
SI MULAT ION STUD IES ON THE COMPUTATION OF THE GBAVITY VECTOR IN -ETC(U)
JUN Al K E KATSAMBAL OS F19628-79-C 0027,

UNCLASSIFIED 314 AFGL-TR-81-0187 NL



1.1152-4 11111,

11111 ___ f4 1 .6

* tS * MIQROCOPY RtSOLUIION it-Tl CHART
-~NDFlA



.~ ~ 8IMLATO~.WU

*IGA*VoI

Tbe OLD -440te UnjveSot7
Re~r~b t.AWtA

JAN 2

8c1jtif ic Report No. 8

Approoved f or public relee;dtiblA

-AIR Mm~

AIR.

j.~~ )W



C v. 4 0 --...-

I
C ~

I 'I.

'4-

.' .tt.

p

4AZ

A

A

MA>

4'

p

-~ t~N- (..
A

4 A ~
'

t * A

-a
kj~ S

%'.tit..zj>
It- :9'' p~ I

I



UnclasQif id
SECURITY CLASSIFICATION OF THIS PAGE (Whum Det.Eitierod)_

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER i2. GOVT ACCESSION NO. RECIPIENT*S CATALOG NUMBER

AFGL-TR- 81-0187 _ _ _ __,

4. TITLE (nd Subtitle) S. TYPE OF RFPORT I PRIO0 COVERED

SIMULATION STUDIES ON THE COMPUTATION OF Scieni tic Report No.-8
THE GRAVITY VECTOR IN SPACE FROM SURFACE __

DATA CONSIDERING THE TOPOGRAPHY OF THE s. PERFORMING OR1. REPORT NUMBER
EARTH Dept. of Geodetic Sci.#314
7. AUTMOR(s) S. CONTRACT OR GRANT NUMSER(i)

F19628 -79-C-0027
Kostas E. Katsambalos

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT. PROJEC r. TASK

The Ohio State University AREA S WORK UNIT NUMBERS

Research Foundation 61102F
Columbus, Ohio 43210 2309G1AW

11. CONTROLLING OFFICE NAME ANO AOORE3S 12. REPORT DATE

Air Force Geophysics Laboratory June, 1981
Hanscom AFB, Massachusetts 01730 ,. NUMBER OF PAGES

Contract Monitor: Bela Szabo/LW 136
14. MONITORING AGENCY NAME & AOORESS(I

f 
dlifferenl from Controlling Offie) I. SECURITY CLASS. (t thie ispOrt)

Unclassified

IS. 0ECL ASSI PIC ATION/ DOWN GRAOI NG

SCM EDU .

IS. OISTRIBUTION STATEMENT (ol this RePair)

A - Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the obstract etered In Block 30, ill fferemt hei Rart)

1. SUPPLEMENTARY NOTES

IS. KEY WOROS (Continue on everse sids f ieceeeoe mid idmitify IW block mmer)

geodesy, gravity

10. ABSTRACT (Continue an pew sre sode It necessary end identiif, ky Wbeek UIP4et)

.-11 Three approaches are investigated for the computation of the
components of the gravity vector in space considering the topo-
graphy of the earth: a numerical integration approach based on
the application of Green's third identity, the Discrete Dirac
approach, and the Least-Squares Collocation approach. Under a
spherical approximation, the surface of the earth is assumed to
be known through the elevations of its points above a reference
sphere. The first technique requires as data gravity disturbances

DD 1473 EItoo. oF , Nov 61 ,s oSsoLE, Unlassified
SECURITY CLASIFICATION OF THIS PAGE (When D1o mited)



~Unclassified
SECURITY CLASSIFICATION OF WS PAGZb Dole Utred)

and disturbing potentials on the earth's surface, while the other
two techniques require as data surface gravity anomalies. Two
point masses located on the axes of symmetry of two simple terrain
models (a cone and a sphere), generate on their surfaces the syn-
thetic data needed for the simulations. The agreement between
the rigorously computed vectors (from the models), and those from
the three techniques, is analyzed in terms of factors such as
the inclination of the model's surface, data density, altitude
of the space point etc. The application of the Dirac approach
is questionable due to its limited accuracy for large data spacing
The Green's approach is recommended for computations above 10 km
altitude, while the Collocaticn approach is suitable for computa-
tions at points between the earth's surface and the 10 km level.
Comparison of these techniques with the classical approach (the /*
Direct Integration Method), indicate that the consideration of
the topography improved significantly the accuracy of the compu-
tations.

Unclassified
SSCUfITY CLASSIVICAtIOU OF . PAGEWf Wn Do. Enemeo )



Foreword

This report was prepared by Kostas Katsambalos, Graduate
Research Associate, Department of Geodetic Science, The
Ohio State University, under Air Force Contract No. F19628-
79-C-0027, The Ohio State University Research Foundation
Project No. 711664, Project Supervisor Richard H. Rapp.
The contract covering this research is administered by
the Air Force Geophysics Laboratory, Hanscom Air Force
Base, Massachusetts, with Mr. Bela Szabo, Contract Monitor.

T
T 

-

,.v T,. <.ior
Di~t

iii



TABLE OF CONTENTS

ABSTRACT. ........................ ii

FOREWORD. ...................... .. .

TABLE OF CONTENTS .................... iv

LIST OF TABLES. ..................... vi

LIST OF FIGURES. ...................... x

CHAPTER 1. INTRODUCTION ................... 1

CHAPTER 2. THE APPLICATION OF GREEN'S THIRD IDENTITY. 5

2.1 Introduction. ................. 5
2.2 Green's Third Identity .. .......... 6
2.3 Moritz's Approach .. ........... 10
2.4 Molodensky's Approach .. ......... 13
2.5 Differentiation of the Disturbing Poten-

tial .. .................. 19
2.6 Rotation to the Geocentric System . . . .26
2.7 Computation of the Gravity Vector . . . .28

CHAPTER 3. THE TERRAIN MODEL .. .............. 29

3.1 Introduction .. ............... 29
3.2 The Geometry of the Model .. ........ 30
3.3 The Data on the Surface of the Model .. 34
3.4 The Gravity Disturbance Vector in Space

Computed from the Model .. ......... 35
3.5 The Effect of the Model's Symmetry and

Center of Mass on the Simulations . . .. 36

CHAPTER 4. SIMULATION TESTS FOR THE GREEN'S APPROACH. . 42

4.1 Introduction .. ............... 42
4.2 Simulation Tests. .............. 44
4.3. Related Work, and Comparison with Koch's

Approach .. ................. 49

CHAPTER 5. DISCRETE APPROACHES FOR THE COMPUTATION OF THE
GRAVITY DISTURBANCE VECTOR IN SPACE. .. .... 58

5.1 Introduction. ............... 8
5.2 Theoretical Development .. ......... 59

5.2.1 The Mean-Value Approach. .. .... 63
5.2.2 Gauss-Seidel Iteration Method . . . 64
5.2.3 The Computation of the Gravity

Disturbance Vectors in Space (Mean-
Value Approach). .. ........ 67

iv



5.3 The Dirac Approach ..... ......... ... 69
5.3.1 Iterative Solution for the Spikes. 71
5.3.2 The Convergence of the Iterative

Solution, and the Radius of the
Geosphere. ............. 72

5.3.3 The Computation of the Gravity Dis-
turbance Vectors in Sp-.ce (Dirac
Approach) ............ 76

5.4 The Initial-Value Method. ......... 78

CHAPTER 6. SIMULATION TESTS FOR THE DIRAC APPROACH. 79

6.1 Introduction ..... ............... ... 79
6.2 Simulation Tests ............. 80
6.3 Comparison of the Green's with the Dirac

Approach ...... ................. ... 90
6.4 Related Work ..... ............... ... 91

CHAPTER 7. ESTIMATION OF THE GRAVITY DISTURBANCE VECTOR
IN SPACE USING THE METHOD OF LEAST-SQUARES
COLLOCATION ...... ................. ... 93

7.1 Introduction ..... ............... ... 93
7.2 Collocation Prediction of the Gravity

Disturbance Vector ................ 94
7.3 Simulation Tests with the Collocation

Approach ...... ................. ... 96

CHAPTER 8. COMPARISON OF THE IMPROVED TECHNIQUES WITH
THE CLASSICAL APPROACH ... ........... .. 105

CHAPTER 9. SOME TOPICS OF SPECIAL INTEREST RELATED TO
THE COMPUTATION OF THE GRAVITY DISTURBANCE
VECTOR IN SPACE ....... .............. ..112

9.1 Some Tests with Real Data and the Dirac
Approach for Gravity Anomaly Computations
on the Surface of the Earth ......... .. 112

9.2 Truncation and Discretization Errors. . . 117
9.3 The Relationship Between the Truncation

Angle and the Altitude of the Space Point 118

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS .......... .129

REFERENCES .......... ....................... .132

v



LIST OF TABLES

Table
3.1 The Parameters which Define the Models for the

Simulations ------------------- 37
4.1 Description of the Tests with the Model Topography

(Green's Approach) ---------------- 46
4.2 Comparison of Gravity Disturbance Vector Components

in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 2'x 20; grid: 2'; inclination: 100) - - - 50

4.3 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 3*x 30; grid: 2 ; inclination: 100) - - - 50

4.4 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 8'x 80; gird: 2 ; inclination: 100) - - - 51

4.5 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 20x 20 ; grid: 2 ; inclination: 100) - - 51

4.6 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 4*x4*; grid: 1'; inclination: 100) - - - 52

4.7 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 4°x 40; grid: 1'; inclination: 200) - - - 52

4.8 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(inner region: 0.30 x 0.30; inner grid: 0.5';
outer region: 4*x 40; outer grid:l'; inclination:
200) ----------------------- 53

4.9 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(inner region: 0.3*x0.30 ; inner grid: 0.1'; outer
region: 40x4°; outer grid:1'; inclination: 20*) -  53

4.10 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 4*x4*; grid: 1'; inclination: 200) - - - 54

4.11 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 4*x 40; grid: 1'; inclination: 400) - - - 54

4.12 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 80x8*; grid 2'; spherical cap model) - - 55

vi



4.13 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 0.40 x0.40; grid: 1'; inclination: 100) - 56

4.14 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 0.4*x0.40; grid: 1'; inclination: 100) - - 56

4.15 Comparison of Gravity Disturbance Vec.or Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 0.40x0.4*; grid: 1'; inclination 100) - - 57

4.16 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from Integration
Procedures Using the Green's Third Identity
(area: 0.40x0.4*; grid: 1'; inclination: 100) - - 57

5.1 Typical Values of the Terms in Condition (5.39) - - 74
5.2 Maximum Sufficient Depths (R-RB) of the Geosphere

for a Convergent Solution ------------- 77
6.1 Description of the tests with the Model Topography

(Dirac Approach) ------------------ 81
6.2 Gravity Disturbance Vector Components from the Dirac

Approach at Various Iteration Steps -------- 82
6.3 Comparison of Gravity Disturbance Vector Components

in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 20x20 ; grid: 5'; spherical cap model)- - - 86

6.4 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.40 x0.40; grid: 1'; spherical cap model)- 86

6.5 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.40x0,4*1 grud: 1'; inclination: 100) - - 87

6.6 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.40 x0.40; grid: 1'; inclination: 100) - - 87

6.7 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.4*x0.40 ; grid: 1'; inclination: 100) - - 88

6.8 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.4*x0.40; grid: 1'; inclination: 100) - - 88

6.9 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Dirac
Discrete Approach
(area: 0.4 0x0.4*; grid: 1'; inclination: 400) - - 89

vii



7.1 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation Approach
(area: 0.8 0x0.8*; grid: 3'; inclination: 100) - - 100

7.2 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation Approach
(area: 0.8*x0.80; grid: 2'; inclination: 100) - - 100

7.3 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation Approach
(area: 0.8x0.8°; grid: 3'; inclination: 100) -- 101

7.4 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation Approach
(area: 0.8*x0.8*; grid: 2'; inclination: 400) - - 101

7.5 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation Approach
(area: 0.8*x0.80 ; grid: 2'; spherical cap model)- 102

7.6 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-( cation Approach
(area: 0.8*x 0.80; grid: 2'; spherical cap model)- 102

7.7 Comparison of Gravity Disturbance Vector Components
in Space, from the Discrete Dirac Approach, and from
the Collocation Approach -------------- 103

7.8 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Collo-
cation approach (elevations set to be equal to zero)
(area: 0.8*x 0.80; grid: 2'; inclination: 100) - - 104

8.1 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Classical
Approach (the Direct Integration Method)
(area: 80x8*; grid: 2'; inclination: 100) - - - - 108

8.2 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Classical
Approach (the Direct Integration Method)
(area: 0.4 0x0.40 ; grid: 1'; inclination: 100) - - 108

8.3 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Classical
Approach (the Direct Integration Method)
(area: 0.4*x0.4*; grid: 1'; inclination: 10*) - - 109

8.4 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Classical
Approach (the Direct Integration Method)
(area: 0.4*x0.4*; grid: 1'; inclination: 100) - - 109

8.5 Comparison of Gravity Disturbance Vector Components
in Space, Computed Rigorously, and from the Classical
Approach (the Direct Integration Method)
(area- 0.4*x0. 0; grid: 1'; inclination: 100) - - 110

viii



8.6 Comparison of Gravity Disturbance Vector Components
in Space (10 km altitude), Computed from the Im-
proved Techniques and from the Classical Approach
(area: 0.80 x0.8*; grid: 2'; inclination: 100 - 111

9.1 Free-Air Gravity Anomalies in Manitoba, Canada - - 114
9.2 Free-Air Gravity Anomalies in Manitoba, Canada

(test data set)- ----------------- 115
9.3 Comparison of Input with Computed Anomalies at

Various Depths of the Geosphere (Dir-.c Approach) - 116
9.4 Computation of Gravity Anomalies Along a Profile - 116
9.5 Cap Radius for Truncation Error Smaller than 10%

at Selected Altitudes of the Space Point ----- 124
9.6 Comparison of the Truncation Effects on the Gravity

and from Two Other Sources ------------ 127
9.7 Comparison of the RMS Components of the Gravity

Disturbance Vector (from COVAX), with the Trunca-
tion Errors for p =0* (from Shepperd's equations)
at Various Altitudes --------------- 128

ix



LIST OF FIGURES

figure
2.1 Geometric Configuration for the Green's Approach- 9
3.1 The Geometry of the Model ------------- 31
3.2 Simulation Data on the Surface of a 10*-inclination

Conical Model ------------------- 40
3.3 Simulation Data on the Surface of a 20'-inclination

Conical Model ------------------- 40
3.4 Simulation Data on the Surface of a 400-inclination

Conical Model ------------------- 41
3.5 Simulation Data on the Surface of a Spherical Cap

Model ----------------------- 45
4.1 The Surface Grid on the Model ----------- 61
5.1 Geometrical Configuration for the Discrete Approaches6l
5.2 The Mean-Value Approach -------------- 65
5.3 The Dirac Approach - The Spikes at the Carrier Points 70
5.4 The Point Qj with Maximum Elevation hmax , to

which the Maximum Terms in (5.39) Correspond - - 75
7.1 The Network for the Covariance Approximation Pro-

cedure- ---------------------- 99
9.1 Radial, Horizontal, and Total Truncation Errors at

Altitude 5000 meters --------------- 120
9.2 Radial, Horizontal, and Total Truncation Errors at

Altitude 10000 meters --------------- 121
9.3 Radial, Horizontal, and Total Truncation Errors at

Altitude 100000 meters -------------- 122
9.4 Radial, Horizontal, and Total Truncation Errors at

Altitude 500000 meters -------------- 123

x



Chapter 1

INTRODUCTION

There are three Boundary-Value Proble:.is (BVP) of poten-
tial theory (Moritz, 1964, p.1; Heiskanen and Moritz, 1967,
p.36):

1. First BVP (Dirichlet's problem): Given an arbitrary
function on a surface S , determine a function V which
is harmonic either inside or outside S , and which
assumes on S the values of the prescribed function.

2. Second BVP (Neumann's problem): Given the normal derivative
aV/3n of a function on a surface S , determine the
function V which is harmonic either inside or outside
S , whose normal derivative assumes the prescribed boundary
values on S

3. Third BVP: Determine a function V which is harmonic
either inside or outside a given surface S , and is
such that the linear combination hV+ kaV/an assumes
prescribed values on S .

It is clear that in all three problems, the surface
S is assumed to be known (i.e. the locations of points
on the surface are determined in a specified coordinate
system), and only the harmonic function V is to be determined
from the various data on S . The geodetic BVP may be defined
as the determination of the physical surface of the earth,
if the gravity vector 9 and the gravity potential W are
given on it (Moritz, 1965, p.36). This problem calls for
the determination of the surface of:
(a) the geoid (Stokes' problem) using gravity data reduced

from the physical surface of the earth to the surface
of the geoid, or

(b) the telluroid (Molodensky's problem) from gravity data
given on the physical surface of the earth.

Since the surface (geoid or telluroid) is the unknown,
the geodetic BVP is not directly related to any of the three
problems of potential theory mentioned above. What makes
the solution of the geodetic BVP possible as a 3rd BVP,
is the fact that certain restrictions are enforced (Moritz,
1964, p.2), namely:
(a) the geoid is an equipotential surface of the gravity

field of the earth (Stokes' approach), and
(b) in addition to the gravity g , the potential difference

AW - W- Wo at every surface point is determined from
1.



2.
levelling combined with gravity observations (Molodensky's
approach), Wo being the potentialof the geoid.

The definitions above will help us later in determining
the kind of BVP we need to solve in the present study. Let
us now state the problem.

Certain geodetic applications, such as aircraft inertial
navigation systems, and the computation of rocket trajectories,
or components of the gravity disturbance vector, require
the calculation of the gravity vector components at a certain
altitude in space, from data collected on the physical surface
of the earth. Zero-order solutions to this problem (i.e.
solutions ignoring the topography of the earth and/or
the surface inclinations) can be found in the literature
(cf. Hirvonen aqd Moritz, 1963; Heiskanen and Moritz, 1967;
Mueller, 1966). These methods are:

1. The Direct Integration method, which is based on the
generalized Stokes' formula;

2. The Coating method (see also in (Orlin, 1959));

3. The Upward Continuation method, which is based on the
Poisson's integral equation (Shebalin, 1979).

Apart from these three methods, which are considered
as the classical approaches, there are also other techniques.
However not all of them yield the three components of the
gravity disturbance vector. Some of them are applied for
the computation of the gravity anomaly (Ag) only, and some
others for the computaion of the disturbing potential (T)
alone. These methods are:

4. The Stokes' formula in combination with the use of Poisson's

integral theorem (L. de Witte, 1969);

5. The Green's third identity (Moritz, 1965; B. Witte, 1969;

Koch, 1967-b, 1968-a);

6. A Bjerhammar-type of solution, based on the reduction
of gravity data on a defined sphere internal to the
surface of the earth, and then application of the Pois-

son's integral for the upward continuation of the gravity
data to a space point (Bjerhammar, 1978; Moritz, 1965,
p.54; Sjiberg, 1978);

7. Polynomical modeling of the anomalous gravity field,
for the upward continuation of gravity data (Paul and

Nagy, 1972);

8. Series expansion of the external anomalous potential
(Petrovskaya, 1979);

9. The Finite Element method (Richardson and Hopkins, 1978;
Junkins and Saunders, 1977);



3.
10. Geopotential Modeling by the so-called point-masses

technique (Needham, 1970):

11. The method of Least-Squares Collocation, or a combina-
tion of Collocation with integral equations (Lachapelle,
1977; Tscherning and Forsberg, 1978; Forsberg and
Tscherning, 1980):

12. The Initial-Value method (Nakiboglou an Lim 1979).

For the computation of the gravity ye' tor g at a
space point P , we first need to evaluate the components
of the gravity disturbance vector at this point (Heiskanen

-tand Moritz 1967, p.227). Since 0 = grad T (more details
will follow in the next chapter), the problem is equivalent
to the estimation of the partial derivatives of the disturbing
potential T at the same space point P . A first-order
solution, linear in elevation (h) of the earth's topography
is discussed in (Moritz, 1965. part 2), but only the expression
for the gravity anomaly at P is derived following a planar
approximation.

In this study we develop a method for the computation
of the three components of the gravity disturbance vector
at space points, using data on the physical surface of the
earth. The topography of the earth is not neglected, and
the need to know the deflection of the vertical is avoided.
Only surface gravimetry, elevation data, and (possibly)
a geopotential model will be used. Green's third identity
is the starting point for this approach (Chapters 2, 3,
and 4).

