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Averaging Rules and Adjustment Processes: "y '

The Role of Averaging in Inference ....
Dist Spec>.o

In the many years that psychologists have been studying human judgment

processes, no two findings have emerged with greater empirical support than

these: (1) Human judgments often appear to follow an averaging rule (Anderson,

1974), and (2) Judgments in Bayesian inference tasks are usually conservative

relative to optimal judgments (Edwards, 1968).

Although these findings originated from two quite different research

( traditions (cf. Slovic & Lichtenstein, 1971), there is now considerable evidence

that "averaging" and "conservatism" are not unrelated phenomena. In the present

paper I discuss this evidence and describe a process model that attempts to

explain why averaging occurs in the Bayesian task. Then I present two experi-

ments that test an ordering prediction for the Bayesian task drawn from this

process account. Last I discuss the averaging model in general and sketch its

relationship to other kinds of algebraic judgment rules.

Bayesian Inference and Averaging

The Bayesian inference task is usually instantiated in terms of the

"bookbag and poker chips paradigm" in which there are two well-specified

hypotheses to be considered by the subject, usually involving populations of

binary events. For example, there may be two bookbags, one containing 70

red poker chips and 30 blue poker chips (the "red bag") and another containing

30 red chips and 70 blue chips (the "blue bag"). In most experiments the

experimenter ostensibly selects one of these bags at random and then draws
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samples of one or more chirs from it one or more times. These samples are

shown to the subject, usually sequentially, and the subject is asked to indicate

the strength of his belief about which bookbag was sampled using a rating scale

of some kind (i.e., probability, odds, log-odds, etc.).

According to Bayes' theorem, the optimal response in such situations is

found by multiplying the prior odds ratio for the two hypotheses (Q0) by the

likelihood ratio of the sample given the two hypotheses (LR) to obtain the

posterior odds ratio for the two hypotheses (aI):

S1 = LR*9 (0)

If more than one sample of data is given, the procedure is simply applied

iteratively; the posterior odds ratio following sample n becomes the prior

odds ratio for sample n+l:

0 =LR .0 (2)
n+l n+l n

In general, human responses to the Bayesian task are conservative relative

to Bayesian responses; that is, human responses fall nearer neutral than

Bayesian responses. Although various experimental manipulations can be used

to influence the size of the conservatism effect (e.g., size of sampling

unit, proportion of predominant chips in the population, response scale, payment

for accuracy, and so forth), no simple manipulation has been successful in

eliminating conservatism (but see Eils, Seaver, & Edwards, 1977, to be

discussed below).

Three conceptually distinct sorts of explanations have been given for

the conservatism effect. Misperception explanations locate the error in the

process through which subjects estimate the likelihood ratio of the sample
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data. In this view conservatism occurs because subjects underestimate the

diagnostic impact of data, probably due to their having overly "flat" subjective

sampling distributions, especially for large samples. Misaggregation explana-

tions locate the error in the process through which subjects integrate the

information from multiple samples into composite responses. Subjects ought

to multiply, but somehow they don't. Response bias explanations treat conser-

vatism as an artifact of the response scale that is engendered primarily by

a tendency of subjects tc' avoid using extreme odds or probability judgments.

Although the BayesiEn research literature has tended to treat the

misperception, misaggregation, and response bias hypotheses as competitors,

all three sources of errer are likely to occur in Bayesian tasks. But

misaggregation is probably the most important theoretically and practically

because misaggregation appears to figure more prominently in producing

conservatism (Edwards, 1968; Wheeler & Edwards, 1975) and also because it is

probably easier to teach people improved methods for aggregating responses

than it is either to improve their subjective impressions of the diagnostic

impact of sample data or to remove their bias against using extreme

responses (Eils, Seaver, & Edwards, 1977).

Averaging and conservatism. The first evidence to link averaging and

conservatism came from experiments that showed that when subjects were asked

to rate the probability that samples had been drawn from one of two statisti-

cally well-specified populations, their ratings were more often like estimates

of the population proportion than they were like inferences from Bayes' rule

(Beach, Wise, & Barclay, 1970; Marks & Clarkson, 1972, 1973; Shanteau, 1970,

1972). Shanteau hypothesized that subjects' behavior in such tasks could be

modeled by an algebraic judgment rule in which the response R at serial

position n is given by a weighted average of the scale values of the previous

and current sample events:
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n
R = E wis (3)

i 0

In this equation the si are the values of the various stimuli and the wi

are weights that sum to unity. The term w0s0 signifies the weight and value

of a neutral "initial impression." It should be noted that the averaging rule

is conservative relative to the Bayesian rule since averages always lie within

the range of their component stimulus values whereas Bayesian inferences must

often be more extreme than any of their component values.

