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A TECHNIQUE TO MEASURE THE VOLUME OF ELASTOMERS AS A

FUNCTION OF TEMPERATURE AND PRESSURE WITH AN ACOUSTIC PYCNOMETER

I. INTRODUCTION

This report describes the use of an acoustic pycnometer to measure

the volume of a spherical elastomer sample as a function of temperature

and pressure. The measurement of the volume of elastomer samples is

needed in determining the bulk modulus of elastomers.

The bulk modulus of a material is defined as the ratio of a tensile

or compressive stress, triaxial and equal in all directions (e.g.,

hydrostatic pressure), [I] to the relative change in volume it produces.

For a spherical sample this triaxial compressive stress is depicted as

a squeezing of the spherical sample by hydrostatic pressure, in which a

change in volume occurs without a change in shape (See Fig. 1) [21. The

static bulk modulus is defined as

APB(P,T) - - AVIVs(PT), ,  (1)

where

B(PT) - the static bulk modulus at pressure P and temperature T.

AV - the change in volume of the sphere

V (P,T) - the volume of the spherical sample at P and T.
5

To calculate the static or isothermal bulk modulus using Eq. (1),

a precise method to measure the volume of the sample V (P,T) ands

correspondingly the change in volume of the sample 'V is needed.

Manuscript submitted August 14, 1981.
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Fig. 1 - Description of bulk modulus B
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The dynamic bulk modulus of a material can be defined as the ratio

of a harmonically varying acoustic pressure to the corresponding change

in volume it produces, multiplied by the volume of the sample of the

material at the appropriate static pressure P and temperature T. The

expression for the dynamic bulk modulus of the sphere in Fig. 1 is

K(P,T,f) AV/Vs(P,T) (2)

where

K(P,T,f) - the dynamic bulk modulus of the sphere at static pressure

P, temperature T, and frequency f

p = the varying uniform acoustic pressure with frequency f

Av - the change in volume of the sphere due to the acoustic

pressure p.

Persons who work in the field of hydroacoustics are interested in

the dynamic bulk modulus of elastomers. Elastomers are used in

transducers to isolate the electrical components from seawater.

Another application of elastomers in hydroacoustics, is in their use

as hull coatings on submarines. Therefore, a precise experimental

method to determine the dynamic bulk modulus is of importance. One

way to obtain an expression for the dynamic bulk modulus of an elastomer

sample is from the theory describing the scattering of sound by an eiactic

sphere. In brief, if one use- the theor" .or R avlpiei scattering as the

basis (,r ],:namic huLk-mwli,'*1 determination, the followlig nriiments

i pply.
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An expression containing the dynamic bulk modulus of an elastomer

is obtained by solving the boundary-value problem for the scattering of

sound by an elastic sphere [3) composed of the elastomer that is immersed

in a fluid. If one looks at the scattering of sound in a confined chamber

where a volume-expander sound source (shown in Fig. 2) produces a harmonic,

uniform acoustic pressure, then the expression for the scattered pressure

is

32 K
Pik 3ae (3)

Ps ff - 3r 0
e

where

ps the scattered acoustic pressure

Pi the incident acoustic pressure

k 3 =2f/c 3, the wave number in the fluid

c 3 =the speed of sound in the fluid

a e the radius of the spherical elastomer
e

Kf the dynamic bulk modulus of the fluid

K = the dynamic bulk modulus of the spherical elastomer
e

r = the distance from the center of the spherical elastomer
to the receiver.

Equation (3) is true for nearfield (k3 r < 1) Rayleigh scatter ng

(k3a 1< 1) of the zero mode. The zero mode is the first term in the

series expansion of the solution to the boundary-value problem and

physically represents a uniform acoustic pressure field or breathing

4
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Fig. 2 - Scattering of sound by a spherical elastomer sample
in a confined chamber
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mode. The breathing mode is the mode of vibration that corresponds

to a harmonically varying hydrostatic pressure. If the chamber is

sufficiently small, only the zero mode is present.

If an acoustic scattering experiment is performed as shown in

Fig. 2, the scattered pressure is not measured directly. The total

pressure is measured by the receiver and is given by the expression

Ptotal m Pi + Pst (4)

where

Ptotal w the total pressure.

An expression for the ratio of K f/Ke in the confined chamber in

Fig. 2 can be obtained if three measurements are made: a measurement

with the chamber filled only with fluid, a measurement with a spherical

elastomer sample present in the fluid-filled chamber, and a measurement

with a rigid scatterer present in the fluid-filled chamber. By measuring

the total pressure p total with no sample present in the chamber, the

incident pressure expressed by Eq. (4) can be found. In any nearfield

experiment, the distance r from point of observation to the sample must

be taken into account. This is accomplished by introducing the expression

for the scattered pressure for a rigid sphere when placed in the same

position in the confined chamber in Fig. 2. The expression [41 for the

scattered pressure for a rigid sphere is

6



p 23
Pik 3ar (5)

Pr,s 3r

where

Pr,s = the scattered pressure from a rigid sphere

a = the radius of the rigid sphere.r

Using Eqs. (3), (4), and (5), one can obtain expressions for the

total acoustic pressures for scattering by a spherical elastomer sample

and by a rigid sphere in the confined chamber in Fig. 2. The results

are

I (1 - ) (6a)t e i3r mKe

and

Pt,r ri a (6b)

where

pt e - the total pressure measured when a spherical elastomer

sample is present in the confined chamber

Pt,r - the total pressure measured when a rigid sphere is present

in the confined chamber.

The ratio of the bulk modulus of the fluid to the bulk modulus of

the spherical elastomer sample is obtained by combining the results

given in Eqs. (3), (4), and (6), assuming that p, is the same:

| I llll7



i Pte

Kf V P,

t-r-Z (7)

e = htoueo tergdshr

r

V = the volume of the spherical elastomer sample.e

Equation (7) expresses the ratio of the dynamic bulk modulus of the

fluid in the confined chamber (refer to Fig. 2) to the dynamic bulk

modulus of the spherical elastomer in the chamber. To calculate the

ratio Kf/Ke using Eq. (7), as a function of temperature and pressure,

the volume V of the spherical elastomer sample must he known as ae

function of temperature and pressure. A confined chamber is analyzed

because one is interested in determining the ratio K f/Ke as a function

of pressure and temperature. The chamber shown in Fig. 2 permits one

to simulate the effect of ocean pressures.

The volume of a spherical elastomer sample can be measured

accurately by means of an acoustic pycnometer. The background for the

acoustic pycnometer used evolved from the work of Corsaro, Jarzynski,

and Davis [5). These investigators describe the use of an acoustic

densitometer to measure the change in volume of polyethylene oxide as

a function of temperature and pressure with a precision of 3 parts in

105.
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Kf V P-

__ = 1 i - (7)
Ke V e pre 1 -tr

Pi
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V = the volume of the rigid spherer

V = the volume of the spherical elastomer sample.e
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densitometer to measure the change in volume of polyethylene oxide as

a function of temperature and pressure with a precision of 3 parts in

105.
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If. ACOUSTIC PYCNOMETER THEORY

The acoustic pycnometer* is an instrument which is used to precisely

measure the volume of an elastomer sample. In this section the theory

used in the acoustic pycnometer measurement is outlined. First,

the principle of operation of the pycnometer is described. Second, the

pertinent equations are derived.

The acoustic pycnometer, shown in Fig. 3a, is composed of a two-

part Invar container, held together with screws and sealed with neoprene

O-rings. Within the container there is a sample chamber connected to

a bore by a narrow canal. At the base of the bore is an ultrasonic

quartz transducer. The transducer is a resonant device, which is 1.905

cm in diameter, 0.75 cm in thickness and operates at a frequency of

4 MHz. The entire pycnometer is filled with mercury (shown in black

in Fig. 3 a) under vacuum. The sound path, in the bore of the pycnometer,

is terminated by a resonant float to flatten the mercury meniscus. The

float design will be discussed later.

*The acoustic densitometer of Corsaro, Jarzynski, and Davis was obtained

from the Naval Research Laboratory in Washington, DC, but because of its
existing condition was unusable when this research was undertaken.
Several modifications had to be made in order to use it. Because of
these extensive modifications and because the modified device was used
in a different way than by Corsaro, Jarzynski, and Davis, its name was
changed to the acoustic pycnometer to distinguish it from the original
densitometer. The new name is appropriate because a pycnometer is an
instrument used to measure the volume or the density of a material. On
the other hand, the word "densitometer" might imply a connection with the
kind of instrument used in photography when there is none.

9
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Fig. 3a - Acoustic pycnometer with a spherical sample present
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Fig. 3b - Acoustic pycnometer: calibration case



An electronically generated 4-MHz pulse is used (see Fig. 4) to

excite the transducer at the base of the bore of the pycnometer causing

the transducer to transmit an ultrasonic 4-MHz pulse through the column

of mercury in the bore. This pulse is reflected by the float and

travels back through the column of mercury where the reflected pulse is

received by the transducer and is also reflected by the transducer back

into the mercury-filled column. The process repeats, producing a sequence

of echoes, until an electronically controlled repetition time has elapsed

and another pulse is generated by the electronic equipment. This electronic

pulse excites the transducer, and another transmitted pulse is produced

at the transducer. Again a series of pulse echoes occurs. This

series of pulse echoes is commonly called an echo train. Figure 5 is a

photograph taken of an oscilloscope display of an echo train.

When a sample is placed in the sample chamber of the pycnometer

(see Fig. 3a), the change in volume of the sample caused by any change

in temperature and pressure produces a change in the volume of the

mercury in the bore. The height of the mercury column is determined as

follows. The time it takes for a 4-MHz sound pulse to travel from the

transducer in the base of the bore through the mercury column to the

float and return to the transducer is measured. This time is called

the time-of-flight. This time-of-flight is determined by measuring the

difference in time between two successive pulse echoes on an oscilloscope

(as shown in Fig. 4). By multiplying the time-of-flight by the speed

of sound in mercury, the length of the mercury column for any temperature

12



Fig. 4 - 4 MHz driving pulse, timebase =2 jis
Pulse amplitude =600 volts, peak-to-peak
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Fig. 5 - Pulse-echo train, timebase 50 ps ampli-
tude of the first echo in the train is approximately
= 0.8 volts peak-to-peak.
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and pressure can be calculated by

1
L = C td (8)

where

L - the length of the mercury column

Cdg =the speed of sound in mercury

td = the difference in time between two successive pulse-echoes.

The measurement of the time-of-flight will be discussed in detail

in Appendix A. The volume of the mercury in the bore of the pycnometer

is found by multiplying the length given by Eq. (8) by the cross-

sectional area of the bore. The measured volume VBORE is corrected

to account for the change in dimension of the bore produced by changes

in pressure and temperature. The volume of the mercury in the bore is

given by

VBO E = CHg td 7r exp[2(avT - avP)/31, (9)

where

rb - the radius of the bore

aV - the volume coefficient of thermal expansion of the

pycnometer material

aV "the volume coefficient of isothermal compressibility of

the pycnometer material.

15



The units of the temperature and pressure are respectively in degrees C

and MPa and the pressure used is gauge pressure. These units for

temperatare and pressure will be used throughout this paper. Equation

(9) is derived in Appendix C.

Mercury is used as a working medium in the acoustic pycnometer

because the speed of sound and compressibility of this liquid are well

documented. The equation for the speed of sound in mercury as a function

of temperatuo and pressure is [6]

CHg(PT) - 1460.0 - 0.460T + 0.210P. (10)

The units of the sound speed in Eq. (10) are m/s. The volume of an

elastemer sample can be calculated if the volume of mercury in the bore

is determined in two cases: a measurement is made with a sample present

in the sample chamber of the pycnometer (shown in Fig. 3a) and a second

measurement with no sample present in the sample chamber (see Fig. 3b).