The development of another method, based on the Bjerham-
mar's discrete (Dirac) approach for the upward continuation
of gravity data is also investigated (Chapters 5, and 6).
The two methods are then compared to each other.

Finally, the applicability of least-squares collocation
is examined, and the results of the three approaches are
compared with respect to factors such as the inclination
of the terrain, the altitude of the space point, the density
of the surface data, etc. (Chapter 7).

In order to avoid the random and the systematic errors
which exist in real data, we decided to test the accuracy
of the three approaches through a simulation study, by substi-
tuting for the topography of the earth a number of simple
terrain models (Chapter 3). The exact vectors computed
from these models can then be compared to the computed ones
from the three approaches, using the synthetic data on the
model's surface. Such simulation with terrain models, but
for different applications have been made in the past too.
For example the effect of the topography on the external
gravity anomalies is discussed by Moritz (1965), and the
computation of the first derivatives of the disturbing

• " • .1



4.
potential on the earth's surface by Green's formula is des-
cribed by Koch (1967-b, 1968-a).

Due to the fact that throughout this study the surface
of the earth is assumed to be known, the problem of the
determination of the gravity disturbance bector is closer
to the BVP as defined in potential theory, than to the geo-
detic BVP. Koch and Pope (1972) called this problem "the
geodetic BVP using the known surface of the earth", andIthey have stated theorems on its uniqueness and existence.
The three methods which will be described in the following
chapters, require as data (in addition to the information
which defines the surface), surface gravity anomalies (Ag),
or disturbing potentials CT) and gravity disturbances (6g)
as boundary values. These three quantities are related
to each other through the fundamental equation of physical
geodesy (Heiskanen and Moritz, 1967, p.88):

aT 2T 2Tg

g=r- -F r

If the boundary values are gravity anomalies (linear
combination of T and DT/ar), our problem is equivalent
to the 3rd BVP above, since the components of 't - gradT
are the partial derivatives of T . However, if the bound-
ary values are gravity disturbances and disturbing poten-
tials (not their linear combination), our problem is none
of the three BVP of potential theory as they are defined
in the beginning of this chapter.

The Direct Integration, the Coating, and the Upward
Continuation methods which were mentioned above, were ref er-
red to as the classical approaches, because the topography
of the earth is neglected, and the data required for their
application must be reduced on the surface of the sphere
which approximates the geoid. These classical approaches
are extensively, discussed in (Heiskanen and Moritz, 1967,
chapter 6). The Green's, the Dirac,.and the collocation
approaches which will be discussed in this paper, will
be referred to as the improved techniques, since the earth's
topography is not neglected, and the required data is boundary
values on the earth's surface, with no need to apply gravity
reductions from this surface to the geoid.

In chapter 8, these improved techniques are compared
to the classical approach (the Direct Integration method).
It will be shown that the results from the improved techniques
agree to the exact values (computed from the model) better
than the results from the classical approach do. This
clearly indicates that these techniques offer an improved
solution for the computation of the gravity vector in space,
without neglecting the topography of the earth.



Chapter 2.

THE APPLICATION OF GREEN'S THIRD IDENITY

2.1 Introduction

If W is the gravity potential of the earth, and U is
is the normal gravity potential of an equipotential ellip-
soid, then the earth's gravity vector, and the normal gravity
vector are defined as (Heiskanen and Moritz, 1967, p.85):

3W aw 3Wg = grad W = ( , , - - - )

= grad U = ( , (2.1)

(X, Y, Z) is a cartesian geocentric coordinate system,
whose origin is at the center of mass of the earth; the
Z-axis coincides with the earth's mean rotational axis,
and the X, Y, axes form a right-handed system with the
Z-axis, such that the X-axis lies in the Greenwich meridian
plane.

The gravity disturbance vector at any point P is
defined as the difference between g and -y:

= - (2.2)

Let m be the unit vector normal to the equipotential
surface W = Wp of the earth's gravity field at P , and
be the unit vector normal to the equipotential surface
U = Up of the normal gravity field at P . Then

= - = grad W - grad U = grad (W- U)

= grad T = ( , - DT, -- ) (2.3)

T being the disturbing potential at P Ij we consider
only the magnitudes of the vectors g and y , then the
gravity disturbance g p at P is :

g. - 3W aU ) * W 3U a 3T

(2.4)

This equation shows that if we ignore the difference
in the direction of f and - , or in other words the tilt
of the surfaces Wp and Up with respect to each other,
then the normal component of the gravity disturbance vector
is identical to the difference gp - Yp The error of

5.



6.
such an approximation is of the order of the square of the
deflection of the vertical (Molodensky, et al., 1962, p.79).

The gravity vector g can be computed at any space
point P , provided that we are able to estimate the gravity
disturbance vector , because the computation of the
normal gravity vector does not present any practical
or theoretical difficulty (Heiskanen and Moritz,1967, chapter
6), provided that the altitude of P is known. Therefore,
if we evaluate the three components:

aT 3T 3T
-Tr, - , -TY

of the gravity disturbance vector , the gravity vector
will then be:

+ aT DT aT aU aU aU)
S+ I -T + - - (2.5)

2.2 Green's Third Identity

If U denotes the exterior space of an arbitrary
surface S , then, Green's third identity is an integral
equation of the form (Heiskanen and Moritz, 1967, p.12):

f f f 1 V di = -pV - ff 1 3V- -( dS (2.6)
U S

where:
V a continuous and finite function in the space

outside S which vanishes at infinity.

u the exterior space of the surface S

n outer normal to the surface S

. the distance from the space point to the surface
element dS .

=41 ,if the identity is applied to a point outside S.p= 21T . ................... on S.
0 . ................ inside S.

If V happens to be a harmonic function in the space
outside S , by definition it satisfies Laplace's equation
(AV - 0), and therefore, the left-hand side of (2.6) is
identical to zero. Furthermore, if the mass of the atmosphere
is neglected, the disturbing potential T - W- U is a
harmonic function (Heiskanen and Moritz, 1967, p.86):

AT - a 2T 32T + 2T (2.7)

The partial derivatives of T in a cartesian coordinate
system are harmonic functions too, because they satisfy
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Laplace' s equation:

a 2  aT a a2  IT 9 2  T a =-M (IT) + -r(= ) + -= (-1) =f = AfT - 0 (2.8)

and similarly for and -4 . If we now apply Green's
identity to thedisturbingpotenhal T for the exterior
of the earth's surface (p = 4n), the following very impor-
tant equation of physical geodesy is obtained (ibid., p.12):

1 T

T= 1 ff T - -' } dS
S (2.9)

S being the physical surface of the earth, T the disturb-
ing potential at the surface element dS , Z is the dis-
tance from the space point P to dS , and Tp is the
disturbing potential at P . Green's third identity can
also be applied to the derivatives:

3T IT IT

of the disturbing potential in a cartesian coordinate system:

aT 1 rr IT a 1 1 a ITi
-a) -TT 7T -WTt' T =n =) I dS

7 1 Ta (a) dS~T~p TT ~ =n~ T =n W (2.10)

IT 1 ff aT a 1 1 a _T

An initial attempt to use these three equations for
the computation of the gravity disturbance vector, resulted
in very complicated expressions the practical use of which
was questionable. More specifically, the deflections of
the vertical on the surface S were needed, as well as
their partial derivatives in a local cartesian coordinate
system. Therefore, we decided to proceed by differentiating
(2.9) directly in a cartesian coordinate system.

Instead of using (2.9) in its present form, certain
authors have used another form (Molodensky, et al., 1962,
p.45; Koch, 1967-b, p.29; Koch, 1968-a, p.11):

T , 1 ff J(T - T(Po)) a ( 1 1 an .dS
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where T(P0 ) is the disturbing potential at the projection
P0  of P onto the surface S . As Molodensky (et al.,
ibid) explained, this second form of (2.9) is an artifact
that does not affect the rigour of the equation. T(Po)
is a constant, and the integral

ff ' (1) dS = 0

is equal to zero, if we integrate over the whole surface.
However, if the integration is taken over a limited area
around P0 - say within a 50 or 100 cap - , the term

- ff T (PO) ( dS

is not equal to zero, and therefore will cause errors in
the computation of Tp . In our derivation for the com-
ponents of the gravity disturbance vector in space, we
decided to use the original form (equation 2.9), because
as we will se later, a limited amount of data is used,
and not a global data set.

Let us now derive the equations for the derivatives
of T under a spherical approximation (Moritz, 1966, p.25).
This does not mean that the topography of the earth is
not considered, or neglected. It means that the given
heights above a reference ellipsoid, are taken as heights
above a mean-earth sphere of radius R , by neglecting
the flattening of the ellipsoid. The effect of this spher-
ical approximation on the disturbing potential is estimated
to be of the order of 0.003 T (Moritz, 1980, p.15). Let
Q be an arbitrary point on the earth's surface S , and
P the point in space where the derivatives of T are to
be computed. (see figure 2.1). Let us also define the
following two coordinate systems:

a. A right-handed cartesian coordinate system (X, ?, Z)
located at the space point P . The Z-axis is in the direc-
tion from the geocenter 0 to P , the X-axis points to
the north, and the Y-axis points to the west.

b. A right-handed cartesian coordinate system (xy,z)
located at the variable surface point Q (topocentric
system). The z-axis points up, the x-axis to the north,
and the y-axis to the west.

If we differentiate (2.9) with respect to R, , ,
we obtain:
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aT 1a i 1 BT

(--T)~ - .-,T ... - } as

P -r -S- -5T r )i T (a(1n s (2.11)

T1 a a(1 a 1 3T
fffT-y rn-RT =n 1I dS

As it will be shown in the next section, the term
aT/n is a function of the deflection of the vertical
components (C,n). Hence, (2.11) have the same difficulties
as (2.10) if applied. For this reason, equation (2.9)
for T will be modified following the Molodensky's tech-
nique (Molodensky, et al., 1962), which has also been used
in (Moritz, 1965, 1966). The theory behind these develop-
ments is outlined in the next two sections.

2.3 Moritz's approach

For a differentiable scalar function F , the gradient
of F is written in terms of its components as:

F F 9F aF
grad F = VF = X 7 1 =z (2.12)

where (x,y,z) is a coordinate system with arbitrary loca-
tion and orientation. The component of grad F in the direc-
tion of a unit vector -A is the dot product:

3F=F = n grad F
n (2.13)

Physically, this product is the rate of change of the scalar
F at the point (x,y,z) in the direction of the vector

= (n, n2, n3). Directly from (2.13) we get:

F = 3F + F + F
an n2  + n3= (2.14)

If F is the disturbing potential T , the term
3F/3n is actually the term appearing in (2.11). In this
section, we follow Moritz's approach for its evaluation
(Moritz, 1964). Let (x,yz) be the local cartesian coor-
dinate system, as defined in the previous section, located
at the arbitrary surface point Q . In this system, the
earth's topography can be represented as

S(x, y, z) - 0 (2.15)



I1.

or by the explicit form z = h (x,y), which yields:

S(x , y , h (x, y)) = 0 (2.16)

Differentiating (2.16) with respect to x and y we obtain:

dS _ S a as 3h
dx =- = 0

= as + a- 3S =0 (2.17)

If 11 is the unit vector perpendicular to the surface
S(x,y,z) = 0 at a point (x,y,z), its components are propor-
tional to the components of the vector grad S

as as asgrad S = (a--' - -' --

as ah as ah as5z ax 5- -' z ay ' -'a)
a (S ah h

s -- - - , 1) (2.18)

Therefore, the unit vector u can be written as:

3h ah
n ax

) 2 + 2 + 1

ax )2y +
(2.19)

If B is the angle of maximum inclination at a parti-
cular surface point Q , then

cos = n " n (2.20)

where n is the unit vector normal to S at Q , and
A 0 is the unit vector along the z-axis:

no = (0 , 0 ,) (2.21)~1

S(nl , n2 , n3) (n1 , n2 , /(._)+ (_...)2+ 1
ax ay

(2.22)
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Let

a = tan
ax x

and
; tan (2.23)

Here Tx and T are the components of the topographic
inclination in the x and y directions respectively.
We obtain from (2.20):

Cos0 n 3 •. cos 1
V tan 2 Tx + tan 2 Ty + 1 (2.24)

and from well-known trigonometric identities:

tan 2 a = tan 2  T + tan2 y (2.25)l( -
Therefore, the unit vector n in (2.19) can be expres-

sed as:

n - cos (- tan Tx , -tan Ty 1) (2.26)

and finally, (2.14) yields:

F F T + tan T + F
a [-- (- tan x tan T) Cosa (2.27)

Equation (2.27) was first derived by Moritz (1964,
p.20), and it was applied to the disturbing potential
T(-F) , in which case:

3T _y (2.28-a)

aT=
-y (2.28-b)
T _T 6
=z =h (2.28-c)

The plus sign in (2.28-b) is due to the fact that in the
present study the local (x,yz) - system is a right-handed
cartesian system, with the y-axis pointing to the west,
instead to the east as it is usually done in the literature
(cf. Heiskanen and Moritz, 1967, p.112; Moritz, 1980,
p.14). , and n are the components of the deflection
of the vertical, and 6g is the normal component of the
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gravity disturbance vector. The normal gravity at Q is
denoted by y . Equations (2.28) and (2.27) yield:

DT_-- - -[5g + Y(- tan T + n tan T )] Cos (
x y (2.29)

As we mentioned below equation (2.11), oy substituting
(2.29) into (2.11), the unknown deflection if the vertical
components appear in the integrals. A technique which
is independent of these components has been developed by
Molodensky, et al. (1962), and it is outlined in the next
section.

2.4 Molodensky's Approach

The basic idea behind this development is to modify
the integral equation (2.9) for the disturbing potential
in such a way, that the term aT/Dn does not appear any
more as a function of the components of the deflection
of the verti-al.

Let us denote by 3T/ax , DT/9y , the derivatives
of T along the horizontal plane (x,y) at the surface
point Q , and by a2T/Dx , a2T/ay , the derivatives of
T along the surface S (cf. Molodensky, et al., 1962,
p.84; Moritz, 1964, p.2 1). These two sets of partial
derivatives are related to each other through the following
equations:

a2T 3T ax ay+ aT ;z

=x a 5 y 77 az a

12T 3T 3x + 3T ay + aT z
a X = ay =F ay

which, if combined with (2.23) and (2.28-c), yield:

2 -IT + -T az = -!Tax x az ax Dx gtn x

= -T + DT az = -T - 6g tan T
ay ay az ay Dy 3 (2.30)

or

3T- -- T + 6g tan T

- 22T + 6g tan T
ay Dy (2.31)

.9-
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We can not substitute (2.31) and (2.24) into (2.27)

for T =F , in order to obtain:

T -g _ cos$ (-aT tan T+ 32T tan (.2
an Cosa ax a x  a y (2.32)

This leads to the following equation (see also in Moritz,
1964, p.22):

aT = _ -g_ cos$ B (T, h)
3 n cosa (2.33)

where

D(T,h) tan + 2 tan T (2.34)
ax ay y

is a special case of the operator:

5(U,V) = l f--'v  + a2U a2 v
ax ax Dy ay (2.35)

Instead of substituting (2.33) into (2.11) as we did
with the Moritz's approach, we will proceed as follows.
First, (2.33) is multiplied by 1/Z to obtain:

1 T _ ( __cos B (T,h))
T -an tcosB , (2.36)

and from the definition of the operator 5 (Moritz, 1966,
p.18) we get:

1 5 (T,h) = (-,h) - T ) (T,h)IT (2.37)

If now (2.36) is substituted into the integral equation
for the disturbing potential, (2.9) yields:

SffTa + 6g Cosa 5 (T,h)f dS
[ TT -rn(T) + !cosa Z (2.38)

and then (2.37) into (2.38) results in:

= -L ff{T a i + +o +Cos$ [r( h)-T75( ,h)]IdS
Tp S 

[-({,ha- T (2.39)

Our goal is to differentiate (2.39) with respect to
X, ?, and Z , but it is still necessary to simplify the
expression for the operator b in terms of known quantities.
We start from Molodensky's identity (Molodenskyet al., 1962,
p.85)
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If TDUV) cos6 dS = -ff uA 2v cos$ dS
S S (2.40)

which for U = T/Z and V = h yields:

ffD (- ,h) cos6 dS =- A 2 h cosB dS
S S (2.41)

where A2 is another operator defined as (Molodensky, et
al., 1962, p.85):

A h 2 hoh2 kh + a2 _hoh2h

A Eh T -1 -q + -2 (-2 q (2.42)

Note that in the last e~itation h1 , h 2 , and ho are
functions of the coordinates q, , q2 , and q0 of an
orthogonal curvilinear system. If q, and q 2 are identi-
fied as the geocentric latitude and longitude respectively,
and q6 as the elevation, then a line element in this
system can be expressed as:

ds2 = hi dh 2 + h2 dT 2 + h2 dX2

where (see in Molodensky, et al., ibid, p.86; Moritz,
1966, p.24):

h 0 = 1
h= r
h 2 = r cos

and r =R + h

With this notation, (2.42) now becomes:

A2h 1 [-sins -2-+ COS h + 24]
Aos 5 (2.43)

If the first and second-order derivatives of the eleva-
tion at any surface point Q are known, it is possible
to use (2.39) for the disturbing potential, or to differen-
tiate it for the components of the gravity disturbance,
as it will be done in the next section. As we will see,
the expressions for these components, not only require
knowledge of the elevations h over the whole surface,
but they also require the slopes tanTx and tanTy to
be known. In addition, the operator (2.43) requires the
second-order derivatives of the elevation to be known over
the whole surface S . At this point we will make the
assumption that the earth's surface is a smooth surface,



whose second-order derivatives (of elevation) are equal
to zero. This assumption of a smooth surface is also a
condition which is required to fulfill Lyapunov's conditions
(Molodensky et al., 1962, p.83). Under this assumption,
(2.43) becomes:

1 12 hA~h tans 2
A2 h = - ryta-4 - (2.44)

For any function F defined on the surface S , such
as the elevation h , or the reciprocal of the distance
1/Z , we have (Molodensky et al., 1962, p.84; Moritz,
1966, p.22):

a 2F - F

aq 2  =

Therefore, (2.44) becomes:

1 tans (2.45)~h = r2 -TT(245

In (2.43) there is no first-order derivative of the
elevation with respect to longitude X , and this is why
this term is missing from (2.45) too. If we evaluate the
partial derivative of h with respect to the latitude ,
we obtain:

h ah ax + h a

The transformation from one cartesian coordinate system
to another, is usually done by applying a series of roata-
tions and an origin shift to the coordinate system being
transformed. In the present report we will use the following
three matrices to denote a positive rotation 8 around
each one of the three axes:

1 0 0

R, (8) 0 cos e sin e

0 -sin e cos a
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cos9 0 -sine

R 2 (9) = 0 1 0

sine 0 cose

cose sine 0

R 3 (M) = -sine sine 0

0 0 1

Starting from the transformation equation between the
topocentric (x,y,z) and the geocentric (X,Y,Z) systems:

x x

y = R. [-(900 - cQ)] R 3 [-(180 ° - A)] Y

z + rQ z

it is very easy to show that:

~3x
= rQ R + hQ

and hence

3h 3h axx- -- = r tan Tx

Therefore, (2.45) can now be written as:

A2 h _ an tan Tr x (2.46)

After the above first-order approximation has been
obtained for 6 2h , it remains to derive the expression
for the disturbing potential Tp , Substituting (2.41)
into (2.39) we obtain:

= 1 1 6g cos0 4 h)+ dS
S

Next, we apply equation (2.33) with 1/t instead of T
(the proof is completely analogous) to obtain:
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1 11

'#n 0S - cos ( (2.48)

and then, (2.47) with (2.48) yield:

( T ' h  f f"-4y y.S

+ 1. JJT J 1 2 cosB f5( Ih)- C4A 2h I dS
4_S c--- 7h' , Z(2.49)

As we have already mentioned, 1/L is a surface function
and hence (2.35) yields:

F) 1Th) 22 -tan T +a(± tanTT3x x -14- y (2.50)

As a final step, substitute (2.50) and (2.46) into
(2.49) to obtain the expression for the disturbing potential
T at a space point P from gravity and topography data
on the earth's surface, without neglecting the topography of
the earth or its inclinations. Only the second-order deriva-
tives of the elevation are neglected under a "smooth-earth"
approximation.

