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Chapter 1
INTRODUCTION

There are three Boundary-Value Proble.us (BVP) of poten-
tial theory (Moritz, 1964, p.l; Heiskanen and Moritz, 1967,
p.36):

1. First BVP (Dirichlet's problem): Given an arbitrary
function on a surface S , determine a function V which
is harmonic e¢ither inside or outside S , and which
assumes on S the values of the prescribed function.

2. Second BVP (Neumann's problem): Given the normal derivative
3V/3n of a function on 2 surface S , determine the
function V which is harmonic either inside or outside
S , whose normal derivative assumes the prescribed boundary
values on S .

3. Third BVP: Determine a function V which is harmonic
either inside or outside a given surface S , and is
such that the linear combination hV+ k3V/3n assumes
prescribed values on S .

It is clear that in all three problems, the surface

S 1is assumed to be known (i.e. the locations of points

on the surface are determined in a specified coordinate

system), and only the harmonic function V 1is to be determined
from the various data on S . The geodetic BVP may be defined
as the determination of’;he physical surface of the earth,
if the gravity vector g and the gravity potential W are
given on it (Moritz, 1965, p.36). This problem calls for
the determination of the surface of:

(a) the geoid (Stokes' problem) using gravity data reduced
from the physical surface of the earth to the surface
of the geoid, or

(b) the telluroid (Molodensky's problem) from gravity data
given on the physical surface of the earth.

Since the surface (geoid or telluroid) is the unknown,
the geodetic BVP is not directly related to any of the three
problems of potential theory mentioned above. What makes
the solution of the geodetic BVP possible as a 3rd BVP,
is the fact that certain restrictions are enforced (Moritz,
1964, p.2), namely:

(a) the geoid is an equipotential surface of the gravity
field of the earth (Stokes' 3pproach), and
(b) 1in addition to the gravity g , the potential difference

AW = W-Wo at every surface point is determined from

1.




2.
levelling combined with gravity observations (Molodensky's
approach), W, being the potential of the geoid.

The definitions above will help us later in determining
the kind of BVP we need to solve in the present study. Let
us now state the problem.

Certain geodetic applications, such as aircraft inertial
navigation systems, and the computation of rocket trajectories,
or components of the gravity disturbance vector, require
the calculation of the gravity vector components at a certain
altitude in space, from data collected on the physical surface
of the earth. Zero-order solutions to this problem (i.e.
solutions ignoring the topography of the earth and/or
the surface inclinations) can be found in the literature
(cf. Hirvonen and Moritz, 1963; Heiskanen and Moritz, 1967;
Mueller, 1966). These methods are:

1. The Direct Integration method, which is based on the
generalized Stokes' formula;

2. The Coating method (see also in (Orlin, 1959));

3. The Upward Continuation method, which is based on the
Poisson's integral equation (Shebalin, 1979).

Apart from these three methods, which are considered
as the classical approaches, there are also other techniques.
However not all of them yield the three components of the
gravity disturbance vector. Some of them are applied for
the computation of the gravity anomaly (Ag) only, and some
others for the computaion of the disturbing potential (T)
alone. These methods are:

4. The Stokes' formula in combination with the use of Poisson's 1
integral theorem (I.. de Witte, 1969);

5. The Green's third identity (Moritz, 1965; B. Witte, 1969;
Koch, 1967-b, 1968-a);

6. A Bjerhammar-type of solution, based on the reduction
of gravity data on a defined sphere internal to the
surface of the earth, and then application of the Pois-
son's integral for the upward continuation of the gravity
data to a space point (Bjerhammar, 1978; Moritz, 1965,
p.54; Sjoberg, 1978);

7. Polynomical modeling of the anomalous gravity field,
for the upward continuation of gravity data (Paul and
Nagy, 1972);

8. Series expansion of the external anomalous potential
(Petrovskaya, 1979);

9. The Finite Element method (Richardson and Hopkins, 1978;
Junkins and Saunders, 1977);
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10. Geopotential Modeling by the so-called point-masses
technique (Needham, 1970):

11. The method of Least-Squares Collocation, or a combina-
tion of Collocation with integral equations (Lachapelle,
1977; Tscherning and Forsberg, 1978; Forsberg and
Tscherning, 1980):

12. The Initial-Value method (Nakiboglou and Lim 1979).

For the computation of the gravity vertor § at a
space point P , we first need to evaluate the components
of the gravity disturbance vector 3§ at this point (Heiskanen
and Horitz 1967, p.227). Since § = grad T (more details
will follow in the next chapter), the problem is equivalent
to the estimation of the partial derivatives of the disturbing
potential T at the same space point P . A first-order
solution, linear in elevation (h) of the earth's topography
is discussed in (Moritz, 1965. part 2), but only the expression
for the gravity anomaly at P 1is derived following a planar
approximation.

In this study we develop a method for the computation
of the three components of the gravity disturbance vector
at space points, using data on the physical surface of the
earth. The topography of the earth is not neglected, and
the need to know the deflection of the vertical is avoided.
Only surface gravimetry, elevation data, and (possibly)

a geopotential model will be used. Green's third identity
is the starting point for this approach (Chapters 2, 3,
and 4).

The development of another method, based on the Bjerham-
mar's discrete (Dirac) approach for the upward continuation
of gravity data is also investigated (Chapters 5, and 6).

The two methods are then compared to each other.

Finally, the applicability of least-squares collocation
is examined, and the results of the three approaches are
compared with respect to factors such as the inclination
of the terrain, the altitude of the space point, the density
of the surface data, etc. (Chapter 7).

In order to avoid the random and the systematic errors
which exist in real data, we decided to test the accuracy
of the three approaches through a simulation study, by substi-
tuting for the topography of the earth a number of simple
terrain models (Chapter 3). The exact vectors computed
from these models can then be compared to the computed ones
from the three approaches, using the synthetic data on the
model’s surface. Such simulation with terrain models, but
for different applications have been made in the past too.
For example the effect of the topography on the external
gravity anomalies is discussed by Moritz (1965), and the
computation of the first derivatives of the disturbing




4,
potential on the earth's surface by Green's formula is des-
cribed by Koch (1967-b, 1968-a).

Due to the fact that throughout this study the surface
of the earth is assumed to be known, the problem of the
determination of the gravity disturbance bector is closer
to the BVP as defined in potential theory, than to the geo-
detic BVP. Koch and Pope (1972) called this problem '"the
geodetic BVP using the known surface of the earth", and
they have stated theorems on its uniqueness and existence.
The three methods which will be described in the following
chapters, require as data (in addition to the information
which defines the surface), surface gravity anomalies (jg),
or disturbing potentials (T) and gravity disturbances (§g)
as boundary values. These three quantities are related
to each other through the fundamental equation of phy51ca1
geodesy (Heiskanen and Moritz, 1967, p.88):

3T 2T 2T
bg = - =57 - 7 T

=6g_

If the boundary values are gravity anomalies (linear
combination of T and 23T/d9r), our problem is equlvalent
to the 3rd BVP above, since the components of ¢ = gradT
are the partial derivatives of T . However, if the bound-
ary values are gravity disturbances and disturbing poten-
tials (not their linear combination), our problem is none
of the three BVP of potential theory as they are defined
in the beginning of this chapter.

The Direct Integration, the Coating, and the Upward
Continuation methods which were mentioned above, were refer-
red to as the classical approaches, because the topography
of the earth is neglected, and the data required for their
application must be reduced on the surface of the sphere
which approximates the geoid. These classical approaches
are extensively. discussed in (Heiskanen and Moritz, 1967,
chapter 6). The Green's, the Dirac, and the collocation
approaches which will be discussed in this paper, will
be referred to as the improved techniques, since the earth's
topography is not neglected, and the required data is boundary
values on the earth's surface, with no need to apply gravity
reductions from this surface to the geoid.

In chapter 8, these improved techniques are compared
to the classical approach (the Direct Integration method).
It will be shown that the results from the improved techniques
agree to the exact values (computed from the model) better
than the results from the classical approach do. This
clearly indicates that these techniques offer an improved
solution for the computation of the gravity vector in space,
without neglecting the topography of the earth.




Chapter 2.
THE APPLICATION OF GREEN'S THIRD IDENTITY

2.1 Introduction

If W is the gravity potential of the earth, and U is
is the normal gravity potential of an equipotential ellip-
soid, then the earth's gravity veccor, and the normal gravity
vector are defined as (Heiskanen and Moritz, 1967, p.85):

g =grad W= (=2, ¥, 2,
?=gradU=<—g§-,~g—g-.%§-) (2.1)

(X, Y, Z) is a cartesian geocentric coordinate system,
whose origin is at the center of mass of the earth; the
Z-axis coincides with the earth's mean rotational axis,

and the X, Y, axes form a right-handed system with the
Z-axis, such that the X-axis lies in the Greenwich meridian
plane.

The gravity disturbance vector+at any point P is
defined as the difference between g and ¥ :

- -+
EP =g - Vp (2.2)

Let m be the unit vector normal to the equipotential
surface W = WP of the earth's gravity field at P , and 1
be the unit vector normal to the equipotential surface
U = Up of the normal gravity field at P . Then

T = E - ; = grad W ~ grad U = grad (Ww-U)

3 3 3

grad T = (—gr , ==t , =57 ) (2.3)
T being the disturbing potential at_ P . If we consider

only the magnitudes of the vectors E and Yy , then the
gravity disturbance 6gp at P is :

= - = (0% _ U, . W _ 30, _ _ 3T
S¢p = 8p - Yp = (3x - =37~ (7w~ wmip~ ~(Tm'p
(2.4)

This equation shows that if we ignore the difference
in the direction of # and § , or in other words the tilt
of the surfaces Wp and Up with respect to each other,
then the normal component of the gravity disturbance vector
is identical to the difference 8p - Yp - The error of

5.
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such an approximation is of the order of the square of the
deflection of the vertical (Molodensky, et al., 1962, p.79).

The gravity vector E can be computed at any space
point P , provided that we are able to estimate the gravity
disturbance vector . , because the computation of the
normal gravity vector 3§ does not present any practical
or theoretical difficulty (Heiskanen and Moritz,1967, chapter
6), provided that the altitude of P is known. Therefore,
if we evaluate the three components:

9T 3T 9T
B> 4 a3 4

of the gravity disturbance vector 3 , the gravity vector z
will then be:

> > _ aT 2T oT 3 30 30U
g=3+¥ = (5%, 57 33X IV D 4.,

2.2 Green's Third Identity

If v denotes the exterior space of an arbitrary
surface S , then, Green's third identity is an integral
equation of the form (Heiskanen and Moritz, 1967, p.12):

1 - 1 a3V 3 1
f\{! T AV dv = -pvV - é‘r {Tm -V -a-—n (T)} ds (2.6)

where:
V a continuous and finite function in the space
outside S which vanishes at infinity.

U the exterior space of the surface S .
n outer normal to the surface S .

£ the distance from the space point to the surface
element dS .

P={2T , cc ¢ c4  ce e 4e e es e se .. OB 8.

47 , if the identity is applied to a point outside S.
{ g o .. » e . e LI LR LI .. .o L3N insldes~

If V happens to be a harmonic function in the space
outside S , by definition it satisfies Laplace's equation ’
(AV = 0), and therefore, the left-hand side of (2.6) is
identical to zero. Furthermore, if the mass of the atmosphere

is neglected, the disturbing potential T = W-U is a .
harmonic function (Heiskanen and Moritz, 1967, p.86):
32T 32T 2T _
AT:W+W+W 0 (2.7)

The partial derivatives of T in a cartesian coordinate
system are harmonic functions too, because they satisfy




Laplace's equation:

32 3T 32 3T 32 3T d
RS S chin > S+ Aiin > Sl > Sel i S WY\

and similarly for ﬁ}; and -3% . If we now apply Green's
identity to the disturbing potenglal T for the exterior

of the earth's surface (p = 4v), the following very impor-
tant equation of physical geodesy is obtained (ibid., p.12):

1 d 1 1 aT
Tp = 15 éf {T 5w (X)) - T o | 98
(2.9)

S being the physical surface of the earth, T the disturb-
ing potential at the surface element dS , £ 1is the dis-
tarnce from the space point P to dS , and Tp is the
disturbing potential at P . Green's third identity can
also be applied to the derivatives:

3T 9T 3T
TR IV T

of the disturbing potential in a cartesian coordinate system:

3T 1 3T 3 1. 1 3 ., 3T

(=%)p= T+ éf Sr 5 (P - T 5= (50} as
3T, _ 1 T 3 ,1,_ 1 3 9T

(5¢)p= o7 éf =% 37 (P - T 35 et 98 45 40,
3T, _ 1 (T _3 1, 1 3 ,aT

(57)p= 47 éf‘az w (P - T o5 ()} es

An initial attempt to use these three equations for
the computation of the gravity disturbance vector, resulted
in very complicated expressions the practical use of which
was questionable. More specifically, the deflections of
the vertical on the surface S were needed, as well as
their partial derivatives in a local cartesian coordinate
system. Therefore, we decided to proceed by differentiating
(2.9) directly in a cartesian coordinate system,

Instead of using (2.9) in its present form, certain
authors have used another form (Molodensky, et al., 1962,
p.45; Koch, 1967-b, p.29; Koch, 1968-a, p.11):

1 3 1 1 T
Tp= gy [J LT -T@0 Fo (P - 3 gt s .,

A
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where T(Pp,) is the disturbing potential at the projection
P, of P onto the surface S . As Molodensky (et al.,
ibid) explained, this second form of (2.9) is an artifact
that does not affect the rigour of the equation. T(Py) .
is a constant, and the integral

éfg—n—(ll—)ds=o .

;

{ is equal to zero, if we integrate over the whole surface.
- ) However, if the integration is taken over a limited area
around Py, - say within a 5° or 10° cap - , the term

- ]I T (Bo) F— () as

is not equal to zero, and therefore will cause errors in
the computation of Tp . In our derivation for the com-
ponents of the gravity disturbance vector in space, we
decided to use the original form (equation 2.8), because
as we will se later, a limited amount of data is used,
and not a global data set.

R Let us now derive the equations for the derivatives
of T wunder a spherical approximation (Moritz, 1966, p.25).
This does not mean that the topography of the earth is
N not considered, or neglected. It means that the given
heights above a reference ellipsoid, are taken as heights
above a mean-earth sphere of radius R , by neglecting 1
the flattening of the ellipsoid. The effect of this spher-
ical approximation on the disturbing potential is estimated
. to be ot the order of 0.003 T (Moritz, 1980, p.15). Let
Q be an arbitrary point on the earth's surface S , and
P the point in space where the derivatives of T are to
be computed. (see figure 2.1). Let us also define the
following two coordinate systems:

a. A right-handed cartesian coordinate system (X, ¥, 2)
located at the space point P . The Z-a§is is in the direc-
tion from the geocenter O to P , the X-axis points to
the north, and the Y-axis points to the west.

b. A right-handed cartesian coordinate system (xy,z)

located at the variable surface point Q (topocentric -
system). The z-axis points up, the x-axis to the north, !
and the y-axis to the west. |

If we differentiate (2.9) with respect to X, ¥, Z,
we obtain:




topogriphy

sphere

Y‘p=

R +hp

ot/

Figure 2.1: Geometric Configuration for the Green's Approach.
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3T 1 3 3 1 3 .1 oT

5pp= 7w | (TG - D w! s
aT 1 9 9 1 3 1 3T

(-W)p- TT jsf {T -5-? (TIT(T))— —W(T) —5;]d8(2.11)
9T 1 3 3 1 3 1 3T

(5%)p- o7 {g {T—3 Ga (P - o3¢ 37} a8

As it will be shown in the next section, the term
3T/3n 1is a function of the deflection of the vertical
components (£,n). Hence, (2.11) have the same difficulties
as (2.10) if applied. For this reason, equation (2.9)
for T will be modified following the Molodensky's tech-
nique (Molodensky, et al., 1962), which has also been used
in (Moritz, 1965, 1966). The theory behind these develop-
ments is outlined in the next two sections.

2.3 Moritz's approach

For a differentiable scalar function F , the gradient
of F 1is written in terms of its components as:

oF oF IF

grad F = VF = ( 3% ' T3y az)

(2.12)

where (x,y,z) is a coordinate system with arbitrary loca-
tion and orientation. The component of grad F in the direc-
tion of a unit vector ® is the dot product:

F
an

R - grad F (2.13)

Physically, this product is the rate of change of the scalar
F at the point (x,y,2z) in the direction of the vector
f =(n,, n,, n3). Directly from (2.13) we get:

3F  _ 5F 5F 3F
T T I T 2 T (2.14)

It F 1is the disturbing potential T , the term
dF/3n 1is actually the term appearing in (2.11). In this
section, we follow Moritz's approach for its evaluation
(Moritz, 1964). Let (x,y,Z) be the local cartesian coor-
dinate system, as defined in the previous section, located
at the arbitrary surface point Q . In this system, the
earth's topography can be represented as

(2.15)

S(x, y, z) =0
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or by the explicit form 2z = h (x,y), which yields:

S(x , vy ,h (x, y)) =0 (2.16)

Differentiating (2.16) with respect to x and y we obtain:

ds - 38 + dS dh =0

dx X 9z 9x

88 _ 3 , 3 3 _,

dy oy 9z  ay (2.17)

If u is the unit vector perpendicular to the surface
S(x,y,z) = 0 at a point (x,v,2z), its components are propor-
tional to the components of the vector gradS

38 3S BS)

grad § = (Bx ' ¥y ' 3=z
= 3S 3h _ 38 _5h as)
3z 3x ’ 9z oJy ' 3z
_ _98 “ dh _ _9h 1)
5Z oxX ! oy ' (2.18)

Therefore, the unit vector 1©I can be written as:

oh 3h
(‘T,-TS’—’I)

SR+ @--%%-Y +1

>
n =

(2.19)

If B8 1is the angle of maximum inclination at a parti-
cular surface point Q , then

= g - g
cos B Ny n (2.20)
where n is the unit vector normal to S at Q , and
Bo is the unit vector along the z-axis:
-
Ny = (0 » 0 ’ 1) (2‘21)
- 1
n=(n, ,n; ,n3)=(n; , na, 2 2 )
+
( X ) ( 3y )+ 1
(2.22)
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Let h
—%;- = tan 7,
and b
L0 o (2.23)
5 tan ry

Here Ty and T are the components of the topographic
inclination in the x and y directions respectively.
We obtain from (2.20):

1
Ytan? 1, + tan? Ty * 1 (2.24)

COSg =n, . COS g =

and from well-known trigonometric identities:

2q = 2 2
tan“f tan Ty + tan Ty (2.25)

Therefore, the unit vector 7 in (2.19) can be expres-
sed as:

>
n = cosf ¢ tan Ty s -tan Ty , 1) (2.26)
and finally, (2.14) yields:
oF _ ,OF 3F T oF
o [ah - (=% tan <t -—v-tan Ty)] cosB (2.27)

Equation (2.27) was first derived by Moritz (1964,
p.20), and it was applied to the disturbing potential
T(=F) , in which case:

S = ¥ (2.28-2)
3T _
5y T (2.28-b)
3T 5T
= = -0g
3z 5h (2.28-¢)

The plus sign in (2.28-b) is due to the fact that in the
present study the local (x,y,z) - system is a right-handed
cartesian system, with the y-axis pointing to the west,
instead to the east as it is usually done in the literature
(cf. Heiskanen and Moritz, 1967, p.112; Moritz, 1980,
p.14). £ , and n are the components of the deflection

of the vertical, and 6g is the normal -component of the
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gravity disturbance vector. The normal gravity at Q is
denoted by vy . Equations (2.28) and (2.27) yield:

T = _ -
- [6g + v(~- &tan Ty + n tan ry)] cos B8 (2.29)

As we mentioned below equation (2.11), oy substituting
(2.29) into (2.11), the unknown deflection uf the vertical
components appear in the integrals. A technique which
is independent of these components has been developed by
Molodensky, et al. (1962), and it is outlined in the next
section.

