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A TECHNIQUE TO MEASURE THE VOLUME OF ELASTOMERS AS A

FUNCTION OF TEMPERATURE AND PRESSURE WITH AN ACOUSTIC PYCNOMETER

I. INTRODUCTION

This report describes the use of an acoustic pycnometer to measure
the volume of a spherical elastomer sample as a function of tempetature
and pressure. The measurement of the volume of elastomer samples is

needed in determining the bulk modulus of elastomers.

The bulk modulus of a materfal i{s defined as the ratio of a tensile
or compressive stress, triaxial and equal in all directions (e.g.,
hydrostatic pressure), [1] to the relative change in volume it produces.
For a spherical sample this triaxial compressive stress is deplicted as
a squeezing of the spherical sample by hydrostatic pressure, in which a
change in volume occurs without a change in shape (See Fig. 1) [2]. The

static bulk modulus is defined as

AP
B(P,T) = - W s (1)

where
B(P,T) = the static bulk modulus at pressure P and temperature T .
AV = the change in volume of the sphere

VS(P,T) = the volume of the spherical sample at P and T.

To calculate the static or isothermal bulk modulus using Eq. (1),
a precise method to measure the volume of the sample VS(P,T) and

correspondingly the change in volume of the sample /V is needed.

Manuscript submitted August 14, 1981,
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The dynamic bulk modulus of a material can be defined as the ratio
of a harmonically varying acoustic pressure to the corresponding change
in volume it produces, multiplied by the volume of the sample of the
material at the appropriate static pressure P and temperature T. The

expression for the dynamic bulk modulus of the sphere in Fig. 1 is

(£)

K(P,T,f) = - Z;7$;?§:f7 s

where

(2)

K(P,T,f) = the dynamic bulk modulus of the sphere at static pressure

P, temperature T, and frequency f

the varying uniform acoustic pressure with frequency f

©
[}

Av = the change in volume of the sphere due to the acoustic

pressure p.

Persons who work in the field of hydroacoustics are interested in
the dynamic bulk modulus of elastomers. Elastomers are used in
transducers to isolate the electrical components from seawater.
Another application of elastomers in hydroacoustics, is in their use
as hull coatings on submarines. Therefore, a precise experimental

method to determine the dynamic bulk modulus is of importance. One

way to obtain an expression for the dynamic bulk modulus of an elastomer

sample is from the theory describing the scattering of sound bv an elastic

sphere. In hrief, if one uses the theorv for Ravleigh scattering as the

basis for dvnamic bulk-modilus determination, the {ollowing arzuments

apply.
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An expression containing the dynamic bulk modulus of an elastomer
is obtained by solving the boundary-value problem for the scattering of
sound by an elastic sphere [3] composed of the elastomer that is immersed

in a fluid. If one looks at the scattering of sound in a confined chamber

where a volume-expander sound source (shown in Fig. 2) produces a harmonic,
uniform acoustic pressure, then the expression for the scattered pressure
is

32
p.k,a K
-_i3e f) , (3)

where
p_ = the scattered acoustic pressure

p, = the incident acoustic pressure
i

ky = 2ﬂf/c3, the wave number in the fluid 3
¢y = the speed of sound in the fluid

a_ = the radius of the spherical elastomer

K. = the dynamic bulk modulus of the fluid

K = the dynamic bulk modulus of the spherical elastomer

r = the distance from the center of the spherical elastomer
to the receiver.

Equation (3) is true for nearfield (k3r < 1) Rayleigh scatterfng
(k3ae << 1) of the zero mode. The zero mode is the first term in the
series expansion of the solution to the boundary-value problem and

physically represents a uniform acoustic pressure field or breathing
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Fig. 2 — Scattering of sound by a spherical elastomer sample
in a confined chamber
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mode. The breathing mode is the mode of vibration that corresponds
to a harmonically varying hydrostatic pressure. If the chamber is

sufficiently small, only the zero mode is present.

If an acoustic scattering experiment is performed as shown in
Fig. 2, the scattered pressure 1is not measured directly. The total

pressure is measured by the receilver and is given by the expression
= +
Piotal = P17 Py “)
where

P = the total pressure.

total

An expression for the ratio of Kf/Ke in the confined chamber in

Fig. 2 can be obtained if three measurements are made: a measurement
with the chamber filled only with fluid, a measurement with a spherical
elastomer sample present in the fluid-filled chamber, and a measurement ]
with a rigid scatterer present in the fluid-filled chamber. By measuring

. the total pressure p with no sample present in the chamber, the

total
incident pressure expressed by Eq. (4) can be found. In any nearfield
experiment, the distance r from point of observation to the sample must

be taken into account. This is accomplished by introducing the expression
for the scattered pressure for a rigid sphere when placed in the same

; position in the confined chamber in Fig. 2. The expression [4] for the

scattered pressure for a rigid sphere is




P g = the scattered pressure from a rigid sphere
»

W
]

the radius of the rigid sphere.

Using Eqs. (3), (4), and (5), one can obtain expressions for the
total acoustic pressures for scattering by a spherical elastomer sample

and by a rigid sphere in the confined chamber in Fig. 2. The results

are
kgaz Kf
Pee Py |l -3 (- Xe (6a)
and
2
ke
Pe,e “P1 LT3 ) (6b)
where
P o = the total pressure measured when a spherical elastomer
9
sample is present in the confined chamber
Per T the total pressure measured when a rigid sphere is present
»
! in the confined chamber.

The ratio of the bulk modulus of the fluid to the bulk modulus of

the spherical elastomer sample is obtained by combining the results

given in Eqs. (3), (4), and (6), assuming that Py is the same:




(7

V_ = the volume of the rigid sphere

v =

Equation (7) expresses the ratio of the dynamic bulk modulus of the

the volume of the spherical elastomer sample.

fluid in the confined chamber (refer to Fig. 2) to the dynamic bulk
modulus of the spherical elastomer in the chamber. To calculate the
ratio Kf/Ke, using Eq. (7), as a function of temperature and pressure,
the volume Ve of the spherical elastomer sample must be known as a
function of temperature and pressure. A confined chamber is analyzed
because one is interested in determining the ratio Kf/Ke as a function
of pressure and temperature. The chamber shown in Fig. 2 permits one

to simulate the effect of ocean pressures.

The volume of a spherical elastomer sample can be measured
accurately by means of an acoustic pycnometer. The background for the
acoustic pycnometer used evolved from the work of Corsaro, Jarzynski,
and Davis [5]. These investigators describe the use of an acoustic
densitometer to measure the change in volume of polyethylene oxide as

a function of temperature and pressure with a precisfon of 3 parts in

105.
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V_ = the volume of the rigid sphere
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the volume of the spherical elastomer sample.

Equation (7) expresses the ratio of the dynamic bulk modulus of the
fluid in the confined chamber (refer to Fig. 2) to the dynamic bulk
modulus of the spherical elastomer in the chamber. To calculate the
ratio Kf/Ke, using Eq. (7), as a function of temperature and pressure,
the volume Ve of the spherical elastomer sample must be known as a
function of temperature and pressure. A confined chamber is analyzed
because one is interested in determining the ratio Kf/Ke as a function
of pressure and temperature. The chamber shown in Fig. 2 permits one

to simulate the effect of ocean pressures.

The volume of a spherical elastomer sample can be measured
accurately by means of an acoustic pycnometer. The background for the
acoustic pycnometer used evolved from the work of Corsaro, Jarzynski,
and Davis [5]. These investigators describe the use of an acoustic
densitometer to measure the change in volume of polyethylene oxide as
a function of temperature and pressure with a precision of 3 parts in

10°,




IT. ACOUSTIC PYCNOMETER THEORY

The acoustic pycnometer* is an instrument which is used to precisely
measure the volume of an elastomer sample. In this section the theory
used in the acoustic pycnometer measurement is outlined. First,
the principle of operation of the pycnometer is described. Second, the

pertinent equations are derived.

The acoustic pycnometer, shown in Fig. 3a, is composed of a two-
part Invar container, held together with screws and sealed with neoprene
O-rings. Within the container there is a sample chamber connected to
a bore by a narrow canal. At the base of the bore is an ultrasonic
quartz transducer. The transducer is a resonant device, which is 1.905
cm in diameter, 0.75 cm in thickness and operates at a frequency of
4 MHz. The entire pycnometer is filled with mercury (shown in black
in Fig. 3a) under vacuum. The sound path, in the bore of the pycnometer,
is terminated by a resonant float to flatten the mercury meniscus. The

float design will be discussed later.

*The acoustic densitometer of Corsaro, Jarzynski, and Davis was obtained
from the Naval Research Laboratory in Washington, DC, but because of its
existing condition was unusable when this research was undertaken.
Several modifications had to be made in order to use it. Because of
these extensive modifications and because the modified device was used
in a different way than by Corsaro, Jarzynski, and Davis, 1ts name was
changed to the acoustic pycnometer to distinguish it from the original
densitometer. The new name is appropriate because a pycnometer is an
instrument used to measure the volume or the density of a material. On
the other hand, the word "densitometer" might imply a connection with the
kind of instrument used in photography when there is none.
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An electronically generated 4-MHz pulse is used (see Fig. 4) to

excite the transducer at the base of the bore of the pycnometer causing
the transducer to transmit an ultrasonic 4-MHz pulse through the column

of mercury in the bore. This pulse is reflected by the float and

travels back through the column of mercury where the reflected pulse is
received by the transducer and is also reflected by the transducer back
into the mercury~filled column. The process repeats, producing a sequence
of echoes, until an electronically controlled repetition time has elapsed
and another pulse is generated by the electronic equipment. This electronic
pulse excites the transducer, and another transmitted pulse is produced
at the transducer. Again a series of pulse echoes occurs. This
series of pulse echoes is commonly called an echo train. Figure 5 is a

photograph taken of an oscilloscope display of an echo train.

When a sample 1s placed in the sample chamber of the pycnometer
(see Fig. 3a), the change in volume of the sample caused by any change

in temperature and pressure produces a change in the volume of the

mercury in the bore. The height of the mercury column is determined as
follows. The time it takes for a 4-MHz sound pulse to travel from the
transducer in the base of the bore through the mercury column to the
float and return to the transducer is measured. This time is called

the time-of~flight. This time-of-flight is determined by measuring the
difference in time between two successive pulse echoes on an oscilloscope
(ag shown in Fig. 4)., By multiplying the time-of-flight by the speed

of sound in mercury, the length of the mercury column for any temperature

12




Fig. 4 — 4 MHz driving pulse, timebase = 2 us
Pulse amplitude = 600 volts, peak-to-peak
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Fig. 5 — Pulse-echo train, timebase = 50 us ampli-
tude of the first echo in the train is approximately
= 0.8 volts peak-to-peak.
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and pressure can be calculated by

1
L 2 cHg ta
where
L = the length of the mercury column

cHg = the speed of sound in mercury

td = the difference in time between two successive pulse-echoes.

The measurement of the time-of-flight will be discussed in detail
in Appendix A. The volume of the mercury in the bore of the pycnometer
is found by multiplying the length given by Eq. (8) by the cross-
sectional area of the bore. The measured volume VBORE is corrected
to account for the change in dimension of the bore produced by changes

in pressure and temperature. The volume of the mercury in the bore is

given by

=1 2 -
VBoRE ~ 7 CHg T4 "Tp eXP(2GyT -8 PI/3],

where
T, = the radius of the bore
% = the volume coefficient of thermal expansion of the
pycnometer material
Bv = the volume coefficient of isothermal compressibility of

the pycnometer material.

