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tAract

Consider a storage system, such as an inventory or cash fund,

whose content fluctuates as a (j.,c 2 ) Brownian motion in the absence

of control. Holding costs are continuously incurred at a rate propor-

tional to the storage level, and we may cause the storage level to

jump by any desired amount at any time except that the content must be

kept nonnegative. Both positive and negative jumps entail fixed plus

proportional costs, and our objective is to minimize expected

discounted costs over an infinite planning horizon. A control band

policy is one that enforces an upward jump to q whenever level zero

is hit, and enforces a downward jump to Q whenever level S is hit

(0 < q < Q < S). We prove the existence of an optimal control band

policy and calculate explicitly the optimal values of the critical

numbers (q,Q,S). A-
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IMPULSE CONTROL OF BROWNIAN MOTION

J. Michael Harrison, Stanford University

Thomas M. Sellke, Stanford University
Allison J. Taylor, Queen's University

1. Introduction and Summary

Consider a controller who continuously monitors the content, or

state, of a storage system. In the absence of control, the content

process Z - {Zt, t > O} fluctuates as a Brownian motion with drift

g and variance a2 . The controller can at any time increase or

decrease the content of the system by any amount desired, but he is

obliged to keep Zt > 0, and there are three types of cost to be

considered.

(1.1) In order to effect an increase from level x to level x+6,

the controller must pay a fixed charge K plus a proportional

charge k6.

(1.2) Similarly, it costs L+16 to effect a decrease from level x

to level x-6.

(1.3) Inventory holding costs are continuously incurred at rate

hZt.
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Thus we have linear holding costs and fixed plus proportional

costs of control. We seek a policy that will minimize, subject to the

constraint Zt > 0, the expected present value of holding costs and

control costs incurred over an infinite planning horizon, where future

costs are continuously discounted at interest rate y > 0.

For a concrete application, one may consider the so-called

stochastic cash management problem. Here Zt represents the con-

tent at time t of a cash fund, into which a certain amount of income

or revenue is automatically channelled and out of which operating dis-

bursements are made. Interpret h as the opportunity loss rate for

cash held within the fund, meaning that h is the amount of income

per period that could have been earned by a dollar of cash if it had

been invested in securities. When the content of the cash fund gets

too large, the controller may choose to convert some of his cash into

securities, and for this he pays a fixed transaction cost K plus a

proportional cost of k times the transaction size. On the other

hand, he may at any time convert securities into cash, this too

involving fixed plus proportional transaction costs.

It is more or less obvious that there exists for this problem an

optimal policy of the type pictured in Figure 1. Using the language

of the stochastic cash balance problem, this control band policy may

be described as follows. First, it is characterized by three

parameters (q, Q, S) satisfying 0 < q < Q < S, and for future

reference we define
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(1.4) c : -rh and A E Q-q

Wlhenever the content Z of the cash fund hits zero, the controller

liquidates q dollars of securities, incurring a transaction cost of

K+kq. (le never liquidates securities except when it is necessary to

maintain a positive cash balance.) On the other hand, whenever the

content of the fund reaches an upper limit S, the controller buys s

dollars of securities, thus reducing his cash balance to Q and

incurring a total transaction cost of L+1s. (If the initial cash

balance exceeds S, the controller imediately buys enough securities

to reduce this balance to Q.)