The measurements taken with no sample present in the pycnometer are

referred to as a calibration run. A calibration method is used to

account for the compressibility of the pycnometer, which is a significant

effect in the experiment.

To obtain an expression for the volume of a sample when using the

acoustic pycnometer, two cases must be analyzed: the calibration run

and the sample run. Writing down the equations for the volumes of

mercury in the pycnometer, in the configuration shown respectively

16



in Figs. 3a and 3b, one obtains

VHg(PT) = VCHAM + VCANAL + VBORE VSAMPLE (11a)

and

I I

VHg(P,T ) - VCHAM+ VCANAL + VBORE , (lib)

where

V Hg(P,T) = the volume of mercury in the pycnometer during the

sample run

VHg(PT) - the volume of mercury in the pycnometer during the

calibration run

VCRAM m the volume of the chamber

VCANAL = the volume of mercury in the canal

VBORE = the volume of mercury in the bore during the sample run

V' = the volume of mercury in the bore during the calibration runBORE

VSAMPLE = the volume of the sample.

To obtain an expression for the volume of the sample, one subtracts

Eq. (11b) from Eq. (11a). The result is

- m-
VSAMPLE - BORE - BORE + PHg(T ) , (12)

where

m' the mass of mercury used in the pycnometer during

the calibration run

17L A..



T4

m = the mass of mercury used in the pycnometer during the sample

run

PHg(Tf) - the density of mercury at the filling temperature Tf and the

filling pressure Pf

In Eq. (12) the difference V' - V in the volumes of mercury in the

Hg Hg

pycnometer, which arose from the subtraction of Eq. (l1b) from Eq. (11a),

has been replaced by the difference in the masses of mercury divided by

the density of mercury. The difference in VBORE and VBORE at a given

temperature T and pressure P is due to the change in volume of the

sample and to filling the pycnometer with mercury to different heights

during the sample run and during the calibration run. Therefore,

VBORE(P,T) - VHgB + AVSAMPLE (13a)

where

V HgB(T f ) = the volume of the mercury in the bore at temperature Tf
HgBTf

and pressure Pf

AVSAMPLE the change in volume of the sample.

BORE is equal to VBORE plus a volume of mercury due to filling the

V BORE

bore of the pycnometer to a different height:

I

VBORE(P,T) - VHg B + V(P,T) , (13b)

where

18



V(P,T) the additional volume of mercury in the bore due to

filling the pycnometer to different heights during the

sample run and during the calibration run.

The difference in VBORE and VBORE is obtained by subtracting Eq. (13a)

from Eq. (13b). The result is

VBORE(P,T) - VBORE(P,T) (14a)

- SAMPLE(P,T) - V SAMPLE(Po,T o ) - V(P,T),

where

VSAMPLE(PoT) the initial volume of the sample when it is placed

into the pycnometer (as measured by Archimedes'

principle) at temperature T and ambient pressure0

P.
0

It should be noted that the pressures Pf and P both refer to ambient

atmospheric pressure. Also the temperatures T and Tf were both

approximately 25*C. By rearranging Eq. (14a), one obtains an expression

for the volume of a sample as a function of pressure and temperature:

V SAMPLE (P,T) = VSAMPLE (Po 'To 0
(14b)

+ VBORE(P,T) - VBORE(P,T) + V(P,T).

Before Eq. (14b) can be used, an expression is needed for V(P,T)

in terms of known or measured quantities. This expression is found in

19



the following way. At the pressure P and the temperature To, Eqs. (12)
0

and (14b) when subtracted give

V(P ,To) m' -M -V (15)

0 0 PHg (PoPT 0) SAMPLE (Po,o)

Equation (15) expresses the difference between the volumes of the

mercury contained in the bore of the pycnometer during the calibration

run and during the sample run at temperature T and pressure P . As0 0

mentioned earlier, the sample volume V SAMPLE(Po,T ) in Eq. (15)

is determined by Archimedes' principle at ambient temperature T and

pressure PO, before being placed into the acoustic pycnometer. By using

Eq. (15) and the equation of Grindley and Lind [7], which gives the volume

of mercury as a function of temperature and pressure, one obtains for

V(P,T) the expression

Do= TD(PT) ?m' - m (Po,To (16)
V(P,T ) pri(To) - VSAMPLE 0

where

D(P,T) = 1 + d T - d2P - d 3TP + d4
P 2 + d 2TP2

d I  = 1.821 x 10 - 4

d2 - 3.153 x 10
- 5

d 3 = 5.19 X 10 - 8

d4 = 4.54 X 10 - 9

d 5 = 1.19 X 10 .

20



From the previous development of the theory, it can be seen that

the volume of a sample can be determined as a function of temperature

and pressure by Eqs. (14b) and (16). By using the calibration method,

the compressibility of the pycnometer can be taken into account.

Previous investigators attributed the compressibility of the pycnometer

to be due solely to the compressibility of the Invar container material

acting as a monolithic block of material. The calibration method requires

accurate measurement of the initial sample volume prior to being inserted

into the sample chamber of the pycnometer. This technique also requires

accurate determination of the amounts of mercury used in the pycnometer

during the calibration run and during the sample run. However, all of

the measurements necessary for the success of the calibration method

are made by standard laboratory procedures.

III. ACOUSTIC PYCNOMETER EXPERIMENTAL METHOD

The acoustic pycnometer can be used to determine the volume of

elastomers as a function of temperature and pressure after two preliminary

steps have been completed. First the spherical elastomer samples need

to be fabricated. Second, one needs to obtain the initial volume of

the samples at ambient pressure P and a known temperature T0 0

VSAMPLE(PoTo0).

The pycnometer is assembled, and the transducer is put into place.

The assembled pycnometer is then placed in a vacuum chamber where it is

21



to be filled with mercury (see Fig. 6). The mercury filling is done by

using a burette from which mercury is drained into the sample chamber of

the pycnometer while the pycnometer is kept under vacuum. Previous in-

vestigators at our laboratory determined the volume of mercury drained

into the pycnometer by reading the volume of mercury used from the

graduated scale on the burette. In the more accurate method, used in

this investigation, the mass of the mercury used in filling the pycnometer

was determined by weighing and the tabular value of the density of

mercury was used to calculate the volume of mercury [8]. The volume of

the mercury placed into the pycnometer is calculated by

m, - m

VHg = PHgT), (17)

where,

mi = the mass of mercury contained in the burette prior to filling

the pycnometer

mf = the mass of mercury contained in the burette after the

pycnometer has been filled.

The mass mi in Eq. (17) is obtained by weighing an initial amount of

mercury which is then poured into the burette shown in Fig. 6. Once

the pycnometer is completely filled, the remaining mass mf of mercury

in the burette is reweighed and the volume of the mercury in the pycnometer

is calculated by Eq. (17). Since mercury vapor is extremely toxic,

exLreme caution was cxercised when ;)erformiig thc. mrcurv f 1i C.

I2



VACUUM HOSE MERCURY

-BURETTE
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VACUUM
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THERMISTOR

PYCNOMETER 
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Fig. 6 - Mercury-filling apparatus
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A major source of experimental error can occur when filling the

acoustic pycnometer with mercury. Any mercury lost upon filling will

result in an error when determining the amount of mercury in the acoustic

3
pycnometer. For instance, a 0.2-cm loss of mercury when filling the

pycnometer, in the calibration run or sample run, would result in an

error of 1.9 percent in determining the amount of mercury in the acoustic

pycnometer. This error is significantly higher than the error experienced

when the measurements were made. A second problem occurs when filling

the pycnometer with mercury. Etltrapped air is a major concern when using

the acoustic pycnometer. Since the sample chamber is cylindrical in

shape, if the pycnometer cell is not completely level when filling,

air could be entrapped in the top of the sample chamber. To lessen the

possibility of the entrapment of air, a conical sample chamber would

seem to be a more logical design. If it has a conical shape, even if

the sample chamber of the pycnometer is not level when the device

is filled, air will not be trapped as easily.

After filling, the pycnometer is then ready to be interfaced with

the electronic equipment by way of a waterproof-connector assembly

called the electronics-interface module. This is shown in Fig. 7. The

interface module and a teflon ring make the seal for the pressure

vessel. The threaded pressure-vessel top acts as a backing for the

interface module to compress the teflon ring so as to seal the pressure

vessel. The interface module also acts as a feed-through to bring

24
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THREADED PRESSURE

VESSEL TOP

ELECTRONICS
INTERFACE MODULE
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INSULATED1ATERBATH ,,I
WAEBLL- REFRIGERATION
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Fig. 7 - Pycnometer pressure and temperature control system
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the electric wires from the pycnometer, inside the pressure vessel,

out to the electronic equipment. The pressure vessel is placed into

a large water bath for nominal temperature control. Precise temperature

control is obtained by connecting a circulating bath to the copper coils

surrounding the pressure vessel to maintain the pycnometer at the

temperature desired. A pressure pump allows one to control the

static pressure P to which the elastomer sample is subjected.

Pycnometer measurements are made as a function of pressure at

constant temperature. When a desired temperature T is obtained at

ambient pressure PP, the volume of mercury in the bore is determined by

the time-of-flight measurement described earlier. The pressure Is now

increased to some new value P2 using the pump, and the temperature is

allowed to return to T. After the temperature has stabilized, another

time-of-flight measurement is made. This process is repeated at selected

pressure values to 70 MPa, and then this process is reversed and measure-

ments are made at the same pressure values back to ambient pressure.

This constitutes a pressure cycle at temperature T. The selected pres-

sures at which elastomer sample volume measurements were made were as

follows: 0, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60, and 70 MPa.

Finer pressure increments were used at low pressures (0 to 10 MPa)

because the low-pressure behavior of the pycnometer was desired. Several

of these pressure cycles at constant temperature were done for each of

the volume measurement made during the calibration and sample runs.
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The data obtained from the acoustic-pycnometer measurement are

time-of-flight as a function of pressure at constant temperature. This

time-of-flight is the time difference between two successive pulse

echoes, shown in Fig. 5, and is equal to the round-trip time of flight

in the bore. This time difference is measured by electronic means as a

frequency which is the reciprocal of the time of flight of the sound

pulse in the mercury column in the bore. A more detailed description of

the electronic equipment is given in Appendix A.

The data from the acoustic-pycnometer measurements are processed in

the sequence shown in Fig. 8. The pressure, temperature, and frequency

data are entered into a Hewlett-Packard Model 9825 Calculator, which is

used to compute the volumes of the mercury in the bore during the cali-

bration and sample runs, using Eq. (9). These results are entered into

a curve-fitting computer program RAGT.FTN on a PDP-11/45 computer, which

is used to obtain an expression for the volume of the mercury in the

bore as a function of pressure at constant temperature. The computer

program RAGT.FTN uses the method of least-squares to fit an empirical

expression to the data for the volume of the mercury in the bore, during

the calibration run and the sample run. This empirical expression is

needed to perform the sample-volume calculation using Eq. (14b). The

computer program PYCNOM.FTN uses the results of the program, RAGT.FTN,

tr calculate the volume of the qample accordinR to Eq. (14h). The

-. ot of these :1m:y~es are given in Section V. The nrograms RAC-.P:

inal 'i ) . "re 'writteii in IMRTRAN and make use nf The PDP-II/4
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digital computer at the Naval Research Laboratory's Underwater Sound

Reference Detachment (NRL-USRD). The computer programs used are given

in Appendices C, D, and E.