The averaging model does a generally good job of fitting subjects'

inference judgments quantitatively. But even better evidence for the model

( comes from later experiments by Shanteau (1975) and by Troutman and Shanteau

(1977) which show that presentation of neutral or non-diagnostic information

causes subjects to revise their judgments toward neutral. This result is

exactly what would be expected if subjects average the neutral information

together with prior non-neutral information. But it is not allowed by Bayes'

theorem, which specifies that neutral information ought to have no impact on

prior judgments. That is, since the likelihood ratio for neutral information

is one by definition, a judgment that follows neutral information ought (by

Equation 2) to be numerically identical with the preceding judgment.

A different sort of evidence linking averaging and conservatism comes

from experiments by Ells, Seaver, and Edwards (1977) that were aimed at the

practical problem of aiding human performance in the Bayesian task. These

authors hypothesized that since untutored subjects appear to average when they

ought to multiply, they might be better at judging the mean log likelihood

ratio for a set of samples than they are at judging the cumulative log likeli-

hood ratio, which is the more typical Bayesian judgment.

The hypothesis was tested using two groups of subjects. One group rated

"the average, rather than the total of, their certainty (Eils et al., 1977,



p. 6) and the other group rated their total or cumulative certainty. Then

responses from both groups were transformed to log posterior odds form and

individual regression analyses were performed for each subject comparing

inferred log posterior odds to veridical log posterior odds. The analyses

confirmed the hypothesis: although log odds inferred from average certainty

judgments were now slightly radical, they were definitely closer to veridical

than odds inferred from cumulative certainty judgments.

Averaging and serial adjustment processes. Although averaging rules

have often been successful in accounting for judgment data quantitatively

(cf. Anderson, 1974), little attention has been directed at finding out why

averaging occurs qualitatively. The present research is based on the

assumption that averaging results from the intrinsically serial nature of

multiattribute judgment, both for tasks in which the information is actually

presented serially (such as the typical Bayesian task) and for tasks in which

the information is presented simultaneously but processed serially (such as

the typical impression formation task). In either case, averaging is

hypothesized to occur because subjects adopt an adjustment strategy in which

they integrate new information into "old" composite judgments by adjusting

the old composite value upward or downward as necessary to make the "new"

composite lie somewhere between the "old" composite and the value of the new

information (Lopes & Johnson, in press; Lopes & Oden, 1980; see also the

research on anchoring and adjustment by Tversky & Kahneman, 1974). Such a

process would be equivalent qualitatively to weighted averaging. But subjects

would never need "compute" an average in any intentional sense of that term.

Rather, averaging would simply emerge as a natural consequence of their

adjustment strategy.

It is clear that any judgment process yielding averages will differ

quantitatively from Bayes' theorem. But the hypothesized adjustment process

- - .
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also differs qualitatively in a way that can be tested experimentally. To

illustrate this qualitative difference, consider a subject who is asked to

produce serial judgments about whether samples have been drawn from a 70/30

red/blue bookbag or a 30/70 red/blue bookbag. Assume that the rating scale

is set up so that increased confidence in the "predominately red" hypothesis

is associated with larger numbers. If the first sample favors the red bookbag

moderately strongly (i.e., 5 red and 3 blue), the subject should make an

initial judgment at some value favoring red. If the next sample also favors

red, but more strongly (e.g., 7 red and 1 blue), the subject should notice

this difference in strength and adjust his judgment upwards towards the value

of the second sample. Note that such an adjustment is directionally in accord

not only with the averaging rule, but also with the Bayesian rule. That is,

since the likelihood ratio of the second sample is greater than one, the

posterior odds actually do favor red more strongly than the prior odds.

If the two samples are reversed in order, however, so that the weaker

evidence follows the stronger, the averaging rule and the Bayesian rule make

qualitatively different predictions about the direction of the adjustment.

Under the Bayesian rule the adjustment should still be upward: although the

new sample is less favorable to red than the old, the likelihood ratio of the

sample is still greater than one, so that the posterior odds should increase.

Under the averaging rule, however, the adjustment should be downward (i.e.,

toward a more neutral value) since the value of the new sample is less

favorable to red than the value of the judgment based only on the first sample.

