 (B
s) and 'A2 (B

s)
lie outside the unit circle.

(3) 60 is a trend term.

(4) (l-B)d and (1-BS)D represent the degree of difference

and periodic difference.

(5) X ) denotes the Box-Cox transformation (see Box and

Cox (1964), Box and Jenkins (1973) and X (X )

X X
SWhen Ao then Xt is equal to the log transform

of the original observations and when X=l, there is no

transformation.

(6) et is assumed to be independent and normally distributed2
with zero mean and constant variance a

The Box-Jenkin's iterative modeling procedure for fitting

ARIMA models to the data consists of the following steps:

(1) Model Identification

(2) Parameter Estimation

(3) Diagnostic Checking

(4) Forecasting

These steps are executed sequentially, with step 4 conditional

on satisfactory results of step 3. If step 3 shows that the

fitted model is not adequate in the sense that residuals are not

white noise then a modified model must be proposed and thensteps

1 to step 3 will be repeated again, as follows:
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(1) Model Identification: The function of the model ident-

ification is to determine a tentative model which might

be appropriate to the series being considered. The

sample autocorrelation functions and partial sample

autocorrelations are the major tools to be used to de-

termine if the data can be represented by a stationary

or nonstationary time series and also to determine which

model in the class of the ARIMA process appears to be

most appropriate. The transformation parameter X of

the data can be roughly estimated from the range-mean

plot of original data. Alternatively, the transforma-

tion parameter can be estimated simultaneously with the

other parameters of the tentatively identified model in

the second step of estimation.

(2) Estimation: The parameters of the tentatively identi-

fied model with the transformation parameter X of the

data are estimated by non-linear least squares. These

estimates are a symptotically equivalent to the maximum

likelihood estimates for parameters of the model.

(3) Diagnostic Checking: The estimated model is considered

adequate if the residuals from the estimated model can

be considered as white noise. To test the hypothesis

that the residuals are the realization of a white noise

process, sample autocorrelations of the residuals are

calculated and compared with their standard errors.

Then a joint test of the serial independence of the

residuals suggested by Ljung and Box (1978) is made by

calculating:

J -1 2Q = n(n+2) Z (n-K) ye (K) (6)
K=l t

where,

n = number of data observations remaining after the

application of the difference operators; and ye(K)

sample autocorrelation of the residual Ot
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Under the null hypothesis of serial independence, Q is asymptoti-

cally distributed as X with (J-p-q) degrees of freedom. The es-

timated model is considered adequate if we fail to reject the null

hypothesis of independence of the estimated residuals.

(4) Forecasting. Suppose at time t an observation is fore-

casted Z time periods ahead. Following Box and Jenkins,

define an origin t for the lead time Z. It has been

shown that at time t the minimum mean square error of

a forecast of a future observation Xt+, is given by:

Xt(k) = E(Xt+z. t) (7)

where, E(Xt+eit) denotes the conditional expectation of

Xt+., which is conditional on all the information up to

and including time t. The procedure to calculate

E(Xt+,It) for an ARIMA model is best illustrated by an

example. Suppose a model represented by:

(1-B) (I-eB7 )Xt = (1-41B)et (8)

The Equation (8) can be written as:

Xt = Xt- 1 + ext. 7 -ext_ 8 + et_1 + et

Recall that E(et) = 0. The point forecast for Xt(t+z)

can be computed as:

Xt(t+l) = Xt + ext 6 - ext 7 + let, Z = 1

Xt(t+Z) = Xt -I + eXt+Z- 7 - eXt+Z- 8 , z > 1

The derivation of general formula for the variance of the

point forecasts for an ARIMA model is found in Box and Jenkins

(1970) and Fuller (1976).

3.2 EMPIRICAL RESULTS

In this section, Box-Jenkin's iterative modeling procedure

is applied to estimate ARIMA models for daily flight plan data

38
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filed at the Los Angeles Flight Service Station. Two daily time

series of 92 values each are available to us from June 12 to

August 31, 1979. These data are the daily number of VFR and IFR

flight plans, respectively, filed at the Los Angeles FSS. The

plots of these two series are shown in Figures 2 and 3. These

plots suggest that there are stochastic weekly cycles in these

daily data. Pilots' habits tend to be repetitive such as prefered

times of the day for departures.

For identification purposes, the sample autocorrelations of

VFR, Xlt, and IFR, X2 t, are computed and presented in Tables 10

and 11. In order to examine the effects of removing weekly cycles

in the data, the seventh difference of these original data are

taken. (Removing weekly cycles helps to study the auto correla-

tion of variations in other components of daily data. These re-

sults are reported in Tables 12 and 13, respectively.)

The behavior of these sample autocorrelations of the original

and differenced series suggest that we might tentatively identify

the model,

(I-itB)(I-B 7) XP ) = (1- 7 B 7) et (i = 1, 2.) (9)1it 7 "

as being appropriate for both sets of daily data.

A non-linear least square fit is used to estimate the param-

eters of the models as well as the transformation parameter X of

the original data. The estimated time series models and associated

statistics are summarized in Table 14. The number in parentheses

under each estimated parameter is the associated standard error.

Since there is no un.que representation of ARIMA models for each

series, a competing model called (b) for each data set is also

fitted and presented in Table 14.