)

9)




brd J B e e e

i vl 2L AN - h

The units of the temperature and pressure are respectively in degrees C
and MPa and the pressure used is gauge pressure. These units for
temperature and pressure will be used throughout this paper. Equation

(9) 1s derived in Appendix C.

Mercury is used as a working medium in the acoustic pycnometer
because the speed of sound and compressibility of this liquid are well
documented. The equation for the speed of sound in mercury as a function

of temperatur« and pressure is [6]

cHg(P,T) = 1460.0 - 0,460T + 0.210p. (10)

The units of the sound speed in Eq. (10) are m/s. The volume of an
elastemer sample can be calculated if the volume of mercury in the bore
is determined in two cases: a measurement is made with a sample present
in the sample chamber of the pycnometer (shown in Fig. 3a) and a second
measurement with no sample present in the sample chamber (see Fig. 3b).
The measurements taken with no sample present in the pycnometer are
referred to as a calibration run. A calibration method is used to
account for the compressibility of the pycnometer, which is a significant

effect in the experiment.

To obtain an expression for the volume of a sample when using the
acoustic pycnometer, two cases must be analyzed: the calibration run
and the sample run. Writing down the equations for the volumes of

mercury in the pycnometer, in the configuration shown respectively

16
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in Figs. 3a and 3b, one obtains

= <+ -
Vag PsT) = Vouam * Veanar * Veore ~ Vsampre (11a)
P'
2 and
;
' ' (11b)
Vg ®>T) = Vouam * Veanar ¥ VBore
1 where :
VHg(P’T) = the volume of mercury in the pycnometer during the
sample run
1)
Vﬂg(P,T) = the volume of mercury in the pycnometer during the
calibration run
VCHAM = the volume of the chamber
b : VCANAL = the volume of mercury in the canal
‘ VBORE = the volume of mercury in the bore during the sample run
véORE = the volume of mercury in the bore during the calibration run

VSAMPLE = the volume of the sample.
To obtain an expression for the volume of the sample, one subtracts

Eq. (11b) from Eq. (1la). The result is 3

+ ]

m' - m
Vsampre =V (12)

-V + ——
BORE BORE pHg(Tf) ,

where

m' = the mass of mercury used in the pycnometer during

the calibration run




m = the mass of mercury used in the pycnometer during the sample

run

pHg(Tf) = the density of mercury at the filling temperature T, and the

filling pressure Pf.

In Eq. (12) the difference VHé - VHg in the volumes of mercury in the

pycnometer, which arose from the subtraction of Eq. (11b) from Eq. (lla),

i has been replaced by the difference in the masses of mercury divided by
| ' 4
i the density of mercury. The difference in VBORE and VBORE at a given

temperature T and pressure P is due to the change in volume of the
sample and to filling the pycnometer with mercury to different heights

[ during the sample run and during the calibration run. Therefore,

(p,T) =V + AV (13a)

VBORE HgB SAMPLE °*

h where

v (Tf) = the volume of the mercury in the bore at temperature T

HgB f

and pressure Pf

AVSAMPLE = the change in volume of the sample. |

]
VBORE is equal to VBORE plus a volume of mercury due to filling the

1 bore of the pycnometer to a different height:

o :
s Vgore PrT) = Vyop + VT (13b) l

where

18 |
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V(P,T) = the additional volume of mercury in the bore due to
filling the pycnometer to different heights during the
sample run and during the calibration run.

\]
The difference in VBORE and VBORE is obtained by subtracting Eq. (13a)

from Eq. (13b). The result is

(p,T) - (r,T)

'
v A
BORE BORE (143)

(p,T) - (PO,TO) - v(,T),

= VsaMPLE VsaMPLE

where
VSAMPLE(Po’To) = the initial volume of the sample when it is placed
into the pycnometer (as measured by Archimedes'

principle) at temperature To and ambient pressure

P
o
It should be noted that the pressures Pf and Po both refer to ambient
atmospheric pressure. Also the temperatures T0 and 'I‘f were both

approximately 25°C. By rearranging Eq. (l4a), one obtains an expression

for the volume of a sample as a function of pressure and temperature:

VoamrLe ®sT) = VoampLePorTo)

(14b)

L
+ VBORE(P!T) - VBORE(P’T) + V(P,T).

Before Eq. (14b) can be used, an expression i{s needed for V(P,T)

in terms of known or measured quantities. This expression is found in




the following way. At the pressure Po and the temperature To’ Eqs. (12)

and (14b) when subtracted give

m' - m

o (P ,T)  USAMPLE

V(P _,T ) =
Hg o’ o

(P ,T ). (15)
Equation (15) expresses the difference between the volumes of the

mercury contained in the bore of the pycnometer during the calibration
run and during the sample run at temperature T0 and pressure Po. As

mentioned earlier, the sample volume V (PO,TO) in Eq. (15)

SAMPLE
is determined by Archimedes' principle at ambient temperature To and
pressure Po’ before being placed into the acoustic pycnometer. By using
Eq. (15) and the equation of Grindley and Lind [7], which gives the volume

of mercury as a function of temperature and pressure, one obtains for

V(P,T) the expression

- _b(,T) m' - m _
v(P,T) D(PO,TO) [oﬂg(To) VSAMPLE(Po’Toﬂ’ (16)

2 2
2P d3TP + d4P + dSTP

4

(=)
~
"o
-
~
(]

1 + le - d

1.821 x 10

=%
(]

3.153 x 10>

=%
]

5.19 x 1078

9

[=%
]

4,54 x 10
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&
[ ]
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From the previous development of the theory, it can be seen that

the volume of a sample can be determined as a function of temperature

and pressure by Eqs. (14b) and (16). By using the calibration method,
the compressibility of the pycnometer can be taken into account.

Previous investigators attributed the compressibility of the pvcnometer
to be due solely to the compressibility of the Invar container material
acting as a monolithic block of material, The calibration method requires
accurate measurement of the initial sample volume prior to being inserted
into the sample chamber of the pycnometer. This technique also requires
accurate determination of the amounts of mercury used in the pycnometer
during the calibration run and during the sample run. However, all of
the measurements necessary for the success of the calibration method

are made by standard laboratory procedures.

IIT. ACOUSTIC PYCNOMETER EXPERIMENTAL METHOD

The acoustic pycnometer can be used to determine the volume of
elastomers as a function of temperature and pressure after two preliminary
steps have been completed. First, the spherical elastomer samples need
to be fabricated. Second, one needs to obtain the initial volume of
the samples at ambient pressure Po and a known temperature To

VSAMPLE(Po’To)'

The pycnometer is assembled, and the transducer is put into place.

The assembled pycnometer is then placed in a vacuum chamber where it is

21




to be filled with mercury (see Fig. 6). The mercury filling is done by
using a burette from which mercury is drained into the sample chamber of
the pycnometer while the pycnometer is kept under vacuum. Previous fn-
vestigators at our laboratory determined the volume of mercury drained
into the pycnometer by reading the volume of mercury used from the
graduated scale on the burette. In the more accurate method, used in

this investigation, the mass of the mercury used in filling the pycnometer
was determined by weighing and the tabular value of the density of

mercury was used to calculate the volume of mercury [8). The volume of

the mercury placed into the pycnometer is calculated by

i £
vV, = ———~, (17)
Hg pHg(Tf)
where,
mi = the mass of mercury contained in the burette prior to filling
the pycnometer
me = the mass of mercury contained in the burette after the

pycnometer has been filled.

The mass m, in Eq. (17) is obtained by weighing an initial amount of

mercury, which is then poured into the burette shown in Fig. 6. Once

the pycnometer is completely filled, the remaining mass m_ of mercury

£

in the burette is reweighed and the volume of the mercurv in the pycnometer

is calculated by Eq. (17). Since mercury vapor is extremelv toxic,

+

extreme caution was oxercised when perfermiag the mercurv 711 1inge,
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Fig. 6 — Mercury-filling apparatus
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A major source of experimental error can occur when filling the

acoustic pycnometer with mercury., Any mercury lost upon filling will
result in an error when determining the amount of mercury in the acoustic
pycnometer. For instance, a 0.2—cm3 loss of mercury when filling the
pycnometer, in the calibration run or sample run, would result in an
error of 1.9 percent in determining the amount of mercury in the acoustic
pycnometer. This error is significantly higher than the error experienced
when the measurements were made. A second problem occurs when filling
the pycnometer with mercury. Entrapped air is a major concern when using
the acoustic pycnometer. Since the sample chamber is cylindrical in
shape, if the pycnometer cell is not completely level when filling,

air could be entrapped in the top of the sample chamber. Tc lessen the
possibility of the entrapment of air, a conical sample chamber would

seem to be a more logical design. If it has a conical shape, even if

the sample chamber of the pycnometer is not level when the device

is filled, air will not be trapped as easily.

After filling, the pycnometer is then ready to be interfaced with
the electronic equipment by way of a waterproof-connector assembly
called the electronics-interface module. This is shown in Fig. 7. The
interface module and a teflon ring make the seal for the pressure
vessel. The threaded pressure-vessel top acts as a backing for the
interface module to compress the teflon ring so as to seal the pressure

vessel. The interface module also acts as a feed-through to bring
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the electric wires from the pycnometer, inside the pressure vessel,

out to the electronic equipment. The pressure vessel is placed into

a large water bath for nominal temperature control. Precise temperature
control is obtained by connecting a circulating bath to the copper coils
surrounding the pressure vessel to malntain the pycnometer at the
temperature desired. A pressure pump allows one to control the

static pressure P to which the elastomer sample is subjected.

Pycnometer measurements are made as a function of pressure at
constant temperature. When a desired temperature T is obtained at

ambient pressure P the volume of mercury in the bore is determined by

1’
the time-of-flight measurement described earlier. The pressure is now
increased to some new value P2 using the pump, and the temperature is
allowed to return to T. After the temperature has stabilized, another
time-of-flight measurement is made. This process is repeated at selected
pressure values to 70 MPa, and then this process is reversed and measure-
ments are made at the same pressure values back to ambient pressure.

This constitutes a pressure cycle at temperature T. The selected pres—
sures at which elastomer sample volume measurements were made were as
follows: O, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, and 70 MPa.
Finer pressure increments were used at low pressures (0 to 10 MPa)
because the low-pressure behavior of the pycnometer was desired. Several

of these pressure cycles at constant temperature were done for each of

the volume measurement made during the calibration and sample runs.
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The data obtained from the acoustic-pycnometer measurement are
time-of-flight as a function of pressure at constant temperature. This
time-of-flight is the time difference between two successive pulse
echoes, shown in Fig. 5, and is equal to the round-trip time of flight
in the bore. This time difference is measured by electronic means as a
frequency which is the reciprocal of the time of flight of the sound
pulse in the mercury column in the bore. A more detailed description of

the electronic equipment is given in Appendix A.

The data from the acoustic-pycnometer measurements are processed in

the sequence shown in Fig. 8. The pressure, temperature, and frequency

data are entered into a Hewlett-Packard Model 9825 Calculator, which is
used to compute the volumes of the mercury in the bore during the cali-
bration and sample runs, using Eq. (9). These results are entered into
a curve-fitting computer program RAGT.FTN on a PDP-11/45 computer, which
i1s used to obtain an expression for the volume of the mercury in the
bore as a function of pressure at constant temperature. The computer
program RAGT.FTN uses the method of least~squares to fit an empirical
expression to the data for the volume of the mercury in the bore, during
the calibration run and the sample run. This empirical expression is
needed to perform the sample~volume calculation using Eq. (14b). The
computer program PYCNOM.FTN uses the results of the program, RAGT.FTN,
te calculate the volume of the sample according to Eq. (14b), The
~aeylts of these anilvses are given in Section vV, The nrograms RACT.T7TY

ind PYDMOMLOTTY  are gritten in FORTRAN and make use ni che PhP=-11/45

e o
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Fig. 8 — Acoustic-pycnometer data-processing flowchart
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digital computer at the Naval Research Laboratory's Underwater Sound
Reference Detachment (NRL-USRD). The computer programs used are given

in Appendices C, D, and E.