T-97=.off dS

+ 1 fT{ -e 7 )-2cosa ( (T)tan +-( )arTy)

S 3x

+ coS tan s tanT dS(Zr } S(2.51)

If we set the inclination components T and Ty
in (2.51) equal to zero, and use (2.28-c), tien (2.51)
yields the following spherical formula (see Heiskanen and
Moritz, 1967, p.12):

-A H {~4+ T -T-({ I t)(.5'
S'

where 6g is now the gravity disturbance on the surface
of the sphere (S') . In this case, (2.51') corresponds
to the "classical" approach, where the topography is not
considered.

k6.I
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it now remains to differentiate (2.51) with respect

to R, Yf, 2, and then to rotate these components to the
(X,Y,Z) system. This will be done in the next section.

2.5 Differentiation of the Disturbing Potential

In order to obtain the derivatives 7T 4T
we first compute the partials , - " -T in the
( , ?, Z) system (defined in aX 3Y ' 3Z
section 2.2). From 2.51 we obtain:

9T + T cOSB tan tant. _ (-) dS

14 r-- -1 - / 1 ) 1

+O - 1 ( --L ( 1 ) - 2 c O s  - (-)) tantx
4 cos FOB TXP3h -:-)'p

+ (_ ) tar.. I IdS
5 p y (2.52-a)

aT _ 1 6g + T cos Btanp tanT (1) dS4 _ ir Co'-' r tanTdS
YpS X TYp

+ 1 ( _1 ( -))-2cosS C-- (-L(--L)) tanT

+ s +))an dS

-(P- -- Z y (2.52-b)

T T_ 1 f f 1 - Tcos Stan tn dS
32p 4Tr {cose r X Zp z

+ T E- 1 -2cos B - ))tan,

+ Zp( (T) tanTy] } dSS~ TZP3P3
(2.52-c)

We will now derive one-by-lne all the partial deriva-
tives which appear in the equations above. The spatial
distance Z between the space point P and any surface
point Q in the (R, ?, 2) system is:

S= ((RpQ)2 + (7 PQ) 2 + (2p_ Q)2)1 (2.53)



From (2.53) we obtain: 20.

a (1 ) -

a 1 Y

T= -T (2.54)

We also have:

_ .a ( 1L ) = 1 Z 2

ax ax

a= W

ay z 9 ay

(_- =i&.UL (2.55)
3z X-r 3z

where

W9. a1 2  + 9. ay + 3X.2a

;Z.2 DO_ 32 3 9.a? ;2 92 (2.56)

or in matrix form:

39.2 1j6 3Yp P2 92
ax

39O2 3l n a 2 (2.57)

=Z--? lW izp
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Again, from (2.53) for a point Q fixed on S we obtain:

__ - 2 (X - )

- 2 ( - )
S2 (r

zp 2 P Q (2.58)

The partial derivatives in (2.57) can be computed from
the transformation equation between the (x,y,z), and the
(X,Y,Z) coordinate systems:

X - Xp x

V - p = R O(-(900- 5p)) R3(-AX) R2(90*- Q) y

ZZ p+r (2.59) z +rQ
where 0U, are the geocentric latitudes of the points
P and "Q respectively, and rp , r are the geocentric
radii to these points (see figure 2.19. The term AX is
the difference in longitude:

n Q- Ap
Q~ p (2.60)

The matrix:

R = R2(-(90"
- Tp)) R3(-AX) R2(90

- 4-Q)

in equation (2.59) can be easily shown to be equal to

sinTp cos&Xsin p -sin$p sinAX -sinc p cosAX cosTQ

+ cosop coso Q + cOSTp sinQ

R = sinAX sinoQ cosAX -sinAX coso Q

-cos~p cosAXsin4Q cos$p sinAX cos$p cosAX COS Q

+ sinQ cos$Q + sinP sin$Q

(2.61)
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Therefore, equation (2.57) combined with (2.58) and

(2.61) yields:

aje
ax =p q

ap P

aez P Q (2.62)az aZp

and therefore (2.55) becomes:

ax I P Q

RT

3z i Q '(2.63)

Introducing the notation:

wil % w1 2 w1 3

W = -RT  w21 W22 W23

W3 1  W 3 2 W3

(2.64)

and differentiating (2.63) with respect to R p , 2p
we obtain:

=W 1-1I + f2.1 (a:- £ + w w 3)

3Zp aX k 3'p -T- ya) 2
- -)= w-----) W1 Zp

o1 " I -~
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1 W2 17x(XQ.42) 2 
2 5r + 3

aZ YY d-2

-Zp (-LZ- Z042

p ay W~2 1 3Y-22 2 pp22

azg +W~p - (
a~p 22 21 2a

S3Xp 2Q7 2k

2 -.. +W (3;ypiL - _ 3 + VXp)2 -- p'
aXp 22 k22

a W2 32 2 2R+

a~p 3z22 z Z ap

.4-.. (X~z~X) = 3(XQ -Rp)2?-YP

.4... = 3(Ro - Rp) (- Y

axp 22 ps

47;, ) (2.66)R
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Let us now substitute the partial derivatives (2.54),

(2.65), and (2.66) into (2.52). Since we want to evaluate

the ,.rtmrnPnIlt nf Rt the space point P , let us also
set Xp x p M Zp u. From (2.5) we outain:

' f IT os + T onr tanTx} -r dS

3 T Iw,1 (Y2 " )XwT+w 3 3
Cos a

2 Cosa [(w 1 (X 2 -  -) + w, J + w1 XZ) tanT x

+(W 2 1 CX2- -) + w 2 27? + w 2 322) tanT ]I dS
(2.67-a)

fr costan

aT 1 6 . + T tanx}- . dS
3YP Cosa rco

-3 To w + w(_L + W 3 ?z

-2 cos a[(W,2?X + W2 2 (7 2 - Z) + w, 3?Z) tan-r

(w2 1 ?% + w 2 2 (17
- -) w2 3YZ) tan-r~ } dS

(2.67-b)

aT 1 6 9 cos~tano t,Z {-s + T r tanTx  - dS

+ 4'MwTr22 + W322? + W33(Z- a-
+ 4 " - { cosa

- 2 cosa [(w1 12. + w1 2 Z? + w13 (3Z- -- )) tanT~

+ (wZ 1 ZX + w 2 2Z? + wa3( - !.))tan'y]} dS

(2.67-c)

Finally, rearranging the terms in (2.67) we arrive at the

following equations:
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DT 1 6g T Cosa tanT= r~ta

KP z- tcoss + T r nt}-. dS

+3 ff T Z2 [W

-. 7 [*o) 2cosB (wtanTx+w21tanT y

+ X [cosW 2 _ 2cosB(wi2tanrx + w 2 2tanTy)]

Cosa y

+ a [ -_ 2cosS(w 3 tan-[ + W2 3 ant dS[Cosa x Y (2.68-a)

DT 1 6 T cos tanT tanT x  dS

cos s r+ - [ - 2cos_(w 1 tan + W 2 1 tanT)4  [s Z "Coss x y

+ Z2 2cos(w 2 tanT + W2 2taT)
3Lo r x y

+ Y w - 2cos$(W 13tanT + w 23tanT )+ 1dS

+T = I a coswtantanx + w 2(an6y ) brwf + +TnanTy )]dS

a~p 41T Cosa x y7

3 ?[LL~2 o~wza T 2oB w~ltan-r+)w

+ ( 2 W_-- 2 cos(wtanT + w 2tan) dCosa x 22y

(2.68-c)

The differential surface element dS in all the equa-
tions above, is given (in general form for an ellipsoidal
surface) in (Hotine, 1969, eq. 30.72) as:

dS = -1 (N + h) (M + h) cosO d dX
C058 (2.69-a)

where N , M are the principal radii of curvature along
the prime vertical and the meridian, and h is the height
above the reference ellipsoid. Under the spherical approx-
imation of our solution, this equation becomes:
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dS = r cos $ d $ dX

If the surface element is defined by the intersections
of parallels and meridians on the reference sphere, (2.69-b)
reduced to:

1 r2 ) - TH ' STH
AS = os r 0EAST - xWEST) (sin NORTH -Sin SOUTH )

(2.69-c)

The data that is needed for the application of equations
(2.68-a,b,c) is the following. (a) Gravity disturbances
(6g) and disturbing potentials (T) on the surface of the
earth, (b) the elevations of the surface points, and
(c) the two components (Tx , T ) of the surface inclinations.
In the following chapters we will describe how this data
is computed for our simulation studies.

2.6 Rotation to the Geocentric System

The derivatives (2.68) are referred to the cartesian
coordinate system (X, Y, Z) located at the space point P
They are related to the components of the deflection of
the vertical and to the gravity disturbance 6g at P
through the equations (2.28-a,b,c):

3T Y  
(2.70-a)

= + n (2.70-b)

T Tg . 0-)

If we wish to transform these partial derivatives to a

geocentric system (X, Y, Z), we start from the transformation
between (9, Y, 2,), and (X, Y, Z):

~x

R, (-(90o -" Ip)) R, (-(180 - Xp)) Y

2z
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-sinTP COsXP -sin$Po sinXp COS YX

sinX ~ -COsX0

+ rp p COAp c COSp sin p sinp Z

where

r (X + 2 + Z21
p (Xp+ Yp Zp (2.72)

The transformation of the partials in (2.68) to the geocen-
tric system is based on the following set of equations:

TTT a; 3T z
='ST7 -7- =,-- -7~- -W~x

T 9T @R + T 3Y + T aZ

Y - X - + 3T ? +  ;T 3'~~~- =z _TW 7f - -f - T-

or in matrix form:

aT aT

T (3T

3T 3T

(2.73)

where the Jacobian matrix J is computed from (2.71) as:

-sin p COsXp sinAP cos~p cOSAp

(XS) -lnsinp siflAP -CoSXp cOs4p sinpJ ((x,,z)--

cos$P 0 sinop

(2.74)
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In summary, equations (2.68) have been derived for

the evaluation of the derivatives of T in the local
(R, ?, 2) system, while (2.73) with (2.74) can be used
to compute the partials of T in the geocentric (X, Y, Z)
system.

2.7 Computation of the Gravity Vector.

After the partial derivatives of T have been rotated
to the geocentric (X,Y,Z) system, and the gravity distur-
bance vector has been determined:

a T DT

grad T = (T -- (2.3)

the components of the gravity vector 9 are given from
equation (2.5):

-I. g a 3T DT 3T ;T aT 3Tg=grad W = + Y =Z ) ,- ,-)+ (--X , - T- )

(2.3)
U being the normal gravity potential of the equipotential
of the equipotential ellipsoid. The expressions for the
partial derivatives of U with respect to X,Y,Z are given
in (Heiskanen and Moritz, 1967, chapter 6).

For some purposes we need the vector of gravitation ,
that is the vector of the pure attraction of the earth
without the centrifugal force { - gradO (Heiskanen and
Moritz, 1967, p. 2 28):

= grad V = grad (W - 0) - gradP = 9-( 2X, w2Y,0)
(2.75)

The vector 9 contains the effect of the rotation
of the earth, while the vector does not. The vector
of gravitation is of considerable interest in Geodesy,
because it is the effect of the gravitation potential
(V = W-0) of the earth at a space point, which is not
affected by its rotation (for example, an artificial satel-
lite which is orbiting around the earth).

----



Chapter 3

THE TERRAIN M4ODEL

3.1 Introduction

In order to avoid the errors which exist in real data
and for the purpose of testing equations (2.68-a,b,c) for
the gravity disturbance components, we decided to use a
simple terrain model, with synthetic data on its surface.
As it will be described later in this chapter two disturbing
masses are located below this model on its axis of symmetry,
and from those, the exact gravity disturbance vector can
be computed at any space point. The gravity disturbance

6gand the disturbing potential T can also be computed
at any point on the surface of the model. This data, and
the inclinations of the model at these points are then
used in (2.68) to compute the three components of I at
any space point P , and to compare them with the exact
components evaluated from the model's disturbing masses.

The idea of using this type of simulation tests is
not new, and the details will follow along the lines of
this chapter. For gravity anomaly and deflection of the
vertical computations, a conical mountain was used by
Molodenskyet al., (1962, p.217), and byReit, (1966).
For a slightly more general case (the model is on a sphere
rather than on a plane as above), see Sjoberg (1975, p.82 ).
Bjerhammar (1963) has used another type of model which
is a homogeneous spherical cap on a spherical earth. This
model has also been discussed by (Sjbberg, ibid, p.79).
In order to find estimates for the effect of the topographic
elevations on the external gravity anomalies, Moritz (1965)
has used two models (a conical mountain, and a two-dimensional
model e.g. two planes intersecting each other). Other

simulations were performed by Koch (1967-a, 1968-a) with
a pyramid and a cone. These models are similar to those
mentioned above, but they have the advantage of allowing

Among the simulations above, those by Koch and by
Moritz test the accuracy of the computed quantities following
the Green's identity approach The rest are studies on
the accuracy in the computation of surface or space quantities
from one of the Bjerhammar's discrete methods. In this
paper we are dealing with both approaches. The simulations
for testing the Green's approach are reported in chapter
4, and those for the discrete (Dirac) approach are reported

29.
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in chapter 6. In the present chapter, the geometric and
the dynamic characteristics of the model are described.

3.2 The Geometry of the Model

The terrain model which has been selected for this
study, consists of a cone on a spherical earth, with its
top replaced by a spherical cap of certain radius, such
that the spherical and the conical surfaces are tangent
to each other at their intersection (figure 3.1). In theory,
this rounding of the model's top is a necessity to satisfy
Lyapunov's conditions (Molodensky et al., 1962, p.217).

Assume that the axis of the cone intersects the surface
of the mean earth: sphere (R = 6371 kmn) at the point ( o
AO, h=0), and that it passes through the center of mass
0. Let ( Q ,XQ h )be the coordinates of any
point on the surface of the model. The height hQ is the
distance from Q to the sphere along the radius from
0 to Q . Let also (Op , Xp, hp) be the coordinatesk of the space point P where the gravity disturbance vector
is to be computed. At the point M, and M2 on the axis,
there are two point masses mi and M2 respectively,
which generate the disturbing potential. Their distances
from the surface of the sphere (point AO) are al and
a2 . As inclination of the model (i), we define the angle
between its surface and the plane tangent to the sphere
R at AO

As we will show, there are only three parameters which are
needed to completely describe the geometry of the model
in terms of size and shape:

1. The height of the cone's vertex above the spherical
earth (hA)
2. The extent of the cone, in terms of the angle Q , and
3. The radius of the spherical cap (p).

All the quantities involved with the model's geometry
are computed below as functions of the three parameters
above. Let w be the angle at the geocenter 0 between
the axis and the radius to point D where the cone and
the spherical cap meet each other. Let also w be the
angle at the geocenter 0 between the axis and the radius
to an arbitrary point Q on the model. There are three
possible cases for the location of Q on the model:

Q on the spherical cap: 0 1 W

Q on the conical surface: w S

Q on the mean sphere R : I? w 1800



31.

00

Figre .1:TheGemety o th Moel



32.
w can be computed from:

cosw - coseo coseQ 3ineo sineQ cos&X

(3.1)

where
60 = 900 - To

eQ = 90 - TQ
AX = XQ - X0

From figure 3.1 we easily obtain:

A= hA + R (1 - cos2) (3.2)

and the inclination i of the model is then computed as:

Ai = hA + R(I - cosO)
tani = =

BC R sin 2 (3.3)

Then, the height hv of the model's vertex V is given
by:

hv = hA - AV = hA - ( - p) = hA + P -

cosicosi (3.4)

and since

NDh = P tani (3.5)

we obtain:

tan sini
aR + hA - A sini (3.6)

The evaluation of the height of any surface point
is done according to its location on the model (see the
three conditions above).

Case-A Point Q on the surface of the cone (I W 2
figure 3.1). Applying the law of consines to the triangle
AOQ we obtain:

r R+ h4E~~T sin ( 180w 9"  
-wcor-° + 1=77
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which gives:

rQ - R+ hA
Q cosj+ tani sinw (37)

and hence:

hQ = rQ R
Q Q -(3.8)

The distances of the point Q from the two masses
are:

= (R' + r' - 2R, rQ coSW)

and

r 2 
= (R2 + r' - 2R 2 rQ cosw) 

(3.9)

QQ

where

R, =R + a,

R 2 = R - a 2  (3.10)

Case-B Point S on the spherical cap (00 < w < W , figure
3.1). From the triangle OKS we obtain:

2 = r2 + O7K - 2r OR coswS S (3.11)

which yields:

rS =O cosw + Vp' - sinw (3.12)

where

her=R hv (3.13)

and hence:

SrS R(3.14)

Case-C Point Q on the surface of the mean sphere
(Q s w 1800). In this case
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hQ = 0

(3.15)

and hence:

rQ -R (3.15-a)

3.3 The Data on the Surface of the Model

After the geometry of the model has been established in
terms of its size and shape, the disturbing field generated
on its surface and in the exterior space is now determined.

Four more parameters are needed to describe the dynamic
characteristics of the model. These parameters are:

1. The distances a, and a2 of the two masses m, and
m2 from the surface of the sphere R , and

2. The gravity disturbances 6g, and 692 produced by
two masses at the vertex V of the model.

Therefore, for the simulation studies that we will
conduct in this paper, we need to define the following
set of seven parameters:

hA , , 0 , a1  , a 2  , 6g , 6g2

The disturbing potential at any point Q on the surface,
or in the exterior space is computed from:

T - kml + km 2Q ri r. (3.16)

where r, and r2  are given by (3.9), and kml , km2
are determined from the given boundary conditions 6g1
and 6g2 as we will show below.

The normal component of the gravity disturbance at
any surface point Q is computed from:

3T6gQ = - ( )Q (3.17)

Using (3.9), (3.16), and (3.17) we obtain:

6gQ kmi(rQ-R cosw) + km2(o- R cosw)r4Q ar (3.18)
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from:The geocentric distance rQ in (3.18) is computed
from:r

1. equation (3.7), for Q on the conical surface, or
2. equation (3.12), for Q on the spherical cap, or

3. equation (3.15-a), for Q on the mean sphere R

The terms kml and km2 are determined from the
solution of (3.18) using the boundary conditions 6gi and
6g2 at V . In order to determine kml and km2 , we have:

km1, 6gi (R + hV - Ri) 2  (3.19-a)

and

km2  6g2 (R + hv - R2 )
2  (3.19-b)

3.4 The Gravity Disturbance Vector in Space, Computed from
the Model

k It now remains to find the expressions for the compon-
ents of the gravity disturbance vector as a space point,
which is generated from the two disturbing masses:

grad T = (T - , (3.20)

The disturbing potential T is given by (3.16), where

instead of (3.9) we now use:

r, = [(X - Xj) 2 + (Y - Y1 )2 + (Z - Z) 2 I (3.21-a)

and r2 = [(X - X 2 )
2 + (Y - Y 2 )

2 + (Z - Z 2 )
2 12

(3.21-b)

where (X, Y, Z) are the geocentric cartesian coordinates of
the space point P (3p , Ap , hp), and (XI , Yj , Z, ),
(X2 , Y2 , Z2), are the cartesian geocentric coordinates of
the two disturbing masses m1 , and m 2 respectively:

X,= R, cos 0 cosAo

Y= R, cos~o sinXo

Z= R, sin~a

(3.22-a)

* a
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and

X2 = R2 cos$O cosXQ

Y2 - R2 CoS$O SinXO

Z2 - R2 sin o

(3.22-b)

Differentiating (3.16), and taking (3.21-a,b) into
account we obtain the following expressions for the three
components of the gravity disturbance vector P , as com-
puted from the two masses:

_X km i(X-Xi) km2 (X-X 2 )

P (X-X)2+ (Y-Y1 )2+ (Z-Z 1 ])212 (X-X 2 )+ (Y-Y 2)2 + (Z-Za)]

(3.23-a)

( T km, (Y-Y) km 2 (Y-Y 2 )ay ) (X-)k 2 ( Y-Yj (Z-Z1l Fl 2(X-X2 (Y-Y2 Y + (Z-Z2 3

(3.23-b)

(T _ km1 (Z-ZI) km 2 (Z-Z 2) 3/
(-)= [(X-X1 + (Y-Yl+ (Z-Zl f)3 2 [(X-X 2

2 + (Y-Y2)Y+ (Z-Z 2

(3.23-c)

Equations (3.23) yield the three components directly
from the model, and therefore these results are errorless.
In the next chapter we will discuss the simulations tests
we made in order to investigate how well equations (2.68-a,
b,c) agree with the exact equations (3.23) in the case of the
model, without integrating over the whole surface of the
sphere.

