AD-A109 853 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 972
SYNTHESIS OF COMMUNICATING PROCESSES FROM TEMPORAL LOGIC SPECIF==ETC(U)
SEP 81 Z MANNA:» P WOLPER NO0O14=76=C~0687

NL

UNCLASSIFIED STAN=CS=81-872

TRF
L =

e

L2 e e

September 1981 - ~ Repurt. No. STAN-CS-81-872

> -

- &

Synthesis of Communicating Processes
from Temporal Logic Specifications

by

ADA109853

Zohar Manna

Pierre Wolper
T ,
GRA&T
DTIC Tap [[:3"
Research sponsorcd by Jumrh 2'inced ~

S b
feeladn

Office of Naval Rescarch b e
’ ’ ' ! (National Science Foundation Dietogr T ;
r Ty

&L ECT E Air Force Office of Scientific Rescarch i i) ‘_f
JAN2 1 1982 ; -~ o5
|
F [A
Department of Computer Science e

|.}/ 70 Stanford University

Stanford, CA 94305

a o)
&5 R ol (TR A
) . Com L =V L=
— v s
= .
E
N o
. DISTRIGS o
S C DISTRIBGTION STATE e 1 : "

ME
Approved for puprie NT A

li)
oved fc Ic release:
stmbunon Unlinn’md %

SYNTHESIS OFF COMMUNICATING PROCESSES FROM
TEMPORAL LOGIC SPECIFICATIONS

Zohar Manna Pierre Wolper

Computer Science Department Computer Science Department
Stanford University Stanford University

Stanford, CA Stanford, CA

and

Applied Mathematics Department

The Weizmann Institssbe \

Rchovot; Israel ’

—_—

Abstract: [n this paper, we apply Propositional Temporal Logic {(I’TL) to Lhe specilication and
synthesis of the synchronization part of communicating processes. To specify a process, we give a
PTL formula that deseribes its sequence of communications. The synthesis is done by constructing
a model of the given specifications using a tableau-like satisfiability algorithin for PTL. This model

~

can then be interpreted as a program. -

U

1. Introduction

Most concurrent programs can casily be separated into two parts: a synchronization part that
enforees the necessary constraints on the relative timing of the execution of the different processes
and a funclional part that actually manipulates the data and performs the computation required
of the program. For example, the part of a concurrent program that ensures mutual exclusion
between sections of code is in the “synchronization part” of that program whereas the code that

is made mutually exclusive is in the “functional part”.

The synchronization part of a concurrent program is rarely deep, but it is ncvertheless
frequently complicated. That is, writing il requires a lot of altention to intricate details but
docs not require insight into a varicty of underlying mathematical theories. These characteristics
inake the development of tools for specifying and automatically synthesizing synchronization code
a highly desirable and yet manageable task.

In this paper, we proposc to use P’ropositional Temporal Logic (I'TL) as a specification language
for the synchronization part of CSDP-like programs and we present a corresponding synthesis
algorithm based on the decision procedure for PTL.

This research was supported in part by the National Science Foundation under grant MCS80-06930,
by the Office of Naval Research under Contract N00O!4-76-C-0687, by the United States Air Force
Office of Seientific Research under Grant AFSOR-81-0014 and by an IBM Predoctoral Fellowship.

This report appears in Procecdings of the Workshop on Logics of Programs, Yorklown-lleights,
NY, Springer-Verlag Lecture Notes in Computer Science, 1981

1

¥ kA oty S AT S

—

CSP’, the language of Communicating Sequential I’rocesses, was developed by Hoare [Ho78] as
a tool for describing distributed processes. It views distributed processes as interacting exclusively
through well defined inter-process input/output (1/0) operations. This makes il quite casy Lo
separate the “synchronization part” of a CSP program from its “lunctional part”. [Indeed, the
“synchronization part” can be viewed as the program abstracted to its 1/O operations. To describe
the synchronization part of a CSP program it is then usually sufficient to give the temporal relations
that have to exist between the execution of specilic 1/0 operations.

Propositional Temporal Logic '([I’r67], [RU71]) is especially well suited for this task. Indeed,
it is an cxtension of classical propositional logic geared towards the description of sequences.
Morcover, PTL is decidable and has the finite model property. That is, given a PTL formula
it is decidable if that formula is satisfiable, and if it is satisfiable, it has a finite model. This will be
the basis of our synthesis method. Indeed, given specifications in PTL, we will use a tableau-like
method ([Sm68], [BMI’81]) to test for satisfiability and construct a model of the specifying formula.
We then extract from that modei the synchronization part of a CSP-like program.

2. The CSP Framework

The Iramework in which we specify and synthesize synchronization problems is that of Hoare’s
language of Communicating Sequential Processes (CSP) [Ho78]. A program in that language is a
collection of (possibly nondeterministic) sequential processes cach of which can include inter-process
[/O operations. These 1/0 operations are the only interaction between the processes, Syntactically,
an inter-process [/O operation names the source (input) or destination {output) process and gives
the information to he transmilted. In Hoare’s notation, the operation “output s to process P" is
written

Pls

and the operation “input s from process I is
P?s

Scmantically, when a process reaches an input {output) operation, it waits for the corresponding
process to reach the matching output (input) operation. At that point, the operation is performed
and both processes resume their execution. There is no queuing or bulfering of messages.

We will use CSP with the following modifications:

a) We consider systems of non-terminating processes. Terminating processes can be ac-
comodated if they are considered to end with a dummy 1/0O operation that is repeated
forever.

b} As we arc interested in pure synchronization problems, we will assume that the only

informalion exchanged belween processes is a finite set of signals s;.

2

m* . T cncaleiernn. o ‘

¢) We assume that when several 1/O operations are possible, the one to be excecuted is
chosen fairly. More specilically, we assume that if an 1/O operation is infinitcly often
enabled (both sender and recciver are ready to perform it) it will eventually be exccuted.

We will specify systems of processes where one process, the synchronizer S, communicates
with a set of other processes I3, 1 < € < n.

" Thus, the only communications laking place are between the synchronizer S and each of the
processes F.

To specily the synchronization part of such a system, we will look at the infinite sequence of
1/0 operalions executed by each of the processes (S and £%5’s) thal we assume to be non-terminating.

Ezample: Consider the following system:

t
]

where S receives signals 8y and 32 from P and signals s3 and s4 from /. The sequence of /O

operations exccuted by S will be some interlcaving of the lour operations /2?3y, sy, %73y,

P»?s84. For instance it could be

& ?8] 1)2?84 [’2?33 Py ?8|
Similarly, the sequence of 1/0 operations exccuted by P will be some interlcaving of Stsy, -S'sg.
]

The specifications will, for each process independently, characterize those sequences of 1/0
operations that are acceptable. The synthesis algorithim will then generate a program that when
executed generates a sequence of /O operations salisfying Lhe specilications.

