
SYNT HESIS OF COMMUNICATING PROCESSES FROM TEMPORAL LOGICGSPECI F-ETC'U'
SEP &I Z MANNA, P WOLPER NOG0 0147 -C-06 7

UNCLASSIFIED STANCS -8172 N!U EEihEhE

1111IL15I2

Sept ember 1"8I Repoirt. No. S'IAN-C.S-81-872

LEVEL

Synthesis of Communicating Processes
f rom Temporal Logic Specifications

by

Zohar Manna

Pierre Wolper

For
f"TIsG?& -

TNC TAI j

Research sponsored by Ofld L

Office of Naval Research
F)TICNational Science Foundation

S~L crEAir Force Office of Scientific Research t

Department of Computer Science

L~ OStanford University
Stanford, CA 94305

DJ NST T~ 8112 112(

SYNTI ESIS OF COMM UNICATI NG C IOCHSSES FROM

TEMPORAL LOG(IC SI'lECIF lIIONS

Zohar Manna Pierre Wolper

Coinipu ter Science D~epartmnent Conmputer Science D~epartmnent
Stnford University Stanford University
Stanford, CA Stanford, CA
and
Applied Maitheinatici D~epartmecnt
The W'eizmnann lnstsk-
Ueliovot', Israel

Abstract: In this paper, we apply Propositional Temiporal Logic (1l" L) to the specification and
synthesis of the synchronization part of comminu nicati ng processes. To specify a process, we give a
l'TJ formiula that describes its sequence of cominunications. Tlhe synthesis is dofle by constructing
a miodel of the given specifications using a talvlati-like satisliability algorithmn for i-TL. This model
canl then be interpreted as a p)rograrn.-

1. Introduction

N'host concurrent programns can easily be sep~aratedl into two parts: a synchronization part that
enforces, the necessary constraints on the relative titniim.g of the execution of the different processes
and a functional part that actually mnanipulatevs the data and performs the computation required

of the programn. For examnple, the part of a concurrent programn that ensures mnutual exclusion

between sections or code is in the "Sy nchronizationi part" of' that. programn whereas the code that

is mmade mnutually exclusive is in the "Functional part".

The synchronization part of a concurrent programn is rarely (feel), but it is nevertheless

frequently complicated. Tfhat is, writing it requires a lot of attention to intricate details but

(foes not require insight into a variety of uinderlying mathematical theories. These characteristics

mnake the development of tools for specifying and automatically synthesizing synch roni zation code

a highly desirable and yet manageable task.

In this paper, we propose to use Propositional Temporal Logic (PTL~) as a specification language
for the synchronization part of CSI 1-like programs and we present a correspon~ding synthesis

algorithmn based on the decision procedure for liTL.

Tfhis research was supported in part by the National Science Foundation under grant MCS8O-06930,
by the Office of Naval Research under Contract N00014-76-C-0687, by the UInited States Air Force
Office of Scientific Research under Grant AFSOR-81-0014 and by an IBM Predoctoral Fellowship.

This report appears in Proceedings of the Workshop on Logics of Programs, Yorktown-[eights,
NY, Springer- Verlag Lecture Notes in Computer Science, 1081

CSP, the language of Communicating Sequential Processes, was developed by I loare [11o78] as

a tool for describing distributed processes. It views distributed processes as interacting exclusively

through well defined inter-process input/output (I/O) operations. This makes it quite easy to

separate the "synchronization part" of a CSP program from its "functional part". Indeed, the
"synchronization part" can be viewed as the program abstracted to its I/O operations. To describe

the synchronization part of a CSP program it is then usually sufficient to give the temporal relations

that have to exist between the execution of specific I/O operations.

Propositional Temporal Logic ([Pr67j, [RU71]) is especially well suited for this task. Indeed,

it is an extension of classical propositional logic geared towards the description or sequences.

Moreover, PTL is decidable and has the finite model property. That is, given a lPTL formula

it is decidabl, if that formula is satisfiable, and ir it is satisfiable, it has a finite model. This will be

the basis of our synthesis method. Indeed, given specifications in I'I'L, we will use a tableau-like

Inethod ([Snf68i, [IIMI'81]) to test for satisfiability and construct a model of the specifying formula.

We then extract from that model the synchronization part of a CSP-like program.

2. The CSP Framework

The rraunfcwork in which we specify and synthesize synchronization problems is that of Iloare's

language of' Communicating Sequential Processes (CSIP) [11o781. A program in that language is a

collection of (possibly nondeterministic) sequential processes each of which can include inter-process

I/O operations. These I/O operations are the only interaction between the processes. Syntactically,

an inter-process i/0 operation names the source (input) or destination (output) process and gives

the information to be transmitted. In Iloare's notation, the operation "output s to process P" is

written

P's

an(the operation "input a from process P" is

Ps

Semantically, when a process r'eaches an input (output) operation, it waits for the corresponding

process to reach the matching output (input) operation. At that point, the operation is performed

and both processes resume their execution. There is no queuing or buffering of messages.

We will use CSI with the following modifications:

a) We consider systems of non-terminating processes. Terminating processes can be ac-

comodated if they are considered to end with a dummy I/O operation that is repeated

forever.

b) As we are interested in pure synchronization problems, we will assunimt that the only

information exchanged between processes is a finite set of signals as.

2

c) Wc assume that when several 1/0 operations are possible, the one to be executed is
chosen fairly. More specifically, we assumne that if an 1/0 operation is infinitely often
enabled (both scnder and receiver are ready to perform it) it will eventually be executed.

We will specify systems of processes where one process, the synchronizer S, communicates
with a set of other processes 1"i, t < i <_n

PI

S0

Thus, the only communications taking place are between the synchronizer S and each of the
processes Pi.

To specify Ihe synchronization part of such a system, we will look at the infinite sequence or
1/0 opera tions execunted by each of the processes (S and I's's) that we assume fo be non-terminating.

Example: Consider the following system:

82 84a

where S receives signals sj and S2 from P, and Signals S3 and s4 from P2 . The sequence or i/o
operations exectitedl by S will be some interleaving or th, four operations PI?sI, P1 ?S2 , I'2?83,
P 2 ?8 4. For instance it could be

['I ?R 1 P2?34 P2 ?s3 P1 ?81

Similarly, the sequence of 1/0 operations executed by P, will be some interleaving of M~al, -S!82.

The specifications will, ror each process independently, characterize those 8equences of 1/0
operations that are acceptable. The synthesis algorithm will then generate a program that when
exectitedl generates a sequence or i/o operations satisfying the specification.

3. The Specification Language

As a specification language, we use Propositional Temporal L~ogic (tPTl,). Temporal I~ogic
was initially dleveloped as a1 branch of philosophica logic decaling with thie natuire of time and
or temporal c~oncep'ts (t1'r 671, 1,37 II). Recently it has been adapted to the task of reasoning

3

about the execution sequences of programs and was found especially useful in proving properties
of concurrent programs ([Pn77], IMP81]). Here, we use Temporal Logic in a similar framework;
the specific formal PTL system we use is a variant of the one appearing in [GiSS80j.