3.5 The Effect of the Model's Symmetry and Center of Mass
on the Simulations

The terrain model described above is rotationally sym-
metric, and the two point masses located on its axis obviously
generate on its surface a disturbing field (6g and T ),
which is symmetric too. For the simulations which are
described in the following chapters, four such models are
used, and the seven parameters for each one of them are
given in table 3.1 (these parameters were defined in sections
3.2 and 3.3).
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Table 3.1

Parameters Defining the Models for the Simulations

i=10'.543 i=20*.040 i=39*.976 Spherical
inclination inclination inclination Cap

Model Model Model Model

hA 4100 m 4100 m 4100 m 23682973.2 m
12' 6.08' 2.64' 450

p 200 m 200 m 200 m 4975838.5 m
al 2000 m 2000 m 2000 m 2000 m
a2  4000 m 4000 m 4000 m 4000 m
6 50 mgal 50 mgal 50 mgal 50 mgal
6g2  100 mgal 100 mgal 100 mgal 100 mgal

Note: The inclinations are computed from equation (3.3).
The three conical models will be referred to as 10'-, 20* - ,

and 400 - inclination models.

Note that the large values for hA and p in the list
of parameters for the spherical cap model, were selected
such that equation (3.4) will yield a height hv of the
model's vertes V above the mean sphere R (figure 2.1)
equal to 4099.8 meters, i.e. of the same magnitude as the
heights of the conical models. The last four parameters
are the same for all models, and hence, there is a total
gravity disturbance of 150 mgal at the vertices of the models.
In figure 3.2 through 3.5 the gravity disturbances and the
disturbing potentials are plotted against the spherical dis-
tance of the surface points from the model's axis. The el-
evation of the surface points above the mean-earth sphere
R are also given at 2-km intervals.

In the derivation of equations (2.68) following the
Green's approach (chapter 2), no assumption was made about
the location of the earth's center of mass with respect to
the origin of the (X,Y,Z) coordinate system. The origin
0 of this system was placed at the earth's geocenter (see
figure 2.1), but there is no theoretical requirement for
such a choice. The transformatioi, equation (2.59) from the
(x,y,z) system to the (R,7,2) system has been derived by
using a "geocentric" (X,7,Z) system whose origin does not
have to coincide with the true center of mass of the earth.
In other words, there will be no effect of the model's center
of mass on our simulation tests with the Green's approach.
As long as we have the boundary values 6g and T on the
surface of the earth, and the elevations / inclinations with
respect to a reference surface (the surface of the mean-
earth sphere in our case), equation (2.68) can be used to
evaluate the components aT/aX , 3T/aY , ;T/92 in the
topocentric (X,',Z) system centered at the space point P
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The rotation from this system to the "geocentric" (X Y,Z)
system may be done in order to express all vectors 6 in
a unique system.

It must be pointed-out that due to the symmetric char-
acteristics of the models, there are only two distinct compon-
ents of the gravity disturbance vectors = gradT , namely
3T/ar , and (1/r) aT/ip , where ip is the angle between
the model's axis and the radius to the space point P where

is computed. On the other hand, we decided to derive
the equations for the computation of I in such a way that
theycan be used without modification, or re-derivation for
a future application with real-data (when this kind of infor-
mation becomes available). This is why we have expressed
the components of (equation 2.68) not in a polar (r, T)
system, but in a cartesian one. Nevertheless, the transfor-
mation of these components from the cartesian to the polar
coordinate systems can be easily done, using (2.73), and
then:

aT

IT J ((XiYZ)) aT
30 (rJ,X) aY

ax aZ (3.24)

Finally, the com2onent (C/r) IT/Di is computed from the
components aT/a , and aT/X as:

. IT - I
r = = r(3.25)

The direction of this component is defined from the space
point P to the point on the model's axis where the plane
perpendicular to the radius r at P interjects the axis.

The Jacobian of the transformation from (X,Y,Z) to
(r, $,A) can be computed from the transformation equations
between these two systems:

= r cos cos X

Sr cos sin X
(3.26)

S= r sin

and then:
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cosy cosX cosT sinX sinT

J ((X YIZ)) -r sinT cosA -r sinT sink r cosT
(r, ,A)

-r cos$ sinX r cosT cosX 0

(3.27)

For the simulation tests which are described in the
following chapters, the components of 6 will be compared
to the exact components (from the model) in the polar (r, p)
coordinate system, in order to have results independent of
the location (To , X0) of the model's center on the sphere
R . In summary, these components will be transformed from
the topocentric (X,7,2) system to the polar system (r, p)
using equations (2.73), (3.24), and (3.25).
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Chapter 4

SIMULATION TESTS WITH THE GREEN'S APPROACH

4.1 Introduction

The idea of the simulation is tocompare the exact grav-
ity vectors as computed from the model, with those evaluated
from Green's approach, using surface data also computed from
the model.

There is a number of factors that will affect this agree-
ment. The inclination of the model's surface, the altitude
of the space point, the "density" of the observations, or
in other words the grid interval, the extent of the area
of integration, and the geometry of the model itself (size
and shape), are among these factors. Throughout this chap-
ter we will discuss the simulations that were done to inves-
tigate the effect of these factors on the agreement between
the exact and the computed vectors. Each simulation is a
four-step procedure, summarized as follows:

Step-1. Compute the exact components of the gravity dis-
turbance vector, using equations (3.23), (3.24),
and (3.25).

Step-2. Compute the normal gravity disturbance comronent
8g and the disturbing potential T on the surface
of the model and everywhere else within the speci-
fied area (at the center of the blocks which are
formed from the specified grid). Equations (3.18)
and (3.16) are used.

Step-3. Compute the components of the gravity disturbance
vector at the space point P , in the (R,Y,Z) co-
ordinate system from (2.68-a,b,c), and the data
generated from step 2. Then, rotate these three
components to the geocentric (X,Y,Z) system using
(2.73). Finally, compute the radial and the hori-
zontal components of . in the polar (r, ip) system
using (3.24), and (3.25).

Step-4. 2ompare the gravity disturbance components from
steps 1 and 3 in terms of their percentage relative
difference:

42.
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3T

rel. error in aT/ar = (4 act_-(7r_)computed x 100

%rel. error in 1 DT F exactr Ft co0mputed 1 x 100
--7' -a -3r~e a Tr  c m u e  0

r.rr --( xact

(4.1)

Assume that the cone-like terrain model is located on
the surface of the earth (more specifically, on the surface
of the mean sphere R ), with its axis intersecting R at
the point (¢0 , X1 ). The parameters which define the three
conical models are listed in table 3.1.

In order to apply (2.68-a,b,c) in the case of the conical
model, we divide the sphere below the model into blocks which
are bounded by meridians and parallels. The grid spacing
determines the density of the data. The radii passing through
the intersections of the grid, form on the surface of the
model another grid(see figure 4.1). If Q' is the center
of the block on the sphere, the radius through Q' intersects
the surface at the point Q . Equations (3.16) and (3.18)
yield the disturbing potential T and the gravity disturb-
ance 6g at Q . Depending on the location of the block
on the model (on the spherical cap, on the conical surface,
or on the sphere), equations (3.8), (3.14), or (3.15) are
used to compute the height of Q above the mean sphere.
The inclinations TXQ and Ty in the north-south, and west-
east directions at , are computed using the height of
Q and the heights of the neighboring blocks to the north,
and to the west of Q , according to equations below:

tan~x = hnorth- h

x

tanT = hwest- hy S y (4.2)

where h : the height at the center (Q) of the block,
where the inclinations are to be determined.

hnorth, hwest : the heights at the centers of the blocks
to the north, and to the west of Q

sx ,s : the distances from the centers of the blocks
to the north and to the west of Q , from it.

The disturbing potential T , the gravity disturbance
6g , and the two components of the inclination (T , T ) are
the data needed in equations (2.68), along with tie cogrdinates
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of the surface points Q .These equations yield the
three components of the vector at the space point P in the
(X, Y7, Z) system located at P , and (2.73) rotates them
to the geocentric (X,Y,Z) system. Then, (3.24) and (3.25)
yield the two distinct components of I in the polar (r, 4'
system. The exact and the computed vectors are finally com-
pared in terms of their percentage differences from equations
(4.1). For the investigation of the effect of the height
(hp) of the space point P , these vectors are computed at
different altitudes, at equally-spaced points above the
sphere, from the model's axis to the east of the model.

4.2 Simulation Tests

A number of tests were made to investigate the influence
of the following parameters on the accuracy of the computed
gravity vector components:

a. The inclination of the model.
b. The geometry of the model (cone vs. sphere).
c. The grid interval.
d. The size of the integration area, which, along with the
grid interval determines the "density" of the data. Note
that the center of the integration area coincides with the
center of the model.
e. The altitude of the space point.

For all of these tests we assumed that the model's axis
is located at

O=450 , Xo - 2500

This choice is arbitrary, but since our software was designed
for real as well as for simulated data, we had to select
a "site" for the model in terms of latitude and longitude.
In table 4.1 the specifications of 15 tests are summarized
for easy comparison. The space points are 10' apart from
each other, at the same altitude for each test, from 2500
to 2510 east longitude. Therefore, there are seven points
where the components of Z are computed and compared for
each test.

The first five tests are referred to a conical model
whose inclination is 100. From tables 4.2 through 4.4 we
see that by increasing the integration area from 20x 2* to
30x 30, and then to 8*x 80 , the errors at the distant space
points (away from the model) are reduced dramatically, but
the errors above the model are almost the same. Larger inte-
gration areas do not improve the results above the model
because of the local characteristic of the disturbing potential
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of the two masses at its center. However for the
distant points, larger integration area is required such
that there is enough gravity data below these points.

By increasing the altitude of the space points from
10 km to 20 km, the errors are reduced both ol-er the model,
and at the distant points (table 4.2 vs 4.5). From tables
4.6 and 4.7 we see that the errors for a 10'-inclination
are slightly smaller over the cone than the errors for a
20°-inclination. Tests 6 through 9 are referred to a 20 °-

inclination model.

All the results indicate clearly that the errors above
the model are larger than the errors at the distant points.
Originally, we thought that the reason might be that we
should have used a finer grid over the model, than over
the neighboring area on the sphere, because of the fact
that most of the disturbing field is close to the model's
masses. However, by using 0.5' grid in the inner 0*.3x0°.3
area, rather than a 1'-grid (table 4.7, vs. 4.8) through-
out the entire 40x4 ° area, we did not see any improvement
in the results. The errors were not significantly reduced
neither with more fine 0.l'-grid in the inner zone (table
4.7, vs. 4.9).

For an altitude of 100 km above the mean sphere (table
4.10), the errors in both components are smaller than 5%,
that is much smaller than the corresponding errors at an
altitude 10 km (table 4.7).

On table 4.11 we see the errors for a 400 -inclination
model. If we compare these errors with those on table4.7
(200 -inclination), we see that they are much smaller. This
is probably due to the fact that a 400 -model has a more
"local" effect on the gravity vector, than a 200 -model.
The inclinations Tx and T for the 40*-model are larger
as compared to those on a 20v-model, but for a smaller geo-
graphical extent.

In order to further investigate the errors from a very
smooth-topography-model, we substituted the conical model
by the spherical model, whose parameters are listed in table
3.1. These parameters imply a height of the model's vertex
V above the mean-earth sphere R

hV  = 4099.8 meters

which is of the same magnitude as the height of the vertices
of the conical models. In other words, the topography is
now a sphere of radius o , at 4.1 km above R . From table
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4.12 we can see that the errors are now very small. The
components of the gravity disturbance vector are computed
from the surface data on the sphere p , with an error which
is smaller than 1%. These results clearly indicate that
the Green's approach works very well for a smooth topography.

From the eleven tests just described, we can draw the
following general conclusions:

1. The higher the space point, the smaller the relative
errors of the components of I become.

2. The errors are larger over the model, then over the
distant zones.

3. For a given grid spacing, and for a fixed altitude,
the increase of the integration area does not improve
the results over the model.

4. The use of a finer grid in the inner zone (01. 5 , or
0'.1 vs. 1'-grid), does not improve the results over
the model.

5. The errors are very small for a smooth topography (the
case of a spherical cap), or for a very lUrge but local( topographic feature (the case of a 400-inclination cone).

Because of the very local characteristics of the models,
there are no truncation errors (i.e. errors caused by neg-
lecting the information outside of the working area). In
addition, there are no errors in the surface data, since
both 6g and T are rigorously computed from the model.

The only factors that affect the results, and cause
the errors in the computed vectors, are the following:

1. The approximation of the integral equations by finite
summations, and evaluations of the kernels at the center
point of the elementary areas.

2. The neglect of the second-order variations of the topo-
graphy (see equation (2.43)).

These factors are responsible for the larger errors
right above the models, as compared to the errors far away
from the model, or to the errors from the very smooth topo-
graphy of the spherical cap model.. However. as we will
see in chapter 8, the errors from the classical approach
(the direct integration method), where the topography is
neglected, are larger by a factor of 2 than the errors from
the Green's approach, indicating the significant improvement
of the later method in the computation of I

The last four tests in table 4.1 are applications of the
Green's approach with a very limited amount of data on the
surface of tbe model. These tests will be used for comparison
purposes with the Dirac approach in chapter 6. Only 576



49.
blocks have been formed on a 1'-grid within a 0*.4x00 .4
area on a 100-inclination cone. The components of 7 are
computed at 5, 10, 20, and 100 kmn above the sphere R.
Note how large the errors are at a 5-km altitude (table
4.13). Also, comparing table 4.6 with 4.14, we see that at
10 km the errors are of the same order of magnitude, indi-
cating once more that the effect of truncation is not signi-
ficant (for these two tests, only the size of area is dif-
ferent).

4.3 Related Work, and Comparison with Koch's Method

Among the papers which have been published on the compu-
tation of certain components of the gravity disturbance
vector using the Green's third identity, the most elegant
approach in our opinion is the one by Koch (1968-a). There-
fore, it is essential to comment on the similarities and
on the differences between his and our approaches, and to
discuss his results under the light of ours.

Koch's approach is a simulation study with a cone-( like model as in our case, but the solution for the disturbing
potential and its partial derivatives is obtained through
an iterative procedure. In addition, the computed quantities
are surface quantities, and not at space points. Furthermore,
his equations have been derived specifically for the simulation
studies that he performed, and allow for the maximum inclina-
tion of the cone (a) only (not a two-component T. 9 ,

description of the topography). Therefore, his equations
cannot be used for a real-world application without additional
work. Also, the whole approach is based on a planar approx-
imation.

The large errors that were found by Koch in the case
of inclinations larger than 200, we believe that are due
to the fact that the term T(Po)is included in his integral
equation (21), while the integration is not carried out over
the whole surface of the earth (according to the discussion
below our equation (2.9')). In addition, the fact that Koch's
equations were derived for computations of the derivatives
of T on the surface of the earth only, does not permit
comparison of our results with his.
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Chapter 5

DISCRETE APPROACHES FOR THE COMPUTATION OF THE
GRAVITY DISTURBANCE VECTOR IN SPACE

5.1 Introduction
Throughout the three previous chapters, we developed and

tested the equations for the computation of the components
of the gravity disturbance vector at a space point. The
described solution is based on the application of Green's
third identity, the data being given on the physical surface
of the earth. Hence, the method follows the modern approach
for the solution of the boundary value problem for the deter-
mination of the external gravity field of the earth. Both,
the coventional solution to the geodetic BVP (using the
Stokes' integral), and the modern solution to the geodetic
BVP (following Molodensky), require the data be given as
mean values over small surface elements. Furthermore, the
conventional approach requires gravity reduction to the
geoid, a process which assumes knowledge of the earth's
densities, while Molodensky's solution does not require
any reductions.

In practice, gravity measurements are taken at a finite
number of stations only. The need to solve the BVP in space
from a finite number of gravity observations, let Bjerhammar
to develop some methods (documented in a number of papers
which are referenced below), in general called discrete ap-
proaches to the solution of the BVP of physical Geodesy.

The formal statement by Bjerhammar (1963) reads as
follows:

"A finite number of gravity data (Ag) is given for
a non-spherical surface, and it is required to find
such a solution that the boundary values for the gravity
data are satisfied in all given points".

For a given finite set of gravity observations (or
more specifically gravity anomalies which will be defined
more precisely in the next section), there is always a
fictitious field of gravity anomalies on an internal sphere
that satisfies the given boundary values on the surface.
This sphere is completely imbedded inside the earth, and
appears in the literature under the names "Bjerhammar sphere",
or "geosphere". Bjerhammar's methods are applications of
the Poisson's integral equation and Stokes' formula (Bjer-
hammar, 1976, 1978; Sj6berg, 1978). Earlier solutions

58.



59.
considered the gravity anomalies on the geosphere as mean
anomalies, but later solutions have been formulated on the
basis that the reduced anomalies are point anomalies on
the geosphere with no block size associated with them
(Bjerhammar, 1978, p.220). The common characteristic of
all methods is that a finite set of point gravity anomalies
is given on the physical surface of the earth

A special case of Bjerhammar's reflexive prediction
method (Bjerhammar, ibid), is the Dirac approach, which
has been compared to collocation by--Sj6berg (1978). This
approach is based on the computation of the fictitious gravity
anomalies at the so-called carrier points, located at the
intersections of the radii to the observation points, with
the geosphere. The radius (RB) of the geosphere was found
to be a critical parameter in this type of solutions. As
(Sj6berg, 1978, p.64) reported, the optimum depth of the
geosphere from the mean earth sphere R , is approximately
half the mean distance between surface neighboring obser-
vations.

In the sections that follow, we will review the theory
behind these discrete approaches, with emphasis on two
methods, namely the mean-value approach, and the Dirac ap-
proach. Then, the Dirac approach will be applied to simu-
lated data from the model described in chapter 3, and the
results (the components of the disturbance vectors) will
be compared to the exact vectors from the model, just as
we did with Green's approach in chapter 4.

5.2 Theoretical Development

Let us start from the statement on the Dirichlet's
problem or the first BVP of potential theory (Heiskanen
and Moritz, 1967, p.34):

"Given an arbitrary function on a surface S , deter-
mine a function V which is harmonic either inside
or outside S , and which assumes on S the values
of the prescribed function".

Dirichlet's problem can always be solved if S is
the surfr.ce of a sphere, an explicit solution being given
by the Poisson's integral equation (Heiskanen and Moritz,
1967, p.35), which for the exterior of S is written as:

V (r, e,x) = R(r 2- R2) 72 V(Re,') sine' dO' dX'
0 0

(5.1)
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V is an arbitrary harmonic function on S and in

the exterior space, (0', X') are the polar coordinates of
the variable point on the sphere (R), (r, 6, X) are the
coordinates of the exterior point, and I is the distance
from (r, 6, X) to (R, e', A,):

X = (r 2 + R2 - 2R r cosP)i (5.2)

cosiP = cose cosO, + sine sine' cos(X' -) (53)

The function rAg is a harmonic function (Heiskanen
and Moritz, 1967, p.90), and hence, Poisson's Integral can
be applied for any point in space as:

R(r -R 2 ) R AgrpAgp = 4 "-'---d

where 
do (54)

do = sine, de' dX'
(5.5)

is the surface element on a unit sphere. For the geosphere
(RB), equation (5.4) becomes:

2 2.Ag
r- R ff g* dS (5.6)

where

dS = R 2 do (5.7)

B

S being the area of the geosphere B (S=41 R2). The
quantities which appear in (5.6) are defined as follows
(see also in figure 5.1):

Agp : The gravity anomaly at the space point P

gP = gp - Yp

where P' is that point along the vertical
through P for which Up, =W p (cf. Sj6berg,
1978);

Ag* : The fictitious gravity anomalies on the geosphere,

which generate the surface Ag , and which have

to be determined;

r p :The geocentric distance to P
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Obviously, equation (5.6) also holds for any point

Q on the physical surface of the earth, because the geos-
phere has been defined to be completely imbedded inside
the topographic masses, and therefore, the requirement of
the Poisson's integral (5.1) is met (the solution is given
for points outside of the surface S , the surface being
the sphere RB in our case). Equation (5.6), applied for
a surface point Q , becomes:

Ag = A~-~f -- dS
Q 4TrQ B (5.8)

By substituting:

Q rQ (5.9)

and

D = - .1 - 2 t cosq) + t 2
Q r Q Q Q (5.10)

in equation (5.8), we obtain:

Ag= to( fQ)f g*
gQ 47B Ds d

FFB B Q (5.11)

The precise definition of the surface gravity anomaly
AgQ is similar to the definition of the space anomaly
6gp (see below equation (5.6)). In other words, AgQ IS
the difference between the measured gravity gQ at the
surface point Q , and the normal gravity yQ computed
at that point Q' along the ellipsoidal normal through
Q , for which UQ, =WQ . All points Q' form the surface
of the telluroid (Heiskanen and Moritz, 1967, p.2 9 2).