IV. ENGINEERING CONSIDERATIONS

Volume measurements initially were attempted with an existing
pycnometer previously tried by several experimenters. The acoustic
pycnometer used in this investigation required several modifications
before consistent experimental results were obtained. The major

modifications were the construction of a thermistor plug, a transducer-

crystal mount, and a cesonant reflector float. These modifications were

made as the need for each arose during the course of the experiment.

Figure 9 shows the acoustic densitomer of Corsaro, Jarzynski, and
Davis [5]. These investigators encountered difficulties when making
measurements at pressures below 7 MPa. They attributed their difficul-
ties at low pressure to the presence of air in the sample chamber of the
densitometer, which entered when the device was filled with mercury even
though fi1lling was carried out with the device in a vacuum chamber.

Also in their design, the transducer in the base of the bore was backed
with a spring to hold it tightly against the bottom of the hore so as to
prevent mercury from leaking around the quartz crystal and shorting it
out. Moreover, the float they used on top of the mercury meniscus in

the bore was a cylinder with a conical top. The idea behind using the

conical top on the float was to provide a tapered impedance so that
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Fig. 9 — Acoustic densitometer
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little, or no, reflection of the sound pulse would occur from the top of
the float back into the mercury column. These investigators used a
platinum resistance thermometer for monitoring the temperature in the
pressure vessel. The theory Corsaro, Jarzynski, and Davis developed for
the acoustic densitometer system took into account only the compressi-
bility of the Invar container, as if it were a solid metal block, and of
the mercury within the densitometer. No calibration of the system was
performed to measure the behavior of the densitometer with the sample
absent. A volume determination of a polyethylene-oxide sample was done
by performing only a sample run. This neglected the possibility of
experimentally determining the behavior of the densitometer as a function
of temperature and pressure. In view of the significance of the effect
determined in the experiment reported here, omitting the calibration
procedure was a serious shortcoming in the technique of the earlier

investigators.

Previous investigators at this laboratory replaced the platinum
resistance thermometer used by Corsaro, Jarzynski, and Davis by two
thermistors. One thermistor was located on the outside of the densito-
meter close to the Invar container. The second thermistor was placed
inside the sample chamber of the densitometer, and the electrical leads
were brought outside the sample chamber through a glass-to-metal seal.
This glass~to-metal seal was screwed into the top of the densitomer

directly above the sample chamher. The addition of the second thermistoer

assured that thermal equilibrium was attained when the two thermistors
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were indicating the same value of temperature. When the existing
acoustic densitometer was initially assembled and filled with mercurv,

it was observed that mercury was leaking around the screw threade of the
glass-to-metal sc2’. Thia el made the existing densitomer o ocable,

A thermistor plug was made to replace the glass—to—metnal! seal arrangement.
This had a two-fold effect: thermal equilibrium could bhe ac-ured hecause
two thermistors were still used, and this thermistor plup provided a
better way to fill the pycnometer with mercuryv. Previously, the densito-
meter was filled by draining mercury from a burette down into the hore
where it landed on the quartz crystal. Sometimes this operation shattered
the quartz transducer in the base of the bore. Filling in this way also
permitted air to be trapped in the upper corners of the sample chamber.

By pouring the mercury through the thermistor-plug hole, the sample
chamber could be directly and completely filled with mercury. The

thermistor plug is shown in Appendix G.

To ensure a better contact between the electrode and the quartz
transducer crystal, an electrode plug was designed (see Appendix G) to
mount the electrode and transducer at the base of the bore. This re-
placed the spring-backed transducer arrangement in the original acoustic
densitometer. This transducer electrode plug was made of a machinable
ceramic to hold the transducer electrode in place without shorting it
out against the Invar container. An O-ring was used to make a seal
between the transducer crystal and the electrode plug. Use of this

electrode plug resulted in echoes of higher amplitude, a well-defined
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baseline on the received signal with bhetter quality pulse echoes, and
more pulse echoes present in the echo train. The electrode plug also
decreased the possibility of mercury flowing around the crystal and

shorting out the electrode because of the O-ring seal used.

The float shown in Fig., 9 was replaced by the resonant float
shown in Fig. 3a. When using the original conically topped float and
observing the pulse echoes on an oscilloscope, one found that the bhase-
line of the signal was not well defined, the amplitudes of the pulse
echoes were not very large, and there were few echoes in the echo train.
It appeared that this was due in part to an interference caused by the
signals propagating through the float material and reflecting off the
upper portion of the float. 1In the new design, this back-face reflection
was used to advantage to enhance the received signal. A resonant float
was made in the shape of a hollow cylinder, with the top open and the
lower end having a thickness of one half the wavelength of the sound
wave, in the material used for the float, at the driving frequency of
4 MHz. If the reflector is a half-wavelength thick, it permits the
reflected signal from the inner surface of the cylindrical-float base to
add in phase with the reflection from the base of the float. This
increases the received signal amplitude and consequently makes the
received signal more distinguishable from the baseline. The thickness
necessary for the base of the float can be determined from the operating

frequency of the transducer in the bore and the speed of sound in the

material used for the float. The thickness is




(18)

d = the thickness desired for the base of the float
c, = the speed of sound in the float material
f = the operating frequency of the transducer.

The float is made of stainless steel for which the bulk sound speed
e, = 5790 m/s. As stated earlier, the operating frequency is 4 MHz.
Therefore, the desired thickness should be 0.072 cm or 0.028 in. It was
found that this float—base thickness caused the reflected signal from
the inner surface of the cylinder base to add up in phase with the
reflected signal from the base of the float. This gave a well-defined
baseline, an increased signal amplitude, and a greater number of pulse-

echoes.

Additional problems arose with the existing densitometer due to
the nature of the operating frequency and the high voltages encountered
during the experiment. FElectrical cross talk was abundant when the
system was first used. Initially, a strain—gauge bridge with a pressure
transducer was used to measure the static pressure in the system. The #
4=MHz, cross-talk signal, which appeared on the pressure transducer
wires, ‘ed intn tihe strain-gaupe-bridge input terminals and continuallvy
Hurned et ont. Ar this reason, a mechanic ! pressure cauee

26 b lareten o Sien af the st in=eanee P ransducer and hridee.
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This cross—talk signal also appeared on the thermistor leads, which in
turn fed the signal into the electronic digital multimeters

used to monitor the temperature by measuring the resistance of the
thermistor. As a consequence, the multimeters were also being burned
out. To solve this problem, several capacitors were placed in parallel
across the inputs to the digital multimeters to short out the cross—
talk signal before it entered the multimeters. These shorting capacitors
would have no effect on the direct current that flowed through the
thermistor. In addition, the pulse amplitude of the electronic system
that generated the 4-MHz acoustic pulse was turned off when temperature
readings were being made. Similarly, when the pulse amplitude was
turned on during the time-of-flight measurement, the multimeters were

turned off.

Once these modifications were made, the acoustic pycnometer could

be used to determine the volume of elastomer samples.

V. EXPERIMENTAL RESULTS

The acoustic pycnometer was used to measure volume of two spherical
elastomer samples approximately 2.5 cm in diameter. The two elastomer
samples used were a sample of butyl-252 and a sample of type-W neoprene.
The volumes of these elastomer samples were measured by Archimedes'
principle at atmospheric pressure and 25°C before being placed into the
sample chamber of the acoustic pycnometer. The volume of the sample

3
of butyl-252 was 8,8433 cm’, and the volume of the sample of type-W
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neoprene was 8.7774 cm3 at 25°C. A discussion of Archimedes' principle

is given in Appendix E.

As stated earlier, the three measurements taken when using the
acoustic pycnometer are frequency, pressure, and temperature. Frequency
is the primary measurement necessary to obtain the time-of-flight
through the mercury in the bore of the pycnometer. Pressure and

temperature are auxiliary measurements. The frequency measurement

can be made to two parts in 104. The precision in the pressure measure-
ment and the temperature measurement is respectively *0.1 MPa and *0.2°C.
A random-error analysis is given in Appendix B. The experimental

results are calculated by computer and plotted on a Tektronix Model 4662

flat-bed plotter.

The acoustic pycnometer was calibrated at two temperatures (10°C
and 25°C) and as a function of pressure (to 70 MPa). The pycnometer

calibration runs are presented in Figs. 10 and ll. The points shown in

)

the figures are the measured values for vuoRE’

the volume of the mercury
in the bore, calculated using the HP-9825 program. The curves passing
through the data points were determined by the curve-fitting routine,
RAGT.FTN. Each had the form of a sixth-degree polynomial. The
computer program RAGT.FTN determines an expression for the volume

of the mercury in the bore as a function of pressure at constant
temperature by the method of least squares. Data were taken on two

pressure cycles at 10°C and 25°C. All of the calibration data for a

given temperature ere analyzed together, and then the sixth-degree
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polynomial was passed through the data. At pressures below 2 MPa, in-
consistent results were obtained. This was apparent from the lack of
precision observed in the data when measurements were made at low
pressure. Also, the curve-fitting routine could not fit the measured
values below 2 MPa., Therefore, all measured values below 2 MPa were

discarded.

When the measurements were made in the case of the sample runs, the
data for the volume of the mercury in the bore were analyzed cycle hy
cycle, when fitting the measured values to a sixth-degree polynomial.
Again, two pressure cycles were taken at temperatures of 10°C and 25°C;
but instead of lumping these data together and fitting a sixth-degree
polynomial to all the data, a sixth—degree polynomial initially was fit
through the volume- vs —-pressure data for each cycle. This cycle-by-
cycle analysis was done to investigate the possibility of hysteresis in
the elastomer samples. The term hysteresis, in this sense, implies the
sample would not return to its original volume after pressure cycling.

. This hysteresis was not observed in the sample of butyl-252., The type-W
neoprene sample showed some slight evidence of the hysteresis phenomenon,
but this could not be substantiated because mercury was driven into the
thermistor when pressure was applied during the sample run with the
neoprene sample. This small change in volume due to the mercury being
driven into the thermistor was enough to account for the "volume shift"
observed in the neoprene sample data. It was known that mercury was

being driven into the thermistor because the thermistor inside the
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Fig. 10 — Pycnometer calibration run at 10°C. Volume (cm3), shown
on the ordinate, represents the volume of the mercury in the bore of
the acoustic pycnometer. A sixth-degree polynomial is shown passing
through the experimental points.
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Fig. 11 — Pycnometer calibration run at 256°C. Volume (cm3), shown
on the ordinate, represents the volume of the mercury in the bore of
the acoustic pycnometer. A sixth-degree polynomial is shown passing
through the experimental points.
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sample chamber short circuited during pressurization (i.e., exhibited
zero resistance), and when the pressure was released, gave a temperature
reading similar to the second thermistor on the outside of the pycno-
meter. Moreover, when the apparatus was disassembled, small droplets of
mercury were actually found to bhe embedded in the epoxy encasinyg the
thermistor. This behavior indicated that there was a flow of mercury
into and out of the thermistor as the pressure was changed. The
thermistor was modified so mercury could not short 1t ont during the

measurements on butyl-252.