Zt

S------- --------------------- ------------------------------------

Q------ ------------ - -----------------------------

t

Figure 1. A Control Band Policy



Assuming that K and L are strictly positive, as we shall do

throughout, our problem is one of impulse control [4]. This means

that the controller exerts his influence through lump sum displace-

ments effected at isolated points in time. The impulse control

problem is quite easy to formulate in precise mathematical terms, and

we shall do this shortly. Harrison and Taylor (6) have studied the

analagous problem with proportional control costs only (K - L - 0),

which requires a more subtle formulation but is easier to solve

explicitly. With this cost structure, it was shown that the optimal

control policy enforces an upper reflecting barrier at Q and a lower

reflecting barrier at zero, where Q is the unique solution of a

certain transcendental equation. Roughly speaking, this barrier

policy is the limit, as s and q both approach zero, of this

control band policy pictured in Figure 1. The controller exerts

influence at uncountably many time points, but the total amount of

upward or downward displacement effected during any finite period is

finite. The controller can obviously effect instantaneous state

changes in this problem, so the state constraint Zt > 0 makes

sense, and yet policies cannot be described through a discrete

sequence of intervention times. Harrison and Taksar [7] have coined

the term instantaneous control to describe that state of affairs, and

the interested reader may see [7] and [3) for analyses of other such

problems.

Harrison and Taylor (61 also considered the case where K > 0

and L - 0, obtaining an optimal policy that imposes an upper reflect-

Ing barrier at S and enforces an upward jump to q whenever level

4
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zero is hit (0 < q < S). Such a policy can be obtained by letting

a + 0 in the control band policy of Figure 1. Finally,

Constantinides and Richard [5] have studied a Brownian impulse control

problem more general than ours. (To be more precise, our problem can

be obtained by letting a certain cost parameter approach - in their

formulation.) They prove the existence of a structured optimal policy

but do not show how to compute its critical numbers except for certain

simple special cases.

In this paper we show that an optimal control band policy exists

for the impulse control problem, and we determine explicitly the

optimal policy parameters (q, Q, S). The optimal policies of

Harrison and Taylor [6] can be obtained by letting one or both of the

fixed control costs approach zero in our formulas. In addition, our

mathematical development is cleaner and more nearly self-contained

than that in [6], and we give better economic and probabilistic

interpretations for our results. To briefly summarize those results,

let us first define

(1.4) c - h/y + k and r -h/y - I

It will be shown that the original problem is completely equivalent to

another impulse control problem with the following cost structure.

(1.5) When an upward jump of size 8 is effected, the controller

incurs a fixed cost K plus a proportional cost c6.
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(1.6) When a downward jump of size 6 is effected, the controller

incurs a fixed cost L but earns a proportional reward r6.

(1.7) There are no holding costs.

To understand this equivalence, note first that h/y is the dis-

counted cost of holding one unit of stock in inventory forever. Under

the cost structure (1.5)-(1.7), our controller is charged this full

infinite-horizon holding cost for each unit of stock that he intro-

duces into the system, he is credited with a refund of equal size each

time he removes a unit of stock from the system, and no holding costs

are ineturred in the interim. Except for certain uncontrollable terms,

this cost structure is found to be identical to the original one,

where holding costs are charged continuously according to the current

stock on hand. To avoid uninteresting degeneracies, we assume

throughout that

(1.8) 0 < r < c <.

For any choice of policy parameters satisfying 0 < q < Q < S,

there exists a unique function -n on [O,S] satisfying

1 2
(1.9) a %"(x) + pn'(x) - yn(x) = 0 , 0< x < S

6



(1.10) r(Q) = u(s) = r

and one can furthermore write out an explicit and relatively simple

formula for i in terms of the policy parameters Q and S. The

function % is strictly convex, with a minimum between Q and S,

and there is exactly one choice of the policy parameters (q, Q, S)

such that

S
(1.11) f [r-n(x)]dx - L

Q

(1.12) n(q) - c

and

q
(1.13) f [%(x)-c]dx - K

0

as depicted in Figure 2 below. These are the parameters of the

optimal control band policy, and the associated function % is the

derivative of the optimal value function. It will be shown that

(1.11) alone determines s = S-Q, after which (1.12) determines

A E Q-q, and then (1.13) determines q. This three-step algorithm for

determination of the optimal parameters will be written out in

algebraic form, and interpretations of the conditions (1.11)-(1.13)

will be given.
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n (x)