2.4 Molodensky's Approach

The basic idea behind this development is to modify
the integral equation (2.9) for the disturbing potential
in such a way, that the term J3T/3n does not appear any
more as a function of the components of the deflection
of the verti al.

Let us denote by 3T/3x , 23T/3y , the derivatives
of T along the horizontal plane (x,y) at the surface
point Q , and by 3,T/3x , 23:T/3y , the derivatives of
T along the surface S (cf. Molodensky, et al., 1962,
p-84; Moritz, 1964, p.21). These two sets of partial
derivatives are related to each other through the following
equations:

3, T _ _°T X T 3y 3T Z
93X X X 3y 3X 9z 3ax
3.T _ 3T X, 3T 3y + T 3z
3y 3X  dy 3y 9y oz oy

which, if combined with (2.23) and (2.28-c), yield:

831 - gz + .%%. ‘%%‘ = ‘%%‘ - 8g tan T

355 - gg © _g% B —3'5’1: T ogtan T (2.30)
or

gz 2ir + 6g tan T

_%%. = 3%%- + &g tan ry (2.31)
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We can not substitute (2.31) and (2.24) into (2.27)
for T=F , in order to obtain:

+a_thanT)

T 5g 3,T
2 - =2 - cosB (Z=—t
¢ (Sx tan 1 + 55 y (2.32)

an cosB

This leads to the following equation (see also in Moritz,
1964, p.22):

ST - L Sg ol
an cosB cosg D (T, h) (2.33)
where
= = 92T 3,T
D(T,h) —g;-tan Ty + -%;—tan Ty (2.34)

is a special case of the operator:

= 9,U 3V a,U 3,V
-
DWW = He =% * Ty (2.35)

Instead of substituting (2.33) into (2.11) as we did
with the Moritz's approach, we will proceed as follows.
First, (2.33) is multiplied by 1/2 to obtain:

1 _3T _ _ &g ,cosB
T n ‘Gosg —1— D (Toh)) (2.36)

and from the definition of the operator D (Moritz, 1966,
p.18) we get:

1s =D (X,n) -1 1
7 D (T,h) =D (4-,h) - T D (4,h) (2.37)

If now (2.36) is substituted into the integral equation
for the disturbing potential, (2.9) yields:

m oo 1 3 1 § cosg
p = T3 é“ T =5(g) + zcosg'* 7— D (T,h) } A5 (5 33

and then (2.37) into (2.38) results in:

= 1 3 , 1 8 T
T = 4% éHT el m—i—g cosB [5(T,h)—T5(-%- yh)1}ds
(2.39)

Our goal is to differentiate (2.39) with respect to
X, ¥, and Z , but it is still necessary to simplify the
expression for the operator D in terms of known quantities.
Wesstart from Molodensky's identity (Molodensky,et al., 1962,
p.85)
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J[ D(U,V) cosB dS = - [ UA2V cosB dS
S S (2.40)

which for U = T/% and V = h yields:

- T - T
éfD (4 »h) cosf dS = - £f17A2 h cos8 dS (2.41)

where 4, 1is another operator defined as (Molodensky, et
al., 1962, p.85):

[ 392 hohz 3zh)+ 32 (hohlazh)]
h1hz Ja1 51 o q1 @q2° hz 94Q2

b2h = (2.42)

Note that in the last eyuation h, , h, , and h, are
functions of the coordinates q, , q, , and q, of an
orthogonal curvilinear system. If q, and q, are identi-
fied as the geocentric latltude and longitude respectlvely,
and q; as the elevation, then a line element in this
system can be expressed as:

ds? = h§ dh? + h? d§? + h2 dir?
where (see in Molodensky, et al., ibid, p.86; Moritz,

1966, p.24):

hZ
and T

ol e B
[¢]

(o]

n

o

With this notation, (2.42) now becomes:

o1 .= 32h 1 3n
h = m5gpl-siné 5 + cosd 65 cosF IR (2.43)

If the first and second-order derivatives of the eleva-
tion at any surface point Q are known, it is possible
to use (2.39) for the disturbing potential, or to differen-
tiate it for the components of the gravity disturbance,
as it will be done in the next section. As we will see,
the expressions for these components, not only require
knowledge of the elevations h over the whole surface,
but they also require the slopes tanTy and tanT to
be known. In addition, the operator (2.43) requires the
second-order derivatives of the elevation to be known over
the whole surface S . At this point we will make the
assumption that the earth's surface is a smooth surface,
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whose second-order derivatives (of elevation) are equal
to zero. This assumption of a smooth surface is also a
condition which is required to fulfill Lyapunov's conditions
(Molodensky et al., 1962, p.83). Under this assumption,
(2.43) becomes:

1 - 3:h
Azh = - ?taxw —rz¢ (2.44)

For any functiomn F defined on the surface S , such
as the elevation h , or the reciprocal of the distance
1/¢ , we have (Molodensky et al., 1962, p.84; Moritz,
1966, p.22):

3, F _ oF
3q: 5QL
:F oF
5Q2 5Q2

Therefore, (2.44) becomes:

1

- 3h
Azh = - 55 tand — (2.45)

In (2.43) there is no first-order derivative of the
elevation with respect to longitude X , and this is why
this term is missing from (2.45) too. If we evaluate the
partial derivative of h with respect to the latitude ¢,
we obtain:

5h _ a3h  ax 5h 3
% 9% 3m+Ty-T%

The transformation from one cartesian coordinate system
to another, is usually done by applying a series of roata-
tions and an origin shift to the coordinate system being
transformed. In the present report we will use the following
taree matrices to denote a positive rotation 6 around
each one of the three axes:

1 0 0
Ry (8) = 0 cos 8§ sin 8
0 -8in ¢ cos 8
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cos9 0 -sind
Rz (9) = 0 1 0
L sin® 0 cos8
h cosf sinég 0
R; (8) = -sin8 sin® 0
0 0 1

Starting from the transformation equation between the
topocentric (x,y,z) and the geocentric (X,Y,2) systems:

X X
= " - o_ 3 - °o_
y R: [-(90 ¢Q)] Ry [-(180 AQ)] Y
z + rQ Z

it is very easy to show that:

\ Ix

—ﬁ=rQ_R+hQ

~ #
]

and hence

dh _ 3dh X  _ t
% T T3x 3 T tan Ty

0

Therefore, (2.45) can now be written as:

- _ tand
Azh - tan Ty (2.46)

After the above first-order approximation has been
obtained for A:h , it remains to derive the expression
for the disturbing potential Tp , Substituting (2.41)
into (2.39) we obtain:

I S 3 1 S g 1 A
Ty = 15 ,S,{'r () * s cos8 T(B(F )+ 22D }as

Next, we apply equation (2.33) with 1/f% instead of T
(the proof is completely analogous) to obtain:
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iy . L 3§b-cosﬁﬁ(1 h)
n cosB n X (2.48)
and then, (2.47) with (2.48) yield:
g 5
o = o7 oo 98
3
+ o [t { g —p($)- 2 cost Dipm)-PPan} as
(2.49)

As we have already mentioned, 1/%2 1is a surface function
and hence (2.33) yields:

D (%,h)= &tan Tt -zé%?tan T

y (2.50)

As a final step, substitute (2.50) and (2.46) into
(2.49) to obtain the expression for the disturbing potential
T at a space point P from gravity and topography data
on the earth's surface, without neglecting the topography of
the earth or its inclinations. Only the second-order deriva-
tives of the elevation are neglected under a 'smooth-earth”
approximation.

_ 1 8
Tp = IF'Ié fcosB ds
T

1 1 3 1 3 5
+ Iw—fsf {3353-55 (5-)-2cosB (—g—x(%—)tam; ﬁ(-%—)tanry)

tan ¢ tanty

+ cosf T } ds (2.51)

If we set the inclination components < and Ty
in (2.51) equal to zero, and use (2.28-¢), tﬁen (2.51)
yields the following spherical formula (see Heiskanen and
Moritz, 1967, p.12):

1 § a1
Tp‘ﬂéf (2B + T S5 (P} oas (2.51")

where &g 1is now the gravity disturbance on the surface
of the sphere (8') . 1In this case, (2.51') corresponds

to the 'classical' approach, where the topography is not
considered.
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It now remains to differentiate (2.51) with respect
to X, ¥, Z, and then to rotate these components to the
(X,Y,Z) system. This will be done in the next section.

2.5 Differentiation of the Disturbing Potential

In order to obtain the derj vatlveq %;IE- , ’ 7 ,
we first compute the partials 2SI , 2T °79T “in the
(X, ¥, 2) system (defined in 3k Y V/
section 2.2). From 2.51 we obtain:
3T _ 1 cosB tand : 3 1
_.a_).(_..Tf({ oss+ = tant ! F‘x_(l)ds
P S p
1 ¢ 1 3 3 1
+ —_— T 5% (= —)) 2cos8 [~— (=) tant
4n y ‘' cos B X oh a Xp [ X
) 3 , 1
* o v ) tani ] }dS (2.32-a)
3T _ 1 (11 §g , mcos gtand 3 1
—_— = 0— [[l—=+ 7T =—=—=""% tant |} == () dS
*Yp 4 g’ rcoss r x ' dyp %
1 i 3 3 2 22 (X
+ Z_TT é;TbOSBTﬁ (.3_“1_(—&.—)) 2cosf [BYP (a x( (x',)) tant
) o 1 1

3T _ 1 ¢g , .~ CosBtanéd 3 (1
T3, T fsj Pyt ~ tamx} 821)( —) ds

X

= [ Lyy- 2 L .
* Al T sy GR () 2e0s Blya—=k 2))tanty

3Zp 31X
(2.52-c)

We will now derive one-by-lne all the partial deriva-
tives which appear in the equations above. The spatial
distance & between the space point P and any surface
point Q in the (X, ¥, Z) system is:

. _ 3
L= ((Rp=R)% + (Bp=9)% + (2p-2) %) (2.53)
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Again, from (2.53) for a point Q fixed on S we obta;ii‘
-%%i = 2 (% - %Y
gg; = 2T - T
-%%i = 2(Z - ZQ) (2.58)

The partial derivatives in (2.57) can be computed from
the_transformation equation between the (x,y,z), and the
(X,Y,2) coordinate systems:

f

X - X

P X
V- Yp |= Ra€®0°- 3p5)) Ra(-81) R2(90°- 3) | v
| Z - Zp*T (2.59) z + g

where 4p , 5 are the geocentric latitudes of the points
P and “Q resgectively, and rp , r are the geocentric
radii to these points (see figure 2.19. The term A) is
the difference in longitude:

AN = X, - A

Q P

(2.60)

The matrix:

R = R(-(90"- $p)) R3(-AX) R2(90° )

_¢Q
in equation (2.592) can be easily shown to be equal to
sindaP cosAAsin&P -sin¢P sinAA -51n¢p cosA) cos¢Q

+ cos$p cosEQ + cos$p Sinaq

R = | sinA) sinaQ cosA) -sinAX cos$Q

-cos$p cosAAsinEQ cos$p sinAA cos5p coslA cosEQ

+ sin$Q cosEQ + sin3p sinBQ

(2.61)
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Therefore, equation (2.57) combined with (2.58) and
(2.61) yields:

3 __._393 X, -X
3X 3Xp P Q
Y - -rT 307 = -2RT g - %
3y R Bip P Q
2L 2 7 -2
and therefore .(2.55) becomes:
DL - X
% () & - X
2 (L = 1 gt v, - ¢
v 1) v R » ~ 'q
23 2. -z
CEI P Q (2.63)
Introducing the notation:
Wi Wi2 W3
T
W = -R° = W, W22 Was
Wi, Wiz Wi
(2.64)

and differentiating (2.63) with respect to Xp , Yp , 2p ,
we obtain:

d 3 1 3 -X 3 Yq-¥ 3 29-2
5{; (—5;((7)) = Wn;k—l;(&i-r-l))'*wusg-{;(-g—fzh*‘wnaxp 1 )
1., . -% - ¥ 2 Zo-Z
3 1.y 25 = Zp, 3 %a-F 23 2a-2
32p (205 = Wi ST M z§)+w‘33zp R
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XX +v@zaq3-<iQ—,-f>+m——<39-,—E>

(_)EQ_P)w;z 23_%_(_Q_B)+v5 3_3_(_ZQ_;E)

&Q__E)ﬂgza_ (-Q——P)+w23
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-y Za-2
' w2la_%- (M vﬁzay ("Q"'2>+v'z 3_3';(—%3—2)

(ﬁ_L)

(2.65)

It can be easily shown that the nine derivatives in the
right-hand side of (2.65) are equal to:
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3(Xg - Xp)2-g2
2'5

3(Xg - Xp)(¥q - ¥p)
2'5

3(Ro - Xp)(Zq - Zp)

25

3(?@ -_Zg)(xo - Xp)
L

3(¥g - IpF -14?
25

3(¥q -¥p)(2q - Zp)
9’5

3(Z2a0 - Z2p)(Xg - Xp)
25

3(2q -2p)(¥q - ¥p)
25

3(2q -Zpp 32
15

(2.66)
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Let us now substitute the partial derivatives (2.54),
(2.65), and (2.66) into (2.52). Since we want to evaluate

the components of X at the space point P , let us also
set Xp = Xp = Zp = ., From (2.52) we ovtain:

3T 1 § cosBtand X
W—p'ﬁjé {c_%'os + T =—0/—— tanrx} -+ dS
2
3 T Wiy (X2- 2)+w, X9 +w,, %2
+ —3{ il i 32 i3
In éf L cos B
2
- 2 cosg [(wll(Xz- %—) + w, X¢ + w; 3 X2) tantx
- 2
+(w21(X2--%-) + w,,%% + w,,%2) tant ]} dS
Y(2.67-a)
3T _ 1 88 cosgtang Y
Yp IE'Ié {cose +T r tant, } v 9
P T w,,¥% + w,, (?2-‘1% + w,, Y2
in y 2t cos 8
-2 cos g[(w,,I% + w,,(¥*- %;) + w,,¥2) tant
+ (w, 9% + w,,(T2- ;g_’>+ w,;¥2) tant ] } ds
(2.67-b)
8T _ 1 . 5 g cosgtand Z
Zp I {cosB +T T tant, } = as

2
(23— )

{
3 T yAS 27 +
O e
2

+ (W, 2R + w, .20 + w,,(22- ﬁﬁd) tanry]} as

(2.67=c)

Finally, rearranging the terms in (2.67) we arrive at the
following equations:

P
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3T 1 5 cosf tand
5-)?; 4.;. I{i+'r.__?__tan-rx}

X
cosf 7 ds

W
ut—

+

3 T 22 w
I éf—rg {(X2- 1;)[5gg3- 2coss(w11tanrx+w21tan1y)]

- w ) .
| + XY [E%ég-ZCOSB(letantx + wzz.anry)]

X7 [—aa - ds
+ XZ [COSB 2cosg(wystant, + w23tan1y)]}(2.68_a)

=
W

S g cosgtand ¥
éf{asgg-+ T —_ tanrx} R ds

+

T 5% . W
éf'i? { ¥X [55i% - 2cosp(w; tant, + Wz1tan1y)]

Cosg
=2 12 w
+ (Y - -3—) [C—O-éBL— ZCOSB(letanTx + W22tanTy)]
% —vaa _ ds
{«‘ + T2 [g5ik - 2cosg(wystant, + wstant ) HE3 o
> 3T _ 1 8g cosgtand V4
Zp v £f{cos3 *T T tanty} <7 dS
PR T zZX [Eil—-- 2cosp(w,;tan + w,,tant. )]
Ir y-ﬁ{ CosB 1128 T T
w
+ 2¥ [ggik - 2 cosg(w,tant, + Wy tanty)]
- 22 w
+ (Z22- -§-) [63;—‘3-- 2 COSB(W13tanTx + wzytant )]} dS
(2.68-c)

The differential surface element dS in all the equa-
tions above, is given (in general form for an ellipsoidal
surface) in (Hotine, 1969, eq. 30.72) as:

. 1
ds = Sosh (N + h) (M + h) cos¢ dd di (2.69-a)

where N, M are the principal radii of curvature along

the prime vertical and the meridian, and h 1is the height

above thHe reference ellipsoid. Under the spherical approx-
imation of our solution, this equation becomes:

o

po
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1 2 -
ds = r® cos § d3F da
cosB (2.69-h)

If the surface element is defined by the intersections
of parallels and meridians on the reference sphere, (2.69-b)
reduced to:

1, - .
88 = zszp TP Opgagr - Myest) (SiR dyopry - SiM Isourh’

(2.69-c)

The data that is needed for the application of equations
(2.68-a,b,c) is the following. (a) Gravity disturbances
(§g) and disturbing potentials (T) on the surface of the
earth, (b) the elevations of the surface points, and
(c) the two components (tyx , Ty) of the surface inclinationms.
In the following chapters we win describe how this data
is computed for our simulation studies.

2.6 Rotation to the Geocentric System

The derivatives (2.68) are referred to the cartesian
coordinate system (X, Y, Z) located at the space point P .
They are related to the components of the deflection of
the vertical and to the gravity disturbance &g at P
through the equations (2.28-a,b,c):

== = - Y&

(2.70-a)

=y, (2.70-b)
3

_...__...=..6g

¢.70-c)

If we wish to transform these partial derivatives to a
geocentric system (X, Y, Z), we start from the transformation
between (X, ¥, 2,), and (X, Y, 2):

| & | X
| ¥] = R: (~(90° - §,)) Ry (~(180°- 2p)) | ¥
l z | z




P
J @%§$§4%%ﬂ = -sin&ip sinlp -cosip cos$P sinkp
9 1
cos¢P 0 sin¢p
(2.74)
Lh‘a_J ~‘j
e Ao, — - e .

or 27.
& X -sind, cosi, -sind, sini, cosd, X ;
3 = sink, -cosi, 0 Y
| Z + rp | cos$p cosi, cos&;p sindg sin5p y4 ;
where
r, = (X <+ Y§ + z§>* (2.72)

The transformation of the partials in (2.68) to the geocen-
tric system is based on the followihg set of equations:

3 _ 3T 3k , 3T 3% |
X §x % §y R
3T . 3T 23X , 8T 3%
oY 3% oY oY oY
3T _ 3T X, 3T £} 4 .
32 3% 92 3y 42
or in matrix form:
3T T
X X
3T - (%,Y,2) oT
3% = 3 qxy) 5%
3T AT
EYA YA

3T 37
97 X

T 37
o7 T8Z

N

3T 3
3% 9Z

(2.73)

where the Jacobian matrix J is computed from (2.71) as:

‘ —sin$p cosip

sinAP cos¢p cOS)
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In summary, equations (2.68) have been derived for
the evaluation of the derivatives of T in the local
(X, ¥, Z) system, while (2.73) with (2.74) can be used
to compute the partials of T in the geocentric (X, Y, 2)
system.

2.7 Computation of the Gravity Vector.

After the partial derivatives of T have been rotated
to the geocentric (X,Y,Z) system, and the gravity distur-
bance vector has been determined:

T
§=gradT=(%,—%»‘%Z‘) $(2.3)

the components of the gravity vector E are given from
equation (2.5):

-+ 3T ] 3 T aT aT
¢ =eraaW=3+3=(gp, 57, 5% (5% 7 3T
(2.3)

U being the normal gravity potential of the equipotential
of the equipotential ellipsoid. The expressions for the
partial derivatives of U with respect to X,Y,Z are given
in (Heiskanen and Moritz, 1967, chapter 6).