The measured values of VBORE made in the sample runs are given in
Figs. 12, 14, and 17. These runs show no evidence of hysteresis, as
stated earlier. 1In fact, it made no difference Lf all of the sample

data were lumped together or analyzed cycle by cycle. A curve, in the

form of a sixth—-degree polynomial, was fitted to the lumped data points.

Figures 13, 15, and 18 show the actual sample volumes V , As A

SAMPT,
function of pressure at constant temperature for butyl-252 and type-W
neoprene. Figure 15 is a plot of the volume of butyl-252 at 25°C as a
function of pressure. This plot is of particular interest because it
can give an idea of the accuracy of the volume determination when using
the acoustic pycnometer. Theoretically, this zero-pressure value of the

volume should coincide with the value of the volume of the butyl-252

sample determined by Archimedes' principle. The two determinations do,
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in fact, agree closely. The difference between the two zero-pressure
volume values of the butyl-252 is on the order of 0.22 percent. Since
the zero-pressure extrapolation of the curve fit and the volume deter-
mination by Archimedes' principle are in such close agreement, discarding
data below 2 MPa appears to be justified. The analysis performed to
determine VSAMPLE for the butyl-252 sphere was also applied to the
measurements made on the type-W neoprene sample at 25°C. The results

are shown in Fig. 18. The difference between the zero-pressure extra-
polation of the curve in Fig. 18 and the volume measurement of the

type-W neoprene sample made by Archimedes' principle yields an error of

only 0.30 percent.

Figure 13 illustrates the behavior of the volume of the butyl-252
sample at 10°C as a function of pressure. No direct comparison of the
zero~pressure extrapolation of the curve fit in Fig. 13 to a measurement
of volume by Archimedes' principle can be made. Tn determining the
volume by Archimedes' principle, one requires the water to be
approximately the same temperature as the surrounding air. If a temper-
ature gradient occurs in the water, convection currents in the water
will be initiated and a false weighing of the sample in the water will
result. Therefore, unless the water temperature can be kept constant,
Archimedes' principle will produce erroneous results. Unfortunately, no
apparatus for determining volumes by weighing the samples at different
temperatures was available. An estimate can be made to compare the
zero-pressure volume extrapolation of the butyl-252 sample at 10°C in
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Fig. 12 — Pycnometer sample run of butyl-252 at 10°C. Volume
(cm3), shown on the ordinate, is the volume of the mercury in the bore
of the acoustic pycnometer with a sample of butyl-252 present in the
sample chamber. A sixth-degree polynomial is shown passing through
the raw data.
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Fig. 13 — Volume of the butyl-252 sample at 10°C. Actual sample
volume is given as a function of pressure. A sixth-degree polynomial
is shown passing through the points calculated from Eq. (11b).
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Fig. 14 — Pycnometer sample run of butyl-252 at 25°C. Volume
(cm3), shown on the ordinate is the volume of the mercury in the bore
of the acoustic pycnometer with a sample of butyl-252 present in the
sample chamber. A sixth-degree polynomial is shown passing through
the raw data.
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Fig. 15 — Volume of the butyl-252 sample of 25°C. Actual sample

volume is given as a function of pressure. A sixth-degree polynomial
is shown passing through the points calculated from Eq. (11b).
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Fig. 17 — Pycnometer sample run of type-W neoprene at 25°C.
Volume (cm3), shown on the ordinate, is the volume of the mercury
in the bore of the acoustic pycnometer with a sample of type-W neo-
prene present in the sample chamber. A sixth-degree polynomial is
shown passing through the raw data.
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Fig. 18 — Volume of the type-W neoprene sample at 25°C. Actual
sample volume is given as a function of pressure. A sixth-degree
polynomial is shown.
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Fig. 13 with an independently de;ermined value of the volume of the
sample by using the value of the butyl-252 sample at 25°C measured hy
Archimedes' principle and the volume coefficient of expansion for butyl
rubber [9]. The value used for the coefficient of thermal expansion is
57 x 10-5/°C. Performing this analysis, one calculates a value

of 0.1 percent for the difference between the zero—pressure extraéolarion
of the curve fit in Fig. 13 and the volume calculated using the volume

coefficient of thermal expansion for batyl rubber.

Figure 16 shows a comparison between the volume of the butyl-252
sample at 10°C and 25°C. At low pressures (less than 5 MPa), the plot
of the measurement made on butyl-252 at 10°C does not exhibit the
same amount of curvature. This might be attributed to a differant

compliance of the rubber at the lower temperature.

To obtain an idea of the actual precision of the acoustic pycnometer
measurement technique, the observed deviation is compared to the random
deviatioé computed by the error analysis in Appendix B. The precision
of the experiment is quite good, as is seen in the graphs. The least-
squares curves pass directly through the clusters of data points. The
worst case of deviation is observed in Fig. 15, the plot for the sample
volume of butyl-252 at 25°C. However, even at 2 MPa, the worst case,
the observed deviation is only 0.17 percent. The maximum observed

deviation for the plot of the sample volume of butyl=252 at 10°C in
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Fig. 12 is 0.09 percent. The calculated random deviation when the

error analysis was performed is on the order of 0.1 percent.

The results obtained for the type~W neoprene sample are not
presented with the same degree of confidence as the results for the
butyl-252 sample. As has been mentioned, mercury apparently flowed
into and out of the thermistor located inside the sample chamber of the
acoustic pycnometer when pressure was applied and released. Since
the temperature could not be monitored as accurately because only the
thermistor on the outside of the pycnometer was functioning, thermal
equilibrium was not assured. Mercury intrusion into the thermistor
in the sample chamber also meant that a small amount of mercury was
being lost from the pycnometer into the thermistor inside the sample
chamber, so the volume change of mercury in the bore was not due just
to the volume change in the sample. This thermistor problem is also
the reason why no data were obtained on the type-W neoprene sample at

10°C and occasioned the deslign of the thermistor plug.

The sixth-~degree~polynomlal least-squares coefficients for the
volumes of the samples of butyl-252 and type-W neoprene at 25°C are
respectively given in Tables I and II. The sixth-degree-polynomial
coefficients for the volume of the butyl-252 sample at 10°C

are also presented in Table I.

From the experimental results, the isothermal bulk modulus (see

Appendix H) can be calculated by Eq. (H3). The results of the bulk-
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Table I — Least-squares coefficients used for the calculation of the
volume of the butyl-252 sample at 10°C and 25°C. The equation for
the volume of the sample has the form: Vg(P) = A; + AP + AzP2

] + A4P3 + AgP4 + AgPY + APS.
Butyl-252 Least-Squares Coefficients, P = Ambient to 70 MPa_
T = 10°C T = 25°C

ap | +|0.881761 x 100 + | 0.886270 x 101

A, | ~|0.439446 x 1073 - | 0.106370 x 10™2

Ay | ~]0.175415 x 1073 - | 0.157199 x 1073

A, | +]0.718107 x 1073 + | 0.633567 x 1073

Ag | -|0.147986 x 1076 - { 0.119845 x 1076

Ag | +]0.152569 x 1078 + | 0.108048 x 1078

a, | -10.625368 x 10711 - | 0.367876 x 10°11

Table II — Least-squares coefficients used for the
calculation of the volume of the type-W neoprene
sample at 25°C.

Type~W Neoprene Coefficients
P = Ambient to 70 MPa, T = 25°C

a. | + | 0.8803583 x 10!

1
Ayl - | 0.1917722 x 1071
Ayl + | 0.8394465 x 10-3
: A4l -] 0.1701149 x 10-4
% |+ | 0.7423981 x 1077
| Ag| + | 0.1733432 x 10-8

-10

Ayl -1 0.1609281 x 10




modulus calculation are given in Fig. Hl. As shown in Fig. Hl, the
isothermal bulk modulus of the butyl-252 sample rapidly decreases upon
initial compression and then becomes relatively constant at pressares
greater than 10 MPa. The bulk-moduli curves of the butyl-252 sample
intersect at high pressure (~65 MPa). This is probably a numerical
artifact associated with taking the derivatives of the sample-volume
curves in Fig. 16, which are needed for the calculation of the hulk
modulus. The drastic change in the low-pressure (less than 10 MPa)
bulk-moduli results in Fig, "1l might be due to some sort of rearrangement
of the molecular structure of the butyl-252 elastomer sample on a micro-
scopic scale. At this time, this conclusion is purely speculative. At
pressures greater than 10 MPa, the bulk-modulus of butyl-=-252 increases
slightly as a function of pressure, or the rubber becomes stiffer with

increasing pressure [10]. This behavior is also shown in Fig. Hl.

VI. SUMMARY AND CONCLUSIONS

The experimental results given in the preceding section demonstrate
that the acoustic pycnometer is an instrument for precise determination
of the volume of an elastomer sample as a function of pressure at any

temperature.

The only measure presently available of the accuracy of the pycno-
meter results is obtained by comparing the zero-pressure extrapolation
of the least-squares curve fit of the volume of the samples to the

volume of the samples when measured by Archimedes' principle at 25°C.
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Since this comparison yielded errors of 0.22 percent and 0.30 percent,
respectively, for the samples of butyl-252 and type-W neoprene, it can
be assumed the method used in this research is accurate as well as
precise.
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APPENDIX A

PULSE-ECHO OVERLAP TECHNIQUE

The time-of-flight measurement described earlier is done by a
method called the pulse-echo overlap technique [1]. This technique was
originally designed to accurately measure the speed of sound in a
material. One calculates the speed of sound in a material from measure-
ments of the time it takes for an ultrasonic pulse to propagate through

the material and from knowledge of the thickness of the material sample.

Instead of using the pulse-echo overlap technique to measure the
unknown speed c¢f sound in a sample of material by measuring the time of
flight in the sample, it was used in this investigation to determine the
height of a column of mercury (the sound speed in which is known) in the
bore of the pycnometer by Eq. (8). In the pulse-echo overlap method (Fig.
Al) the cw oscillator frequency is adjusted so that its period is exactly
equal to the round-trip time in the sample [12]. A standard oscilloscope
is used to observe the pulse-echo train shown in Fig. 5. The time
difference between two consecutive echoes is the time it takes for a
sound pulse to travel from the transducer in the base of the bore of the
pycnometer through the mercury column, to reflect from the float, and to
return to the transducer. The Matec 122-B dual decade-delay generator,
shown in Fig. Al, uses strobe signals (displayed via the oscilloscope)

to highlight the first and second echoes in the pulse-echo train. The
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: Fig. A1 — Schematic of acoustic-pycnometer measurement system




Hewlett-Packard frequency synthesizer is set approximately to the time
difference between the first and second echoes as determined by a rough
time measurement using the oscilloscope. These two echoes can be over-
lapped or superimposed when the horizontal sweep of the oscilloscope is
triggered by the cw triggers in the Model 122-8 {(Sweep Sync Out-Direct).
By carefully adjusting the vernier on the frequency synthesizer and hy
adjusting the time base on the oscilloscope, a precise overlap can be
achieved (see Fig. A2); hence an accurate measurement is made of the
time-of-flight in terms of a precisely set synthesizer frequency. When
aligning the echoes on the oscilloscope, the earliest distinguishable
feature is used as a reference to avold mismatching the echoes. The
only constraint is that the total sweep time must be less than the
round-trip time in the mercury column to allow for retrace time in the

oscilloscope [13].

57




-

Fig. A2 — Pulse-echo overlap: timebase = 0.5 us. The
earliest arriving echo has the greatest amplitude.