Thus, if subjects in the Bayesian task use the hypothesized adjustment

strategy, errors should be evident in the direction of revisions when weaker

evidence favoring a particular hypothesis follows stronger evidence favoring

the same hypothesis.
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Experimental Tests of the Directional Hypothesis

Two experiments were run to test the hypol:hesis that subjects in the

Bayesian inference task revise their posterior inferences in the normatively

wrong (i.e., neutral) direction when a sample strongly favoring a given

hypothesis is followed by a weaker sample favoring the same hypothesis.

Since the experiments were essentially identical except for the stimulus

designs, they are discussed together.

Method

Experimental tasks. Subjects in both experiments were asked to put

themselves in the place of a machinist whose job was to make decisions con-

cerning the maintenance of complex milling machines based on samples of parts

produced by the machines. Subjects in Experiment 1 were asked to make judg-

ments about whether machines needed maintenance or not. They were instructed

that machines which were working properly were about as likely to produce

parts that were a little too large as to produce parts that were a little too

small. Broken machines, on the other hand, were described as tending to

produce parts of which about 75% were a little too large and 25% were a little

too small. Thus, in abstract terms, subjects in Experiment I were asked to

decide between the hypothesis 50% large/50% small (H50/50 ) and the hypothesis

75% large/25% small (H75/25).

The task for Experiment 2 was similar except that subjects were asked to

judge which of two maintenance procedures a machine needed. They were

instructed that machines needing one procedure tended to produce parts of

which about 75% were a little too small and 25% were a little too large.

iine .ieeding the other procedure, however, were described as tending to

produce parts of which about 75% were a little too large and 25% were a
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little too small. Thus, subjects in Experiment 2 decided between the hypothesis

25% large/75% small (H125/75) and the hypothesis 75% large/25% small (H75 /2 5).

Stimulus designs. The stimulus design for Experiment I was a 7 x 7,

first-sample x second-sample, factorial design in which the levels of both

factors comprised the same seven sample distributions of large and small parts.

The distributions were, for large and small parts, respectively: 3/7, 4/6,

5/5, 6/4, 7/3, 8/2, and 9/1. The design for Experiment 2 was also a first-

sample x second-sample factorial design, but with nine levels on each factor.

These levels were, for large and small parts, respectively: 1/9, 2/8, 3/7,

4/6, 5/5, 6/4, 7/3, 8/2, and 9/1.

Procedure. Subjects were run individually in sessions that took about

k 45 minutes for Experiment I and about 60 minutes for Experiment 2. At the

beginning of the session subjects were brought into a sound proof booth and

seated in front of a computer controlled video terminal. Subjects were then

given general instructions about the nature of the task and shown how to read

the stimulus display. A sample of a stimulus display for Experiment 1 is shown

in Figure 1. At the top of the display is a box showing a sample of parts,

7 large and 3 small. Under the box is a notation showing that this is the

first sample. At the bottom of the display is a response scale anchored at

the left by the w~rds "MILLING NORMALLY (50%)" and at the right by the words

"MILLING TOO LARGE (75%)." The display for Experiment 2 was identical except

that the response scale was anchored with "MILLING TOO SMALL (75% SMALL)" at

the left and "MILLING TOO LARGE (75% LARGE)" at the right.

Figure I about here

The procedure for each trial was identical. Subjects read the information

for the first sample and then rated tie degree of their belief as to whether

the machine was milling normally or not (in Experiment 1) or whether the

.~ ~ - . ... . . . ' .. .. .. .. .I*! | . •..... '. .. .



9

machine was milling too large or too small (in Experiment 2). They made their

ratings using a hand held response device to move the rating arrow (shown in

the middle of the scale in Figure 1) along the response scale. When they

finished their initial rating, subjects pushed a button on the response device.

This caused the rating to be transmitted to the computer and also caused the

first sample to be erased and replaced by a second sample of parts from the

same machine. Subjects then revised their initial rating to account for the

new sample and pushed the response button to transmit their final response

to the computer. Finally subjects initialized the next trial by returning

the response arrow to the middle of the scale.

In both experiments special precautions were taken to make sure that

subjects understood the judgment task. In particular, the instructions

emphasized that subjects should consider that the two samples within a trial

were drawn independently from the same machine, and that samples from

different trials were drawn from different machines. Subsequent debriefing

of the subjects indicated that all of them had understood these instructions.