3. The Specification Language

As a specification language, we use Propositional Temporal Logic (PTL). Temporal Logic
was initially developed as a branch of philosophieal logic dealing with the nature of time and
of temporal concepls ([I’r67], [RU71}). Recently it has been adapted to the task of reasoning

3

Ll...—.._:A

——-————.—___m_m“

about the execution sequences of programs and was found especially useful in proving properties
of concurrent programs ([Pn77), [MP81]). Here, we use Temporal logic in a similar framework;
the specific formal PTL system we use is a variant of the one appearing in {G’SS80].

Intuitively, PTL is a logic oriented towards reasoning about sequences. It is a classical
propositional logic extended with four temporal operators: O, ¢, OO and U; the first three are
unary, the last binary. For a sequence and a given state in that sequence,

O [is true il [is true in the next stale in the sequence;
0O f is true iff fis true in all future states of that sequence;
<& [is true iff fis true in some future state (i.c., it is eventually true); and

S1 U f2 s true iff fy is true for all states until the first state where f3 is true.

More formally, I*TL has the lollowing syntax and semantics:

Syntax:
PTL formulas are built from
e A set P of atomic propositions: py, p2, p3, ...
o 3oolean conncctives: A, - . .]

e Temporal operators: O (“next”), DO (“always”), O (“cventually”),

U (“until”).

The formnation rules are:

¢ An atomic proposition p € P is a formula. H

o I[fi and [y are formulas, so are

fl/\fﬁy "‘fl’ Ojlv Dfly o[lv flUIZ-

We will also use Vv and D as the usual abreviations.

Semantics:

A structure for a PTL formula (with set P of atomic propositions) is a triple 4 = (S, N, x)
where

e S is an cnumcrable set of states.

e N: (S — S) is an accessibility function that for cach state gives a unique next
state.

e n: (S — 2”) assigns truth values to the alomic propositions of the language in
each state.

For a structure £ and a state s € § we have

4

(A,8)F p ifl p€ n(s)

(A,s)e iAf2 it (A,8)F fi and (4,8)F fa
(A,8)E ~f iff nol (A, s)k f

(A,8)E Of it (A,N(s))E [

In the following definitions, we denote by N*(s) the it* state in the sequence
8, N(s), N(N(s)), N(N(N(s))), ...

of successsors of a state s.
(A,8)F Of il (Vi > 0)((4,N(s)) k)
(A,8)E O f QT (3i > 0) (A, N(s)) E f)

(A, 8)F LU f2 T (Vi 2> 0) (A, N¥(s)) F /1) or
(3i > 0)((A4, N¥(s)) E f2 A
Vi0<j<i D (A4N(s))E f1))

An interpretation I = (A, sg) for PTL consists of a structure A and an inilial state sy € S.
We will say that an interprelation [= (4, s¢) satisfies a formula f ifl (4,s9) E f. Since an
interpretation I uniquely determines a sequence

o = 89, N(s0), N¥(s0), N3(s0), ...

we will often say “the scquence o satisfies a formula” instead of “the interpretation I satisfies a
formula”.

Note: The temporal operators we have defined differ from those in [GPSS80] in the following way:
o They are reflexive. That is, a state is included in its own sequence of successors.

e The Until operator does not have an “eventuality component”. That is, according to our
definitions, fi U f does not imply © f.

Our purpose in using PTL is to describe processes by specifying their allowable sequences of
1/0 aperalions. To do this, we consider TL formulas where the alomie propositions stand for 1/0
operations. And, to reflect the fact that we are looking at sequences where only one 1/0 operation
occurs at a lime, we sysiematically add to our specifications for cach process the following single

U((V 2)a(A "‘(P-'/\Pj))) (3.1)

1<i<n 1<i<i<n

event condition:

where py, ..., Pn are all the atomic propositions (1/O operalions) appearing in the specifications of
that process. In other words, a state of our temporal logic corresponds to the execution of exactly

5

.
{
|
{
1

one [/O operation (the atomic prloposi(.ion truc in that state) and the “next” state corresponds to
p

the exccution of the next 1/O operation.

Ezample:

For a process ? thal sends signals 8y and s3 to a process S,
S'sy
specifies that all its sequences of 1/O operations start with Sts,. And,
O(S!'s; D O S'sy)

_specifies that S!s; is always immediately followed by S!se, with no other 1/0 oi)cration being
performed by P in between.

4. Examples of Specifications

Let us first recall that when we give the specifications for a synchronization problem, we
independently give the specifications for each of Lhe processes involved (the synchronizer § and
synchronized processes I%). That means that for each process we give a PTL formula that, in
conjunction with the single event condition (3.1), has to be satisfied by the sequences of /O
operations executed by that process. Thus, for instance, O means “next” in the particular process
we are specifying.

Ezample 1: Mutual Exclusion

Suppose we have two processes, I’} and P, that communicate with a synchronizer S. The
signals sent to the synchronizer by (1 = 1, 2) are Slbegin; (begin critical section) and Stend; (end
critical section). The synchronizer should ensure that processes /%y and /% are never simultancously
in their respective critical scctions that start with Stbegin; and end with Slend;. What the specifi-
cations for a process I’ should say is that F; alternately sends begin; and cnd; signals, starting
with a begin,. This is expressed by the conjunction of the following formulas:)

Slbegin,

(the first signal sent is begin critical section)
O(S!begin; O O Slend,)

(after a begin critical section signal, the next signal sent is end critical section)
O(S'end; D O Slbegin,)

(after an end critical section signal, the next signal sent is begin critical section).

6

The specifieations for the synchronizer are:
O(Pybeginy O ((—Pybeginy) U(1’?end,)))

(after letting P, proceed into its critical section by accepling a begin, signal, do not let P, enter

its own eritical section until P has finished)
D(I’g?beging D ((— 1 Pbeging) U(Pg?end-z)))

(after letting I’z proceed into its critical scction by accepting a beging signal, do not let P, enter
its own critical section until /% has finished).

P e g

One would expect that it is also necessary to specify absence of starvation:
O(< Py ?begin, V O Py ?end,)
(do not neglect I’p indefinitely)
0O 2?eging V O P ends)

(do not negleet P indefinitely). But as we will see later, in section 6, we do not have to write
these conditions explicitly since they will always be systematically introduced during the synthesis.