IV. ENGINEERING CONSIDERATIONS

Volume measurements initially were attpmpted with an existing

pycnometer previously tried by several experimenters. The icnistic

pycnometer used in this investigation required several modific.ttons

before consistent experimental results were obtained. The major

modifications were the construction of a thermistor plug, a transducer-

crystal :ount, and a L'sonant reflector float. These modifications were

made as the need for each arose during the course of the experiment.

Figure 9 shows the acoustic densitomer of Corsaro, Jarzynski, and

Davis [5]. These investigators encountered difficulties when making

measurements at pressures below 7 MPa. They attributed their difficul-

ties at low pressure to the presence of air in the sample chamber of the

densitometer, which entered when the device was filled with mercury even

though filling was carried out with the device in a vacuum chamber.

Also in their design, the transducer in the base of the bore was backed

with a spring to hold it tightly against the bottom of the bore so as to

prevent mercury from leaking around the quartz crystal and shorting it

out. Moreover, the float they used on top of the mercury meniscus in

the bore was a cylinder with a conical top. The idea behind using the

conical top on the float was to provide a tapered impedance so that
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little, or no, reflection of the sound pulse would occur from the top of

the float back into the mercury column. These investigators used a

platinum resistance thermometer for monitoring the temperature in the

pressure vessel. The theory Corsaro, Jarzynski, and Davis developed for

the acoustic densitometer system took into account only the compressi-

bility of the Invar container, as if it were a solid metal block, and of

the mercury within the densitometer. No calibration of the system was

performed to measure the behavior of the densitometer with the sample

absent. A volume determination of a polyethylene-oxide sample was done

by performing only a sample run. This neglected the possibility of

experimentally determining the behavior of the densitometer as a function

of temperature and pressure. In view of the significance of the effect

determined in the experiment reported here, omitting the calibration

procedure was a serious shortcoming in the technique of the earlier

investigators.

Previous investigators at this laboratory replaced the platinum

resistance thermometer used by Corsaro, Jarzynski, and Davis by two

thermistors. One thermistor was located on the outside of the densito-

meter close to the Invar container. The second thermistor was placed

inside the sample chamber of the densitometer, and the electrical leads

were brought outside the sample chamber through a glass-to-metal seal.

This glass-to-metal seal was screwed into the top of the densitomer

directly above the sample chamber. The addition of the second thermistor

assured that thPrmal eqiii!ihrtum was attained when the two thermistors
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were indicating the same value of temperature. When the existing

acoustic densitometer was initially assembled and filled with mercury,

it was observed that mercury was leaking around the screw tlhrei 4  of tvr

glass-to-met!l sc' I hq 'o' made the existing dens~tr-mr .

A thermistor plug v'as mado to replace the glass-to-metil qenl irrangement.

This had a two-fold effect: thermal equtilibrium could e an-e!rtd because

two thermistors were still used, and this thermistor plug provided a

better way to fill the pycnometer with mercury. Previously, the densito-

meter was filled by draining mercury from a burotte down into the bore

where it landed on the quartz crystal. Sometimes this operation shattered

the quartz transducer in the base of the bore. Filling in this way also

permitted air to be trapped in the upper corners of the sample chamber.

By pouring the mercury through the thermistor-plug hole, the sample

chamber could be directly and completely filled with mercury. The

thermistor plug is shown in Appendix G.

To ensure a better contact between the electrode and the quartz

transducer crystal, an electrode plug was designed (see Appendix G) to

mount the electrode and transducer at the base of the bore. This re-

placed the spring-backed transducer arrangement in the original acoustic

densitometer. This transducer electrode plug was made of a machinable

ceramic Lo hold the transducer electrode in place without shorting it

out against the Invar container. An O-ring was used to make a seal

between the transducer crystal and the electrode plug. Use of this

electrode plug resulted in echoes of higher amplitude, a well-defined
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baseline on the received signal with better quality pulse echoes, and

more pulse echoes present in the echo train. The electrode plug also

decreased the possibility of mercury flowing around the crystal and

shorting out the electrode because of the O-ring seal used.

The float shown in Fig. 9 was replaced by the resonant float

shown in Fig. 3a. When using the original conically topped float and

observing the pulse echoes on an oscilloscope, one found that the base-

line of the signal was not well defined, the amplitudes of the pulse

echoes were not very large, and there were few echoes in the echo train.

It appeared that this was due in part to an interference caused by the

signals propagating through the float material and reflecting off the

upper portion of the float. In the new design, this back-face reflection

was used to advantage to enhance the received signal. A resonant float

was made in the shape of a hollow cylinder, with the top open and the

lower end having a thickness of one half the wavelength of the sound

wave, in the material used for the float, at the driving frequency of

4 MHz. If the reflector is a half-wavelength thick, it permits the

reflected signal from the inner surface of the cylindrical-float base to

add in phase with the reflection from the base of the float. This

increases the received signal amplitude and consequently makes the

received signal more distinguishable from the baseline. The thickness

necessary for the base of the float can be determined from the operating

frequency of the transducer in the bore and the speed of sound in the

material used for the float. The thickness is

33



d = co mf, (18)m

where

d = the thickness desired for the base of the float

cm = the speed of sound in the float material

f = the operating frequency of the transducer.

The float is made of stainless steel for which the bulk sound speed

c = 5790 m/s. As stated earlier, the operating frequency is 4 mHz.

Therefore, the desired thickness should be 0.072 cm or 0.028 in. It was

found that this float-base thickness caused the reflected signal from

the inner surface of the cylinder base to add up in phase with the

reflected signal from the base of the float. This gave a well-defined

baseline, an increased signal amplitude, and a greater number of pulse-

echoes.

Additional problems arose with the existing densitometer due to

the nature of the operating frequency and the high voltages encountered

during the experiment. Electrical cross talk was abundant when the

system was first used. Initially, a strain-gauge bridge with a pressure

transducer was used to measure the static pressure in the system. The

4-MHz, cro -talk s gnal, which appeared on the pressure transducer

,i rte, 'ed nto ta;e strain-gauce-bridge innut terminals and continually

-)•rtni' reson, a mekitnc oressure rac

S -; ; ., e] I,., ' -n7l , ' ni c! r iT br d ve.



This cross-talk signal also appeared on the thermistor leads, which in

turn fed the signal into the electronic digital multimeters

used to monitor the temperature by measuring the resistance of the

thermistor. As a consequence, the multimeters were also being burned

out. To solve this problem, several capacitors were placed in parallel

across the inputs to the digital multimeters to short out the cross-

talk signal before it entered the multimeters. These shorting capacitors

would have no effect on the direct current that flowed through the

thermistor. In addition, the pulse amplitude of the electronic system

that generated the 4-MHz acoustic pulse was turned off when temperature

readings were being made. Similarly, when the pulse amplitude was

turned on during the time-of-flight measurement, the multimeters were

turned off.

Once these modifications were made, the acoustic pycnometer could

be used to determine the volume of elastomer samples.

V. EXPERIMENTAL RESULTS

The acoustic pycnometer was used to measure volume of two spherical

elastomer samples approximately 2.5 cm in diameter. The two elastomer

samples used were a sample of butyl-252 and a sample of type-W neoprene.

The volumes of these elastomer samples were measured by Archimedes'

principle at atmospheric pressure and 25*C before being placed into the

sample chamber of the acoustic pycnometer. The volume of the sample

3
of butyl-252 was 8.8433 cm , and the volume of the sample of type-W
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neoprene was 8.7774 cm at 25'C. A discussion of Archimedes' principle

is given in Appendix E.

As stated earlier, the three measurements taken when using the

acoustic pycnometer are frequency, pressure, and temperature. Frequency

is the primary measurement necessary to obtain the time-of-flight

through the mercury in the bore of the pycnometer. Pressure and

temperature are auxiliary measurements. The frequency measurement

can be made to two parts in 10 4. The precision in the pressure measure-

ment and the temperature measurement is respectively ±0.1 MPa and ±0.2 0C.

A random-error analysis is given in Appendix B. The experimental

results are calculated by computer and plotted on a Tektronix 1odel 4662

flat-bed plotter.

The acoustic pycnometer was calibrated at two temperatures (10C

and 250C) and as a function of pressure (to 70 MPa). The pycnometer

calibration runs are presented in Figs. 10 and 11. The points shown in

the figures are the measured values For VBORE, the volume of the mercury

in the bore, calculated using the HP-9825 program. The curves passing

through the data points were determined by the curve-fitting routine,

RAGT.FTN. Each had the form of a sixth-degree polynomial. The

computer program RAGT.FTN determines an expression for the volume

of the mercury in the bore as a function of pressure at constant

temperature by the method of least squares. Data were taken on two

pressure cycles at 10°C and 25*C. All of the calibration data for a

given temperature ere analyzed together, and then the sixth-degree
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polynomial was passed through the data. At prressures below 2 MPa, in-

consistent results were obtained. This was apparent from the lack of

precision observed in the data when measurements were made at low

pressure. Also, the curve-fitting routine could not fit the measured

values below 2 MPa. Therefore, all measured values below 2 MPa were

discarded.

When the measurements were made in the case of the sample runs, the

data For the volume of the mercury in the bore were analyzed cycl.p by

cycle, when fitting the measured values to a sixth-degree polynomial.

Again, two pressure cycles were taken at temperatures of 10*C and 25*C;

but instead of lumptng these data together and fitting a sixth-degree

polynomial to all the data, a sixth-degree polynomial initially was fit

through the volume- vs-pressure data for each cycle. This cycle-by-

cycle analysis was done to investigate the possibility of hysteresis in

the elastomer samples. The term hysteresis, in this sense, implies the

sample would not return to its original volume after pressure cycling.

This hysteresis was not observed in the sample of butyl-252. The type-W

neoprene sample showed some slight evidence of the hysteresis phenomenon,

but this could not be substantiated because mercury was driven into the

thermistor when pressure was applied during the sample run with the

neoprene sample. This small change in volume due to the mercury being

driven into the thermistor was enough to account for the "volume shift"

observed in the neoprene sample data. It was known that mercury was

being driven into the thermistor because the thermistor inside the
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Fig. 10 - Pycnometer calibration run at 10 0 C. Volume (cm 3 ), shown
on the ordinate, represents the volume of the mercury in the bore of
the acoustic pycnometer. A sixth-degree polynomial is shown passing
through the experimental points.
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Fig. 11 - Pycnometer calibration run at 25*C. Volume (cm 3), shown
on the ordinate, represents the volume of the mercury in the bore of
the acoustic pycnometer. A sixth-degree polynomial is shown passing
through the experimental points.



sample chamber short circuited during pressurization (i.e., exhibited

zero resistance), and when the pressure was released, gave a temperature

reading similar to the second thermistor on the outside of the pycno-

meter. Moreover, when the apparatus was disassembled, small droplets of

mercury were actually found to he embedded in the epoxy encaIn' the

thermistor. This behavior indicated that there was a flow of mercury

into and out of the thermistor as the pressure was changed. The

thermistor was modified so mercury c:otlld not qlort 1I: nit during the

measurements on butyl-252.

The measured values of VBORE made in the sample runs are given in

Figs. 12, 14, and 17. These runs show no evidence of hysteresis, as

stated earlier. In fact, it made no diFFerence [f all of the sample

data were lumped together or analyzed cycle by cycle. A curve, in the

form of a sixth-degree polynomial, was fitted to the lumped data points.

