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ABSTRACT

The coalescence of two spheromaks is described using

the quasi-ideal model of reconnection. Nonaxisymmetric

effects are found to play an important role in general.

Possible applications of repeated coalescence are studied,

including heating the spheromak plasma, building up a large

spheromak from smaller ones, and maintaining a spheromak in

steady state. The analysis suggests that coalescence

experiments could also provide a valuable method for

studying magnetic field relaxation.
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I. INTRODUCTION

One of the important virtues that the spheromak shares with other

compact torus devices is the absence of a toroidal field coil linking

the plasma, which greatly simplifies the engineering. A further

consequence of this geometry is the possibility of moving the plasma

along the external vertical field (making possible a moving ring field

reversed reactor'). In this paper, we explore yet another consequence

of this geometry, the possibility of repeated coalescence of separately

formed spheromaks. Coalescence of two partially distinct spheromaks has

in fact been observed on the University of Maryland experiment,

PS-1. 2 Spheromak coalescence has potential applications to heating the

spheromak plasma, to building up a large spheromak from smaller ones

(thus making it easier to attain fusion conditions), to maintaining a

spheromak in steady-state, and to the experimental study of magnetic

field relaxation.

The astron experiment at Livermore attempted to use the repeated

coalescence of e-layer pulses to produce a field-reversed e-layer.
3

Coalescence of e-layer pulses was observed, although field reversal was

not achieved in these experiments. Later experiments at Cornell

demonstrated the merging of two electron rings below field reversal to

produce a field-reversed electron ring.4 Numerical simulations of the

astron experiment5 also looked into the possibility of maintaining a

field reversed e-layer by repeated injection of smaller pulses. These

simulations, assuming axisymmetry, came to a negative conclusion.

The merging of ion rings has been proposed as a method of
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maintaining a field reversed ion ring, and axisymmetric numerical

simulations are in progress.
6

The recent interest in spheromaks has sparked several proposals

concerning spheromak coalescence. 7,8,9 In this paper, we describe

spheromak coalescence using the quasi-ideal model of

reconnection.1 0 "1 '1 2  We will see that there are two analytically

soluble limits: one in whch Tadomtsev's theory of nonlinear tearing

modes'0 can be applied, and one in which Taylor's relaxation theory1 3 ,14

is valid. In the Kadomtsev limit there is an infinite set of conserved

quantities that completely determines the motion; while in the Taylor

limit only one of these quantities remains invariant, the system

evolving to a state of minimum energy subject to the single invariant.

By solving in both limits and investigating the domains of validity of

both approximations we develop a general picture of spheromak

coalscence. Our analysis focuses particularly on the feasiblity of

maintaining a spheromak in steady state by repeated coalescence. We

also calculate the heating during coalescence for some particular cases,

and look at the feasibility of building large spheromaks by the repeated

coalescence of smaller ones. The important role that various nonlinear,

nonaxisymmetric, tearing processes can play during coalescence will

suggest that spheromak coalescence can also provide a valuable

experimental framework for studying these processes.

An axisymmetric coalescence is shown schematically in Fig. 1.

Depending on the force exerted on the spheromaks by the externally

applied magnetic field, and depending on the force due to the spheromak

fields (the spheromaks attract if their toroidal currents are in the

L_ -AL7 . ..
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same direction), two initially separated spheromaks can approach each

Other by moving along the vertical field. As the spheromaks merge, the

corresponding flux surfaces reconnect. After the process has gone to

completion, the two spheromaks have combined to form a single spheromak.

Coalescence has been observed on the University of Maryland

spheromak experiment, PS-1. 2 Depending on the configuration of the bias

magnetic field, the initial formation stage in this device sometimes

produces two separate magnetic islands, which subsequently coalesce on a

time scale short compared to the resistive decay time of the plasma

currents. The coalescence involves the reconnection of a substantial

fraction of the closed flux surfaces. In these experiments, the initial

formation appears to be well described by an axisymmetric, resistive M*D

code.
15

Coalescence of tokamak plasmas is also possible in principle.

Shafranov has proposed heating tokamak plasmas by initially forming a

number of separate rings, inside an elongated vacuum chamber, which

16subsequently merge. His analysis assumes that the reconnection

process is axisymmetric, and that the plasma is incompressible. The use

of repeated coalescence to maintain the toroidal current in a tokamak

plasma has also been proposed; 17 however, the fact that the toroidal

field coil must link both the main and refueling plasma rings raises

questions concerninq the practicality of repeated coalescence in the

case. (Note that the changing poloidal flux through the hole of the

refueling ring which initially drives Its toroidal current must not also

thread the main plasma ring.) The analysis of Ref. 17 also assumes

axisymmetric reconnection and plasma incompressibility. We will see
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that we cannot rely on purely axisymmetric reconnection to maintain the

currents in a spheromak.

