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Instantaneous Control of Brownian Motion

3. Michael Harrison
Michael I. Taksar

Stanford University

Abstract

A controller continuously monitors a storage system, such as an

Inventory or bank account, whose content Z = {Zt, t > 01 fluctuates

2
as a (p,a ) Brownian motion in the absence of control. Holding

costs are incurred continuously at rate h(Zt). At any time, the

controller may instantaneously increase the content of the system,

incurring a proporitional cost of r times the size of the increase,

or decrease the content at a cost of I times the size of the

decrease. We consider the case where h is convex on a finite

interval [a,R] and h = - outside this interval. The objective is

to minimize the expected discounted sum of holding costs and control

costs over an Infinite planning horizon.

It is shown that there exists an optimal control limit policy,

characterized by two parameters a and b (a < a < b < P). Roughly

speaking, this policy exerts the minimum amounts of control sufficient

to keep Zt c [a,b] for all t > 0. Put another way, the optimal

control limit policy imposes on Z a lower reflecting barrier at a

and an upper reflecting barrier at b. We do not give a full-blown
El

algorithm for construction of the optimal control limits, but a

computational scheme could easily be developed from our constructive

proof of existence.
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Instantaneous Control of Brownian Motion

3. Michael Harrison
Michael I. Taksar

Stanford University

1. Introduction

Consider a controller who continuously monitors the content of a

storage system, such as an Inventory or bank account. In the absence

of any control, the content process Z = Zt, t > 01 fluctuates as

a Brownian Motion with drift p and variance a2 , and holding costs

are continuously Incurred at rate h(Zt). In order to avoid

excessive holding costs, the controller may at any time Increase the

content of the system by any amount desired, Incurring a proportional

cost of r times the size of the Increase. Similarly, he may

decrease the content by any amount desired, incurring a proportional

cost of I times the size of the decrease. Hereafter we use the term

pushing right to mean Increasing the content of the system, and

pushing left to mean decreasing the content. Thus r and I are the

proportional control costs associated with pushing right and pushing

left respectively.

The controller's objective is to find a policy that minimizes the

expected discounted sum of holding costs and control costs over an

Infinite planning horizon, where future costs are continuously
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discounted at interest rate y > 0. To formulate this problem in

precise mathematical terms, we begin with a (p,a2) Brownian motion

X = {Xt, t > 01, denoting by Px the distribution on the path space of

X corresponding to initial state x. A policy is defined as a pair

of nonnegative processes R = {Rt, t > 01 and L = fLt, t > 01 that

are non-decreasinq and non-anticipating with respect to X. Interpret

Rt  and Lt as the cumulative amounts of riqhtward movement and

leftward movement, respectively, effected by the controller over the

time interval (O,t]. The content process under policy (R,L) is

Zt = Xt+R t-t t > 0,

and we define the associated cost function

. t'

k(x) =E ff e- t h(Z)dt +r e- Y dR~ t i eYt dL
0 0

with the Riemann-Stieltjes integrals on the right defined to include

the control costs rR0  and AL0  incurred at t = 0 (see 13). Our

objective is to find a policy which minimizes k(x) for every

starting state x.

An essential feature of this problem is that the controller can

instantaneously change the content (or state) of the storage system.

Thus, it is possible to further impose state constraints on the

controller's actions, which may be formally expressed by setting

h(x) = - for some states x. In the same way, one of the

controller's options may be eliminated by setting r = - or I

The special case where r <, A < - and
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(x If x >0

(1.1) h(x) =

I O if X < 0

was studied by Harrison and Taylor [6]. Defining b as the unique

solution of a certain transcendental equation, they proved the

optimality of a control limit policy (R*,L*) with lower limit zero

and upper limit b. The policy (R*,L*) and its associated content

process Z* = X+R*-L* may be described as follows. If X0 < 0, one

takes R* = -X0 , so that Z* = 0. If X0 > b, one takes L* = Xo-b ,

so that Z* = b. After time zero, one increases R* and L* in the

minimal amounts sufficient to achieve 0 < Z* < b for all t > 0.

Under this plan, Z* is a (p,a2) Brownian motion with a lower

reflecting barrier at zero and an upper reflecting barrier at b,

S-No0 is the local time of Z* at zero, and L -L0 Is the local

time of Z* at b. In particular, although R* and L* may have

Jumps at t = 0, they are continuous but singular thereafter. The

last phrase means that the set of time points at which R* or L*

Increases has zero Lebesgue meansure (almost surely). This

singularity expresses a bang-bang property of the optimal policy with

Instantaneous control.

In this paper we consider the Instantaneous control problem with

r < -, A < and a holding cost function of the form



x < ar

h(x) = a general convex function , a < x <

Go u x >1

where -- < a < 0 < -. It will be shown that there exists an optimal

control limit policy with lower limit a and upper limit b, where

a < a < b < P. We do not present a full-blown algorithm for computa-

tion of the optimal control limits a and b, but a computational

scheme could easily be developed from our constructive proof of exis-

tence. Our treatment generalizes the result by Harrison and Taylor

(6] described earlier, and the methods used here are also more elegant

and more general in their applicability. This improvement in method-

ology and presentation has itself been a major goal In our study,

although the extension to general convex holding costs Is potentially

important for applications.