APPENDIX B

ERROR ANALYSIS OF THE ACOUSTIC PYCNOMETER MEASUREMENT

The precision of the method used in the acoustic-pycnometer
measurement can be investigated by examining the random deviation of the
components of Eq. (14b). The maximum resultant effect due to several
deviations in any measurement is simply the arithmetic sum of the

individual deviations in the measurement [l4], or

A = s e e e
o e T I + by (B1)
where
A = deviation of the resultant effect

RES
Al through Aj= the deviations attributed to the various components

of the measurement.

Each deviation in Eq. (Bl) can be expressed as

oM

A, = [&—

j am (82)

6j ,

where

M = the formula used to calculate the quantity desired and is
a function of the properties measured

mj = the property in which M exhibits a deviation

Sj = the actual deviation in a particular property measured.




Equation (Bl) represents a maximum possible random error because the
sums of the individual deviations are taken to be positive quantities
but in reality could have different signs. The most probable resultant

deviation,ARES, according to method of least—-squares [15], is

2 2 2 2
A =qAc ¢ A+ DS+ + 4
RES Jl 2 3 n (83)

An expression for the resultant deviation of the calculation of the
volume of the sample in the pycnometer measurement is obtained by applying

Eq. (Bl) to Eq. (14b). The resultant deviation is

\J

(P »T ) + W + AV + &v(P,T). (B4)

w ®,1) = BORE BORE

SAMPLE SAHPLE

The individual deviations, in Eq. (B4), are in turn the sum of

component deviations experienced when making their measurement.

Therefore, the individual deviation of VSAHPLE(Po To) is
Vs pmpLe ForTo) = { }+ {AWHZO} + {A"nzo} J (B5a)
where
(P ,T ) =

VsAMPLE Vsampre My ",0° pHzo(Po'To))'

The expression {Ama} refers to the deviation in volume due to

weighing the mass of the elastomer sample in alr. The notation used




s
3

to express the deviation of the mass of the elastomer sample in air
{Am } is
a

av
SAMPLE
= 8 .
3 ma (B5b)

a

The individual deviation associated with measuring the volume of

the mercury in the bore is
MV oeE = {Arb} + {Ac } + {Af} , (B6a)
since

v (r, (P, T), cHg(P,T), £). (B6b)

BORE ~ VBORE

The expression for the individual deviation for the last term in Eq.

(B4) is

AV(P,T) = {Am'} +{Am} + {Apﬂg} * {AVSAMPLE(PO'T°)} (87)
+{arf+ forg}+ for} +{or},

where

V(P,T) = V(m', m, pHg(To), v (POTO), PO,TO,P,T).

SAMPLE

The individual deviations given in Eqs. (B5a), (B6a), and (B7)
can be analyzed by using Eq. (B2). Applying Eq. (B2) to Eq. (BS5a), the

deviation of the initial sample volume, one obtains
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T e . 3

VsawpLe Vs aupLE
AV (P T ) = | ———7 Sm | + |—22=E g
SAMPLE om p
r'!a a amH20 20
(B8
op
+ 8VSAMPLE HZO
? 9T éTo
PH.0 o
2
Alter taking the appropriate derivatives, one finds that the
equation for the random deviation for the initial sample volume is
(P ,T) =z om +1— &
YsampLe b a P '"p
H,0 H,0
2 2
(m, +my o) 2oy 4 (B8
+ 2 2 T |-
52 AT °%o
HZO

a)

b)

In Eq. (B8D), 6ma, 6mH 0* and 8T are observed deviations assoclated with
2

measuring the mass of the sample in air, the mass of the sample in
water, and the temperature, respectively. It should be noted that an

appropriate estimate 1is needed for ApH O/AT. This estimate is obtained
2
by using the table of the density of water o

ature and taking a finite differcnce for AOH 0 between a temperature
2
above and below the temperature To.

By the preceding analysis, the random deviations can be calculated
for the case of the volumes of mercury in the bore AV and AV

BORE BORE 2

the volume of mercury associated with filling the pycnometer to a
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different level V(P,T)., Substituting this value obtained into Eq.
(B4), one can obtain an estimate of the resultant deviation for the
measurement of volume of any sample as function of pressure and

temperature in the acoustic pycnometer.

It is found that the deviation calculated from Eq. (B4) is

0.0088 cm3. This represents a random deviation in V (P,T) of 0.1

SAMPLE

percent. This estimate of 0.1 percent is calculated from the following

data:
P = 0.0 MPa ST = *0.2°C Gma = 30,0003 g
= = ° = U.

§P = +0.1 MPa T = 25% amﬁzo +0,0003 g

P = 0.0 MPa ST = *0.2°C r, = 0.5545 c¢m
o} o b

§P = *0,1 MPa f =13.0 kHz ¢y = 147150 cm/s
o Hg
T = 25°% §f = *5.0 Hz ap = 3.6 x 107°/°C

BV = 0,0/MPa.




APPENDIX C

CALCULATION OF THE VOLUME OF MERCURY IN THE
BORE OF THE ACOUSTIC PYCNOMETER

The volume of the mercury in the bore of the acoustic pycnometer

is given by

Veore = AL » (c1)

where
A = area of the bore

L = height of the mercury in the bore.

The area of the bore in Eq. (Cl) is a function of temperature and

pressure governed by the coefficient of thermal expansion and the
coefficient of compressibility of the pycnometer container. The volume

coefficient of thermal expansion is given by

1/3V
ay V<3T> . (c2) )
P ]
Therefore, at constant pressure the change in volume per unit volume is, ,
dav

The isothermal volume coefficient of compressibility is

--1lf3V
" v (39)1‘ . o
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Therefore, at constant temperature the change in volume per unit volume

is

dv B -

The expression for the change in area per unit area as a function of

temperature and pressure would then take on the form

A _ 2 -
Integrating Eq. (C6), one obtains
A(P.T) = nri exp[2(aVT - BVP)/3].

The volume VBORE of the mercury in the bore can be calculated by

Eq. (Cl) using Eq. (8) and Eq. (C7). It is found to be

1 2 A -
VBORE(P,T) =3 cHg(P,T) temry exp[-(aVT evp)/3]

A Hewlett-Packard Model 9825 Calculator is used to calculate VBORE

from Eq. (C8), The program is shown on the following page.

(C5)

(C6)

(c7)

(c8)




0: “"start":fxd 5

l: enp "Temp.
[Celcius]”,T

2: enp "Pressure
[MPal",P

3: enp "Freq.
[kHz]",F

4: 1460->r6;.46-r
7:.21-r8

5: 0-+r9;9e-6~rl0
6: .5545-R

7: (r6-r7*T+r8*
P)*100>C

8: prt "CHg [cm/
s]",C

9: .66667 (r9*T-
rl10*P)>D

10: exp(D)E

11: 5*rRt2%E*C/
(F*1000)>B

12: prt "VHBG
[ml] =",B;spc 2

13: gto 2
*1838




APPENDIX D
LEAST-SQUARES ANALYSIS AND COMPUTER PROGRAM

In order to use Eq. (14b) to determine the volume of an elastomer
sample as a function temperature and pressure, it 1is necessary to de-
termine an expression for the volume of the mercury in the bore of the
pycnometer during the sample run and the calibration run. This can be
accomplished by obtaining an equation of "best fit" to the experimental

data by the method of least squares.

Since the experimental data did not follow a linear relation
when plotted, a general least-squares solutfon is employed in the form

of a rational fraction:

A, + A x+A x2 + A x3 + A x4 + A x5 + A x6
1 2 3 4 5 6 7
y(x) = ) 3 2 5 6 ° (p1)
A8 + Agx + Alox + Allx + A12x + A13x + A14x

In Eq. (D1), the quantities x and y are the experimental observations.

The coefficients Al through Alh are determined by the method of least

squares as a best fit to the observed values of x and y. Rearranging

Eq. (D1) into a more convenient form, one obtains

2 3 4 S 6
Asy + Agxy + AlOX y + Allx y + AIZX y + A13x y + Aléx v

(D2)

z 3 L LA S 6 _
A,i - Azx - A3x Aax T AgX Asx - A7x =0,




Equation (D2) represents an equation of best fit for a sixth-order
rational fraction if no experimental errors are present in the
observed quantities x and y. However, this is never the case, since
all measurements are subject to error. Suppose one has n pairs of ex—

perimental measurements x (1=1, 2, . . . n). Then Eq. (D2)

1 Y1

can be written in terms of the observed quantities x, and Yy and the

i

experimental error v, associated with measuring x, and Yy

i i

2 6
Agyp ¥ AgX Yy +AIgX| Y + o v v e T A =y

2
A8y2 + A9x2y2 + A10x2y2 + .00 0 = AX

2
Agyy ¥ Agx;yy FApgxgyy t e v o e T Ay =y (p3)

L]
L
*
I
>
b
[ ]
<
L]

2
A8yn + A9xnyn + A10xn yn+

In Eq. (D3), the subscripts associated with the quantities Xys Yy

and vy refer to the i-th observation.

The least-squares principle states that the coefficients A1
through Al&’ in Eq. (D3), are the best fit to the data when the sum

of the squares of the errors is a minimum [16), or
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n
9 E 2 1.
3A, Vi 0
(i=1 ]
[ n 7]
e a 2
-— v =
3A Z 1
2 _i =1 ]
n
9 r z : 2 1., (4)
3, Vi
i =1
1 n
3 2
TN Z Vi |=0-
iy=1

After taking the derivatives in Eq. (D4), one obtains the final form

for the equation




n
avn 5
Vn —— = D
E n == 0 (D5)

i=1 3
n = 0.
%A

i=1 4

Equation (D5) produces a system of linear simultaneous equations in
terms of the observed quantities Xys Yyo In order that this system
of simultaneous equations is not linearly dependent, one of the
coefficients must be set to a known value. To solve a system of
simultaneous equations of this nature, in order to obtain the coeffi-

cients Al through A14, a digital computer is needed. Equation (D5)

can be written in matrix form as

(E] [A) = 0. (D6)

In Eq. (D6), the large matrix [E] represents the terms in Eq.

(D5) after the appropriate derivatives have been taken and multiplied
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by the error term v. The [A] matrix is a column matrix that represents

the coefficients which best fit the observed ata.

The computer program, RAGT.FTN, using NRL-USRD's PDP-11/45
computer, was written in FORTRAN to do the least-squares analysis. The
program was written in a general fashion to try and accommodate various
types of data. For instance, a polynomial curve fit 1is obtained by
simply initializing the coefficient A8 to 1 and by setting coefficients
A9 through A14 to zero. If a lower—degree polynomfal fit {is desired,
one simply suppresses the appropriate coefficient by setting it to
zero. The subroutine SELECT.FTN allows the user to select any

coefficient for initialization. The subroutine SUPRES.FTN sets any

desired coefficient to zero to lower the degree of polynomial. The
subroutine DSIMEQ.FTN solves the system of simultaneous equations

shown in Eq. (D6), by means of Gaussian elimination in double precision.
Once the least-squares coefficients, represented by the column matrix
[A] in Eq. (D6), are calculated, the subroutine YCALCU.FIN, uses these
least-squares coefficients to recalculate the function y(x) in Eq. (D1).