In Sec. II we look at purely axisymmetric reconnection, and

afterwards include nonaxisymmetric effects in Secs. III and IV. Sec.

III deals with two step coalescence processes consisting of an

axisymmetric reconnection followed by a nonaxisymmetric tearing or

double-tearing mode. We apply our analysis there to the problem of

maintaining spheromak currents in steady-state, and calculate the

efficiency of the refueling process. In Sec. IV ye look at turbulent

coalescence. This is found to be of particular interest for heating the

spheromak plasma, and for building up large spheromaks from smaller

ones.

&L
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II. AXISYMMETRIC RECONNECTION

We begin by looking at axisymmetric reconnection, and afterwards

include nonaxisymmetric effects in Secs. III and IV. The assumption of

axisymmetry is a reasonable one if the initial and final spheromak

equilibria are stable to nonaxisymmetric modes. We will see that this

condition is, in practice, quite restrictive.

Having assumed axisymmetry, our flux surfacs correspond to level

surfaces of the poloidal flux function, *(r). Flux surfaces which

reconnect must have the same value of *. We use the quasi-ideal

m~del 10 ,1 1,12 to describe the reconnection process. The plasma is

assumed to obey ideal MHD except in a narrow region about the x-point.

When flux surfaces reconnect, the enclosed toroidal fluxes add. Using

the fact that X(*) is an invariant in ideal MHD, we get

xf(*) - xl(') + x2 (*) (1)

where X denotes the toroidal flux, the subscript f corresponds to the

final equilibrium state, and the subscripts I and 2 correspond to the

initial spheromaks. Equation (1) applies, of course, only if the flux

surface * lies inside both spheromak plasmas initially. We take the

plasma, hut not necessarily the plasma current, to extend to the

separatrix. In general, the initial spheromaks can have different

values of 4 on the magnetic axis, *1 and *2" If 1 > I ,

then Xf(*) = XI(*) for 1*21 < 1*1 ' *1 The value of * on the

magnetic axis after coalescence is
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Prom Eq. (1), and from the relation q(*) = dx/d* (where q is the

safety factor), it follows that

qf(+) = ql(*) + q2 (*) . (2)

Rither Eq. (1) or Eq. (2) can be viewed as specifying an infinite number

of constants of motion for axisymmetric coalescence. The total magnetic

helicity, K, used in Taylor's relaxation theory, 1 3'14 is one of these

invariants,

K f A . B =-2 f X(*) d* = 2 f *q(*) d* , (3)
v

where we have used the boundary conditions X = 0 on the magnetic axis

and 4 - 0 on the plasma surface to integrate by parts.

The poloidal current distribution can be expressed in terms of q,

1(*) - q(*) d*/dV (<i/R 2 > *) - 1 , (4)

where < > denotes an average over a flux surface, V is the volume

enclosed by the flux surface, and R is the radius in cylindrical

coordinates.18 Together with the plasma pressure, I(*) determines the

equilibrium through the Grad-Shafranov equation

-V R 2p'( ) + 1I'( )

where

R + 2

OR R OR 77a:
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Eliminating I(*) from the Grad-Shafranov equation in terms of the known

q(*), we obtain a QDE which determines the equilibrium. 1 1 The boundary

condition on * at infinity is given by the external fields. The

plasma 8(= 8tp/B2) must not be too large if the equilibrium is to be

stable to Mercier modes. 19-21 Since the poloidal and toroidal betas are

comparable, it follows that the spheromak equilibrium will be determined

by the q profile alone to a good approximation.

Now we can look more closely at the conditions under which the

assumption of axisymmetry is valid. First we show that two coalescing

spheromaks with decreasing q profile must have the same value of total

poloidal flux to preserve axisymmetry. In Fig. 2 we show schematically

what happens when the poloidal fluxes are different. The final q

profile is not monotonic, and is therefore unstable to ideal modes 2 2 and

to double tearing2 3 modes. Note that this argument is soecific to

decreasing q profiles. For initial tokamak-like q profiles, coalescence

gives a q profile which is monotonic, although rapidly varying near the

corresponding to the smaller value of total poloidal flux.

In addition to requiring equal poloidal fluxes, we must also

require that the q's on the magnetic axis for the two coalescing

spheromaks sum to less than unity, so that the final spheromak will be

stable to n - 1 internal kink modes. 2 1 If their peak value of q is too

small, however, the initial spheromaks can be unstable to

nonaxisymmetric ideal modes. Numerical results from the PEST code

indicate that q on the magnetic axis must be at least 1/3.24

Now we turn to the question of maintaining a spheromak equilibrium

in steady-state via coalescence. We will be concerned only with
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maintaining the q profile and the value of the total poloidal flux.