It will ultimately be found that the minimal cost function f

for our instantaneous control problem satsifies the optimality

equation (or Bellman equation)

(1.2) 0 = [rf(x) - yf(x) + h(x)] A [f'(x)+r] A [f'(x)-Jt]

where

1 2 2
r - x2  + I'

Is the infinitesimal generator of the Brownian motion X. Note that

(1.2) Imposes three differential Inequalities on f, plus the

requirement that at least one of the Inequalities be tight in each
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state x. For those familiar with standard stochastic control theory,

(1.2) has a strange appearance, so we shall begin In 12 with a

heuristic derivation of this optimality equation. A precise

mathematical formation of the instantaneous control problem is then

given In 13. Using the ubiquitous change of variable formula (or

generalized Ito Formula) for semimartingales, we show In 14 that any

smooth solution f of (1.2) satisfies f ( k for all cost functions

k associated with feasible policies. If one can find a policy whose

cost function satisfies the optimality equation, It of course follows

that this policy Is optimal. The cost function for a general control

limit policy Is computed In S5, and then in §6 we show how to choose

the control limits so that our optimality equation Is satisfied by the

associated cost function. Finally, 17 discusses applications of the

Instantaneous control problem and some correlative references.

2. Heuristic Derivation of the Optimality Equation

To simplify discussion, we assume In this section that h(x) <

for all x eIR (the real line), and the letters a and 0 will be

used here with new (temporary) meanings. Suppose that, in the

stochastic control problem described In 11, the controller can only

push right or left at a rate which Is not to exceed 9 < -. We then

have a more or less standard stochastic control problem, which can be

stated In the following unconventional form. A policy Is a pair of

processes (R,L) having the form
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t t
(2.1) Rt = f a ds and Lt = r ds , t > 0

00

where a and 6 are non-anticipating with respect to X and satisfy

0 < a, R < e. The content process under policy (R,L) is

Zt = XtR t-Lt, and we define the associated cost function k(x) as In

11. Let f(x) be the pointwise infimum of all such cost functions

(the *imimal cost function). Under mild assumptions on h It can be

shown that f Is twice continuously differentiable and satisfies the

optimality equation

(2.2) 0 = lnf{rf(x) - yf(x) + (a-R)f'(x) + ra + kR + h(x)

= lnf{(rf-yf4.h)(x) + a[r+f'(x)] + R[R.-f'(x)]1

where the infimum is taken over all real numbers a,P c [0,8].

Problems of this type, where the controller has the ability to alter

the drift of a diffusion process at some cost, have been treated by

Mandl [9], Krylov [8], Fleming and Rishel [4], Glhman and Skorohod

[5], and a number of others.

Since f e W 2(R), the infimum in (2.2) Is attained, and the

minimizing values for a and R are

a*(x) = 91A(x) where A = (x c R: r+f'(x) < 0) ,

*(x= 9lB(X) where B = (x C R: 1-f'(x) < 01
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This is a bang-bang policy. In each state x, each available control

mode (pushing right and pushing left) is employed at either the

maximum possible intensity 0 or else at the minimum intensity of

zero. The content process Z* associated with the optimal policy

satisfies the stochastic differential equation

t t
(2.3) =* a *(Z*)djs - 0*(Z*)ds

t t
= X + 9 f IA(Z*)ds - f . 1B(Z*)dst 0

the optimal policy (R*,L*) being given by the last two terms on the

right side of (2.3). Nothing said so far depends on any particular

structure of h. Assuming that h is convex with h(x) + w as

jxj , it can be shown that f is convex itself, with f(x) - as

Ix( 4 , so that A = (-a, a] and B = [b,-) for some parameters a

and b (- < a < b < -).

Letting e + - in an attempt to approximate the Instantaneous

control problem of §1, this suggests the optimality of a control lir"

policy. Starting from any state x, we should either apply no control

at all initially, or push right at the maximum possible rate, or else

push left at the maximum rate. In the limiting problem, the latter

two actions amount to Instantaneous (jump) displacement, either right

or left. With this motivation, we now use an Infinitesimal argument

to derive the optimality equation with Instantaneous control, con-

sidering Infinitesimal elements of space rather than time.
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Let f be the minimal cost function for the Instantaneous

control problem, fix a starting state x, and consider a small

surrounding interval [x-e, x+c]. The preceeding discussion suggests

that we should either jump immediately to x+e and proceed optimally

from there, jump Immediately to x-e and proceed optimally from

there,or else apply no control up to time

T(e) -inf{ t > 0: IXt-Xo = C,

and proceed optimally thereafter. Under the first option, our total

expected discounted cost is

(2.4) re + f(x+c) = f(x) + [r + f'(x)]h + o(e) ,

under the second It Is

(2.5) IE + f(x-C) = f(x) + [1-f'(x)]c + o(C)

and under the last It Is

(2.6) E ( T (  e h(X )dt + e-yT() M ))]e htt + (T(C

= f(x) + [rf(x) - yf(x) + h(x)] E x[T()] + o(E x[T(e)])

f f(x) + [rf(x) - yf(x) + h(x)] (C/0)2 + o(e 2 )

S1

I
I,



In writing (2.6), we have used the fact that

E x[f(XT()) f(x))/E x[T(e)] + rf(x) as E 4- 0

and that A2 [T(E)]/* 2 + 1 as E 4, 0. Now to minimize our expected
x

discounted cost starting from x, we want to take the smallest of

(2.4) - (2.6), meaning that

(2.7) f(x) = minff(x) + [rf(x) - yf(x) + h(x)] (E/o)2 + o(E 2 )

f(x) + [r + f'(x)]E + o(C)

f(x) + [ - f'(x)]h + 0(c)).