Ezample 2: Dining Philosophers

We specify the classical dining philosophers problem for three philosophers. Three philosophers
are sitting at a round table in a Chinese restaurant allernatively thinking and cating. Between

two philosophers there is only one chop stick and a philosopher needs Lo pick up both the chop
stick at his left and the one at his right before he can eat.

RN

Py

. —"
& @

3

. e

The problem is to synchronize the cating of the philosophers. We have a process £ per philosopher
and a synchronizer (or “chop sticks” process) §. Each philosopher I’ communicates with the
synchronizer S by four operations:

S'pick, pick up chop stick ¢
Slpickig pick up chop stick 1P 1
7

S'putig, put down chop stick i P 1

Slput; put down chop stick ¢ 1

(D designates addition modulo 3; we will also use © for subtraction modulo 3).

The specifications for each philosopher Py, 1 = 1,2,3 are:
S'ple,
(the first signal sent is pick,)

D(S';nck. 2 OS'p’l(‘k.Ql)

D(S!p’icki@[] OS!put{@,)
D(S!put;(pl 2 OS"put.)

O(S'put; D O Stpick;)

Again, these specifications say that each philosopher repeatedly picks up one chop stick, picks up
the second, puts the second chop stick down and puts the first chop stick down. |

The specifications for the synchronizer are
DO(P?pick: D ((—Pigitpicks) U(P?put)))
O(r?pickigr D ((~ g tpickign) U(I5Tputir)))

for t = 1,2,3. These cssentially say that a chop stick cannot be picked up by two philosophers
simultaneously.

5. Overview of the Synthesis

As described in Scction 3, when we specify a system of processes, we specify cach of the
processes involved separately. This makes the specification task much easier. lowever, to deal
with some properties of the system like absence of deadlock or starvation, we have to look at the
combination of the specificalions ol all the processes involved. But, as the specifications refer to the
sequence of 1/0 operalions of cach process separalely, we first have Lo modily these specifications
so that they refer to the global sequence of 1/0 operations, that is the merge of the sequences of
I/0O operations of the individual processes.

Thus, the first step of our synthesis is the relativization procedure that takes the specifications
of cach process (the local specifications) and transforms them into specifications for the global
system of processes (Lhe global specifications). Alter the relativization, we proceed to do the

synthesis with the global specifications of the system of processcs.

8

The second step is then Lo apply a tableau-like satisfiability algorithm for PTL to these global
specifications. The tableau decision procedure we use is essentially the one deseribed in {BMP81]
restricted to linear time and modified to use our assumption that exactly one atomic proposition
is true in each state.

The decision procedure can have two possible outcomes: cither it declares that the specifi-
cations are unsatisfiable and in that case it means that there is no program that can satisfy the
synchronizalion problem as specitied. Or, it produces 1 model graph from which all possible models
of the specifications can be extracted.

This model graph could almost be transformed into the programs we are synthesizing except

for the fact that there could be some paths in the graph that never satislfy some cventualities

(properties of the form O f). In other words, though all models of the specifications can be

generated from that graph, not all paths generated by the graph are models of the specifications.
Our next step will thus be to unwind the graph to obtain an actual model of the specifications.
Unfortunately, this unwinding usually gives a graph that, though it generates only models of the
speeifications, generates only one or a few ol the possible models. In programming terms, this means
that our proeesses will be restricted to only a few ol the possible execution sequences salisfying

the specifications, which clearly is undesirable.

In the special case where the cventualities are “non temporal” (ze., of the form < f where
J docs not contain temporal operators) we are able to avoid unwinding by relying on our fairness
hypothesis on the execution of CSI* programs. We then synthesize our programs from a model
graph that not only generates only models of the specifieations (given the fairness hypothesis) but

also can generate all possible models.

The final step in the synthesis will be to extract the processes from the model graph. This is
rather straightforward as the model graph itself can be viewed as the synchronizer process and the

other processes can be obtained as restrictions of that graph,
In summary, the steps of our synthesis will be
1) relativize the specifications (to obtain the glebal specifications).
2) apply the satisfiability algorithm (to obtain the model graph).
3} unwind if necessary (Lo satisfy eventualities).

4) generate the individual processes.

6. Relativization

QOur purpose here is to take the local specifications of the processes and transform them into
global specifications for the sequence of 1/0 operations executed by the whole system of processes.

At first glanee it might scem that the global specifications would simply be the conjunction of the

9

i
i
i

specifications of all the processes involved. However before taking that conjunction there are three

probiems thal have to be dealt with:

(1) At the global level, the sending and receiving of a given message is a single action. Thus,
we have to make explicit the correspondenice between pairs of matching 1/O operalions;
that is, pairs of operations consisting of an oculput operation that sends a given message
{e.g. S's appearing in F%) and the corresponding operation that receives that message{e.g.

P?s appearing in 8).

(2) The loeal specifications for a process describe its sequence of [/O operations. But, that
sequence is only a subsequence of the global scquence of 1/O operations. The local specifica-
tions have to be modified to reflect this fact. Note: we are reasoning under our assumption

that only one 1/O operation happens at a time (locally and globally).

(3) 'The subsequence of the global sequence corresponding to cach process is infinite. This has

to be made explicit in the global specifications.
These considerations lead us to the following Lhree steps of our relativizalion procedure.

(1) Rename matching [/O operations to a unique new appellation. For example we would, in

our prececding example, rename Slbeging and P ?beging to beging.

(2) Define inf to be py v ... V p, where py, ..., p, are the /O operalions appearing in Py,
Then, to refelect the fact that the specifications for P concern a subsequence of the global

sequence, we transform these specifications using the two following rules:

p = (~inP; Up) (6.1)
where p is an alomic proposition, and

Of — (~ind5 U(inty AOJ)) (6.2)

That is, the right-hand side of (6.1) is substituled for all Lhe atomic propositions in the
specifieations of %4 and the right-hand side of (6.2) for all occurences of O. Note: in
our specific framework, all 1/O operations occur between the synchronizer 8 and some
other process ;. Thus for the synchronizer inS = true and its specilications need not be

modified.

(3) Vor cach process P we add the lollowing infinite subsequence requirement.
O O(inl%) (6.3)

That is, some operation of process I has to occur infinitely often in the global sequence.

The global specifications are then the conjunction of the specilication for the synchronizer,

the specifieation for Lhe processes 1% modified using (6.1) and (6.2) and the requirements (6.3).

10

The only non-trivial step is step (2). Let us call the local specifications for a process P;
transformed by using rules (6.1) and (6.2) the modified specifications for I’;. We have the following
result:

Proposition 6.1: A sequence satisfies the modified specifications for 1% il and only if its subscquence
consisting of all the 1/O operations of P satisfies the original specifications for F%.