Throughout this paper we use the term "refueling" as a shorthand for the

process by which we restore the spheromak currents, although we will not

be concerned with restoring the plasma density. The density can be

increased separately through the injection of neutral pellets. Of

course we must require that coalescence not increase the plasma density

of the fusion spheromak above its initial value. (We call the spheromak

to be refueled the "fusion spheromak".) This places a bound on the

number of particles allowed in the refueling spheromak,

N2 < N1 (Ao/o0)(TM/TN)

where N2 and N1 are the numbers of particles in the refueling and fusion

spheromaks respectively, *o is the total poloidal flux in the fusion

spheromak, A* is the change in its poloidal flux due to coalescence,

and TM and TN are, respectively, the time scales for flux diffusion and

for particle loss. As we have mentioned, the plasma $ must not be too

large, so q(*) alone will determine the refueling equilibrium to a good

approximation.

Suppose the fusion spheromak initially has 0 o on its magnetic

axis. After some time, the poloidal flux decays to a value o -6
0|

To restore the initial value of poloidal flux by purely axisymmetric

reconnection, the refueling spheromak must have - o on its magnetic

axis; but we have seen that axisymmetry is not preserved unless the

poloidal fluxes of the coalescing spheromaks are equal. We conclude

that it is impossible to maintain a spheromak in steady-state by purely
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axisymmetric coalescence. That conclusion mav appear somewhat

paradoxical, since we can use Eq. (2) to find a q profile for the

refueling spheromak which restores the fusion spheromak to its initial

state.

Again, suppose we initially have a spheromak with safety :actor qo

on the magnetic axis and total poloidal flux *o' as shown schematically

in Fig. 3a. After some small time has elapsed, both these quantities

will have decayed somewhat, to values q - 6q and * - 6,09 also shown

in Fig. 3a. (The value of q on the magnetic axis decreases because the

current profile becomes more peaked there.) To restore the initial q

profile via coalescence reouires a refueling spheromak whose q(*) is the

difference of the two q profiles of Fig. 3a (see Fig. 3b). The required

q profile is discontinuous, and therefore clearly not physically

realizable. The ohvious thing to try is a smoothed version of this

profile, as indicated by the dashed line In Fig. 3b. Adding this

smoothed profile to the decayed q profile of the original spheromak, we

obtain the q(q) shown in Fig. 3c. The equilibrium corresponding to Fig.

3c is unstable to nonaxisymmetric modes (e.g. double tearing modes). It

is clear that we will run into the same problem with any refueling

spheromak having a smooth q(p), and also if we try to use a number of

different refueling spheromaks in succession.

Although the equilibrium corresponding to Fig. 3c is unstable, we

would expect the resulting turbulence to he localized near 0 - - 1

and to result in a smoothing of q(O). This suggests a possible two step

process for restoring spheromak currents, an axisymmetric coalescence with

a refueling spheromak having the smoothed q(4,) of Fig. 3b, followed by a



turbulent smoothing of the resulting q profile. When we examine the

required equilibrium for the refueling spheromak, however, this does not

appear to be a very attractive scheme.

We solve the Grad-Shafranov equation analytically in the limit

that 6q << 1 and 6u/4o << 1, with p = 0, 1(*) given by Eq. (4), and

q(4) corresponding to the smoothed profile in Fig. 3h. Our approach is

to match solutions which are valid in four different regions, as

follows:

1) Near the magnetic axis we Taylor expand all quantities

in 4 - 4o"

2) For the narrow region near 4o - 6 with rapidly varying q we

derive a jump condition.

3) This is the region where q is small, but the distance from the

magnetic axis is still much less than the major radius of the spheromak.

4) Far from the magnetic axis we can use the elliptic function

solution for the fields due to a circular loop of current.

Further details are given in the Appendix. We find that the equilibrium

has a hollow current profile and a large flux hole (that is, a large

current free region near the separatrix). The low value of q on the

magnetic axis (q = q 0 there) may make stability hard to achieve.

Using nonaxisymmetric effects to produce poloidal flux from

toroidal flux, we can find considerably more attractive refueling

schemes.
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Ill. NONAXISYKMETRIC EFFECTS DUE TO SLOWLY GROWING MODES

If, having assumed that the coalescence process is purely

axisymmetric, we find that the resulting spheromak is unstable to

nonaxisymmetric modes, we must conclude that our assumption of

axisymmetry has broken down at some point. When the unstable modes grow

sufficiently slowly, however, we can still treat the coalescence as a

two stage process: an axisymmetric reconnection followed by a

nonaxisymmetric tearing mode. This treatment is valid if the e-folding

time of the fastest growing mode is long compared to the time scale on

which the axisymmetric reconnection occurs. For example, for the n = 1,

m - I mode, which will be of particular interest to us in this section,

the growth rate is small if the maximum value of q is not much larger

than one. For an equilibrium having q = 1.3 on the magnetic axis,

Gautier et at. found a growth rate of .03 TA , where TA is the Alfven

time. 2 1 By comparison, in the experiment reported in Ref. 2, two

islands containing about 25% of the total poloidal flux coalesced in a

time not much longer than the Alfven time. In a numerical study of the

coalescence of two-dimensional islands, Pritchett and Wu found that the

reconnection time for this type of forced reconnection is relatively

insensitive to the value of the resistivity.
2 5

The tearing modes we will be concerned with in this section will be

localized sufficiently close to the magnetic axis that helical symmetry

can be assumed. The flux surfaces are determined by the helical flux

function, 0 = q - X , where q. Is the value of q at the separatrix.