For some purposes we need the vector of gravitation T ,
that is the vector of the pure attraction of the earth
without the centrifugal force T a grad¢ (Heiskanen and
Moritz, 1967, p.228):

T = grad V =grad (W - 0) =g - gradé = g ~(w?X, w?Y,0)
(2.75)

The vector E contains the effect of the rotation
of the earth, while the vector does not. The vector
of gravitation is of considerable interest in Geodesy,
because it is the effect of the gravitation potential
(V=W-~9%) of the earth at a space point, which is not
affected by its rotation (for example, an artificial satel-
lite which is orbiting around the earth).
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Chapter 3
THE TERRAIN MODEL

3.1 Introduction

In order to avoid the errors which exist in real data
and for the purpose of testing equatioms (2.68-a,b,c) for
the gravity disturbance components, we decided to use a
simple terrain model, with synthetic data on its surface.
As it will be described later in this chapter two disturbing
masses are located below this model on its axis of symmetry,
and from those, the exact gravity disturbance vector can
be computed at any space point. The gravity disturbance
8§g , and the disturbing potential T can also be computed
at any point on the surface of the model. This data, and
the inclinations of the model at these points are then
used in (2.68) to compute the three components of T at !
any space point P , and to compare them with the exact
components evaluated from the model's disturbing masses.

The idea of using this type of simulation tests is
not new, and the details will follow along the lines of
this chapter. For gravity anomaly and deflection of the
vertical computations, a conical mountain was used by
Molodensky et al., (1962, p.217), and by Reit, (1966).
For a slightly more general case (the model is on a sphere
rather than on a plane as above), see Sjoberg (1975, p.82).
Bjerhammar (1963) has used another type of model which
is a homogeneous spherical cap on a spherical earth. This
model has also been discussed by (Sjoberg, ibid, p.79).
In order to find estimates for the effect of the topographic
elevations on the external gravity anomalies, Moritz (1965)
has used two models (a conical mountain, and a two-dimensional
model e.g. two planes intersecting each other). Other
simulations were performed by Koch (1967-a, 1968-a) with
a pyramid and a cone. These models are similar to those
mentioned above, but they have the advantage of allowing
the model's inclination to vary within certain limits.

Among the simulations above, those by Koch and by

Moritz test the accuracy of the computed quantities following
the Green's identity approach The rest are studies on

the accuracy in the computation of surface or space quantities
from one of the Bjerhammar's discrete methods. 1In this

paper we are dealing with both approaches. The simulations
for testing the Green's approach are reported in chapter

4, and those for the discrete (Dirac) approach are reported

29.
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in chapter 6. 1In the present chapter, the geometric and
the dynamic characteristics of the model are described.

3.2 The Geometry of the Model

The terrain model which has been selected for this
study, consists of a cone on a spherical earth, with its
top replaced by a spherical cap of certain radius, such
that the spherical and the conical surfaces are tangent
to each other at their intersection (figure 3.1). In theory,
this rounding of the model's top is a necessity to satisfy
Lyapunov's conditions (Molodensky et al., 1962, p.217).

Assume that the axis of the cone intersects the surface
of the mean earti sphere (R = 6371 km) at the point (3 ,
Ao, h=0), and that it passes through the center of mass
0. Let (0g , Aq » hQ) be the coordinates of any
point on the surface of "the model. The height h is the
distance from Q to the sphere along the radius from
0 to Q. Let also (¢p , Ap , hp) be the coordinates
of the space point P where the gravity disturbance vector
is to be computed. At the point M, and M, on the axis,
there are two point masses m; and m; respectively,
which generate the disturbing potential. Their distances
from the surface of the sphere (point A,) are a; and
a, . As inclination of the model (i), we define the angle
between its surface and the plane tangent to the sphere
R at A, .

As we will show, there are only three parameters which are

needed to completely describe the geometry of the model
in terms of size and shape:

1. The height of the cone's vertex above the spherical
earth (hy)

2. The extent of the cone, in terms of the angle & , and
3. The radius of the spherical cap (p).

All the quantities involved with the model's geometry
are computed below as functions of the three parameters
above. Let w be the angle at the geocenter 0 between
the axis and the radius to point D where the cone and
the spherical cap meet each other. Let also w be the
angle at the geocenter 0 between the axis and the radius
to an arbitrary point Q on the model. There are three

possible cases for the location of Q on the model:
Q on the spherical cap: 0 £ w S

Q on the conical surface: § < w

IA

Q

Q on the mean sphere R : Q < w < 180°

4
P..
A
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w can be computed from:
cosw = cosdo cos9Q 51inbo sineQ COSAA
(3.1)
where
8o = 90° - &o
= ° -
eQ ?0 fQ
A = -
A Q 0
From figure 3.1 we easily obtain:
AB = h, +R (1 - cosq) (3.2)

and the inclination i of the model is then computed as:

}gi - ha + R(1 - cos®)
R sin Q (3.3)

tani =

Then, the height hv of the model's vertex V 1is given
by:

hy = hy - AV = by - (&K - p) = h, +p - g;i;

(3.4

and since
AD = o tani (3.5)

we obtain:

- p sini
tan w = —a———

R + hA - AD Sini (3.6)

The evaluation of the height of any surface point
is done according to its location on the model (see the
three conditions above).

Case-A Point Q on the surface of the cone (w sws< Q ,

figure 3.1). Applying the law of consines to the triangle
AOQ we obtain:

r - R+ h
cosi sin (180° - 58’ +1-04)




e————— r———
33.
which gives:
r - R+ hA,. ]
Q cosw+ tani sinw (3.7)
and hence:
h., = r. - R
Q Q (3.8)

The distances of the point Q from the two masses

are:
= 2 4 p2 3
r; (Rt rQ 2R, rq cosw)
and
. 3 (3.9)
r; = (R: + ré - 2R, ry cosw)
where
Ry = R + a;
Rz = R - a, (3.10)

Case-B Point S on the spherical cap (0° < w < w , figure
3.1). From the triangle OKS we obtain:

2 o g2 OK -
0 ri + 0K - 2rg OR cosw (3.11)
which yields:
= vp? - OR¥sin?
rg OK cosw + v/p sin‘w (3.12)
where

O—K=R+hv-°
(3.13)

and hence:

S (3.14)

Case-C Point Q on the surface of the mean sphere
(9 ¢ w < 180°). In this case

A ke N R L et T e e o eeemmeebar e Lt s awman
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h, = 0
Q (3.15)
and hence:
r. =R
] Q (3.15-a)

3.3 The Data on the Surface of the Model

After the geometry of the model has been established in
terms of its size and shape, the disturbing field generated
on its surface and in the exterior space is now determined.

Four more parameters are needed to describe the dynamic
characteristics of the model. These parameters are:

1. The distances a; and a, of the two masses m; and
m, from the surface of the sphere R , and

2. The gravity disturbances 46g; and é&g: produced by
two masses at the vertex V of the model.

Therefore, for the simulation studies that we will
conduct in this paper, we need to define the following
set of seven parameters:

hA y 2, P, ay , az , g1 8g:2

The disturbing potential at any point Q on the surface,
or in the exterior space is computed from:

- km1 ka
T, = KBp o, kmy
Q s T Tr, (3.16)

where r; and r, are given by (3.9), and km; , Kkm,
are determined from the given boundary conditions §&g; ’
and ¢&g; as we will show below.

: The normal component of the gravity disturbance at
1 any surface point Q 1is computed from:

= _ 3T
L (57q (3.17)
Using (3.9), (3.16), and (3.17) we obtain:

kmi(rg - R cosw) kma2(rg - R cosw)
‘gq = T * 3 (3.18)
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The geocentric distance rQ in (3.18) is computed
from:

1. equation (3.7), for Q on the conical surface, or
2. equation (3.12), for Q on the spherical cap, or
3. equation (3.15-a), for Q on the mean sphere R .

The terms km; and km; are determired from the
solution of (3.18) using the boundary conditions &gi and
§g, at V . In order to determine km; and km, , we have:

o 2
km; ég1 (R + hy - R1) (3.19-2)

and

(3.19-b)

km, = 8g2 (R + hy - R;)?

3.4 The Gravity Disturbance Vector in Space, Computed from

the Model

It now remains to find the expressions for the compon-
ents of the gravity disturbance vector as a space point,
which is generated from the two disturbing masses:

- _ 3T 3T T
3 grad T (—gi', ‘3?'! 52 (3.20)

The disturbing potential T 1is given by (3.16), where
instead of (3.9) we now use:

ryo= [(X-X)2+ (Y =-¥)% + (2Z-2° )% (3.21-a)

and Py
r, [(X = X202 + (Y - Y2)2 ¢+ (2 -2,3)% 1]
(3.21-b)

where (X, Y, Z) are the geocentric cartesian coordinates of
the space point P (%p , Ap , hp), and (X , ¥, , 2, ),
(X, , Y2 , Z2), are the cartesian geocentric coordinates of
the two disturbing masses m; , and m, respectively:

X, R, cosdy cCOSA,

Y: = R, COSBO sin),

Zx Ry sin5a

(3.22-~2)

\ : -
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and
X, = Ra2 cosPy coshro
Y, = R, cosdo sink,
Z: = R, sind,
(3.22-b)

Differentiating (3.16), and taking (3.21-a,b) into
account we obtain the following expressions for the three
components of the gravity disturbance vector P , as com-
puted from the two masses:

( ) = - km 3 (X-X1) km, (X-X:)
X 'P 7 T T(K-K, P+ (Y=Y, P+ (2-Z; P17 (X=X, ¥+ (Y-Y, P+ (2~ R
73.23-a)
(3T - k@ (¥-¥)) km, (Y-Y,) y
3Y P (XK P+ (Y-Yq P+ (Z-2, F172 [(R-Xz P+ (Y=Y, P+ (Z-Z, 1] 2
(3.23-b)
(3T o _kmy (Z-Z3) km, (Z-Z,) y
BZLP T (XX 1P+ (Y-Y1 Pt (2-Z3 P12 [(X-Xo P+ (Y=Y, P+ (Z-Z2 117
(3.23-c)

Equations (3.23) yield the three components directly
from the model, and therefore these results are errorless.
In the next chapter we will discuss the simulations tests
we made in order to investigate how well equations (2.68-a,
b,c) agree with the exact equations (3.23) in the case of the
model, without integrating over the whole surface of the
Sphere,

3.5 The Effect of the Model's Symmetry and Center of Mass
on the Simulations

The terrain model described above is rotationally sym-
metric, and the two point masses located on its axis obviously
generate on its surface a disturbing field (g and T ),
which is symmetric too. For the simulations which are
described in the following chapters, four such models are
used, and the seven parameters for each one of them are
given in table 3.1 (these parameters were defined in sections
3.2 and 3.3).
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Table 3.1
Parameters Defining the Models for the Simulations
i=10°.543 i=20°.040 i=39°.,976 Spherical
inclination inclination inclination Cap
Model Model Model Model
hy 4100 m 4100 m 4100 m 23682973.2 m
Q 12! 6.08' 2.64' 45°
p 200 m 200 m 200 m 4975838.5 m
a) 2000 m 2000 m 2000 m 2000 m
a; 4000 m 4000 m 4000 m 4000 m
8g, 50 mgal 50 mgal 50 mgal 50 mgal
68 100 mgal 100 mgal 100 mgal 100 mgal

Note: The inclinations are computed from equation (3.3).
The three conical models will be referred to as 10°-, 20°-,
and 40°- inclination models.

Note that the large values for hp and o in the 1list
of parameters for the spherical cap model, were selected
such that equation (3.4) will yield a height h of the
model's vertes V above the mean sphere R (figure 2.1)
equal to 4099.8 meters, i.e. of the same magnitude as the
heights of the conical models. The last four parameters
are the same for all models, and hence, there is a total
gravity disturbance of 150 mgal at the vertices of the models.
In figure 3.2 through 3.5 the gravity disturbances and the
disturbing potentials are plotted against the spherical dis-
tance of the surface points from the model's axis. The el-
evation of the surface points above the mean-earth sphere
R are also given at 2-km intervals,

In the derivation of equations (2.68) following the
Green's approach (chapter 2), no assumption was made about
the location of the earth's center of mass with respect to
the origin of the (X,Y,Z) coordinate system. The origin
0 of this system was placed at the earth's geocenter (see
figure 2.1), but there is no theoretical requirement for
such a choice. The transformatioi equation (2.59) from the
(x,¥,2) system to the (X,Y,Z) system has been derived by
using a ''geocentric" (X,¥,Z) system whose origin does not
have to coincide with the true center of mass of the earth.
In other words, there will be no effect of the model's center
of mass on our simulation tests with the Green's approach.
As long as we have the boundary values &8g and T on the
surface of the earth, and the elevations / inclinations with
respect to a reference surface (the surface of the mean-
earth sphere in our case), equation (2.68) can be used to
evaluate the components 3T/3X , 3T/3¥ , 3T/32Z in the
topocentric (X,?,Z) system centered at the space point P .

~—%iiH=======E====HIllllllllIEIIHIIIIIIIIIII-llnuun!




38.
The rotation from this system to the ''geocentric” (X,Y,2)
system may be done in order to express all vectors & in
a unique system.

It must be pointed-out that due to the symmetric char-
acteristics of the models, there are only two distinct compon-
ents of the gravity disturbance vectors 3 = gradT , namely
3T/ar , and (1/r) 3T/3)p , where Yy 1is the angle between
the model's axis and the radius to the space point P where
¥ is computed. On the other hand, we decided to derive
the equations for the computation of in such a way that
theycan be used without modification, or re-derivation for
a future application with real-data (when this kind of infor-
mation becomes available). This is why we have expressed
the components of § (equation 2.68) not in a polar (r, V¥)
system, but in a cartesian one. Nevertheless, the transfor-
mation of these components from the cartesian to the polar
coordinate systems can be easily done, using (2.73), and :
then: K

T 3T
- %
QT J ((X!YIZ)) 9T
3¢ (r,8,)\) Y
2T T
oA 9Z (3.24)

Finally, the component (1/r) 3T/3y is computed from the
components 3T/3¢ , and 3T/3Xx as:

T e

(3.25)

The direction of this component is defined from the space
point P to the point on the model's axis where the plane
perpendicular to the radius r at P interjects the axis.

_The Jacobian of the transformation from (X,Y,Z) to
(r, ¢,2) can be computed from the transformation equations
between these two systems:

X = rcos¢$ cos A

Y = rcos ¢ sin A
(3.26)

2 = r sin §

and then:
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} cos$ cosi cosd sini sin¢
J (£§4§L§l.)= -r sind cosA -r sin¢ sin)x r cosd
(X8, -r cosd sinx r cosd cosi 0
(3.27)

For the simulation tests which are described in the
following chapters, the components of E will be compared
to the exact components (from the model) in the polar (r, V)
coordinate system, in order to have results independent of
the location ($, , Ao) of the model's center on the sphere
R . In summary, these components will be transformed from
the topocentric (X,¥,Z) system to the polar system (r, y)
using equations (2.73), (3.24), and (3.25).
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Chapter 4
SIMULATION TESTS WITH THE GREEN'S APPROACH

4.1 Introduction

The idea of the simulationis to compare the exact grav-
ity vectors as computed from the model, with those evaluated

from Green's approach, using surface data also computed from
the model.

There is a number of factors that will affect this agree-~
ment. The inclination of the model's surface, the altitude
of the space point, the 'density" of the observations, or
in other words the grid interval, the extent of the area
of integration, and the geometry of the model itself (size
and shape), are among these factors. Throughout this chap-~
ter we will discuss the simulations that were done to inves-
tigate the effect of these factors on the agreement between
the exact and the computed vectors. Each simulation is a
four-step procedure, summarized as follows:

Step-1. Compute the exact components of the gravity dis-
turbance vector, using equations (3.23), (3.24),
and (3.25).

Step-2. Compute the normal gravity disturbance comucrnent
§g and the disturbing potential T on the surface
of the model and everywhere else within the speci-
fied area (at the center of the blocks which are
formed from the specified grid). Equations (3.18)
and (3.16) are used. i

Step-3. Compute the components of the gravity disturbance
vecgor at the space point P , in the (X,¥,Z) co-

ordinate system from (2.68-a,b,c), and the data
generated from step 2. Then, rotate these three
components to the geocentric (X,Y,Z) system using
(2.73). Finally, compute the radial and the hori-
zontal components of ¥ in the polar (r, y) system
using (3.24), and (3.25).

Step-4. Clompare the gravity disturbance components from . -
steps 1 and 3 in terms of their percentage relative
difference:

42,
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(aT) _(aT )

or exact 5r ' computed x 100
3T |
4=

r ‘exact ,

% rel. error in 9T/dr

; ’L(a'r) _13T, ]
rel. error in %%gq' - [ 30 exactg; 3y _computed
] ( SV dexact

k23

x 100

v

(4.1)

Assume that the cone-like terrain model is located on
the surface of the earth (more specifically, on the surface
of the mean sphere R ), with its axis intersecting R at
the point (&, , A, ). The parameters which define the three
conical models are listed in table 3.1.

In order to apply (2.68-a,b,c) in the case of the conical
model, we divide the sphere below the model into blocks which
are bounded by meridians and parallels. The grid spacing
determines the density of the data. The radii passing through
the intersections of the grid, form on the surface of the
model another grid(see figure 4.1). If Q' 1is the center
of the block on the sphere, the radius through Q' intersects
the surface at the point Q . Equations (3.16) and (3.18)
yield the disturbing potential T and the gravity disturb-
ance &g at Q . Depending on the location of the block
on the model (on the spherical cap, on the conical surface,
or on the sphere), equations (3.8), (3.14), or (3.15) are
used to compute the height of Q above the mean sphere.

The inclinations and ty 1in the north-south, and west-
east directions at "Q , are computed using the height of

Q@ and the heights of the neighboring blocks to the north,
and to the west of Q , according to equations below:

hporth-h
X Sx

tant

hwest - h
tanTy —_—— (4.2)

y
the height a2t the center (Q) of the block,
where the inclinations are to be determined.
h h : the heights at the centers of the blocks
north, “west to the north, and to the west of Q .
the distances from the centers of the blocks
y to the north and to the west of Q , from it.

where h

'

Sy » S

The disturbing potential T , the gravity disturbance
§g , and the two components of the inclination (1, , Tt _) are
the data needed in equations (2.68), along with tle codrdinates

P e \ .
. _ . R . - 5 3
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of the surface points Q . These equations yield the
three components of the vector at the space point P in the
(X, ¥, 2) system located at P , and (2.73) rotates them
to the geocentric (X,Y,Z) system. Then, (3.24) and (3.25) 4
yield the two distinct components of ¢ in the polar (r, ¢)
system. The exact and the computed vectors are finally com-
pared in terms of their percentage differences from equations -
(4.1). For the investigation of the effect of the height
(hp) of the space point P , these vectors are computed at
different altitudes, at equally-spaced points above the
sphere, from the model's axis to the east of the model.

4.2 Simulation Tests

A number of tests were made to investigate the influence
of the following parameters on the accuracy of the computed
gravity vector components:

a. The inclination of the model.

b. The geometry of the model (cone vs. sphere).

c. The grid interval.

d. The size of the integration area, which, along with the
grid interval determines the ''density" of the data. Note
that the center of the integration area coincides with the
center of the model.

e. The altitude of the space point.