The proposition can be casily proved by induction on the structure of the specifications for £,

Before we give an example, let us first note that for a formula relative to a process I that is
of the form

O(p > Og)
(i.e., if p then g in the next state) the relativized version is
O((=inP; U p) D (minl; U(in; A O(=inP; U q))))
This can be simplified, using PTIL equivalences to
O(p > O(-ink; U q))
(#.e., if p then, from the next state on, we are not in /%5 until q).
Erample: Mutual exclusion problem
Let us recall that the specifications for the mutual exclusion problem are:
Ifor the processes Py, 1 =1,2:
Slbeging
O(S'begin; D O Slend;)
O(S'end,; D O Slbegin,)
For the synchronizer S:
O(71%eging D ((—P2?beging) U(P Tend,)))

O(7%beging D (-1 begin) U(Py?ends)))

Then, if
inl’ = begin, V end,
inl’y = beging V endy,

11

r T

the global specifications for the mutual exclusion problemn are:

From the specifications of Py: .

—~inP U begin,
O(begin, > O(~inPy U end,))

O(end, > O(-ink, U beging))

From the specifications of Fy:

~inl’ U beging

D(brging D O(~inl, U (’ndg))

D(cndz D O(-inl U br‘ging))
IFrom the specifications of S:

O(begin, 2 —beging U end,)

O(becging D —beging U endz)

The infinite subsequence requirements:

aoinl

DOinPg

Remark: The relativization procedure can be viewed as a semantic rule for the execution in parallel

of communicating processes. Indeed, if we view the meaning of a communicating process as

its possible sequences of 1/O operations as described by a PTL formula, then the relativization
procedure gives the meaning of the concurrent execution of the processes.

7. The Satisfiability Algorithm .

In this section we will describe the tableau method we use to test for satisfiability and construct
a model of the global specifications. We will first brielly review the tableau method lor propositional

calculus, then indicate how it can be extended to handle temporal logic and finally give in detail
the exact algorithm we have developed for our specific purpose.

A set of formulas {f,..., f»} is satisfiable if there is an interpretation that simultancously
satisfies all the formulas in that sel, The tablecau method for propositional calculus is based on the
following relations between satisfiablility of sets of formulas:

T1: A sct of formulas {fy,..., fi, A fisy -+ [} is salisfiable il and only if the scb of formulas
{/1s- o Jiis fizre oy Jn} is salishable

12

T W P Sy ST e =repweut Pty
PRS-

RN

!
i §

i A B e et <

T2: A sctof formulas {fy,...,~(fi,Afi,) ..., [a} issalisfiableif and only if the set {fy, ..., f;,,
.o fa} ortheset {fy,...,~fi,y ..., fn} is satisfiable

T3: Asctof formulas {fy,...,o~/f;,..., [n}issatisfiableif and only if theset {fy,..., fi,..., fa}
is satisfiable

To test a formula f for satisfiability, one thus starts with the singleton {f} and uses rules
T1 T3 to decompose [into sets of its subformulas. If the decomposition is carried on until the
sets contain only atomic formulas (atomic propositions or their negation), satisfiability can ecasily
be deeided. Indeed, a set of atomic formulas is satisfiable if and only if it does not contain a
proposition and its negation. This procedure actually corresponds to transforming the formula into
disjunctive normal form. An extensive study of tableau methods for propositional and predicate
caleulus appears in [Sm68). :

For PTL we also have to deal with the temporal operators. This can be done with the following

three identities

Of = fra0af (7.1)
Of = fVvOOS (7.2)
Nz = fV(HAO(NHUSR)) (7.3)

These identities will enable us to decompose a formula into sets containing atomic formulas
(atomic propositions and their negation) and PTI. O-formulas (forinulas having O as their main
conneetive). The achievement of such a decomposition is to separate the requirements expressed by
the formula into a requirement on the “current stale” (the atomic formulas) and into a requirement
on “the rest of the sequence” (the O-formulas). One then cheeks that the set of formulas concerning
the “current state” is satisfiable and then repeats the whole process with the O-formulas, after
having removed their outermost O operator. In other words, one tests lor satisfiability by trying
to build a model state by state. As all the formulas appearing in the process are subformulas of
the initial formula, one will eventually reach a stale that has already occurred, thus the process
terminates.

There is, however, at that point one more step to do. The identity (7.2) allows us to satisfly
<& f by always postponing it (O © f). Thus, before declaring a formula satisfiable, we have to
check that all the formulas of the form © f can be cffectively satisfied; that is, that there is a
possible fulure state in which f is true.

l.et us now describe our algorithm in more detail. The central part of the algorithm is the
decomposition procedure that separates the requirements expressed by a sct of formulas § into
requircments on the “current state” and on the “rest of the sequence”. In that procedure, we use
our assumption that exactly one atomic proposition is true in ecach state. That assumption makes
it much more efficient to check all possible assignments of truth values to the atomic propositions in
the current state (Lhe number of such assignments is the same as the number of atomic propositions
in the language) than to brutally apply the decomposition to a set of formulas including the

13

single event condition (3.1). Indeed, the latter could lead to examining a number of eases that

is exponential in the number of atomic propositions, but thal would eventualy be restricted to a
linear number.

To do this, we decompuse the set of Tormulas S separately for each atomice proposition in the
language. That is, Tor each proposition p, we decompose the set of formulas under the assumption
that p is true and the other atomic propositions false. The decomposition procedure thus takes as
inputs a set of PTL formulas § and a proposition p. It outputs a set 33, of sets S; of formulas fi;,
te. Xy = {S;} wherc each S; = {f,;}. Bach formula f;; € S; either is a O-formula or is “marked”,
i.e. it is a formula that already has been used in the decomposition and is only kept for reference,
Under the assumplion that p is true, the original set of Tormulas 8 is satisfiable if and only if, for
some ¢, all the unmarked formulas in 8; are satisliable. In other words, the O-formulas in cach set
S; give one of the possible requirements on the “rest of the sequence” if p is Lthe proposition true

in the current state.

The decomposition procedure initializes X, with the set of sets of formulas {S} and then
repeatedly transforms it until all the elements 8; of 23, contain only marked formulas or O-formulas,
It is the following:

(1) (Initialize): start with ¥, = {S}.

(2) (Iixpand): repeat steps (3) (5) until for all §; € ¥, all the formulas f;; € S; are marked
formulas or O-formulas.

(3) Pick a formula f;; € 8§; € X, that is not marked and not a O-formula.