Intuitively, PTL is a logic oriented towards reasoning about sequences. It is a classical
propositional logic extended with four temporal operators: 0, 0, 0 and U; the first three are
unary, the last binary. For a sequence and a given state in that sequence,

Of is true iff f is true in the next state in the sequence;

Of is true iff f is true in all future states of that sequence;

0 f is true iT f is true in some ruture state (i.e., it is eventually true); and

ft U f2 is true iff f, is true for all states until the first state where f2 is true.

More formally, PTI, has the following syntax and semantics:

Syntax:

PTL formulas are built from

* A set P of atomic propositions: Pl, P2, Pa, ...

" Boolean connectives: A , -1 .

" Tenmporal operators: 0 ("next"), 0 ("always"), 0 ("eventually"),

U ("until").

The formation rules are:

" An atomic proposition p E P is a formula.

" If fI and f2 are formulas, so are

ft A f2, - Of , ft, , Oft, ft U f2.

We will also use V and :) as the usual abreviations.

Semantics:

A structure for a I-Ti, formula (with set P of atomic propositions) is a triple A - (S, N, x)
where

" S is an enumerable set of states.

" N: (S S) is an accessibility function that for each state gives a unique next
state.

0 it: (S - 2') assigns truth values to the atomic propositions of the language in

each state.

For a structure A and a state a E S we have

4

1k.

(A, s) 1p iff pE (s)

(A, s) = ft Af2 iff (A,s) 0 f, and (A, s) l= f2

(A, s) 1 -,f iff not (A, s) l f

(A, s) O 0 f i T (A, N(s)) I f

In the following definitions, we denote by Ni(s) the th state in the sequence

s, N(s), N(N(s)), N(N(N(s))), ...

of successsors of a state s.

(A, s) l0 Of iff (Vi > 0)((A, N'(s)) f)

(A, s) I= 0 f iff (3i > 0)((A4, N'(s)) 1 f)

(.A, s) = fI U f2 ifT (Vi > 0)((A, N'(s)) I ft) or
(3i > O)((A4, N'(s)) P 12 A

V j(O < j < i D (A, Nj(s)) 1 f,))

An interpretation I = (A, so) for PTL consists of a structure A and an initial state so E S.

We will say that an interpretation I = (A, so) satisfies a formula f iff (A, So) I f. Since an

interpretation I uniquely determines a sequence

a = so, N(so), N 2 (so), N 3 (so), ...

we will often say "the sequence a satisfies a formula" instead of "the interpretation I satisfies a
formula".

Note: The temporal operators we have defined differ from those in [GPSS801 in the following way:

" They are reflexive. That is, a state is included in its own sequence of successors.

" The Until operator does not have an "eventuality component". That is, according to our

definitions, ft U f2 does not imply 0 f2.

Our purpose in using 11T1, is to describe processes by specifying their allowable sequences or
1/O operations. To do this, we consider PTL forimtlas where the atomic propositions stand for I/O

operations. And, to reflect the fact that we are looking at sequences where only one I/O operation

occurs at a time, we systematically add to our specifications for each process the following single

event condition:

0((A -(i pA Pj))) (3.1)

where Pt,..., pn are all the atomic propositions (1/0 operations) appearing in the specifications of
that process. In other words, a state of our temporal logic corresponds to the execution or exactly

5

' IP. . .. l~'I

one I/0 operation (the atomic proposition true in that state) and the "next" state corresponds to

the execution of the next 1/0 operation.

Example:

For a process P that sends signals st and 82 to a process S,

S!s1

specifies that all its sequences of 1/0 operations start with S!sl. And,

O(S!si D O S!s2)

specifies that S!sl is always immediately followed by S!s 2, with rio other 1/O operation being

performed by P in between.

4. Examples of Specifications

Let us first recall that when we give the specifications for a synchronization problem, we

independently give the specifications for each of the processes involved (the synchronizer S and

synchronized processes P1). That means that for each process we give a PTL formula that, in

conjunction with the single event condition (3.1), has to be satisfied by the sequences of I/O

operations executed by that process. Thus, for instance, 0 means "next" in the particular process

we are specifying.

Example 1: Mutual Exclusion

Suppose we have two processes, P, and P2 , that communicate with a synchronizer S. The

signals sent to the synchronizer by 'i (i = 1, 2) are S!begini (begin critical section) and S!cndi (end

critical section). The synchronizer should ensure that processes I, and P are never simultaneously

in their respective critical sections that start with S!bcgini and end with S!endi. What the specifi-

cations for a process Pi should say is that P alternately sends begin, and cndi signals, starting

with a begini. This is expressed by the conjunction of the following formulas:

S!beginj

(the first signal sent is begin critical section)

O(S!begin, J OS!endi)

(after a begin critical section signal, the next signal sent is end critical section)

O(S!cndi D 0 S!begin,)

(after an end critical section signal, the next signal sent is begin critical section).

6

/.

The specifications for the synchronizer are:

O(P, ?begin, J ((P 2?begin) U(P ?end,)))

(after letting P, proceed into its critical section by accepting a beginj signal, do not let P2 enter
its own critical section until P, has finished)

r(lh?begin2 3 ((-/',?begin,) U(P 2?end2)))

(after letting '2 proceed into its critical section by accepting a begin 2 signal, do not let P enter
its own critical section until P has finished).

One would expect that it is also necessary to specify absence of starvation:

0(0 P,?begint V 0 P?endi)

(do not neglect P, indefinitely)

'(0 I ?begin2 V 0 I't?end2)

(do not neglect P2 indefinitely). But as we will see later, in section 6, we do not have to write
these conditions explicitly since they will always be systematically introduced during the synthesis.

I

Example 2: Dining Philosophers

We specify the classical dining philosophers problem for three philosophers. Three philosophers
are sitting at a round table in a Chinese restaurant alternatively thinking and eating. Between
two philosophers there is only one chop stick and a philosopher needs to pick up both the chop
stick at his left and the one at his right before he can eat.

2 1_

3

The problem is to synchronize the eating of the philosophers. We have a process Pi per philosopher
and a synchronizer (or "chop sticks" process) S. Each philosopher I' communicates with the
synchronizer S by four operations:

S!pick, pick up chop stick i

S!pickj()l pick up chop stick i(j) 1

7

/A
Ijk~ - -" " - *1V.

S!putieI put down chop stick i () 1
S!puti put down chop stick i

((designates addition modulo 3; we will also use E) for subtraction modulo 3).

The specifications for each philosopher Pi, i 1 I, 2,3 are:

S!picki

(the first signal sent is pick)

O(S!pick, D0 S!pick1 D 1)

O(S!picki()1 D 0S!putie(i)

-(S!P'ut(D I D OS!putj)

O(S!put, D 0 S!pick,)

Again, these specifications say that each philosopher repeatedly picks up one chop stick, picks tip

the second, puts the second chop stick down and puts the first chop stick down.

