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Large time-step shock-capturing techniques
for scalar conservation laws
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Abstract. For a scalar conservation law f -u= with f" or constant sign, the first order
upwind difference scheme is a special case or Godunov's method. The method is equivalent to
solving a sequence of Riemann problems at each step and averaging the resulting solution over each

cell in order to obtain the numerical solution at the next time level. The difference scheme is stable
(and the solutions to the associated sequence of Riemann problems do not interact) provided the
Courant number v is less than t. By allowing and explicitly handling such interactions, it is possible
to obtain a generalized method which is stable for v much larger than 1. In many cases the resulting

solution is considerably more accurate than solutions obtained by other numerical methods. In
particular, shocks can be correctly computed with virtually no smearing. The generalized method

is rather unorthodox and still has some problems associated with it. Nonetheless, preliminary
results are quite encouraging.
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1. Introduction.

A scalar conservation law is a partial differential equation of the form

u,(X, t) = f(u(x, t)) (1.1)

where u : IR X [0, oo) --* IR and f : IR lI. When u is a density and f a Ilux, (1.1) states that
the integral of u over some interval (xi,x 2 ) changes only due to the flux through the endpoints,
since

f-T U(x, t)dx = f a(f (u(X, t

= f(u(X2, t)) - f(u(X1, t)).

The theory of conservation laws is described, for example, by Lax[71 and Whitham[10.
The most basic problem for a conservation law is the Riemann problem, which is (1.1) together

with piecewise constant initial conditions with a single discontinuity,

{O) = 
(1.2)

O) X m> Xo.

The solution of a Riemann problem can often be found analytically. Various numerical schemes
for solving (1.1) with arbitrary initial data are based on solving a sequence of Rienann problems
exactly. As usual with finite difference schemes, we choose a spatial stepsize h and a time-step k
and set x3 = jh, t,, = nk. We then approximate u(zx, t,,) by ut. But now we view the discrete
solution {?i7} not as an approximation to some smooth function but rather as a representation of
a step function

U(X, tJ =U'? for Xj- 112 < X < Xj+ 112  (L-3)

where X'+tl 2 = xj + h/2. Each discontinuity defines a single Riemann problem. If the time-step
k is sufficiently small, the solutions to these Riemann problems do not interact in time k and
the solution to (1.I) with initial conditions (1.3) can be computed exactly. This is the case if the

Courant tmiribcr,

= kmax f'(u(, t")),

is less than I. In order to continue this process we must project the exact solutions of the associated
Ricmann problems onto the computational grid. This mapping can be defined in various ways.

Setting u'+' to the average value of u(z,t,,+1 ) over the cell (zX- 1/ 2 ,zj+1/ 2 ), i.e.

u -- h f , u(x,

gives Codfunov's method(51. Setting u! +' to the value of u(x,t, +1 ) at some randomly chosen
point in (Xi-1/2, Xz+1/2) gives Chorin's version of Climin's scheme, also known as the random
choice method(I[31. This method has the advantage that shocks and contact discontinuities in the
solution remain sharp. However, their positions are no longer correct in general, although they
are in an average sense. Both of these methods can also be used more generally for systems of
conservation laws.

The aim or the present paper is to show how, for scalar conservation laws, the restriction
v < i can frequently be dropped by explicitly handling the interactions of the solutions to the

variois Riemnann problems. This has tle obvious advantage of requiring less work to advance the



solution to a given time. It also turns out to be more accurate in many situations. In particular,
for large values of v, sharp shocks can be maintained even when using Godunov-type averaging.
The problems amociated with random choice methods can thus be avoided. The resulting scheme
is conservative an( shock locations are correct, at least for problems involving only shocks. ''he
procedure described below has also given very good results on numerous problems involving shock-
rarefaction interactions, but there are still sone diffliculties to be resolved in this area. These will
be discussed in section 5.

In some ways the method is best thought of as a generalization of the first order upwind
dilference scheme for a constant coefficient linear problem. Recently Roc[g] has advocated viewing
difference schemes for such equations in an "increment form" in order to generalize them to new
methods for systems of conservation laws. Wo will begin in the same framework, and generalize in
a different direction.

2. The constant coefficient linear problem.

We begin by considering the constant coefficient linear advection equation

ut -CU c > 0. (2.1)

We define
A"= U" l)'

v = ck/h, the Courant number.