Flux surfaces which reconnect must have the same value of 4.
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We describe the nonlinear evolution of the tearing mode using

Kadomtsev's theory. 10 Again, the plasma is assumed to obey ideal MHD

except in a narrow region about the separatrix. Those flux surfaces

which Initially have the sane value of 0 (but different values of X) all

reconnect, so that at the end, 0 uniquely labels the flux surfaces.

When flux surfaces reconnect the enclosed toroidal fluxes must be

subtracted,

Xf(O) =Xl() - X2 (), (5)

where the subscripts I and 2 distinguish the two values of the initially

double-valued function X(O), and Xf(f) is the single valued function

which results after the reconnection process has gone to completion.

Kadomtsev's theory has an infinite set of conserved quantities. It

was recognized by Rhattacharjee et al. 12 that the invariants of

Kadontsev's theory could be expressed in the form f f(O) A * H d3 x
V

where V denotes an integral over the entire volume of the plasma and f

is an arbitrary function. Depending on the helicity of the tearing mode

we get different helical flux functions, 0, and thus different sets of

conserved quantities. If we set f(O) = 1, we get the total magnetic

helicity employed by Taylor. This is the only one of the invariants

which is preserved by a mode of any helicity. Recall that this quantity

is also conserved during the axisymmetric reconnection.

We look first at the case where * on the magnetic axis is the same

for both coalescing spheromaks, and where the q's on the axis sum to a

value slightly above one. This will he of particular interest for the
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refueling problem. Figure 4 shows the q profiles before and after the

axisymmetric stage of coalescence. Because the unstable mode is

localized near the magnetic axis, we can treat it by Taylor expanding

the equilibrium quantities about the axis. (We also make use here of

the fact that the Grad-Shafranov equation is nonsingular at the magnetic

axis.) For the equilibrium after the first stage of the coalescence, we

write

0 + aX+bX , (6)

where 0 is the value of-0 on the magnetic axis, and a and b are
0

constants which determine the equilibrium in the neighborhood of the

axis. Expressing in terms of 0 and X, we get

2-b + (a + 1) X bx , (7)

so that 0 - - 6*o. Taking the conventions X > 0 and q dx/d* > 0,

00

calculate

q (+a + 2b) • (8)

Comparing this result with the q profile of Fig. 4b we see that a < 0

and b > 0.

Figure 5 shows what *(X) looks like before the tearing mode begins

to grow (solid line). The minimum value of * lies on the n - 1, m - I
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rational surface, which corresponds to X = Xs = - a/(2b) . The value of

t there is 4S - a2/(4b) . In terms of tS and XS we can rewrite0

Eq. (6) as t - b(X - X0) , or

X XS  - S )/b 1/ 2 . (9)

The tearing mode leads to reconnection of flux surfaces having the

same value of t. From Eqs. (9) and (5) we see that after reconnection
1/2

we have X = 2[(t - t s)/b] , or

= b X2/4 + t9 (10)

which is shown as the dashed line in Fig. 5. Only those flux surfaces

having X < 2 XS are affected by this second stage of reconnection. The

final q profile in this region is

q = 1/( + b X/2) . (11)

Note that at the boundary of this region, Eq. (11) gives

q + 1/(l - a/2) while Fq. (8) gives a + 1/0( - a) . We anticipate that

this discontinuity, which is characteristic of Kadomtsev's theory, is

smoothed by further turbulence. On the magnetic axis q is equal to one.

Now we apply these resiilts to the refueling problem. To do so, we

require that the two stage reconnection process we have Just described

restore the total poloidal flux to *o, and that it approximately restore

the q profile to that of the fusion spheromak at t 0 0. Letting qo(*)
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be the q of the fusion spheromak at t 0 0, which is assuvwd to

have qo (4o) 0 1 to maximize the allowable beta,2 1 our condition on q to

3a/4  [q * (. 12)
X - 2

XS

This gives

b - (4/3) q(*O)

where

The condition on the poloidal flux then gives

2a (16/3) qo,(*o)64o

The q(*) for the refueling spheromak is

q2" 8q + 4 1qo(*o)6*,/311/2 + (5/3)qo'(o)(o-) (13a)

for

and(4/5)13o/qo(o)I (13b)

and
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q 2(4) WO( (14)

for larger values of *-4o"