The specifications for the synchronizer are

D(I',?picki D(Pe ?pick,) U(P,?put,)))

for i = 1, 2, 3. These essentially say that a chop stick cannot be picked up by two philosophers

simultaneously.

5. Overview of the Synthesis

As described in Section 3,. when we specify a system of processes, we specify each of the
processes involved separately. This makes the specification task much easier. However, to deal

with some properties or the system like absence of deadlock or starvation, we have to look at the
combination or the specifications or all the processes involved. But, as the specifications refer to the

sequence of I/O operations of each process separately, we first have to modify these specifications

so that they refer to the global sequence of 1/O operations, that is the merge of the sequences of

1/0 operations of the individual processes.

Thus, the first step of our synthesis is the relativization procedure that takes the specifications

of each process (the local specifications) and transforins them into specifications for the global

system of processes (the global specifications). After the relativization, we proceed to do the

synthesis with the global specifications of the system of processes.

8

The second step is then to apply a tableau-like satisliability algorithm for PTL to these global

specifications. The tableau decision procedure we use is essentially the one described in 1IMl,81]

restricted to linear time and modified to use our assumption that exactly one atomic proposition
is trite in each state.

The decision procedure can have two possible outcomes: either it declares that the specifi-

cations are unsatisfiable and in that case it means that there is no program that can satisfy the

synchronization problem as specified. Or, it produces a model graph fromn which all possible models

of the specifications can be extracted.

This model graph could alInnst be transformed into the programs we are synthesizing except

ror the Fact that there could be some paths in the graph that never satisfy some eventualities

(properties of the form f). In other words, though all models or the specifications can be

generated from that graph, not all paths generated by the graph are models of the specifications.

Our next step will thus be to unwind the graph to obtain an actual model of the specifications.

Unfortunately, this unwinding usually gives a graph that, though it generates only nodels of the

specifications, generates only one or a Few of the possible models. In programming ternis, this means

that our processes will be restricted to only a ew or the possible execution sequenc's satisfying

the specifications, which clearly is undesirable.

In the special case where the eventualities are "non temporal" (i.e., or the Form 0 f where

f does not contain temporal operators) we are able to avoid unwinding by relying on oiir fai riess

hypothesis on the execution of (Sf' programs. We then synthesize our programus front a model

graph that riot only generates only niodels or the specifications (given the Fairness hypothesis) but

also can generate all possible models.

The final step in the synthesis will be to extract the processes froin the model graph. This is

rather straightforward as the minodel graph itself cain be viewe(d as the synchronizer process and the

other processes can be obtained as restrictions of that graph.

In suimiary, the steps or our synthesis will be

I) relativize the specifications (to obtain the global specifications).

2) apply the satisfiability algorithin (to obtain the model graph).

3) unwind if necessary (to satisfy eventualities).

4) generate the individual processes.

6. Relativisation

Our purpose here is to take the local specifications of the processes and transfori them into

global specifications |or the sequence of I/o operations execurted by the whole systeni or processes.

At first glance it might seem that the global specifications would simply lie the conjunction of the

g

specifications of all the processes involved. However before taking that conjunction there are three

problems that have to be dealt with:

(I) At the global level, the sending and receiving of a given message is a single action. Thus,

we have to make explicit the correspondence between pairs o1 matching I/O operations;

that is, pairs of operations consisting of an output operation that sends a given inessage

(e.g. S!s appearing in 1',) and the corresponding operation that receives that message(e.g.

1 ?s appearing in S).

(2) The local specifications for a process describe its sequence of I/O operations. Put, that

sequence is only a su bsequence of the global sequence of 1/O operations. vie local specifica-

tions have to be modified to reflect this fact. Note: we are reasoning wnder our assumption

that only one 1/0 operation happens at a time (locally and globally).

(3) rh, subse(Iuence of the global sequence corresponding to each process is infinite. This has

to be made explicit in the global specifications.

These considerations lead us to the following three steps of our relativization procedure.

(1) Rename matching 1/) operations to a unique new appellation. For example we would, in

our preceeding examlelc, rename S!bcginj and I/'?bcgin! to begini.

(2) Define inP to be pt V ... V p, where pl, . . . , p, are the I/) operations appearing in IP.
Then, to refelect the fact that the specificatious for i' concern a subsequence of the global

sequence, we transrorm these specifications using the two following rules:

p - (-inli Up) (6.1)

where p is an atomic proposition, and

0 f - i (-inl'. U(inI's A O f)) (6.2)

That is, the right-hand side or (6.1) is substituted for all the atomic propositions in the
specifications of P. and the right-hand side of (6.2) for all occurences or 0. Note: in
our specific framework, all I/O operations occur between the synchronizer S and some

other process I . Thus for the synchronizer inS = truc and its specilications need not be

modified.

(3) For each process /' we add the following infinite subsequence requirement.

o 0(ini') (6.3)

That is, some operation of process Pi has to occur infinitely often in the global sequence.

The global specilications are then the conjunetion of the specilication for the synchronizer,

the specification for the processes 1', modilied using (6.1) and (6.2) and the re(1 iiremnelts (6.3).

10

-. t

The only non-trivial step is step (2). Let us call the local specifications for a process Pi

transformed by using rules (6.1) and (6.2) the modified specifications for 'i. We have the following

result:

Proposition 6.1: A sequenco satisfies the modified specifications for 1i ir and only if its subsequence

consisting or all the 1/0 operations of 1 satisfies the original specifications for P,.

iThe proposition can be easily proved by induction on the structure of the specifications for !g.

Berore we give an example, let us first note that for a formula relative to a process P, that is

of the form

El(pD o q)

(i.e., if p then q in the next state) the relativized version is

E((- in[', U p) D (-inl U(int'g A O(-'inti U q))))

This can be simplified, using ILI, equivalences to

f-(p D O(-uinPj U q))

(i.e., if p then, from the next state on, we are not in 1 until q).

Example: Mutual exclusion problem

Let us recall that the specifications for the mutual exclusion problem are:

For the processes Pi, i = 1,2:

S!begini

O(S!bc gini D 0 S!endi)

O(S!cndi D 0 S!bcgini)

For the synchronizer S:

t3(Vt ?bcgin, D ((-Pl:?begin2,) V(Pt?endt)))

0(1'2?be gin2 :) ((-I's?begin,) U(1'2?cnd2)))

Then, if

inl'1 = begin, V end,

inI'2 begin2 V end2 ,
11

- I.

the global specifications for the rnutual exclusion problem are:

From the specifications of PI:
-,jnlj U begin,

O(begin,) O(-.inl~t U end,))

O(end, D O(-'inPi U begin,))

F'ront the specifications of' P2:
-'in I'2 U begin2

O0buiin2 D O(-inl'. U ('fld2))

O(end2 D O(-'in' 2 U brgin12))

Prom the specifications of' s:
O(begin1 D -begin 2 U end,)

0(1w gin2 D -begin 1 U end2)

Th'le infinite sublseqluenlce requirements:

o 0 in P2

Remark: The relativization procedure can bc viewed as a semantic rule f'or the execution in parallel
of communicating processes. Indeed, if we view the meaning of a comnmunicating process as
its possible sequences of 1/0 operations as dlescribed by a PTIl, formula, then Lte relativization
procedure gives the ineaning of the concurrent execut~ion of Lte processes.