Any explicit linear two-level difference scheme can be written in increment form as

n i

for some choice of the coefficients -yi. The scheme is at least first order accurate if

Further conditions on the y give higher order methods. Sec Roe([9 for a more general discussion.
We now think orimplementing (2.2) in the following way: for each j we compute vA' , split it up into
fractions proportional to -y, and add the ith fraction to u'_ .Thus rather than interpreting (2.2)
as a formula for computing u! +T', we can take it as a prescription for distributing the incremental
data va. over nearby meshpoints.

The choice of coefficients yj can be motivated in the following way. For simplicity consider a
single Riemann problem

fa j (2.3)0 i > J.

rhis is interpreted as a discretization of

U(X' t) = Z < XJ+1/2

At time t,+, the solution of this Riernann problem is

u(Z't+, = X < XJI+112 - Vh



We would like our approximation u1 + 1 to be some discrete representation of this jump. If z - 1,
the jump is at ZJ.-1/2 and is represented by

u"+ 1 = a jiK 'I (2.4)

On the other hand, if v < 1, the true position of the shock can be represented by smearing the
jump over more meshpoints. One possiblility is

"+I j <
u3 j = +L(0 -) j-J (V < 1) (2.5)

j>J.

This agrees with (2.4) for v = 1 and has been chosen so that the discrete conservation law holds,

hun+ hti' +kc(3 - o)

Note that each u1 is the average value of u(x, t) over the interval [zj-1/ 2, Xz+1/21.
For arbitrary {u'} we apply (2.5) to each discontinuity in the step function (1.3). This yields

the standard first order upwind difference scheme

U = +± A" (2.6)

obtained from (2.2) by taking y1o = 1 and all other yi = 0.
Other conservative representations of a jump at XJ+1/2 - -Ah are also possible. These lead to

other special cases of (2.2). For example, replacing (2.5) by

a -+td1+--)(fc) < J - I

,'+W1 -+L)(6 -CJ) = J (2.7)

Il j +2

leads to the general scheme

un+ t = u+1 V(1 +V)A7 +- V(1 - V)A_

which is the Lax-Wendroff scheme for (2.1). For smooth solutions this is often preferable to (2.6),
being second order accurate. For a single time-step on the Riemann problem, however, (2.7) is
clearly inferior to (2.5) since the discontinuity has been smeared over more mesh points than
necessary and since the approximation is no longer monotonic.

We will call (2.5) the optimal representation of a jump at x1+1/2 - A-h, since it is monotonic
and involves as few mesh points as possible.

Implementing (2.6) can now be described as follows: interpret the data fun) as being a sequence
of Riemann problems, solve the Riemann problems exactly, and then represent the resulting
discontinuities on the finite mesh via (2.5). This viewpoint will prove fruitful when dealing with
more general conservation laws.
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3. Upwind differencing with v > 1.

Adopting the viewpoint proposed in the previous section allows us to extend the scheme (2.6)
for use with large time steps. Attempting to apply (2.6) directly with v > 1 is unstable. Instead
we again interpret the discrete data as a representation of a step function and solve a sequence of
Riemann problems. Again consider the single discontinuity

>= J .

The discontinuity A " - c at Xz+ 1/2 propagates under (2.1) to XJ+1/2 - vh at time t,+,+.
Let I = [vJ, the integer part of t/. Then zj+i1 2 - vh = XJ-p+1/2 - (v - A)h. The solution to
the Riemann problem is

{a X < zJj&+1l2 -(V - J)h
u(z,t.+i) = Z >_ ZXJ_+1/2 - (v - I)h. (3.1)

which we must now represent on the discrete mesh. By again averaging the solution over each cell
we obtain the representation

3+ = +(Vi- )(1-a) j = J - A (3.2)
j> J -IA.

This is also the natural generalization of (2.6) if we read (2.6) not as "add Li times An to the next
mesh point over" but rather as "add An to the next v mesh points over". Applying (3.2) at each
discontinuity gives the following scheme for general {u'}:

u+l = U +an +;++..A+"+ +( -)A+ +l.

Most of these terms cancel, leaving

u = (1 - (V - i.))U-- +& (-+ 2

This is simply the method of characteristics with linear interpolation.

4. General scalar conservation laws.

Now consider a scalar conservation law

ut = (u). (4.1)

We will always assume that f"(u) has constant sign for all u of interest. Suppose, to begin with,
that f" > 0 and that u(z, 0) is nondecreasing.