The central idea in the Bherhammer's methods is to
apply an integral equation like (5.8) or (5.11) to the given
surface data AgQ , and to compute the fictitious Ag* on
the geosphere, in such a way that all AgO  are satisfied
by the analytically determined Ag* Fuithermore, the
gravity anomaly at a space point P , determined from the
anomalies on the geosphere, must be identical to the gravity
anomaly computed from the measured surface AgQ , provided
that there are no errors in the data, and that the integrations
are performed over the whole surface of the earth. This
is a consequence from the uniqueness of Stokes' theorem
(Heiskanen and Moritz, 1967, p.17).
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WP Space Point
P

uP =P PI

r Q

R r P

R B

0

Figure 5.1: Geometrical Configuration for the Discrete-
Approaches.
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Let us now show how an integral equation like (5.11)

can be applied to a discrete approach.

5.2,1 The Mean-Value Approach

If the surface of the geosphere is divided into a finite
number (N) of blocks (ASi), equation (5.11) can be rigor-
ously written as:

2 1 ) N
Ag = (Ag* dS

B 1=1 AS1  Q (5.12)

or, approximately:2ItA N
AQ= t= (1;, A . AS.

B i=l Qi
(5.13)

where Ag is evaluated at a certain (but unknown) point
inside A . usually assumed to be the center of the block,
in which case (5.13) is an approximation. The conventional
approach to convert a theoretical continuous integral trans-
formation like (5.11), to a discrete summation transforma-
tion like (5.13), is called discretization (see for example
in Robertson, 1978, p.4-1 ). Discretizations are of great
importance in geodesy, since we have to deal with finite
sets of data, irregularly distributed on the surface of the
earth. The substitution of integral equations by finite
summations is a common practice, especially for computer-
oriented applications. Obviously, the best discretization
process is the one which yields the minimum error of the
computed quantity with respect to the true value. Robert-
son (ibid) discusses three discretization processes, and
suggests a method for evaluating their accuracies by comparing
their spectra.

The mean-value approach, requires the evaluation of
the areas ASi for each block, and from the theoretical
point of view (5.13) holds as an approximation since the
location of the point for evaluation Ag! is unknown. TheDirac approach which will be discussed liter avoids this

problem because it determines Ag at the carrier points
whose positions are pre-determinid, and therefore are precisely
known.

If the subdivision of the geospher in blocks is such
that their number (N) is equal to the number of observations
Ago , then, a direct solution to (5.13) for the fictitious
ag9 , could be:
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(5.14)
where the underlines mean matrixes, or vectors, and the

elements of A are:
t( 1 -,;.

3ij 4 aR l (5.15)

However, such an approach would be practically impossible
if a large amount of surface data is available. Earlier
solutions to the Bjerhammar's problem used an iterative
approach to compute &g* from Ag (see for example Heiskanen
and Moritz, (1967, p.318), or Emrick, (1973)). In the next
section we describe the Gauss-Seidel iteration technique,
and we investigate the possibility for employing an acceler-
ation procedure.

5.2.2 Gauss-Seidel Iteration Method

For a linear system of n equations with n unknowns:

B x = u (5.16)orr
b 1 1 x, + b12 X2 + + bI Xn =

b 2 1 x, + b 2 2 x 2 + + b2n xn  = u2

nAnn f 2 + +b x = u

(5.17)

the Gauss-Seidel iteration method to solve x. is (Carnahan,
et ai., 1969, p.299):

xik L[Uibii -. 1 . b  x(k)_ I b x(k+l)]
bi1 J-1+1 .3=1 i(5.18)

where (k) denotes the iteration step. In this iterative
method, the newly-computed components of the solution vector
x are always used in the right-hand side of (5.18) as soon
as they are obtained. A sufficient condition to guarantee
the convergence of the iteration is:
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[ <1, l~i£N

(5.19)

This con(ition will later be used to comnute the opti-
mum radius of the geosphere in order to guarantee the conver-
gence of the solution for Ag* .

As an example, let us apply (5.18) to the linear system
(5.13). Assume that N surface gravity anomalies Ag are
given, and that we want to determinc the N unknowns Ag*
on the geosphere. The surface Ag are point anomalies,
but the Ag* on the geosphere are mean anomalies, associated
with a certain block size which depends on the density of
the surface data. Let Q be the points on the surface
where the data is given, and Q' be the center of the block
on the geosphere (see figure 5.2).

With this notation, the linear system (5.13) becomes:

t2 2 1- j N g )

Qj 4r B =1 J (5.20)

Ag9Q opography
Agg

Q1 Ag,FQ' :Ag* , AS, :'Q12 AS 3 Q1.
A9*1' AS2 I' gQ

geosphere

Figure 5.2: The Mean-Value Approach
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with =t = = R-

Q, rQj
The application of the Gauss-Seidel method (5.18) to the
system (5.20) yields:

(k+1) N~ A~ (k)
A ir# , = L * -J AS ] 5 .21 )

i  I j=1 ij

where i = 1, 2,... ,N j~i

k = 1, 2, . . . , maximum number of iterations allowed

(kmax )

and . (k=l) =
j = 1, 2, • • , N as an initial

approximation

An equation analogous to (5.21) but somewhat simpler will
be derived later for the Dirac approach. The above iteration
for the unknows Ag* can be stoped either if we exceed
the maximum number of iterations allowed, (say kmax = 30 ),
or if two successive Ag* at all points (iteration k and
k +1) are different by no more than E , a quantity which
is as small as we desire.

Acceleration Techniques. Among the existing methods
for the iterative solution of large systems of equations,
the Gauss-Seidel ("successive iterations") method converges
about two times faster than the Jacobi's ("simulation iter-
ations") method (cf. Westlake, 1968, p.56). In addition,
there ar certain acceration techniques, which yield a much
larger rate of convergence than the two methods mentioned
above. An acceleration technique requires the splitting
of the matrix B according to (Isaacson and Keller, 1966,
pp.73-80):

where B = N (a) - P (a)

N(a) = (1 + a) No

P (a) = (I + a) N0 - B = Po + aNoand -

b1
I b2l b22

No=

b n l On 2 . . . bnn

The estimation of the optimum parameter (ct=a 0 t) which
yields the largest rate of convergence, requires tHe knowledge



67.
of the minimum and of the maximum eigenvalues of the matrix
N-.I Po , according to the formula:

CL _ min+ Xmax

opt 2

After the parameter aopt has been determined, the
iterative solution to the system Bx=U can be obtained
as (Westlake, 1968, p.62, where W= 1 a):

(k+1)= 1+ a n (k) i-i (k+l) (k)
X [u,- b. x - i b i x i ]i -bi jilJ j
11 j i+1 ~(5.18-b)

which for a =0 reduces to the Gauss-Seidel technique (5.18).

Clearly, from an application point of view, the employ-
ment of an acceleration technique requires that the user
will follow one of the following two procedures.
(a). Form the matrix XjPD , find its eigenvalues Xmin

and Xmax , and then determine ao t which yields
fastest rate of convergence in (5.18-b).

(b). Empirically estimate a parameter a which yields
a rate of convergence faster than that of the Gauss-
Seidel technique. Such an empirical determination
(used for the downward continuation of gravity anom-
alies), has been used by Koch (1968-b). Westlake
(1968, pp.62-63) describes a procedures for the estim-
ation of a but in the special case that B is a
symmetric matrix. Finally, another empirical procedure
for the estimation of a is described in (Isaacson
and Keller, 1966, pp.78-80), but the method is graphical,
and hence not suitable for computer-oriented applications.

For large matrices, the analytical procedure (a) above
requires considerably additional work, before the actual
iteration (5.18-b) starts. Furthermore, the empirical tech-
niques (b) mentioned above are either not fully automatted,
or not applicable for a general (not symmetric) matrix.
Therefore, and for reasons of simplicity, we decided to
use the Gauss-Seidel iterative method.

5.2.3 The Computation of the Gravity Disturbance Vectors
in Space (Mean-Value Approach)

Once Ag* have been determined, the evaluation of
the three components of the gravity disturbance vector in
space can be done following standard procedures. The three
components of 7 , are defined as (Heiskanen and Moritz,
1967, equ.6-29):
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(6 g r)p I ( T( r) = p - P

1 gT )p 1 ;T (5.22)

where (rp , Op, Xp) are the coordinates of the space point
P where these components are to be computed. The disturbing
potential at P is given by Pizzetti's generalization of
Stokes' formula (Heiskanen and Moritz, 1967, equ.8-88):

p T(rp, op, ) = B S(r,," do (5.23)

From (5.22) and (5.23) follows that:

(5gr)p = .. ffAg* S (r,,) do
B ar

(6g-) = -2 Iffg* a cosa do

(g)= _-a_ frg ag, rW)d
(6g RR S (rIO sina dA 4 p B ,,. a sn (5.24)

Since Ag* represents the value of the fictitious
anomaly over a block on the geosphere, we apply the same
approximation as we did in section 5.2.1, to obtain (Note:
dS =R'da):

(6g 1 N aS (r, ))i AS
r P I Ag*Q, ( IrBi=1 i

('g-lP = 1 RN .S(r CO s.i As
P Bi~l 6 g '1 .i

1 N as fr (5.25)(6gx)P 4 = P B I 6g*Q/ (U )i s i AS

The index i refers to the center of the block AS.-
this is in approximation, since the point to evaluate the
kernels in (5.24) is unknown - , and a. is the aximuth
from the projection of P on the geosp~er to the point Q!

tanc cosi sin( i-p)tai =cOSi p sinoi - simn p cosi i cos(X i- Xp ) (5.26)
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The partial derivatives of the Stokes' function with

respect to r and ¢, are computed as:

cosP = cOSIpi = sinTp sinO i + cOSp cos i cos(A i- AP)

t tp RR (5.27)

(5.28)
D = Dp =- (1 - 2t cosW + t2)(

pi r P(5.29)

and then, with the notation above we have:
aS(r,'p) - - t2 _ + 14

B + D - 6D

-t cos (13 +6Zn t cos (5.30)

2

3 S(r ) _ 2  2 6 - t cosW-D
_ sinP [-Ur + T7- 8 - 3 D sin 77

3 (- t cosW+D

2

Finally, the components of the gravity disturbance
vector in a geocentric coordinate system are (Heiskanen
and Moritz, 1967, equ.6-18):

aT 6gx COSp cOSAp -sin$ cOSAp -sinXp 6g

T 6g cos~p sinAp -sin~p sinAp cOsA. I 6g-

aT 6gy sinT COST 03"Z" P gzP inp OSp0 gp

(5.32)

5.3 The Dirac Approach

The Dirac approach avoids the continuation of the sur-
face anomalies to mean (fictitious) anomalies on the geos-
phere. Instead, the gravity information of the N surface
point gravity anomalies Ag , is downward-continued to
gravity anomaly impulses (spikes) Ags at a finite number
of carrier points (defined in section 5.1). This downward
continuation is an analytic continuation, by which is meant
that the N spikes satisfy the surface data, without having
any physical meaning (i.e. this is not a gravity reduction
that yields the true anoma'y on the geosphere).

If the number of the gravity impulses AgS on the
geosphere is equal to the number of the given surface gravity
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anomalies Ag , the case is called "non-singular" (Bjerham-
mar, 1977), and the carrier points can be selected at the
projections of the surface points, on the geosphere, along
the geocentric radii (see figure 5.3). Qi are the surface
points where the data is given, and Q. are their projections
on the geosphere, where the spikes Agi are to be computed.

to o raphy

A9Q! gq.g

" gAg

Figure 5.3: The Dirac Approach: The Spikes AgS at the
Carrier Points

Let us now define the anomaly Ag* which appears in

(5.11) as:
N

Ag* =  Ags 8(r - r )
k=l k(5.33)

where r : the radius to the current point on the geosphere.
rk: the radius to the k n spike Agg on the geosphere.

and 6(r-r ): the Dirac "delta" function defined through
the folowing integral equation for an arbitrary
function f(r) on the geosphere.

I B f(r) 6(r- rk) dS = f(rk ) (5.34)
4 ,RB B kk(.4

Substituting (5.33) into (5.11) we obtain:

I -- i~



N

t 2_____ ki1 Ag- 6(r-rk)
AgQ = Q 47r R B D3Q

B B Q
or

= tA (1-- t6) 6 (r- rk) dS

4 k1 B Q

and using (5.34) with f(r) = 1/D , we olbtain:

N
AgQ = t2 (1-t2) 1Q

The reader can see that equation (5.35) of the Dirac ap-
proach, corresponds to equation (5.13) of the mean-value
approach, the difference being that the former does not
involve any areas AS. associated with the spikes. Further-
more, the positionson the carrier points are precisely
known, and hence the Dirac approach avoids the approximation
of the mean-value approach, where the kernels are evaluated
at the centers of the blocks.

5.3.1 Iterative solution for the Spikes Ags

The computation of the N spikes Ags from the given
finite set of observations Ag , is done using the Gauss-
Seidel iterative method described in section 5.2.2. More
specifically, from (5.18) and (5.35) we obtain:

S (k)
(k+1) N s

S 
3  Ago _ Ag i

ii tz ( i- (5.36)Ag' =x Qi tQi jol DQiJ-

j# i

where i = 1, 2, . , N
k = 1, 2, , maximum number of iterations allowed

and since
D3. = (1 - 2t. cosi + t (1 - t.) 3

equation (5.36) yields:

((k1 N (k)

QiQ' 1~ Q.t I Jii ji D-ij
(5.37)



As init values we used gS(' )= 0, j =1, 2, . 72.N,

and not Ags l= Ag , because fao our preliminary tests
we found thitl the mNnitude of the spikes is much smaller
(or the order of 10- 0 m.sec-2 ) than the manitude of the
surface anomalies (from 10- 2 to l0-Sm.sec-).

The iteration scheme (5.37) can be terminated either
if it exceeds a specified maximum (kmax), or if two successive
iterations for a spike yield values

5 (k) s(k+l)

Ag and Ag

which are different by less than a specified limit. For
example, if we want to have a 12-digit agreement between
these two values, we stop the iteration whenever the fol-
lowing condition is satisfied for every spike:

(k+l) s(k)l (k(5 .38

Ag3  - gj (5.38)

5.3.2 The Convergence of the Iterative Solution, and the
Radius of the Geosphere

Let us now examine the conditions for the convergence
of the Gauss-Seidel iterative method for the spikes. A
sufficient condition for the convergence of this method
was given in section 5.2.2 as inequality (5.19). By applying
this condition in the case of the Dirac spikes (5.35) we
obtain:

J 1 , 2, . . ,N: D < 1
i=l t2 (1 -t)

which becomes: N

1, (1-tj)i=1 (l-2t cos. i+t" 153
i#j j I j(.9

because all the terms are positive (t.<.1). Our goal is
to use (5.39), to determine a radius RB of the geosphere
which will guarantee the convergence of the solution. It
would be very difficult to use all the terms of the above
inequality to determine RB , for large N values. Below,
we present a much simpler
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method to estimate this RB radius, without having to solve
a large inequality (such as (5.39)) each time that we seek
a solution. At first, note that each term in the sum above
is a function of the distance Pji , and of the height of
the point h. k and that:

R +h (5.9)
3

which yields:

t = RR
min R + h mx(5.40)

max

The smaller the distance q , and the smaller the parameter
t , the larger the term in iAe sum becomes. In other words,
the maximum term in (5.39) corresponds to 'mi4 and hmx.
Some typical values for these terms are given in table
assuming R- RB= 100 meters. From these results we can
see that for very dense data (1' grid, or smaller), and
for high elevations (above 4 km), each term in (5.39) becomes
almost equal to 1.0, and therefore, the condition (5.39)
might not be satisfied. However, (5.39), as well as its
original condition (5.19), are both sufficient conditions.
This means that the iteration might converge, even if this
condition is not satisfied. We will see an example in our
tests in the next chapter.

The Inequality (5.39) determines the minimum radius
of the geosphere (RB) which guarantees the convergence of
the iteration. For any radius RB larger than this minimum
value RB , and such that the geosphere is completely imbed-
ded inside the earth, the convergence is certain:

RB < RB : guarantees convergence (5.41)

If all the terms in (5.39) had the same magnitude, we could
solve for RB from an inequality of the form:

(1 - tj)3  1 1
(1 - 2tj cos ji + t) N- (5.42)

but the magnitude of these terms varies very rapidly, espec-
ially with the value of the distance ¢ (see in table 5.1).
As we have already mentioned above, the largest value for
these terms corresponds to the minimum distance, and to
the maximum height.

Consequently, if the data is distributed on a regular
grid - as in the simulations described in the next chapter, -

; w mm m { ~ w i i
'

.. .. ..
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there will be four terms in (5.39) whose magnitudes are the
largest: these terms correspond to the point Q. with the
maximum elevation, and to the four closests points in the
vicinity (figure 5.4).

+ + + + + +

+ + + +Q1 + +
*min

+ + 4 ....... +

+ - 4- 4Q + +

+ + + + + +

Figure 5.4: The Point Qj *with Maximum Elevation hmax
to which the Maximum Terms in (5.39) Correspond.

From the tests reported in the following chapter, we
found that it would be sufficient to determine AB by solv-
ing the equation below (the term 1/10 was determined empir-
ically):

(I- tmin) 3  1
(1- 2tin cosmin +t' = (5.43)

where

min R+ hmax (5.44)

from which it can be easily found that:

tmin P (5.45)

in which

1 - cosTm1, (1/10)1(

1 ( /10;/ 3  (5.46)

Jj1
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and finally:

RB (R+h max) P - (5.47)

This equation has been used to determine nominal values
for the depth (R-RB) of the geosphere, for various values
of the minimum distance Wmin and the maximum height hmax*
R is again the radius of the mean-earth sphere, and since
the geosphere must be completely imbedded inside the earth,
the iterative solution for the spikes will converge, if
we select a radius R such that: RB !. RB < R=6371 km
(see condition (5.41)1. These nominal values for the depth
of the minimum geosphere are given in table 5.2. For those
blocks in this table where no depth is given, the data is
so dense, and at such a high elevation, that the iterative
solution might not converge (as a matter of fact, we found
that in these cases B is larger than R ).

In the last column of table 5.2, we list the correspond-
ing depth from the Sj6berg's (1978, p.64) "rule", that the
optimum depth of the geosphere should be half the distance
between neighboring surface points. We can see that Sj6berg's
depths agree very well with ours (for the h=0 case). This
agreement will be demonstrated again in chapter 9, where
some tests with real data and the Dirac approach are discussed.
The advantage of equation (5.47) in computing the depth
of the geosphere, is due to the fact that AB is now a
function of both the distance between the observations,
and of the maximum elevation of the data points.

5.3.3 The Computation of the Gravity Disturbance Vectors
in Space (Dirac Approach)

It remains to use the spikes Ags on the geosphere,
to compute the components of at a space point. This
is done by substituting (5.33) into (5.24), and using the
definition of the Delta Function (5.34). Thus we obtain
(note dS =R6 do):

N

rp = RB [ Ag ((r,))1i=lIr

N
Ell-)- N Ag~ s S(rt) ).Cosa .'6g$)p= - rp i -- 7 c1 s3.
P i=1

N s 3S(rP) (5.48)
p[ g r ) sinai"gOP = - rP ill
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where the terms a. , - , are given by (5.26),

(5.30), and (5.31) resp ctively. The three components of
the vector I at P are then computed from (5.32). Finally,
equations (3.24) and (3.25) can be used to compute the two
distinct components aT/ar , and (1/r) 3T/i in the polar
(r, W) coordinate system.