Substracting f(x) from both sides of (2.7), and letting E 4- 0, we

conclude that

0 = [rf(x) - yf(x) + h(x)] A [r + f'(x)] A - f'(x)]

which Is precisely the optimality equation (1.2).
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3. Problem Formulation

The data for our problem are a drift parameter p, a variance

parameter a2 > 0, control cost parameters r and 1, an interest

rate y > 0, a compact state space S = C,R] and a convex holdinq

cost function h:S + R. We assume r+1 > 0, for otherwise the

control problem would make no sense.

Let 0 be the space of all continuous functions w: [0,-) * R,

which is usually denoted C[O,=). Let Xt: 0 + R be the coordinate

projection mapping Xt(w) = w(t), t > 0 and w c 0. Then X = (Xt,

t > 0) is simply the identity map 0 + 0. Let JT = a(Xt, t > 0)

denote the smallest o-field on 0 such that X is s-measurable

for each t > 0, and similarly let a(Xs, 0 < s < t). Finally,

for each x c S, let Px be the unique probability measure on (P,.r)

such that X Is a Brownian motion with drift p, variance a2 and

starting state x under Px , and let Ex  be the associated

expectation operator. A policy is defined as a pair of processes

R = (Rt, t > 0) and L = (Lt, t > 0) such that

(3.1) R(w) and L(M) are right-continuous, non-negative

and non-decreasing for all w c P, and

(3.2) Rt and Lt  and It-measurable for all t > 0.

As usual, we summarize (3.2) by saying that R and L are adapted to

(.rt). We associate with policy (R,L) the controlled process Z =

X+R-L, and we say that (R,L) is a feasible policy if

10



(3.3) P(Zt cS for all t >0) = 1 for all x c S

(3.4) Ex[ e - Yt dRtl < - for all x c S
0

and

(3.5) Exrf e.Yt dLtl < - for all x cE S
0

The integrals In (3.4) and (3.5) are defined for each fixed w in the

ordinary Lebesgue-Stieltjes sense over [0,-), with the convention

that Rt = Lt = 0 for t < 0. Thus the Integral In (3.4), for

example, equals the sum of R0  and an integral over (0,-). This

same notational convention will be used later without comment. We

associate with a feasible policy (R,L) the cost function

k(x) = Ex e-Yt[h(Z t)dt + rdRt + XdL , x S,

and (R,L) Is said to be optimal If k(x) Is minimal (among the

cost functions for feasible policies) for each x c S. By defining

feasibility via (3.3)-(3.5) we are Implicitly setting h = - outside

S and then restricting attention to policies that have finite

expected discounted cost for every starting state x. We could still

enrich our definitional system to include all possible starting states

x c R, but for x lying outside S, the feasibility restriction

(3.5) would obviously require that either R or L have a jump at

11
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t = 0 so as to ensure Z0 e S. By restricting attention to

starting states x c S we avoid some irritatinq complications without

any significant loss of generality.

This is the most concrete possible formulation of the decision

problem described Informally in §1. By takinq 0 = C[O,m) and

X(=) w, we formally express the fact that our decision-maker

observes nothing of relevance other than the sample path of X, and

(3.2) expresses the requirement that his actions over the time

interval [O,t] depend only on the observed values of Xs, 0 < s < t.

4. An Application of the Generalized Ito Formula

Until further notice, let (R,L) be a fixed feasible policy and

x c S a fixed initial state. In the usual way, we denote by ARt

= Rt-Rt_ the jump of R at time t, recalling that a riqht-continuous

function with finite left limits can have only countably many points

of discontinuity. As In §3, we take Rt = 0 for t < 0, so that

AR0 = R0 . The same convention is used In extendinq the definition of

ALt to t = 0. It will be convenient to denote by P and X the

continuous parts of R and L respectively, meaning that

(4.1) Pt Rt " AR and Xt  L t - AL
O<s<t 0< 1<t

12



for t > 0. Obviously p and X are continuous and non-decreasing

with po = XO = 0. As before, let Z = X+R-L.

Now fix f C W2(S) and denote by f(Z) the process (f(Zt),

t > 0). Then Af(Z) t = f(Zt) - f(Zt ) and we extend this to t = 0

with the useful convention

f(Z)o f(Zo) - f(Xo)

Finally, let r = 1/2 a2 62 /8x 2 + p 6/bx as In S1, and let T > 0 be

fixed.

(4.2) Proposition. With the assumptions and definitions above,

T

E x[ey Tf(ZT)] = f(x) + Ex e' yT(rf-yf) (Zt)dtl
0
T

+ E x e "Y t f(Z t) d(p-X) t

+ Exr ' e " Yt Af(Z) t
O<t<T

Remark. From (3.3) - (3.5) and the fact that f c W 2 (S) it follows

that all of the expectations appearing In (4i.2) exist and are finite.