7 satisfies the ordinary
differential equation

Area K a2 ,, + ' - yr= 0

Area L
r -- - - - - -- - - - - - - -- --- -... ---- /---

x
0 q Q S

Figure 2: Optimal Policy Parameters

The paper is organized as follows. In §2 we give a precise

formulation of our impulse control problem, prove equivalence of the

cost structures (1-1)-(1.3) and (1.5)-(l.7), and lay out some other

preliminary propositions. Section 3 is devoted to characterization of

control band policies. In §4 we show that there exists a unique set

of policy parameters (q,Q,S) satisfying a certain set of conditions,

and we rigorously prove the optimality of the corresponding control

band policy. Finally, §5 develops interpretations for the optimality

conditions taken as primitive in §4.
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2. Problem Formulation and Preliminaries

The data for our problem are a drift parameter 4, a variance

parameter a2 > 0, fixed control costs K > 0 and L > 0,

proportional control cost rates k and 1, a holding cost rate h,

and an interest rate y > 0. Defining c - h/y + k and r - h/y - 1,

we assume throughout that 0 < r < c.

Let Q be the space of all continuous functions w : [0,-) + R

(the real line). For t > 0 let Xt : Q + R be the coordinate

projection map Xt(w) - w(t). Then X = (Xt, t > 0) is simply

the identity map Q + Q. Let F - c(Xt, t > 0) denote the smallest

o-field such that Xt  is F-measurable for each t > 0, and

similarly let Ft -o(Xs, 0 < s < t) for t > 0. Hereafer, when

we speak of adapted processes and stopping times, the underlying

information structure (filtration) is understood to be (Ft, t

0). Finally, for each x c R let Px be the unique probability

measure on (Q, F) such that X is a Brownian motion with drift ,

variance a2 and starting state x under Px" Let Ex  be the

associated expectation operator.

A policy consists of a sequence of stopping times {To, T1, ...}

and a sequence of random variables o0 C1, ... ) such that

(2.1) Px(0 - T < T1 < * ) - 1 , for all x c R

(2.2) n c FT , for all n - 0, 1, ...
n



Interpret Tn as the nth time at which the controller enforces a

rump in the state of the system, with En the size of the Jump

(either positive or negative) enforced. The convention To - 0

will prove to be convenient, but then we must of course allow rO 0.

We associate with a policy {(Tn, n)} the processes

N(t) isupn > 0 T n <t} , t > 0 ,

Yt C {l + " + N(t)' t > 0

Zt - t + Yt  t > 0

(The time parameter of a given process may be written either as a

subscript or as a functional argument, depending on which is more

convenient.) Note that N, Y and Z are all adapted and right

continuous with left limits. The policy {(Tn,Cn)} is said to be

feasible if

(2.3) P x(Zt > 0 for all t > 0) - 1 for all x c R

OD -yT n)
(2.4) E( x (1+ 1 j) e f)< ,D for all x c R

n'0

Setting

K + kC if C > 0 ,

(2.5) (M) 0 if C 0 ,

L- I, if C <0,

we define the cost function for a feasible policy ((Tn, Cn)) by
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(2.6) C(X) - Ex[h f eYt Z dt + - n
0 n=0

for all x c R. From (2.4) it follows that C(x) is both well

defined and finite for all x c R. We say that this policy is optimal

if it minimizes C(x), over all feasible policies, for each x c R.

Now let

-K- cC , if C > 0

(2.7) 0() 0 if C - 0

-L rC , if C < 0

so that d(c) = -0(c) - (h/y)t. For each feasible policy {(Tnscn)

define the value function

(2.8) V(x) - ExenO n (n)} , x c R

Obviously C(x) is the expected present value of total costs, start-

ing in state x, under our original cost structure (1.1)-(1.3), while

V(x) is the expected present value of net rewards under the alternate

cost structure (1.5)-(1.7).

(2.9) Proposition: For each feasible policy {(Tncn)} we have

C(x) - hx/y + hA/y2 - V(x) for all x c R. Thus a feasible policy

is optimal if and only if it maximizes V(x), over all feasible

policies, for each x c R.
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Remark: Hereafter we shall deal exclusively vith the equivalent

maximization problem. This equivalence was used in (61 and is

essentially due to Bell [2].