5.4 The Initial - Value Method

The mean value approach, and the Dirac approach which
have been discussed in this chapter are the two most rep-
resentative discretization techniques thatcanbe found in
the literature. Recently, a new method has been proposed,
called the initial-value method (Nakiboglu and Lim, 1979).
From the theoretical standpoint, this method is similar
to the mean-value approach, because the given data and the
reduced quantities on the geosphere are assumed to be given
as mean values over a finite number of blocks. The number
(m) of the fictitious gravity anomalies Ag* on the geo-
sphere, is not necessarily equal to the number (n) of the
surface gravity anomalies Ag. The solution for Ag* is
obtained from the numerical solution of a set of ordinary
first-order differential equations using the iterative Runge-
Kutta's method. However, there is anumber of points we
would like to emphasize concerning this approach, as compared
to the methods described in this chapter.

a. For a real-world application, the Dirac-approach method
with point anomalies on the surface of the earth, is
more advantageous because it avoids the assumptions
on the regular distribution of the data, on the location
of the points where the kernels are evaluated, and the
computation of the areas.

b. Nakiboglu and Lim (ibid), have restricted themselves
in computations of geop-spherop separations (C), and
deflections of the vertical (& , n) at the surface of
their model only, and not in space. Furthermore, they
do say that the Dirac approach would yield better results
than their method.

c. In their numerical example, only a small number of sub-
divisions (40 or 80 blocks) has been used for the compu-
tation of , &, and n •

d. As we have already shown in section 5.3.2, the Dirac
approach permits a relatively easy way for determining
the radius of the geosphere that will guarantee the
convergence of the iterative solution, Nakiboglu and
Lim (ibid), kept the radius of the geosphere fixed at
1 km below the mean earth sphere R



Chapter 6

SIMULATION TESTS WITH THE DIRAC APPROICH

6.1 Introduction

In this chapter we describe the simulation tests which
we performed in applying the Dirac approach to the terrain
model, just as we did in chapter 4 with the Green's approach.
Similar simulation studies are reported in (Reit, 1966),
but they follow a flat-earth approximation for the com-
ponent of the deflection of the vertical only. It should
be clear by now that the data needed for the Green's approach
is gravity disturbances, and not gravity anomalies as in
the discrete Dirac approach. Therefore, the gravity distur-
bances that are computed from the model (equation 3.18),
have to be transformed to anomalies. This can be achieved
by using the fundamental equation of physical geodesy (see
in Heiskanen and Moritz, 1967, p.88):

AgQ = 6gQ -r TQ (6.1)

the gravity disturbance being computed from (3.18), and
the disturbing potential from (3.16). This particular step
has been ignored in similar simulation studies in the past
(Molodensky, et al., 1962, p.217 ; Bjerhammar, 1976, p.43;
Sj6berg, 1978, p.37), all of which use the conical Molodensky's
model. However, the magnitude of the disturbing potential
T on the model is not larger than 1 . kgal.m (see figures
3.2 through 3.5), ano therefore, the magnitude of the second
term in the right-hand side of (6.1) is no greater than
0.3 mgal. Out simulation studies for the Dirac approach
consist of a six-step procedure, which can be described
as follows:

Step-1. The exact values of the components of I are com-
puted from equations (3.23), (3.24), and (3.25) at
selected points, over and in the vicinity of the model.

Step-2. The gravity anomalies are computed on the surface
of the model from equations (6.1) and (3.18). The
extent of the area around the model, and the grid spacing
are specified, and the data is generated on a regular
grid.

Step-3. The radius of the (smallest) geosphere that will
guarantee the convergence of the iterative solution
is computed from (5.47).

79.
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Step-4. The Gauss-Seidel iterative method is applied for

the computation of the gravity spikes AgS at the
carrier points.

Step-5. The components (6gr , 6g , 6gX) are obtained
from (5.48), and them, (5.42) yields the three compon-
ents DT/DX , 3T/DY , aT/aZ at the selected space
points. Then, (3.24) and (3.25) can be used to compute
the two distinct components 3Tl3r , (1/r) aT/Vap in
the polar (r ,p) system.

Step-5* (optional). The N spikes on the geosphere must
satisfy all the surface gravity anomalies. Equation
(5.35) can be used to compute the surface anomalies
from the spikes, which can be compared ot the original
data. Any difference between the given data and the
computed anomalies are due to the fact that the iteration
has been forced to stop before a 16-digit agreement
was reached between successive approximations.

Step-6. The components from steps 1 and 5 are compared
in terms of their relative percentage difference (from
equations 4.1)).

6.2 Simulation Tests

The difficulty in applying the Dirac approach arises
from the fact that an iterative procedure is used to solve
for the gravity spikes on the geosphere (section 5.3.1).
In terms of computer time (on an Amdahl 470 machine), it
takes about 16 seconds to complete just one iteration for
576 spikes. Therefore, it would be practically impossible
to handle a large amount of surface data (say more than
2000 data points), because of the large CPU time that is
required to solve such a large system of equations. This

is why we decided to make the simulation tests for the Dirac
approach, using a relatively small amount of data points
(up to 576 surface gravity anomalies). The characteristics
of the models are defined from the parameters listed in
table 3.1. A description of the tests is given in table
6.1 for easy comparison. It must be kept in mind that the
iterative solution for the gravity spikes can be carried-
out to any desirable level of accuracy, which is controlled
by the convergence criterion (5.38), and by the maximum
number of iterations allowed (kmax).

The question is now how many iterations are actually
needed to compute the gravity spikes. In other words, a
12-digit agreement between successive iterations at all
spikes according to conditon (5.38) might be too much, and
that the iteration should rather be terminated whenever
the RMS difference between the surface anomalies, and the
anomalies computed from the spikes at the same points, is
below a certain level (say 1. mgal).
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In order to investigate the effect of the number of iter-
ations, on the accuracy of the components of , three tests
were made using the spherical cap model (576 anomalies in
a 0.4'x 0.4' area), and terminating the iteration process
after 8, 10, and 12 iterations respectively. The exact com-
ponents from the model, and the components computed from
the spikes at 7 space points (at 5 km altitude above the
mean sphere R ), are listed in table 6.2. The differences
between the exact and the computed component, are also listed
in parenthesis. The last two columns of table 6.2 contain:

(a). The RMS difference between the exact components, and
the computed ones, and

(b). The RMS difference between the original surface anomalies
and those computed at the same points from the spikes,
after the iteration is terminated.

The fact that these RMS differences become smaller as
the number of iterations increases, indicates that the num-
erical solution for the gravity spikes probably converges
(the relative percentage errors from the kmax= 12, are given
in table 6.4, and as we can see are quite small). Therefore,
we decided to terminate the iteration for all tests at kmax=
12, for which the RMS differences between the original and
the computed anomalies are smaller than 1. mgal (see also
table 6.1).

The radius of the geosphere is computed from equation
(5.47), but for most of our tests with very dense data (1'
grid, see table 6.1), RB was forced to be 50 meters smaller
than R . This had to be done, because for very dense data
at high elevations (as on our 4.1-km models), the radius
RB from (5.47) is larger than R . (note: the 50-meters
depth for the geosphere was selected on a rather arbitrary
basis, since the geosphere must be completelv imbedded inside
the earth, and therefore inside the mean-earth sphere R ).
This paradoxial result, i.e. RB larger than R , actually
means that this kind of data does not satisfy the sufficient
condition (5.39), and hence, the iterative solution for the
spikes might not converge. However, the tests that follow,
4ndicate that even in this case the iteration converges,
which is explained by the fact that (5.39) is only a sufficient
condition for convergence.

Let us first start the discussion on the simulations
with the errors from the spherical cap model, already used
above for the determination of the maximum number of iter-
ations. A total number of 576 anomalies were generated on
its surface, within a 20 x 20 area on a 5' grid. This data
implies a radius RB 753 meters smaller than R . The errors
in the components of 1 at 5 km altitude are large (table
6.3), but the reason is obvious: most of the gravity
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information generated by the model is missing, since the
data points are too far away from it. As we can see in table
6.4, by using data on a 1' grid within a 0.40 x 0.4* area -
576 points again-, the errors are tuc orders of magnitude
smaller than with data on a 5' grid in a much larger area.
The errors from these two tables indicate that for the very
smooth topography of the spherical cap model, the results
from the Dirac approach are very sensitive to the density
of the surface data, but the method works very well with
dense data (say on a 1' grid), provided that this data is
not too dense if we want to avoid divergence of the iter-
ation.

For a 0-inclination conical model, with 576 anomalies
ona I' grid as above, the erros at 5, 10, 20, and 100 km
altitude are given in tables 6.5, 6.6, 6.7, and 6.8 respec-
tively. At altitude 5 m, the errors from the spherical
cap model are slightly smaller than the errors from the I0*-
inclination conical model (table 6.4 vs. 6.5). It is quite
remarkable that even over the edge of the area at 5 km alti-
tude, the errors are no more than 9%. Not only that, but
comparing with the results from the Green's approach at 10
km are almost three times smaller, despite the fact that
the amount of data is now two orders of magnitude smal-
ler. More remarkable is the fact that directly above the
model, at 5 km, 10 km, and 20 km altitude, the errors are
less than 3%, as opposed to almost 25% errors from the Green's
approach. However, as the altitude increases, the errors
from the Dirac approach become slightly larger, in contrast
to the results from the Green's approach. Nevertheless,
at 100 km the errors from the Dirac approach are almost four
times smaller than the errors from the Green's approach (table
6.8 vs. 4.16).

An overall examination of the two techniques, using
identical data and models (100 -cone, 0.4' x 0.4' area, l'
grid, 576 anomalies), shows that the Dirac approach in general
is superior to the Green's approach in terms of the magnitude
of the errors. The problem with the Dirac approach is that
it will fail with very dense data at high elevations, ard
it requires considerably more computer time because of the
itrative solution for the gravity spikes.

For a 400-inclination conical model (table 6.9), the
errors are quite large, reaching almost 90% over the whole
area. However, we have to realize that the extent of a 40'
cone with 4.1 km height is = 2.64', and thus, theire are
only 16 data points on the conical surface with a 1' grid.
Apparently, this amoung of data isnot enough to represent
the model's gravity field (figure 3.4) for the Dirac approach.
On the other hand, the Green's approach with the same model
and data, and at the same altitude, has yielded considerably
smaller errors (table 4.11). Attempts to use smaller grid
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spacing with the Dirac approach failed, because of the diver-
gence of the iterative solution for the spikes.

All the tests in the present study use synthetic data
on the surface of the models, and therefore, there are no
data errors (the gravity anomalies are rigorously computed
from the two point masses). In addition, and qimilarily
to the simulations with the Green's approach, due to the
very local characteristics of the models(figure 3.2 through
3.5), there are no significant truncation errors (i.e. errors
caused by neglecting the information outside of the working
area). The resulting errors which are given in tables 6.3
through 6.9 are due only to the following factors:

(a). Errors in the numerical solution for the gravity spikes,
and

(b). Errors caused by using a small number of data points
on the surface of the model.

From our experience with the simulations above, we can
draw the following conclusions:

1. As the altitude of the space point increases, the errors
increase too. This effect is opposite to that from the
Green's approach. Possibly, the small amount of data
points on the surface of the models (determined by the
grid spacing), is responsible for this discrepancy.

2. In general, the errors over the model seem to be smaller
than at the distant points, again in contrast to the
Green's approach.

3. The finer the grid spacing, the smaller the errors become,
but the disadvantage of the Dirac approach is that it
will not converge with very dense data at high elevations.

4. The larger the inclination of the model, the larger the
errors become, again in contrast to the results from
the Green's approach. It seems that the Dirac approach
is more sensitive to high inclinations than the Green's
approach. For a smooth topography (the case of the spher-
ical cap model, and of the 100-inclination cone), the
Dirac approach is superior to the Green's approach.
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6.3 Comparison of the Green's with the Dirac Approach

In section 4.2 and 6.2 we prsented the simulation studies
with the two approaches. Let us now review the results,
and compared the two methods.

The Green's approach requires as data gravity distur-
bances 6g on the surface of the earth, the disturbing poten-
tial T , the elevation h , and the two components of the
inclination at these points. Actually, 6g , T , and h
are referred to the center of the blocks, after a subdivision
of the surface has been made using a certain grid spacing,
and the whole approach is thus an approximation. The fact
that the errors of 't are not reduced by using a finer grid,
is an indication that this kind of approximation (combined
with the neglect of 2nd order variations of the topography)
is not suf ficient. The method does not work on the surf ace,
and close to it gives very large errors. As the altitu~de
of the space point increases, the errors descrease. Because
of the very local characteristic of the model used in the
simulations, the increase of the integration area doesnot
reduce the errors, and hence, there are no significant trunca-
tion errors. Also, as the inclination of the model increases,
(beyond 200), the errors become smaller. The method is much
faster than the Dirac approach, but it requires the data
be given on a regular grid.

The Dirac approach requires as data only surface gravity
anomalies and elevations at points, not necessarily on a
regular grid. The method requires an iterative solution
for the anomalies on the geosphere, which might diverge for
dense data at high elevations. As the inclination of the
model increases, the errors increase. The same happens when
the altitude of the space point increases, but the errors
are stil smaller than those from the Green's approach. In
general, this method works well, both close to the surface
of the earth, and at high altitudes. Its basic disadvantage
is the fact that it cannot be used for large amounts of data,
since it involves an analytical solution for the anomalies
on the geosphere, which is a very time-consuming process.
Also, it might diverge for very dense data at high elevations.

If it is a matter of choice between the two methods,
from our experience with these simulation studies, we would
recommend the Green's approach for high altitudes, with a
large number of data on the surface of the earth, and the
Dirac approach close to the surface, if a small number of
point data is available.
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6.4 Related Work

A number of authors have applied Bjerhammar's methods
for the computation of the external gravity field of the
earth. Some of them followed the original method (based
on the mean-value approach), and some other have developed
methods based on the fitting of the surface dF.1ta to an m-
degree polynomial. To the best of my knowledge, the Dirac
approach has never been applied to real or ,imulated data
for the computaion of the complete gravity vector in space,
without neglecting the topography.

The earliest work on this subject was published by Reit
(1966). It is a flat-earth (plana, approximation) simulation
study, using two models, one of which is almost identical
to the conical model described in chapter 3. The gravity
anomalies on the geosphere (Ag*), are computed iteratively,
and the -component of the deflection of the vertical
is computed and compared to its exact value on the model's
surface, and in space. The errors are almost two times larger
than those found from our analysis. For example, from Reit's
tables 5 and 6, the errors at 5 km above the cone are almost
10%, while at the same altitude the errors from the Dirac
approach are less than 2% (tables 6.4 and 6.5). For reasons
that will be explained in the chapter 9 we have to point
out that Reit computed the -component on the surface of
the model at the same points where the "synthetic" data is
given.

Forstner (1966) used 125 gravity anomalies in Cyprus,
and performed four polynomial fittings to this data. However,
these methods were applied in computing surface components
of the gravity vector only. In addition, the RMS difference
between the original data, and the anomalies computed from
the reduced (Ag*) data, was found to be between 7 and 22
mgal (Forstner, ibid, p.55). This difference is much larger
than that found from our tests (see table 6.1), despite of
the fact that the maximum elevation on our model is 4.1 km,
as opposed to 1.8 km over Cyprus.

Barlik (1971) describes other methods which are proposed
for areas with high elevations in order to avoid the divergence
problems which are encountered by Forstner (ibid). An auxil-
liary sphere is used, not imbedded inside the earth as the
geosphere, that the terms t = RB/rj are not very small
for the points at high eleva ions. However, the proposed
method is not fully automatted, and the evaluation of terrain
corrections is required.

The original work by Bjerhammar (1963, 1975, 1976, 1978),
and that by SJoberg (1975, 1978), have already been mentioned
in section 5.1. Bjerhammar (1976) has presented some results
from the application of the Dirac approach for the computation
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of deflections of the vertical on the surface of the earth.

Finally, Sjbberg (1975, 1978) has worked with a limited amount

of real data for the computation of gravity anomalies on

the surface of the earth. Because we feel that these results

need some additional elaboration, we will repeat his tests

in chapter 9 with some comments.



Chapter 7

COMPUTATION OF THE GRAVITY DISTURBANCE VECTOR IN
SPACE USING THE METHOD OF LEAST SQAUARES COT.LOCATION

7.1 Introduction

Let us now apply the method of Least-Squares Collocation
to the estimation of the components of , from the simu-
lated data on the surface of the rrodel. As with the other
two methods in this report, it is easy to evaluate the appli-
cability of collocation to our problem, because the exact
components of can be computed directly from the model.

A great number of papers have been published on appli-
cations of collocation to the determination of the gravity
field of the earth, on its surface as well as in the exterior
space. For the estimation of gravity anomalies, geoidal
undulations, and deflections of the vertical see for example
in (Lachapelle, 1977; Sjbberg, 1978; Tscherning and Fors-
berg, 1978; Forsberg and Tscherning, 1981). For computation
of gravity anomalies in space see Rapp and Hajela (1975).
For the computation of the covariance functions - the most
essential quantities in any estimation through collocation,
see Tscherning and Rapp (1974), Tscherning (1976), and SiInkel
(1979). Advanced aspects on collocation are discussed in
Moritz (1980), and Moritz and Sinkel (1978).

The collocation estimation of a quantity s from gravity
anomalies Ag , can be done using the equation below (Moritz,
1972):

s = C (C + D)- (7.1)

where:

Ag :the vector of the m observations of gravity
anomalies

C : the covariance matrix (mxm) of the observed
-AgvAg anomalies.
D : the covariance matrix (mxm) of the measuring

errors in the anomalies. This is taken to be a
null matrix, since we assume errorless observa-
tions for our simulation study.

Cs : the cross-covariance vector (m), between the
s,Ag quantity s to be predicted, and the gravity

observations.

93.
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The predicted s might be any quantity as long as the

corresponding covariance function between s and the data
(Ag) exists. For example, s may be geoidal undulation,
gravity anomaly, first or higher order derivative of the
disturbing potential, etc. The two problems that we encounter
in any collocation prediction are (a) the inversion of
a large matrix (C+D) in case of a large number of data,
and (b) the computation of the auto - and cross-covariances
between the various quantities in (7.1).

For the computation of the various covariances we decided
to use the covariance approximation procedure which is doc-
umented in SiInkel (1979). In fact, we have used a new version
of his computer program, documented in Sunkel (1980), the
difference between the old and the new version being minor.
The whole procedure is based on the generation of a suffic-
iently dense network of covariances, and then, on the computa-
tion of any other covariance at a point inside this network
by a differentiation - interpolation procedure with spline
functions. The accuracy of this procedure can be as high
as we wish, depending on the density or the covariance
network. Interpolating at any other point from the grid
values, rather than computing the covariance directly, re-
duces the CPU time significantly (Sinkel, 1979, p.22).

7.2 Collocation Prediction of the Gravity Disturbance Vector

The computer program mentioned above, computes the
auto- and cross-covariances between fourteen quantities,
among which we find the radial component of the disturbing
potential, and the components of the deflection of the verti-
cal:

r in E6tvbs (1 E = 10-9sec - 2)

in arcsec

n in arcsec

Ag in mgal

For simplicity, let us denote by _ the product C- 1

in (7.1):

cov(Ag 1 ,Ag1 ) . . . cov(Ag1 ,Agm ) - Agm
C-

11A 'R g

cov(Agm,Agl) • . . cov(AgmAgm ) AgM
(7.2)
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Then, the application of (7.1) to the determination

of the quantities: -(;T/3r)/r , , and n yields:

-(l/r)aT/3r = [cov(-l/r)3T/9r, Agl],...] Q , in E6tv6s

= [cov(&,Ag), • . . Q , in arcsec

T= cov(n,Agl), . . . , in arcsec

The partial derivatives of the disturbing potential with
respect to r , F , and X, are then given from the well-
known equations (S~inkel, ibid, p.21):

aT r (-DTr) ,in 10-9 m.sec- 2

ar r

=a -' y , in m .sec- 2  arsec

= -ry coso n in m .sec 2  arseck -r n,(7.4)

The components of T can now be transformed to compon-
ents of the gravity disturbance vector , using (5.22):

6g -r (_aT/at) 10-9 , in m.sec - 2

r r r

1 T
r - 206264.8 in m.sec - 2

_ 1 DT 1 1
A r cosT ax -¥n 206264.806

in m.sec- 2

(7.5)

Then, equation (5.32) is used to rotate the components
of to a geocentric (X , Y , Z) system:

aT 6gx cOS p COSAp -sinTp cOSAp -sinAp 6gr

aT

_W P copsn -sin$ si nA P COSA p 6g

D jsi $c o s 0 6g 1p sp (7.6
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where the index P means that the computations are made
at the space point P (rp , p , p).

1 L IiIy tequd t. 1.Atio ( . , a~.iit . ) , ai kc taoc' I.

rotate these components to the polar (r , t) coordinate
system in order to obtain the two distinct components 3T/'r,
and (1/r) ;T/3y for the simulation tests.