Proof. This is a direct application of the change of variable formula

for semimartinqales, but to make connection with the literature on

that subject we must enrich our set-up slightly. Remembering that

13



x e S has been fixed, let (0, T*, Px) be the completion of

(P, *ir, Px), cf. Williams [11, p. 16], and for each t > 0 let Ft*

be formed from t by adding to it all A c AT* such that

P (A) = 0. It is well known that the filtration (j, t > 0) is

right continuous, and hence the filtered probability space (o,4*,

Px, (.qT*, t > 0)) satisfies the usual conditions imposed by

Meyer [10] in his treatment of stochastic inteqration and the change

of variable formula. Our processes X, L, R and Z are all adapted

to (9t) and thus also to (. ). When we use the terms adapted,

martingale, stopping time, etc., later In this proof, the underlying

filtration Is understood to be ( *).t

It will be convenient to represent X In the form Xt = X0 +Ocit+lt

where W is a standard Wiener process starting at zero. Then

(4.3) Zt = OWt + Vt  where Vt = Xo+Rt-Lt+Pt

From the definitive properties of R and L we see that V is a VF

(finite variation) process, and W is of course a martingale, so Z

is a semimartingle. (We follow Meyer [101 in all of our terminology

concerninq martingales and related theory.) Then the chanqe of

variable formula (or aeneralized Ito formula) gives us

T T

(4.4) f(ZT) = f(Zo) + r f'(Q )dZ + 1 G2 r _'qZ )dt
0 t- t 2 0

+O< [Af(Z)t - f'(Zt )AZt]
O<t<T

f(ZO) + II(T) + 12(T) + r(T)

14



cf. Meyer [10, p. 3011. Here II(T) is a stochastic Integral over

(O,T], and we have simplified the general form of 12 (T) by using

the fact that oW is the so-called continuous martinqale part of Z

and <aW, W>t = a2t. Using (4.1) and (4.3), we have

T
(4.5) 11(T) = f f'(Z t) (aoWt + dp t - d t + pdt)

o

+ f'(Z t)AZtO<t<T

Now we can replace f'(Zt.) by f'(Z t ) In the integral on the right

side of (4.5), because the integrator is continuous, and a similar

statement holds for 12 (T). Thus, substituting (4.5) into (4.4) and

combining similar terms, we have

T T
(4.6) f(ZT) =f(ZO) + of f'(Zt) dWt + ( f'(Zt) d(p-)x)t

0 0

T
+ ( rf(Zt)dt + Af(Z)

0 O<t<T

Now let Yt = exp(-yt), t > 0. Because Y is a continuous VF

process, the general Integration by parts formula stated on page 303

of Meyer [10] simplifies to give us (in this equation, square brackets

denote quadratic variation)

T T
(.7 YT lT) = Yof(Zo) + . Yt df(Z)t + f f(Zt)dYt + [Y'f(Z)]T

0 0

I 1=Yof(Zo) +0 "f Ytdf(Z)t + Of( ) d t 'I

i i
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which Is equivalent to

T T

(4.8) e " YT f(ZT) f(Zo) + . e - Yt df(Z)t - y T e - Yt f(Z t)dt
0 0

Now we calculate df(Z)t from (4.4), substitute this into (4.8) and

collect similar terms to get

T

(4.9) e- y T f(ZT) = f(Zo) + a r e- Yt f'(Zt) dWt
0

T T

+ ( e Yt f(Zt) d(p-X)t + ( e'Yt (rf-yf)(Z t)dt
0 0

+ e_ Yt Af(Z) .
O<t<T t

Next, because Af(Z) 0 F f(ZO) - f(X0 ), we have

(4.10) f(ZO) + 7 e Yt Af(Z)t = f(X 0 ) + e - Yt Af(Z)t
O<t<T O<t<T

We now substitute (4.10) Into (4.9) and take Ex  of both sides,

observing that the Ito inteqral involvinq dWt has zero expectation

because Its inteorand Is bounded. This yields equation (4.2) and thus

completes the proof.

Maintaining the set-up for (4.2), we now define the cumulative

discounted cost process associated with policy (RL). Let

16



t
(4.11) Kt r e-y5 [h(Z + rdR5 + Xdi L t > 0

0 S5 S

the second and third Integrals being defined In the Lebesgue-Stielties

sense over [0,t] with the usual convention at zero (AO= R0  and

AL0 = LO).

(4.12) Corollary. With the assumptions and definitions above,

EX[KT + e-vYT f(T)

T
=f(x) + E f' e Yt(rf-yf+h)(Z WOt

T y
+ E If e [r + I (X )] dp~xo t

+ EIf T eYt [I - f'(Z )]dk I
0 t t

+ El x e-Yt[(Af() t+ rtAR t+ IAL I
0<t<Tt t

(4.13) Remark. For future reference, we express the right side of

(4.12) as f(x) + E [1 1(T) + 1 2(T) + 1 3(T) + T(T)J.

Proof. This follows Immediately from (4.2) and (4.11), using the

Identities dR dp+AR and dL dX+AL In (4.11).

17



For an interpretation of (4.12), imagine that you have

responsibility for operating the storage system described in §1 and

have tentatively decided to use the policy (R,L). Further suppose

that another person offers to relieve you of this responsibility under

either of the following two arrangements.