Figures 13, 15, and 18 show the actual sample volumes V p as a

function of pressure at constant temperature for butyl-252 and type-W

neoprene. Figure 15 is a plot of the volume of butyl-252 at 250C as a

function of pressure. This plot is of particular interest because it

can give an idea of the accuracy of the volume determination when using

the acoustic pycnometer. Theoretically, this zero-pressure value of the

volume should coincide with the value of the volume of the butyl-252

sample determined by Archimedes' principle. The two determinations do,
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in fact, agree closely. The difference between the two zero-pressure

volume values of the butyl-252 is on the order of 0.22 percent. Since

the zero-pressure extrapolation of the curve fit and the volume deter-

mination by Archimedes' principle are in such close agreement, discarding

data below 2 MPa appears to be justified. The analysis performed to

determine VSAMPLE for the butyl-252 sphere was also applied to the

measurements made on the type-W neoprene sample at 25°C. The results

are shown in Fig. 18. The difference between the zero-pressure extra-

polation of the curve in Fig. 18 and the volume measurement of the

type-W neoprene sample made by Archimedes' principle yields an error of

only 0.30 percent.

Figure 13 illustrates the behavior of the volume of the butyl-252

sample at 10C as a function of pressure. No direct comparison of the

zero-pressure extrapolation of the curve fit in Fig. 13 to a measurement

of volume by Archimedes' principle can be made. Tn determining the

volume by Archimedes' principle, one requires the water to be

approximately the same temperature as the surrounding air. If a temper-

ature gradient occurs in the water, convection currents in the water

will be initiated and a false weighing of the sample in the water will

result. Therefore, unless the water temperature can be kept constant,

Archimedes' principle will produce erroneous results. Unfortunately, no

apparatus for determining volumes by weighing the samples at different

temperatures was available. An estimate can be made to compare the

zero-pressure volume extrapolation of the butyl-252 sample at 100C in

41
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Fig. 12 - Pycnometer sample run of butyl-252 at 100C. Volume
(cm 3 ), shown on the ordinate, is the volume of the mercury in the bore
of the acoustic pycnometer with a sample of butyl-252 present in the
sample chamber. A sixth-degree polynomial is shown passing through
the raw data.
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Fig. 13 -Volume of the butyl-252 sample at W0C. Actual sample
volume is given as a function of pressure. A sixth-degree polynomial
is shown passing through the points calculated from Eq. (11b).
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Fig. 14 - Pycnometer sample run of butyl-252 at 25°C. Volume
(cm 3 ), shown on the ordinate is the volume of the mercury in the bore
of the acoustic pycnometer with a sample of butyl-252 present in the
sample chamber. A sixth-degree polynomial is shown passing through
the raw data.
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Fig. 15 - Volume of the butyl-252 sample of 250C. Actual sample
volume is given as a function of pressure. A sixth-degree polynomial
is shown passing through the points calculated from Eq. (lb).
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Fig. 16 - A comparison of results for butyl-252 at 10 0'C and 25* C
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Fig. 17 - Pycnometer sample run of type-W neoprene at 250C.
Volume (cm 3 ), shown on the ordinate, is the volume of the mercury
in the bore of the acoustic pycnometer with a sample of type-W neo-
prene present in the sample chamber. A sixth-degree polynomial is
shown passing through the raw data.
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Fig. 18 - Volume of the type-W neoprene sample at 250 C. Actual
sample volume is given as a function of pressure. A sixth-degree
polynomial is shown.
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Fig. 13 with an independently determined value of the volume of the

sample by using the value of the butyl-252 sample at 25'C measured by

Archimedes' principle and the volume coefficient of expansion for butyl

rubber [9]. The value used for the coefficient of thermal expansion is

57 x 10-5 /C. Performing this analysis, one calculates a value

of 0.1 percent for the difference between the zero-pressure extrapolation

of the curve fit in Fig. 13 and the volume calculated using the volume

coefficient of thermal expansion For butyl rubber.

Figure 16 shows a comparison between the volume of the butyl-252

sample at 10°C and 250 C. At low pressures (less than 5 MPa), the plot

* of the measurement made on butyl-252 at 10C does not exhibit the

same amount of curvature. This might be attributed to a diFferent

compliance of the rubber at the lower temperature.

To obtain an idea of the actual precision of the acoustic pycnometer

measurement technique, the observed deviation is compared to the random

deviation computed by the error analysis in Appendix B. The precision

of the experiment is quite good, as is seen .n the graphs. The least-

squares curves pass directly through the clusters of data points. The

worst case of deviation is observed in Fig. 15, the plot for the sample

volume of butyl-252 at 25*C. However, even at 2 MPa, the worst case,

the observed deviation is only 0.17 percent. The maximum observed

deviation for the plot of the sample volume of butyl-252 at 10*C in
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Fig. 12 is 0.09 percent. The calculated random deviation when the

error analysis was performed is on the order of 0.1 percent.

The results obtained for the type-W neoprene sample are not

presented with the same degree of confidence as the results for the

butyl-252 sample. As has been mentioned, mercury apparently flowed

into and out of the thermistor located inside the sample chamber of the

acoustic pycnometer when pressure was applied and released. Since

the temperature could not be monitored as accurately because only the

thermistor on the outside of the pycnometer was functioning, thermal

equilibrium was not assured. Mercury intrusion into the thermistor

in the sample chamber also meant that a small amount of mercury was

being lost from the pycnometer into the thermistor inside the sample

chamber, so the volume change of mercury in the bore was not due just

to the volume change in the sample. This thermistor problem is also

the reason why no data were obtained on the type-W neoprene sample at

10C and occasioned the design of the thermistor plug.

The sixth-degree-polynomal leat-sqiares coefficients for the

volumes of the samples of butyl-252 and type-W neoprene at 25*C are

respectively given in Tables I and II. The sixth-degree-polynomial

coefficients for the volume of the butyl-252 sample at ]O*C

are also presented in Table I.

From the experimental results, the isothermal bulk modulus (see

Appendix H) can be calculated by Eq. (H3). The results of the bulk-
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Table I - Least-squares coefficients used for the calculation of the
volume of the butyl-252 sample at 10'C and 25* C. The equation for
the volume of the sample has the form: Vs(P) = A1 + A2 P + A3 P2

+ A 4 P3 + A5 P4 + A6 P5 + A7 P6 .

Butyl-252 Least-Squares Coefficients, P = Ambient to 70 MPa

T = 10C T = 25*C

AI + 0.881761 x 101 + Q0a.86Z70r x 101

A2 - 0.439446 x 10- 3  - 0.106370 x 10-2

A3 - 0.175415 x 10- 3  - 0.157199 x 10- 3

A4 + 0.718107 x 10- 5  + 0.633567 x 10- 5

A5  - 0.147986 x 10
- 6 - 0.119845 x 10 - 6

A6 + 0.152569 x 10-8 + 0.108048 x 10- 8

A - 0.625368 x 10-11 - 0.367876 x 10-117

Table II - Least-squares coefficients used for the
calculation of the volume of the type-W neoprene
sample at 250C.

Type-W Neoprene Coefficients
P = Ambient to 70 MPa, T = 25*C

A + 0.8803583 x 101

A 2 - 0.1917722 x 10
-1

A3 + 0.8394465 x 10
- 3

A 4 - 0.1701149 x 10 - 4

A5 + 0.7423981 x 10 - 7

A6 + 0.1733432 x 10- 8

A 7 - 0.1609281 x 10
- 10
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modulus calculation are given in Fig. Hi. As shown in Fig. HI, the

isothermal bulk modulus of the butyl-252 sample rapidly decreases upon

initial compression and then becomes relatively constant at pres.,ros

greater than 10 MPa. The bulk-moduli curves of thte ubtyl-252 sample

intersect at high pressure (-65 MPa). This is probably a numerical

artifact associated with taking the derivatives of the sample-volume

curves in Fig. 16, which are needed for the calculation of the bulk

modulus. The drastic change in the low-pressure (less than 10 MPa)

bulk-moduli results [,i Vig. :I might be due to some sort of rearrangement

of the molecular structure of the butyl-252 elastomer sample on a micro-

scopic scale. At this time, this conclusion is purely speculative. At

pressures greater than 10 MPa, the bulk-modulus of butyl-252 increases

slightly as a f unct[on of pressure, or the rubber becomes stiffer with

increasing pressure [101. This behavior is also shown in Fig. Hi.

VI. SUMMARY AND CONCLUSIONS

The experimental results given in the preceding section demonstrato

that the acoustic pycnometer is an instrument for preeise determination

of the volume of an elastomer sample as a function of pressure at any

temperature.

The only measure presently available of the accuracy of the pycno-

meter results is obtained by comparing the zero-pressure extrapolation

of the least-squares curve fit of the volume of the samples to the

volume of the samples when measured by Archimedes' principle at 25*C.
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Since this comparison yielded errors of 0.22 percent and 0.30 percent,

respectively, for the samples of butyl-252 and type-W neoprene, it can

be assumed the method used in this research is accurate as well as

precise.
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APPENDIX A

PULSE-ECHO OVERLAP TECHNIQUE

The time-of-flight measurement described earlier is done by a

method called the pulse-echo overlap technique [1]. This technique was

originally designed to accurately measure the speed of sound in a

material. One calculates the speed of sound in a material from measure-

ments of the time it takes for an ultrasonic pulse to propagate through

the material and from knowledge of the thickness of the material sample.

Instead of using the pulse-echo overlap technique to measure the

unknown speed cf sound in a sample of material by measuring the time of

flight in the sample, it was used in this investigation to determine the

height of a column of mercury (the sound speed in which is known) in the

bore of the pycnometer by Eq. (8). In the pulse-echo overlap method (Fig.

Al) the cw oscillator frequency is adjusted so that its period is exactly

equal to the round-trip time in the sample [12]. A standard oscilloscope

is used to observe the pulse-echo train shown in Fig. 5. The time

difference between two consecutive echoes is the time it takes for a

sound pulse to travel from the transducer in the base of the bore of the

pycnometer through the mercury column, to reflect from the float, and to

return to the transducer. The Matec 122-B dual decade-delay generator,

shown in Fig. Al, uses strobe signals (displayed via the oscilloscope)

to highlight the first and second echoes in the pulse-echo train. The
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INPUT TEKTRONIX MAIN FRAME -

HEWLETT-PACKARD imVRAL FREOUECY
SYNTHESIZER j AC POWER COUNTER
HP- 3320B I SUPPLY TEROIITEKTRONIX DCgT501ROPI

PS- 501 DC50-P

OUTPUTF

STROBE :yCI
OUTI

DUALULRSNC RPLGI
DELAY EEAO,1

GEEATRRECEIVER ECHOES VOLT METERMATEC-1228 jMATEC -660CO OU

Cw
INPUT R

SYNC OUT

49.9 
VLTMEE

EXT ZINT BLUE BOX

-- "k7
I DUAL TRIGGERING

ICH I BASE TIME BASE ETOI
cm C2 AMPLIFIER MODEL 7853A 700SERIES
I MODEL 7AIS 9 SILOCP

EXT TRIG IN

THERMISTOR NO. I

Fig. Al -Schematic of acoustic-pycnometer measurement system
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Hewlett-Packard frequency synthesizer is set approximately to the time

difference between the first and second echoes as determined by a rough

time measurement using the oscilloscope. These two echoes can be over-

lapped or superimposed when the horizontal sweep of the oscilloscope is

triggered by the cw triggers in the Model 122-B (Sweep Sync Out-Direct).