A listing of RAGT.FTN and all the subroutines used follows:




|

;

3
r~it--“r"****~—---JJ‘

PROGRAM DIRECTORY
DATA TO BE ENTERED
M=« OF DATA POINTS
XPRESS(100)= ARRAY TO HOLD PRESSURE DATA
YVOL(100)= ARRAY TO HOLD VHGB DATA
A(14,14)= ARRAY TO HOLD VARIOUS SUMS
B(N)= COLUMN MATRIX
N= NUMBER OF SIMULTANEOUS EQUATIONS
BYTE ANS(4)
DIMENSION XPRESS(100),YVOL(1090) ,XINC(100),YCALC(100)
DOUBLE PRECISION A(14,14),B(14),X(14),VALUE(14) ,DX1,DX2,DX3,
1DX4,DXS, DX6,DX7,DX8,DX9,DX10,DX11,DX12,DY],DY2,DX1Y1,DX1Y2,
1DX2Y1,DX2Y2,DX3Y1,DX3Y2,DX4Y1,DX4Y2,DX5Y1,DX5Y2,DX6Y1 ,DX6Y2,
I1DX7Y1,DX7Y2,DX8Y1,DX8Y2,DX9Y1,DX9Y2,DX10Y1 ,DX10Y2,DX11Y1,
1DX11Y2,DX12Y1,DX12Y2,X1,X2,X3,X4.X5,X6,X7,X8,X9,.X10,X11,X12,
1Y1,Y2,X1Y1,X1Y2,X2Y1 ,X2Y2,X3Y1,X3Y2,X4Y1 ,X4Y2,X5Y1,X5Y2,
1X6Y1,X6Y2,X7Y1,X7Y2,X8Y1,X8Y2,X9Y1,X9Y2,X10Y1 ,X10Y2,X11Y1,
1X11Y2,X12Y1,X12Y2,DUN,SCALE
WRITE(S, 1600)
1000 FORMAT(~/,'SUSE OLD DATA?')

READ(5,1010,END=800)ANS
1010 FORMAT (4A1)
IF(ANS(1) . EQ.’N')GO TO 870
OPEN(UNIT=1,NAME=' RAGT.DAT’ ,TYPE='OLD')
READ(1,18)M
DO 860 1=1,M

READ(1,12)XPRESS(1),YVOL(I)

e

Cc
]
C
C
C
C
C
C

860 - CONTIRUE

GO TO 119
870 OPEN(UNIT=1,NAME=" RACT.DAT' ,TYPE='NEW®)
Cc ALLOCATE STORAGE

DO 10 1=1,10€0
XPRESS(1)=0.0
YVOL(1)=0.0

10 CONTINUE
WRITE(5,15) -
13 FORMAT(SX,* SENTER THE NUMBER OF DATA POINTS')
READ(S,18)M
18 FORMAT(L10)

DO 100 J=1,M
) WRITE(D,11)

11 FORMAT(LX,' XPRESS,YVOL’)
READ(S, 12)XPRESS(J) ,YVOL(J)

12 FORMAT(2F10.0)

100 CONTINUE

WRITECL,18)M
PO 40 1=1,M
WRITEC1, 1020)XPRESS(1),YVOL(1)
1020 FORMAT(F10.5,F10.3)
40 CONTIRNUE
110 CLOSE(UNIT=1)
WRITE(S,1040)
1049 FOUMAT(/,* SENTER THE NUMBER OF SIMULTANEOUS EQUATIONS')
READ(S,105390)N
1050 FORMAT(14)
DATA X1,X2,X3,X4,X5.X6,X7,X8,X9,X10,X11,X12,Y1,Y2,X1Y1,X1Y2,
IX2Y1,52Y2 ., X3Y1 ,X3Y2,X4Y1,X4Y2,X5Y1,X3Y2,X6Y1 ,X6Y2,X7Y1,
IXTY2,X8Y1,X8Y2,X9Y1,X9Y2,X10Y1,X10Y2, X11Y1,X11Y2,X12Y1,
IX12Y2/30:0.00+02/
DO 50 I=1,11
C SET 1P DUMNY STORAGE
DX1=DBLE(XPRESS (1))
DX2=DPX1xDX1
DRB=DXTEDX2
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DX4=DR2:DX2
DX5=DX2:+:DX3
DX6=DX3*DKI
DX7=DX1:kDX6
DX8=DX2:i:DX6
DPX9=DX3:DX6
DX10=DX+:DX6
DX11=DX5:+DLX6
DX12=DX6:xDR6
Y 1=DBLECYVOL(L))
PY2=DY1xDY1
DX1Y1=DX1%DYI
DX1Y2=DY1%DY2
DPX2Y1=DX2¥DY1
DX2Y2=DR2*DY2
DX3Y1=DX3*DYI
DPX3Y2=DRIEDY2
BX4Y1=DX4%DY1
DX4Y2=DX4*DY2
DXS5Y1=DX3*DY1
DXSY2=DXI*DY2
DX6Y1=DX6xDY1
DX6Y2=DX63DY2
DX7Y1=DXT*DYl
DX7Y2=DX7+DY2
DXBY1=DXB*DY1
DXBY2=DXB*DY2
DX0OY1:=DX94DY1
DX9Y2:=DX9*DY2
DX10Y1=DX10*xDY1
DX10Y2:DX10::DY2
DX11Y1=DX11%DY1
DX11Y2=DX1 1#DY2
DX 12Y1=DX12:xDY1
DX12Y2=DX12:DY2
Cc START ACCUMULATING SUMS
X1=X1+DX1
K2=X2+DX2
X3=X3+DX3
X4=X4+DX4
K5=XG+DKXS
X6=X6+DX6
X7=X7+DX?
X83=X8+DX8
X9=X9+DX9
X10=X10+DX10
X11=X114DX11
X12=X124DX12
Yi=Y1+DYI
Y2=Y2+DY2
X1Y1=X1Y1+4DX1Y1
X1Y2:=X1Y2+DX1Y2
X2Y1=X2V1+DX2Y!
K2Y2=X2Y2+DK2Y2
X3Y1=X3Y1+DX3Y1
X3Y2=X3Y2+DX3Y2
X4Y1=X4Y1+DX4Y1
XAY2=XIY2+DX4Y2
X3Y1=X3Y1+DKOYI
X5Y2=X5Y2+DXR5Y2
X6Y1:=X6Y1+DX6Y)
X6Y2=X6Y2+DN6Y2
X7Y1=X7Y L +DX7YL
RZYL=XTY2+DRTYL
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X8Y1=XBY1+DXBY!
XBY2:=XBY2+DXBY2
X9Y1=X9Y1+DX9Y1
X9V2=X9Y2 +DX9Y2
X10Y1=X10Y1+DX10Y1
X10Y2=X10Y2+DX10Y2
XIYL=XI1Y1+DX11Y]1
X11Y22X11Y2+4DX11Y2
: XI2Y1=X12Y1+DX12Y]
3 X12Y2=X12Y2+DX12Y2
0 CONTINUE
STORE SUMS IN MATRICES A(N,N) AND B(N)
ACL, 1) =Y2
A2, D)=X1Y2
A(Z,2)=x2y2
A(3,1)=X2Y2
A(3,2)=X3Y2
AC3,3)=X4Y2
ACE, 1)=X3Y2
AC4,2)=N4Y2
A(4,3)=X5Y2
AC4,4):=X672
A(5,1)=X472
A(3,2)=X5Y2
A(5,3)=XeY2
ACS,4)=X7Y2
A(5,5)=X8Y2
AC6,1)=X5Y2
A(6,2)=X6Y2
A6, 3)=XTY2
A6, 4)=X8Y2
AL6.,3)=X9Y2
AC6,6)=X10Y2
AC7,1)=X6Y2
A(T,2)=X7Y2
A(7,3)=x8Y2
AC7,4)=X9Y2
‘ A(7.,5)=X10Y2
3 ACT,06)=X11Y2
& A€T,7)=X12Y2
AC8,1)=-Y1
ACH,2)=-X1Y)
A8, 3)=-X2Y1
A(B,4)=-X3Y1
ACH.5)=-X1YI
AB,6)=-X3Y1
ALB,7)=-X6Y1
b - ACH,. 8=
AC9,1)=-X1Y1

&

3 A9, 2)=-K2Y]

‘ ACY,3)=-38Y1

3 ACY 1) ==XEY
A9, 3)=-X3YL
A, 06)==-Xu¥1
A, Tr-NTY
AR |
(CRTRTRRNNT
ACIO e
(R TSR IR
VT, bt
L0, b VI

" AT Y]
‘\'l”.' \llll

N SRS B et
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AClu, B)=x2
ACLO,9)=X3
ACLO,10) =X+t
ACLL, 1) ==-X3Y1
ACLE,2)=-X4Y1
ACLD,3)=-X3Y1
ACLL,4)=-X6YI
ACIL,3)=-XTYI
ACL1,6)=-XuY1
ACL1,7T)=-X9Y1
: AC11,8)=X3
H AC11,9)=X
. ACLL,100=K53
. AC1E,11)=X6
AC12,1)=-X4Y1
AC12,2)=-N3Y1
AC12,83)=-X6Y1
AC12,4):=-47Y1
AC12,35)=-X8Y!1
AC12,0)==X9Y1
ACE2,7)=-X10Y1
AC12,8)=X4
AC12,9)=X3
AC12,10)=X6
ACE2,11)=X7 [
AC12,12)=X8 i
ACI13,1)=-X3Y1 H
AC13,2)=-X6Y1
A(13,3)=-X7Y!
A3, 4)=-X8Y1
AC13.3)=-X9Y1
AC13,6)==-X10Y1
A3, Tr=-X11Y1
AC13,8)=X5
AC13,9)=X6
AC13,10)=X7
1 AC13,11)=X8
-+ ’ AC13,12)=X9
k AC13,183)=X10
AC14,1)=-X6YL
AC14,2)=-X7Y1
AC14,3)=-X8Y1
A(14,4)=-X0Y1
AC14,5)=-X10Y1
ACL4,6)=-X11Y1
AC14,7)=-X12Y1
AC14,8):=X6
ACI4,9)=X?
AC14,100:=X8
ACI4,11)=X9
1 ACIY,12)=X10
ACTE, I3)=X11
ACTH, 1 =X12
h DIE TO CTHE SYMMETRY OF MATRIX A(N,N), THE REMAINDER OF THE
I AATREX CAN STORED BY THE USE OF A LOOP USING
o THE RELVETON ACK IV A, K)
JHY §2 b 2N
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1220 FOIMAT (7, SENTER THE SCALING FACTOR’)
READ(S, 1230)SCALE
1230 FORMAT(D24.17)
C SCALE THE MATRIX A(N,N)
DUM=(0.1000D+01)/SCALE
DO ?5 J=1,N
Do 70 K=1,N
A(J,K)=A(J ,K)%DUM

70 CONTINUE

75 CONTINUE

C THE SUBROUTINE SELECT ALLOWS YOU TO SELECT ANY OF THE CO-
] C EFFICIENTS FOR INITIALIZATION

CALL SELECT(N,A,B,VALUE)
WRITE(S,12060)

1200 FORMAT(/,* $SUPPRESS ANY COEFFICIENT?')
READ(5,1010,END=800)ANS
IF(ANS(1).EQ."N*)GO TO 1300
CALL SUPRES(N,A,B,X)

D WRITE(5,1060)

D106 FORMAT(' READY TO CALL DSIMEQ')

el
»

¥ C CALL SUBROUTINE TO SOLVE SIMULTANEOUS EQ.
: 1300 CALL DSIMEQ(N,A,B,X)
C CALL SUBROUTINE YCAL TO CALCULATE VALUES OF YVOL
CALL YCAL(N,X,YCALC,XINC)
Coo WRITE(S5,2600)
2000 FORMAT(’ PROGRAM EXITS!')
GO TO 900
900 CALL EXIT
ERD