(4)(Simplily): In the formula fi;, replace all the occurrences of p that are not in the scope of

a temporal operator by true and all similar occurrences of the other atomic propositions

!

by false. Perform boolean simplification. This yields a formula f7;, called “f;; simplified

for p”.

(5) (a) if fI; = truc replace S; by S; — {f;;}. Given that pis true, fi; is identically true and
can thus be removed from S;.

(b) il fi; = false replace Xp by Xp - {Si}. In this case, f;; is false and the set S; is
unsatisfiable. It can thus be removed.

(¢} if fi; is a O-formula, replace S; by (Si — {/fi;}) U {/i;}- As we have obtained a

O-formula, no more decomposition is necessary.

d) if f4. is of lype « (sce table below), replace S; by
i

(Si' - {le}) U {f&j*)ah“2}

where [+ is Ji; marked. Since a formula of type a is satisfiable iff both ay and
ag are satisfiable, we replace fi; by a; and agz. We also keep a record of fﬁj by
marking it.

14

rmfv‘ = | v

(e) if f{; is of Lype B (sce table below), replace S; by the two following sets:

(S = {Lis DU S B}y (Si — {fi; DU {Jiy%, B2}
where i+ is fﬁJ marked. Since a formula of type 8 is satisfinble iff cither 8 or
B2 are satisfiable, we replace S; by two sets: one containing 3, and one containing

Bg.

The formulas of type « and 8 are given in the following two tables. Notice the correspondence
between the entries in the tables concerning temporal operators and the identities (7.1) (7.3).

« (¢ 3] y

JiASe h J2

/i iy Lo ﬂj o

=0 fi O-fi o-f

o/ /i | oo

~(N1 U fa) -f2 ~fiv Oﬁgf_lﬁf'z) -

~on i o-on | '
B Bi Bs -

(N1 A f2) ~fi ~Jf2

O/ fi oon

(f1U f2) f2 JiAOUN U J)

-0/ -1 o-on

Ezample: Let us apply the decomposition procedure for g to the set of lorinulas
S={0(g>~(rUr)}

g first gets initialized to
Le={{O(a> (-p U r))}}

At that point, the only formula we can choose in step (3) is O(¢ D (~p U 7)). As all its atomic
propositions occur within the scope of a temporal opeartor (O), step (1) does not modily it. Step
(5d) splits O(q 2 (-p U r)) into ¢ 3 (~p U r) and ODO(q 2 (~p U 7)), therefore, we get

Ye={{g2(~pUr), OO(q2(~pUr), O(ad(-pUr))s}}.
15

Step (3) then chooses ¢ D (—~p U r) which is simplificd by step (4), after replacing g by true, to
(mpUr). This is a formula of type 3, we thus split the scl that contains it into tvo sets: one
containing 7 and the other containing ~p A O(-p U 7). ’

Yo={{r, (~pUr)x, ODO(q2(~pUr)), O(g>d(~pUr))s},
{~-pAO(-pU7), (-pUr)s, OO(gD(~pUr)), O(gD(~pUr))s}}.

Then, as 7 simplilied for ¢ is false, by (5b) the first sct is removed and we get
Ye={{-pAO(-pUr), (-pUr)x, OO(¢2(~pUr)), O(g2(~plUr))s}}.

Aund, finally, as =p A O(-p U r) simplilied for ¢ is O(~p U r) (p is replaced by false), we get by

(8¢)
Yo ={{O(-pUr), (mpUr)sy, O D(q a(-~pU r)), D(q d2(~pl r))*}}

We can now proceed Lo deseribe the satisfiability algorithm. This algorithm uses the decom-
position procedure to build a model graph that is a search for all potential models of the formula.
From that graph, we will be able to decide satisfiability and to econstruet a model. Iach node
and edge in the graph is labeled with a sel of formulas. The sets of formulas labeling an edge
always contain exactly one of the atomie propositions of the language. The edges of the graph will

correspond to the “states” of the interpretation of PTL.
The graph is constructed as follows:

(1) Start with a graph containing just one node labeled by a set S containing the formulas f;
to be tested (the initial formulas),ie. § = {f;}.

(2) Repeatedly apply step (3) to the nodes of the graph until it has been applied to all nodes.
(3) For every alomic proposition p in the language:

(a) Apply the decomposition procedure for p to the set § of formulas labeling the
current node.

(b) For each set S, in the set Y, generated by the decomposition procedure, crcate
an cdge labeled by {p} U 8; leading to a node labeled by the set of all formulas
S such that O f € §; or to a node that can be determined Lo be labeled by an
equivalent set of formulas. If there is no such node, create one.

Ezample 1: For the formula

fo=0(q>(-pUr)),

the graph is:

16

—y

r’ p,

{D(q S (-pUr))s, {D(q D (~p Ur))s, }
OD0(g> (-pUr) O0(¢>(~pUr))
(T,)
O(p > (~p U),
OD(q S(~pU r)), {
{(~p U)

9
O(q 2 (-p U r))s,
O0(¢>(-pUr)),
(~p Ur)s,
O(-pUr)

7/

(9)
O(q 2 (~p U r))*,

@] D(q S(~pU r)),
(~p U r)s, i
\O(-pUr) J‘

v

{El(q J(~pU r)),}

(~pUr)

This graph was constructed by starting with a node labeled by {D(q D (-pU r))} Then,
applying the decomposition procedure for g to that set of formulas we obtain, as deseribed
previously

Yy ={{O(-pUr), (-pUr)x, OO(q2(~pUr)), O(q>(-pUr))+}}.
Thus we create an edge labeled by
{a, O(-pUr), (-pUr)x, ODO(¢>d (-pU r)), El(q S(~pU r))*}.

Since this set contains two O-formulas (O(-p U r) and OO(g D (-p U r))), the cdge leads to a

node labeled by

{(~-pUr), D(¢2(-pUr))}.
The other edges are constructed similarly. 1

Ezample 2: Mutual exclusion problem.