By carefully adjusting the vernier on the frequency synthesizer and by

adjusting the time base on the oscilloscope, a precise overlap can be

achieved (see Fig. A2); hence an accurate measurement is made of the

time-of-flight in terms of a precisely set synthesizer frequency. When

aligning the echoes on the oscilloscope, the earliest distinguishable

feature is used as a reference to avoid mismatching the echoes. The

only constraint is that the total sweep time must be less than the

round-trip time in the mercury column to allow for retrace time in the

oscilloscope [131.
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Fig. A2 - Pulse-echo overlap: timebase = 0.5 ps. The
earliest arriving echo has the greatest amplitude.
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APPENDIX B

ERROR ANALYSIS OF THE ACOUSTIC PYCNOMETER MEASUREMENT

The precision of the method used in the acoustic-pycnometer

measurement can be investigated by examining the random deviation of the

components of Eq. (14b). The maximum resultant effect due to several

deviations in any measurement is simply the arithmetic sum of the

individual deviations in the measurement [14], or

RES 1 + A2 + +(I)

where

A R deviation of the resultant effectRES

A1 through AJ= the deviations attributed to the various components

of the measurement.

Each deviation in Eq. (Bi) can be expressed as

A Jem- (B2)
4j DM

where

M - the formula used to calculate the quantity desired and is

a function of the properties measured

m m the property in which M exhibits a deviation
j

6j 0 the actual deviation in a particular property measured.
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Equation (Bi) represents a maximum possible random error because the

sums of the individual deviations are taken to be positive quantities

but in reality could have different signs. The most probable resultant

deviation ARES, according to method of least-squares [15], is

ARES A2 +_A22 +_ 32 + . .+ n2  (3)

An expression for the resultant deviation of the calculation of the

volume of the sample in the pycnometer measurement is obtained by applying

Eq. () to Eq. (14b). The resultant deviation is

I
AVSAMPLE(P,T) - AVSAMPLE(P ,T ) + AVBORE + AVBORE + AV(P,T). (B4)

The individual deviations, in Eq. (B4), are in turn the sum of

component deviations experienced when making their measurement.

Therefore, the individual deviation of V SAPLE(POT ) is

AV SAPE(PST) Am a + JA 2O + JAH 2 ,0 (B5a)

where

AVSAPLE (POPT) VSAMPLE(ma, mH20 OH 02 (Po,To))

The expression IAm refers to the deviation in volume due to

weighing the mass of the elastomer sample in air. The notation used
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to express the deviation of the mass of the elastomer sample in air

3VSAPLE 65a (B5b)

ma a

The individual deviation associated with measuring the volume of

the mercury in the bore is

{V. Ar~, -. A}-A~ (B6a)

since

VBORE w V BORE (r b(P,T), c Hg CP,T), f). (B6b)

The expression for the individual deviation for the last term in Eq.

(B4) is

AV(P,T) I Am,~ + JAM + {APHg ' + JAVSAMLE(P T4)

+ {APO + {AT} +P +- I AT} (B7)

where

V(P,T) - V(m', MI PHg (T 0), V SAMLE (P 0T 0 ), P,9TP,T).

The individual deviations given in Eqs. (05a), (B6a), and (B7)

can be analyzed by using Eq. (B2). Applying Eq. (B2) to Eq. (BUa), the

deviation of the initial sample volume, one obtains
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AVSAMPLE (P,T o ) SAMPLE 6 m + SPL
0a al + mH2 6 mHO 202

(B8a)

/3 (VSAMPLE\/ 20)

After taking the appropriate derivatives, one finds that the

equation for the random deviation for the initial sample volume is

AVsAPL(PoT
o  I- 6m + _6

H2SAMPLEo0 0 H0 a PH20 20

(ma + mH20) PH 20 (B8b)

+ 2 AT 6T 0

L H20 0

In Eq. (B8b), 6m, 6m 620, and 6T are observed deviations associated with

measuring the mass of the sample in air, the mass of the sample in

water, and the temperature, respectively. It should be noted that an

appropriate estimate is needed for A H2 0 /AT. This estimate is obtained

by using the table of the density of water PH20 as a function of temper-

ature and taking a finite difference for APH0 between a temperature

above and below the temperature T 0
o

By the preceding analysis, the random deviations can be calculated

for the case of the volumes of mercury in the bore AVBORE and AVBORE and

the volume of mercury associated with filling the pycnometer to a
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different level V(P,T). Substituting this value obtained into Eq.

(B4), one can obtain an estimate of the resultant deviation for the

measurement of volume of any sample as function of pressure and

temperature in the acoustic pycnometer.

It is found that the deviation calculated from Eq. (B4) is

0.0088 cm3 . This represents a random deviation in VSAMPLE(P,T) of 0.1

percent. This estimate of 0.1 percent is calculated from the following

data:

P = 0.0 MPa 6T = ±0.2 0c 6m - ±0.0003 ga

6P = ±0.1 MPa T = 25oC 6m% 0 = ±0.0003 g

P = 0.0 MPa 6T = ±0.2°C rb - 0.5545 cmo 0

6P 0 ±0.1 MPa f = 13.0 kHz C = 147150 cm/so Hg

-6

T = 25oC 6f = ±5.0 Hz c,= 3.6 x 10 /°c

= O.O/MPa.
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APPENDIX C

CALCULATION OF THE VOLUME OF MERCURY IN THE
BORE OF THE ACOUSTIC PYCNOMETER

The volume of the mercury in the bore of the acoustic pycnometer

is given by

VBORE AL, (Ci)

where

A = area of the bore

L - height of the mercury in the bore.

The area of the bore in Eq. (C1) is a function of temperature and

pressure governed by the coefficient of thermal expansion and the

coefficient of compressibility of the pycnometer container. The volume

coefficient of thermal expansion is given by

= (C2)

Therefore, at constant pressure the change in volume per unit volume is,

dV

The isothermal volume coefficient of compressibility is

V- - 3 (P)T
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Therefore, at constant temperature the change in volume per unit volume

is

dV (C5)
v dP-V

The expression for the change in area per unit area as a function of

temperature and pressure would then take on the form

dA= [ dT- -2vdP1 (C6)

Integrating Eq. (C6), one obtains

A(PT) = r 2 exp[2(avT P)/31. (C7)
b pt(cV - C

The volume VBORE of the mercury in the bore can be calculated by

Eq. (CI) using Eq. (8) and Eq. (C7). It is found to be

VBOR(P,T) - I Cg(PT) tf rr2 exp[2(avT - Bve)/31 (C8)

A Hewlett-Packard Model 9825 Calculator is used to calculate VBORE

from Eq. (C8). The program is shown on the following page.
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0 : *start" :fxd 5

1: enp "Temp.
[Celciusi ",T

2: enp "Pressure
[MPa]",

3: enp *Freq.
(kHzj ",F

4: 1460+r6;.46-*r
7; . 2 1-*-r8

5: O-r9;9e-64*rl0

6: .5545-R

7: (r6-r7*T+r8*
p)*100yc

8: prt "CHg tcm/
sV,

9: .66667 (r9*T-
1 0*P )+D

10: exp(D)+E

11: .5*TrR+2*E*C/
(F*1 000 )->-B

12: prt "VHBG
Emil -',B;spc 2

13: gto 2
* 1838
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APPENDIX D

LEAST-SQUARES ANALYSIS AND COMPUTER PROGRAM

In order to use Eq. (14b) to determine the volume of an elastomer

sample as a function temperature and pressure, it is necessary to de-

termine an expression for the volume of the mercury in the bore of the

pycnometer during the sample run and the calibration run. This can be

accomplished by obtaining an equation of "best fit" to the experimental

data by the method of least squares.

Since the experimental data did not follow a linear relation

when plotted, a general least-squares solution is employed in the form

of a rational fraction:

Y()--12 3 4 5 6 7(1
AI +Ax +Ax + Ax+ + +Ax 5 + Ax 6

y(x) 1 ~ A (DI)

A8 + A9x + A10 x  + A1 1 x + A1 2 x + A1 3
x  + A14 x

In Eq. (D), the quantities x and y are the experimental observations.

The coefficients A through A14 are determined by the method of least

squares as a best fit to the observed values of x and y. Rearranging

Eq. (DI) into a more convenient form, one obtains

A y + A9 xy + A 10 x y + A1 1 X y + A 12 x Y + A 3 x y + A1 4 x y

(D2)
5 6

A A. Ax-A -A,x -A4 t.x A 6X -A 7 x 0.



Equation (D2) represents an equation of bes fit for a sixth-order

rational fraction if no experimental errors are present in the

observed quantities x and y. However, this is never the case, since

all measurements are subject to error. Suppose one has n pairs of ex-

perimental measurements x1 , Yi (i - 1, 2, . . . n). Then Eq. (D2)

can be written in terms of the observed quantities x1 and y and the

experimental error vi associated with measuring xI and Yi

26
A8Y1 + A9 xlY1 + A10xy + . . .. - A x 6 1

2 6A 8y2 + A9x2 y2 + A1 0x2y2 + . . . . - A7x2 = V2

Asyi + AxiYi + AI0xi y .... - A7x vi (D3)

A8 Yn +A 9XYn  +Al 0 xn
2 y+ -Ax n = n

In Eq. (D3), the subscripts associated with the quantities xi, Yi'

and vi refer to the i-tb observation.

The least-squares principle states that the coefficients A

through A1 4, in Eq. (D3), are the best fit to the data when the sum

of the squares of the errors is a minimum [16], or
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V2 0

;IX I 

a [ 2 0D4)

22=

DA [i V1 0

14

After taking the derivatives in Eq. (D4), one obtains the final form

for the equation
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n
n 3An = 0~1

n V
= n = 0

~2
n

vn n = 0 (D5)

n D n

Vn DA n 0.
i= 1

Equation (D5) produces a system of linear simultaneous equations in

terms of the observed quantities x, Yi" In order that this system

of simultaneous equations is not linearly dependent, one of the

coefficients must be set to a known value. To solve a system of

simultaneous equations of this nature, in order to obtain the coeffi-

cients A through A1 4, a digital computer is needed. Equation (D5)

can be written in matrix form as

(E] [A) - 0. (D6)

In Eq. (D6), the large matrix (E) represents the terms in Eq.

(D5) after the appropriate derivatives have been taken and multiplied
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by the error term v. The [A] matrix is a column matrix that represents

the coefficients which best fit the observed ata.

The computer program, RAGT.FTN, using NRL-USRD's PDP-11/45

computer, was written in FORTRAN to do the least-squares analysis. The

program was written in a general fashion to try and accommodate various

types of data. For instance, a polynomial curve fit is obtained by

simply initializing the coefficient A8 to I and by setting coefficients

A9 through A 14 to zero. If a lower-degree polynomial fit is desired,

one simply suppresses the appropriate coefficient by setting it to

zero. The subroutine SELECT.FTN allows the user to select any

coefficient for initialization. The subroutine SUPRES.FTN sets any

desired coefficient to zero to lower the degree of polynomial. The

subroutine DSIMEQ.FTN solves the system of simultaneous equations

shown in Eq. (D6), by means of Gaussian elimination in double precision.

Once the least-squares coefficients, represented by the column matrix

(A] in Eq. (D6), are calculated, the subroutine YCALCU.FTN, uses these

least-squares coefficients to recalculate the function y(x) in Eq. (D1).