7. The Satisfiability Algorithm

In this section we will describe the tableau method we use to test for satisfiability and construct
a model of the global specifications. We will first b)riefly review the tableau mnethod for propositional
calc ulus, then in dic ate how it canl be ex tended to h1an dle tempIfo ral logic and fi nally give !in detail

Lte exact algorithm we have developed for our specific purpose.

A set of formulas {,.., }is satisfiable if there is an interpretation that simultaneously
satisfies all the formulas in that set. Trhe tableau method for propositional calculus is based on the
following relations between satisfiablility of sets of formulas:

TI: A set of' formulas {A,,. - ., fi, A fji, . . -, f,) is satisfiable if and only if the set of form~ulas

{Ih...,11, 2~. .,,~}is satisfiable

12

-L":

T"2: A set of formulas {f,,..., -'(f,,Af,,),...,f,,} issatisfiable irand only if theset {fi,.., -. ",,

or the set {f,...,-,f,,,..., f,,} is satisfiable

T3: A set or formulas {f,..., -if,. .. f,} is satisfiable ir and only ir the set {ff, . .. , -I,..., f,'

is satisfiable

To test a formula f for satisfiability, one thus starts with the singleton {f} and uses rules

TI T3 to decompose f into sets of its subformulas. If the decomposition is carried on until the

sets contain only atomic formulas (atomic propositions or their negation), satisfiability can easily

be decided. Indeed, a set of atomic formulas is satisfiable if and only if it does not contain a

)roposition and its negation. This procedure actually corresponds to transforming the formula into
disjunctive normal form. An extensive study of tableau methods ror propositional and predicate

calculus appears in [Sin68].

For IrI'L we also have to deal with the temporal operators. This can be done with the following

three i(dntities

Of fAOOf (7.1)

<Of fvo f (7.2)

ftUf 2 = f 2 V(fiAO(fiUf 2)) (7.3)

These identities will enable us to decompose a formula into sets containing atomic formulas

(atoinic propositions and their negation) and IITI, 0-formulas (formulas having 0 as their main

connective). The achievement or such a decomposition is to separate the requirements expressed by

the formula into a requirement on the "current state" (the atomic formulas) and into a requirement

on "tle rest of the sequence" (the 0-formulas). One then checks that the set or formulas concerning

the "current state" is satisfiable and then repeats the whole process with the 0-formulas, after
having removed their outermost 0 operator. In other words, one tests for satisfiability by trying

to build a model state by state. As all the formulas appearing in the process are subformulas of

the initial formula, one will eventually reach a state that has already occurred, thus the process

terminates.

There is, however, at that point one more step to do. The identity (7.2) allows us to satisfy

O f by always postponing it (0 O f). Thus, before declaring a formula satisfiable, we have to

check that all the formulas of the form 0 f (an be effectively satisfied; that is, that there is a

possible future state in which f is true.

let us now describe our algorithm in more detail. The central part of the algorithm is the

decomposition procedure that separates the requirements expressed by a set of formulas S into

requirements on the "current state" and on the "rest of the sequence". In that procedure, we use

our assumption that exactly one atomic proposition is true in each state. That assumption makes

it much more efficient, to check all possible assignments of truth values to the atomic propositions in

the current state (the number of such assignments is the same as the number of atomic propositions

in the language) than to brutally apply the decomposition to a set of formulas including tile

13

/1 1
I.

single event condition (3.1). Indeed, the latter could lead to examining a number of cases that

is exponential in the mumber or atoic propositions, but that would evenlualy be restricted to a

linear number.

To do this, we (ecompose the set of formulas S separately for each atomuuic proposition in the

language. rhat is, for each proposition p, we d,(co||pose the set of rornulas under the assumption

that p is true ani the other atomic propositions false. The deconposition procedure thus takes as

inputs a set of PI l, formulas S and a proposition p. It outputs a set ',P or sets Si or forumlas fj,

i.e. >4p = {Si} where each Sj = {'i.}. Each formula f', E Si either is a 0-rorn la or is "marked",

i.e. it is a formuila that already has been use(I in the (leconposition and is only kept 'or rererence.

Under the assumption that p is true, the original set of formulas S is satisliable ir and only if, for

some i, all the unmarked formulas in S, are satisfiable. In other words, the 0-formulas in each set

.Si give one or the possible requirements on the "rest of the sequence" if p is the proposition true

in the current state.

The decomposition procedure initializes >'p with the set of sets of formulas {S} and then
repeatedly transforms it until all the elements Si of' >P contain only marked fornu|las or 0-formulas.
It is the following:

(I) (Initialize): start with Ep = {S}.

(2) (Expand): repeat steps (3) (5) until for all Si E EP, all the formulas fij E Si are marked

formulas or 0-fornulas.

(3) Pick a formula fij E S E >p that is riot marked and not a 0-ormula.

(,I)(Simplify): In the formula fj, replace all the occurrences of p that are not in the scope of
a temporal operator by true and all similar occurrences of the other atomic propositions

by false. Perform boolean simplification. This yields a formula f,, called "fi simplified

for p".

(5) (a) if f , - truc replace S by S - {fj}. Given that p is true, fij is identically true and

can thus be removed fron S.

(I,) ir fy-- falsc replace >4 by Ep - {S,}. It this case, f' is false and the set Si is

unsatisliable. It can thus be removed.

(c) if f./ is a 0-formula, replace S. by (Si - {f/,}) U {4. As we have obtained a
0-rornula, no more decomlposition is necessary.

(d) ir fq is of type a (see table below), replace 5i by

(S5i - {fo'))U (fsj*,oalp ('2}

where f j,* is fj marked. Since a rormula of type a is satisfiable iff both at and

(2 are satisfiable, we replace fj by al and (W2. We also keep a record of f by

marking it.

14

/1

'S .,- U.

(e) if f , is of type /3 (see table below), replace S by the two following sets:

(S. - {f,}) U {f,*,/I3}, (S, - {f.j)) U {f'*,/P2}

where f ,* is f , marked. Since a formula of type p3 is satisfiable iff either /01 or

032 are satisfiable, we replace S, by two sets: one containing 13, and one containing

/32.