We can solve analytically for the refueling equilibrium specified

by Eqs. (13) and (14) in the limit of small Sq and 6$o by the same

methods used to solve the equilibrium of the previous section. This is

discussed in the appendix. The equilibrium is now considerably more

interesting, with no hollow current profile, a smaller flux hole, and a

larger value of q on axis. The condition that q2(*o) > .3, required

for stability,24 is satisfied for 64P0/o .02. In obtaining this

estimate we have approximated q' q (* )/*o"
0 0 0 0

We calculate the efficiency of our process for maintaining the

epheromak currents in the limit that the fusion and refueling spheromaks

both have a large flux hole. That is, we determine the total magnetic

energy lost during coalescence as a fraction of the energy of the

refueling spheromak. This lost magnetic energy is dissipated by ohmic

heating near the x-point.

The magnetic energy of each of the (large aspect ratio) spheromaks

can be written as

W - 2 + MIe, (15)
2 e

where L is the self inductance of the spheromak currents, M is the

mutual inductance between the spheromak currents and the external field

coil, I is the total toroidal current of the spheromak, and le is the

total current through the external field coil. The inductances are
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related to the flux through the spheromak hole by the relations

MIe /c Ic, (16)

and

LI / c/ (17)

where ;p is the external flux and *s is the self flux. The previously

defined poloidal flux function is proportional to the total flux,

2rRo T +T
o e s

where R is the major radius. We define To 2rR*O" The self inductance

corresponding to the refueling equilibrium is

2
L2 - (4wR/c )[n( 8 /6qm) - 21

where 6qm is the value of 6q on the magnetic axis. To estimate the self

inductance of the fusion spheromak we use the standard expression for

the inductance of a large aspect ratio circular torus,

L- (4iR/c 2)[n(8R/a) - 2 + i/21,

where a is the minor radius, and L, 1/2 is the internal inductance per

junit length.

' I
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Equilibrium force balance for a large aspect ratio spheromak gives

2irRB I/c - (1/2)1 2dL/dR - I 2L/(2R) , (18)

where Bv is the externally imposed vertical field. From Eq. (18) we get

IF e f(1/4)?s and Mie - -(1/4)LI 2 . It follows that the magnetic energy

of each spheromak can be expressed as

W- (4/a) I2/(c2 L) (19)
0

Using Eq. (19) in conjunction with Eq. (18), we find that when the total

poloidal flux of the fusion spheromak decays by an amount 6fo, the

magnetic energy of this spheromak decays by an amount

6 lW = (2/3) T06T0/(Lic 2 (20)

If our refueling process were perfectly efficient, the magnetic energy

of the refueling spheromak would Just be given by Eq. (20). For the

refueling process we have described, the efficiency is given by

6W1 /W2 - 3(6* 0/*0)(L2/L1) 3(6* 0o/ 0o)Rn6q m/n (a /Rl . (21)

For example, for 6*o/*o -q a .1

6WI/W2  .7/1n(R 1/aI)

1
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A substantial fraction of the magnetic energy of the refueling

spheromak gets transformed into thermal energy during coalescence.

There are two other possible sources of thermal energy, the kinetic

energy of the spheromaks due to their relative velocity on impact, and

adiabatic heating. There could also, in principle, he adiabatic

cooling. We will have more to say about these effects in the next

section, whe- we will look more closely into the possibility of using

coalescence to heat the spheromak plasma.

'inus f'r in this section we have assumed that the coalescing

svhvzotta have an equal amount of poloidal flux. Since the magnetic

energy of the refueling spheromak is proportional to To , it clearly

would be advantageous if the poloidal flux of this spheromak could be

smaller. If the coalescing spheromaks have different amounts of

poloidal flux, axisymmetric reconnection gives a q profile with a local

maximum (as in Fig. 6). The corresponding equilibrium is unstable to a

double-tearing mode. Assuming that the growth rate of the double-

tearing mode is sufficiently small, our two step coalescence process now

consists of an axisymmetric reconnection followed by a nonaxisymmetric

double-tearing mode. We use Kadomtsev's theory of the nonlinear

evolution of the double-tearing mode.