SUBROUTINE DsSIMEQ(N,A,B,X)
DOUBLE PRECISION A(14,14),B(14),X(14),DET,SUM,C.
DIMENSTON JPRM(14)
D WRITE(S,30)
ns50 FORMANT (' ENTERED SUBROUTINE' )
DET=1.0D 00
DO 13 1=1,N
X([)=0.6D 00
18 JPRMCI) =1
¢ FIND THE ELLMENT OF MAXIMUM ABSOLUTE VALUE
3 DO 1 K=1,N
b C=N K, K)
2 4 11=X
JJ=K
Bo 24

)=~DABS(A(T,J0)))3,2,2

4 JJ=J
2 CONTINUE
DET=DET*C
D WRITE(3,33)DET
D33 FORMAT(3X,* DET='D24.17)
IF(DABS(DET))20,20,30
20 WRITL(3,100)
100 FORMAT (' MATRIX A(N,N)IS SINCULAR')
CALL EXIT
o BCl)y=Bci)sc
C DIVIDE EACH ELEMENT OF THE IITH ROW BY C
Kir0=K+1
DO 4 J=K.N
4 ACLL, )=l J)7C
ACIL,JJ)=1.0D 00
{ IF (11.FQ.K)GO TO 60
SWI'TCH THE KTH ROW AND THE 117TH ROW
DO 5 J=K.,N
C=A(K,)
ACK,J)=ACT T, d)
AClL,J)=C
C=B(K)
B(KO)=B(ID)
Bc11)=C
60 IF (JJ.EQ.K)GCO TO 70
() STORE THE LOCATION OF THE MAX PIVOT
1 [T=JPRMCID)
4 JPRM(JJ) = JPRM(K)
b . JPRMCE) =11
C SWITCH THE ETIH AND THE JJTH COLUMNS
DO 6 I=t N
C=AC] KD
ACH K)Y=ACL A0
6 ACT, 01 =€
[ GET SUB COLUNMN OF ZFEROES IN THE KTH COLUMN
o TFOELEQ. NGO TO o
DO 7 1=hPPON
DO 8 J=KI'O,N
8 ANCH, Y=L Y =ACT (D HACK, W)
BO)=BC) =N D) #BCED)
N At Er=0.0D oo
f CONT NI
. OBTALN THE X°S BY BACK SUBSTITUTION
Do v =1 N
E-H-1+1

O

<
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tol

Gt e L g

TS

KPO=K+1

SuUM=0.0D 00

I1F (KPO-N)24,24,26

DO 10 J=KPO,N

SUM=SUM+X (J)*A(K,J)

CONTINUE

X(K)=B(K)-SUM

CONTINUE

ORDER THE X'*S

Do 11 I={,N

B(I)=X(1)

DO 12 I=1,N

1I=JPRM(])

X(11)=B(I)

CONTINUE

WRITE OUT THE VALUES OF X(N)

DO 161 J=1,N
WRITE(5,99)J,X(J)
FORMAT(/,5X,* X ,12,')=",D24.17)

CONTINUE

RETURN

END
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70
89

1040
90

N .

SUBROUTINE SELECT(N,A,B,VALUE)
SET UP CATELOG ARRAY ICAT(N)
DINENSION [CAT(14)
DOUBLE PRECISION A(14,14),B(14),VALUE(14)
INITIALIZE B(N),lCAT(N),AND VALUE (N)
Do 10 J=1,N
B(J)=0.0D+00
1CAT (J)=1
VALUE(J)=0.0D+00
CONTINUE
SELECT THE COLEFFIECIENTS TO BE INITIALIZED
WRITE(S,20)
FORIAT (7, HOW MANY COLEFFICIENTS TO BE INITIALIZED?')
READ(3,30)NN
FORMAT(12)
DO 60 I=1,NN
WRITE(S,40)
FORMAT(/,* WHICH COEFFICIENTS TO BE INITIALIZED?')
READ(5,30)11
FORIMAT(I2)
ICAT(II)=0
WRITLE(S,53)
FORIMAT(/,*' WHAT VALUE DO YOU WANT COEFFICIENTS TO BE?')
READ(S,58)VALUE(I1)
FORMAT (D24.17)
CONTINUE
IN ORDER FOR THE SET OF EQUATIONS TO BE INDEPENDENT INSERT
THE APPROPRIATE VALUES IN B(N) AND A(N,N).
DO 80 J=1,N
DO 70 K=1,N
IFC(ICAT(K) .NE.0)GO TO 70
A(K,J)=0.0D+00
A(K,K)=1.0D+00
B(K)=VALUE(K)
CONTINUE
CONTINUE
DO 96 J=1,N
WRITE(S, 1040)J,B0J)
FORMYT (7, BC ,12,')=",D24.17)
CONTINUE
RETURN
END
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4
<

90
95
80

150

D100
200
500

SUBROUTINL SUPRES(N,A,B,X)
SET UP CATELOG ARRAY JCAT(N)
DIMENSTON JCAT(14)
DOUBLE PRECINSION AC14,14),BC14),X(14)
INITIALIZE JCAT(N) TO ONE
DO 20 J=1,N
JCAT(J) =1
CONTINUE
WRITE(S,40)
FORMAT (/' HOW MANY VALUES OF JCAT=0')
READ (5, 60)KK
FORMAT(12)
BO 80 L=1,KK
WRITE(S,90)
FORMAT(/,* WHICH VALUES OF JCAT=0')
READ(5,95)1
FORMAT (12)
JCAT(I)=0
CONTINUE
SET THE ROW IN MATRIX A(N,N) = O
DO 3606 J=1,N
DO 200 K=1,N
1IF(JCAT(K) .NE.0)GO TO 200
A(K,J)=0.0D+00
A(X,K)=1.0D+00
B(K)=0.0D+00
WRITE(S5,100)X,J,A(K,J)
FORMATC(/* AC ,I12,' ,',12,' )=",D24.17)
CONTINUE
CONTINUE
RETURN
END

(nigalias Lt
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D1096

D
D11CO
20

21

24

20

D
D1125
C

]

SUBROUTINE YCALCU(N,X,YCALC,XINC)
DOUBLE PRECISION X(14)
DIMENSION X1INC(500),YCALC(500) ,XSING(14),X(1),Y(1)

DATA DEN!,DEN2,DEN3,DEN4,DENS,DEN6,XNUMI ,XNUM2 , XNUM3 , XNUM4,

I XNUMS , XNUMG/12%0 .0/
BYTE FILEX(32)
WRITE(3,1095)
FORMAT(' ENTERED SUBROUTINE YCAL')
PUT X(N) INTO SINGLE PRECISION
DO 20 L=1,N
ASING(L)=SNCL(X (L))
WRITE(S,1100)XSING(L)
FORMAT(* XSIKG=*,E15.3)
CONTINUE
WRITE(S,21)
FORMAT(-,* MAXIMUM X YOU WISH TO GO*)
READ(5,24)1X
FORMAT(14)
J=1X+1
WRITE(S5,31)
FORMAT(/,' X INCREMENT VALUE?')
READ(S,35)XINCRE
FORMAT(F10.0)
ALLOCATE STORAGE
DO 40 1=1,J
XINC(])=
YCALC(I)
CONTIRUE
WRITE(S,1123)
FORMAT(® HAVE SET UP STORAGE')
SET UP LOOP TO CALCULATE YCALC(K)
DXINC=0.0
DO 50 K=1,J
XINC(K)=DXINC
DXINC2=DX1NCxDXINKC
DXINC3=DXINC2*%DXINC
DXINC4=DXINC2*DXINC2
DXINCI=DXINC2%xDXINC3
DXIHC6=DXINC3*DXINC3
DENI=XSING(2)*DXINC
DENZ2=XSING(3)*DXINC2
DEN3=XSING(4)*DXINC3
DEN4=XSING(3)*DX1INC4
BENG=XS1NG(6)*DXINC3
DENG6=XSING(?)*DXINC6
XNUMI=XSING(9)*DXINC
XNUM2=XSING(10)#DXINC2
XilUHI=XSING(11)#DXINC3
XNUM4=XSING(12)*DXINC4
XHUMG=XSTHG(13):*DXINCS
XNUM6=XSTNG(14)*DXINCO
FORM NUMERATOR AND DENOMINATOR OF YCALC
XNUM=XSTNG(8)+XNUM1 +XNUM2+XNUM3 +XNUM4 +XNUMG+XNUM6 -
XDUEN=XSING(1)+DEN1+DEN2+DEN3+DEN++DENG+DEN6
CALCULATE YCALC
YCALG(K) =XNUM/XDEN
INCREMENT DXINC
DXINC=DXINC+X1INCRE
CONTINUE
WRITE(G,10350)
FORMAT (/' 8F1LENAME FOR X,Y DATA: ')
READ(S, 1060) LEN, FILEX
FORMAT (Q,3201)
FILEX(LEN + 1)z0

0.0
=0.0
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OPEN(UNIT=1,NAME=FILEX,FORM="UNFORMATTED' ,TYPE="NE¥W' )
DO 220 1=1,J
READC1) X(1),Y(1)
220 CONTINUE
CLOSE(UNIT=1)
CONTINUE
RETURN
END

1
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APPENDIX E

DETERMINATION OF THE VOLUME OF A
SAMPLE BY ARCHIMEDES' PRINCIPLE
An accurate method to determine the volume of a sample is by the
use of Archimedes' principle. The volume of a sample at ambient

pressure Po and room temperature To (=25°C) is given by

(0 =) - 0)
m - -
a mHzO th (El)

I+
- P
H20 a

V(P ,T ) =

To calculate the volume of a sample using Eq. (El), one must determine
the mass of the sample m in air, determine the mass of the sample in
water mHZO, and use a known value of the density PH.0 of the water,
the density pwt of the weights used on the balance, and the density pa
of the air in the room at the temperature TO in the room. The masses

in Eq. (El) are apparent masses.

In this investigation, the masses ma and mHZO were determined by
using a Mettler Model H-311 Triple-Beam Balance, which has a maximum
capacity of 240 g and is accurate to #0.0003 g. Distilled water was
ugsed in this volume determination. It was deaerated, covered, and

then cooled to 25°C. The density p of the distilled water [17]

H,0
2
and the density Pa of the air were, respectively, 0.99705 g/cm3 and

0,001185 g/cm3. An average from four volume determinations was taken
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for both the butyl-252 sample and the type-W neoprene sample.

volumes were, respectively, 8.8433 cm3 and 8.7774 cm3.
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APPENDIX F
A FORTRAN PROGRAM (PYCNOM.FTN) TO CALCULATE THE
SAMPLE VOLUME AS A FUNCTION OF
TEMPERATURE AND PRESSURE
The FORTRAN program PYCNOM.FTN calculates the volume of the sample

used in the acoustic pycnometer according to Eq. (14b). The listing

of the program is given as follows:
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THIS PROGRAM CALCULATES THE VOLUME AND THE ISOTHERMAL
BULK MODULUS AS A FUNCTION OF PRESSURE.