"Flit fornulas of type a and B3 are given in the following two tables. Notice the correspondence

between the entries in the tables concerning temporal operators and lhe identities (7.1) (7.3).

a t 1 0 2

fj A f2 fI f2

hf fi

___0/ _____ 0 '!, 0 -ft_

0fh f 001/

2)l U 'f2 f V O -'(fl U f
-0 ft -Ift 0 " Ofi

13 131 /32

-"(fi A 12) 'ft -f2

_ ft fh _O__ ft 0 ft

(ft U f2) f2 fI A O(f, U f2)

-'of, -t 0-1 __ h _

Example: Let us apply the decomposition procedure for q to the set orrormulas

S = (O(q : -(p U r)}

)q first gets initialized to

= {{(q D (-pUr))}}

At that point, the only rormnula we can choose in step (3) is O(q D (-,p U r)). As all ifs atomic

propositions occur within the scope or a temporal opeartor (0), step (4) does not modify it. Step

(5d) splits O(q i (-,p U r)) into q : (-p U r) and 0 O(q D (-'p U r)), therefore, we get

{(q D (-pUr), 0 O(q D (-,p Ur)), O(q , (-,pU r))*)}.

15

_ _ _

Step (3) then chooses q D (-'p U r) which is simplified by step (4), after replacing q by true, to

(-'p U r). This is a formula of type /3, we thus split the set that contains it into t.wv sets: one

containing r and the other containing -'pA O(-p U r).

r ({r, (-p U r)-, 0 O(q D (-p U r)), CoG, D (-p U r))*}

{-p A O(-p U r), (-p U r)*, 0 E](q : (-'p U r)), O(q D (-pUr))}.

Then, as r simplified for q is false, by (5b) the first set is removed and we get

, {{-p A O(-p U r), (-p U r)*, 0 l(q D (-p U r)), O(q D (-'p U r))}}.

And, finally, as -'p A O(- p U r) simplified for q is O(-p U r) (p is replaced by f aui.), we get by

(5c)

q'{{O(-p U r) (-p U r)*, 0 OI(q :) (-p U r)), O(q D (-p !Jr)

We (an now proceed to describe the 8atisfiability algorithm. This algorithm 1uses the decom-

position procedtire to build a model graph that is a search ror all poterntial models of th,, formiula.

From that graph, we will be able to decide satisliability and to constriet a model. Kach node

and edge it the graph is lahCle(with a set of rormillas. Thi, sets oJ) Jormilas la)e'lirig an edge

always Contain exactly one of the atomi propositions of the language. The edges of' the graph will

correspond to the "states" of the interpretation of PT,.

The graph is construicted as follows:

(I) Start with a graph containing just one node labeled by a set S containing the fornitulas fj

to be tested (the initial formulas),i.e. S - {f}.

(2) Repeatedly apply step (3) to the nodes of the graph intil it has been applied to all nodes.

(3) For every atotic proposition p in the language:

(a) Apply the decomposition proced(ire for p to the set S of fortntilas labeling the

current node.

(b) For each set 5, in the set >p generated by the decomposition proeed(ire, create

an edge labeled by {p} u S, leading to a node labeled by the set of all formiulas

f such that 0 f E 5, or to a node that can be letermined to be labelhd by at

e(ltiivalent set or formulas. If there is no such node, create one.

Example 1: For the formula

fo =O(q (-p U)),

the graph is:

16

{A
OI~q (-)*

O(qD:)(-p U))., {(1qD (-p Ur))) 0D (q D (pU r)),

o O(q D (-,p U r))

{ O (q :) (- p U r))*, D(p :D (- p U)) ,
0[(q D.. (pU0o (q D (p U)I(-p U r)*,(- U +
O(-ipUr)

D(q :) (-pi U r))*,,

Thus we create an edge labeled by

{q, O(-pUr), (-pUr)*, OI(qD (-pUr)), O(q: (-pUr))*}.

Since this set contains two 0-form,,las (O(-'p U r) and 0 O(q D (-'p U r))), the edge leads to a
node labeled by

{(-p U r), O(q D (-p U T))}.

The other edges are constructied similarly. I

Example 2: Mutual exclusion jIroblem.

Let us recall that the global specifications ror the mutual exclusion probleni are:

-1il'lj U bcgin, (7.4)

O(bcgi,,, i 0(-ini', U end,)) (7.5)

O(endt D Q ni'P, U begin,)) (7.6)

-,inP2 U begin2 (7.7)

O(bcgin2 D O(-,inl'2 U end2)) (7.8)

17

J(end2 D 0(-in.f U begin2)) (7.9)

'(begin, 1 -',begin2 U end,) (7.10)

O(bcgin2 :) -,begin, U end2) (7. t 1)

o 0 in/,[(7.12)

o 0 in1-12 (7.13)

The graph the satisfiability algorithm yields for these specifications is then:

begin , begin2,
(7.4)*,,. .., (7.13)*, (7.4)},,. .., (7.13)*

(-b(bgin12 U end,)*, (-'begin1 U cnd2)*,
0 inlP, *, 0 in2* 0 OinlPt*, 0 inlP2,

0(7.5),.... 0(7.13), 0(7.4),..., 0(7.6), 0(7.8),..., 0(7.13),
O(- in', UI end,), 0(-,in l2 U end2),

O(-bcgin2 U end,), 0(-,bcgin1 U end2),

0 0 inP 2 0 int

(7. , . .. , (713),(7.4),..., (7.6), (7.8),..., (7.13,
J(-inj U end-, (-,in,2 U nd2),

1(-jb,in2 U end,), 3 ()be gin, U end 2),
0O inl12 ,0 inPI

fend, cnd2,
1(7.5), . , (7.13), (7.4),..., {7.6)*, (7.8)*,..., {7.13)*,

COinl'*, Oinl'2, Oinl',*, C'in' 2*,

(-,in[', U end,)*, (-in,.'2 U cnd,2)*,

(--b, gin2 U end,),, (-bcgin, U end2),

0(7.4),..., 0(7.13), 0(7.4),. ..,0(7.13),

0 0 in0'2

Note that the end, edge from n2 is supposed to lead to a iode labeled by

{(7.4),...,(7.13), 0 inP2).

18

Hu t, as (7.13) is 0 0 in12 and as 0 0 p 0 p A 0 p, this set is equivalent to

~{(7.4),..., (7.13)}

and the edge can lead to nj. Similarly, the end2 edge from n3 also leads to ni. I

It is straightforward to give an tipper bound on the size of the graph. The number of nodes

in the graph is at most 2 4c+2 where c is the number of temporal operators in the formula to be

tested. Indeed, given the a and 0 rules, the formulas appearing in a node are either the initial
formula, a subformula of the initial formula with a temporal operator as its main connective (there

are exactly c such formulas), a stbformula of the initial formula :,ppearing in the immediate scope

of a 0 operator (there are at most e such formulas) or the negation of any of the above. There

are clearly at most 4c + 2 such formulas and as each node is characterized by a subset of these

formulas, a bound on the number of distinct nodes is 2 4,+2 .

The last step of satisfiability algorithm is to check that all the nodes are satisfiable and that

all eventualities can effectively be realized. For this, we apply the following nodes and edges

elimination procedure:

Repeatedly apply the following two rules until no longer possible.