Proof. From Fubini's Theorem we have

(2.10) Ex~ -t t - Err e-Yt(X t+Y t)dt

0 0

Goc

M f e-Y (x+4t)dt + E (f e-Yt Y tdt)
0 0

0

and

(2.11) f e Yt Y tdt f I jYt[ I & n {T <t}Idt
0 0 n-0 n

f e- et1 T:l dt

Lu TT <ti

n
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Combining (2.5)-(2.8) with (2.10) and (2.11) gives

CD -yT
(2.12) C(x) - hE jffe Yt ztdtj + E{ x e n

0 n-0

2 QD yT[h-hx/y + h/y + E{ x ) e n - fE

hx/y + hp/y2 _ E{ e-yT n

-hxly + h4/y 2-_V(X)

(2.13) Proposition. Suppose that f [0,w) + Rt is continuously

differentiable, has a bounded derivative, and has a continuous second

derivative at all but a finite number of points. Then for any T > 0,

any x e R and any feasible policy we have

(2.14) E x [e-YT f(Z T) - E x[f(Z 0)]

T y r-f( N(T) -yT n

+ [f eY r t )()dt] + Exe[ ~ fl
0 n-i

where

8 f(Z(T)) f(Z(T-) for n-i, 2,..n n n

and
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(2.15) rf 2f.. + f, .

Remark. We may define f"(y) arbitrarily at those points y where

the second derivative does not exist, becasue {t > 0 : Zt - y) has

zero Lebesgue measure almost surely under each Px"

Proof. This is almost identical to Proposition (4.2) of [71, so we

shall merely sketch the proof. Fix x e R, and represent X in the

form Xt = X0 + oWt + gt, where W is a standard (zero drift and unit

variance) Brownian motion (under Px) with W0 - 0. If f is

twice continuously differentiable, then we may apply the one-

dimensional change of variable formula (or generalized Ito formula)

for semimartingales, which appears on page 301 of Meyer [8], to obtain

T
(2.16) f(ZT) - f(Zo) + a f f'(Z t) dWt

0

T NT
+ f rf(Z )dt + n

0 n-l

14



In fact, this is making things a bit more difficult than is really

necessary, since the same result can be obtained by applying the

ordinary one-dimensional Ito formula over each of the intervals

[TnTn+1 ) and then summing up over n = 0, 1, ..., N(T).

Furthermore, it is well known that the Ito formula (or the general

change of variable formula) remains valid even when f is not twice

continuously differentiable, provided that it has an absolutely

continuous derivative f' and f" is chosen as any density of f',

cf. [1]. Thus (2.16) is valid with our hypotheses. Now using (2.16)

and the integration by parts formula for semimartingales, which

appears on page 303 of Meyer [8), we obtain

T T

(2.17) e-yT f(ZT) f(Z0 ) + f e-Yt df(Z)t - f f(Zt-) ye- Yt dt
0 0

T T
- fZO  Ie -¥t f'(Z t ) dW t  e -¥t rf(Zt)dt

+ -'Yt Af(Z)t - f f(Zt) yetdt
0<t <T 0

T

- f(Z0 ) + a f e- y t f'(Zt) dWt
0

T N(T) -yT
+ f et(rf-yf)(Z)dt + . e •
0 n=1

15



To get the desired result, we take Ex of both sides in (2.17) and

observe that the expectation of the Ito integral vanishes, becasue its

integrand is bounded by hypothesis.

(2.18) Proposition. Suppose that f : [0,-) + R satisfies all the

hypotheses of (2.13) plus

(2.19) rf(x) - yf(x) < 0 for almost all x > 0

(2.20) f(x) > f(y)-K-(y-x)c for 0 < x < y

(2.21) f(x) > f(y)-L+(x-y)r for 0 < y < x

Then f(x) > V(x) for any feasible policy and any x > 0.