Again let An= u+- and set

c = Mu~' 1  - f(ts'))/&n for An 00,
Vi = ck1/h,
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Figure 4.1. An example of shock propagation without explicit handling of interactions. The squares

represcn . the grid function, the solid line its interpretation. The arrows show the propagation of the tA,.
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Each c' is the propagation speed of the discontinuity A! according to the Rankine-Hugoniot
relation. We do not need to define ' if A = 0; there is no need to propagate jumps of height
zero. In general the discontinuity A" is now a shock which travels at speed c" and should propagate

.,' grid points in one time step. For concreteness assume that it is propagating to the left. As a
first attempt at generalizing the procedure of section 3 we try adding A' to u", u ,...,u l

and (v - jIA)A' to u This gives a conservative scheme, since

3=

so
o hu7+'- E hu' = k E(f(u +') - f(un))

= k(f(+oo)- f(-oo)).

Again this scheme can be interpreted as the method of characteristics with linear interpolation.
The problem is that when some v' > 1 we may be allowing characteristics to cross, i.e. some
shocks may propagate right past their neighbors, rather than coalescing into a single shock as
should happen. An example will illustrate this.

Example 4.1. Consider f(u) = Ju2 in (4.1), i.e. ut = uu.. Take the initial conditions

~0 j< J
up = 2 J = J (4.2)

j>J

and k = 2h. Then

cj = 52 = 5

We thus add A, to the two mesh points ut._, and u°._ 2 and A0, to the five mesh points
u, ... , u0,. 4. We find that

0 < J- 4
i 1 4< j_ J-3 (4.3)

This is illustrated in Figure 4.1a. Rather than coalescing into a single shock, A°, has "passed right
by" A?_1 . The resulting ul is not the optimal representation of the true solution at time t1,
although it is a conservative representation. (The true solution is a single shock at ZfJ-3 - h/6.)

Remarkably, the shock does not become further smeared out at subsequent times. In fact,
starting from (4.3) we compute that

j> J-7
as shown in Figure 4.2b. In this case the shock has sharpened and is, in fact, the optimal
representation of the true solution: a shock of height 3 at Xjr- - h/6. It has precisely the same
shape as u0 and at future times u3 , u4, us, ... will alternate between the shape of u1 and that of
u0 , always being a conservative and monotonic representation of the true solution (although not
always the optimal representation). In this example the shock is never badly smeared and the
solution is quite acceptable for all t,,. If we had taken k/h much larger, however, the resulting
solution would have been badly smeared, at least for some t,,.

6

x . .~,.



This problem can be greatly alleviated by explicitly handling the coalescing of shocks. This
is not as difficult as it sounds due to the following result.

PROPOSITION 4.1. Consider the conservation law ut = (f(u)). with f"(u) > 0 for o < u < ,y
and initial conditions

u(X, O)={10 x <_ 6
1 > e2

for some el < C2, a < f < y. Let t, be the time at which the two shocks coalesce. Consider the
same problem vt f (f(v)). with initial conditions

a(Xz0) (a X <

where o = ((0 - a)6i +(- - P)C2)/(Y - a). Then, for t > t,

u(X, t) = v(x, t) VZ.

The same result holds if" a > fl > -1 and f"(u) < 0 for -y < u < ct.
This result is an immediate consequence of conservation. The implication is that whenever two

adjacent shocks Aj- 1 and A' are going to coalesce at some time between t,, and t"+ 1 (i.e. when
kc' > kcl- +h) we can simply merge them into a single shock A = All +A" at time t. and
propagate this merged shock. At time t,,, & is located at t = (A'... 1 XJ- 1 / 2 +a XJ+i, 2 )IA and
it propagates at speed a = (f(uJ+I) - f(U n-))/(Un+i - u -- ). We then optimally represent
the resulting shock solution at time t,+1 on the discrete grid. Applying this procedure to example
4.1 gives

u = 0 j <-- J< -3n
2 =J-3n V

j> J-3n
which is always the optimal representation of the true solution.