(1) If a node has no edge leaving it, eliminate that node and all edges leading to it.

(2) If an edge contains an eventuality formula, that is a formula of the form

f fl, -' 0-fl or -,(-fi Uf 2)

then, delete that edge if there is no path from that edge leading to an edge

containing {p, f') } for some atomic proposition p in the language, where f' is f,

simplified for p.

Note: In the preceeding examples, no elimination is necessary.

We have the following result:

Proposition 7.1: The initial formula, in conjunction with the single event condition (3.1), is

satisliable if and only if the result of the elimination process is not the empty graph.

We will not give here a proof of this result as such a proof would follow very closely the one

presented in [IIMI'811 for a branching time II'l, and in [Wo8l) for an extension to I'TI,.

8. Eventualities and Unwinding

If the specifications are satisfiable, the decision procedure described in the previous section

has provided us with a non-empty graph. This graph describes the models of the specifications in

the sense that every sequence that is a model is a path in the graph and that every finite path

19

•".. I,_ __. . . ._ _. 1

olbtaitied fromi the graph is the prefix of sonic mnodel. This latter property simply follows front

the raict that the dlecision procedlure ensuires that the sets of' rorniulas associatedl with each edge or

node of' the graph are indeed satisliable. Unfortunately, it is not always the case that all infinite

paths obtainmable f'ront the graph satisfy the speci licaLions. Indeed, somne of' these paths could leave

soine eventuality lornula uinsatisfied. IHowever, it is always p)ossible to inodliry the grap)h so that

every infinite path satisfies the specifications.

Trhe construction basically proceeds by unwinding the graph uip to states where the eventualities

are act~ually realized. The new graph is finite ind canl be used to generate the programi we are

trying to synthiesize. This unwinding has the disadvantage that it forces the processes to execuite

one speciPic Path amtong all those that satisfy the specifications; clearly, th is can lead to uinidesirable

iniefficiencies.

Example: If the specifications are

00a A 00b,(.)

the unwinding algorithmn could, for instance, gi ', the s-e iuence a, b, a, b, a, b, .. as a niodel. In

other words it woulhd require that, in order to satisfy NA.) WV al1ternatively execute a and b. Thmis is

correct but coulil be unnacceptable in a si tuati(!~ whwi, a can be repeated substantially raster than

b. I

In the next section, we will see that tin der somne conuditions, the unwinding can be avoided. In

thet inean titne, let us examnine the unnwi ndinrg proceduinre we Ilse.

Gi vein a graph G = (N, E) with nodes N and edlges E~, prodluced by the satisfiabili ty algoritliti,

we build a new graph G' = (N', E") as follows.

(1) Initially G' consists of a set N' = N of nodes. We will call N' the initial nodes.

(2) F~or each node n' C Nl (10 the following:

(a) Select an1 edlge c E K leaving the node n E N corresponding to n'o.

(b) Build a path startinrg with c'0 = c suich that all e'venLtuali ties in co are satishied on

that, paith. Givenl tilt fnct that in the decision procedu re we have elimiinated all

edges containing eventualities that could not be satisfied, we are guaranteed that

such a path always exists.

(c) I 'A ("f be the last edge in the path built inr (b). If' the correspondinrg edge cf E

leads to a node n E N then connect c' to the corresponding n' E N'.

The result (if the construction is a structure that. satisfies the specifications.

Example:

For the ntutal exclusion problemn we specified earlier, the graph G we obt ained fromt the
decision procrlmnre is of the rorm:

20

{begin 1, {begin 2,

0 inP, 0 inPI,

0 inP 2} 0 inP 2}

{end,, {end 2,
0> inl~r, 0 inPt,

0 inP 2} 0 inPr2}

For the sake or simplicity we have only annoted the edges with atomic propositions and
eventuality properties. if we apply the unwinding algorithm to this graph, we get the following
graph G' where N' = {n'1 , n , n'}:

'inp12 ' inP

end, begin2 begin,

C> in
132

To build the path starting from n', we select the begin, edge leaving n, in (. This edge

cont-ains two eventualities4: 0 inl'I and inP2. A path that satisfies both these eventualities is
\belal ..,endt,- -' be 'n2

(.'n -gn 2 - nl - -

as begin, satisfies 0 inl'j and begin 2 satisfies 0 inP. We thus incorparate this path into G' and
connect its last edge to n'. I

9. Dynamic Satisfiability

As we pointed out in the last section, unwinding can lead to very inefficient programs. What we

would really like is to be able to avoid the unwinding and decide dynamically, during the execution,
which path through the graph we are going to take, but still do this in a way that satisfies the

eventualities.

This is possible when the rollowing three conditions are satisfied.

21

(1) the CSlV program generated is executed] f'airly; that is, ii' a commrunrication is infinitely

often possible it is eventually executed.

(2) all eventualities are non-temiporal, i.e. in all eventuality formulas

0 fl, - CO-ft or -(fUf2

lab~eling edlges, fA does not contain any temporal op~erators.

(3) The graph satisfies the f'ollowiiig dynarnic satisfiability criterion.

Dynamic Satisfiability Criteri .on:

Let urs (lenote b~y Ili~ the set ofr atoinic propositions corresponding to the 1/0 operations
perf'ormned b~etween thre scheduler S and a process I's. A iirodel graph is said to sati.f'y the dynamic
sat isfiability criterion if' for each edge containing an eventuality lorinula or' the f'ormn

0 fl, - CO-fl or -'(-f U f2)

(where f, is non- terporal) all niaxi murni acyclic paths starting f'rorn that edge ei ther

(1) contain ain edgev labeled by a proposition p that -,aL!dies fA

or

(2) contain a node that has an outgoinrg edge labeled by a proposition P E Hif satisf'yinrg

fr , provided that either

(a) the edge leaving that node and] included in the path is labeled by air toinic
proposition q E I li, i.e. an atomnic p~roposition representinrg an I/0) operation
fperlorine(by the samce process i' as the one! perf'ormiing p

or

(b) No atomnic proposition q labeling an edge or that path or any other niaxinrurn

acyclic path on which f, has to be satisfied andl conditions (1) or (2a) do vot hrold

is in Ili.

Essentiafly, the criterion checks that on all Infinite pat~hs, either the eventuality is realizedI or it
is infinitely often "possible" and thus will be realized d Ire to tire f'ai rness assum nption. Tlhiat mevans

that any "f'ai r" path in the graph is a 11odel of' the Specifications arid(, as we will see, will be a
potential execution sequence or' tire synthesized prograins. Tire IpreCise justification of' the criterion
involves the way we obtain the individual processes and the assummptions we make about their
execution. We will discuss these issues in the next section and thus postpone our p~roof' or the
criterion until then.

Note: In the inutual exclusion example the three conditions are satisfied. We theitref'ore (do not need
to unfwind(tihat. graph.