Proof. Using the definition (2.7) of 4(-), we see that (2.20) and

(2.21) together give us f(x)-f(y) > Cp(y-x), which means that

(2.22) - n > (Z(T n)-Z(T-)) 4(n) n for n - 1, 2,

where On  is defined as in Proposition (2.13). Putting (2.19) and

(2.22) into (2.14) and rearranging terms, we have

N(T) -yTn+ [g - f(ZTEx(f(Z) >z[y 4 ()e n +Ee' fZ)
x n-l n

16



From (2.4) and the boundedness of f' it follows that Ex[exp(-yT)

f(ZT)J + 0 as T + -, so we have

- ( ) -yT ] .

(2.23) Ex[f(Zo) ] > E[ Co e fl]

n=1

Finally, since Z0 = X0+C0 , another application of (2.20)-(2.21) gives

(2.24) f(X0 ) > f(Z0 ) + €(C0 )

Of course Ex[f(Xo)] - f(x), so by combining (2.23) and (2.24) we

have the desired result,

f(it) > E X[ 1 0 ,(Cn ) e - T n ] = V(x).

n=nO

3. Control Band Policies

Let us now consider a control band policy with parameters

(q,QS) satisfying 0 < q < Q < S. Remembering that To - 0 by

definition, we take

q-X0  if 0> X0

(3.1) CO , if 0 < X0 < S

Q-x0  if x0 > S

and of course Z0  X0 + 0 . Assuming that it's clear from the verbal

description given in 61 how T1 , T2, ... and C1' &2. ... are

recursively constructed, we shall not write out their formal

definitions. The relevant properties of the control band policy

17



{(Tn, d) are the following. With Y -{Yt, t > 0) defined

as in S1, Z =-X+Y, and sa= S-Q as bef ore, we have

(3.2) Z(T n) c {O,S) for all ii 1, 2,

(33) C q , if Z(T) -o0

n8 -, if Z(T- S

We ni want to compute explicitly the value function V for this

control band policy. With the differential operator r defined by

(2.13 y, it will ultimately be seen that V is twice continuously

different~iable on [0,S] and uniquely satisfies

(3.4) IrV(x)- yV(x) - 0O <x < S

subject to the auxiliary conditions

(3.5) V(O) - V(q) + 4,(q) -V(q)-K-cq

(3.6) V(S) - V(Q) + 4,(-s) -V(Q)-L+rs

To extend V to a function on all of R, we write (3.5) and (3.6) in

the more general form

(3.7) V(x) - V(q)-K-c(q-x) , for x < 0

(3.8) V(x) - V(Q)-L+r(x-Q) . for x > S

18



Nov let

(3.9) a [2 + 2a2)1/2 / > 0

and

(3.10) = [(2 + 221/2 + 2 > 0

so that z - a and z - - are the two solutions of the quadratic

equation 1/2 2z2 + 4z-y - 0. The general solution of the ordinary

differential equation (ODE) (3.4) is

(3.11) V(x) - A eax + B e- PX  0 < x < S

and in our case the constants A and B must be chosen so as to

satisfy (3.5) and (3.6).

(3.12) Proposition. Let V be defined on [0,S) by (3.11), with A

and B chosen so as to satisfy (3.5) and (3.6), and extend V to a

continuous function on all of R by (3.7) and (3.8). Then V is the

value function for the (q,Q,S) control band policy.

Proof. We shall use the fact that this function V satisfies (3.4),

which is easy to verify. The central step in the proof is an

application of Proposition (2.13), with V in place of f. Since

0 < Zt < S for all t > 0, it is sufficient for this application

that V be twice continuously differentiable on [0,S]. With On

defined as in (2.13), we have from (3.3), (3.5) and (3.6) that

19



L-rs , if Z(T-)-.S

(3.13) 0 n 1 K+cq, if Z(Tn-) - 0

which means simply that On -4 -d~,~. Furthermore, IV(Zt)

- yV(Z y) - 0 for all t > 0 by (3.4). Combining these facts with

(2.13) gives

(3.14) E~ leyt V(Z E [V(Z N(T)EF eyT n
' T' xL'0)]-E[ d

for any T > 0 and x e R. Next, (3.1), (3.7) and (3.8) give

(3.15) V(Z 0) V(X0 +%0) V( =vo

so we can rewrite (3.14) as

(3.16) E x[et V(Z T) = E [V(X 0 ]- E[ -yT 0e

Of course Ex[V(X0 )] - V(x), and the left side of (3.16) vanishes

as T +* w because V(Zy) is bounded, so we obtain the desired

result by letting T + in (3.16).