For general data {un} it may be necessary to merge several shocks at a time. Since the
propagation speeds of the shocks change as they coalesce, it is not always easy to write out the
appropriate equivalent problem a priori. The following procedure can be used, assuming A" is
nonzero for a finite number N of points x,. Let 7' - {T,} be the set of ordered triples

T. = us

where each 1, is the location of a shock, a discontinuous jump in u from the value uJ on the left
to U on the right. The T are ordered from left to right so that 1, < i,+1. For each triple we
define

= (f(u,) - (uF))/(u,+ -

U+ -A, = _~-s

Initially the T, are chosen as the triples (Xj+1/2, un, U" +) corresponding to nonzero A". We wish
to replace 7' by a new set of shocks $ which do not interact in time k and which yield the samne
exact solution at time t,+I as the original set. This can be accomplished by Algorithm 4.1, which
works from left to right and employs a stack of triples S. for i = 1, 2,..., l. The rightmost shock
on the stack is represented by S1, which is on top of the stack. The stack has the property that
at the beginning of each iteration the shocks represented by the S, would not interact in time k if
there were no disturbance to the right of 11 (i.e. if u = u+ for x > M. Each new shock is put
on top of the stack and then is merged as necessary with shocks already on the stack.

7
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ALGORITHM 4.1.

I:= I
St := T1

for j:= 2,3,..., N do
S, :=T

while 0 < (1 - - 1- 1) < k do
remove S and SI- from the stack and replace them by a single triple with

as = u-
U+= U+,

I:= I-I

It looks as if this algorithm may require O(N 2) steps in the worst case, because of the nested
inner loop. It is always linear, however, because the innermost step merges two shocks. Since we
begin with only N shocks this will be executed at most N times.

PROPOSITION 4.2. For any stepsize k, Algorithm 4.1 computes the exact solution to (4.1) for
piecewise constant initial data with a finite number of shocks.

Proof. Two shocks which appear to interact in time k when considered in isolation must also
interact in time k in the presence of other shocks. Since the merging procedure is associative, the
order in which we merge them is irrelevant. I

In general, errors will be introduced interpreting and representing the solution. For "smooth"
portions of the solution the method can again be viewed as the method of characteristics with
linear interpolation. The error in a single time step is thus 0(h 2 ), giving 0(h 2/k) global error.
A true discontinuity in the solution is propagated to exactly the correct location, providing the
solution is properly interpreted.

5. Rarefaction waves.

Now consider a jump for which A'f"(u) < 0. Such a discontinuity should spread out into
a rarefaction wave. Unfortunately, applying the procedure of section 4 directly will cause 46, to
propagate as a sharp discontinuity.

In dealing with shocks we sometimes found it necessary to merge several discontinuities into
a single shock. Rarefaction waves can be approximated by taking the opposite approach. The
discontinuity A. is broken up into several (say m) discontinuities each of height A/rm and all
located at z+112 . These discontinuities will then travel at different speeds, spreading out to
approximate the true rarefaction. We should choose m large enough that the resulting solution
looks smooth. Since the true rarefaction spreads over (f'(u'+1 ) - f'(u%))k/h meshpointa, it is
reasonable to choose m as an approximation to this quantity, e.g. as the integer part of some finite
difference approximation. In general rarefaction and shock waves may interact. It will again be
necessary to handle this interaction explicitly in order to obtain good results for large values of
k/h. These interactions can also be handled by Algorithm 4.1, at least approximately, if we define
m triples T, i - 1, 2,..., m corresponding to each partitioned discontinuity with

it =t

U+ = + "A
i-I



See Figure 5.1 for an example of this.

Example 5.1. In order to better understand this shock-rarefaction interaction, consider the problem
ut = (Ju 2 )z with initial data

0 {14 j----J (5.1).7 0 j J.

This is a representation of

u(z, O) = 4 1-1/2< Z < zJ+11 2  (5.2)=to otherwise.

Take k = h. Then the true solution at time k is

u(x, k) = (XJ+1/2 - x)/h XJ+12- %,,/h < X < XJ+1/2 (53)t0 otherwise.

The rarefaction has overtaken the shock, slowing it down and decreasing its strength. In the spirit
of Proposition 4.1 we can attempt to find a new set of initial conditions which give the same
solution at time k without any interaction. The desired initial conditions are

v(X,O) = - Vr/h < X < XJ+1/2 (5.4)
{O otherwise

This pulse is wider and shorter than the original pulse (see Figure 5.1). In the solution v(x,t)
there is no interaction before time k at which point the rarefaction wave just catches up to the
shock. For t > k, v(x, t) = u(x, t) for all x. Computing the exact equivalent set of noninteracting
discontinuities (such as (5.4)) for a general scalar conservation law with step function initial
conditions would be difficult but could be done. Taking this approach and then solving the resulting
Riemann problems exactly would yield the exact solution to such a problem, just as Algorithm 4.1
gives the exact solution for a pure shock problem.