For all of these tests we assumed that the model's axis
is located at

¢0 = 45° [ A(.‘l = 250°

This choice is arbitrary, but since our software was designed
for real as well as for simulated data, we had to select

a "site" for the model in terms of latitude and longitude.

In table 4.1 the specifications of 15 tests are summarized
for easy comparison. The space points are 10' apart from
each other, at the same altitude for each test, from 250°

to 251° east longitude. Therefore, there are seven points
where the components of ¥ are computed and compared for
each test.

The first five tests are referred to a conical model
whose inclination is 10°. From tables 4.2 through 4.4 we
see that by increasing the integration area from 2°x 2° to
3°x 3°, and then to 8°x8°, the errors at the distant space
points (away from the model) are reduced dramatically, but
the errors above the model are almost the same. Larger inte-
gration areas do not improve the results above the model
because of the local characteristic of the disturbing potential
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Space roints

Area of integration

Figure 4.1: The Surface Grid on the Model
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of the two masses at its center. However for the
distant points, larger integration area is required such
that there is enough gravity data below these points.

By increasing the altitude of the space points from
10 km to 20 km, the errors are reduced both over the model,
and at the distant points (table 4.2 vs 4.5). From tables
4.6 and 4.7 we see that the errors for a 10"-inclination
are slightly smaller over the cone than the errors for a
20°-inclination. Tests 6 through 9 are referred to a 20°-
inclination model.

All the results indicate clearly that the errors above
the model are larger than the errors at the distant points.
Originally, we thought that the reason might be that we
should have used a finer grid over the model, than over
the neighboring area on the sphere, because of the fact
that most of the disturbing field is close to the model's
masses. However, by using 0.5' grid in the inner 0°.3x0°.3
area, rather than a 1'-grid (table 4.7, vs. 4.8) through-
out the entire 4°x4° area, we did not see any improvement
in the results. The errors were not significantly reduced
neither with more fine 0.1'-grid in the inner zone (table
4.7, vs., 4.9).

For an altitude of 100 km above the mean sphere (table
4.10), the errors in both components are smaller than 5%,
that is much smaller than the corresponding errors at an
altitude 10 km (table 4.7).

On table 4.11 we see the errors for a 40°-inclination
model. If we compare these errors with those on table 4.7
(20°-inclination), we see that they are much smaller. This
is probably due to the fact that a 40°-model has a more
"local" effect on the gravity vector, than a 20°-model.

The inclinations 1x and = for the 40°-model are larger
as compared to those on a 20¥-mode1, but for a smaller geo-
graphical extent.

In order to further investigate the errors from a very
smooth~topography-model, we substituted the conical model
by the spherical model, whose parameters are listed in table
3.1. These parameters imply a height of the model's vertex
V above the mean-earth sphere R :

hv = 4099.8 meters

which is of the same magnitude as the height of the vertices
of the conical models. 1In other words, the topography is
now a sphere of radius o , at 4.1 km above R . From table
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4.12 we can see that the errors are now very small. The
components of the gravity disturbance vector are computed
from the surface data on the sphere p , with an error which
is smaller than 1%. These results clearly indicate that
the Green's approach works very well for a smooth topography.

From the eleven tests just described, we can draw the
following general conclusions:

1. The higher the space point, the smaller the relative
errors of the components of ¥ become.

2. The errors are larger over the model, then over the
distant zones.

3. For a given grid spacing, and for a fixed altitude,
the increase of the integration area does not improve
the results over the model.

4, The use of a finer grid in the inner zone (0'.5, or
0'.1 vs. 1'-grid), does not improve the results over
the model.

5. The errors are very small for a smooth tovography (the
case of a spherical cap), cor for a very large but local

{ topographic feature (the case of a 40°-inclination cone).

Because of the very local characteristics of the models,
there are no truncation errors (i.e. errors caused by neg-
. lecting the information outside of the working area). 1In
addition, there are no errors in the surface data, since
both §ég and T are rigorously computed from the model.

The only factors that affect the results, and cause
the errors in the computed vectors, are the following:

1. The approximation of the integral equations by finite
summations, and evaluations of the kernels at the center
point of the elementary areas.

2. The neglect of the second-order variations of the topo-
graphy (see equation (2.43)).

These factors are responsible for the larger errors
right above the models, as compared to the errors far away
from the model, or to the errors from the very smooth topo-
graphy of the spherical cap model.. However, as we will
see in chapter 8, the errors from the classical approach
(the direct integration method), where the topography is
neglected, are larger by a factor of 2 than the errors from
the Green's approach, indicating the significant improvement
of the later method in the computation of J .

The last four tests in table 4.1 are applications of the
Green's approach with a very limited amount of data on the
| surface of the model. These tests will be used for comparison
' purposes with the Dirac approach in chapter 6. Only 576
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blocks have been formed on a 1'-grid within a 0°.4x0°.4
area on a 10°-inclination cone. The components of I are
computed at 5, 10, 20, and 100 km above the sphere R
Note how large the errors are at a 5-km altitude (table
4.13). Also, comparing table 4.6 with 4.14, we see that at
10 km the errors are of the same order of magnitude, indi-
cating once more that the effect of truncation is not signi-
ficant (for these two tests, only the size or area is dif-
ferent).

4.3 Related Work, and Comparison with Koch's Method

Among the papers which have been published on the compu-
tation of certain components of the gravity disturbance
vector using the Green's third identity, the most elegant
approach in our opinion is the one by Koch (1968-a). There-
fore, it is essential to comment on the similarities and
on the differences between his and our approaches, and to
discuss his results under the light of ours.

Koch's approach is a simulation study with a cone-
like model as in our case, but the solution for the disturbing
potential and its partial derivatives is obtained through
an iterative procedure. In addition, the computed quantities
are surface guantities, and not at space points. Furthermore,
his equations have been derived specifically for the simulation
studies that he performed, and allow for the maximum inclina-
tion of the cone (8) only (not a two-component T, , T
description of the topography). Therefore, his equations
cannot be used for a real-world application without additional
work. Also, the whole approach is based on a planar approx-
imation.

The large errors that were found by Koch in the case
of inclinations larger than 20°, we believe that are due
to the fact that the term T(Po)is included in his integral
equation (21), while the integration is not carried out over
the whole surface of the earth (according to the discussion
below our equation (2.9')). 1In addition, the fact that Koch's
equations were derived for computations of the derivatives
of T on the surface of the earth only, does not permit
comparison of our results with his.

e . P .
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Chapter 5

DISCRETE APPROACHES FOR THE COMPUTATION OF THE
GRAVITY DISTURBANCE VECTOR IN SPACE

5.1 Introduction

Throughout the three previous chapters, we developed and
tested the equations for the computation of the components
of the gravity disturbance vector at a space point. The
described solution is based on the application of Green's
third identity, the data being given on the physical surface
of the earth. Hence, the method follows the modern approach
for the solution of the boundary value problem for the deter-
mination of the external gravity field of the earth. Both, 5
the coventional solution to the geodetic BVP (using the i
Stokes' integral), and the modern solution to the geodetic
BVP (following Molodensky), require the data be given as
mean values over small surface elements. TFurthermore, the
conventional approach requires gravity reduction to the
geoid, a process which assumes knowledge of the earth's
densities, while Molodensky's solution does not require
any reductions.

In practice, gravity measurements are taken at a finite
number of stations only. The need to solve the BVP in space
from a finite number of gravity observations, let Bjerhammar
to develop some methods (documented in a number of papers
which are referenced below), in general called discrete ap-
proaches to the solution of the BVP of physical Geodesy.

The formal statement by Bjerhammar (1963) reads as
follows:

"A finite number of gravity data (Ag) is given for

a non-spherical surface, and it is required to find

such a solution that the boundary values for the gravity
data are satisfied in all given points".

For a given finite set of gravity observations (or
more specifically gravity anomalies which will be defined
more precisely in the next section), there is always a
fictitious field of gravity anomalies on an internal sphere
that satisfies the given boundary values on the surface.
This sphere is completely imbedded inside the earth, and
appears in the literature under the names '"Bjerhammar sphere',
or "geosphere". Bjerhammar's methods are applications of
the Poisson's integral equation and Stokes' formula (Bjer-
hammar, 1976, 1978; Sjéberg, 1978). Earlier solutions
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considered the gravity anomalies on the geosphere as mean
anomalies, but later solutions have been formulated on the
basis that the reduced anomalies are point anomalies on
the geosphere with no block size associated with them
(Bjerhammar, 1978, p.220). The common characteristic of
all methods is that a finite set of point gravity anomalies
is given on the physical surface of the earth

A special case of Bjerhammar's reflex_.ve prediction
method (Bjerhammar, ibid), is the Dirac approach, which
has been compared to collocation by Sjoberg (1978). This
approach is based on the computation of the fictitious gravity
anomalies at the so-called carrier points, located at the
intersections of the radii to the observation points, with
the geosphere. The radius (Rg) of the geosphere was found
to be a critical parameter in this type of solutions. As
(Sjoberg, 1978, p.64) reported, the optimum depth of the
geosphere from the mean earth sphere R , is approximately
half the mean distance between surface neighboring obser-
vations.

In the sections that follow, we will review the theory
behind these discrete approaches, with emphasis on two
methods, namely the mean-value approach, and the Dirac ap-
proach. Then, the Dirac approach will be applied to simu-
lated data from the model described in chapter 3, and the
results (the components of the disturbance vectors) will
be compared to the exact vectors from the model, just as
we did with Green's approach in chapter 4.

5.2 Theoretical Development

Let us start from the statement on the Dirichlet's
problem or the first BVP of potential theory (Heiskanen
and Moritz, 1967, p.34):

"Given an arbitrary function on a surface S , deter-
mine a function V which is harmonic either inside
or outside S , and which assumes on S the values
of the prescribed function'".

Dirichlet's problem can always be solved if S is
the surfrce of a sphere, an explicit solution being given
by the Poisson's integral equation (Heiskanen and Moritz,
1967, p.35), which tfor the exterior of S is written as:

2m

R(r’-R? V(R,0,)) _. ,
v, (r, g = HLoR ofof SR sinet de' d)

(5.1)
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V is an arbitrary harmonic function on S8 and in
the exterior space, (6', A') are the polar coordinates of
the variable point on the sphere (R), (r, 6, A) are the
coordinates of the exterior point, and & is the distance
from (r, 6, A) to (R, 6', A'):

= (p? 2 _ 3
L (r< + R 2R r cosy) (5.2)

= g i i [ " _
cosy cosb cos + sin6 sinf' cos(A ) (5.3)

The function rAg is a harmonic function (Heiskanen
and Moritz, 1967, p.90), and hence, Poisson's Integral can
be applied for any point in space as:

R(rp - R?) R Ag
rptep = MR [f B ao

(5.4)

, where
k do = sin@ do8' g’
. (5.5)

is the surface element on a unit sphere. For the geosphere
(Rg), equation (5.4) becomes:

rp - RA Ag*
bgp = —SmeB—- lfaf <F ds (5.6)

P

where

ds = Ré do (5.7)
S being the area of the geosphere B (S=4n Ré). The
quantities which appear in (5.6) are defined as follows

(see also in figure 5.1):

Agp : The gravity anomaly at the space point P
Asp = &p ~ Yp

where P' is that point along the vertical
through P for which Up.==wp (cf. Sjbberg,
1978);

Ag* : The fictitious gravity anomalies on the'geosphere,
which generate the surface A4g , and which have
to be determined;

r : The geocentric distance to P .
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Obviously, equation (5.6) also holds for any point
Q on the physical surface of the earth, because the geos-
phere has been defined to be completely imbedded inside
the topographic masses, and therefore, the requirement of
the Poisson's integral (5.1) is met (the solution is given
for points outside of the surface S , the surface being
the sphere Rp 1in our case). Equation (5.6), applied for
a surface point Q , becomes:

_ Yo -R} s g*
Y8 = Brqt /L —F 4 (5.8)

By substituting:

- Rp
tQ rQ (5.9)
and
= _2_-= - Z
DQ = rQ vl 2 tQ cosy + tQ (5.10)
in equation (5.8), we obtain:
th (1 -t A g*
AgQ = I? }'é -55— ds
(5.11)

The precise definition of the surface gravity anomaly
Ag is similar to the definition of the space anomaly
Agp (see below eguation (5.6)). In other words, AgQ is
the difference between the measured gravity g at the
surface point Q , and the normal gravity vy computed
at that point Q' along the ellipsoidal normal through
Q , for which Upr=Wn . All points Q' form the surface
of the telluroid (Heiskanen and Moritz, 1967, p.292).

The central idea in the Bherhammer's methods is to
apply an integral equation like (5.8) or (5.11) to the given
surface data A4Agp , and to compute the fictitious Ag* on
the geosphere, in such a way that all Ag are satisfied
by the analytically determined A4g* . Furthermore, the
gravity anomaly at a space point P , determined from the
anomalies on the geosphere, must be identical to the gravity
anomaly computed from the measured surface Ag, , provided
that there are no errors in the data, and that the integrations
are performed over the whole surface of the earth. This
is a consequence from the uniqueness of Stokes' theorem
(Heiskanen and Moritz, 1967, p.l17).
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Geometrical Configuration for the Discrete
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Let us now show how an integral equation like (5.11)
can be applied to a discrete approach.

5.2,1 The Mean-Value Approach

If the surface of the geosphere is divicded into a finite
number (N) of blocks (Asi), equation (5.11) can be rigor-
ously written as:

2 2 N
_ tg (1-tg) » _Ag*
beg = WAl 7 g LB as

B i=1 453 7Q (5.12)

or, approximately:

2 2 N
=~ tn (1 -tH)
"8 T v iz

(5.13)

where A0g* is evaluated at a certain (but unknown) point
inside AS., , usually assumed to be the center of the block,
in which case (5.13) is an approximation. The conventional
approach to convert a theoretical continuous integral trans-
formation 1like (5.11), to a discrete summation transforma-
tion like (5.183), is called discretization (see for example
in Robertson, 1978, p.4-1 ). Discretizations are of great
importance in geodesy, since we have to deal with finite
sets of data, irregularlydistributed on the surface of the
earth. The substitution of integral equations by finite
summations is a common practice, especially for computer-
oriented applications. Obviously, the best discretization
process is the one which yields the minimum error of the
computed quantity with respect to the true value. Robert-
son (ibid) discusses three discretization processes, and
suggests a method for evaluating their accuracies by comparing
their spectra.

The mean-value approach, requires the evaluation of
the areas ASi for each block, and from the theoretical
point of view (5.13) holds as an approximation since the
location of the point for evaluation Ag* is unknown. The
Dirac approach which will be discussed liter avoids this
problem because it determines Ag* at the carrier points
whose positions are pre~determinéd, and therefore are precisely

known.

If the subdivision of the geospher in blocks is such
that their number (N) is equal to the number of observations
Agg , then, a direct solution to (5.13) for the fictitious
Ag¥ , could be:

o
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ag* = A—IAE
(5.14)

where the underlines mean matrixes, or vectors, and the
elements of A are:

_ Bi(1-t3) ASs
%ij ~ "J‘T‘"% z '15!"".3 (5.15)

1

However, such an approach would be practically impossible
if a large amount of surface data is available. Earlier
solutions to the Bjerhammar's problem used an iterative
approach to compute Ag* from Ag (see for example Heiskanen
and Moritz, (1967, p.318), or Emrick, (1973)). 1In the next
section we describe the Gauss-Seidel iteration technique,
and we investigate the possibility for employing an acceler-
ation procedure.

5.2.2 Gauss-Seidel lteration Method

For a linear system of n equations with n unknowns:

Bx = u (5.16)
or
b X + blz X2 + ¢« o + bl X = u
n n

b,y x; + by, x;3 + . . .+ bz X = Uy
1 n n
'
'
b . x + + o . a + =

n: Pha %2 bon *n Un

(5.17)

the Gauss-Seidel iteration method to solve x 1is (Carnahan,
et al., 1969, p.299):

X4 (k+1) e[y, -

K i=
b.. i ( ) Z X (k+1)]

ii j=i+1 1J J=1 (5.18)

where (k) denotes the iteration step. 1In this iterative
method, the newly-computed components of the solution vector
X are always used in the right-hand side of (5.18) as soon
as they are obtained. A sufficient condition to guarantee
the convergence of the iteration is:

v c (3 “hs -
hhJ-‘-uﬁn--u-.h—unnhdﬂln-‘-.-I-I-ﬁ-..--h---h-n .
; ittt s e — B sl




65.
n b
I }1;%3 <1, 1<isgN
J=1 ii
J#i ‘5.19)

This concition will later be used to comnute the opti-
mum radius of the geosphere in order to guaruntee the conver-
gence of the solution for Ag* .

As an example, let us apply (5.18) to the linear system
(5.13). Assume that N surface gravity anomalies Ag are
given, and that we want to determine the N unknowns Ag*
on the geosphere. The surface 4 are point anomalies,
but the Ag* on the geosphere are mean anomalies, associated
with a certain block size which depends on the density of
the surface data. Let Q be the points on the surface
where the data is given, and Q' be the center of the block
on the geosphere (see figure 5.2).

With this notation, the linear system (5.13) becomes:

2 2 N
T kg 1= (5.20)
opography

o, ssvg, 05 o,
Aqbﬁ 452 Q2

AS,
*
A9 Q,

geosphere

Figure 5.2: The Mean-Value Approach
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with R
‘ i Yay T TQ3
! The application of the Gauss-Seidel method (5.18) to the

system (5.20) yields:

(k)
(k+1) p3; . anRbgoi . Y Ag*qr
= 21 - B Q! .-
b T s ler - 321 'ﬁ?%‘L‘ b8 1 {3.21)
where i=1,2, ..., N J*¥i

k=1, 2, ..., maximum number of iterations allowed

(kpax)
and Ag*(, 1) _ rg
Q Q .
j=1,2, .. . , N as an initial
approximation

An equation analogous to (5.21) but somewhat simpler will

be derived later for the Dirac approach. The above iteration
for the unknows Ag* can be stoped either if we exceed

the maximum number of iterations allowed, (say Kkpa, =30),

or if two successive Ag* at all points (iteration k and
k+1) are different by no more than € , a quantity which

is as small as we desire.

Acceleration Techniques. Among the existing methods
for the iterative solution of large systems of equations,
the Gauss-Seidel ('successive iterations") method converges
about two times faster than the Jacobi's ('"simulation iter-
ations') method (cf. Westlake, 1968, p.56). In addition,
there ar certain acceration techniques, which yield a much
larger rate of convergence than the two methods mentioned
above. An acceleration technique requires the splitting
of the matrix B according to (Isaacson and Keller, 1966,
pp.73-80):

where B = N (a) - P (a) .
N = (1 +a) Ny
P(a) = (1 +a)No -B = Po + aNy
and
L by,
l ?21 b2z
§—°=" i

' c

| bp1 bpz - -« by,

The estimation of the optimum parameter (a=0a t) which
vields the largest rate of convergence, requires tBe knowledge
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of the minimum and of the maximum eigenvalues of the matrix
Ng! Py , according to the formula:

_ )\""Xa
%opt 2

After the parameter aynt has been determined, the
iterative solution to the system Bx=U can be obtained
as (Westlake, 1968, p.62, where w= 1+a):

n i-1 K
x{(FHD2 LSy - Pij xgk)'.i bij x{1 - axy”)
1 ii j=i+1 J=1 (5.18-b)

which for o =0 reduces to the Gauss-Seidel technique (5.18).

Clearly, from an application point of view, the employ-
ment of an acceleration technique requires that the user |
will follow one of the following two procedures.