Subjects in both experiments were given 15 trials for practice and then

were run through two replications of the stimulus design. Experimental

trials within each replication were ordered randomly, but with the restriction

that no sample appear as either first-sample or second-sample on two consecu-

tive trials.

Subjects. The subjects for the two experiments were 41 and 39 student

volunteers, respectively, who served for credit to be applied to their course

grades in introductory psychology. In Experiment 1 subjects were all males;

in Experiment 2 subjects were approximately evenly divided between the sexes.

Results and Discussion

Ratings of single samples. In order to test the adjustment hypothesis,

,'- -I ... a ilm i a m in s - ............... ... -... ..
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it is necessary to determine at least roughly what subjective values the subjects

attached to the various sample types. This can be done by looking at the

responses subjects gave to the first sample of each stimulus pair. The data

are given in Table 1, averaged over both subjects and replications. Ratings

have been scaled to run between 0 and 1.

Table I about here

For reasons that will be clear shortly, it is best to begin with Experiment

2. Basically, the results are very simple: ratings of the likelihood of H75 /,25

increased essentially linearly from 1/9 samples to 9/1 samples with 5/5 samples

being rated as neutral. In fact, the close numerical correspondence between

the ratings and the proportion of large parts in the samples suggests that

subjects probably produced these initial ratings by the simple expedient of using

the sample proportion as a judgmental "anchor" (Tversky & Kahneman, 1974). The

results of Experiment 1 are more difficult to understand. In gross terms, there

is no problem: samples of 3/7 through 6/4 were rated as supporting H50 /50 and

samples of 7/3 through 9/1 were rated as supporting H 75 /2 5 . But the data

deviated from the norm ordinally in that 5/5 samples were judged to be more

supportive of H50/50 than either 3/7 or 4/6 samples.

Inspection of single subject data for Experiment 1 revealed clear individual

differences in how subjects evaluated these samples. Most subjects (38 out of

41) could be assigned to one of three groups. The first group (15 subjects)

ordered the samples appropriately, with 3/7 samples being taken as stronger

evidence for H50/50 than 4/6 samples and these in turn as stronger evidence than

5/5 samples. These subjects will ,e called the "likelihood ratio" group since

they appeared to judge the value of sample evidence in terms of the relative

degree to which it supported the two hypotheses. The second group (12 subjects)

ordered the samples in exactly inverse order to the norm: 5/5 samples were teken
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to be the strongest evidence of H50/50 followed by 4/6 and 317 samples in that

order. These subjects appeared to judge the samples according to how representa-

tive they were of a 50/50 generating process (Kahneman & Tversky, 1972). They

will therefore be called the "representativeness" group. The third group (11

subjects) ordered the samples 5/5, 3/7, 4/6. This "mixed" group appeared to be

influenced by representativeness only if samples were "perfectly" representative.

Otherwise they seemed to rely on relative likelihood considerations.

The fact that many subjects in Experiment I appeared to prefer using

representativeness rather than relative likelihood as the basis for evaluating

samples causes no problems for testing the adjustment hypothesis other than

making it necessary to perform separate tests for the various groups. But the

result is generally problematical since misorderings of sample data have not

been reported previously in the Bayesian literature and also since the effect

did not occur either for Experiment 2 or for the samples supporting H75/2 5

in Experiment 1. It is therefore worth considering why the error occurred when

it did.

One possibility is that subjects may have believed mistakenly that normal

machines always produce 50/50 samples. But this is unlikely since subjects were

instructed quite explicitly that normal machines do not always produce exactly

50% large parts, but sometimes produce more and sometimes less. A better

possibility seems to be that the task violated the conventional semantics of

what it means for a machine to be working normally. Certainly it is a bit odd

linguistically to say that the best evidence for the normal functioning of a

machine is that it produces a sample with an abnormally large number of small

parts. Thus, subjects may have slipped unintentionally into using a hybrid

strategy in which samples favoring H751 2 5 were evaluated with respect to both

hypotheses whereas samples favoring H50/50 were evaluated only with respect to

H50/50. Of course, there is no way to be sure that this is what happened.
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But if the explanation is correct, errors of this sort should not be found when

the task of choosing between H50/50 and H75/25 is framed more neutrally, as in

the conventional "bookbags and poker chips" format.