Instead of following this course, we will concentrate on the more easily obtainable approximate
solution given by Algorithm 4.1 together with the previously described rarefaction partitioning
procedure. Taking m = 4 in the rarefaction gives us 5 triples T, in the set T. These are

TI = (xI-112, 0, 4),

T2 = (xJ+11 2 , 4, 3),

T3 = (XJ+1/2, 3, 2),

T4 = (xj+1/2, 2, 1),

TS = (XJ+1,2, 1, 0).

In applying Algorithm 4.1, we see that T, and T2 interact. This is the only interaction and the
resulting set S consists of 4 triples. The first of these, S1 , is derived from T, and T2 and has

11 = (4xt 11 2 -f+1/2)

= J - 1h

U1 =0
u+-! =3.

L_9

.------



t(zO) V(X O)

Zj Xj

TT 3  uO and T SS

Fiue- -- JZj 1s

Figure 5.1. u(x,O) are the original initial conditions for Example 5.1. These can be replaced by the
noninteracting initial conditions v(z, O) which produce the same solution at time k. T is the original set of
discontinuities. Algorithm 4.1 replaces these by the noninteracting set S.

(a) (b)

,0

Xj Xj

Figure 5.2. (a) shows the set S at time k. (b) shows the representation of S (as squares) and the true
solution at time k.
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Figure 5.1 shows the initial data both before and after merging. The original pulse has been
replaced by a wider and shorter pulse which approximates (5.4). We advance the solution to time
k by moving each S, at the appropriate speed. The final positions are

S X -1h - h= XJ-2 - J
S 2 : J+1/2 - 1h = ZJ-2

S 3 : zJ+1/2 - h = XJ-1
S4 zj+1/ 2 - ih = zi

This is shown in Figure 5.2a. These discontinuities are then represented on the mesh in the usual
way, giving the solution

j=J-2

S= ~3/2 J - 1u ]1/2 j J

S0 otherwise
which is shown together with the exact solution in Figure 5.2b.

In practice it is necessary to modify this procedure slightly in order to maintain smoothness
in the rarefaction waves over several time steps. Rather than putting each jump in the partitioned
rarefaction at x,+ 1 / 2 , we spread them out between x, and x,_ by setting

ih, -xjJr- i =1, 2,..., m.

This procedure, together with Algorithm 4.1, has given quite satisfactory results for a variety
of problems. It must be stressed, however, that Algorithm 4.1 may not handle interactions properly
when several shocks and rarefactions are present. Consider, for example a problem involving two
shocks followed by a rarefaction. It may be that the two shocks, considered in isolation, would
coalesce in time k, whereas in reality the the rarefaction catches up to the second shock and slows
it down sufficiently that no further interaction occurs. Algorithm 4.1, which works from left to
right, would produce an incorrect result which may be quite bad for large Courant numbers.

Even more disturbing is the fact that monotonicity of the 1, may be lost when merging a
shock with a rarefaction. If A, and &1 _1 have opposite signs then the new i defined in Algorithm
4.1 does not lie between ir and 1 -1 and hence may lie to the left of i-2 or to the right of
the next z+1/ 2. Currently this is handled by aborting execution whenever if < if-,. This has
never happened for moderate values of the Courant number on "reasonable" initial data.

6. Numerical results for ID scalar conservation laws

Before proceeding to briefly discuss several space dimensions and systems of conservation laws,
we pause to present some computational examples.

Figure 6.1 shows several sets of initial data. The remaining figures show the results of applying
the method to problems with those initial conditions. In Figures 6.2 through 6.4, the true solutions
are known and are shown as solid lines. The numerical solutions are represented by the squares.

The other examples begin with more complicated initial data and use periodic boundary
conditions (achieved by applying Algorithm 4.1 to a larger interval with the mesh function suitably
extended). The numerical solutions are shown together with an "exact" solution computed on a
much finer mesh. These examples are included to show that the procedure can indeed handle
problems involving many interactions.

The method does have its limitations, of course. For problems beginning with the initial con-
ditions shown in Figure 6.le, taking values of k/h larger than 10 sometimes led to nonmonotonicity
of the 1, as discussed in section 5.