(a). Form the matrix N7'P, , find its eigenvalues Apin
and Amax » and then determine ogpt Wwhich yields
fastest rate of convergence in (S.ES-b).

(b). Empirically estimate a parameter o which yields
a rate of convergence faster than that of the Gauss-
Seidel technique. Such an empirical determination
(used for the downward continuation of gravity anom-
alies), has been used by Koch (1968-b). Westlake
(1968, pp.62-63) describes a procedures for the estim-
ation of a but in the special case that B 1is a
symmetric matrix. Finally, another empirical procedure
for the estimation of o 1is described in (Isaacson
and Keller, 1966, pp.78-80), but the method is graphical,
and hence not suitable for computer-oriented applications.

For large matrices, the analytical procedure (a) above
requires considerably additional work, before the actual
iteration (5.18-b) starts. Furthermore, the empirical tech-
niques (b) mentioned above are either not fully automatted,
or not applicable for a general (not symmetric) matrix.
Therefore, and for reasons of simplicity, we decided to
use the Gauss-Seidel iterative method.

5.2.3 The Computation of the Gravity Disturbance Vectors
in Space (Mean-Value Apprcach)

Once Ag* have been determined, the evaluation of
the three components of the gravity disturbance vector in
space can be done following standard procedures. The three
components of I , are defined as (Heiskanen and Moritz,
1967, equ.6-29):
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- (AT
Cep = (53p

. - 1 T
(Gg(p—)p -;-;(W)p

- 1 3T o
(6gA)P = rP0056P ( QX)P (5.22)

where (rp , 5p , Ap) are the coordinates of the space point

P where these components are to be computed. The disturbing
potential at P is given by Pizzetti's generalization of
Stokes' formula (Heiskanen and Moritz, 1967, equ.8-88):

- - _ R .
Tp = T(rp, ép, M) = 7 {3“3* S(ryy. do (5.23)
From (5.22) and (5.23) follows that:
R 38 (r,y)
TE-" éng* = do

_ R 38 (r,y)
sty = i [fore 2L cone

- _R 3S (r,y) .
(88, )p —B—m-p g.rAg* 57 sina do

(sgr)P

(5.24)

Since Ag* represents the value of the fictitious
anomaly over a block on the geosphere, we apply the same
approximation as we did in section 5.2.1, to obtain (Note:
das = Rédc):

N
.1 3S (r,y)
(dg)p = TRy L berg (S, 48y

i=1 Q'l
N
_ 1 9S8 (r,y) .
(6g5)p —Jigngizl Ag*Q.i (~—5r4i_)i cosa; AS,

N
- i 98 {r,y) <3 (5.25)
(68, )p fﬁgﬁhizl Ag*Q,i (——7;FHL41 sina; AS;

The index i refers to the center of the block ASi-
this is in approximation, since the point to evaluate thé
kernels in (5.24) is unknown - , and «a, is the aximuth
from the projection of P on the geospﬁer to the point Qi

'4co§$' sin(Aj-~Ap)
cosbp sing; - s1n6;*cos3i cos()i-ABS (5.26)

tanai =




T

- . . . 6 °
The partial derivatives of the Stokes' function withg

respect to r and ¢ are computed as:

cosy = cos¥y; = sin5P sinai + cos?fp cos5i cos(ki-AP)
t = tp: BB_
Tp
(5.28)
D=D.. = —*= (1 - 2t cosy + tz)é
Pi ro (5.29)
and then, with the notation above we have:
3S(r, ) £ 1-t2, 4
= T TR [+ 5 *+ 1 - 6D
-t cosV (13 +62n L=t cosv+D,, (5.30)
> .
3 S(ry) _ 2 . 2 6 1-t cosv-D
55— = -t“siny [TTT + 5 - 8 -3 D sinZy

Finally, the components of the gravity disturbance
vector in a geocentric coordinate system are (Heiskanen
and Moritz, 1967, equ.6-18):

aT - .= .
=% dgx cos¢P cosAp ~51n¢p coskp —31nxp Ggr
aT t_ 5 _ - ) LT s
- gy cosdaP Sind, -81n¢p blnxp cos)\P | Gga
aT P bains -
3Z 1P gz:p |Sln¢P COS(’)p 0 Gg)\ p
(5.32)

5.3 The Dirac Approach

The Dirac approach avoids the continuation of the sur-
face anomalies to mean (fictitious) anomalies on the geos-
phere. Instead, the gravity information of the N surface
point gravity anomalies Ag , is downward-continued to
gravity anomaly impulses (spikes) AgS at a finite number
of carrier points (defined in section 5.1). This downward
continuation is an analytic continuation, by which is meant
that the N spikes satisfy the surface data, without having
any physical meaning (i.e. this is not a gravity reduction
that yields the true anoma’y on the geosphere).

If the number of the gravity impulses AgS - on the
geosphere is equal to the number of the given surface gravity
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anomalies Ag , the case is called '"non-singular" (Bjerham-
mar, 1977), and the carrier points can be selected at the
projections of the surface points, on the geosphere, along
the geocentric radii (see figure 5.3). Q; are the surface
points where the data is given, and @; are their projections
on the geosphere, where the spikes Agé are to be computed.

A

\' "gSQII

geiffffzs~——””6?’

Figure 5.3: The Dirac Approach: The Spikes 4g° at the
Carrier Points

Let us now define the anomaly Ag* which appears in
(5.11) as:

N
) x = v s -
Ag I bgy S(r - 1)

k=1 (5.33)

where 1r : the radius to the cugrent point on the geosphere.

r.: the radius to the k? spike Ag on the geosphere.
6¥r-r ): the Dirac "delta" function defined through
the following integral equation for an arbitrary
function f(r) on the geosphere.

and

1
o) é[ f(r) 8(r-ry) ds = f(rp) (5.34)

Substituting (5.33) into (5.11) we obtain:




N
td (1-1td) kgl Agp 5(r - Tk) L.
bBg = I T = /! %% K
B B Q
or
_ Q(l—té s 1
L8 = TIr R L™ ;LITé‘ §(r-r.) ds
and using (5.34) with f(r) = l/Dé , we oLtain:
i
Ag~ = t2 (1 -t2)
@7 fa 7R Ly DG (5.35)

LY

The reader can see that equation (5.35) of the Dirac ap-
proach, corresponds to equation (5.13) of the mean-value
approach, the difference being that the former does not
involve any areas associated with the spikes. Further-
more, the positions o% the carrier points are precisely
known, and hence the Dirac approach avoids the approximation
of the mean-value approach, where the kernels are evaluated
at the centers of the blocks.

5.3.1 Iterative solution for the Spikes 4gS

The computation of the N spikes £4g% from the given
finite set of observations Ag , is done using the Gauss-
Seidel iterative method described in section 5.2.2. More
specifically, from (5.18) and (5.35) we obtain:

(k)
(k+1) _ N S, .
Agg.‘ = DI,z A(gl_t -1 _gg_g_;__ (5.36)
1 Qi Qi Jj=1 7QjiJ
J#¥i
where i=1,2, . . . , N
k=1, 2, . . . , maximum number of iterations allowed
and since
¥,
3 = - ¢ 2 2 - . 3
Dii (1 zti cosy s + ti) (1 tl)

equation (5.36) vields:
(k

S(K)
dgg., = (1 - 1tg ’3[‘!—5&'—?_3 "T%Q‘]—"‘J
13

(5.37)
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As init%i% values we used Ags(;)= y J=1, 2, . . . N,
and not AgS‘ ’'= Ag~. , because fgbh our preliminary tests
we found thgkjthe mgénitude of the spikes is much smaller
(or the order of 10~*°m.sec~?) than the magnitude of the
surface anomalies (from 10~? to 10-®m.sec~?).

The iteration scheme (5.37) can be terminated either
if it exceeds a specified maximum (kmax)' or if two successive
iterations for a spike yield values

(k) (k+1)
Ag? and AgS

which are different by less than a specified 1limit. For
example, if we want to have a 12-digit agreement between
these two values, we stop the iteration whenever the fol-
lowing condition is satisfied for every spike:

S(k+1) s(k)l Ags(k+1)l
bg; - Ag; | < -—11-2—- (5.38)
10

5.3.2 The Convergence of the Iterative Solution, and the
Radius of the Geosphere

Let us now examine the conditions for the convergence
of the Gauss-Seidel iterative method for the spikes. A
sufficient condition for the convergence of this method
was given in section 5.2.2 as inequality (5.19). By applying
this condition in the case of the Dirac spikes (5.35) we
obtain:

N ty(1-t1) ‘
J=1,2, ... ,0N8 i <1
i=1 £y (1~t5)
i#j (1- tj§3
which becomes:
N 3
i=1, 2, ., N Lot <1
121 (1-2t; cosy, +t )% (5.39) .
i#] J
because all the terms are positive (t<1). Our goal is -

to use (5.39), to determine a radius Rg of the geosphere
which will guarantee the convergence of the solution. It
would be very difficult to use all the terms of the above
inequality to determine Rpg , for large N values. Below,
we present a2 much simpler
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method to estimate this Rp radius, without having to solve
a large inequality (such as (5.39)) each time that we seek
a solution. At first, note that each term in the sum above
is a function of the dlstance le , and of the height of
the point h,; k and that:

J
_ R
Yy T T+ o . (5.9)
which yields
t . = _FRBT__
min + max (5.40)

The smaller the distance , and the smaller the parameter
t , the larger the term in gﬁe sum becomes. In other words,
the maximum term in (5.39) corresponds to Y, and hp X
Some typical values for these terms are glven 1n table g
assuming R - Rg =100 meters. From these results we can

see that for very dense data (1' grid, or smaller), and

for high elevations (above 4 km), each term in (5.39) becomes
almost equal to 1.0, and therefore, the condition (5.39)
might not be satisfied. However, (5.39), as well as its
original condition (5.19), are both sufficient conditions.
This means that the iteration might converge, even if this
condition is not satisfied. We will see an example in our
tests in the next chapter.

The Inequality (5.39) determines the minimum radius
of the geosphere (ﬁ ) which guarantees the convergence of
the iteration. For any radius Rpg larger than this minimum
value Rg , and such that the geosphere is completely imbed-
ded inside the earth, the convergence is certain:

RB < Ry : guarantees convergence (5.41)

If all the terms in (5.39) had the same magnitude, we could
solve for Rg from an inequality of the form:

(1 - t° 1

1
<
(T - 2t; cosy3; + t5% N N-1 (5.42)

A

but the magnitude of these terms varies very rapidly, espec-
ially with the value of the distance Y (see in table 5.1).
As we have already mentioned above, the largest value for
these terms corresponds to the minimum distance, and to

the maximum height.

Consequently, if the data is distributed on a regular
grid - as in the simulations described in the next chapter, -
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there will be four terms in (5.39) whose magnltudes are the
largest: these terms correspond to the point . with the

maximum elevation, and to the four closests p01nis in the
vicinity (figure 5.4).

+ + o+ o+ o+ o+

Figure 5.4: The Point Q3 with Maximum Elevation hp,y
to which the Maximum Term$s in (5.39) Correspond. !

From the tests reported in the following chapter, we
found that it would be sufficient to determine Rz by soiv-
ing the equation below (the term 1/10 was determined empir-~
ically):

(1-tmin)® S |
(I-2t ;. coswmin-ftmlnYé b} (5.43)
where
t = _—E’B_——
min R+ hmax (5.44)

from which it can be easily found that:

thin = P - P-1 (5.45)

min
in which

2
1 - cosvpip (1/10)"

P = %
1 - (1/10)"3

(5.46)

e
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and finally:
Rg = (R+hy, ) (P - vP*= 1] (5.47)

This equation has been used to determine nominal values
for the depth (R-—ﬁB) of the geosphere, for various values
of the minimum distance Ypij, and the maximum height ax’
R 1is again the radius of the mean-earth sphere, and since
the geosphere must be completely imbedded inside the earth,
the iterative solution for the spikes will converge, if
we select a radius Ry such that: Rpg < Rg < R=6371 km
(see condition (5.41)). These nominal values for the depth
of the minimum geosphere are given in table 5.2. For those
blocks in this table where no depth is given, the data is
so dense, and at such a high elevation, that the iterative
solution might not converge (as a matter of fact, we found
that in these cases RB is larger than R ).

In the last column of table 5.2, we list the correspond-
ing depth from the Sjoberg's (1978, p.64) '"rule'", that the
optimum depth of the geosphere should be half the distance
between neighboring surface points. We can see that Sjoberg's
depths agree very well with ours (for the h=0 case). This
agreement will be demonstrated again in chapter 9, where
some tests with real data and the Dirac approach are discussed.
The advantage of equation (5.47) in computing the depth
of the geosphere, is due to the fact that Rg is now a
function of both the distance between the observations,
and of the maximum elevation of the data points.

5.3.3 The Computation of the Gravity Disturbance Vectors
in Space (Dirac Approach)

It remains to use the spikes AgS on the geosphere,
to compute the components of ¥ at a space point. This
is done by substituting (5.33) into (5.24), and using the
definition of the Delta Function (5.34). Thus we obtain
(note dS =R do):

N
_ s 3S(r,v)
N
(dga)p = - %E— 'zl Ag? (BS(:,; ) )i COSCIi
i=
Ny )
= R s ,38¢( . (5.48)
(8gy)p = - —rg— 121 sg3 ('—a%&)ism“i
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where the terms o, , —%% ’ —%% , are given by (5.26),
(5.30), and (5.31) respéctive.iy. The three components of

the vector § at P are then computed from (5.32). Finally,
equations (3.24) and (3.25) can be used to compute the two
distinct components 9T/3r , and (1/r) 3T/3y in the polar
(r, V) coordinate system.

5.4 The Initial - Value Method

The mean value approach, and the Dirac approach which
have been discussed in this chapter are the two most rep-
resentative discretization techniques thatcan be found in
the literature. Recently, a new method has been proposed,
called the initial-value method (Nakiboglu and Lim, 1979).
From the theoretical standpoint, this method is similar
to the mean-value approach, because the given data and the
reduced quantities on the geosphere are assumed to be given
as mean values over a finite number of blocks. The number
(m) of the fictitious gravity anomalies Ag* on the geo-
sphere, is not necessarily equal to the number (n) of the
surface gravity anomalies Ag . The solution for Ag* is
obtained from the numerical solution of a set of ordinary
first-order differential equations using the iterative Runge-
Kutta's method. However, there is anumber of points we
would like to emphasize concerning this approach, as compared
to the methods described in this chapter.

a. For a real-world application, the Dirac-approach method
with point anomalies on the surface of the earth, is
more advantageous because it avoids the assumptions
on the regular distribution of the data, on the location
of the points where the kernels are evaluated, and the
computation of the areas.

b. Nakiboglu and Lim (ibid), have restricted themselves
in computations of geop-spherop separations (), and
deflections of the vertical (£ , n) at the surface of
their model only, and not in space. Furthermore, they
do say that the Dirac approach would yield better results
than their method.

¢. In their numerical example, only a small number of sub-
divisions (40 or 80 blocks) has been used for the compu-
tation of 7, £, and n .

d. As we have already shown in section 5.3.2, the Dirac
approach permits a relatively easy way for determining
the radius of the geosphere that will guarantee the
convergence of the iterative solution, Nakiboglu and
Lim (ibid), kept the radius of the geosphere fixed at
1 km below the mean earth sphere R .




Chapter 6

SIMULATION TESTS WITH THE DIRAC APPROACH

6.1 Introduction

In this chapter we describe the simulation tests which
we performed in applying the Dirac approach to the terrain
model, just as we did in chapter 4 with the Green's approach.
Similar simulation studies are reported in (Reit, 1966),
but they follow a flat-earth approximation for the & com-
ponent of the deflection of the vertical only. It should
be clear by now that the data needed for the Green's approach
is gravity disturbances, and not gravity anomalies as in
the discrete Dirac approach. Therefore, the gravity distur-
bances that are computed from the model (equation 3.18),
have to be transformed to anomalies. This can be achieved
by using the fundamental equation of physical geodesy (see
in Heiskanen and Moritz, 1967, p.88):

2
Q
the gravity disturbance being computed from (3.18), and
the disturbing potential from (3.16). This particular step
has been ignored in similar simulation studies in the past
(Molodensky, et al., 1962, p.217 ; Bjerhammar, 1976, p.43;
Sjoberg, 1978, p.37), all of which use the conical Molodensky's
model. However, the magnitude of the disturbing potential
T on the model is not larger than 1 . kgal.m (see figures
3.2 through 3.5), anda therefore, the magnitude of the second
term in the right-hand side of (6.1) is no greater than
0.3 mgal. Out simulation studies for the Dirac approach
consist of a six-step procedure, which can be described
as follows:

beg = dgq - Ty (6.1)

Step-1. The exact values of the components of % are com-
puted from equations (3.23), (3.24), and (3.25) at
selected points, over and in the vicinity of the model.

Step-2. The gravity anomalies are computcd on the surface
of the model from equations (6.1) and (3.18). The
extent of the area around the model, and the grid spacing
are specified, and the data is generated on a regular
grid.

Step-3. The radius of the (smallest) geosphere that will
guarantee the convergence of the iterative solution
is computed from (5.47). '
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Step-4. The Gauss-Seidel iterative method is applied for
the computation of the gravity spikes A4gS at the
carrier points.

Step-5. The components (8gp , 6g,. , &g),) are obtained
from (5.48), and them, (5.72) yields the three compon-
ents oT/3X , 23T/3Y , 3T /3Z at the selected space
points. Then, (3.24) and (3.25) can be used to compute
the two distinct components 3T/3r , (1/r) 93T/3%y in
the polar (r ,y) system.

Step-5* (optional). The N spikes on the geosphere must
satisfy all the surface gravity anomalies. Equation
(5.35) can be used to compute the surface anomalies
from the spikes, which can be compared ot the original
data. Any difference between the given data and the
computed anomalies are due to the fact that the iteration
has been forced to stop before a 16-digit agreement
was reached between successive approximations.

Step~6. The components from steps 1 and 5 are compared
in terms of their relative percentage difference (from
equations 4.1)).

6.2 Simulation Tests

The difficulty in applying the Dirac approach arises
from the fact that an iterative procedure is used to solve
for the gravity spikes on the geosphere (section 5.3.1).

In terms of computer time (on an Amdahl 470 machine), it
takes about 16 seconds to complete just one iteration for
576 spikes. Therefore, it would be practically impossible
to handle a large amount of surface data (say more than
2000 data points), because of the large CPU time that is
required to solve such a large system of equations. This
is why we decided to make the simulation tests for the Dirac
approach, using a relatively small amount of data points
(up to 576 surface gravity anomalies). The characteristics
of the models are defined from the parameters listed in
table 3.1. A description of the tests is given in table
6.1 for easy comparison. It must be kept in mind that the
iterative solution for the gravity spikes can be carried-
out to any desirable level of accuracy, which is controlled
by the convergence criterion (5.38), and by the maximum
number of iterations allowed (kpg,)-

The question is now how many iterations are actually
needed to compute the gravity spikes. 1In other words, a
12-digit agreement between successive iterations at all .
spikes according to conditon (5.38) might be too much, and
that the iteration should rather be terminated whenever
the RMS difference between the surface anomalies, and the
anomalies computed from the spikes at the same points, is
below a certain level (say 1. mgal).
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In order to investigate the effect of the number of iter-
ations, on the accuracy of the components of 3§ , three tests
were made using the spherical cap model (576 anomalies in
a 0.4°x0.4° area), and terminating the iteration process
after 8, 10, and 12 iterations respectively. The exact com-~
ponents from the model, and the components computed from
the spikes at 7 space points (at 5 km altitude above the
mean sphere R ), are listed in table 6.2. Thnhe differences
between the exact and the computed component, are also listed
in parenthesis. The last two columns of table 6.2 contain:

(a). The RMS difference between the exact components, and
the computed ones, and

(b). The RMS difference between the original surface anomalies
and those computed at the same points from the spikes,
after the iteration is terminated.