Adjustments for second samples. The adjustment hypothesis states that when

subjects are given two pieces of evidence that favor the same hypothesis but to

different degrees (hereafter called a "homogeneous sample pair"), their judged

confidence in the hypothesis will increase if the stronger sample follows the

weaker, but will decrease if the weaker sample follows the stronger. Bayes'

theorem, in contrast, specifies that confidence should increase independently of

the order of the samples. Thus, if the adjustment hypothesis is correct,

directional errors in revision should occur more frequently for strong-weak

sample orders than for weak-strong sample orders.

Table 2 gives the proportions of directionally correct adjustments (relative

to the Bayesian norm) for strong-weak sample orders and weak-strong sample orders.

These are pooled over sample pair, subjects, and replications. Since the subjects

in Experiment 1 disagreed about the ordering of the sample evidence, their data

have been divided into subgroups.

Table 2 about here

The basic result is ctear in all four comparisons: the data support the

adjustment hypothesis. Adjustments were almost always made in the correct

direction for weak-strong sample pairs and almost never made in the correct

direction for strong-weak sample pairs, p < .01 for all group differences.

Recency effects. The adjustment data above are qualitative in the sense

that they do not show whether differences in sample order produced differences

in the magnitudes of the final responses. Under the adjustment hypothesis,

however, any of three quantitative effects might occur: (1) adjustments might

be exactly sufficient to produce a true arithmetic "running average" of the
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sample evidence in which case the final response data would show no effect of

order; (2) adjustments might be insufficient for arithmetic averaging in which

case final responses would be closer numerically to the first sample than

ought to be the case, constituting a judgmental primacy effect; (3) adjustments

might be over sufficient for arithmetic averaging in which case final responses

would be closer numerically to the second sample than they ought, constituting

judgmental recency. In either of the latter two situations order effects

would occur for corresponding strong-weak and weak-strong sample pairs.

Final response data for homogeneous sample pairs are given in Table 3

organized according to the relative strength of the two samples. The data for

Experiment 1 have been broken down according to how subjects ordered the sample

( types. For likelihood ratio subjects (but not for representativeness subjects

or mixed subjects) there was a significant recency effect that appeared as a

tendency for final responses to be more extreme when samples were ordered

weak-strong than when they were ordered strong-weak, F(1,14) - 6.91, P < .05.

That is, for pairs that favored H weak-strong responses were smaller

than strong-weak responses and for pairs that favored H75 /2 5 weak-strong

responses were larer than strong-weak responses. Thus, more extreme final

responses were generated when the more extreme of two samples that favored the

same hypotheses was presented in the second position. There was also a

prominent recency effect for homogeneous pairs in Experiment 2, F(1,38) =

39.77, p < .001.

Table 3 about here

Final responses for heterogeneous sample pairs are given in Table 4.

Since the samples in these pairs favored different hypotheses, the data have

been organized according to whether the ordered pair required adjustment toward

H50/50 (leftward adjustment) or toward H75/2 5 (rightward adjustment). For

50 5
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both experiments there was a strong recency effect manifested by a tendency

for pairs requiring leftward adjustment to produce smaller final responses

than equivalent pairs requiring rightward adjustment: F(1,40) = 10.40,

< .01 for Experiment 1 and F(1,38) - 27.89, k < .001 for Experiment 2.

In other words, pairs in which the two samples favored different hypotheses

produced final responses that favored H50/50 more strongly (i.e., were nearer

0) if the H50/50 sample was in the second position,and favored H7,/2, more

strongly (i.e. were nearer 1) if the H50/50 sample was in the first position.

In fact, the effect was so strong in Experiment 2 that final responses for

corresponding pairs tended to lie on opposite sides of the neutral point

of the response scale.

Table 4 about here

Recency effects have been reported previously in the Bayesian literature

(Pitz & Reinhold, 1968; Shanteau, 1970, 1972) with the point being stressed that

order effects are not allowed by the Bayesian model. But order effects are also

important for what they suggest about the underlying representation and use of

task information during the judgment process. In the present case, the tendency

for subjects in Experiment 2 to make their final responses lie on the side of

the response scale favored by the second sample suggests that subjects may have

represented task information internally in such a way that they were unable to

appreciate simple quantitative relationships between successive samples. For

example, for the pair (1/9, 8/2) subjects initiated their responses at an

average value of .09 following the 1/9 sample and then adjusted to .59 follow-

ing the 8/2 sample. Thus, subjects expressed mild confidence in H7 5/2 5.

But subjects ought to have favored H25/75 since the sample favoring H25/75

was more extreme than the sample favoring H7 5/2 5.