Let us reeall that the global specifications for the mutual exclusion problem are:

~inly U begin, (7.4)
O(beging > O(~inl’ U end,)) (7.5)
O(end D O(~inP, U begin,)) (7.6)
—inl U beging (7.7
O(beging O O(~inl% U endy)) . (7.8)

17

O(endz D O(inP; U beging)) (7.9)
D(begin, D —beging U end,)) (7.10)
O(beging D —~begin, U endy) (7.11)
0 Cink, (7.12)
OOinls, (7.13)

The graph the satisfiability algorithm yields for these specificalions is then:

ny {(7.4),...,(7.13)}

(begin,,
(74)%,..,(7.13)%,
(—beging U endy)s,
Cinls, Ownlys,
Yo5),...,0.13),
O(~int U end,},
O(ﬂbcying Uendl),
LO Oian

beging, }
(TA)s,...,(7.13)+,
(—beginy U endy)s, {
OinPyx, Oinllyx, ‘
0O(7.4),...,0(7.6), O(7.8),...,0(7.13),
Of=~inl U endy),

O(~beginy U ends),

OO inl J

(7.5), ..., (7.13),
(~inPy U end,),

(7.4),...,(7-6), (7.8),...,(7.13),)
-) (-finl’z U Cndz),
3

(—beging U endy), / (—beging U ends), r
Oinky Oinly)
(end,) end,,)

(7.5)%,...,(7.13)%,
Oinlyx, Oinlys,
L (~inly U end,)s,
(—beging U end,)s,
0(7.4),...,0(7.13),
LO O inl

(7.4)%,...,(7.8)%, (1.8)%,...,(7.13)%,
Cwnlyx, $tnlhs,

(minl, U endy)s,)
(mbeging U endy)s,
O(7.4),...,0(7.13),

OO inly)

Note that the end; cdge from ng is supposed to lead to a node labeled by

{uuuduﬁ,ommy

—

But, as (7.13) is OO infp and as OO p = 0O O p A O p, this set is equivalent to

{(7.4),...,(1.13)} -

and the edge can lead to ng. Similarly, the ends edge from ny also leads to n,. |

It is straightforward to give an upper bound on the size of the graph. The numnber of nodes
in the graph is at most 24¢*2 where ¢ is the number of temporal operators in the formula to be
tested. Indeed, given the a and g rules, the formulas appearing in a node are cither the initial
formula, a subformula of the inilial formula with a temporal operator as its main connective (there
are exaclly ¢ such formulas), a subformula of the initial formula appearing in the immediate scope
of a O operator (there are at most ¢ such formulas) or the negation of any of the above. There

are clearly at most 4¢ + 2 such formulas and as each node is characterized by a subset of these

formulas, a bound on the number of distinct nodes is 2%¢+2,

The last step of satisfiability algorithm is to check that all the nodes are satisfiable and that
all eventualities can effectively be realized. For this, we apply the following nodes and edges
elimination procedure:

Repeatedly apply the following two rules until no longer possible.
(1) If a node has no edge leaving it, climinate that node and all edges leading to it.

(2) If an edge contains an eventuality formula, that is a formula of the form

Ofi, ~O-fi or ~(~fi U f2)

then, delete that edge if there is no path from that edge leading to an cdge
containing {p, f1} for some atomic proposition p in the language, where f} is f,
simplified for p.

Note: In the preceeding examples, no climination is necessary.
We have the following result:

Proposition 7.1: The initial formula, in conjunction with the single event condition (3.1), is
satisliable if and only if the result of the elimination process is not the empty graph.

We will not give here a proof of this resull as such a prool would follow very closely the one
presented in [BMP’81] for a branching time PTL and in [Wo81] for an extension to PTL.

8. Eventualities and Unwinding

Il the specifications are satisfiable, the decision procedure described in the previous section
has provided us with a non-empty graph. This graph deseribes the models of the specifications in

the scnse that every scquence that is a modcl is a path in the graph and that cvery finite path

19

_

obtained from the graph is the prefix of some model. This lalter property simply follows from
the fact that the decision procedure ensures that the sets of formulas associated with each edge or
node of the graph are indeed salisfiable. Unfortunately, it is not always the case that all infinite {
paths obtainable from the graph satisfy the specifications. Indeed, some of these paths could leave
some eventuality formula unsatisfied. However, it is always possible to modily the graph so that
every infinite path satisfies the specifications.

The construction basically procecds by unwinding the graph up to states where the eventualities ;
are actually realized. The new graph is finite and can be used to generate the program we are
trying to synthesize. This unwinding has the disadvantage that it forces the processes Lo execute
one specific path among all those that satisly the specifications; clearly, this can lead to undesirable

inefliciencies.

Ezample: IT the specilications are
OCa AOCH, (8-1)

the unwinding algorithm could, for instance, give the seauence a,b,a,b,a,b, ... as a model. In
other words it would require that in order to satisfy {%.1) we alternatively execute a and b, This is
correet but could be unacceptable in a situaticn whaie @ ean be repeated substantially faster than

b8

In the next section, we will see that under some conditions, the unwinding can be avoided. In

the meantime, let us examine the unwinding procedure we use.

Given agraph ¢ = (N, I£) with nodes N and edges I2, produced by the satisfiability algorithm,
we build a new graph G/ = (N', I)") as follows.

(1) Initially G’ consists of a set Nj = N of nodes. We will eall N the initial nodes.
(2) For cach node ny € Nj do the following:
(a) Select an edge e € I leaving the node n € N corresponding to ng.

(b) Build a path starting with ¢ = e such that all eventualities in ¢f are satisfied on
that path. Given the Tact that in the decision procedure we have climinated all
edges containing eventualities that could not be satislied, we are guaranteed that
such a path always exists,

(¢) Let ¢ be the last edge in the path built in (b). 1F the corresponding cdge ef € I
leads to a node n € N then connect (:'I to the corresponding ng € Ny,

The result of the construction is a structure that satisfies the specifications.

Ezample:

For the mutual exclusion problem we specified earlier, the graph ¢ we obtained from the
decision procedure is of the form:

20

{begin,, {begin,,
Oinky, O inby,
OinP;} Oinky}
{end,, {end,,
Oinl’,., OinPl,
< inl’z} < inl’z}

For the sake of simplicity we have only annotled the cdges with atomic propositions and
eventuality properties. If we apply the unwinding algorithm to this graph, we get the following
graph G’ where Nj = {n}, n}, ni}:

begin, end,
Oin Pl < inl’l
QinPy Oinby
end, beging
OinP,y OinP,
Oinly Oinby
beginy
< in[’l
104 in,’g J

To build the path starting from n{, we select the beging cdge leaving ny in . This edge
contains Lwo eventualities: Oinly and Oinl%. A path that satisfies both these eventualilies is

e beging T~ endy - beging

as beging satisfies O inl’ and beging satisfies O inP,. We thus incorparate this path into &' and
connect its last edge to nj. |

9. Dynamic Satisfiability

As we pointed out in the last section, unwinding can lead to very incflicient programs. What we
would really like is to be able to avoid the unwinding and decide dynamically, during the execution,
which path through the graph we are going to take, but still do this in a way Lhat satisfics the
eventualities,

This is possible when the I'ollowing three conditions are satisfied.

(1) the CSI’ prograin generated is executed fairly; that is, if a communication is infinitely
often possible it is eventually executed.