20



4. Optimal Policy Parameters

Continuing the discussion of control band policies, it will be

convenient to define

(4.1) %(x) - V'(x) , for x c R

Actually, the left and right derivatives of V need not agree at x -

and x - S, so (4.1) is ambiguous at those points. To resolve that

ambiguity, let us agree to define w so that it is continuous on

rO,S]. From (3.11) we have

(4.2) n(x) - aA eax - PB e- x  < x < S,

and the conditions (3.5)-(3.6) determining A and B may be

rewritten in terms of n as

(4.3) f [%(x)-cldx - K
0

and

S
(4.4) f (r-%(x)ldx - L

Q

In this section it will be shown that there is exactly one choice of

the control band policy parameters (q,QS) such that

21



(4.5) ir(q) -c

(4.6) n(Q) u (S) rV

and the corresponding control band policy is optimal. Interpretations

for (4.5)-(4.6), and the conditions to be derived from them shortly,

will be offered in the next section. For arbitrary s > 0 we define

(4.7) a(s) -(1 -e -P )/(e a - Ps ) > 0

(4.8) b(s) -. (e~ asl )/(e as e-P)>0

and

(4.9) f s(y) -r[a(s) e~ + b(s) e yy -E y R

so that f5 uniquely satisfies rf.-yf, - 0 subject to

f (0) - f (s) - r. Obviously f" > 0 and thus we have the following:

(4.10) For any a > 0 the function f,(*) is strictly convex

on R and has a minimum in (O,s).

22



'I.

This situation is pictured in Figure 3 below. From (4.2) we have

r%(x) - yn(x) - 0 for 0 < x < S, and hence % can only satisfy

(4.6) if

(4.11) n(x) = fS(x-Q) , < x < S

where a S-Q as usual. Then (4.4) demands that

S S
(4.12) L - f [r - fs(x-Q)]dx= fI [r - fa(y)]dy

Q 0

rs -r(-+ -) (e -l) (1 - e-pS)/(e m -e - s )

a

f (x)

Area, K

CI---

Area L

r -- -- - - - -- -- - -- - --- - -. - -. . --, - -

-Q -A0 s

Figure 3. Determining the Optiml Paraeters
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In §5 we shall give a probabilistic interpretation for fs(') that

makes the following proposition obvious, but it can also be verified

analytically, and this is left as an exercise.

(4.13) Proposition. The right side of (4.12) increases continuously

from 0 to - as s increases from 0 to -, so there is a unique

s > 0 satisfying (4.12).

Hereafter we assume that s S-Q has been chosen to satisfy

(4.12). Next, setting A = Q-q as in Si, we see that (4.5) and

(4.11) require

(4.14) c - n(q) - f(-A) - r[a(s) e + b(s) e

as shown in Figure 3. It is immediate from (4.10) that there exists a

unique A > 0 satisfying (4.13), because c > r by assumption, and

we assume hereafter that A has been choser, 1t, this way. Finally,

(4.3) and (4.11) demand that Q > A satisfy

q -A
(4.15) K - f [%(x) - c]dx f f [f (y)-c~dy

0 -Q

- r[a- (e- aA - e- a Q) + b( (e - eoA)] - c(Q-A)
a

It is again immediate from (4.10) that there exists a unique Q > A

satisfying this condition, as shown in Figure 3.

24



(4.16) Proposition. Let a > 0, A > 0 and Q > A be chosen to

satisfy (4.12), (4.14) and (4.15) respectively, and set q S Q-A and

S E Q+s. Then the (q,Q,S) control band policy is optimal.