(a) You may pay f(x) dollars at time zero and avoid all future

control and holding costs.

(b) You may employ policy (R,L) up to time T, absorbinq the

control and holdinq costs incurred durinq that period, then make

a payment of f(ZT) at time T and be relieved of all control

responsibilities thereafter.

Corollary (4.12) gives an expression for your expected discounted cost

under plan (b). Now suppose that f satisfies

(4.14) rf-yf+h > 0 on S

(4.15) r+f' > 0 on S,

and

(4.16) I-f' > 0 on S

Using the notational convention (4.13), it is clear that (4.14)

implies EX[Il(T)] > 0, (4.15) implies Ex[12(T)] > 0, and (4.16)

implies Ex[1 3 (T)] > 0. Furthermore, (4.15) and (4.16) together

imply Ex[F(T)1 > 0 as follows. Suppose ARt > 0 and ALt 0.

Then AZt ARt and we have

18



Af(Z) + rARt + AALt = f(Z ) - f(7t-ARt ) + rA
S t t t

= t [f'(y)+r]dy > 0 , by (4.15)

Z t-ARt

From (4.16) we get a similar inequality for times t where ARt = 0

and ALt > 0. Finally, (4.15) and (4.16) together imply a similar

Inequality for times t with ARt > 0 and ALt > 0, because (and

only because) we have assumed r+1 > 0. So we find that (4.14) -

(4.16) imply

(4.17) E x [K T +e-YT )] > f(x)

which means that plan (b) above is inferior to plan (a) for any choice

of T (and regardless of the starting state x). Letting T + - In

(4.17) gives k(x) > f(x), since f is bounded on S. Since (R,L)

and x were arbitrary, we then have the following.

(4.18) Corollary. If f C jq2(S) satsifies (4.14) - (4.16), then

f < k for any cost function k associated with a feasible policy.

Corollary (4.18) is the only result from this section that will

be used later, but we should say at least a few words to connect our

basic Identity (4.12) with the optimality equation (1.1) and the

19
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general notion of policy improvement. Suppose that f is the cost

function for a feasible policy (R*,L*) that we want to test for

optimality. The left side of (4.12) gives the expected discounted

cost when we use an alternate policy (RL) up to time T and employ

(R*,L*) thereafter, with T playing the role of time zero and ZT

viewed as the initial state of the control problem. (To make this

last phrase precise, one must introduce shift operators.) For (R*,

L*) to be an optimal policy, It is necessary and sufficient that all

such attempts to Improve (R*,L*) through hybridization fall, meaning

that (4.17) holds for every x, every stopping time T, and every

feasible policy (R,L). Combining this with (4.12), it can be shown

that (4.14)-(4.16) are necessary and sufficient for the optimality of

(R*,L*). Finally, from (4.12) and the fact that f is (by

assumption) the cost function for a feasible policy, it can be shown

that at least one of the inequalities (4.14) - (4.16) Is tight at each

point x c S, meaning that if satisfies the optimality equation

(4.19) 0 = [(rf-yf+h) A (r+f') A (1-f')](x) , x C S

which appeared earlier as (1.1). To repeat, If f c W2(S) Is the

cost function for a feasible policy, then (4.19) is necessary and

sufficient for the optimality of that policy, but only the sufficiency

has been proved rigorously.
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5. Control Limit Policies

Let a and b be fixed throughout this section, with a < a < b

< P. We want to construct the policy (R,L) that enforces these

control limits, and then calculate the associated cost function.

These are essentially known results for one-dimensional Brownian

motion with reflecting barriers, but we do not know of any textbook

treatment that presents them in a form suitable for our purposes.

(5.1) Proposition. For each u c 0 there exists a unique pair of

functions R() = {Rt(w), t > 01 and L(w) = {Lt(w), t > 01

which jointly satisfy

(5.2) R () = sup [a-Xs (w) . Ls()] , t >0,
O<s<t

(5.3) Lt(w) = sup [Xs() + Rs() - b]+ , t > 0
O<s<t

Both R(M) and L(M) are continuous and non-decreasinq, with RO(w)

= [a-Xo(w)]+  and LO(w) = [Xo(w)-b] + .

Proof. Let us first prove the last statement, taking R and L to

be any two functions which jointly satisfy (5.2) - (5.3). (The

dependence on w will be suppressed throughout this proof.) If R0

and L0 were both positive, then we would have R0 = a-XO+LO by

(5.2) and L0 = X0+R0-b by (5.3), which implies a = b, a contradic-

tion. In exactly the same way, if ARt > 0 and ALt > 0 for some
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t > 0, then the suprema In (5.2) and (5.3) would both be achieved at

s = t, implying Rt = a-Xt+Lt and Lt = X tR t-b, and again we arrive

at the contradiction a = b. So R and L cannot jump

simultaneously, and then (5.2)-(5.3) and the continuity of X Imply

that they have no jumps at all.

We now construct a solution of (5.2)-(5.3) by successive approxi-

mations. Beginning with the trial solution R t  = 0, t > 0, let

t t

(5.4) Rn+ I  sup [a-X +L ]+
SO<s<t

and

(5.5) L+ 1  sup [Xs +Rnb]+
O<s<t

for n = 0, 1, ... and t > 0. Observe that Rt > Rt  and L>
t-t t - t'

and hence (by induction) that Rn and L are increasinq in n fort t

each fixed t. So we have

(5.6) Rn + R and Ln + L as n + -, t > 0t t t t_

and one can easily verify that the convergence in (5.6) Is obtained in

a finite number of iterations for each fixed t. Thus R and L are

finite valued and jointly satisfy (5.2)-(5.3).