The fact that these RMS differences become smaller as
the number of iterations increases, indicates that the num-
erical solution for the gravity spikes probably converges
(the relative percentage errors from the Kkpax=12, are given
in table 6.4, and as we can see are quite small). Therefore,
we decided to terminate the iteration for all tests at Kkpax=
12, for which the RMS differences between the original and
the computed anomalies are smaller than 1. mgal (see also
table 6.1).

The radius of the geosphere is computed from equation
(5.47), but for most of our tests with very dense data (1
grid, see table 6.1), Rp was forced to be 50 meters smaller
than R . This had to be done, because for very dense data
at high elevations (as on our 4.1-km models), the radius
Rg from (5.47) is larger than R . (note: the 50-meters
depth for the geosphere was selected on a rather arbitrary
basis, since the geosphere must be completelv imbedded inside
the earth, and therefore inside the mean-earth sphere R ).
This paradoxial result, i.e. Rpg larger than R , actually
means that this kind of data does not satisfy the sufficient
condition (5.39), and hence, the iterative solution for the
spikes might not converge. However, the tests that follow,
‘ndicate that even in this case the iteration converges,
which is explained by the fact that (5.39) is only a sufficient
condition for convergence.

Let us first start the discussion on the simulations

with the errors from the spherical cap model, already used
above for the determination of the maximum number of iter-
ations. A total number of 576 anomalies were generated on

its surface, within a 2° x 2° area on a 5' grid. This data
implies a radius Rg 753 meters smaller than R . The errors
in the components of ¥ at 5 km altitude are large (table
6.3), but the reason is obvious: most of the gravity
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information generated by the model is missing, since the
data points are too far away from it. As we can see in table
6.4, by using data on a 1' grid within a 0.4° x 0.4° area -
576 points again-, the errors are twc orders of magnitude
smaller than with data on a 5' grid in a much larger area.
The errors from these two tables indicate that for the very
smooth topography of the spherical cap model, the results
from the Dirac approach are very sensitive to the density
of the surface data, but the method works very well with
dense data (say on a 1' grid), provided that this data is
not too dense if we want to avoid divergence of the iter-
ation.

For a 10°-inclination conical model, with 576 anomalies
ona 1' grid as above, the errots at 5, 10, 20, and 100 km
altitude are given in tables 6.5, 6.6, 6.7, and 6.8 respec-
tively. At altitude 5 <m, the errors from the spherical
cap model are slightly smaller than the errors from the 10°-
inclination conical model (table 6.4 vs. 6.5). It is quite
remarkable that even over the edge of the area at 5 km alti-
tude, the errors are no more than 9%. Not only that, but
comparing with the results from the Green's approach at 10
km are almost three times smaller, despite the fact that
the amount of data is now two orders of magnitude smal-
ler. More remarkable is the fact that directly above the
model, at 5 km, 10 km, and 20 km altitude, the errors are
less than 3%, as opposed to almost 25% errors from the Green's
approach. However, as the altitude increases, the errors
from the Dirac approach become slightly larger, in contrast
to the results from the Green's approach. Nevertheless,

_ at 100 km the errors from the Dirac approach are almost four
i times smaller than the errors from the Green's approach (table
' 6.8 vs, 4.16).

An overall examination of ithe two techniques, using
identical data and models (10°-cone, 0.4° x 0.4° area, 1'
grid, 576 anomalies), shows that the Dirac approach in general
is superior to the Green's apprcach in terms of the magnitude
of the errors. The problem with the Dirac approach is that
it will fail with very dense data at high elevations, ard
it requires considerably more computer time because ot the
iterative solution for the gravity spikes.

For a 40°-inclination conical model (table 6.9), the
errors are quite large, reaching almost 90X over the whole
area. However, we have to realize that the extent of a 40°
cone with 4.1 km height is 2 = 2.64', and thus, there are
only 16 data points on the conical surface with a 1' grid.
Apparently, this amoung of data isnot enough to represent
the model's gravity field (figure 3.4) for the Dirac approach.
; On the other hand, the Green's approach with the same model
| and data, and at the same altitude, has yielded considerably
smaller errors (table 4.11). Attempts to use smaller grid
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spacing with the Dirac approach failed, because of the diver-
gence of the iterative solution for the spikes.

All the tests in the present study use synthetic data
on the surface of the models, and therefore, there are no
data errors (the gravity anomalies are rigorously computed
from the two point masses). In addition, and similarily
to the simulations with the Green's approach, due to the
very local characteristics of the models(figure 3.2 through
3.5), there are no significant truncation errors (i.e. errors
caused by neglecting the information outside of the working
area). The resulting errors which are given in tables 6.3
through 6.9 are due only to the following factors:

(a). Errors in the numerical solution for the gravity spikes,
and

(b). Errors caused by using a small number of data points
on the surface of the model.

From our experience with the simulations above, we can
draw the following conclusions:

1. As the altitude of the space point increases, the errors
increase too. This effect is opposite to that from the
Green's approach. Possibly, the small amount of data
points on the surface of the models (determined by the
grid spacing), is responsible for this discrepancy.

2. In general, the errors over the model seem to be smaller
than at the distant points, again in contrast to the
Green's approach.

3. The finer the grid spacing, the smaller the errors become,
but the disadvantage of the Dirac approach is that it
will not converge with very dense data at high elevations.

4. The larger the inclination of the model, the larger the
errors become, again in contrast to the results from
the Green's approach. It seems that the Dirac approach
is more sensitive to high inclinations than the Green's
approach. For a smooth topography (the case of the spher-
ical cap model, and of the 10°-inclination cone), the
Dirac approach is superior to the Green's approach.
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6.3 Comparison of the Green's with the Dirac Approach

In section 4.2 and 6.2 we prsented the simulatiorn studies
with the two approaches. Let us now review the results,
and compared the two methods.

The Green's approach requires as data gravity distur-
bances &g on the surface of the earth, the disturbing poten-
tial T , the elevation h , and the two components of the
inclination at these points. Actually, g8 , T , and h
are referred to the center of the blocks, after a subdivision
of the surface has been made using a certain grid spacing,
and the whole approach is thus an approximation. The fact
that the errors of ¥ are not reduced by using a finer grid,
is an indication that this kind of approximation (combined
with the neglect of 2nd order variations of the topography)
is not sufficient. The method does not work on the surface,
and close to it gives very large errors. As the altitude
of the space point increases, the errors descrease. Because
of the very local characteristic of the model used in the
simulations, the increase of the integration area doesnot

1 reduce the errors, and hence, there are no significant trunca-
\ tion errors. Also, as the inclination of the model increases,
(beyond 20°), the errors become smaller. The method is much
faster than the Dirac approach, but it requires the data

be given on a regular grid.

The Dirac approach requires as data only surface gravity
anomalies and elevations at points, not necessarily on a
regular grid. The method requires an iterative solution
for the anomalies on the geosphere, which might diverge for
dense data at high elevations. As the inclination of the
model increases, the errors increase. The same happens when
the altitude of the space point increases, but the errors
are stil smaller than those from the Green's approach. 1In
general, this method works well, both close to the surface
of the earth, and at high altitudes. Its basic disadvantage
is the fact that it cannot be used for large amounts of data,
since it involves an analytical solution for the anomalies
on the geosphere, which is a very time-consuming process.
Also, it might diverge for very dense data at high elevationas.

If it is a matter of choice between the two methods,
from our experience with these simulation studies, we would
recommend the Green's approach for high altitudes, with a
large number of data on the surface of the earth, and the
Dirac approach close to the surface, if a small number of
point data is available. )
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6.4 Related Work

A number of authors have applied Bjerhammar's methods
for the computation of the external gravity field of the
earth. Some of them followed the original method (based
on the mean-value approach), and some other have developed
methods based on the fitting of the surface dr.ta to an m-
degree polynomial. To the best of my knowledge, the Dirac
approach has never been applied to real or -.imulated data
for the computaion of the complete gravity vector in space,
without neglecting the topography.

The earliest work on this subject was published by Reit
(1966). It is a flat-earth (planar approximation) simulation
study, using two models, one of which is almost identical
to the conical model described in chapter 3. The gravity
anomalies on the geosphere (Ag*), are computed iteratively,
and the £ -component of the deflection of the vertical
is computed and compared to its exact value on the model's
surface, and in space. The errors are almost two times larger
than those found from our analysis. For example, from Reit's
tables 5 and 6, the errors at 5 km above the cone are almost
10%, while at the same altitude the errors from the Dirac
approach are less than 27 (tables 6.4 and 6.5). For reasons
that will be explained in the chapter 9 we have to point
out that Reit computed the £ -component on the surface of
the model at the same points where the 'synthetic" data is
given.

Forstner (1966) used 125 gravity anomalies in Cyprus,
and performed four polynomial fittings to this data. However,
these methods were applied in computing surface components
of the gravity vector only. In addition, the RMS difference
between the original data, and the anomalies computed from
the reduced (Ag*) data, was found to be between 7 and 22
mgal (Forstner, ibid, p.55). This difference is much larger
than that found from our tests (see table 6.1), despite of
the fact that the maximum elevation on our model is 4.1 km,
as opposed to 1.8 km over Cyprus.

Barlik (1971) describes other methods which are proposed
for areas with high elevations in order to avoid the divergence
problems which are encountered by Forstner (ibid). An auxil-
liary sphere is used, not imbedded inside the earth as the
geosphere, that the terms t-==RB/rj are not very small
for the points at high elevations. However, the proposed
method is not fully automatted, and theevaluation of terrain
corrections is required.

The original work by Bjerhammar (1963, 1975, 1976, 1978),
and that by SJSberg (1975, 1978), have already been mentioned
in section 5.1. Bjerhammar (1976) has presented some results
from the application of the Dirac approach for the computation
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of deflections of the vertical on the surface of the earth.
Finally, Sjoberg (1975, 1978) has worked with a limited amount
of real data for the computation of gravity anomalies on
the surface of the earth. Because we feel that these results
need some additional elaboration, we will repeat his tests
in chapter 9 with some comments.
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Chapter 7

COMPUTATION OF THE GRAVITY DISTURBANCE VECTOR IN
SPACE USING THE METHOD OF LEAST SQAUARES COLLOCATION

7.1 Introduction

Let us now apply the method of ILeast-Squares Collocation
to the estimation of the components of ¥ , from the simu-
lated data on the surface of the model. As with the other
two methods in this report, it is easy to evaluate the appli-
cability of collocation to our problem, because the exact
components of ¥ can be computed directly from the model.

A great number of papers have been published on appli-
cations of collocation to the determination of the gravity
field of the earth, on its surface as well as in the exterior
space. For the estimation of gravity anomalies, geoidal
undulations, and deflections of the vertical see for example
in (Lachapelle, 1977; Sjoberg, 1978; Tscherning and Fors-
berg, 1978; Forsberg and Tscherning, 1981). For computation
of gravity anomalies in space see Rapp and Hajela (1975).

For the computation of the covariance functions - the most
essential quantities in any estimation through collocation,
see Tscherning and Rapp (1974), Tscherning (1976), and Siinkel
(1979). Advanced aspects on collocation are discussed in
Moritz (1980), and Moritz and Siinkel (1978).

The collocation estimation of a quantity s from gravity
anomalies Ag , can be done using the equation below (Moritz,

1972):
= + -1
s S-:s,Ag (gAg,Ag D ig (7.1)
wnere:

Ag ¢ the vector of the m observations of gravity
anomalies

c : the covariance matrix (mxm) of the observed

AE» 0B anomalies.

D ¢ the covariance matrix (mxm) of the measuring
errors in the anomalies. This is taken to be a
null matrix, since we assume errorless observa—
tions for our simulation study.

Cs A : ~the cross-covariance vector (m), between the

08 quantity s to be predicted, and the gravity
observations,
93.
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The predicted s might be any quantity as long as the
corresponding covariance function between s and the data
(Ag) exists. For example, s may be geoidal undulation,
h : gravity anomaly, first or higher order derivative of the
disturbing potential, etc. The two problems that we encounter
in any collocation prediction are (a) the inversion of
a large matrix (C+D) in case of a large number of data,
and (b) the computation of the auto - and cross-covariances )
between the various quantities in (7.1). )

For the computation of the various covariances we decided
to use the covariance approximation procedure which is doc-
umented in Siinkel (1979). 1In fact, we have used a new version
of his computer program, documented in Sunkel (1980), the
difference between the old and the new version being minor. 1
The whole procedure is based on the generation of a suffic-
iently dense network of covariances, and then, on the computa-
tion of any other covariance at a point inside this network
by a differentiation - interpolation procedure with spline
functions. The accuracy of this procedure can be as high

{ as we wish, depending on the density or the covariance
network. Interpolating at any other point from the grid
values, rather than computing the covariance directly, re- _
duces the CPU time significantly (Sinkel, 1979, p.22). 1

7.2 Collocation Prediction of the Gravity Disturbance Vector

The computer program mentioned above, computes the
auto~- and cross-covariances between fourteen quantities,
among which we find the radial component of the disturbing
potential, and the components of the deflection of the verti-
cal:

- in E6tvos (1 E = 10™ %sec™?)

T
£ in arcsec

| n in arcsec
Ag in mgal

For simplicity, let us denote by Q the product C™! jg
in (7.1):

cov(Ag1,A81) « .« . cov(4gy,Ag) =1lAg
t

-1

[ ] . t
cov(Agm.Agx) .« e e cov(Agm,Agm) Agm
(7.2)
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Then, the application of (7.1) to the determination
of the quantities: -(3T/3r)/r , & , and n vyields:

-(1/r)3T/3r = [cov(-1/r)3T/3r, Ag1],...] Q , in Ebtvés

(M
1]

[cov(E,sg1), . « .1 Q , in arcsec

n [cov(n,dgy), . .« .1 Q , in arcsec

The partial derivatives of the disturbing potential with
respect to r , ¢ , and A, are then given from the well-
known equations (Sunkel, ibid, p.21):

@
-

LT o _a(-3TARr , in 107 %m.sec™?
ar T
_%%. = -r vy E , in m .sec~?. arsec
g _%§. = -ry cosd n , in m .sec~?. arsec
(7.4)

The components of T can now be transformed to compon-
ents of the gravity disturbance vector g , using (5.22):

_ 3T _ _. .. dT/3r -9 ; -2
Ggr 3o = T (———;—-) 10 y in m.sec
1 3T 1
63 = T 5% Yt 30664800
¢ r 9 2 .80 , in m.sec-?

4 - 1
88y, = ¥cos3 3 - V" 306584806

2
(7.5)

, in m.sec™

Then, equation (5.32) is used to rotate the components
of T to a geocentric (X , Y , Z) system:

-%%— S8y cos$P cosi, -sin$p cosip -sin), || dg

aT - - .
=7 |~ de = cos¢p sinxp -51nop 51nAp cosAp 6g$
_%§ ngl singp cosdp 0 ‘g
(7.6)
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where the index P means that the computations are made
at the space point P (rp » ®p » Xp).

Plnally, eyuallung (J.2%) and (J.20) «an e used

rotate these components to the polar (r , ¢) coordinate
system in order to obtain the two distinct components T/5r,
and (1/r) 3T/3y for the simulation tests.

7.3 Simulation Tests with the Collocation Approach

As we described in sections 4.2 and 6.2 for the Green's
and for the Dirac approaches respectively, the terrain model
of chapter 3 is used again, and the gravity anomalies are
generated on its surface from the two point masses to be,
used in the collocation prediction,.

The covariance network which is the most time-consuming
part in the covariance approximation procedure just mentioned,
is also generated in space, from the surface of the sphere
up to an altitude of 111 km in radial direction, and from
the center of the model up to 125' in spherical distance.

The grid has to be denser for smaller altitudes than for
higher altitudes, and denser for smaller spherical distances
than for larger ones (Sunkel, 1979, p.5). From our prelimin-
ary tests with the collocation approach, we found that

a non-uniform grid as it is shown in figure 7.1 would be
sufficient for the prediction of the components of the grav-
ity disturbance vector up to an altitude of 100 km. The
grid that we constructed has a spacing of 1 km up to the

11 km altitude, and then the spacing becomes 10 km up to

the maximum 111 km radial distance. In the spherical direc-
tion, the grid spacirg is 0'.5 for the first 5', then it

is 1' for the next 20', and finally it becomes 10' up v

the maximum spherical distance of 125'. It takes approxi-
mately 18 CPU-seconds in an Amdahl 470/6-11 maching for

the construcion of such a grid.

The Tscherning and Rapp (1974 , 4th model) anomaly
degree variance model was used for the computation of the
covariance network. This model corresponds to the 2nd model
in Silinkel's program (see also equation (9.7), section 9.3).
Preliminary tests indicated that the use of a '"global" versus
a "local" nth-degree covariance function (the first n anom-
aly degree variances are set equal to zero), is not a critical
factor for the computation of ¥ . The use of a global,
of a 20th-degree, and of a 40th-degree covariance functions,
resulted to components of 3 , which are different by no
more than 0.5 mgal. The fact that the collocation prediction
is not sensitive to the covariance function being used,
has been verified in numerous applications of collocation
(see for example in: Rapp and Agajelu, 1975, p.9; Lachapelle,
1977; Rapp, 1979-a; Katsambalos, 1980).
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One might argue that the covariance function being used
should be consistent with the synthetic data on the models.
Theoretically, this is necessary due to the fact that the
center of mass of the models does not coincide with the
center of the mass of the earth (the center of the sphere
R in our case). The construction of a covariance function
is a very laborious procedure, especially for our simulation
tests wherea great number of different models« are used.
In addition, as we mentioned above, from ov: preliminary
tests it was found that the predicted quantities are not
sensitive to the covariance function being used. Therefore,
for simplicity we decided to use the global Tscherning-
Rapp covariance function.

After the covariance network is set-up, the equations
of the previous section can be used for the collocation
prediction of the components of ¥ . The radii rp , rg
are computed as rp=R+hp , rQ=R+hQ , where hp , h
are the heights of the space point P “of the surface point
Q above the mean-earth sphere R .

( In table 7.1 the relative percentage errors of the
vector § at 5 km altitude are shown in the usual form.

256 anomalies are generated on the surface of a 10° conical
model, on a 3' grid within a 0.8°x0.8° area. These errors
are about 20% above the cone, they reach a maximum of 70%,
and then they fall below the 10% level. By decreasing the
grid spacing to 2' within the same area (576 anomalies on
the surface of the model now), the errors at 5 km are now
10% (table 7.2), but they grow larger as we go away from
the model's axis towards the boundary of the area.

Table 7.3 shows the errors at 10 km altitude using
the 10° conical model again. Comparing these errors with
those at 5 km (table 7.1), we see that they are almost an
order of magnitude smaller right above the model's center,
but they are larger away from it. At higher altitudes (100
km and above) the errors from the collocation approach were
found to be very large (more than 100%). Any attempt to
increase the size of the area with 2' or 3' grid spacing,
would require the inversion of large matrix C . Not that
it takes about 4 minutes CPU time to form and invert a 576 X
576 symmetric matrix of the covariances (the IMSL subroutine
LINV3P was used).