A listing of RAGT.FTN and all the subroutines used follows:
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C PROGRAM D IRECTORY
C DATA TO BIE ENTERED
C M=# OF DATA PoIN'rs
C XPRESS(100)= ARRAY TO HOLD PRESSUR DATA
C YVOL(IOO)= ARRAY TO HOLD VHGB DATA
C A(14,14)= ARRAY TO HOLD VARIOUS SUMS
C B(N)= COLUMN MATRIX
C N= NIIIER OF SIMULTANEOUS EQUATIONS

BYTE ANS(4)
DIMENSION XPRESSUOO0),YVOL(100),XINC(0OG).YCALC(100)
DOUBLE PRECISION A(I4.14).B(14),X(14).VALUE(14).DXI.DX2.DX3.
IDX4,DX5,DX6,DX7.DXB,DX9,DXIO.DXII.DX12.DY1,DY2,DXIYI,DXIY2,
IDX2Yl ,lX2Y2 ,DXJYI ,DX3Y2, DX4YI .DX4Y2 .DX5YI ,DX5Y2.DX6YI .DX6Y2,
IDX7YI ,DX7Y2,DX8YI.,X8Y2.DX9YI ,DX9Y2,DXIOYI .DXIOY2,DXJ IYI.
IDXI IY2.DXI2Y1 .DXI2Y2,X1 ,X2.X3.X4.X5,X6.X7,X8,X9.XlO.X1 1.X12.
lYI ,Y2.XIYI .XIY2,X2YI .X2Y2.X3YI ,X3Y2,X4YI ,X4Y2,X5YI .X5Y2.
IX6YI .X6Y2.X7YI ,X7Y2,X8Yl ,X8Y2,X9Y1 ,X9Y2,X1OYI .XIOY2,XllYl,
lXI 1Y2,XI2YI .X12Y2,DUPI,SCALE
WRITE(5, 1000)

1000 FORIIAT(/.'SUSE OLD DATA?')
READ(5. 1010.EMD=60O)ANS

1010 FOMflAT (4A I)
IF(ANS(1).EQ.'N')CO TO 870
OPEN(UNIT=I ,NAMIE=' RAGT.DAT' ,TYPE='OLD')
READ(I 1,8)11
DO 860 1=1,1M

READ( 1,12)XPRESS( I) .YVOL( I)
860. CONTINUE

GO TO 110
870 OPENUIJNITZI ,NAH-E~' RAGT.DAT' ,TYPE='NEW*)
C ALLOCATE STORAGE

DO 10 1=1,100
XFIIEsS(I)=O.0
YVO,( I )=0.O

10 CO!NTINUE
WRITE(5. 15)

15 FOilwAT(5X,' t ETER THE NUMBER OF DATA POINTS')
lIEAU(5. 18)11

18 FOIWAT( I10)
DO 100 J= I 41
liIITF,(51 11 )

II FOIIJIAr( LX,' XPIIESS,YVOL)
REAII(3, 12)XPILESS(J).YVOL(J)

12 FO~kpiA~(2FI0.0)
100 CONITI NIJE

wRi 11%( I . 113) H
DO 44) J=IJI

14RITIE(1I 1020)XPRlESS(I) .YVOL( I)
10220 FonrfA( 10. 5, F10. 5)
4 0 CONTINUE
I1JO CIA)SE(UN IT= I)

1411I E (5, 1040)
10'10 FO11rNAT(/,' $ENTER THE NUDILIER OF SIMIULTANEOUS EQUATIONS')

IIEAD(5, 103O) N
1039O FOI1MAI'(1 4

DATA XI.X2.X3I.X4,X5-.XO,X7-,XB.X9,XIO.XII.X12.Yl.Y2,XIYI.XIY2.
IX2Y1 4' 2Y2.X:IYI .X3Y'2.X4YI .X4Y2.X5YI ,X5-Y2,X6YI ,X6Y2,X7iYI.
IX7Y2.XlIYI.X1Y2,X9Y.X9Y2.XIOYI0Y2 .XIIYI.XIIY2,2YI,
lX I 2Y2/311,O .01)+02/
1DO 50 1 = .,11

c S1,1T fill I)UripY ST()IIAGE

D2DXI*I: X
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1JX4 I)X2:r.)X2
DX5: DX211-,)X3
DX6 I)X3*DX3
DX7 = IM I pDX6
lJXB:DX2*DX6
I)X9: DX3 ;z)x6
I)XIO=DX4*1)X6
D)XI I zI)X5:I:IX6
)XI 2=11X61-DX6
DYI=DBILE(YVOL( I))
DY2=VYI *DYI
DXIYI :DXI 9DY1
DXI Y2=1XI :'I)Y2
DX2YI =DX2:gDyI
I)X2Y2 IX21:DY2
DX3YI =DXd* DYt
DX3Y2=bX'3*DJY2
VX4Y I =DX4.*I)YI
DX4Y2=bX4*11Y2
DX5Yl b~x5*DYI
UX5Y2=DX5*DY2
DX6YI=DX6*1!yI
DX6Y2=DX64:DY2
DX7YI=DX7*DYI
DX7Y2=DXC7*,DY2
DXIIYl DXB*DYI
DXBY2=DXB*DY2
DX9YI :DX9*DYI
DX9Y2=DXC9*DY2
DXIOYI =DXIO*DYI
DXIOY2=IiXI Ol.I)Y2
DXI IYI=DXII*Dyl
DXI I Y2 = DX 111'DY2
DX12Yl=DX12*DYI
DXI 2Y2: DXI *Dly2

C ST.%irr ACCUHULATI HG SUM~bS
XI =XI 4DXI
X2=X2+DX2
X3=X3+DX3
X4=X4+DX4
X5=~X5*)X5
X6=X6+[IX6
X7=X7+I)X7
XXII+1XB
X9=X9+I)x9

Xi I =X1 1 4I)XI 1
XI 2= XI24 DXI2
yi=YI+DYI
Y2=Y2+DY2
xIYI =XIYI+DXIYI
XIY2=XIIY2+DXIY2
x2YI X2Y1+DX2YI
X2Y2=X2Y2+[DX2Y2
XayI =XaYI +DX3YI
X3Y2=X3Y2+1)X3Y

2

X4YI :X4YI+I)X4YI
X4Y2=X4Y2+1)X4Y2
x5YI =X5YI4~x5YI
X5Y2tX5Y2+DX5y2
X6YI X6YI +JX6YI
X6Y2=X6Y2+DU6Y2
X7YI :X7YI +DX7YI
X7Y2=X7Y2+)X7Y2
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XBVI =XIIYI +Jfl1j3yI
Xll12 =XIY2 + DX8iV2
X9V I =X9V I +I)X)Y I
X9V2= X9V2 +-DX'Y2
XIOVI =XIOYI +I)XIOYI
X14JV2=XIOY2+1lXIOY2
X1 I YI =XI I YI +IXI IV I
XI IY2=XI 1Y2+I)XI 1Y2
X12YI =XI2YI +D>%I2YI
XIY2=X I 2Y2 iIX I -Y2

50 CONT'INU E
c s~rolE SUMSI IN I'ATHICES A(N,N) AND B(N)

A(1I I)=Y2
A(2. I)=XIY)
A (2, 2) ='2Y2

A(3.2V)X3Y2

A (4, 1 )=X3Y

A(4,2)zX4Y2
A(4,3)=X53Y2
A(4,4)=X6172
A(5,1I)=X4Y2

A(3,I!)=X5'
A(5,2)-X6Y2
A(5.3)=X7Y2
A(5,4.i X81Y
A(0.5)=X9Y''

A(7. I)=X6Y'2
A(7.2V)=X7Y2

A(6,4)=)MY2

A(6,6)=XI 1Y2
A(7,7VrX62

A(7I.2)=X7-XIV
A(7,3J)=X82
A (7.4)=-NY I
A(lI.5)z-X4Y2
A (II 6) -X5Y I

A (11,11)=-Y1

A(B,3)=-XIYI

A (1. 5) = -XI I

A ('). 2 ) -X 1 I

A~ (Iq ) I. :I
i% 1 .4 - -- 1 I

0), 5.1XY
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A( 10u,11) =:;2
A( (10, 9)zN.
A (10, 10)=-1
A( I I ,I )z-X.IY1
A( I I,2)=-X4YI'
A( II 3)z-N5Vl
A(1I,4)=-'<6YI
A( It,5)=-%7Y1
A( I I ,6) -MIYI

A ( I I , 1) =N3
A(III)%
.A(121 I 0 )
A( II .1)-X5Y

A( 12,3)=-X6Yt

A( 12.b)=-X9'II

A( 12.1))=N4
A( I2,9)=X3

A (1I2, 1 I)=X

A( 13,11)=-X7

A(1I3,I)=-X5YI
A(1:3,2)=-X7YI

A ( 13.35) -X9Y I

A( 13, 6U) -X I
A ( 13,97) -X II

A( 13, 11) =X5I
A( 13,12) X'

A( 14,10)=-X6Y

A (I 113) 1-1XH

A( 14.712 h~X92

A( 4,13)=XO

A ( 14, 1 I) = 'X9Y

A (14. 3)=-XImI

A ( 14.7 =, I Y I

Af ( 14, 1) = X6

A 1, 1 X I IK

*1 ~ ri ll]

WJsIK



1220 FOIRAT(/,' $1ENTER TIE SCALING FACTOR')
READ(5,1230) SCAI.E

1230 FORIIT(D24.17)
SCALE I11E PiATRIX A(N,N)
DUtN=(O. IOOD+O1 )/SCALE
DO 75 .J=I,N
)O 70 K=I,N

A(J,K)=A(J,K)*DUH
70 CONTI NUE
75 CONTI NOE

C TIlE SUBIROUTINE SELECT ALLOWS YOU TO SELECT ANY OF T1'E CO-
C EFFICIENTS FOR INITIALIZATION

CALl. SELECT(N.A.B,VALUE)
WRITE(5. 1200)

1200 FORMAT(/,' $SUPPRESS ANY COEFFICIENT?')
READ(5, I010,END80O)ANS
IF(ANS(I).EQ.'N')GO TO 1300
CALL SUPRES(N.AB.X)

D WRITE(5,1060)
D1060 FORMAT(' READY TO CALL DSIMEQ')
C CALL SUBROUTINE TO SOLVE SIMULTANEOUS EQ.
1300 CALL DSIKEQ(N.AB.X)
C CALL SUBROUTINE YCAL TO CALCULATE VALUES OF YVOL

CALL YCAL(N.X.YCALCXINC)
COo WRiTE(5,2000)
.2o00 FORn'rV(' PROGIRAm EXITS!')