The n - 1, m = I helical flux function corresponding to the q

profile of Fig. 6 is shown schematically in Fig. 7 (dashed line). There

are two q - I rational surfaces, correponding to the two local extrema

in 4 (a local minimum and a local maximum). We again Taylor expand 6 as

a function of X, expanding about X - 0 for X < XSj, and about X - XS,

for X > XSl" We express the coefficient directly in terms of the q
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nrofile at this intermediate stage. For X < XSI, we get

+q(o -0 6o) 0 qi(*o - '*0)o " #o +  _ -o),) 2

( 0  [ql (*o - 6*o)1 3 l (22a)

with

00 *0 620 (22b)

and

XS1 "(*2 - o)ql(o - 64,) + (1/2)(92 - qo) q( - 61P) .(23)

For X > X~q it is convenient to define

qm ql( o -6 ) + q2 (o -64,) (24a)

and

q dqq+ - . (24b)

d* - d4, 06 , I
0 0 d °

We then find, for X > XSI

" 1 + ( Xsi) -- (x - X ) (25)
qm 2q3

with 4 9 - Xql * The local minimum of Eq. (25) corresponds to the

second q - 1 rational surface, at

A=k
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= x + q2 - qm)/q (26)
XS XS m m (6

qm2•
§ + (1/2)q (I - q )2/q' " (27)

In Kadomtsev's theory, all flux surfaces having the same value of §

reconnect. The value of * on the magnetic axis is affected by this

process only if it21 > 1101 = I4' - 6'1. When this condition is

satisfied, the final value of * on the axis is Just 02. To restore the

poloidal flux of the fusion spheromak, we must have 02 = o' or

2 2
q(1 - ) /qm (4 2 -o)q1(*o - 64,) + 24o - 2 ( 2 - 0o) 6q

(28)

From Eqs. (22) - (27), we determine what X(O) must be after all

corresponding flux surfaces have reconnected,

3 ,1/2

2 - 2 ) for 02 < 0 < to
x "(29)

2 12( m0
2[20 -02)mmq] /  + ( 0  )q 1 ($ - 64'o)f6q for 01> 0>

The flux surfaces with 4 > l are unaffected by the n 1 1, m - I double-

tearing mode. The final n - 1, m - I helical flux function is shown

schematically in Fig. (7) as a dashed line. The corresponding q(*) is

not monotonic in the neighborhood of 0 - 0• We could expect that

further turbulence will smooth out this q profile.

Equation (28) shows that as *2 - 90 increases, so does the required
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value of qm - 1. When qm - I is not small, the growth rate of the n

1, m 1 nonaxisymmetric mode is not small, and we can no longer expect

the coalescence to proceed in two separate stages. That is, we can no

longer make any symmetry assumptions about the coalescence process.

Similarly, our assumption of helical symmetry for the nonlinear tearing

modes breaks down if reconnection occurs sufficiently far from the

magnetic axis that toroidal effects are important, or if tearing modes

of different helicity grow to large amplitude simultaneously and begin

to overlap. In these cases, we introduce an increased amount of

turbulence into the fusion spheromak, something that is clearly

undesirable in any refueling scheme. Turbulent coalescence is, however,

of interest for heating, and for building up larger spheromaks from

smaller ones. We describe turbulent coalescence in the next section.

- F
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IV. TURBULENT COALESCENCE

Thus far we have been assuming that at each stage we have either

axial symmetry or helical symmetry. Within the quasi-ideal model, there

is an infinite set of constants of motion associated with each of these

symmetries. It is these invariants, in essence, that we have used to

determine the final equilibrium state resulting from the coalescence

process. Recall, too, that the total magnetic helicity is the only

quantity which is conserved by a tearing mode of arbitrary helical

symmetry, and that it is also an invariant under axial symmetry.

Our symmetry assumptions can break down for a variety of reasons,

as discussed at the end of the previous section. When the assumption of

symmetry is not valid, we expect that there will be fewer invariants,

and that the plasma will assume a state of minimum energy subject to

whatever set of invariants is appropriate. As long as the quasi-ideal

model remains valid, the total magnetic helicity will be conserved. In

the region where ideal MHD is obeyed, away from the separatrix, the

local magnetic helicity is conserved. Regardless of the shape of the

separatrix, reconnection of two flux surfaces clearly does not affect

the total magnetic helicity. In the limit that the reconnection process

becomes extremely turbulent, we expect that only the total magnetic

helicity is conserved. The final state Is that having minimum energy

subject to the conservation of magnetic helicity. This is the

hypothesis that Taylor has used successfully to describe the initial

formation of the reversed field pinch. 13 We use Taylor's theory in this

section to describe turbulent coalescence.
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For our coalescing spheromaks, we specialize to the spherical

minimum energy equilibria of Rosenbluth and Bussac,26 which have a

uniform external magnetic field far from the spheromak. In spherical

coordinates, the poloidal flux function in the plasma is

i(r,e) r sin 26jl(Xr)/X , (29)

with

V x B XB , (30)

where X is a constant. Although this equilibrium is unstable to a

variety of modes in the absence of a conducting wall,2 6 the modes can be

stabilized by a combination of modifications to the equilibrium and a

relatively distant external conducting wall,2 1'2 7'2 8 ,29 neither of which

should strongly affect our conclusions regarding turbulent coalescence.