For a direct comparison between the Dirac and the col-
location approaches, the components of ¥ at 5 km altitude
are tabulated in table 7.7 using the same model (10° cone),
and the same data (576 anomalies on a 2' grid, within a
0.8°x0.8° area). The results from the collocation approach
are in a better agreement with the exact components of 3
right above the model's center, but the Dirac approach is
obviously superior at the other points.
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The errors from a 40°~inclination model (table 7.4 ,
compared to those from a 10°-model, (table 7.2), are larger
over the cone, but smaller away from it. In order to decrease
the errors at the points away from the model's axis, we
should increase the working area beyond 1°x1°, but that
would require the inversion of a very large matrix. There-
fore, the application of collocation to our problem seems
to be a very time consuming approach.

For the very smooth topography of the spherical cap
model which was described in section 3.5 the errors are
smaller when compared to those from the conical model, and
they become almost zero at »oiat away from the model (tables
7.5 and 7.6). This is true not only at 5 km altitude, but
aldso at 10 km altitude.

In order to investigate the effect of the topography
on the collocation approach, we made an additional test
for which the elevations of the surface points were forced
to be equal to zero(the remaining specifications for this
test are identical to those in table 7.2). The results
from this test are given in table 7.8. Comparing the errors
given in tables 7.2 and 7.8, we see that the effect of the
topography is very significant, since the errors from the
new t€stare much largerabove the model's center, than
those in table 7.2.

From our experience from the simulation tests with
the collocation prediction of ¥ , we can make the following
conclusions.

(a). Collocation is a very time consuming approach, espec-
ially in handling a large amount of surface data.

(b). The errors in § are very large for altitudes larger
than 10 km (relative percentage errors at the 100%
level and above)

(c). For data given on a very smooth topography, the errors
at 5 km, and 10 km altitude are relatively small (com-
pared to the errors from the conical models), but
not as small as those from the Dirac approach.

(d). On an overall basis, the Dirac approach seems to be
superior as compared to the collocation approach.

(R T
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Chapter 8

COMPARISON OF THE IMPROVED TECHNIQUES
WITH THE CLASSICAL APPROACH

As we have already mentioned in chapter 1 , there exist
three methods for the cumputation of ¥ (using gravity
data reduced to the geoid), which were called the ''classical"
approaches:

1. the Direct Iantegration Method,
2. the Coating Mn‘“hnd, and
3. the Upwaréd Corti.tnation Method.

The theory behind these methods can be found in Hirvonen
and Moritz (1963%: Heiskanen and Moritz (1967); Mueller
(1966). The Direct Integration method is computationally
the most difficult to use, but it requires the least amount
of data, since the other two methods require - in addition
to the gravity anomalies which are needed by all three - ,
geoidal undulations, and deflections of the vertical on
the physical surface of the earth. A computer program which
is based on the Direct Integration Method is documented
in (Rapp, 1966).

We decided to use the Direct Integration Method as
our 'classical'" approach, because of its simplicity in terms
of data required. The corresponding equations for the three
components of ¥ , at a point P ($p A p » rp) in space
are (Heiskanen and Moritz, 1967, p.234):

| 38(r,y)

Gedp = mw Lf %8 5y a3
=1 3S(r,y)

(5g$)P = - éf Ag —_7r$jL_ cosa dS

. | asS(r,¢) .
(6gy)p ==Tow éf Ag ———31t!-— sina dS (8.1)

Strictly speaking, the gravity anomalies Ag=g,- vg
in the equations above refer to the geoid; gg 1is tge gravity
reduced in free-air from the surface of the earth to the
geoid, and YE is the normal gravity on the ellipsoid.
It must be pointed-out that in applications with real data,
the normal gradient 3y/3r = -0.3086 mgal/meter is used
for this type of reduction, instead of the gradient 23g/dor
Therefore, the resulting anomalies are approximately surface
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free-air gravity anomalies. However, the difference between
the surface anomaly, and the anomaly at the geoid is small
(ibid, p.241). Consequently, for our simulation tests with
the classical approach we will be using gruvity anomulies
generated by the model on its surface (see equation (6.1)),
similarily to the computations performed by Molodensky et
al. (1962, pp.196-210).

Applying the same kind of approximation as in section
5.2.3, equations (8.1) yield:

N
-1 aS(r,v)
(88)p = 7w L. %8s (gt asy

i=1
N
1 3S(r,y)
N
_ 1 aS(r,v) .
(%8\)p ="garr L 061 (T )3 8S; siney (8.2)

where N is the total number of elementary areas in which
the sphere R is subdivided. The index i refers to the
center of the block AS; (this is an approximation too,
since the point to evaluate the kernels in (8.1) is unknown).
The aximuth oj , the spherical distance §; , and the deriva-
tives of the Stokes' function with respect to r , and ¢ ,
are given by equations (5.26) through (5.31). The differences
between equations (8.2) of the classical approach, and equa-
tions (5.25) of the mean-value approach (following Bjerhammar),
are:
(a). The geosphere Rpg in (5.25), now becomes the mean-
earth sphere R , and
(b). The gravity anomalies Ag* in (5.25) do not have
any physical meaning (they just satisfy the surface
data), while the anomalies in (8.2) are the given
free-air anomalies.

Let us now apply equations (8.2) using the data (surface
gravity anomalies) generated by the terrain models, similarily
to the simulations for the improved techniques. Using a
10°-inclination conical model, and gravity anomalies on
a 2' grid within an area 8°x 8°, the errors in the components
of T at 10 km altitude, are by a factor of 2 larger than
those from the Green's approach (table 8.1 vs. table 4.4).

The same difference was found using data on a 1' grid within
a 0.4°x0.4° area (table 8.3 vs. 4.14).

Comparing the errors from the Dirac approach at 5 km,
10 km, 20 km, and 100 km altitudes, to those from the clas-
sical approach, using identical model and data, we found
them to be 2 to 10 times smaller (tables 6.5, 6.6, 6.7,
and 6.8, versus tables 8.2, 8.3, 8.4, and 8.5 respectively).
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For an easier comparison among the results from the

various techniques, we list in table 8,6 the exact components
of T at selected points at 10 km altitude, and the compon-
ents computed from the synthetic data on the surface of

a 10°~inclination conical model (within a 0.8°x0.8° aresa,
with 2*' grid), using both the classical approach and the
improved techniques. It is obvious that the results from
the improved techniques are closer to the exnct values than
the results from the classical approach, with the exception
of the results from collocation at points uway from the
model's center (¢, = 45°, Ay = 250°).

All of our tests clearly indiczte that the three tech-
niques which take the effect of the topography into account,
offer an improved solution for the computation of the compon-
ents of ¥ in space, as compared to the classical approach
where the topography is neglected.
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Table 8.6
Comparison of Gravity Disturbance Vector
Components in Space (10 km altitude),
Computed from the Improved Techniques and
from the Classical Approach

(10°-inclination conical model; 0°8x0°8 area;
2' grid; wvalues in mgal; height in met: rs)

Green's Approach:

| EXACT: | COMPUTED: | DIFFERENCES: 1
LAT  LON HEIGHT! RADIAL HORIZ 1 RADIAL HORIZ | RADIAL HORIZ )

-36.89 9.0 | -3..04 -2.491 -3.85 .49

43 230 0 10000. 2
-34.66 -4.88( -28.32 -5.201 -6.14 8.321
1

43 230 2°' 10000.
45 250 4° 10000,
43 230 6° 10000.
43 230 8' 10000.
43 230 10°' 10000.
43 230 12 10000.

-29.48 -8.211 -24.23 -7.281 -5.23 -0.93}
-23.43 -9.661 -~-19.36 -8.2%51 -3.87 -1.411
-17.93 -9.781 -~-15.42 -8.361 -2.51 -1.42|
-13.51 -9.171 -11.94 -2.88! -1.57 -1.28|
-10.13 -8.241 -9.33 -7.201 -0.82 -1.04|

Dirac Approach:

. | EXACT: | COMPUTED: | DIFFERENCES: |
( LAT LON HEIGHT! RADIAL HORIZ | RADIAL HORIZ | RADIAL HORIZ |

43 250 0° 10000.| -36.89 9.6 | ~-33.07 -0.01( -1.82 0.061}
43 250 2' 10000.! -34.66 -4.88| -33.11 -4.731 -1.55 -0.158}
43 250 4' 10000.1 -29.48 -8.21) ~28.10 -8.001 ~1.39 -0.21]
. 43 250 6' 10000.! -23.43 -9.66! ~22.18 -9.491 -1.25 -0, (7}
+3 250 8' 10000.1 -17.93 -9.78! ~16.74 -9.631 -1.’? -v. 13}
43 250 10' 10000.1 -13.51 -9.17| ~12.30 -8.981 -1 2: -0.1%,
43 250 12° 10000.1 -10.15 -B8.241 -8.96 -8.01) "1, .80 -9,.23)

Collocation Approach:

| EXACT: ! COMPUTED: | DIFFERENCES: |

LAT LON HEIGHT! RADIAL HORIZ | RADIAL HORIZ | RADIAL HORIZ |
43 250 0’ 10000.! -36.89 0.0 | ~44.99 -0,02! 8.10 0.02)

43 250 2° (0000.] -34.66 -4.881 ~43.17 -4.10| 8.31 -0.781

43 230 4° 10000.1 -29.48 -8.21| ~38.47 -6.90| 8.99 -1,311

43 250 6' 10000.| -23.43 -9.66| ~32.69 -8.001 9.26 -1.631

43 250 8 10000.1 -17.93 -9.78| ~27.48 -7.76| 9.33 -2.01}

43 230 10' 10000.) -13.31 -9.171 -23.23 -6.71! 9.72 -2.46)

43 250 12° 10000.1 -10.13 -8.24| -20.13 -8.37| 9.99 -2.871

Classical Approach:

| EXACT: { COMPUTED: | DIFFERENCES: |
LAT LON HEIGHT! RADIAL HORIZ | RADIAL HORIZ | RADIAL HORIZ |

-22.17 -0.041 -14.73 .
-21.39 -2.42| -13.28 -

43 250 9° 10000.| -36.89 ! 0.04|
| 2.46\
{ 3.83)
| ~16.40 -85.601 -7.03 -4.061|
| 3.64|
| 3.02]
{ 2.49)

8.0
45 2350 2° 10000.1 -34.66 -3.88

43 230 4' 10000.! ~29.48 -8.211 ~19.24 -4.36| -10.24 -~
48 230 6° 10000.| -23.43 -9.66
43 230 8' 10000.| ~17.93 -9.78( -13.32 -6.13| -4.61 -

-10.36 =-6.131 +-2.98 -

3 43 230 10°' 10000.1 -13.31 -9,17
-8.22 -85.841 -1.92 -

43 230 12° 10000.! ~10.10 -8.24

re -
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Chapter 9

SOME TOPICS OF SPECIAL INTEREST RELATED TO THE
COMPUTATION OF THE GRAVITY DISTURBANCE VECTOR IN SPACE

During our investigations on the accuracy of the three
improved techniques for the computation of the gravity vector
in space considering the topography of the earth, some ques-
tions related to the applicability of these anobroaches with
real data were raised.

More specifically, the use of the Dirac approach with
data having large spacing was questioned, and in section
9.1 below some tests are described that confirm this draw-
back of the method. 1In addition, the effect of the truncation,
i.e. the neglect of the information from the remote zones
is discussed (section 9.2, and 9.3). Despite the fact that
the effect of the topography is not considered in our compu-
tations for the truncation effects, we think that the results
in these two sections will help us in judging the applica-
bility of the Dirac approu-h with real data, using a higher-
degree reference field as _pposed to an ellipsoidal onmne.

9.1 Some Tests with Real Data and the Dirac Approach, for
Gravity Anomaly Computations on the Surface of the Earth

In order to test how well the Dirac (iterative) approach
converges in a real-world application with point gravity
anomalies on the surface of the earth, irregularly distributed,
we decided to use the data set described in (Sjoberg, 1978,
p.64), and to compare our results with his. This data set
consists of 87 point free-air gravity anomalies in the Manitoba
area, in Canada, with a mean spacing 0°.5, in an area 2°.5x6
and at a mean elevation 400 meters approximately. Note
that the RMS value of these gravity anomalies in 14.00 mgal.
Table 9.1 contains the location, the elevation, and the
gravity anomaly for each one of these points,

From these 87 anomalies, the gravity spikes are iter-
atively computed on the geosphere, whose depth from the
mean sphere R was selected - for test purposes - to be
0, 10, 20, and 30 km. The Gauss-Seidel iterative method
of section 5.3.1 was used (equation (5.37)), using (5.38)
as the convergence criterion. The RMS difference between
the given anomalies, and those computed from the 87 spikes
at the same pointsis given in table 9.3. The reason why
these RMS differences are not exactly zero, is due to the
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fact that the spikes have been computed iteratively, and
not directly. In any event, these differences are very
small, showing that within three iterations the solution
for AgS converges.

Table 9.2 is of the same nature as table 9.1, but it
contains information about an additional set _.f 50 anomalies
in the same area, distributed within the 87 anomalies of
the first set. The RMS value of the 50 ancuaalies, is 13.5226
mgal. The RMS differences between these anomalies, and
those computed from the spikes are also shown in table 9.3.
As the reader can see, these RMS differences are of the
same magnitude as the RMS value of the 50 anomalies itself.
Sjéberg (ibid, p.68) analyzing the¢ same data set with the
same method, found similar results, but he did not make
any comment about the fact that under the above circumstances,
the resulting error of the prediction is 100%!

At first, if we use (5.47) to compute the radius of
the smallest sphere which will guarantee the convergence
of the iterative solution for yYmjpn=0°.5 , and hpyyx =500
meters, we find that the depth of the geosphere is about
28.5 km. This is in a very good agreement with the optimum
depth that Sjoberg found for the same data set in applying
the Dirac approach (see his figure 6, page 67), which is
approximately 30 km.

One reason for the RMS error to be equal to the RMS
value of the predicted quantity, is that the computed quantity
is orders of magnitude smaller than its true value (the
given surface value). In order to verify this, we computed
the gravity anomalies at the surface from the 87 spikes,
along a profile between two of the given data points. The
coordinates, the elevation, and the computed anomalies at
selected points along this profile are given in table 9.4,
along with the true values at the end points. We see that
the magnitude of the gravity anomaly is dramatically reduced
as we go away from either one of the end points. 1In the
middle of the profile, the computed gravity anomaly is prac-
tically identical to the given value.

Our interpretation to this - originally surprising -
finding is the following. As the gravity anomalies on the
geosphere are all zero except at the carrier points, the
gravity anomalies onh the surface of the earth will also
retain the same gravity characteristics of the field that
generates them. In other words, the spikes on the geosphere
fit only the surface data from which they have been com-
puted, and that cannot be used for the computation of a
gravity anomaly away from these points, unless the surface
data is very dense to permit an accurate prediction. This
also explains the large errors that we found from the simula-
tion test with 5'-grid (table 6.3), as opposed to the errors

'
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Table 9.2

Free--Air Gravity Anomalies in Manitoba, Canada
(Test Data Set)
(From: Sjoberg (1978))

ST # LATITUDE LONGITUDE HEIGHT ANOMALY
99999 ( DEGREEY) (METERS) (NGAL)

16009 30.39419 91.14833 386. 181 9.76
16011 50.74666 90.96165 379.475 10.63
10499 50.79678 92.36719 423.501 8.82
16942 50.95000 91.73833 402.031 =-9.29
16912 50.88333 91.01666 37L.257 1.721
10052 50.59193 92.61716 428.834 12.66
10047 50.22284 92.84720 338.445 -3.57
10938 50.21497 92.37631 357.833 -3.37
15372 50.49666 91.87166 357.223 12.68

273 50.40833 91.30833 370.027 3.99
15370 50.75%99 91.88333 391.973 7.53
16047 50.68333 91.41998 382.219 13.34
10496 50.80524 92.14000 396.343 -2.18
10081 50.21280 93.23963 364.845 7.53

625 30.30666 93.17999 361.493 4.41
16002 51. 12833 90.860633 300.3990 -21.34
16059 50.29198 91.38998 373.685 -14.68
153481 50.74500 90.73663 390.449 7.83
15334 59.42332 90.71666 321.058 2.09
15056 50. 1333 90.68032 404.774 -15.16
13384 50.12999 90.23999 417.576 -3.33
9164 411.91499 920.60001 457.809 -11.23
13376 49.02196 91.96181 425.501 ~21.95
13715 49.84D16 90.40294 442.263 -2.80
16723 49.74696 90.75410 4353.359 -5.18
15675 49.86776 92.09227 J82.524 -23.51
10019 49.84630 92.39220 366.674 ~18.90
15878 49.92999 91.38333 388.925 -29.92
19203 49.76701 94.87744 339.969 2.11
114535 49.62477 94.02734 373.990 -10.26
10222 49.359979 94.35619 323.088 3.44
3710 49.43166 96.27499 357.22§ 5.27
5346 49.72333 93.24666 338.328 16.62
10198 49.62842 95.49942 318.211 -~-1.36
5531 49.71666 94.93666 339.664 10.92
0076 49.71500 94.80666 343.643 14.12
10078 49.90807 93. 14622 372.770 -8.31
10104 49.68629 93.48?337 379.171 -18.87
10098 49.30328 93.51170 338.023 6.60
5084 19.81332 92.97501 3:i5.092 ~-10.10
10014 49,.62167 92.44067 383.372 18.04
12002 49.49670 92.69481 403.308 11.76
19007 49.22151 92.46306 405.384 -23.49

213 49.14166 92.70332 388.620 -22.67
13725 49,.70897 91.09703 433.369 -8.48
13736 49.66466 71.081067 419.408 -24.77
13730 49.24759 91.406384 443.617 -13.99
10249 48.66917 93.27043 337.718 -6.99
133652 48.36082 90.73390 447.751 ~-23.06
15748 48.83151 90.96706 445.922 -18.72

_ .. s . . L i dinathontn. ) a o,
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from a 1'-grid (table 6.4). These results indicate that
the Dirac approach should not be used for the interpolation
of gravity anomalies on the surface of the earth, unless
the data is sufficiently dense to ensure an accurate predic-
tion. Note that the errors in tables 6.5 through 6.8 are
much smaller, because of the very find (1') grid being used.
Table 9.3
Comparison of Input with Computed Anomalies, at
Various Depths of the Geosphere (Dirac approach).
Values in mgal.
RMS Diff. RMS Diff.
Depth # of (input - (input -
R - Rp Iterat. computed) computed)
(km) 87 points 50 points
0 3 .52 x 108 13.5266
\ 10 3 .54 x 10~° 13.5266
20 3 .49 x 10°°¢ 13.5266
. 30 3 .61 x 107°¢ 13.5266
Note: The iteration is terminated when two successive values
for a spike have a 12-digit agreement.
Table 9.4
Computation of the Gravity Anomalies Along a Profile
Station latitude longitude anomaly °2ﬁ8&£?9
(mgal) (mgal)
11423 49°01'13v3 92°58'56Y0 408.43Z 21.05 21.0499996 L
49 01 13.4 92 58 56.0 407 21.18
49 01 12.0 92 58 55.2 405 21.01
49 01 48.0 92 58 48.0 404 -1.10
49 01 24.0 92 54 00 402.5 0.0065
49 06 00 92 48 00 401 0.00017
49 12 00 92 42 00 399 -0.00011
49 18 00 92 36 00 398 -0.000072
49 24 00 92 30 00 397 0.000032
49 30 00 92 24 00 395 0.0081
49 31 48. 92 24 36. 393 2.45
49 31 58.8 92 24 32.4 389 5.71
49 31 59.9 092 24 35.3 286 6.08

10013 49 32 00.2 92 24 35.6 383.743 6.16 6.1600003




9.2 Truncation and Discretization Errors

In the preceding chapters we presented three methods for
the computation of the gravity vector in space, from surface

data, without neglecting the topography of the earth. The

Green's method requires as data mean gravity disturbances

on the earth's surface, while the Dirac and t'.e collocation
approaches require point gravity anomalies a" discrete surface
stations. From the practical point of view, none of these

methods can operate on a global data set, due to the limita-

tions in computer speed and core. ©One possible solution
to this problem is to use data in a spherical cap - whose

center is at the projection of the space point on the surface

of the earth -, and to account for the information from
the remote zones through a set of potential coefficients.