22

10. Generating the processes

The processe we generate will look very much like the model graphs we have been dealing with
in the preceeding sections if one takes such a graph and eliminates all the labeling except for
the 1/0 operations labeling edges, the result can be interpreted as a CSP-like program. Indeed,
executing such a program is traversing the graph while performing the 1/0 operations on the edges.
A node with several outgoing edges is viewed as a guarded command that has as guards the I/)
operations appearing on those edges. Thus, according to the definition or CSi', when such a node
is reached, one of the operations that is enabled (i.e., such that the matching process is also ready
to execute it) is chosen and the corresponding edge is followed.

The easiest process to obtain is the one for the synchronizer S. As we explained in section
2, all 1/O operations are between the synchronizer and some other process Pi. This implies that
the model graph we have obtained from the global specifications can be taken as the program for
the synchronizer. The only (trivial) transfornation that needs to be done is to rename the I/0
operations back to their local name (e.g., bcgin1 becomes P,?bcgini).

Each of the other processes will be obtained by restricting the nodel graph to the I/0
operations of that process.

For a model graph G = (N, E) and a process ! , we thus build a restricted graph (. = (IV, I,,i).
Each node of Gi (ni E N,) corresponds to sets or nodes of the graph G. For a node n,, we denote its
corresponding set or nodes of G as R,, C N. If the I/O operations or Pi, are Ili = {pi, ... ,
the construction proceeds as follows:

(I) Initially, Gi contains one node; this node corresponds to an initial node or G and all nodes

accessible from that node in G through a path containing no edge labeled by a proposition

pE Hi.

(2) Repeat step (3) until it has been applied to all nodes in Gi.

(3) Select an unprocessed node ni E Ni. For all propositions p E Ili create an edge rromn n1 to
node n E N, such that the set, V,,, is the set of all nodes accessible in G from any node

in J,.. through a path containing exactly one occurrence or p and no occurrence of any
other member or Ili (we call such a path a p-path). A new node n, is created only when
Gj does not already contain a node characterized by the set A,,,. If N,, no edge is
added.

We then just have to rename the I/O operations back to their local name to obtain the process

Pi.

Exampe:

For the mutual exclusion problem specified in section 4, the program for S is:

23

Y~. WI

P,?end, P, ?begin I 1'?bcgin2 /2c

for the processes P, we have

{ ni, n3 }

S'begin, S!e di

and for the process P2

I'n, n2 1}

S!be gin2 S!cnd2

Q ({fl

To obtain the graph for PI , we start with the set of niodes in the model graph accessible from
nj by a path not labeled by any operation of process I). This set is {nti, n3} .Ihe only node

acesib~le front either n, or nl3 through a bcyin -path is 712llu w aeapahlbld ybgn

leadIing to a node labeled by {n 2 }. There are no nodes accessible fromn either n1 or nl3 through ant

end, -path, thus no edge labeled by end, will leave the node {n 1, TO} of the graph for process Pl.
The edges leaving {n 2 } are constructed similarly.

We view the execution or such a system of processes as it is (leine1 in CSTP. That is, the

processes have to execute matching 1/0 operations sinmultaneouisly. Note that even though our

processes consist solely of i/o operations, we (to not assume anything about the relative speed of

24

their execution. ['his means that after a process executes an 1/O operation, there could be an

arbitrary finite delay before it is ready to execute the following one. This delay could for, instance,

correspond to the execution of a purely sequential piece of code.

The last step now is to derive actual CSP programs from the graphs. A simple way to do this

is to assign a nurimber to each node of the graph and use a variable N to keep track of" the location

in the graph. The program is then just one repetitive command where the guards are composed of
a test on the value or N followed by an 1/O operation, and where the bodies are just art updating

of N.

Example:

For the synchronizer S in the mutual exclusion example, the CSP progran is:

N= l;Pt?begin - N := 2

ON = 1; P.?begin2 -- N := 3

ON= 2; P?end -* N :=I
9]N = 3; P2?end 2 N :=I

The program repeatedly checks at which location in the graph it is, then wails for the
corresponding inputs and finally updates its location variable.

* For the process P,, the program is:

N = 1; S!begint - N: 2

ON = 2; S!endl N: I

and for the process P2 , the program is:

*4 N = l, S!begin 2 N :2

N == 2; S!end2 -- N :.l)

In these programs a purely sequential piece or code can be inserted immediately after the

updating of the location variable N. I

"rom the way the processes were obtained, it is clear that any concurrent execution of tie

system of processes (more precisely the sequence of I/O operations perforiied during the excution)

will correspond to a path through the global graph. Thus in the case where we have iinwoiund the
graph, the synthesized processes satisfy the specifications. However, we still have to prove that
if the global graph satisfies the dynamic satisfiability criterion, then any fair exectlion of the
extracted program will satisfy all eventualities. Recall that in a fair execution every I/O operation

that is infinitely often possible (both sender and receiver are ready to perform it) will eventually
be executed.

25

Proposition 9.1: 11' the miodel graph Satisfivs the dlynanlic satisiLfii y cri terion, then every 1'.air

eXecuitiol of' the(extractd prograins satislies the(spweifications.

Proof: In view of' Ihe p~rcee(ling remnarks, it. is suifli(-erit t~o show that all eventualities are satisfiedi.

Let uis assinie that. there is soine eventuality l'orintila (O f) that, is not satisfiedl lor soirie f'air

comnpu~ttalioii. We will show that somneoperation that relzsteeetaiy(satisfiesf) is infinlitely

often p)ossile during that comfil)uitatio n. H ence, dute to ouir fa-irness assutin ion that operation

will be eXeculted, ani we have a colitralliction. Actuially, all we nied L~o show is that f'or sulch a

(oinj)titation, soi1(1 operation satisf'ying the evenit uafity will be p)ossible iii a fiinite ourfriber of* stefI)s.

Ind(eedj, th to'.ame :irgimrr't can) then 111(1uctively be apph e(l to the corrrjittatiori starting after the(

p)oint. vdhere the operation was p~ossible. And, as we only have a finite niuiier of' possible I/0
of)(ratioiis, one oft those sat'isfying f will be infinitely oftemi f)ossile.

let, us consider t he path~ throujgh t he global graph c-orresp~otiding to ouir comp~tation. Clearly,

no operat on p satis'ying f appewars on that p)ath. Thuis either conlfition (2ai) or (2b)) ot' the ly narnic

sat lsfiaLfility c-rit eriori is satisfiedl on every iaxiina atcyclic part, of' the(path.

I1) 1f' voodlit io (2a) is satislivo' soinviwfiere on the path we have a iiode on thiept

that, has ai out going edlge labeledI by ant operation 1) sat islyinrg f. Tflitts, at that

fIoiiit thei(sync(hronizer S is readly t~o pevrformn p. As thie operation ont tie(p~ath is

ini the samet p)roce(ss 1), as p, that process iiust. also he readiy to pcrl'orrii p. rhuis

1) is Ipossifble.