For uniqueness, let (R',L') be another (distinct) solution of

(5.2)-(5.3). We have already seen that R' and L' must both be
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continuous with R6 = R0  and L6 = LO, and It's obvious from the

construction above that R' > R and L' > L. Let T > 0 be the

infinium of those t > 0 at which either R' > Rt or L' > Lt . By

continuity, we have Rj. RT and L = LT, and either R' or L'

must increase at T. If T were a point of increase for both, then

(5.2) and (5.3) would give us RT = a-XT+LT and LT = XT+RT-b

respectively, which yields the contradiction a = b. So we conclude

that exactly one of the pair (R',L') Increases at T. Suppose it is

R', Implying that L' = L over [0, T+E] for sufficiently small e.

But then R' = R over [0, T+il by (5.2), which contradicts the

definition of T. In the same way, we cannot have R' flat and L'

increasing at T, so the proof of uniqueness is complete.

(5.7) Proposition. Let R(M) and L(w) be as In (5.1), and set

Z = X+R-L. The processes R, L and Z are adapted and satisfy

(5.8) a < Zt < b , t > 0 ,

t
r (Zs-a)dR =0, t>0,

t
(5.10) ( (b-Zs)dLs = 0 , t > 0

0

Remark. One may paraphrase (5.9) by sayinq that R Increases only

when Z = a. With our usual convention, (5.9) yields (Zo-a)R0 = 0

when specialized to t = 0. Similar statements hold for (5.10).
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Proof. The adaptedness is immediate from our construction (5.4)-(5.6)

of R and L, while (5.8)-(5.10) follow directly from (5.2)-(5.3).

It can further be shown that the unique pair of functions (R,L)

satisfying (5.8)-(5.10), with Z - X+R-L, is that constructed in the

proof of (5.1). This means that the characterizations of (R,L)

given in Propositions (5.1) and (5.7) are completely equivalent. We

observed earlier that the convergence (5.6) is obtained in a finite

number of iteations for each fixed t, which makes It possible to

write out a general (and very messy) recursive formula for R and L

in terms of a sequence of stopping times {Tnl. This was done in

[6] for the case a = 0, but the only relevant properties of the

resulting pair (R,L) are those expressed In (5.7). It can be shown

that R (respectively L) is the local time of the diffusion process

Z at the boundary a (respectively b), but we shall have no need

for this fact.

(5.11) Proposition. Suppose that k c "(S) is twice continuously

differentiable on [a,b] and satisfies

(5.12) rk(x) - yk(x) + h(x) = 0 , a < x < b

(5.13) k'(x) + r = 0 , a < x < a
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(5.14) k'(x) - I = 0 , b < x < .

Then

k(x) = E X e-Yt[h(Z t)dt + rdRt + dLt , x C S
0

Remark. This of course shows that there is at most one k satisfyinq

the stated hypotheses, and we shall exhibit a soiuCion (or rather the

solution) shortly.

Proof. First fix a starting state x c [a,b]. Defining the

cumulative discounted cost Kt as In (4.11), we need to prove that

Ex(K.) = k(x). Fixing T > 0, we shall apply Corollary (4.12)

with k c W 2[a,b] replacing f C W 2[ap]. Since L and R have

no jumps vhen X0 = x, we have p = R and X = L, and (4.12) yields

(5.15) E [K T + e
"yT k(Z 1)]

T
k(x) + Exf eyt(rk-yk+h)(Z )dt

0

T

+EU eT~ tkz)d
ExiT e'Yt[1-k'(Zt)]dLt  .

t t
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Since Px{a < Zt < b for all t > 01 = 1, the second term on the

riqht side of (5.15) vanishes by (5.12). Next, (5.9) says that R

Increases only when Z = a, so the third term on the right side of

(5.15) is

T

ExU T eYt[r+k'(a)]dR ,
0

which vanishes by (5.13). Similarly, the final term on the riqht side

of (5.15) vanishes by (5.10) and (5.14). Letting T * in (5.15),

and using the boundedness of k(ZT), we thus obtain E (K.) = k(x) as
T x

desired.

If a = a and b = 0, there is nothing left to prove. Next

suppose b < 8 and consider a startinq state x c (b,8]. From the

construction of (R,L) we have

(5.1) E x(K) = E x(IL ) + Eb(K.)

= V(x-b) + E b(K.)

The first part of the proof shows that Eb(K.) = k(b), and

t(x-b)+k(b) = k(x) by (5.14), so (5.16) reduces to Ex(K) = k(x)

as desired. A similar argument, usinq (5.13), gives Ex(K.) = k(x)

for a < x < a, which completes the proof.

We conclude the section by constructinq a solution for the

ordinary differential equation (5.12)-(5.14). To emphasize the
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dependence of this solution on the control limits a and b, we

denote it kab(x). First, let g e r 2(S) be the unique solution

of

(5.7) rg(x) - yq(x) + h(x) = 0, a < x < ,

(5.8) g(a) = g(A) = 0

It is well known that exactly one such g exists, and It can be

written explicitly as an integral involving a known Green's function.