Clearly, if only the data in the cap is used, the resulting
truncation error will be smaller (in general), as the size
of the cap becomes larger. Therefore, it is very important

to know the minimum cap size that yields a certain level

of accuracy in computing a particular quantity (the components

of T in our case).

In addition to the truncation effect, the computed
guantity is also affected by the fact that we are dealing
with discrete data. This type of error is a function of

the grid spacing (i.e. the block size) following the Green's
approach, or a function of the distance between the discrete

data points following the Dirac approach, or collocation.

In general, the truncation error is a function of the extent

of the area, and the discretization error is a function
of the density of the data.

In our simulations, the synthetic data on the surface
of the model is assumed to be errorless as being rigorously
computed from the disturbing masses. Therefore, the tables

in the preceding chapters give the total error, which
is caused by the combined effect of:

(a). Truncation and Discretization (Dirac approach).
(b). Truncation and Discretization, missing second-order

variations of the topography, and center-point evalua-

tions of the kernels (Green's approach).

For the simulation tests with the Green's approach,

we have used relatively small working areas (2°x2° to 8° 8°),
the reason being that away from the model's disturbing masses
the value of the gravity disturbance diminishes very rapidly
(figure 3.2 through 3.5). In other words, the model creates

a very local disturbing field and attempts to include more

and more data by expanding the size of the working area
to 8°x 8° did not improve the results. In addition, grid

intervals as small as 0.5' in the inner zone did not result
in substantial reduction of the errors of ¥ . These tests

Zeadhe
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indicate that the errors from the Green's approach are mainly
due to the missing second-order variations of the tcopography,
and to the effect of the center-point evaluation of the
kernals. These two approximations are the dominant sources
of errors in the Green's approach.

For the simulations with the Dirac approach we have
used even smaller working areas (0.4°x0.4° to 2°x2°). From
the results in tables 6.3 and 6.4 we can see that the errors
are now dramatically reduced by using five times smaller
grid, even if the area extent becomes five times smaller.
These results indicate that in our simulations for the Dirac
approach, the discretization errors dominate the truncation
errors. This is due to the very local characteristics of
themodels, and it should not be generalized for an applica-
tion with real data.

9.3 The Relationship between the Truncation Angle, and
the Altitude of the Space Point

It has been found (cf. Hirvonen and Moritz, 1963, p.68),
that in applications of the classical approach for the com-
putation of the radial component of ¥ in space, it is suffic-
ient to extend the integration only as far as 10 times the ‘
altitude of the space point, in order to ensure an error i
smaller than 10%. However, this '"rule-of-thumb" is valid ;
only for the Upward Continuation Method (under a planar
approximation), and should not be used for the other two
techniques (i.e. the Coating Method, and the Direct Integra-
tion Method).

From the simulations of chapter 8 it was concluded
that the effect of the topography is quite significant,
since the errors in ¥ are reduced by a factor of 2 or
more, when the topography is considered in the improved
techniques. The question is now, how far from the computation
point we should extend the integration using our improved !
techniques. In other words, what is the relationship between j
the minimum radius (¢,) of the cap inside of which the data
is given, and the altitude of the space point (hp), such
that the truncation error in 3§ is below a certain limit
(say 100%)? ¢

phttinalntne

Clearly, it is out of the scope of the present study L
to investigate the truncation errors when real data is used.
In addition, the effect of the discretization is quite a
challenge to be investigated. A procedure for the estimation
of the (global RMS) truncation errors in computing the vector
T at a space point (using the Direct Integration classical
approach), is described by Shepperd (1979). We decided
to use Shepperd's procedure and computer programs, because
the topography away from the computation point does not

Ml im e s it i i ke
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significantly contribute to the components of I , due to
the diminishing magnitude of the terms 03S(r, ¥)/dy , and
3S8(r, ¥)/3r 1in equations (5.48): Dirac approach, and (8.2):
classical approach.

Shepperd's equations for the RMS truncation error of

3 at altitude are:

radial error component: e(8g )=( ) (Qn%;;ilf32(Ag)li (9.0
n=0

horizontal error component: g(sgh)azg(gg:)=+ (5g )2]i (9.2)

\
S 4l ) A
- nlr,d 2 2
(1 Ty ne)]
where oﬁ(Ag) are the anomaly degree variances:

n

2 = = Y- -1 2 :
Gn (Ag) cn Y (n-1) I (Cr‘,m + Snm¥ (9.3)
m=0
_ Y is the mean value of the normal gravity (979800 mgal).
C;m, S,y 2re the fully normalized potentiai coefficients,

referred to the same normal field as the gravity
anomalies.

and the truncat}on coefficients for the radial horizontal
components of 5§ are defined as:

~ T OB(r,y
Qurive) = R [ S5 P (cosv) sinu du (9.4)
q (r,vg) = R nm S(ryy) p (cosy) st dy
nlTvo 37 &0 3 n ¥) siny dy (9.5)
where:

' = - 2 d Pp(x)
N

Recursive relationships for the evaluation of these two
kinds of truncation coefficients, starting from the Moloden-
skii's coefficients:

Qu(r,¥a) = [ S(r,y) P, (cos¥) siny d¢ (9.6)

are given in (Shepperd, 1979), along with FORTRAN subroultines
for their computation. (These subroutines were converted
for double-precision computations).
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Figure 9.2:

4o, 80. 120. 180, 200.
TRUNCSTION ANGLE (5zZ532EcS)

Radial (Y), Horizontal (X), and Total (+)
Truncation Errors at Altitude hp=10000 meters
(Maximum degree: 400, Ellipsoidal Reference
Field)

oy — ot el R e e M A immee A R —;»_L_‘x.‘ —

¥




ALl
_r_ﬁ

TION

(sl Yl
U—d

TRUN

122.

Figure 9.3:

4. 80. 120, __180._
TAUNCATISN ANGLE (DzZGRIES)

Radial (Y), Horizontal (X), and Total (+)

Truncation Errors at Altitude hp=100000 meters

(Maximum degree: 400, Ellipsoidal Reference
Field)

l . J
5 . e . -
~ o . 3 Py .




123.
, Z z
o
Y
3
i 3]
(m
3 O .
g t=
{ o
I A 4
(o)
- m L]
oy
u—l
-
(am]
[ ]
[
c L]
Lo
=z
: o
. o
[ -
=
S
. . . [y . 7 i
<. 40, 80. 120, 180, 200.
TRUNCATION ANGLE (DEGREzCS)
Figure 9.4: Radial (Y), Horizontal (X), and Total (+)
Truncation Errors at Altitude hP=500000 meters
- (Maximum degree: 400, Ellipsoidal Reference
Field)




124,

For the computation of the anomaly degree variances,
we can use the Tscherning-Rapp (1974) model:

c, = 102 DR
(n-2)(n+B)
A = 425.28 mgal?
(9.7)

B = 24

Using (9.1) and (9.2), the total truncation error at
altitude will be:
total error component: g(38g) = [e(&gr)2+ e(dgh)z]% (9.8)

In figures (9.1), (9.2), (9.3), and (9.4) we give the
truncation errors for the radial, the horizontal, and the
total components of T at Skm, 10 km, 100 km, and 500 kmaltitude
respectively, computed from equatioms (S5.1), (9.2), and
(9.8). The summations in these equations were carried-
out from n=2 to npax =400 with ¢, =7.5 mgal® (Tscherning
and Rapp, 1974), i.e. assuming an ellipsoidal reference
field. This npax =400 was chosen because summations to
higher degrees did not yield significantly different results.
Note that Shepperd (ibid) performed his computations up
1o npax =20 only.

The results plotted in these figures indicate that
in orderto maintain a truncation error smaller than 10%
(with rspect to the RMS total magnitude of § at the same
altitude), we should extend the integrat ion over a cap of
radius ¢; given in table 9.5 (second column) as a funcion

of the altitude of the space point.

Table 9.5

Cap Radius (y,) for Truncation Error Smaller than 10% ,
at Selected Altitudes of the Space Point

Radius vy

hp Ellipsoidal Ref. Field 20th-degree Ref. Field
5 km 50° 3° 25
10 km 50° 3° 35°
100 km 120° 5° 30!
500 km 155° 30°

Cenad
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It must be pointed-out that the ¢, estimates in table
9.5 hold only for the classical approach (chapter 8),
and for the Dirac approach (chapter 5}, both of which are
based on Pizzetti's generalized formula (equations (5.24),
and (8,1)). As we can see, by using an ellipsoidal reference
field, even for a relatively 1low altitude (5 km) the inte-
gration must be extended within a 50° cap, in order to retain
a relative error below the 107 level. In order to verify
the correctness of our computations, we computed (from Shep-
perd's equations) the effect of truncation on &g, , and
s§g, = ng = 5gh//§ , for a point on the surface of the earth.
Weaused the same anomaly degree variances as in (Hirvonen
and Moritz, 1963, p.54):

c, =13; c; =43; c, =30; cs=cg =Cy =cCcp =25 mgal?

and therefore the summations in equations (9.1) and (9.2) were
taken to npax =8 . The results are given in table 9.6,

where we also list the truncation effects on 6gy (from
Hirvonen and Moritz, 1963, table 7.2), computed as:

max 3
L(sgr) = [nzz “a cn] (9.9

The truncation effects on Ggs , and &g in Hirvonen
and Moritz (ibid) were incorrectly'evaluated ?cf. Hagiwara,
1972, p.457). These effects (on & and n) should be com-
puted as (ibid, p.461):

a0

(5) = 5 I Q;ﬂ%—

n=2 (9.10)
_ 1 s A
) = pyeesy L, %A
where
Q,"{ = Qn + mﬁj S(cos yy) Pnl (cosyg) sinyg (9.11)

and not as in (Hirvonen and Moritz, ibid, p.45):

1 ¢ d
e(g) = 5 nz2 Qn —%agn

. - 1 P IAg
(M) = 375053 nZZ % %

For reasons of symmetry (ibid, p.49) we can take
e(E)=¢(n) and using “7.10) we arrive to the following
equations which give th. truncation effects on the components
ch5 , ng of :
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- = = _1 5 2 é
e(8gz) = e(8gy) = ( SnZZ n(n+1l) Q**c )
(9.12)

The results in table 9.6 clearly indicate that the
truncation effects on the horizontal components of § com-
puted from Shepperd's equations are identical to those
computed from (9.12) using Hagiwara's Gf coefficients.

In addition, the truncation effects e(dgr) on the radial
component of 3§ from Shepperd's equation are in a good
agreement with the Hirvonen-Moritz (ibid, table 7.2) results.

We have also computed the RMS magnitude of the compon-
ents of § using subroutine COVAX (Tscherning, 1976). The
quantities that we have_actually computed form COVAX, are
the variances of --IL —;:IE (in Eotvos), £ , and n (in
arcseconds), i.e. the variances of the radial and of the
horizontal components of & , at selected altitudes in space.
From these variances we have then computed the RMS magnitude
of the components of ¢ as:

RMS(6gr) = r(var(—(l/l‘)BT/ar))é « 10783 (9.13)

RMS(6g,) = 253§3§7353-(var(5) + var(n>)é (9.14)
2 2

RMS(8g, .oq) = [RMS(8g )"+ RMS(sg,) ik (9.15)

These values must be the same with the truncation error
components (9.1), (9.2), and (9.8), for ¢, =0° , provided
that the same anomaly degree variance model is used (equation
(9.7) in our case). The radial, the horizontal, and the
total components of 3 from COVAX, and from Shepperd's
procedure (with ngax =400) are given in table 9.7. As
we can see, the agreement between the results from the two
procedures is very remarkable.




Table 9.6
Comparison of the Truncation Effects on 3 , Computed
from Shepperd's Equations, and from Two Other Sources
(npmax =8 , values in mgal, altitude: O meters).

Shepperd's Equations

Cap (+) (++) ) 3
radius £(8gy) e(6g$)= e(égy) e(dgp) G g$)==e(6gx) ;
0° -— 15.00 24.11 15.00 :
10° 7.5 10.74 7.73 10.74
20° 5.4 7.33 5.89 7.33
30° 4.4 5.14 5.38 5.14
40° 4.2 3.67 5.59 3.67
50° 4.2 2.74 5.79 2.74
60° 4.3 2.29 5.70 2.29
70° 4.1 2.11 5.35 2.11
80° 3.8 2.17 4.84 2.17
90° 3.3 2.33 4.15 2.33
100° 2.7 2.44 3.42 2.45
110° 2.3 2.45 2.93 2.45
120° 2.2 2.22 2.89 2.22
130° 2.4 1.77 3.14 1.77
140° 2.4 1.17 3.28 1.17
150° 2.2 0.61 2.95 0.61
160° 1.6 0.20 2.05 0.21
170° 0.6 0.01 0.74 0.02 2
180° 0. 0. 0. 0. }

(+) from Hirvonen and Moritz, - 1963, table 7.2, p.55, using
the Molodensky's Qn coefficients.

(++) from equation (9.12), using Hagiwara's Q; coefficients.




Table 9.7
Comparison of the RMS Components of & (from Covax),
with the Truncation Errors for yo =0°
(trom Thepperd's equaticns) at Varicr. L7
(values ure in mgal)
hp Tscherning's COVAX Shepperd's equations
°Br %8n  98:5ta1 Sgr 38y %8igtal
5 km 38.78 37.35 53.84 37.58 36.07 ""7°.79
10 km 35.76 34.29 49,55 35.53 33.97 49.16
100 km 23.60 22.43 32.56 23.67 21.82 32.20

500 km 13.57 13.91 19.44 13.54¢ 12.01 13.10

The use of a higher degree reference field:

It must be pointed-out that the large cap sizes ({yo)
given in table 9.5 (column 2), corresponds to the use of
an ellipsoidal reference field. Let us now assume iLhat
a higher-degree reference field is available, defined by
a set of potential coefficients complete to degree and order
Nref » ©.g. the GEM-9, or the RAPP-180 solution (Rapp, 1980).
If such a reference field is used for the computation of
the components of § at a space point, the corresponding
truncation effects can be still computed from equations
(9.1), (9.2), and (9.8), where the summations are taken
from npref+1 , un (0 Nfpax =400 . For example, if nper =20,
we found that » ordzr to maintain the truncation errors
below the 10%-levei, the cap radii (yo) are much smaller
than the radii using an ellipscical reference field (table
9.5, 3rd column). Of course, .hese radii have been computed
under the assumption **»‘. the reference field (the coeffic-
ient:, is error-frere. Nevertheless, we can conclude that
thie use of a4 higl _r~dz2gree reference field can reduce dram-
atically the iruncation angles, and therefore -ue¢ computa-
tlonal effort.
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
t
Three approaches have been investigated .or the computa-
1 : tion of the components of the gravity vector in space from
surface data, without neglecting the topography of the earth:
1. A numerical integration approach, based on the applica-
tion of Green's third identity (chapter 2).
2. The Dirac approach, following tne Bjerhammar's discrete
solution to the geodetic B.V.F. (chapter 5).
3. The Least-Squares Collocation approach (chapter 7).
In order to avoid the errors which exist in real data, ’
this work has been a simulation study, using as terrain
a conical and a spherical model (chapter 3). Seven para-
meters are needed to define the geometric and the dynamic

characteristics of these models, and the two point masses
located beneath their surface on their axes, generate the
synthetic data for the application of the simulations. The
exact gravity disturbance vector components which are computed
from themodel, are then compared to the corresponding compon-
ents which are evaluated from each one of the three approaches,
in terms of their relative percentage differences (chapters

4, 6, and 7). From the simulations which were performed,

the following conclusions can be made.

(a). The errors from the Green's approach become smaller
as the altitude of the space point increases. They can

be as small as 1% for a very smooth topography (the case

of the spherical model), or for a very large but local topo-
graphic feature (the case of the 40°-inclination cone, 4.1
km high). The errors can be as large as 25% in certain
cases (right above a 20°-inclination cone), but they decrease
at space points away from the model. These errors are due
to the numerical integration procedure (evaluation of the
kernels at the centers of the blocks), and to the neglect

of the second -~ order variations of the topographic surface.

(b). Both, the Dirac and the Collocation approaches, require
discrete data on the physical surface of the earth, but

they are very time-consuming, especially when a large amount

of data is used. An iterative procedure for the analytical
continuation of the surface gravity anomalies to the geosphere
is described, based on the Gauss-Seidel numerical method.
Acceleration techniques which yield a much faster rate of
convergence, require an additional series of iterations

for the estimation of the eigenvalues of the system of equations,
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which has to be solved for the gravity anomalies on the
geosphere. The iteration procedure might diverge for very
dense data at high elevations. A method for the estimation
of the depth of the geosphere is described <uct that the
ircration is guaranteed to converge. The o AR BN
gravity vector from the Dirac approach now increase as ihe
inclination of the model increases, and as the altitude
of the space point increases, but they are still smaller
than the errors from the Green's approach using identical
models and data.

{(c). The collocation approach requires the computation

of the covariances between the predicted quantitic.,, ~nd

the data. In addition, it is a very time-consuming method,
since the inverse of the ma:rix of the covariances is needed.
On an overall basis, the Dirac approach seems to be superior
as compared to collocation.

None of the three approaches igrere the topcgraphy
of the earth as it happens with the c'assical approsch (chapter
9). Comparisons of the improved techniques versus a classical
approach (the Direct Integration Method), using identical
models and data arrangement, indicated that the errors in ¥
irom the improved techniques are at least by a factor of
2 smaller than the errors from the classical approach. This
clearly indicates the significance of the techniges described
in this paper.

From some tests which were made for gravity anomaly
computations on the surface of the earth using real data
‘section 9.1), it was concluded that the Dirac approach
requires very dense data «overage for such a kind of compu-
tations (say 1' as in our simulations).

In order to investigate the relationship between the
altitude of the space point, and the truncation angle (the
radius of the cap within which the data is given, section
9.3), Shepperd's (1979) cemputer program has been used.

It was fcund that in ouvsder to maintain a truncation error

in 4§ smaller than :0% (with respect to the RMS magnitude

ot *he components .7 ¥ , using an ellipsoidal reference
fi21d), we should extend the computations within a 50°-

.4p, or larger, depending on the altitude of the space point.
liowever, by using a higher-degree reference field (defined

by a set of potential coefficients), the truncation angle
can be dramatically reduced. The truncation effects discussed
in sect,on 9.3 are valid for the Dirac approach, and for

the . .ussical approach (the Direct Integration method),

both of which are based on the Pizzetti's formula.

From our experience with the simulacions prerformed
1 1 described in this study, we would recommend the Grecn's

bt ) et e an S e L omm . L
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approach for the computation of the gravity vector at high
altitudes (above 10 km), and the collocation approach for
points below the 10 km-level. The Dirac approach is question-
able due to the fact that it requires very dense data on
the surface of the earth. We would also recommend the use 1
of real data (on the surface of the earth, and in space),
for a more realistic comparison between meastred and computed
components of the gravity vector in space.
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