Why do such errors occur? Certainly they would not be expected if subjects
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were assumed to compute running sample differences. But if subjects concentrate

on adjusting for the difterence between the new sample and the old response,

they may be unlikely to compare the samples directly and hence may fail to

notice which of the samples should dominate the response. In other words, once

stimulus information has been transformed into response mode, all further

processing of and adjustments to the interim response may be based solely on that

transformed value rather than on some more literal representation of the raw

stimulus information.

Discussion

The experiments reported here demonstrate that the adjustment processes

used by subjects in the Bayesian task are consistent with an averaging rule and

inconsistent with the multiplicative rule specified by Bayes' theorem. In

particular, the present experiments supplement the earlier work of Shanteau

(1975) and Troutman and Shanteau (1977) by demonstrating qualitative adjustment

errors for diagnostic samples. But the primary purpose of the paper is not so

much to support the averaging rule, as it is to suggest the psychological

processes that produce averaging.

Adjustment Mechanisms and Algebraic Judgment

The main thesis of the present paper is that subjects in Bayesian inference

tasks average when they ought to multiply bectuse they produce their judgments

by using a serial adjustment strategy that Just happens to be equivalent to

averaging. But subjects in judgment tasks don't always average. In fact, there

are some tasks such as judging the worth of gambles (Anderson & Shanteau, 1970;

Shanteau, 1974; Tversky, 1967) and judging the likelihood of joint events

(Beach & Peterson, 1966; Lopes, 1976; Shuford, 1959) in which subjects seem to
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multiply. Why do they average in one case and not the other?

The position taken here is that averaging and multiplying reflect basically

similar adjustment strategies operating in different task environments. Tasks

that produce averaging usually call for bidirectional adjustments in which the

judgment is sometimes increased and sometimes decreased, as is the case in the

Bayesian task for heterogeneous sample pairs. Tasks that produce multiplying,

on the other hand, usually call for adjustments which are unidirectional and

most often downward. For example, one can judge the value of a gamble by

beginning with the value of the prize to be won and then adjusting downward in

proportion to the probability of winning (Lopes & Ekberg, 1980). Similarly,

one can judge the probability of a joint event by beginning with the probability

of one event and then decreasing this in proportion to the probability of

the other event (Lopes, 1976). Both processes involve downward adjustment and

both are equivalent to multiplying.

A basic corollary of the present view is that subjects in judgment tasks

do not "choose" judgment rules in the sense that they decide how information

ought to be combined. Rather they choose adjustment processes that seem to "fit"

the task, both in terms of the ease with which the process can be executed

mentally and in terms of the degree to which the process generates plausible

judgments. Usually this works out reasonably well. But now and then the

adjustment strategy that seems to subjects to fit the task best will turn out

to be normatively inappropriate.

It is also clear that the judgment rule subjects employ for judging A from

B and C will not necessarily bear a logical relationship to the rules they

employ for judging B from A and C or C from A and B (Anderson & Butzin, 1974;

Graesser & Anderson, 1974). For example, Graesser and Anderson asked subjects

to judge income, generosity, or expected gift size from information about the

other two. The data revealed that although income and generosity were combined
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multiplicatively in judgments of expected gift size, there were no corresponding

dividing relations between gift size and generosity for judgments of income, or

income and gift size for judgments of generosity. Instead, these latter judg-

ments seemed to follow some sort of subtracting rule. Thus, the human judgment

system appears to comprise a set of individual judgment processes that may some-

times correspond to simple arithmetic operations, but that tend to be both non-

reversible and largely unrelated to one another.

Judgment Processes and Memory Processes

The present adjustment model makes two fundamental assumptions about the

characteristics of the judgment apparatus. First, it assumes the existence of

an internal quantitative dimension that is reasonably continuous, and second,

it assumes that this dimension is directly available for manipulation by the

judge. Judgment itself is hypothesized to occur as quantitative information

is extracted from stimuli one by one (the evaluation process) and used to

modify the current judgment (the adjustment process).

A similar model was proposed some years ago by Anderson and Hubert (1963)

to account for the fact that order effects in impression formation differ from

the effects that would be expected if the impression depended on verbal memory.

They concluded that judgments in the impression task involve "a memory process

which is distinct from, and not dependent on, the immediate verbal memory for

the adjectives just heard (p. 386)."