THIS PROGRAM STORES THE PRESS. AND VOLUME IN FILE
CALLED 'FORO02.DAT"®

cacana

BYTE ANS(4)
DIMENSION A(14),AC(14),C(6),PRESS(100),VSAMP(100)
5 1,DERIV(109) ,BULK(100)
¥ WRITE(5,1100)
: 1100  FORMAT(/,' SUSE OLD DATA?")
READ(S5, 1110 ,END=800)ANS
1110  FORMNAT (4A1)
IF (ANS(1).EQ.’N')GO TO 870
OPEN(UNIT=1,NAME=' PYCNOH.DAT* ,TYPE="'OLD" )
READ(1,190)V0
WRITE(5, 195)V0
195 FORMAT(/,’ VO=',F{2.5)
READ(1,190)TENP
WRITE(S,196)TENP
196 FORMAT(/,’ TENP =’ ,F12.5)
READ (1, 190)RIO
WRITE(5, 194) IO
194 FORMAT(/,’' RHO=',F12.5)
READ(1, 190)WTSR
WRITE(5, 198)WTSR
198 FORMAT(~/,* WEIGHT OF HGC FOR SAMPLE RUN =',F12.5)
READC |, 190)WTCR
WRITE(5,199)WTCR

199 FORMAT(/,’ WEIGHT DURING CALIB. =',F12.5)
190 FORIAT(E12.6)

READ(1,163)NUMCR
165 FORMA'T(I2)

DO 1200 K=1,NUMCR
READ(1, 1 185)AC(K)
1185 FORMAT(E12.5)
1200  CONTINUE
. READ(1, 197 )NUMSR
, 197 FORMAT ( [2)
1 DO 1201 J=1,NUMSR
READ(1,1199)AJ)
1199  FORMAT(E12.5)
1201 CONTINUE
' GO TO 1210
- 870  OPEN(UNIT=1,NAME="'PYCNOM.DAT' ,TYPE=" NEW® )
i c ALLOCATE STORAGE
DO 10 J=1,100
PRESS (J
VSAMP (.J
DERIV (J
BULK(J)
10 CONTINUE

)=0.0

)=0.0

)20.0

0.0
DO 20 i=1,14

; , A(1)=0.0

; AC(1)=0.0

5 20 CONTINUE

¥ DO 25 K=1,6
€(K)=0.0
25 CONTINUE
WRITE(5,30)
FORMAT(/,* SENTFR THE INITIAL SAMPLE VOLUME')

;
! 30

Bt oo 7 1
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97
929

101
o8
1210
C

READ(5,90)V0

WRITE(1,290)V0

FORMAT(F12.35)

WRITE(5,35)

FORMAT(~/,* SENTER TEMP. OF SAMPLE RUN')

READ(3, 90)TEMP

WRITE(1,291)TEMP

FORMAT(F12.3)

WRITE(5,38)

FORMAT(~,* SENTER DENSITY OF HG')

READ(5,90)RI0O

WRITE(1,292)RHO

FORMAT(F12.3)

WRITE(5,40)

FORMAT(-,* SENTER WI'. OF HG DURING SAMPLE RUN’)

READ(5,90)WTSR

WRITE(1,293)WTSR

FORMAT(Fi2.3)

WRITE (5,50)

FORMAT(~,’ SENTER WT. OF HG DURING CALIBRATION’)

READ(S,90)WICR

WRITE(1,294)WTCR

FORMAT(F12.35)

FORMAT(E12.6)

GET READY TO READ THE COEFFICIENTS

WRITE(5,60)

FORMAT(/,* SENTER THE NUMBER OF COEFFICIENTS IN:CALIB. FORMULA®)

READ(5,65)NUMCR

WRITE(1,65)NUNCR

FORMAT(12)

DO 95 J=1,NUNMCR
WRITE(5,80)J
FORIAT(/," SENTER AC(',12,')")
READ(S,85)AC(J)
WRITE(,83)ACJ)
FORMAT(EI2.3)

CONTINUE

WRITE(5,96)

FORHMAT(/,* SENTER THE NUIMBER OF COEFFICIENTS IN:THE SAMPLE RUN')

READ(S,97)NUMSR

WRITE(1,97 )NUNSR

FORMAT(12)

bo 98 K=] ,NUMSR
WRITE(5,99)K
FORMAT(/,* SENTER AC',I12,')*")
READ(S,101)A(K)
WRITE(1,101)A(K)
FORMAT(E12.3)

CONTINUE

CLOSE(UNIT=1)

INITIALIZE VARIOUS VALUES TO ZERO

VSNUM=0.0

DVSNUM=0.0

VSDEN=0.0

DVEDEN=0.0

VBSR=0.0

TERM1=0.0

TERM2=0.0

DIFF=0.0

CDEN=0.0

DERIV1=0.0

DERIV2=0.0

VCHUM=0.0

DVCNUM=0.0
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VCDUEN=0.0
DVCDEN=0.0
TERMA=0.0
TERMB=0.0
FACTOR=0.0
FACT1=0.0
DERKFAC=0.0
ViPT=0.0
DERIV3=0.0
VBCR=0.0
P=0.0
r2:=0.0
P3=0.0
P4=0.0
P3=0.0
P6=0.0
PINC=0.0

ENTER THE VALUES OF C(6)
C(1)=0.1000E+01
C(2)=0.1821E-03
C(3)=-0,3733E~04
C(4)=-0.519LE~-07
C(5)= 0.434E-08
C(6)= 0.119E-10
START PERFORMING THE CALCULATIONS
TO=23.0
CDEN=C(1)+C(2)*TO
DIFF=(WTCR-WISR)/RHO - VO
FACTOR=DIFF/CDER
WRITE(S,120)
FORMAT(/,' SENTER MAXIMUM PRESSURE')
READ(S,130)KP
FORMAT(14)
WRITE(5,140)
FORMAT(/,* SENTER PRESSURE INCREMENT®)
READ(S,130)PINC
FORMAT(F10.0)
INITIALIZE THiIE PRESSURE TO ZERO
P=0.0
JP=KP+1
ALLLOCATE STORACE
DO 1500 J=1,JP
PRESS(J)=0.0
VSANMP(J)=0.0
DERIV(J)=0.0
BULK(J)>=0.0
CONTINUE
DO t00 I=t,JP
PRESS(1)=P
CALCULATE P2,P3,P4,P5,P6
P2=pPxp
P3=P2%pP
P4=P2%:pP2
P3=P3:p2
P6=P3*P3
CALCULATE THE VARIOUS VOLUMES

CALCULATE VOLUME OF BORE FOR THE SAMPLE RUN
SNUMACB)+A(9)%XP+ACL10)*P2+A (11 )XP3+A(12) %P4+

ACI3PS+AC14):EPE
CALCULAFL THE DERIVATIVE OF V:<AUM

DVSHUM=A(9)+2.0%A(10):xP+3 . 0%A(11)%P2+4.0¥A(12)%P3
1 +5.0%¥A(13)%P4+6.0%A(14)%P3
VSHEN=ACID#A(21RP+A ()P 24 A (4 %k PB+A(5IXPA+A(6)*P5!
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100

9999
160
C
170
200
1000

800

1 +A(T)%xP6

CALCULATE THE DERIVATIVE OF VSDEN
DVSDER=A(2)+2,0%A(3)%P+3.0%A(4)*%P2+4.0%A(5)*P3+

1 5.0%A¢(6)%P4+6.0%xA(7)%P3

CALCULATE THE VOLUME OF THE BORE DURING TUE SAMPLE RUN
VBSR=VSNUM/VSDEN

TERMI =VBSR/VSNUM
TERMZ2=VBSR/VSDEN
CALCULATE THE DERIVATIVE OF VBSR
DERIVIL=TERM!:#DVSNUM-TERM2xDVSDEN
START CALCULATIONS FOR CALIBRATION RUN
VCNUM=AC(B) +AC(9)%P+AC(10)*P2+AC(11)xP3+AC(12)*P4.

1 +AC(13):%xP3+AC(14)*P6
DVCNUM=AC(9)+2,0%AC(10)%P+3.0%xAC 11)*¥P2+4.0*%AC(12)*P3+
1 5.0%AC(13)%P4+6,0%xAC(14)*P5
VCDEN=AC(1)+AC(2)%P+AC(3)*P2+AC(4)*P3+AC(5)*P4+AC(6)*P5
1 +AC(7)*P6

DVCDEN=AC(2) +2.0%AC(3)*%P+3.0*%AC(4)%P2+4.0%AC(5)*P3+
5.0%AC(6)%P4+6.0%AC(7)*P5
CALCULA1F THE VOLUME IN THE BORE FOR THE CALIBRATION
VBCR=VCNUM/VCDEN

TERMA=VBCR/VCNUM
TERMB=VBCR/VCDEN
CALCULATE THE CORRESPONDING DERIVATIVE
DER1V2=TERHMA*DVCNUM-T! RMB*DVCDEN
CALCULATE THE VOLUME DUE TO A DIFFERENT FILL HEIGAT
FACT1=C(1)+C(2)XTEMP+C(3)*P+C(4)XTENP*P+C(5)%P2+
1 C(6)FTEMP#P2
VPT=FACT1%FACTOR
CALCULATE THE DERIVATIVE OF VPT
DERFAC=C(3)+C(4)¥TEMP+2.0%xC(5)%P+2.0%C(6)*TEMPXP
DERIV3=DERFACXFACTOR
CALCULATE THE SAMPLE VOLUME AND IT'S DERIVATIVE
VSAMP (1 )=VO+VBSR-VBCR+VPT  §
DERIV(1)=DERIVI-DERIV2+DERIV3
CALCULATE THE COMPRESSIBILITY
COMP=~(1.0/VSAMP (1))*DERIV(I)
CALCULATE THE 1SOTHERMAL STATIC BULK MODULUS
BULK(I)=1.0-COMP
INCREMENT TUE PRESSURE
P=P+PINC
CONTINUE 1
WRITE OUT THE VOLUME AS A FUNCTION OF PRESSURE
DO 200 J=1,Jp
WRITE(S, 160)PRESS (J) , VSAMP (J)
WRITE(2,9999)PRESS (J) , VEAMP (J)
FORMAT(2E12.5)
FORMAT(/,* PRESSURE (MPA)=',E12.5,3X,'VSAMP (ML)=',Ei2.5)
WRITE OUT THE BULK MODULUS
WRITE(G,170)PRESS (J) , BULK(J)
FORMAT(~/,’ PRESSURE (MPA)=' ,E12.5,3X,'BULK MOD. (MPA)=' ,E12.5)
CONTINUE
CLOSE(UNIT=2)
WRITE(S, 1000)
FORMAT(/,' PROGRAM EXITS!')
CALL EXIT
END
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APPENDIX G

PICTURE OF ACOUSTIC PYCNOMETER AND ENGINEERING DRAWINGS

R-205

Fig. G1 — Assembled acoustic pycnometer
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APPENDIX H

STATIC BULK MODULUS CALCULATION

The static bulk modulus of the elastomer samples used in the-

acoustic pycnometer measurement can be calculated from the least-

squares coefficients obtained by fitting the experimental data to a
sixth-degree polynomial. The sixth-degree polynomial expression for
the volume of the elastomer sample as a function of pressure at constant

temperature is given by

+ A2P + A3P2 + A4P3 + A P4 + A P5 + A P6 (H1)

= A 5 6 7

VSAMPLE 1

where
A1 through A7 = the least-squares coefficients of the sixth-degree
polynomial
The isothermal compressibility k is obtained by taking the derivative
of Eq. (H1) with respect to pressure and dividing this by the volume of

the sample at the desired pressure. The isothermal compressibility is

a1 ("Vsmpw> (H2)
Vsapte \ * Ut
The static bulk modulus B f£s the reciprocal of the isothermal
compressibility K. The expression used to calculate the static bulk

modulus B at constant temperature is




i

=1 .
7

1-2
Z(i - AP

i=2

B(P) = - (H3)

The static bulk modulus of the butyl-252 sample at 10°C and 25°C
is shown in Fig. Hl. (The behavior of the curves above 65 MPa is
believed to have no physical significance. This behavior seems to

be an artifact of the least-square analysis).
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