Next, setting

91 = [-P + (p2+2ya2 )112 ]/ V2 ,

A2 = [-9 + 0 2+2-fo2)1/2]/o2 ,

cl = exp(02a)/Aj[exp(Ajb+A2a) - exp(Pla+0 2b)] ,

c2 = exp(e1 a)/e 2 [exp(Ala+02b) - exp(Ailb+A 2a)] ,

d i = exp(A2b)/A(exp(eja+e2b) - exp(Alb+02a)] ,

d2 = exp(e1b)/A2[exp(elb+e2a) - exp(Ala+02b)] ,

we define
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s1(x) = cl eA Jx + C2 e
A2x  , a < x < b ,

$2(x) dl eelx +d 2 e0 2x  x
= +d2  ,a~x<b,

4(x) = g(x) + [1-g'(b)] $1(x) - [r+g'(a)] $2(x) , a < x < b ,

and finally

(!)(a) + (a-x)r , a < x < a,

kab(x) - 4(x) , a< x < b,

$(b) + (x-b)t , b < x R

One can easily verify that

rs1(x) - y$l(x) = r$2(x) - Y$2(x) = 0 , a < x < b

1(a) = s(b) = 0 and 61(b) = 6;(a) = 1 .

From this and (5.7)-(5.8) It follows directly that kab is the

desired solution of (5.12)-(5.14). Observe that k' Is continuous•abiscniuu

on all of [a,0] and that k" is continuous everywhere except
ab

possibly at the control limits a and b.

In this construction of kab one can start with any function

g C W 2(S) satisfying the main equation (5.7). For concreteness we

have specified one particular solution via the boundary conditions

(5.8). For future reference, note that our choice of g does not

depend on the control limits a and b.
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6. Optimal Control Limits
Maintaining the notation of the previous section, let f = kab

be the cost function for a control limit policy with a < a < b < A.

Recall that f is continuously differentiable on S and twice

continuously differentiable except possibly at a and b. We would

like to find conditions (on a and b) under which f satisfies the

optimality conditions (4.14)-(4.16).

The first thing to note is that f can only satisfy (4.14)-(4.16)

if it is twice continuously differentiable, meaning that f"(x) + 0

as x 4 a If a < a, and f"(x) + 0 as x + b if b < P. To see

this, suppose first that a < a and that f"(a+) > 0. Since

(rf-yf+h)(a+) = 0, and f, f' and h are continuous at a while

f"(a-) = 0, we have (rf-yf+h)(a-) < 0, which violates (4.14). Now

suppose, on the other hand, that f'(a+) < 0. Since V is contin-

uous at a with f'(a) = -r, this implies f'(a+e) < -r for C > 0

sufficiently small, which violates (4.15). So continuously of f"

at the lower control limit is necessary if f is to satisfy (4.14)-

(4.16), and a similar analysis holds at the upper control limit. We

turn now to the matter of sufficiency.

(6.1) Proposition. Suppose that f = kab is twice continuously

differentiable on S with -r < f' < A. Then f satisfies the

optiality conditions (4.14)-(4.16).
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Proof. If a = a and b = P, the conclusion is automatic. Suppose

then that a > a. Defining

4,(x) F rf(x) - yf(x) + h(x)

12
- a2 f"(x) + lif'(x) - yf(x) + h(x) , x C S

we have 4,(x) = 0 for a < x < b and need to prove that 4,(x) > 0

for a < x < a. (The proof that (x) > 0 for b < x < R if b < A

Is virtually Identical, so we delete It.) Let us define

s(x) [h(x) - h(a)] + yr(x-a)

O(x) [rf(x)-Pf(a)] - y[f(x)-f(a)] + yf'(a) (x-a) .

Remembering that 4(a) = 0, rf(x) = rf(a) for a < x < a, f(x)

= f(a)+r(a-x) for a < x < a, and f'(a) = -r, we then have

. (x) , if a <x < a

(6.2) 440) = 4()-4'a) (x)+A(x) , If a < x <

Next, since f C W 2(S) by assumption, f"(a) = 0, f'(a) = -r and

f'(x) > -r for all x by assumption, It must be that f"(a+r) > 0

for all F > 0 sufficiently small. From Taylor's theorem and the

definition of 8(o), we then have the following: for each 6 > 0

there exists an e > 0 such that
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(6.3) 8(x) > -(x-a)6 , for a < x < a+e .

But 4'(x) = 0 for a < x < b, so (6.2) and (6.3) together Imply

(6.4) 4(x) < (x-a)6 , for a < x < a+c .

Convexity of h Implies convexity of 6, and obviously $(a) = 0, so

(6.4) implies

(6.5) 6(x) > -(a-x)8 , for a < x < a

Since 6 > 0 was arbitrary, this gives *(x) > 0 for a < x < a and

hence *(x) > 0 for a < x < a by (6.2). This completes the proof

of the proposition.

We now construct a control limit policy whose cost function

satisfies the hypotheses of Proposition (6.1). For each a c [a,R)

let

b*(a) = sup{b e (a,ft]: k b(x) < I , a < x < b)

From the explicit formula for kab given in 15, It follows easily

that b*(a) > a. Hereafter let ka E kab*(a) for a e [a,A).