GO TO 900
900 CALL EXIT

END
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SUBROUTINE DSIEQ(N,A.B,X)
DOUBI.E I'I.CI5ION A(14,14) ,B(14) ,X(14),DET.SUII.C.
DIMENSION JI'IUI(14)

D WiIITE(5.50)
150 FOR'A'I'(' FN'EIII;1) SUBROUTINE'

I)E'T= I .01) 00
DO 13 1=1 ,N
X(1)=O.0D O0

13 .I'I(N( I) I
C F I NDi TilE, EL:NET OF HAXIIUM ABSOLUTE VALUE

)O I K= I ,1
C(=A(KK)
II=K

J.JIK
1)0 2 J=KN
DO 2 I=K,N
IF (DABS(C)-DABS(A(I ,J)) )3,2,2

3 C=A(I.J)
11=1

J J = J

2 CONTINUE
l)ETr DEI'*C

D wit I TE( 5.55 ) DTF
055 FORlAT(5X,' DET='D24.17)

I F (DA\BS ( I)ET ) ) 20,20,30
20 WILITE(5, 100)
IoO FOIRIAT( MATRII X A (N, N) I S S I NCULAR'

CAI.L EXIT
"10 iB(ll )=B(i II)/C

C DI VIDE EACH ELEMENT OF TIIE 111-11 ROW BY C
KI'O1K+I
1DO 4 .J=KN

4 A(1I ,J)=A(I I ,,I) C

A( I ,IJ) 1.01) 00
IF (I1 .EI. E.K)GO T0 60

C SWITCH TilE Ill IROW AND THE I III ROW
)O 5 .J=E.N

C =A (1,J.I)
A(K,J)=,X

G A(i,J)X I IJC
(11 .JK)C
CB(K)
B(IK)=B( I I
11011 )=C

60 IF (.J. IEO. K) GO TO 70
C STOI1 Till' I.OCATION OF TIE PlAX PIVOT

I I =,III'I(,IJ )

.JI'l( ,IE ) = II H

C SWITCiH TlE E'I'li AND TilE JJTH COLUMNS
DO 6 I=I, N
(:=,( I .K)
A(I . K)=-1( I ,JJ )

6 A( I .I.J ) =C
;I' SIU B COI.uI'lI 01,' ZEROES IN THE KII COLUMN
I F' F. E( . Nl ); TO I
I)O 7 I= HIO.N
D) 11 J I'I1O,N

.I ) 11(1 i I , ) I ( )
IV I .1K) -A .uN

I ICONl I NIlE
OBI ,' I I ill[ X' B Y I1 VCK SUBSTITUTI1'ON
I) '1 I I , N

[,=l- I + I
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K1'0=K+ I
SUPflO.OD 00
IF(KPO-N)24 .24,26

24 1)0 10 J=KPION
SUtl=SlJr1+X(J )*A(K,J)

10 CONTI NUE
26 X(K)=B(K)-SUlH
9 CONTINUE

C ORIDER THlE X'S
DO 11 1=1,11

11 1(L)=X(l)
DO 12 1IIN

X(1 I )B( I)
12 CONITINUE
C 'WRITE OUT THE VALUES OF X(IN)

DO 101 J:1.14
WRITE(5,99)JX(J)

99 FoRNAkT(/,5X,' X(' .12,')='D24.17)
101 CONTINUE

RETURN
ENID
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SUBROUTINE SELECT(N,AB,VALUE)
C sEr up CATELOG AR11AY ICAT(N

DIIIENSION ICA'r(14)
DOUBLE PR1ECISION A(14.14),B(14),VALUE(14)

C INITIALIZE B(N),ICAT(N),AND VALUE (N
DO 10 J=I,N

B(J )=0O.OD+OO
I CA'I(J ) = I

10 CONTINUE VLEJ=.DO

C SEETHTE COEFFIECIENTS TO BE INITIALIZED
* IdIITE(5,20)

20 FOUIA(/,' HO0W MANY COEFFICIENTS TO BE INITIALIZED?')
READ(5.30)NN

30 FORMT( 12)
DO 60 I=I,NN

11.11TE(5,40)
40 Fo~'Lvr(/,' WHICH COEFFICIENTS TO BE INITIALIZED?')

REAI)(5 .50)11
so FOR11 M 12)

1 CAT( I I ) =0
.irriT( 5,55)

55 FOIU-IAT(/,' WHAT VALUE DO YOU WANT COEFFICIENTS TO BE?')
IIEAI(5,5B)VALUE(II)

Za FOIUIA(D24. 17)
60 CONTINUE

C IN ORDER FOR THE SET OF EQUATIONS TO BE INDEPENDENT INSERT
C TME APPROPRIATE VALUES IN B(N) AND A(N,N).

DO no J=1.N
DO 70 K=1,N
IF(ICAT(K).NE.0)GO TO 70

A(K.J )=0.OD+00
A(K,K)=1 .OD+oo
B(K) VALUE(K)

70 CONTINUE
110 CONTINUE

DO 90 J=1,N
W.'RITI( 5, 1010) )J, B (J)

1040 1,1 ill XT(/, - I ' ,l2,' )=',D24. 17)
90 cowTi iHuE

END
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SUBROUTINE SUPRES(NA,B,X)
C SET UP, CATELOG ARRA-Y JCAT(N)

DIMENSION JCAT( 14)
DOIJIILE PREtiCISION AU14, 14) ,B(14) ,X(14)

C INITIALIZE lCAT(N) TO ONE
DO 20 J=1,N

J CATI WJ )
20 CONTINUE

W6I11ITE ( 5, 40)
40 FOIUIT(/,' -HOW MXNY VALUES OF JCAT=O')

ItEAD1 ( 5 , 0 0 ) KK
60 FOjiriAF (1 2,

DO0 00 L=1,KK
i~It1TE (5, 9O0

90 FORMAT(/, ' WHICH VALUES OF JCAT=0'
REAI)(5 .95)1

95 FORIIT( 12)
JCAT([I)=O

no CONT INUE
C SETr THlE ROW IN MATRIX A(N,N) =0

DO 300 J=I.N
DO 200 K=I,N

IF(JCAT(K).NE.9)G-O TO 200
150 A(K,J)=O.OD+00

A(K,K)=1 .OD+0
B(K):0 .OD+00

D WRITE(5.I00)K..J,A(K,J)
MOO0 FOIUMiT(/' A(, .12,' .',12.' )=' D24.17)

:i0O c01Fi NUE

END
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SUBROUTINE YCALCU(N,X,YCALC,XINC)
DOUBLE PRECISION X(14)
DIMENSION XINC:(500.,YCALC(5OO),XSING(14),X(l),Y(l)
DATA DENI ,DEN2,DEN3,DEN4,DEN5,DEN6.I1N1M,XNqM2,XIhM3,XUH4,
I XNU15 , XNU16/ 124*0.0/
BIYTIE FIIEX(32)

D WiaIlE(5,I095)
1)1095 FORMT(' ENTERIED SUB3ROUTINE YCAL')
C PirT x(N) INTO SINGLE PRECISION

DO 20 L=l,N
XSIIiG(L)=SNCL(X(L))

I) wiInl'r(5,100) XS ING (L)
D1I 100 FOIULIT''" XsliNG=' E15.5)
20 CONTINUE

21 FoitpLxV(/,' MAXIMUM X YOU WISH TO GO')
READ(5,24) IX

24 FOIUIAT(14)

WiITE (5,3 i
31 FOR1UIA(/.' X INCREM'ENT VALUE?')

IlEAD(5,'J5)XI14CRE
:35 FOIUIT (F10.0)I

C ALLOCATE sTrORAGE
DO 'JO I=I,J

XINC( I )O.0
YCALC([I)=O.O

o CONTINUE
I) WR[tfE(5,1125)
1125 FORMIAT(' H AVE SE-T UP STORAGE')

c SET UP LOOPI'TO CALCULATE YCALC(K
DXINC=O.O

DO 50 K=I,J
XI I'C(K) =DXINC
DXI N(2=DXI NC*DXI NC
I)XI NC3=1)XINC2*DXINC
DXI NC4=DXINC2*DXINC2
D)XI NC51)XINC2*I)XINC3
1)X I 1C6= I)X INC3*DXI NC3
I)ENI =XSIN(C(2)*DXI4C
DEN2=XSINC,(3)*DXINC2
DEN'J=XSI NC(4)*DXINC3
DEN4=XSI NC( 3)*DXINC4
l)EN5=XSI NG(6)*DXINC5
DEN6=XSI NC(?)*DXINC6
XNUtII =XS[NG(9)*DXINC
'<NIH1"XSINC( IO)*DXINC2
Xi4UM3'JXSINC( II )*DXINC3
XrilJ?4=XSING( 12)*DXINC4
XIMIJ5XSING( 13)*DI)XNC5
XI1IJtN6=XSlr4C( 14)*DXINC6

C FORM NUIIICIATOII AND DFNONI NATroR OF YCALC
XNIJMIXSI NG(3) +XNU'II +XNIIUH2+XNIJ?3+XMqU?4.XNUM5+XIIJN6
Xl)-'Iqi=XS ING4C I )+I)ENI +I)EN2+DEN3+DEN4+DEN5+DEN6

C CAI.CULATI : 1'C;AiA:
1YI2AI.C( K) =XNUDI/XIN

C I NCIII:NNI)XI NC
DX I N4C=DX I NC+X INCIIE

30 CONTI NUE
WRIIIE(5. 1050)

1050 FORNMA(/'*FI.ENAME FOR. X.Y DATA: '

REA (5,060 1.1,'N,' FO I 32A

FILEX(LEN + I)=0
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OPEN(UNfIT=I ,NAHE=FILEXFORM='UNFORAIrED TYPE='REM')
DO 220 I=I,.J
READ(I) X(I),Y(f)

220 co'r I NU E

CONTrI NUJE

END

84



APPENDIX E

DETERMINATION OF THE VOLUME OF A
SAMPLE BY ARCHIMEDES' PRINCIPLE

An accurate method to determine the volume of a sample is by the

use of Archimedes' principle. The volume of a sample at ambient

pressure P and room temperature T ( 25*C) is given by0 0

V(PoT )=(ma "'H20)( PWL) (El)
0 PH20 - Pa

To calculate the volume of a sample using Eq. (El), one must determine

the mass of the sample ma in air, determine the mass of the sample in

water mH 20 and use a known value of the density PH 20 of the water,

the density Pwt of the weights used on the balance, and the density Pa

of the air in the room at the temperature T in the room. The masses

in Eq. (El) are apparent masses.

AI

In this investigation, the masses m and mH  were determined bya d 20 w r e e m n d b

using a Mettler Model H-311 Triple-Beam Balance, which has a maximum

capacity of 240 g and is accurate to ±0.0003 g. Distilled water was

used in this volume determination. It was deaerated, covered, and

then cooled to 25*C. The density PH20 of the distilled water [17

and the density Pa of the air were, respectively, 0.99705 gfcm 3 and

3
0.001185 g/cm . An average from four volume determinations was taken
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for both the butyl-252 sample and the type-W neoprene sample. Their
3 3

volumes were, respectively, 8.8433 cm and 8.7774 cm 3
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APPENDIX F

A FORTRAN PROGRAM (PYCNOM.FTN) TO CALCULATE THE
SAMPLE VOLUME AS A FUNCTION OF

TEMPERATURE AND PRESSURE

The FORTRAN program PYCNOM.FTN calculates the volume of the sample

used in the acoustic pycnometer according to Eq. (14b). The listing

of the program is given as follows:
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C THIS PROGRAM CALCULATES THE VOLUMIE AND) THE I SOTHERMAL
C BULKC MODULUS AS A FUNCTION OF PRESSURE.
C
C THIS PROGRAM STORES THE PRESS. AND) VOLUME IN FILE
C CALLED 'FOR002.DAT'
C

ByTE ANS(4)
DIISLON A(l4).AL'(14).C(6),PRESS(100),VSAHIP(100)
S,IEJ1IIV( 100) ,BULK( 100)
WRITE(5, 1100)

1100 FORMNAT(/.' SUSE OLD DATA?')
READ(5, 11l0.END=800)ANS

1110 FOII.AT(4A I)
IF (ANS(I).EQ.'N*)CO TO 870
OPEN(UNIT:1 ,NAME='PYCNOI-I.DAT' ,TYPE 'OLD')
READ( I *190 )VO

195 FORK'AT(/,' VO='.Fl2.5)
READ( 1, 190 )TE1
WRilTE (5.196)TI'IP

196 FORMAT (/,'I TErIP 'F 12. 5)
READ ( I , 190)IU111
WIIITE5. 194)IIO

194 FORMNAT(/,, IIO=*,Fl2.5)
READ(1I.190)WI'SqR
IfRITE(5, l98)WTSR

198 FORMIAT(/. - WEIGHT OF IIG FOR SAMPLE RUN J',12.5)
READ(1I,190)WTCR
WRIT1E(5. 199)lWTCR

199 FOIUIA'I'(/,' WEiGIT DURtING CALIB. =,1712.5i)
190 FORIIAT(E12.6)

READ(I,165)NUMCR
165 FORMIATI( 12)