The equilibrium solution, Eq. (29), has a free parameter, X, which

is a function of the total magnetic helicity, K. The radius of the

spheromak is proportional to KI/4 , while the total poloidal flux is

proportional to KI/ 2, and the total magnetic energy

= (1/2c) f j A d 3x )- K/8w is proportional to K3/4 .

Now suppose that we coalesce two spheromaks of equal size, each

having a total magnetic helicity of Ko . The final equilibrium must have

total magnetic helicity 2Ko . If the turbulence level during coalescence

is sufficiently large that Taylor's hypothesis is valid, the final

equilibrium after coalescence will again satisfy Eq. (30) in the plasma,
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with X determined by K = 2Ko . With plasma out to the separatrix, the

final equilibrium in the uniform external field again belongs to the

class of spherical Rosenbluth-Hussac equilibria, with *(r,8) in the

plasma of the form of Eq. (29). The total poloidal flux in the final

spheromak is 40% larger than in each of the initial spheromaks, while

the total magnetic energy is 1.7 times what it was in each initial

spheromak. Fifteen percent of the total magnetic energy has been

ohmically dissipated.

The substantial increase in poloidal flux due to Taylor relaxation

suggests that, in coalescence experiments, measurement of the total

poloidal flux by Itself would give a useful indication of what is

happening. Recall that axisymmetric coalescence preserves the maximum

value of *. (Due to the presence of finite resistivity, 4* actually

decays slightly.) Nonaxisymmetric tearing mcA&s prod-;- poloidal flux,

increasing somewhat the maximum value of 4*.

Next, let one of the coalescing spheromaks be very much smaller

than the other. Let the total magnetic helicities be X, and K2, with K2

= cKj. The fraction of the magnetic energy of the second spheromak that

gets dissipated by ohmic heating is then

W/W 1 - (3/4) 1/4

In terms of the initial radii of the two spheromaks, this can be

rewritten as

AWNW2 -1- (3/4) R2 /RI '

-mu
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If the second spheromak is much smaller than the first, almost all of

its magnetic energy gets transformed into thermal energy during

coalescence. It appears that this could be an effective means of

heating the spheromak plasma. This effect also places a limit on the

building up of larger spheromaks by repeated coalescence of smaller

ones.

Suppose, by repeated coalescence, we merge n spheromaks of equal

size. The total magnetic energy of the final spheromak is n- 1/4 times

the sum of the energies of the initial spheromaks. The radius of the

spheromak is increased by a factor n1/4.

To determine the change in thermal energy of the spheromak plasma

during coalescence we should include also the contribution due to the

kinetic energy c, the spheromaks on impact, and that due to adiabatic

heating (or cooling). We examine the kinetic energy contribution

first. Suppose first that we initially have an equilibrium state with

two separated spheromaks. The external field is then modified in some

way to allow the spheromaks to coalesce. We show, following

Shafranov, 16 that the kinetic energy in this case is small unless the

initial separation between the spheromaks is quite large. Let At be the

time it takes to make the necessary changes in the external field, and

let L be the initial separation distance of the two spheromaks. The

kinetic energy density on impact is of the order

pL2/At 2 - (tAt) 2(L/2R) 2(B 2/4w), where 0 is the local mass density of

the plasma, tA is the Alfven time, R is the major radius of the

spheromak, and B is the local magnetic field. In general t << At, and

the kinetic energy is a very small fraction of the magnetic field energy

* -a L - - "i-- _ _ _ _
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unless L >> R. The initial state need not be an equilibrium (in fact,

in the PS-I experiment, the initial state with separated islands is not

an equilibrium); nevertheless, the contribution of the kinetic energy to

the energy balance is not significant unless the velocity of the

spheromaks is a substantial fraction of the Alfven velocity.

We turn finally to the question of adiabatic heating and cooling.

For the spherical Rosenbluth-Bussac equilibria, r3 scales like K3/4 .

After coalescence the plasma occupies a slightly smaller total volume

than it does initially, so there is a slight heating effect. For

coalescence of two equal spheromaks, for example, the total volume

occupied goes down by about 15%. The effect of adiabatic heating is

clearly small compared to that of ohmic heating near the x-point.
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V. CONCLUSIONS

Using the quasi-ideal model of magnetic reconnection, we have been

able to describe spheromak coalescence in two analytically soluble

limits: one in which Kadomtsev's theory applies, and one in which

Taylor's theory applies. This has enabled us to develop a general

picture of spheromak coalescence. We have found that a substantial

fraction of the magnetic energy is transformed into thermal energy

during coalescence due to ohmic heating near the x-point. Repeated

coalescence with smaller spheromaks could provide a particularly

effective means of heating a spheromak plasma. Repeated coalescence

could also be used to build a large spheromak from smaller ones; but the

relatively large amount of magnetic energy dissipated when a small

spheromak coalesces with a much larger one places limits on the size of

a spheromak that can be practically formed in this way. We have also

found that spheromak currents can be maintained via repeated coalescence

with "refueling spheromaks" having the appropriate q profile and total

poloidal flux. Nonaxisymmetric effects play a key role in this

process. Finally, our analysis suggests that coalescence experiments

could lead to a beter understanding of the Taylor and Kadomtsev models

in nonlinear MHD.
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APPENDIX

In this appendix we obtain analytic solutions for our refueling

equilibria in the limit of small 6q and 6*.  We look first at the

equilibrium discussed at the end of section II, following the approach

*, outlined there to obtain our solution.