7.3 Simulation Tests with the Collocation Approach

As we described in sections 4.2 and 6.2 for the Green's
and for the Dirac approaches respectively, the terrain model
of chapter 3 is used again, and the gravity anomalies are
generated on its surface from the two point masses to be,
used in the collocation prediction.

The covariance network which is the most time-consuming
part in the covariance approximation procedure just mentioned,
is also generated in space, from the surface of the sphere
up to an altitude of 111 km in radial direction, and from
the center of the model up to 125' in spherical distance.
The grid has to be denser for smaller altitudes than for
higher altitudes, and denser for smaller spherical distances
than for larger ones (Sinkel, 1979, p.5). From our prelimin-
ary tests with the collocation approach, we found that
a non-uniform grid as it is shown in figure 7.1 would be
sufficient for the prediction of the components of the grav-
ity disturbance vector up to an altitude of 100 km. The
grid that we constructed has a spacing of 1 km up to the
11 km altitude, and then the spacing becomes 10 km up to
the maximum 111 km radial distance. In the spherical direc-
tion, the grid spacing is 0'.5 for the first 5', then it
is i' for the next 20', and finally it becomes 10' up u
the maximum spherical distance of 125'. It takes approxi-
mately 18 CPU-seconds in an Amdahl 470/6-I maching for
the construcion of such a grid.

The Tscherning and Rapp (1974 , 4th model) anomaly
degree variance model was used for the computation of the
covariance network. This model corresponds to the 2nd model
in Snkel's program (see also equation (9.7), section 9.3).
Preliminary tests indicated that the use of a "global" versus
a "local" nth-degree covariance function (the first n anom-
aly degree variances are set equal to zero), is not a critical
factor for the computation of I . The use of a global,
of a 20th-degree, and of a 40th-degree covariance functions,
resulted to components of , which are different by no
more than 0.5 mgal. The fact that the collocation prediction
is not sensitive to the covariance function being used,
has been verified in numerous applications of collocation
(see for example in: Rapp and Agajelu, 1975, p.9; Lachapelle,
1977; Rapp, 1979-a; Katsambalos, 1980).
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One might argue that the covariance function being used

should be consistent with the synthetic data on the models.
Theoretically, this is necessary due to the fact that the
center of mass of the models does not coincide with the
center of the mass of the earth (the center of the sphere
R in our case). The construction of a covariance function
is a very laborious procedure, especially for our simulation
testswherea great number of different model,!, are used.
In addition, as we mentioned above, from ov,: preliminary
tests it was found that the predicted quantities are not
sensitive to the covariance function being used. Therefore,
for simplicity we decided to use the global Tscherning-
Rapp covariance function.

After the covariance network is set-up, the equations
of the previous section can be used for the collocation
prediction of the components of -, . The radii rp ,rQ
are computed as rp=R +hp ,rQ =R +h . where hp , h
are the heights of the space Poilnt P Qf the surface point
Q above the mean-earth sphere R

In table 7.1 the relative percentage errors of the
vector I at 5 km altitude are shown in the usual form.
256 anomalies are generated on the surface of a 100 conical
model, on a 3' grid within a 0.8*x0.8 0 area. These errors
are about 20% above the cone, they reach a maximum of 70%,
and then they fall below the 10% level. By decreasing the
grid spacing to 2' within the same area (576 anomalies on
the surface of the model now), the errors at 5 km are now
10% (table 7.2), but they grow larger as we go away from
the model's axis towards the boundary of the area.

Table 7.3 shows the errors at 10 km altitude using
the 100 conical model again. Comparing these errors with
those at 5 km (table 7.1), we see that they are almost an
order of magnitude smaller right above the model's center,
but they are larger away from it. At higher altitudes (100
km and above) the errors from the collocation approach were
found to be very large (more than 100%). Any attempt to
increase the size of the area with 2' or 3' grid spacing,
would require the inversion of large matrix C . Not that
it takes about 4 minutes CPU time to form and invert a 576 X
576 symmetric matrix of the covariances (the IMSL subroutine
LIMVP was used).

For a direct comparison between the Dirac and the col-
location approaches, the components of 't at 5 km altitude
are tabulated in table 7.7 using the same model (100 cone),
and the same data (576 anomalies on a 2' grid, within a
0.80x. 080 area). The results from the collocation approach
are in a better agreement with the exact components of I
right above the model's center, but the Dirac approach is
obviously superior at the other points.



The errors from a 400-inclination model (table 7.4
compared to those from a 10*-model, (table 7.2), are larger
over the cone, but smaller away from it. In order to decrea'e
the errors at the points away from the model's axis, we
should increase the working area beyond 1*x 1*,but that
would require the inversion of a very large matrix. There-
fore, the application of collocation to our problem seems
to be a very time consuming approach.

For the very smooth topography of the spherical cap
model which was described in section 3.4 the errors are
smaller when compared to those from the conical model, and
they become almost zero at point away from the model (tables
7.5 and 7.6). This is true not only at 5 km altitude, but
aaso at 10 km altitude.

In order to investigate the effect of the topography
on the collocation approach, we made an additional test
for which the elevations of the surface points were forced
to be equal to zero(the remaining specifications for this
test are identical to those in table 7.2). The results( from this test are given in table 7.8. Comparing the errors
given in tables 7.2 and 7.8, we see that the effect of the
topography is very significant, since the errors from the
new testare much largerabove the model's center, than
those in table 7.2.

From our experience from the simulation tests with
the collocation prediction of ,we can make the following
conclusions.

(a). Collocation is a very time consuming approach, espec-
ially in handling a large amount of surface data.

(b). The errors in I are very large for altitudes larger
than 10 km (relative percentage errors at the 100%
level and above)

(c). For data given on a very smooth topography, the errors
at 5 kmn, and 10 km altitude are relatively small (com-
pared to the errors from the conical models), but
not as small as those from the Dirac approach.

(d). On an overall basis, the Dirac approach seems to be
superior as compared to the collocation approach.
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Chapter 8

COMPARISON OF THE IMPROVED TECHNIQUES
WITH THE CLASSICAL APPROACH

As we have already mentioned in chapter 1 , there exist
three methods for the computation of t (using gravity
data reduced to the geoid), which were called the "classical"
approaches:

1. the Direct Integration Method,
2. the Coating Mrt'hnd, and
3. the Upward C:t ' ation Method.

The theory behind these methods can be found in Hirvonen
and Moritz (1963+: Heiskanen and Moritz (1967); Mueller
(1966). The Direct Integration method is computationally
the most difficult to use, but it requires the least amount
of data, since the other two methods require - in addition
to the gravity anomalies which are needed by all three -

geoidal undulations, and deflections of the vertical on
the physical surface of the earth. A computer program which
is based on the Direct Integration Method is documented
in (Rapp, 1966).

We decided to use the Direct Integration Method as
our "classical" approach, because of its simplicity in terms
of data required. The corresponding equations for the three
components of $ , at a point P ( p X p , rp) in space
are (Heiskanen and Moritz, 1967, p.234):

(6g = 2 1 f Ag aS(rri) dS

1 f Ag S(r) cos dS
(6ag- 4TrR Sa 4

(6g)p = ff Ag sina dSTFs (8.1)

Strictly speaking, the gravity anomalies Ag'= - YE
in the equations above refer to the geoid; gG is te gravity
reduced in free-air from the surface of the earth to the
geoid, and YZ is the normal gravity on the ellipsoid.
It must be pointed-out that in applications with real data,
the normal gradient 3y/ r - -0.3086 mgal/meter is used
for this type of reduction, instead of the gradient ag/ar
Therefore, the resulting anomalies are approximately surface

105.
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free-air gravity anomalies. However, the difference between
the surface anomaly, and the anomaly at the geoid is small
(ihid. p.241). rrnPqu(nt~v, for our simulation tests with
the classical approach we will be using gravIly anomaUis
generated by the model on its surface (see equation (6.1)),
similarily to the computations performed by Molodensky et
al. (1962, pp.196-210).

Applying the same kind of approximation as in section
5.2.3, equations (8.1) yield:

1 N Sr')(6gr)p - T_ Agi  ---- Fr-) AS.
r Ri=l 1

N a iScos )
1 N aS(r4i) AS. Cia.

Pi=1
(ST-) P~R i 1 1 1 1 (8.2)

where N is the total number of elementary areas in which
the sphere R is subdivided. The index i refers to the
center of the block AS i  (this is an approximation too,
since the point to evaluate the kernels in (8.1) is unknown).
The aximuth ai , the spherical distance i , and the deriva-
tives of the Stokes' function with respect to r , and
are given by equations (5.26) through (5.31). The differences
between equations (8.2) of the classical approach, and equa-
tions (5.25) of the mean-value approach (following Bjerhammar),
are:
(a). The geosphere RB in (5.25), now becomes the mean-

earth sphere R , and
(b). The gravity anomalies Ag* in (5.25) do not have

any physical meaning (they just satisfy the surface
data), while the anomalies in (8.2) are the given
free-air anomalies.

Let us now apply equations (8.2) using the data (surface
gravity anomalies) generated by the terrain models, similarily
to the simulations for the improved techniques. Using a
10-inclination conical model, and gravity anomalies on
a 2' grid within an area 8*x 80, the errors in the components
of I at 10 km altitude, are by a factor of 2 larger than
those from the Green's approach (table 8.1 vs. table 4.4).
The same difference was found using data on a 1' grid within
a 0.4°x 0.40 area (table 8.3 vs. 4.14).

Comparing the errors from the Dirac approach at 5 km,
10 km, 20 km, and 100 km altitudes, to those from the clas-
sical approach, using identical model and data, we found
them to be 2 to 10 times smaller (tables 6.5, 6.6, 6.7,
and 6.8, versus tables 8.2, 8.3, 8.4, and 8.5 respectively).
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For an easier comparison among the results 

from the

various techniques, we list in table 8.6 the exact components
of at selected points at 10 km altitude, and the compon-
ents computed from the synthetic data on the surface of
a 10-inclination conical model (within a 0.8*x0.80 area,
with 2' grid), using both the classical approach and the
improved techniques. It is obvious that the results from
the improved techniques are closer to the ex-.ct values than
the results from the classical approach, with the exception
of the results from collocation at points Lway from the
model's center (Oo = 450, Xo0 = 2500).

All of our tests clearly indicate that the three tech-
niques which take the effect of the topography into account,
offer an improved solution for the computation of the compon-
ents of in space, as compared to the classical approach
where the topography is neglected.

(

.. . .... ... .... . ..I. ... . . . . .. .. ... .. .. ... .. ... . .. ., .. . .
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Table 8.6
Comparison of Gravity Disturbance Vector
Components in Space (10 km altitude),

Computed from the Improved Techniques and
from the Classical Approach

(1O0 -inclination conical model; 0.8x0?8 area;
2' grid; values in mgal; height in metrs)

Green's Approach:

I EXACT: I COMPUTED: I DIFFREINCES:
LAT LON HEICITI RADIAL HORIZ I RADIAL HORIZ I RADIAL HORIZ 1

45 250 0' 10000.1 -36.89 0.0 1 -9 i .04 -2.491 -5.85 2.491
45 250 2' 10000.1 -34.66 -4.881 -28.52 -5.201 -6.14 0.321
45 250 4' 10000.1 -29.48 -8.211 -24.25 -7.281 -5.23 -0.931
45 250 6' 10000.1 -23.43 -9.661 -19.56 -8.251 -3.87 -1.411
45 250 8' 10000.1 -17.93 -9.701 -15.42 -8.36t -2.51 -1.421
45 250 10' 10000.1 -13.51 -9.171 -11.94 -7.881 -1.57 -1.281
45 250 12' 10000.1 -10.15 -8.241 -9.33 -7.201 -0.62 -1.041

D irac Approach:

I EXACT. I COMPUTED: I DIFFERENCES: I
LAT LON HEIGETI RADIAL HORIZ I RADIAL HORIZ I RADIAL HORIZ i

45 250 0' 10000.1 -36.89 0.0 1 -35.07 -0.011 -1.82 0.011
45 250 2' 10000.1 -34.66 -4.881 -33.11 -4.731 -1.55 -0.159
45 250 4' 10000.9 -29.48 -8.211 -28.10 -8.001 -1.39 -0.211
45 250 6' 10000.9 -23.43 -9.661 -22.18 -9.491 -1.25 -0.171
45 250 8' 10000.1 -17.93 -9.781 -16.74 -9.63( -i.Q -0.130
45 250 10' 10000.1 -13.51 -9.171 -12.30 -8.981 -9 2; -0.l",'
45 230 12' 10000.9 -10.15 -8.241 -8.96 -8.011 1,-. -0.231

Collocation Approach:

I EXACT: I COMPUTED: I IFFERENCES: I
LAT LON HEIGHTI RADIAL HORIZ I RADIAL HORIZ I RADIAL HORIZ I

45 250 0' 10000.9 -36.89 0.0 1 -44.99 -0.021 8.10 0.021
45 250 2' 10000.1 -34.66 -4.881 -43.17 -4.101 8.51 -0.781
45 250 4' 10000.9 -29.48 -8.211 -38.47 -6.901 8.99 -1.311
43 250 6' 10000.9 -23.43 -9.661 -32.69 -8.001 9.26 -1.659
+4 250 8' 10000.9 -17.93 -9.781 -27.45 -7.761 9.53 -2.011
45 250 10' 10000.1 -13.51 -9.171 -23.23 -6.711 9.72 -2.46145 250 12' 10000.1 -10.15 -8.241 -20.13 -5.371 9.99 -2.871

Classical Approach:
I EXACT: I COMPUTED: I DI FlUZNCES: I

IAT LON HEIGHTI RADIAL HORIZ I RADIAL HORIZ I RADIAL HORIZ I

45 250 0' 10,00.1 -36.89 0.0 1 -22.17 -6.041 -14.73 0.041
45 250 2' 10000.1 -34.66 -4.881 -21.39 -2.421 -13.28 -2.461
45 250 4' 10000.9 -29.48 -8.219 -19.24 -4.361 -10.24 -3.851
45 250 6' 10000.1 -23.43 -9.661 -16.40 -5.601 -7.03 -4.061
45 250 8' 10400.1 -17.93 -9.781 -13.32 -6.131 -4.61 -3.641
43 250 10' 10000.9 -13.51 -9.179 -10.56 -6.151 -2.95 -3.021
43 250 12' 10000.1 -10.15 -8.241 -8.22 -8.841 -1.92 -2.441



Chapter 9

SOME TOPICS OF SPECIAL INTEREST RELATED TO THE
COMPUTATION OF THE GRAVITY DISTURBANCE VECTOR IN SPACE

During our investigations on the accuracy of the three
improved techniques for the computation of the gravity vector
in space considering the topography of the earth, some ques-
tions related to the applicability of these anoroaches with
real data were raised.

More specifically, the use of the Dirac approach with
data having large spacing was questioned, and in section
9.1 below some tests are described that confirm this draw-
back of the method. In addition, the effect of the truncation,
i.e. the neglect of the information from the remote zones
is discussed (section 9.2, and 9.3). Despite the fact that
the effect of the topography is not considered in our compu-
tations for the truncation effects, we think that the results
in these two sections will help us in judging the applica-
bility of the Dirac appro!A- h with real data, using a higher-
degree reference field as -pposed to an ellipsoidal one.

9.1 Some Tests with Real Data and the Dirac Approach, for
Gravity Anomaly Computations on the Surface of the Earth

In order to test how well the Dirac (iterative) approach
converges in a real-world application with point gravity
anomalies on the surface of the earth, irregularly distributed,
we decided to use the data set described in (Sj6berg, 1978,
p.64), and to compare our results with his. This data set
consists of 87 point free-air gravity anomalies in the Manitoba
area, in Canada, with a mean spacing O*.5, in an area 2*.5x 6
and at a mean elevation 400 meters approximately. Note
that the RMS value of these gravity anomalies in 14.00 mgal.
Table 9.1 contains the location, the elevation, and the
gravity anomaly for each one of these points.

From these 87 anomalies, the gravity spikes are iter-
atively computed on the geosphere, whose depth from the
mean sphere R was selected - for test purposes - to be
0, 10, 20, and 30 km. The Gauss-Seidel iterative method
of section 5.3.1 was used (equation (5.37)), using (5.38)
as the convergence criterion. The RMS difference between
the given anomalies, and those computed from the 87 spikes
at the same pointsis given in table 9.3. The reason why
these RMS differences are not exactly zero, is due to the

112.
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fact that the spikes have been computed iteratively, and
not directly. In any event, these differences are very
small, showing that within three iterations the solution
for Ag s converges.

Table 9.2 is of the same nature as table 9.1, but it
contains information about an additional set -f 50 anomalies
in the same area, distributed within the 87 inomalies of
the first set. The RMS value of the 50 aneialies, is 13.5226
mgal. The RMS differences between these anomalies, and
those computed from the spikes are also shown in table 9.3.
As the reader can see, these RMS differences are of the
same magnitude as the RMS value of the 50 anomalies itself.
Sjbberg (ibid, p.68) analyzing thE same data set with the
same method, found similar results, but he did not make
any comment about the fact that under the above circumstances,
the resulting error of the prediction is 100%

At first, if we use (5.47) to compute the radius of
the smallest sphere which will guarantee the convergence
of the iterative solution for 'min = 0 °.5 , and hmax= 500
meters, we find that the depth of the geosphere is about
28.5 km. This is in a very good agreement with the optimum
depth that Sjbberg found for the same data set in applying
the Dirac approach (see his figure 6, page 67), which is
approximately 30 km.

One reason for the RMS error to be equal to the RMS
value of the predicted quantity, is that the computed quantity
is orders of magnitude smaller than its true value (the
given surface value). In order to verify this, we computed
the gravity anomalies at the surface from the 87 spikes,
along a profile between two of the given data points. The
coordinates, the elevation, and the computed anomalies at
selected points along this profile are given in table 9.4,
along with the true values at the end points. We see that
the magnitude of the gravity anomaly is dramatically reduced
as we go away from either one of the end points. In the
middle of the profile, the computed gravity anomaly is prac-
tically identical to the given value.

Our interpretation to this - originally surprising -
finding is the following. As the gravity anomalies on the
geosphere are all zero except at the carrier points, the
gravity anomalies on the surface of the earth will also
retain the same gravity characteristics of the field that
generates them. In other words, the spikes on the geosphere
fit only the surface data from which they have been com-
puted, and that cannot be used for the computation of a
gravity anomaly away from these points, unless the surface
data is very dense to permit an accurate prediction. This
also explains the large errors that we found from the simula-
tion test with 5'-grid (table 6.3), as opposed to the errors
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Table 9.2

Free--Air Gravity Anomalies in Manitoba, Canada
(Test Data Set)

(From: Sjoberg (1978))

ST 0 LATITUDE LONGITUDE REIGHT AIOPM.L.Y
(DEGIUES) (METERS) ( PICAL)

99999
10009 50.394+19 91.14833 386.181 9.76
16011 50.74666 90.96165 379.476 10.63
10499 50.79678 92.36719 425.501 8.82
16042 50.95090 91.75833 402.031 -9.20
16912 50.8113:13 91.01666 378.257 1.71
10052 30.59193 92.61716 428.854 12.66
10047 50.22284 92.84720 358.445 -3.57
10O3U 30.21497 92.37631 357.833 -3.37
15372 50.49666 91.87166 337.225 12.68
273 30.40833 91.501133 370.027 3.99

15370 50.75499 91.110333 391.973 7.53
16047 50.60333 91.41998 382.219 13.34
10196 50.80524 92.14000 396.545 -2.18
10081 50.21280 93.23963 364.845 7.53
625 50.30666 93.17999 361.493 4.41

16002 51.12833 90.06033 380.390 -21.34
16050 50.29498 91.38998 373.685 -14.68
15331 50.74500 90.75665 390.449 7.83
15334 50.42332 90.71666 391.050 2.09
14056 50. 133.3 90.611032 404.774 -15. 16
15384 50.12999 90.23999 417.576 -3.35
9164 411.91499 90.60001 457.809 -11.23
13576 49.02196 91.96181 425.501 -21.95
15715 49.B48416 90.40294 442.265 -2.80
15723 49.74696 90.75410 435.559 -5.I8
15675 49.06776 92.09227 382.524 -23.51
10019 49.04630 92.39220 366.674 -18.90
15878 49.92999 91.38333 308.925 -29.92
19203 49.76701 94.87744 359.969 2.11
11455 49.62477 94.02734 373.990 -10.26
10222 49.59979 94.35619 323.088 5.44
5710 49.43166 96.27499 337.225 5.27
5546 49.72333 95.24666 338.328 16.62
10198 49.62842 95.49942 318.211 -1.36
5531 49.71666 94.93666 359.664 10.92
5076 49.71500 94.180666 345.643 14.12
10078 49.90807 93. 14622 372.770 -8.51
10104 49.60629 93.87337 379. 171 -18.87
10098 49.30528 93.51170 338.023 6.60
5084 49.81332 92.97501 35.092 -10.10
10014 49.62167 92.44067 305.572 18.04
12002 49.49670 92.69481 403.535 11.76
10007 49.22151 92.46306 405.384 -23.49
213 49. 14166 92.70332 380.620 -22.67

15725 49.70807 91.09705 435.359 -8.48
15736 49.66466 91.01067 419.405 -24.77
15738 49.24739 91.46384 445.617 -13.99
10249 41.06917 93.27043 337.718 -6.09
131652 48.56082 90.73390 447.751 -23.06
15740 48.83131 90.96706 445.922 -10.72
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from a 1'-grid (table 6.4). These results indicate that

the Dirac approach should not be used for the interpolation
of gravity anomalies on the surface of the earth, unless
the data is sufficiently dense to ensure an accurate predic-
tion. Note that the errors in tables 6.5 through 6.8 are
much smaller, because of the very find (1') grid being used.