To test the adequacy of these estimated models, two diagnos-

tic checking tests are used. First, we computed the sample auto-

correlations of residuals and present these results in Tables 15

to 18. Since none of the sample autocorrelations of those resid-

uals are (statistically) significantly different from zero, there

is no basis on which to question the adequacy of these fitted
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models. However, for further verification, the values of the over-
2

all joint A test, Q, are also calculated and presented in the last

column of Table 14. These calculated values of Q should be com-

pared with the corresponding tabulated value of the X2 distribution

for 22 degrees of freedom and 5 percent level of significance.

Again, all calculated Q are less than the tabulated X2 value

of 33.9.(at ct=0.05, and degrees of freedom-22). According to

these two test results, each of the null hypotheses that these

estimated residuals are distributed as white noise are not rejec-

ted. Hence, these fitted models are considered as satisfactory

models for our data.

For VFR flight plans, the fitted model (a) is preferred over

the fitted model (b). The reason is that the value of estimated

standard errors and of Q statistic of model (a) are uniformly

smaller than those of model (b). For a similar reason, the fitted

model (a) is chosen for IFR flight plan data.

A stochastic (changing) day of the week component of the VFR

data can be estimated in the following way:
.77 1

W = (1-B )(1-0.613B 7) 1 Xlt (10)

and similarly, the stochastic weekly component of the IFR data can

be estimated in two steps. First, we estimate

Wt7= (I-B -)(1-0.62sB)-I X2t (0.5) (11)

The estimated component W22t is squared in order to transform it

back to the original scale.

For example, we rewrite the fitted model (a) for VFR and IFR

flight plans as follows:

0"t = 0.6003X 0 5  + X 0 5 ) - 0.6003X 0 5 ) (12)

-0.6 3e 7 + e

X2 t=0.363X 2 ,t-I+X 2 ,t_7-O.363X2,t.8 -O.62Se2 ,t.7+e2,t (13)

From these two equations, we can observe the difference in the
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stochastic nature of IFR and VFR flight plan data. The estimated

coefficient of XZ ,t-1 is less than that of Xl1 t.1 . This implies

that the value of IFR at time t is less dependent on the value at

the time t-l. In other words, IFR data has relatively short memory

of its past behavior in comparison with the stochastic nature of

VFR data. This deduction agrees with the observed operational

characteristics of aircraft on IFR and VFR flight plans. IFR flight

plans are utilized primarily by business or commercial aircraft and

they are not subject to most variations in weather (hence a short

memory - see above). On the other hand, VFR flight plans are sub-

ject to weather and are filed primarily by private aircraft, many

of whom are less likely to be on a schedule.

One-day, two-day and three-day ahead point forecasts at the

time origin, August 21, 1979, are computed and summarized in

Tables 19 and 20.

These models perform reasonably in forecasting because all

the actual values fall within their corresponding 75 percent fore-

casting intervals. The large forecasting intervals are due to the

large fluctuations in the daily operations data itself. Further

improvement in the forecasts for daily operations should take ac-

acount of additional factors such as local weather conditions, but

this approach is more expensive than the one used here. Finally,

it should be remembered that we are modelling trends, not outliers.

To sum up, the construction of an ARIMA model for daily oper-

ations data serves two purposes: (1) an estimated ARIMA model can

be used to construct a linear filter, which can be used to esti-

mate stochastic (changing) day of the week components in the daily

flight plan data, and (2) the fitted model can be used to generate

shortrun daily point forecasting.
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4. SUMMARY AND CONCLUSIONS

In this study, two approaches to analyze and model hourly and

day of the week patterns for sampled air traffic operations data

are presented. In the first approach, a simple model, similar to

one-way analysis of variance, represents the sampled hourly or

daily air traffic data. Standard and two robust statistical pro-

cedures are proposed to estimate the location and scale parameters

of the hourly or day of the week patterns. Further, the applica-

tion of graphical techniques such as Box plots and schematic plots

to analyze these patterns has also been discussed. These procedures

can be easily automated and hence are useful in the analysis of

large sets of data. For example, these procedures can be used for

the estimation of day of week patterns for flight plan data filed

at any flight service station in the U.S. (The method is also

applicable to airfield operations.) The main drawback of these

procedures is that they can only estimate the deterministic mean

level of these patterns. In some cases, the mean of a series may

not exist. Then, these procedures are not applicable in those sit-

uations. Further, it should be noted that these procedures neglect

serial correlations contained in the sampled time series data.

In order to remedy these problems, a stochastic modeling ap-

proach suggested by Box-Jenkins has been presented and this ap-

proach can be employed to estimate deterministic components (if

they exist) as well as stochastic components of the series. Then

stochastic hourly or day of the week patterns can be estimated from

these stochastic components. This approach uses a tailor-made model

for each individual series, hence it is useful only for the analysis

of a limited number of important series.

The statistical procedures discussed in this study have been

applied to estimate day of the week patterns for flight plan data

from the Los Angeles FSS, and to also estimate hourly operations

patterns in different seasons for the St. Louis TRACON. All em-

pirical findings indicate that there are diurnal variations in

sampled hourly data and weekly variations in daily data. For ex-
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ample, the average peak hour of operations in the St. Louis TRACON

occurs between 17 and 18 hours for 1979 data. The peak day of the
week for IFR flight plans data at the Los Angeles FSS is Friday

and for VFR flight plans is Saturday. These estimated time of the

day and day of the week patterns will provide valuable information

for instantaneous aircraft counts and for those who are concerned
with the capacity problem of airports and future air traffic con-

trol facilities.
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