Next define
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a* = Inf{a e [a,f): ka(x) > -r, a < x < b*(a))

Again It follows easily from the formulas of §5 that a* < R.

Hereafter we set b* b*(a*).

(6.6) Proposition. The cost function f = ka*b* satisfies the

hypotheses of (6.1), and thus the control limit policy with parameters

a* and b* Is optimal.

Proof. The Inequality -r < f' < I Is Immediate from our construc-

tion. It remains to show that f" Is continuous, which means simply

that
I

(6.7) f"(x) 0 0 as x + a* If a* > a,

(6.8) f"(x) + 0 as x + b* If b* < .

From the formulas of 15 It is Immediate that kab and Its first two

derivatives vary continuously with the parameters a and b, and It

Is this continuity plus the definitions of a* and b* that one uses

In verifying (6.7)-(6.8). The verification Is straightforward but

tedious, so we leave It as an exercise. Propositions (6.1) and (4.18)

give f < k for any cost function k associated with a feasible

policy, which completes the proof of the proposition.
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The approach that we have taken to determininq an optimal policy

does not work directly with the optimality equation (1.2), but the

return function for our optimal control limit policy does In fact

satisfy this relationship. Defining f = kab* as in (6.6), we

have seen that f is the minimal cost function and that It satisfies

each of the inequalities (4.14)-(4.16). Furthermore, from the

definition and construction of kab given in 15, we see that (4.14)

holds with equality on [a*,b*], (4.15) holds with equality on [a,a*1

and (4.16) holds with equality on [b*,P]. Thus,

(6.9) 0 = [rf(x)-yf(x)+h(x)] A [r+f'(x)] A [!-f'(x)], X E S

as claimed. Adding the boundary conditions

(6.10) r+f'(a) = 0 and 1-f'(8) = 0

we believe that the unique function f C ( 2(S) satisfying (6.9)-

(6.10) is the minimum cost function, but we have not attempted to

prove this. The boundary conditions (6.10) are essential, Inciden-

tally, since there may exist f C '(2(S) satisfying Tf-yf+h = 0 on

S with r+f'(x) > 0 for all x c S or 1-f'(x) > 0 for all x c S.

Such an f satisfies (6.9) but lies strictly below the minimum cost

function.
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7. Concluding Remarks

Two potential areas of application for our Instantaneous control

problem are cash management and production control. See Harrison and

Taylor [6] for a discussion of these applications, oriented toward the

specific holding cost function (1.1), and further references. For

cash management problems, the non-linear (but convex) holding cost

function

( hx , if x > 0 (h > 0)

(7.1) h(x) =

qjxj , if x (0 (q > 0)

Is also of practical importance. This arises when the firm can

maintain a negative cash balance through short-term borrowing, and a

similar holding cost structure occurs in production control problems

where demand can be backlogged at some penalty cost. Motivated by the

stochastic cash management problem, Constantinides and Richard [3]

have studied the optimal control of Brownian Motion when the holding

cost function is (7.1) and there are both fixed and proportional costs

of control. This gives a problem of optimal impulse control [2], and

they show the existence of an optimal policy characterized by four

critical numbers. The applications of instantaneous control in

production and inventory theory will be further developed in [7],

using the results of this paper.

Two problems of instantaneous control, closely related to ours

but much more difficult, have been solved In a beautiful recent paper
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by Benes, Shepp and Witsemhausen [1]. Using our notational system,

one of their problems can be stated as follows: Find a pair of

controls (R,L) to minimize

Er O e-=t(Xt+Rt-Lt) 2 dtl
0

subject to the constraint that R. + L. < y < . Here one has no

explicit cost of control, but there Is a finite limit on the total

amount of control that can be exerted over the Infinite planning

horizon. The authors take essentially the same approach employed

here, using martingale methods (the generalized Ito formula) to verify

optimality of a candidate policy arrived at from certain heuristic

considerations. Their optimal policy has a much more complex form

that ours, however, so the argument Is much more intricate. This is

the only previous paper we know of, other than [6], which explicitly

considers an instantaneous control problem for Brownian motion, as

opposed to control at a bounded rate or optimal impulse control.
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Abstract

A controller continuously monitors a storage system, such as an

inventory or bank account, whose content Z = (Ztt t O) fluctuates

as a (p, 2) Brownian motion in the absence of control. Holding

costs are incurred continuously at rate h(Zt). At any time, the

controller may instantaneously increase the content of the system,

incurring a proporitional cost of r times the size of the increase,

or decrease the content at a cost of I, times the size of the

decrease. We\o*1rider the case where h is convex on a finite

Interval [6,6j and h =.- outside this interval. The objective is

to minimize the expected discounted sum of holding costs and control

costs over an infinite planning horizon.

It is shown that there exists an optimal control limit policy,

characterized by two parameters a and b (a (a <b 4 ). Roughly

speaking, this policy exerts the minimum amounts of control sufficient-

to keep Zt  [a,b] for all t 0. Put another way, the optimal

control limit licy imposes on Z a lower reflecting barrier at a

and an upper r flecting barrier at . We do not give a full-blown

algorithm for onstructlon of the opfmal control limits, but a

computational scheme could easily be developed from our constructive

proof of existeqce.
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