(2} all eventualitics are non-temporal, 1.e. in all eventuality formulas

Ofi, ~O=fi ot ~(=fi U fo)
labeling edges, fi does not contain any temporal operators.

(8) The graph satisfics the following dynamic satisfiability criterion.

Dynamic Satisfiability Criterion:

Let us denote by Il the set of atomic propositions corresponding to the 1/O operations
performed between the scheduler § and a process . A model graph is said Lo satisly the dynamic

satisfiability criterion if for cach edge containing an eventuality formula of the form
Sfi, ~O-fi or (~fi U f2)
{where f; is non-temporal) all maximum acyclic paths starting from that edge cither
(1) contain an edge labeled by a proposition p that satislics f,

or

(2) contain a node that has an outgoing edge labeled by a proposition p € 11; satisfying
J1, provided that either
(a) the edge leaving Lhat node and included in Lhe path is labeled by an atomic
proposition ¢ € 1l;, i.e. an atomic proposition representing an 1/O operation
performed by the same process I as the one performing p
or

(b) No atomic proposition ¢ labeling an edge of that path or any other maximum
acyclic path on which f; has to be salisfied and conditions (1) or (2a) do rot hold -
is in 11;.

Iissentially, the criterion checks that on all infinite palhs, cither the eventuality is realized or it
is infinitely often “possible” and thus will be realized due Lo the fairness assumption. That means
that any “fair” path in the graph is a model of the specifications and, as we will see, will be a
potential execution sequence of the synthesized programs. The precise justification of the criterion
involves the way we obtain the individual processes and the assumptions we make about their
execution. We will discuss these issues in the next section and thus postpone our proof of the
criterion until then.

Note: In the mutual exclusion example the three conditions are satisfied. We therefore do not need
to unwind that graph.]

22

10. Generating the processes

The processe we generate will look very much like the model graphs we have been dealing with
in the preceeding sections [If one takes such a graph and eliminates all the labeling except for
the 1/O operations labeling edges, the result can be interpreted as a CSP-like program. Indeed,
executing such a program is traversing the graph while performing the 1/0 operations on the edges.
A node with several outgoing edges is viewed as a guarded command that has as guards the 1/O
operations appearing on those edges. Thus, according to the definition of CSI?, when such a node
is reached, onc of the operations that is enabled (i.e., such that the matching process is also ready
to execute it) is chosen and the corresponding edge is followed.

The easiest process Lo obtain is the one for the synchronizer S. As we explained in section
2, all 1/O operations are between the synchronizer and some other process [%. This implies that
the model graph we have obtained from the global specifications can be taken as the program for
the synchronizer. The only (trivial) transformation that needs to be done is to rename the 1/0
operations back to their local name (e.g., beging becomes Py ?begin,).

Kach of the other processes will be obtained by restricting the model graph to the 1/0
operations of that process.

For a model graph G = (N, E) and a process I%, we thus build a restricted graph G; = (NV,, I).
Ilach node of G (n; € N;} corresponds to sets of nodes of the graph . Ior a node n,, we denote its
corresponding set of nodes of G as N,, C N. If the 1/O operations of /% are 1I; = {p1, ...,pa},
the construction proceeds as follows:

(1) Initially, G; contains one node; this node corresponds Lo an initial node of G and all nodes
accessible from that node in G through a palh containing no edge labeled by a proposition
pell;.

(2) Repeat step (3) until it has been applied to all nodes in G,.

(3) Select an unprocessed node n; € N;. For all propositions p € 11; create an edge from ng to
a node n; € N; such that the set N, is the sct of all nodes accessible in ¢ from any node
in N, through a path con},aining exactly onc occurrence of p and no occurrence of any
other member of I1; (we call such a path a p-path). A new node n! is created only when
G docs not already contain a node characterized by the set No:. IT Npr = ¢ no edge is
added.

We then just have to rename the [/O operations back to their local name to obtain the process
P;.

Ezample:

For the mutual exclusion problem .spcciﬁcd in scction 4, the program for S is:

23

S intoss AN

Pl ?endl

for the processes £ we have

and for the process P

Stheging Slend,

To obtain the graph for Iy, we start with the set of nodes in the model graph accessible from
ny by a path not labeled by any operation of process I’ This set is {n,,n3} . The only node
accessible from cither 7y or ng through a beging-path is ny. Thus we have a path labeled by beging
leading to a node labeled by {nz}. There are no nodes accessible from cither ny or ny through an
end-path, thus no edge labeled by end, will leave the node {n,, n3} of the graph for process Py.
The edges leaving {nz} arc constructed similarly. [|

We view the exccution of such a system of processes as it is defined in CSP. That is, the
processes have Lo execute matching 1/0O operations simultancously. Nole that even though our

processes consist solely of 1/O operations, we do not assume anything about the relative speed of

24

their execution. This means that after a process exccutes an I/O operation, there could be an
arbitrary finite delay before it is ready to exccute the following one. This delay could for, instance,
correspond to the exccution of a purely sequential piece of code.

The last step now is to derive actual CSP programs from the graphs. A simple way to do this
is to assign a number to each node of the graph and use a variable N to keep track of the location
in the graph. The program is then just one repetitive command where the guards are composed of
a test on the value of NV followed by an I/O operation, and where the bodies arc just an npdating
of N.

Ezample:

For the synchronizer S in the mutual exclusion example, the CSP program is:

[N =1;P%eginy — N:=2
In = 1; Pytbeging — N :=3
v = 2; Pilendy, — N :=
IN =3; Ptendy, — N:

The program repeatedly checks al which location in the graph it is, then wails for the
corresponding inputs and finally updates its location variable.

f'or the process £, the program is:

«[N=1; Slbeginy — N:=2
IN =2; Stendy, —» N:=1

|

and for the process P, the program is:

] N =1, Slbegina — N:=2
IN=2; Stendy, — N:=1]

In thesc programs a purcly sequential picce of code can be inserted immediately after the
updating of the location variable N.]

I'rom the way the processes were oblained, it is clear that any concurrent execution of the
systemn ol processes (more precisely the sequence of 1/O operations performed during the excention)
will correspond to a path through the global graph. Thus in the case where we have unwound the
graph, the synthesized processes satisly the specifications. Tlowever, we still have to prove that
it the global graph satisfies the dynamic satisfiability criterion, then any fair exeeution of the
extracted program will satisfy all eventualities. RRecall that in a fair execution every 1/0 operation
that is infinitely often possible (both sender and receiver are ready to perform it) will eventually
be exccuted.

25

Proposition 9.1: If the model graph satisfies the dynamie satisfiability criterion, then every fair

execution of the extracted programs satislies the specifications.