Table 9.3

Comparison of Input with Computed Anomalies, at
Various Depths of the Geosphere (Dirac approach).

Values in mgal.

RMS Diff. RMS Diff.
Depth # of (input - (input -
R- RB Iterat. computed) computed)
(km) 87 points 50 points

0 3 .52 x 10- 6  13.5266

10 3 .54 x 10 - 6  13.5266

20 3 .49 x 10- 6  13.5266

30 3 .61 x 10- 6 13.5266

Note: The iteration is terminated when two successive values
for a spike have a 12-digit agreement.

Table 9.4

Computation of the Gravity Anomalies Along a Profile

Station latitude longitude anomaly y
(mgal) (mgal)

11423 49001u13'3 92058'56710 408.43C 21.05 21.0499996
49 01 13.4 92 58 56.0 407 21.18
49 01 12.0 92 58 55.2 405 21.01
49 01 48.0 92 58 48.0 404 1.10
49 01 24.0 92 54 00 402.5 0.0065
49 06 00 92 48 00 401 0.00017
49 12 00 92 42 00 399 -0.00011
49 18 00 92 36 00 398 -0.000072
49 24 00 92 30 00 397 0.000032
49 30 00 92 24 00 395 0.0081
49 31 48. 92 24 36. 393 2.45
49 31 58.8 92 24 32.4 389 5.71
49 31 59.9 92 24 35.3 286 6.08

10013 49 32 00.2 92 24 35.6 383.743 6.16 6.1600003
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9.2 Truncation and Discretization Errors

In the preceding chapters we presented three methods for
the computation of the gravity vector in space, from surface
data, without neglecting the topography of the earth. The
Green's method requires as data mean gravity disturbances
on the earth's surface, while the Dirac and t'.e collocation
approaches require point gravity anomalies a'. discrete surface
stations. From the practical point of view, none of these
methods can operate on a global data set, due to the limita-
tions in computer speed and core. One possible solution
to this problem is to use data in a spherical cap - whose
center is at the projection of the space point on the surface
of the earth -, and to account fo' the information from
the remote zones through a set of potential coefficients.
Clearly, if only the data in the cap is used, the resulting
truncation error will be smaller (in general), as the size
of the cap becomes larger. Therefore, it is very important
to know the minimum cap size that yields a certain level
of accuracy in computing a particular quantity (the components
of in our case).

In addition to the truncation effect, the computed
quantity is also affected by the fact that we are dealing
with discrete data. This type of error is a function of
the grid spacing (i.e. the block size) following the Green's
approach, or a function of the distance between the discrete
data points following the Dirac approach, or collocation.
In general, the truncation error is a function of the extent
of the area, and the discretization error is a function
of the density of the data.

In our simulations, the synthetic data on the surface
of the model is assumed to be errorless as being rigorously
computed from the disturbing masses. Therefore, the tables
in the preceding chapters give the total error, which
is caused by the combined effect of:

(a). Truncation and Discretization (Dirac approach).
(b). Truncation and Discretization, missing second-order

variations of the topography, and center-point evalua-
tions of the kernels (Green's approach).

For the simulation tests with the Green's approach,
we have used relatively small working areas (2*x2* to 8° 80),
the reason being that away from the model's disturbing masses
the value of the gravity disturbance diminishes very rapidly
(figure 3.2 through 3.5). In other words, the model creates
a very local disturbing field and attempts to include more
and more data by expanding the size of the working area
to 80x 80 did not improve the results. In addition., grid
intervals as small as 0.5' in the inner zone did not result
in substantial reduction of the errors of t . These tests

- .R~I
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indicate that the errors from the Green's approach are mainly
due to the missing second-order variations of the topography,
and to the effect of the center-point evaluation of the
kernals. These two approximations are the dominant sources
of errors in the Green's approach.

For the simulations with the Dirac approach we have
used even smaller working areas (0.4*x0.4* to 2*x2*). From
the results in tables 6.3 and 6.4 we can see that the errors
are now dramatically reduced by using five times smaller
grid, even if the area extent becomes five times smaller.
These results indicate that in our simulations for the Dirac
approach, the discretization errors dominate the truncation
errors. This is due to the very local characteristics of
themodels, and it should not be generalized for an applica-
tion with real data.

9.3 The Relationship between the Truncation Angle, and
the Altitude of the Space Point

It has been found (cf. Hirvonen and Moritz, 1963, p.68),
that in applications of the classical approach for the com-
putation of the radial component of t in space, it is suffic-
ient to extend the integration only as far as 10 times the
altitude of the space point, in order to ensure an error
smaller than 10%. However, this "rule-of-thumb" is valid
only for the Upward Continuation Method (under a planar
approximation), and should not be used for the other two
techniques (i.e. the Coating Method, and the Direct Integra-
tion Method).

From the simulations of chapter 8 it was concluded
that the effect of the topography is quite significant,
since the errors in are reduced by a factor of 2 or
more, when the topography is considered in the improved
techniques. The question is now, how far from the computation
point we should extend the integration using our improved
techniques. In other words, what is the relationship between
the minimum radius (Op) of the cap inside of which the data
is given, and the altitude of the space point (hp), such
that the truncation error in is below a certain limit
(say 100%)?

Clearly, it is out of the scope of the present study
to investigate the truncation errors when real data is used.
In addition, the effect of the discretization is quite a
challenge to be investigated. A procedure for the estimation
of the (global RMS) truncation errors in computing the vector

at a space point (using the Direct Integration classical
approach), is described by Shepperd (1979). We decided
to use Shepperd's procedure and computer programs, because
the topography away from the computation point does not
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significantly contribute to the components of , due to
the diminishing magnitude of the terms 3S(r, P)Oy , and
S(r, ')/3r in equations (5.48): Dirac approach, and (8.2):
classical approach.

Shepperd's equations for the RMS truncation error of
at altitude ire:

radial error component: E(6gr)[ ( rn r .*J,22(Ag)] (92)
n=O

horizontal error component: L(
6 gh)=[( g;)'+ .(5g ) 2 ]i (9.2)

=[ ~r, 3) ,7 (Ag)]

n n+l n

where oa(Ag) are the anomaly degree variances:

a2 (Ag) = C = : (n-l): (-m +  (93)
n n m nm (9.n)

Y is the mean value of the normal gravity (979800 mgal).
S are the fully normalized potentiat' Co"fficients,

nm' nm referred to the same normal field as the gravity

anomalies.

and the truncation coefficients for the radial horizontal
components of 6 are defined as:

Qn(r,kO ) = R 7T Sr p (cosw) sinq. dt.(0 4 r0n (9.4)

r,,0 ) = R 07T S(r,) P' (cosw) sinq d, (9.5)

where:

p,(X)= -X-- 2 d P (x)
n dx

Recursive relationships for the evaluation of these two
kinds of truncation coefficients, starting from the Moloden-
skii's coefficients:

Qn(r, o) = S(r, ) Pn (cos) sini do (9.6)

are given in (Shepperd, 1979), along WiLh OII'TAN subruuLintu
for their computation. (These subroutines were converted
for double-precision computations).
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For the computation of the anomaly degree variances,
we can use the Tscherning-Rapp (1974) model:

A h(n-1) n z 3
(n-2)(n+B)

A 425.28 mgal
2

(9.7)
B 24

Using (9.1) and (9.2), the total truncation error at
altitude will be:

total error component: £(6g) = [E( 6 g )2+ E"(6gh)2]1 (9.8)

In figures (9.1), (9.2), (9.3), and (9.4) we give the
truncation errors for the radial, the horizontal, and the
total components of I at 5km, 10 km, 100 km, and 500 km altitude
respectively, computed from equations (9.1), (9.2), and
(9.8). The summations in these equations were carried-
out from n =2 to nmax = 400 with c2 =7.5 mgal

2 (Tscherning
and Rapp, 1974), i.e. assuming an ellipsoidal reference
field. This nmax =

4 0 0  was chosen because summations to
higher degrees did not yield significantly different results.
Note that Shepperd (ibid) performed his computations up
to nmax =

2 0 only.

The results plotted in these figures indicate that
in orderto maintain a truncation error smaller than 10%
(with rspect to the RMS total magnitude of at the same
altitude), we should extend the integration over a cap of
radius qj given in table 9.5 (second column) as a funcion
of the altitude of the space point.

Table 9.5

Cap Radius (yo) for Truncation Error Smaller than 10%
at Selected Altitudes of the Space Point

Radius po :

hp P Ellipsoidal Ref. Field 20th-degree Ref. Field

5 km 500 30 25'

10 km 500 30 35'

100 km 1200 50 30'

500 km 1550 300
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It must be pointed-out that the PO estimates in table

9.5 hold only for the classical approach (chapter 8),
and for the Dirac approach (chapter 5), both of which are
based on Pizzetti's generalized formula (equations (5.24),
and (8.1)). As we can see, by using an ellipsoidal reference
field, even for a relatively low altitude (5 km) the inte-
gration must be extended within a 500 cap, in order to retain
a relative error below the 10% level. In order to verify
the correctness of our computations, we coi'puted (from Shep-
perd's equations) the effect of truncation on 6 gr , and
69 = 6g\ = 6gh/" , for a point on the surface of the earth.
Welused the same anomaly degree variances as in (Hirvonen
and Moritz, 1963, p.54):

c2 = 15; c 3 =43; c4 =30; c5 =c 6 
= C7 =C8 = 25 mgal

2

and therefore the summations in equations (9.1) and (9.2) were
taken to nmax =

8 
. The results are given in table 9.6,

where we also list the truncation effects on 6gr (from
Hirvonen and Moritz, 1963, table 7.2), computed as:

c(gr  =[naxq C]

an=2 (9.9)

The truncation effects on 6g5 , and 59g in Hirvonen
and Moritz (ibid) were incorrectly evaluated (cf. Hagiwara,
1972, p.457). These effects (on and n) should be com-
puted as (ibid, p.461):

E()=1 1 * 3g,

7 n2 n T (9.10)

= 1os X Qn
2 ycos n=2 n

where

1 S(cos 0) P (cos+o) sint0  (9.11)n n n(n+S) n 1

and not as in (Hirvonen and Moritz, ibid, p.45):

= 1 Qn -
n=2

(n) -2yos n =2 n

For reasons of symmetry (ibid, p.49) we can take
c(&) =F_(n) and using '-.10) we arrive to the following
equations which give th. truncation effects on the components
g, 6g of :
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E(695 E(6X) 1n(n+1) Q*2c8 n- n =
8n2

(9.12)

The results in table 9.6 clearly indicate that the
truncation effects on the horizontal components of I com-
puted from Shepperd's equations are identical to those
computed from (9.12) using Hagiwara's Q* coefficients.
In addition, the truncation effects £(6rg) on the radial
component of I from Shepperd's equation are in a good
agreement with the Hirvonen-Moritz (ibid, table 7.2) results.

We have also computed the RMS magnitude of the compon-
ents of using subroutine COVAX (Tscherning, 1976). The
quantities that we have actually computed form COVAX, are
the variances of -.3- LT (in Eotvos), , and n (in
arcseconds), i.e. the variances of the radial and of the
horizontal components of I , at selected altitudes in space.
From these variances we have then computed the RMS magnitude
of the components of I as:

RMS(6g r) = r(var(-(lA )Ta~r)) • I0 -  (9.13)

RMS(6g h) = (var(E) + var(n))i (9.14)

RMS(6gtotal) = [RMS(6gr) 2+ RMS(gh) ] (9.15)

These values must be the same with the truncation error
components (9.1), (9.2), and (9.8), for Po = 0 * , provided
that the same anomaly degree variance model is used (equation
(9.7) in our case). The radial, the horizontal, and the
total components of I from COVAX, and from Shepperd's
procedure (with nmax = 4 0 0 ) are given in table 9.7. As
we can see, the agreement between the results from the two
procedures is very remarkable.
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Table 9.6

Comparison of the Truncation Effects on , Computed
from Shepperd's Equations, and from Two Other Sources

(nmax = 
8 , values in mgal, altitude: 0 meters).

Shepperd's Equations
Cap (+) (++)
radius F( 6 gr) c(6g-)= e(6gX) E(6g r )  ( g-) =C(5g x )

00 --- 15.00 24.11 15.00

100 7.5 10.74 7.73 10.74

200 5.4 7.33 5.89 7.33

300 4.4 5.14 5.38 5.14

400 4.2 3.67 5.59 3.67

500 4.2 2.74 5.79 2.74

600 4.3 2.29 5.70 2.29

700 4.1 2.11 5.35 2.11

800 3.8 2.17 4.84 2.17

900 3.3 2.33 4.15 2.33

1000 2.7 2.44 3.42 2.45

1100 2.3 2.45 2.93 2.45

1200 2.2 2.22 2.89 2.22

1300 2.4 1.77 3.14 1.77

1400 2.4 1.17 3.28 1.17

1500 2.2 0.61 2.95 0.61

1600 1.6 0.20 2.05 0.21

1700 0.6 0.01 0.74 0.02

1800 0. 0. 0. 0.

(+) from Hirvonen and Moritz, 1963, table 7.2, p.55, using
the Molodensky's QN coefficients.

(++) from equation (9.12), using Hagiwara's Qn coefficients.
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Table 9.7

Comparison of the RMS Components of (from COVAX),
with the Truncation Errors for qo = 0

(trom Shepperd's equ t icn<) at V4ri -1 .

(values arc, in mgal)

hp Tscherning's COVAX Shepperd's equations

Sgr 6gh 6gtota I  6gr "Sg h  6g total

5 km 38.78 37.35 53.84 37.58 36.07 <.)9

10 km 35.76 34.29 49.55 35.53 33.97 49.16

100 km 23.60 22.43 32.56 23.67 21.82 32.20

500 km 13.57 13.91 19.44 13.54 12.01 18.10

The use of a higher degree reference field:

vIt must be pointed-out that the large cap sizes (Po)

given in table 9.5 (column 2), corresponds to the use of
an ellipsoidal reference field. Let us now assume that
a higher-degree reference field is available, defined by
a set of potential coefficients complete to degree and order
nref , e.g. the GEM-9, or the RAPP-180 solution (Rapp, 1980).
If such a reference field is used for the computation of
the components of 0 at a space point, the corresponding
truncation effects can be :till computed from equations
(9.1), (9.2), and (9.8, where the summations are taken
from nref+l , un to nmax = 4 0 0 . For example, if nref 2 0 ,
we found that :, ord'Vr to maintain the truncation errors
below the l0%-levei, the cap radii (iPo) are much smaller
than the radii using an ellipsoical reference field (table
9.5, 3rd column). Of course, Lhese radii have been computed
under the assumption "-'. the reference field (the coeffic-
ientY; is error-frep. Nevertheless, we can conclude that
t1, use of a h1!1r-'-Hgrt} reference field can reduce dram-
;tically the cr,incation angles, and therefore :ae computa-
tional effort.

-- . . ,7



SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Three approaches have been investigated Lor the computa-
tion of the components of the gravity vector in space from
surface data, without neglecting the topogra~phy of the earth:

1. A numerical integration approach, based on the applica-
tion of Green's third identity (c.hapter 2).

2. The Dirac approach, following the Bjerhammar's discrete
solution to the geodetic B.V.r. (chapter 5).

3. The Least-Squares Collocation approach (chapter 7).

In order to avoid the errors which exist in real data,
this work has been a simulation study, using as terrain
a conical and a spherical model (chapter 3). Seven para-
meters are needed to define the geometric and the dynamic
characteristics of these models, and the two point masses
located beneath their surface on their axes, generate the
synthetic data for the application of the simulations. The
exact gravity disturbance vector components which are computed
from the model, are then compared to the corresponding compon-
ents which are evaluated from each one of the three approaches,
in terms of their relative percentage differences (chapters
4, 6, and 7). From the simulations which were performed,
the following conclusions can be made.

(a). The errors from the Green's approach become smaller
as the altitude of the space point increases. They can
be as small as 1% for a very smooth topography (the case
of the spherical model), or for a very large but local topo-
graphic feature (the case of the 400-inclination cone, 4.1
km high). The errors can be as large as 25% in certain
cases (right above a 20*-inclination cone), but they decrease
at space points away from the model. These errors are due
to the numerical integration procedure (evaluation of the
kernels at the centers of the blocks), and to the neglect
of the second - order variations of the topographic surface.

(b). Both, the Dirac and the Collocation approaches, require
discrete data on the physical surface of the earth, but
they are very time-consuming, especially when a large amount
of data is used. An iterative procedure for the analytical
continuation of the surface gravity anomalies to the geosphere
is described, based on the Gauss-Seidel numerical method.
Acceleration techniques which yield a much faster raite of
convergence, require an additional series of iterations
for the estimation of the eigenvalues of the system of equations,

129
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which has to be solved for the gravity anomalies on the
geosphere. The iteration procedure might diveige for very
dense data at high elevations. A method for the estimation
of the depth of the geosphere is described -uieV t1qt the
icration is guaranteed to convergc. qh h .
gravity vector from the Dirac approach now increase as -he
inclination of the model increases, and as the altitude
of the space point increases, but they are still smaller
than the errors from the Green's approach using identical
models and data.

(c). The collocation approach requires the computation
of the covariances between the predicted quantit-..,, -xnd
the data. In addition, it is a very time-consuming method,
since the inverse of the ma:rix of the covariances is needed.
On an overall basis, the Dirac approach seems to be superior
as compared to collocation.

None of the three approaches igrore the topography
of the earth as it happens with the classical approach (chapter
9). Comparisons of the improved techniques versus a classical
approach (the Direct Integration Method), using identical
models and data arrangement, indicated that the errors in :
from the improved techniques are at least by a factor of
2 smaller than the errors from the classical approach. This
clearly indicates the significance of the techniqes described
in this paper.

From some tests which were made for gravity anomaly
computations on the surface of the earth using real data
section 9.1), it was concluded that the Dirac approach
requires very dense data coverage for such a kind of compu-
tations (say 11 as in ou: simulations).

In order to i,",stignte the relationship between the
altitude of the space point, and the truncation angle (the
radius of the cap within which the data is given, section
9.3), Shepperd's (1979) computer program has been used.
It was found that in or'der to maintain a truncation error
in -,::maller than 40 (with respect to the RMS magnitude
ot *he components < , using an ellipsoidal reference
f[.Jid), we should extend the computations within a 50 -

..ap, or larger, depending on the altitude of the space point.
however, by *using a higher-degree reference field (defined
by a set of potential coefficients), the truncation angle
can be dramatically reduced. The truncation effects di: cussed
ii, sec.,,on 9.3 are valid for the Dirac approach, ind for
the .,assical approach (the Direct Integration method),
boti of which are based on the Pizzetti's formula.

From our experience with the simularions t'erformed: i described in this study, we would recommend the Green's
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approach for the computation of the gravity vector at high
altitudes (above 10 km), and the collocation approach for
points below the 10 km-level. The Dirac approach is question-
able due to the fact that it requires very dense data on
the surface of the earth. We would also recommend the use
of real data (on the surface of the earth, and in space),
for a more realistic comparison between measured and computed
components of the gravity vector in space.
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