In regions 1-3 the distance to the magnetic axis is much smaller

than the distance to the symmetry axis, allowing us to use a large

aspect ratio approximation there. Using Eq. (4) to specify the poloidal

current distribution, the large aspect ratio limit of the Grad-Shafranov

equation gives

d (V k) +R2 d d
dV dV+ qd(q )i =  , (Al)

where V- r2, and r is the distance to the magnetic axis. In obtaining

this equation we have specialized to circular flux surfaces near the

magnetic axis.

In region I we expand

0 + *IV + * 2 V2 + (A2)

Taylor expanding the given q(*) = qo + (3q/3*) ($'o) + ... ,we
0 0

substitute it along with Eq. (A2) into Eq. (Al) to determine

42' 3' etc. in terms of * and *1. We get for *2|

aq2
q 0  *i)/(2qo)*2 0 -*1 ( ' + 0o a# 0
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Its contribution to 4 is small everywhere in region 1 if *26a << +l'

where 6a2 = V(*o- ). This condition will be satisfied self-

consistently by our solution. The constants *o and *1 are to be

determined by matching.

Region 2 is assumed to be sufficiently small that * is

approximately constant across this region. In addition, we integrate

Eq. (Al) across this region to get a jump condition on 4',

4'_ [6a 2 + R2(q- 6 o +2  2 2 2
(Sa ~ 34 +-4('0 80(5a + R6q/2) (3

where 6q is the value of 6q at r-o.

In region (3) we expand out Eq. (Al) and neglect the term

containing dq/dV. Again, this approximation is justified self-

consistently, taking d6q/d* - Sq/*. The solution to the resulting

equation is

C'- C1in (r
2 + 6 R2 ) + , (A4)

where C1 and C2 are constants to be determined by matching.

In region 4 we can neglect 6q entirely, getting the standard

elliptic integral solution for the field of a ring with current I and

major radius R.,

(41Ro/ck )(Ro4R +2+ sinO)- 2 (2-k2 )K(k2 )-2E(k2 )1 (A)

I.

0 0 0
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where R,O are spherical coordinates relative to the center of the ring,

and E and IK are complete elliptic integrals (we follow here the notation

oT Abramowitz and Stegun
30).

Matching all our solutions together, we get the transcendental

equation.

y = -In[6q 2(y+l)1 (A6a)

where

y = C*o/1 , (A6b)

and

a = (q o2 qo2)(a*o/* o  (A60)

This gives

I - C*o/In(l/6q2) (0)

Expressing 4ffj/c - XB, we have X = 2/(Rq ) in region 1, and

21q~2 2 2
S2Rq(r + 6q R ) in region 3.

Now consider the equilibrium specified by Eqs. (13) and (14). We

again use the same approach, but now we need to solve separately in only

two different regions. Near the magnetic axis we use the same

approximation used in region 3 of the previous equilibrium. Far from

the magnetic axis we use the elliptic integral solution used in region 4

previously. Matching these solutions, we again get Eq. (A7).
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FIGURE CAPTIONS

Fig. 1. Flux surfaces during axisymmetric coalescence

a) Initial approach of the two spheromaks

b) Reconnection of the magnetic islands

c) Final equilibrium after coalescence.

Fig. 2. Axisymmetric coalescence of spheromaks with different values

of * on the magnetic axis, *1 and *2" On the left we show

the q profiles before coalescence, and on the right we have

q(*) after coalescence.

Fig. 3. Restoring the q profile by purely axisymmetric coalescence.

a) q(*) of the fusion spheromak at t-O and after a small

time has elapsed

b) Refueling profiles

c) q(*) after axisymmetric reconnection.

Fig. 4. The q profiles before and after axismmetric coalescence for

the refueling scheme which makes use of an n-l, m-i tearing

mode.

Fig. 5. The n-1, mr1 helical flux function before (solid line) and

after (dashed line) the growth of the n-l, m- tearing mode.

Fig. 6. The q profiles before and after axisymmetric coalescence for

a refueling scheme which uses an n-i, mrl double-tearing

mode.

Fig. 7. The n-1, m-i helical flux function before (solid line) and

after (dashed line) the growth of the n-l, m- double-tearing

mode.
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