Proof: In view of the preceeding remarks, it is suflicient to show that all eventualities are satisfied.
Let us assume that there is some eventuality formula (© f) that is not satisfied for some fair
computalion. We will show that some operation that realizes the eventuality (satislies f) is infinitely
often possible during that computation. [enee, due to our fairness assumption that operation
will be executed, and we have a couneradiction. Actually, all we need to show is that for such a
computalion, some operation satisfying the eventuality will be possible in a finite numnber of steps.
Indeed, the same argniment ean then induclively be applied to the computation starting after the
point where the operation was possible. And, as we only have a finite number of possible 1/0

operations, one ol those satisfying [will be infinitely often possible.

Let us consider the path throngh the global graph corresponding to our computation. Clearly,
no operiion psatisfying f appears on that path. Thus cither condition (2a) or (2h) of the dynamie

satisfiability criterion is satisficd on every maximal acyclic part of the path.

(1) I condition {2a) 15 salislicd somewhere on the path we have a node on the path
that has an outpgoing edge labeled by an operation p satisfying f. Thus, at that
point the synchronizer S is ready to perform p. As the operation on the path is !
in the same process I as p, that process must also be ready Lo perform p. Thus

p is possible,

(2) 1f condition (2a) is never satisfied, then (2b) has to be satisfied on every maximum
acyclic part of the path. Thus some operation p will repeatedly appear as an
allernative branch on the path. As no operation in the process I’ conlaining
p appears on the path, when I becomes ready to execute p it will remain in
that state. Then, when the synchronizer reaches the next node where p is an

alternative, p will be possible. @

12. Conclusions and Comparison with Other Work
We have shown how the “synehronization part” of processes could be specified and synthesized.
The main techniques we have used are:

(1) abstracting concurrent computations to sequences of “events” (in our case 1/0

operations)
(2) deseribing these sequences using Proposilional Temporal Logic
(3) using the tableau decision proeedure for PTLL to synthesize the processes.

Clearly there are some limitations to our approach. The most fundamental one is that the

synthesized processes are intrinsically finite state. However, this dees not exelude practieal unse

of the method sinee many synchronization problems have finite stale solutions. Gelling rid of

26

this limitation would most likely climinate the decidability property of our specification language.
We would then no longer be able to guarantee a correct solution to the problem whenever the
specifications are satisfiable.

The PTL we have used in this paper, though it has been called ezpressively complete since it
is as expressive as the first order theory of lincar order {GPSS80] cannot deseribe all {inite-state
behaviors. However, an extension to PTL that would allow the deseription of all such behaviors has
been recently developed [Wo81). Incorparating it in our specification language would let us deseribe
a wider class of synchronization problems. We also plan to apply the techniques we developed here
to the synthesis of network protocols and sequential digital circuits.

Among related work, we should first mention that Clarke and Iimerson [CES81] have been
independently investigating the use of similar model building techniques for synchronization code
synthesis. Their approach is, however, based on a branching time temporal logic and is oriented

towards the synthesis of shared memory programs.

Earlier work on the synthesis of synchronization code includes that of Grifliths [Gr75]) and
Habermann [Ha75). Grifliths' specification language is rather low-level in the sense that it is
procedural in nature. In Iabermann’s “path expressions”, the specification language is regular
expressions. This has the disadvantage of requiring a global description instead of a collection
of independent requirements, as in PTL. Also, regular expressions cannol describe eventualities

explicitly and in [Ha75] no attention is given Lo the problems of deadlock and starvation.

Among later work on the subject one finds Lthe work of Laventhal [La78], and the one of
Ramamritham and Keller [RK81]. Tlere, the specification : 1guage is quite expresssive. In the
former approach it is based on first-order predicate caleulus with an ordering relation and in the
latter on Temporal Logic. However, in both cases the synthesis method is rather informal and does

not rely on a preeise underlying theory.

Acknowledgements: We wish to thank Yoni Malachi, Joe Weening and Frank Yellin for o careful
reading of a drafll of this paper.

13. References

[BMI’81] M. Ben-Ari, Z. Manna, A. Pnucli, “The Logic of Nexttime”, Kighth ACM Symnposium
on Principles of Programming Languages, Williamsburg, VA, January 1981, pp. 161 176.

[CIE81] 5. M. Clarke, E. A. Emerson, “Synthesis of Synchronization Skeletons from Branching
Time Temporal Logic”, Proceedings of the Workshop on Logics of Programs, Yorktown-Ileights,
NY, Springer-Verlag Lecture Notes in Computer Science, 1981

[GPSS80] D. Gabbay, A. Pnucli, S. Shelah and J. Stavi, “The Temporal Analysis of Fairness”,
Seventh ACM Symposium on Principles of Programming Languages, l.as Vegas, NV, January
1980, pp. 163 173.

27

[Ge7s] P Grifliths, “SYNVER: A System for the Automatic Synthesis and Verification and

Synthesis of Synchronization Processes”, Ph. D, Thesis, Harvard University, June 1975.

[Ma75] AN Habermann, *Path Expressions”, Computer Seience Report, Carnegic-Mellon Univer-
sity, 1975.

[|l078] Co AL R oare, “Communicating Sequential Processes”, Communications of the ACM,
Vol. 21, No 8 (August 1978), pp. 666 677.
{La78] M. Laventhal, “Synthesis of Synchronization Code for Data Abstractions”, Pho D. Thesis,

METE, June 1978.

[MP81] 7. Manna, A, Pnueli, “Verilieation of Concurrent Progreams: the Temporal Framework”,
The Correclness Problem in Computer Science (. S. Boyer and J 8. Moore, eds.), International

{.ecture Series in Computer Science, Academice Press, London, 1981,

[Pn77] AL Paucli, “The Temporal Logic of Prograuns™, Proceedings of the Kighteenth Symposium

on loundations of Computer Science, Providence, RI, Novemher 1977, pp. 16 57,
’r67] A ’rior, PPast, Present and Future, Oxford University [ress, 1967,
[RUTH] N, Rescher, A, Urquart, Temporal Logic, Springer-Verlag, 1971

RN KL Ramamritham, R. M. Keller, “Specifieation and Syuthesis ol Synehronizers”, Procee-

dings International Symposium on Parallel Processing, August 1980, pp. 311 321,
Si6s] R M. Smullyan, First Order Logie, Springer-Verlag, Berlin, 1968.

[Wost] . Waolper, “Temporal Logic Can Be More Fxpressive”, Proccedings of the Twenty-Second

Symposium on Foundations of Computer Science, Nashville, 'I'N, October 1981,

28