Proof. Our first task is to construct the value function V by

reversing the logic of this section. With (q,Q,S) chosen in the

indicated way, we define fs(.) by (4.7)-(4.9) and set n(x)

= fs(x-Q) for 0 < x < s, as in (4.11). Now let

(4.17) V(O) = % [ K'(0) + 4%(0)],

and

(4.18) V(x) - V(O) + f %(y)dy
0

The value of V(O) has been set so that V(.), as defined by (4.18),

will satisfy (rV-,)(o) - 0. Then (4.18) insures that (rV-yV)(x) - 0

for all x c [O,S] because % satisfies this same ODE. Now extend

V to a function on all of R by (3.7) and (3.8). Because n

satisfies (4.3) and (4.4) by construction, we see that V satisfies

all the hypotheses of Proposition (3.12). Thus V is the value

function for the (q,Q,S) control band policy, as desired.

Our next task is to show that V satisfies the hypotheses of

Proposition (2.18) and hence provides an upper bound for the value

function of any other feasible policy. First note that V is
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continuously differentiable on [0,-) because V'(S+) - r by (3.8),

while V'(S-) = %(S-) f Is(s-) - r by construction. Next, it must

be established that

(4.19) (rv-yV)(x) < 0 , for all x > 0

Of course (4.19) holds with equality on [O,S]. As we pass through S

from the left, both V and V' - n are continuous, while V"(*)

n'(o) jumps from the positive value at S- pictured in Figure 1 to

a zero value. (Remember that V is linear with slope r to the

right of S.) Thus (rV-yV)(S+) < 0. Finally, 1'V is constant to the

right of S, while V is increasing linearly, so rV-yV becomes even

more negative as we move right from S, and (4.19) is confirmed. To

verify the remaining hypotheses (2.20) and (2.21) of Proposition

(2.18), one needs little more than the picture of n = Vt  given in

Figure 1, and we shall leave this as an exercise. Then (2.18) gives

us V(x) > V*(x) for all x > 0, where V* is the value function for

any other feasible policy. It remains only to show that this same

inequality holds for x < 0, which we also leave as an exercise.

5. Interpretations

In this section we seek to interpret the conditions (4.5) and

(4.6) that were implosed at the beginning of the previous section, and

to elaborate on the relationships (4.12), (4.14) and (4.15) that were
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ultimately found to determine the optimal policy parameters. For this

purpose we fix an arbitrary control band policy, hereafter called the

nominal policy or candidate policy, with parameters 0 < q < Q < S.

Let Z - X+Y be the associated controlled process, let V(x) be the

associated value function, and set n(x) - V'(x) as in S4. Using

policy improvement logic, we shall derive three plausible necessary

conditions for optimality of the nominal policy.

If the controller starts in state S, immediately jumps downward

to level x, and thereafter follows the control band policy (q,Q,S),

his total expected discounted reward will be 4(x-S)+V(x) - V(x)-L+

(S-x)r.If the candidate policy is to be optimal, then it must be that

this expression is maximized by taking x = Q, which obviously demands

(5.1) 1(Q) - r

In exactly the same way, by considering the various points x to

which the controller could jump from zero, we obtain the optimality

condition

(5.2) %(q) c

To complete the motivation of (4.5)-(4.6), we need to argue that

a necessary condition for optimality is %(Q) - n(S). One can

actually obtain a much more stringent and enlightening optimality

condition by the following argument. First define
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T(y) - inf(t > 0: Z t -y) 0 <_y S

O(x,y) S E x e-Y() , < x, y '__ S

Suppose that our controller, following the candidate control band

policy, starts in state x, and let y be another state such that

0 y h x < S and y < Q. The expected present value of his total

net reward over (0,w) is of course V(x), and we define

:. U(x,y) - expected present value, when starting in state x

and following the nominal policy, of net rewards

earned over the period [0, T(y)J.