DO 1200 K=1,NUMCR
READ( 1I 185)AC(K)

11835 FOIIIAT(E12.5)
1200 CONTINUE

READ(1I,197)NUNSR
197 FOHIIAT( 12)

DO 1201 J=Il.NJSR
READ( I * I99)A(J)

1199 FORMAT(E12.5)
1201 CONTINUE

GO TO 1210
870 OPEN(UNIT=I .NArEIPYCNON.DAT' ,TYPE='NEW')

C ALLOCATE STOHAGE
D0 50 J=1.l00

PirEss(.J)=0.O
VSAM1(.J)=O.0
DFIIIV(J )=O.0
BULK(.]) :0.0

10 CONTrIKUE
C

DO,20 1=1,4
A(! = .
AC( I )O.0

20 CONTINUE

DO 25 K=1.6
C (K): 0.0

25 cowri Nwl
WIIITE(5.30)

110 FOIlMAXI(/. * mcrin-ut THlE INITIAL SWNPI.E VOLUME' I,
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READ(5,90)VO
WR1ITE(1I,290)VO

290 FORNAT(F12.5)
WRITE(5,35)

35 FORNAT (/.' , ENTER. TEMP. OF SAMPLE RUN')
READ( 5, 90)TEP
WRITE( 1.291 )TEMP

291 FOIMT(FI2.5)
WRITE(5,38)

313 FORPIAT(/,' SENTER DENSITY OF HG')
READ( 5,90)1110
waIrmt .292)11110

292 FOR!DIAT(FI2.5)
iRITE(5,40)

40 FORIAT(/' SENTrER VIT. OF HG DURING SAMPLE RUN')
READ( 5,90 )vrSR
WRITE(1. ,293) VrITSR

293 FORMAT(F12.5)
WRITE (5,50)

30 FORflAT(/,' SENTFAJ WT. OF HG DURING CALIBRATION')
READ(5,90)WFCR
W RITE( I 294)lfTC

2-)4 FORkIAT(FI2.5)
90 FORITIAT(E12.6)

C GET READY TO READ THE COEFF IC I ENTS
WRITE(5,60)

60 IFOIUIAT(/, *SENTER, THE NIBER OF COEFFICIENTS IN -CALIB. FORMULA')
READ (5 565) NUKCR
WRITE(1I,65)NUkICR

65 FOI~fAT(12)
DO 95 J=1,NUfMCR

lWRITE(5,80)J
80 FOIUIAT(/,' $ENTER AC(',12,')

IIEAD(3,05)AC(J)
WUITE(1I 85)AC(J)

85 FoRIAT (E 12. 5)
95 CONTINUE

WIIITE (5.96)
96 FOIUr-IT(/, - SENTEII THE N1J11BER OF COEFFICIENTS IN-THE SAMPLE RUN-)

READ( 5.97)"1UHISR
WRITE(] I 97)NUrISi1

97 FOIIHAT (12)
DO 98 K= I . NUNSII

99 FOIlrA'I/, - SENTER A(' .12.'))
READ(5, 101 )A(K)
WITiE(I I .01)A(K)

101 FowwNr(E12.5)
901 CONTI 1UE

1210 CLOSE(lJNIT=I)
C INITIALIZE VARIOUS VALUES TO ZERO

VSNUr:0 .0
DVSNUI=l0 .0
VSlEN=0 .0
I)VSI)EN:O.0
VIIlIllO.O0
TEIINlI =0J.0
TEllN2=0 .0
DII'I:O.0

IWRIV2%0 .0
VClur=O .0
I)VcNllrt:0 .0
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VCIiF:N=0 .

TERM1A0.0
TEIINU=0 .0
FACTOR: 0 .0
FACT I =0. .0
DEHWAC=0 .0
VPIT=0.0
DERIV3:O.0
VI3CRl0.0
P=0.0

P3 -10.0
1P4=0.0
P5=0.0
P6=0.0
PIIic~O.0

C ENTErR TIHE VALUES OF C(6)
C(1 ):0. IOOOE+01
C(2)=0. l821E-03
C(3)=-0.3753E-04
C(4)=-0.519E-07
C(5)z 0.454E-08
C(6)z 0.119E-1l0

c START PfL1FORMING TRE CALCULTION'S
TO=25.0
CDEN:C(I )+C(2)*TO
DIFF=(WTCR-14TSR)/RHO - VO
FACTOR=DI FF/CDEN
WRiITE(5. 120)

120 FORMAXT(/,' $ENTER DNAXIMUl PRESSURE')
JIEAD(5. 130)KP

130 FOIIIIAT( 14)
WRITE(5,1410)

140 FOIUAT(/,' $ENiTERI PRESSURE IN1CREAKENT')
REAID(5, I30)PINC

150 FORLT(FI.0)
C INITIALIZE THlE PRESSURE TO ZERO

P=0.0
JII=Kl'+l

C ALLOCATE STORAGE
DO 1500 J=1 ,JIl

PIIELSS (J) =0. 0
VSAIIP(J)=o.o
IEIIV(j)0.0
BIUK(J)x0.0

1500 CONTINUE
DO 100 I:1,JP

PRFESS( I ):fP
c CAL.CULATE P2,P3 ,P4,P5 ,P6

P3: 112*I
P4= 1'24-1:2

P6=1P3*I'3
C CALCULATE THlE VARIOUS VOLUMES

CALCUJLATE VOLUME OF BJORE FOR THlE SAM!PLE RUNI
V~NiJI.1:-A()+A(9)*P+A(0)*P2+A(IZ)*P3+A(12)*P44

I A(13)*P54-A(14)*RP6
C CALCULATE THlE DERIVATIVE OF V'I'IiUlH

D)V~4UlA(9+2.*Auo0*1r+3.0*AE1I)*P2+4.0*A(i2)*P3
I +5.0*A(13)*P4i-6.0*A(14)*P5

VSILN:A( I 1+A4)P3Ar)VP4A()*5
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I +A(7)*P6
C CALCULATE TIlE DERIVATIVE OF VSDEN

I)VS)ENA(2)+2.*A(3)*P+3.0*A(4)*P2+4.0*A(5)*P3+
I 5.O*A(6)*P4+6.0*A(7)*P5

C CALCULATE TIIE VOLUME OF THE BORE DURING TUE SAMIPLE RUN
VBSII=VSNUM/VSDEN

C

TEIUI2 =%V ISR/VSDEN
*C CALCULATE TilE DERIVATIVE OF VBSR

DERI IVi In R 1:1:DVSNUM-TERMI2*DVS DEN
C START cAI.cUE.ATiONS FORl CALIBRATION RUN

V(UNI=AC(B)+AC(9)'.iP+AC(IO)*P2+AC(11)*P3+AC(12)*cP4-
I +AC(13)*P5+AC(14)*P6

DVCNU=AC(9)+2.*AC(0)P+3.*AC'1)*P2+4.0*AC(12)*P3+
I 5.0*AC(13)*P4+6.0*AC(14)*P5

VCI)E14=AC( I)+AC(2)*P+AC(3)*P2+AC(4)*P3+AC(5)*P4+AC(6)*P3
I +AC(7)*P6

DVC.I)EN=AC (2 )+2.O*AC(3i)*P43.O*AC (4 )*P2+4 .O*AC(5)*3
I ~5.O*AC(6)*P4+6.O*AC(7)*P5

C CALCULATE THlE VOLUME IN THE BORE FOR THE CALIBRATION
VB1CR VCNUM/VCDEN

C
TERNAf=V BCR/VCNU1I
I'EIUI1= VIICR/VCDEN

C CALCULATE T111E CORRESPONDING DERIVATIVE
lDER I V2 =TIERIIA*DVC NUM-Tl.RD1B*DVC DEN

C CALCULAT'E TilE VOLUME DUE TO A DIFFERENT FILL HEIGHT
FAIC'F=C( I)+C(2)*TEtIP+C(3)*jP+C(4)*'EI*P+C(5)*P2+

I C (6) :j-TEIP*P2
VPT= FACT I *FACTOR

C CALCULATIE TIlE DERIVATIVE OF VPT
1)1E-IIFAC=C(3)+C(4)*TrEDIP+2.0*C(5)*P+2.0*C(6)*TE P*P
DiER I V3 =DERFAC* FACTOR

C - CALCULATE THlE SAMPLE VOLUME AND IT'S DERIVATIVE
VSAMPP( I )VO4VBSR-VBCR+VPT
DERIV([I)=DERIVI-DERIV2+DERIV3

C CALCULATE TIlE COMPRLSSIBILITY
CoNPll-( I.O/VSANIP(I) )*DERIV( I)

C CALCULATrE TIlE I so(YrIRAL STATIC BULK MODULUS
11UI L (I ) =I .o,"COMP

C INCREMENTI 'FIlE IPRESSURE
P=P+PiNC

100 CONTINUE
C WRITE OUT T1lE VOLUME AS A FUNCTION OF PRESSURE

DO 200 Y=I,Jll

1WRITE(2,9999)PRIESS(J) ,VSAMP(J)
9999 FORMlAT(2EI2.5)
160 FORMAT(/.' PRESSURE (KPA)=l.E12.3.3X,,VSAMfP (ML)'l,E12.5)
C WRITE OUT THlE BULK MODULUS

wRrTE(5. 170)PRESS(J) .BULK(J)
170 FORMIAT(/.' PIIESSUIIE (nPA)=' ,E12. 5.3X.*BUI.K MOD. (MPA)=' ,E12.5)
200 CONTINUE

(LOS E(0H 41T= 2)
lI.T( 5, I100

I 000 FOIINAl'( /, PROGtIRAM EXITS?'*
CALLI :xrr

H104 END
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APPENDIX G

PICTURE OF ACOUSTIC PYCNOMETER AND ENGINEERING DRAWINGS

R-205

Fig. 61 -Assembled acoustic pycnometer
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APPENDIX H

STATIC BULK MODULUS CALCULATION

The static bulk modulus of the elastomer samples used in the-

acoustic pycnometer measurement can be calculated from the least-

squares coefficients obtained by fitting the experimental data to a

sixth-degree polynomial. The sixth-degree polynomial expression for

the volume of the elastomer sample as a function of pressure at constant

temperature is given by

VSAMPLE A 1 + A2P + A3 P + A4P
3 + A5P + A6P + A7P

6  (HI)

where

AI through A7 - the least-squares coefficients of the sixth-degree

polynomial

The isothermal compressibility K is obtained by taking the derivative

* of Eq. (HI) with respect to pressure and dividing this by the volume of

the sample at the desired pressure. The isothermal compressibility is

1 (SAMPLE (H2)
VSAMPLE \ P IT

The static bulk modulus B is the reciprocal of the isothermal

compressibility K. The expression used to calculate the static bulk

modulus B at constant temperature is
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7

B(P) - = 1 W)7 (1 1H3)1-

- -
i= 2

The static bulk modulus of the butyl-252 sample at 10C and 25*C

is shown in Fig. HI. (The behavior of the curves above 65 MPa is

believed to have no physical significance. This behavior seems to

be an artifact of the least-square analysis).
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