11



7. Several space dimensions and systems of conservation laws.

Scalar conservation laws in several space dimensions can be handled by means of a spacial
splitting or fractional step method. This is a standard way of extending one dimensional methods
to higher space dimensions. Crandall and Majda[2] discuss the use of fractional step methods for
computing weak solutions of conservation laws.

In two space dimensions, the general conservation law has the form

ut(x, y, t) = (f(u(x, V, t))). +(g(u(x, Y, 0))," (7.1)

Let S(k) denote the approximate solution operator for the problem ut - (f(u)) on a time-step of
length k as defined in the preceeding sections. Similarly, let S,(k) denote the approximate solution
operator for ut = (g(u))y. Then ut+1 is computed by solving a sequence of one-dimensional
problems, alternating between the x- and y-directions. Using a second order Strang-type splitting
as described in 181, we set

-+' = S=(k/2)S,(k)S.(k/2)u'. (7.2)

We now have to contend with errors both in the ID difference scheme and in the splitting (7.2).

Example 7.1. Consider the problem.

12 12 for O x 1, U~u 1

with initial data as shown in Figure 7.1. This test problem has been used by Gropp[41. The true
solution at time 1 is shown in Figure 7.2.

In this case each ID problem involves a single shock, and can be solved "exactly" by using
sufficiently large time steps. The resulting shocks in the full 2D problem are still sharp, but are
all parallel to the x- or y-axes. The result is that shocks which have some other orientation, such
as the "diagonal" shocks in Figure 7.2, are represented by zig-zagging shocks. The number of zigs
and zags is directly proportional to the number of 1D problems solved to reach the given time. In
this case the best results are obtained by using moderately small values of V. But we still want
v > 1, or else the ID procedure reduces to upwind differencing and the shocks are badly smeared.
Figure 7.3 shows some examples for various values of v.

At the present time it is not clear how to extend this method to handle arbitrary systems of
conservation laws. In general, a result like Proposition 4.1 will no longer hold, so that interactions
cannot be handled in the same simple manner. For problems in which the eigenvectors of the
Jacobian matrix af/8u are nearly constant (as in some weak-shock problems), it may be possible
Lo handle interactions sufficiently well to generalize the methods of Roe[9]. Research is continuing
on this approach.
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Figure 6.A. Trite and rompated sutions for u, A. -I. it'). and it)itiat conditions from F"igure 6. 1c. [it
-11l Cases It 1/80. The tanubers in parentheses indicate the number of time-steps twecled to counput !each
solu tion.
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Figure 6.5 Computed solutions for ut (ju 2)_ and initial conditions from Figure 6.1d with h 1/80. The
"exact" solution shown at the bottom was computed using h - 1/240. The numbers in parentheses indicate
the number of time-steps needed to compute each solution.

- / Q,/'.
"I , " / ' / " / ' "/ t.

- " ( \ K \ (2) \4 " L&&

.. " / \ / ' i/

, / \./c Kv ',J -I ' -

-x / 7

-Y

7, ' t /" 1 -I -- ,
IJ' I ,# I

• f ,, /

figure 6.6. Computed solutions for ut = (-O.lu), and initial conditions from Figure 6.1d with h = 1/80.
The "exact" solution shown at the bottom was computed using h = 1/240. The numbers in parentheses
indicate the number of time-steps needed to compute each solution.
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Figure 6.7 Computed solutions for ut ---(ju2). and initial conditions from Figure 6.1e with h 1/80. The
Nexact" solution shown at the bottom was computed using h = 1/480. The numbers in parentheses indicate
the number of time-steps needed to compute each solution.

,- ,

-

Figure 6.8. Computed solutions for ut (-0.lu2 ) and initial conditions from Figure 6.e with h - 1/80.
The "exact" solution shown at the bottom w computed using h-- 1/480. The numbers in parentheses
indicate the number of time-steps needed o compute each solution.
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14 u 1/2 =/
;3 u/1/2

u -1/2 u =1/4u -1/2

u, = 1/4

(0,0) (1,0)

Figure 7.1. Initial conditions for Example 7.1 Figure 7.2. Solution at time t =1

19



Figure 7.3 Computed solutions to Example 7.1 at t 1. La all cases h 1/25. The three cases shown are

k = , kc 5h, and kc = 25h.
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