(2) It' condlition (2a) is never satisfied, t hen (21)) has to he satisfiedl onl every iiiaxilituiln

a:'yclic p)art of' the pa.tti. Thuis sorn ofieratioli 1 will repeatedly appear :is ait

alternative branch on the(path. As no opieration iii the' proce(ss P', conitai ning

p) :af)1ars on the p)ath, when P~ becoiries rearly to execte~ p it. will reiniain in

fiat state. Then, when the syri('lroiiizer reaches the(next. noi(ile where p is an

alternative, p will be l)ossihbl(. I

12. Conclusions and Comparison with Other Work

We have shown hlow t i(' "synch roniz~ation part." of1)n~o('essesc ('0(b~e sp~ecified and1(syntit hsi zed.

The mnaini tec I niiqties we have uisedl are-:

(I) abstracting conmctirrent, coinpim ations to se(Iuences of' "evenits" (Iin ouir c'ase 1/0

operations)

(2) diescribimig these sequences uising Prop~ositional Temnporal Logic

(3) uising the tableau dlecision proceduire ror PTL, to synthesize the processes.

Clearly there are somne lirnitations to ouir apliroach. 'I'he miost Nf'1I~afll('tal one(, is that, thc
synthevsizedl processes are int~rinsically finmite state. 1 iowevet', this doe(s riof, ecX(hIi practical lisc

or the mnethodl si nce(nany synchronization problemns harve finite state soluitions. Cettinmg ridl or

26

this li mitation would mnost likely eliminate the decidabili iy property of ou r specificattioin language.
We would then no longer be able to guarantee a correct solution to the problemi whenever thc

specifications are satisfiable.

The PTL we have used iii this paper, though it has bcern called expressi'vely complete since it
is as expressive as the first ordler theory of linecar order [G.I'SS80J cannot dlescrib~e all iite-state
behaviors. However, an extension to PTL that would allow the description of all such behiaviors has
been recently developedI [Wo8l I . Incorporating it in our specification language would let us (descri bc
a widier class of synchronization probleiis. We also plan to apply the techniques we developed here
to the synthesis of network protocols and sequential digital circuits.

Amiong related work, we should first mention that Clarke arid Emierson 10l181] have beefl
independently investigating the use of siniilar mnodel buildinrg tech niques for synchronization code
synthesis. Th'leir approach is, however, based on a branichiung tme temporal logic and is oriented
towards the synthesis of shared] tnemory programs.

Earlier work on the syiithresis of synchronization code inclutdes that ohr Griffiths v[r751 and
I laherruan n [11L75]. G riffiths' speci ficationr language is rat her low- level inr the sense that it is
proceduiiral in naturre. In I laberrrrannr's "path expressions", the specifIic(ation r language is regi tar
expressions. This has the disadvantage of requiring a global description inrsteadi of' a collect ion

of inudependenit requi remnents, as iii PTI. Also, regular ex pressionis rantnot (lescribhe even iwihities

expIlicitly arid in [H a75] no attention is given to the problems of dead lock an(] starvation.

A rrong later work on the subject one hirids the work orif I venthaI [I ~a78J , arid flie, one of
Harrianirit barn and Keller [IZI(8 lJ. hlere, the specification : gii;ge is utiiite ('xlresssi~v. Inl t hae
formner approach it is based on irst-order predicate calc ul us with air oroluri iig relatin iamnd inr thre
latter on Temporal Logic. IHowever, in both cases the syni hesis mrethodI is rat her irrfori:a .arid doe,
riot rely on a prcise~ underlying theory.

Acknowledgemnents: Wve wish to than k Yon i Malach i, Joe Weerinrg arid I ran k Yel lini Ior :i ca retil

readinig of a draft of this paper.

13. References

[(INMP81J M. lHen-Ari, ZI. Manna, A. l'nueli, "Tire Logic of Nexttiine", Eighth ACM Symposium
on Principles of Programming Languages, Williamrsburg, VA, Jlaniuary 1981, pp. 161 176.

[CES I]I E. M. Clarke, E. A. Einerson, "Synthesis of Synrch ronizatiorn Skelelons frorir Branichinrg

rinie Temporal Logic", Proceedings of the Workshop on Logics of Programs, York t.owni- I leiglils,
* NY, Springer- Verlag Lecture Notes in Computer Science, 1981

[Gl)SS801 1). Gabbay, A. l'nuieli, S. Shelah and J1. Stavi, "T'he Tlemporal Analysis of Fairness",
* Seventh ACM Symposium on Principles of Programming hanguages, Las Vegas, NV, .January

1980, pp. 1631 173.

27

[r751 1'. (rillitlis, "SYiN VHR: A System (cbr thel(Al ()it~c Spithesis midi Verilication and1(

Sp ilIlics.is of*Synch11roiiization I~r0V('s5Ce', Vh. 1). TIhesis, I larvard I Jiversily, .1 lin 1975.

111 1a75) A. N. I laberminan, "P'ath Expressioiis"', C omiputer Science Reporl, (Carmnegil'-MlIlon U Iniver-

siy, 1975.

[I Io7Sj C . A. It. Hobare, "Cominillicat ilg Seyienlil I Irocv."vs , Comm unizcations of the A CM,

Vol. 21, No 8 (Allgliisl 1978), pp. 666 677.

ILa7Xj M. La~vI'tllal, "Synithesis ol' Synichroniizationi Co.del' r IDaIa Abstractionis"', I'li. 1). lThesis,

N1I'I, Jine I 978.

IN I I'S I' I.. Manna, A. I'lilleli, "Verilication of' Concurirent I 'ropramil: t liehTemporail I'rariieork',

Thie C'orrctness~ 1roblem in Compute r Science (H . S. R oyer and~ .1 S. M~roore, eIs.), Ifitiernational

Leclulre Series in C'omputner Sceelce, Academnic l'ress, foiidoi, 1981.

I'ti 771 A. I 'n ieu, "'1114 Temp joml L ogic 01' I 'rogralls", Proceediings of the !Eightcenth Symposium

on loundations of Computer .5cirnre, I 'rovideitee. I? , Noveritlwr 1 977, pp. Ili 57.

'r'167 A. I'rior. Past, Present and Future, 0xi'ord U i~versity I ress, I 967.

I ('7 if N. 16e r, A. I rqiart, Temporal Logic, S prinIger-V\'rl:lg, 1971

I? S1 K.l~mmriham R.M. ellr, Speiliatin ad Siitc ,s ol' Sy Il-rolli/.rs", Proce-

din gs In terntionael Symiposium onl I'aralt 1 'rorcssiti, : IlgilSI 19SO, 1)) 311I 321.

S ijR . M. Smnll'alt, First Order Logic, Sprt oger-V\lrag, I virlin , 1968

Wod)f 1'. Wol Jllr, "Temliporal L ogic C an 13ve More IN 1)resi ye". l'roiccedin gs of the Twcnty -Second

Symposium on F01171 Ldt ions of Computer Scienc, Nashville, TI'N, O)ctober 1981.

28

DATE

FILME.D