An important feature of the Anderson and Hubert (1963) model is that it

allows the possibility that judgment processes may sometimes be insensitive to

certain interactive relationships among stimuli. For example, a judge might

fail to notice that the current piece of stimulus information is inconsistent

or redundant with previously integrated information. Or, as may have actually

occurred for heterogeneous pairs in Experiment 2, a judge might produce a
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response to a sequence of stimuli that differs qualitatively from the response

that would be made if the stimuli were retrieved from verbal memory and combined

in raw form before being submitted to the evaluation process.

Quantitative judgment is both commonplace and fundamental, and much is

known about the content and algebraic structure of judgment data. But relatively

little is known about actual judgment processes. This is true in part because

judgment processes do not yield gracefully to the sorts of experimental manipu-

lation that l,,- beer useful in other cognitive domains. But the present experi-

ments as well i .hose by Shanteau (1975), Troutman and Shanteau (1977), and

Anderson aid Hubert (1963) suggest that the study of temporal effects in judgment

tasks such af order effects and adjustment effects may provide deeper insights

I ~into the cognitive mechanisms that are invoked when people make judgments.

L .y
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Footnotes

The writing of this paper and the research reported therein were supported

by the Office of Naval Research (Contract N0014-81-K-0069).

I am grateful to Renee Zimmerman for care in running the studies and to

Gregg Oden for helpful comments on the manuscript.

1This happens, in fact, to be in accord with the actual likelihood ratios

of the samples.
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Table 1

Mean Ratings of First Samples

Experiment I Experiment 2

Sample Rating Sample Rating
L/S L/S

3/7 .20 1/9 .08

4/6 .23 2/8 .16

5/5 .16 3/7 .24

6/4 .45 4/6 .31

7/3 .73 5/5 .49

8/2 .85 6/4 .67

9/1 .94 7/3 .74

8/2 .82

9/1 .91

Note. A rating of 0 indicates complete confidence in H50/50 for Experiment I

and H2 5/75 for Experiment 2. A rating of 1 indicates complete confidence in

H7 5 / 2 5 "
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Table 2

Proportion of Directionally Correct Adjustments

for Homogeneous Sample Pairs

Strong- Weak- Fdiff (df)
Weak Strong

Experiment 1

Likelihood ratio group .35 .89 32.17 (1,14)

Representativeness group .30 .86 76.14 (1,11)

Mixed group .29 .92 115.74 (1,10)

Experiment 2 .25 .92 165.69 (1,38)

p < .01

Note. In Experiment 1 there were 18 strong-weak and 18 weak-strong comparisons per

subject and in Experiment 2 there were 24 strong-weak and 24 weak-strong comparisons

per subject. A list of the sample pairs is available in Table 3.

.. ... .. ~ .. . . . . . ..- . . il ii - - I I . . . . .. . . . . . .- ' *i II] 1 - . . i | . . .
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Table 4

Final Ratings of Heterogeneous Pairs

for Leftward and Rightward Adju;tment

Experiment 1 Experiment 2

Sample Leftward Rightward Sample Leftward Rightward
Pair (toward (toward Pair (toward (toward

H50/50) H 75 /25 ) H2 5/75) H 75/25 )

(3/7,7/3) .35 < .46 (1/9,6/4) .23 < .46

(3/7,8/2) .42 < .54 (1/9,7/3) .26 < .52

(3/7,9/1) .44 < .64 (1/9,8/:,) .28 < .59

(4/6,7/3) .43 < .48 (1/9,9/3) .32 < .63

(4/6,8/2) .46 < .58 (2/8,6/4) .28 < .51

(4/6,9/1) .54 < .68 (2/8,7/:3) .31 < .59

(5/5,7/3) .45 .45 (2/8,8/,,) .36 < .61

(5/5,8/2) .52 < .60 (2/8,9/:) .37 < .72

(5/5,9/1) .55 < .66 (3/7,6/1.) .35 < .52

(6/4,7/3) .64 .64 (3/7,7/:;) .37 < .58

(6/4,8/2) .72 < .77 (3/7,8/:) .41 < .64

(6/4,9/1) .73 < .82 (3/7,9/1) .44 < .73

(4/6,6/L) .43 < .57

(4/6,7/3) .45 < .65

(4/6,8/2) .49 < .70

(4/6,9/1) .51 < .75

Note. The terms "rightward" and "leftward" refer to the end of the response

scale favored by the second sample. Leftward ratings smaller than corresponding

rightward ratings indicate recency.

gl
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