From the strong Markov property of X and the stationary character of

control band policies, it is apparent that V(x) - U(x,y)+e(x,y) V(y),

so we have

(5.3) U(x,y) -V(x) - e(x,y) V(y)

Now fix x and y satisfying 0 < y < x < S and y < Q. Let

e be a perturbation, either positive or negative, small enoguh that

0 < y+c < Q. Let the starting state be x+c, and consider the

alternate strategy where one follows a control band policy with

parameters (q, Q+c, S+e) up until the first time T*(y+c) at which

level y+e is hit, end then reverts to usage of the nominal policy

ever afterward. Let
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V*(x+c) E expected present value, starting in state x+e, of

net rewards earned under the alternate strategy

over [0,-).

From the spatial homogeneity of Brownian motion we obtain

(5.4) O(xy) =- E x[e-yT(Y)] - E E[e-YT*(Y+ ) ]

and similarly

(5.5) U(x,y) - expected present value, when starting in state

x+E and following the alternate strategy, of net

rewards earned over the period [0, T*(y+c)].

Thus, as a precise analog to (5.3), we have

(5.6) V*(X+E) - U(x,y) + e(x,y) V(y+E)

- V(x) + e(x,y) [V(y+E) - V(y)) .

The last equality is obtained by substitution of (5.3). Subtracting

V(x+e) from (5.6), we see that the improvement effected by the

alternate strategy is

(5.7) V*(x+E) - V(x+e) - e(X,y) [V(y+e) - V(y)j - [V(x+e) - V(x)]
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If the nominal policy is to be optimal, this expression must have a

local minimum at e - 0, which obviously requiries 0 - 0(x,y) V'(y) -

V'(x), or equivalently n(x) - 0(x,y) n(y). We have derived this for

0 < y < x < S and y < Q, and then by continuity we arrive at our

final optimality condition

(5.8) n(x) ex,y) %(y) , for 0 <y. x < S and y < Q.

Because Z jumps immediately to Q upon hitting S, we have 0(S,Q)

= so (5.8) implies

(5.9) %(Q) - n(S)

and this completes our justification for the conditions (4.5)-(4.6)

that were imposed earlier. To get more insight from (5.8), set y - Q

and invoke the condition n(Q) - r derived above. This gives

n(x) - rO(xQ) for Q < x < S, and then the basic identity (3.6)

demands that

S
(5.10) L - r(S-Q) - [V(S)-V(Q)J - [ [r - n(x)]dx

Q
S s

- r f S[1-e(x,Q)]dx - r f( Ex1-e-yT(Q)]dx
Q 0

After a bit of reflection, one realizes that the right-hand side of

(5.10) depends only on a _ S-Q and that It increases continuously

from 0 to - as s increases from 0 to -. Thus (5.10) uniquely

determines the value of s for an optimal control band policy, and It

is just the probabilistic articulation of the analytical condition
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(4.12) derived earlier. From the definitive analytical properties of

the function f. introduced in S4, one can easily verify the

interpretation

f (x) - rE[e-T(Q)I

which establishes the equivalence of (4.12) and (5.10). To determine

the policy parameter A Q-q from (5.8), set x - Q and y - q, and

use the fact that %(q) - c by (5.2) while n(Q) - r by (5.1). Then

(5.8) gives

(5.11) r - cO(Qq) - cEQ[e-yT(q) •

With s already determined, the right-hand side of (5.11) depends

only on A S Q-q, and it decreases continuously from c to 0 as A

increases from 0 to -. Thus (5.11) uniquely determines A for the

optimal control band policy, and one can easily show that it is

equivalent to the analytical condition (4.14) derived earlier. Once

a and A have been set, we can determine q from (5.8) as follows.

With x - q and 0< y j q, (5.8) reduces to c - e(q,y) x(y)

because %(q) - c by (5.2). Then the basic identity (4.19) requires

that

q q
(5.12) K - f i(y)dy cq - c f [1/e(q,y) - 1]dy

0

M C iq (E[1 - -yT(y)/Eq [e-yT(Y)I}dy ,
0

which is the probabilistic articulation of our analytical condition

(4.15).
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