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INTRODUCTION

This document describes the Computer Sciences Corporation (CSC)/Software

Engineering Associates (SEA) team's approach to the design of a Minimal Ada

Programming Support Environment (MAPSE) under the Ada Integrated Environment

(AIE) contract with Rome Air Development Center (HADC). Design issues that

influenced the preliminary design are delineated and the system design is

presented with its rationale. System requirements are included in the

System Specification (Type A) while the details of the preliminary design

are given in the Computer Program Development Specifications (Type B5), both

of which accompany this document.

This Interim Technical Report addresses the overall system design as well as

the design of the individual components. The first section ib an introduc-

tion, containing an executive summary of the AlE project, a discussion of

the principles that guided our system design, an overview of the system

requirements, and a description of the system design in terms of function-

ality and system interfaces. Subsequent sections of this document address

each major component of the system individually and provide an introduction

to the component, the design principles followed during this preliminary

design phase, the background for the chosen design, and a functional de-

scription of the component, including definition of system interfaces and

rationale for the design decisions. Each of these parts is intended to be

read and understood independently of the others.
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SECTION I - EXECUTIVE SUMMARY

While the need for a common higher order programming language (HOL) has been

recognized over the past several years, the need for automated'management

and development support tools has also become apparent. From development

and maintenance standpoints, facilities that enhance the use of a common HOL

reduce costs. If, in addition, the language were retargetable and the

environment tools that support the language development were rehostable,

then use of the language and its support system would be enhanced. To this

end, a preliminary requirements definition, PEBBLEMAN, was developed in 19/b

and revised in January 1979. Subsequently, the STONEMAN document (issued in

November 1979 and revised in February 19W) described the basic design goals

for an Ada Program Support Environment (APSE). STONEMAN, along with the SOW

issued by RADC under contract number F ObO2-8O-C-0292, and the Reference

Manual for the Ada Programming Language (July 1980), form the basis for this

effort.

The CSC/SEA design for the AIE provides the first MAPSE in accordance with

the STONEMAN precepts by providing project managers and programmers with a

set of modern techniques and tools to support software development. The

requirement for a totally integrated, highly portable, language-oriented

development system as defined by this effort will result in the

implementation of a sorely needed, readily achievable, advancement to the

state-of-the-art of software development environments. The Ada compiler and

its associated language development and project management tools, coupled

with the design of a machine-independent virtual operating system to provide

required portability, will result in the implementation for the first time

of a truly integrated approach to solving the major software development

problems that confront both industry and the Department of Defense (DoD).

The MAPSE design is similiar in concept to the highly-acclaimed UNIXTM

timesharing system, which provides a fully-integrated systems approach to

providing a software development environment for the C language. The MAPSE

will do the same for Ada. It must be recognized, however, that the

far-reaching requirements for the Ada environment entail considerable

extensions to the UNIX concept. The requirements for a unified set of Ada

i 1-1



language tools, for a sophisticated attributed data base, for project and

configuration management facilities, and for Ada tasking support all

contribute to the need for an integrated system design. The additional

requirement for a fully rehostable system mandates the development of a

comprehensive virtual operating system to supply an Ada -integrated

environment with uniform and standard interfaces.

The MAPSE incorporates a specific set of Ada tools to support software

development. This minimal set of common tools is extensible so that the

HAPSE can expand and change as additional needs and uses are identified.

The HAPSE is designed to be portable: user interfaces are

machine-independent and the MAPSE is designed to present identical user

interfaces on differing host machines. All machine-dependent features, such

as low-level input/output (I/O), are isolated. The HAPSE to be developed

under this contract includes the Kernel APSE (KAPSE) and a Tool Set. The

KAPSE is composed of a machine-independent user interface, run-time support

facilities, communications facilities, a data base, and a machine dependent

interface. The Tool Set consists of a Text Editor, Ada Compiler, Symbolic
Debugger, Linker, Command Language Interpreter, and Configuration Manager.

This design of the HAPSE accommodates extension to a full integrated support

environment by the adaition of tools through a common interface.

This Interim Technical Report (ITR) highlights the principles emphasized in

the design of the CSC/SLA MAPSE. All STONEMAN design goals are achieved in

this design, and the system is fully compliant with the RADC SOW. Key

features that distinguish the CSC/SEA design are as follows:

1. Use of proven software and systems engineering concepts to

produce a HAPSE design that provides a fully self-contained

Ada development facility.

2. A HAPSE that provides a highly modular, easily rehostable

system structure due to its machine-independent/virtual

operating system support base.

3. A KAPSE environment that supports multiple Ada processes,

as well as Ada tasking, that is fully extensible to

multiprocessor host systems.
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4. A KAPSE data base structure oriented toward providing full

programming and project management support with an

efficiency that meets large scale DoD programming needs.

5. Use of proven design techniques in the development of a

performance oriented Ada compiler.

6. An Ada compiler design that minimizes memory requirements

and maximizes rehostability.

7. An Ada compiler design that places paramount emphasis on

the generation of efficient, highly optimized code coupled

with ease of retargetability.

8. An integrated system for defining, manipulating, and

managing configurations, versions and history attributes.

9. A configuration management system that provides features

for maintaining both object grouping and object derivation.

10. A configuration manager that determines minimal operations

sequences required both to update and to reconstruct

objects.

11. A program library structure specifically optimized to

provide fast, efficient, program linking features.

12. User-controllable line numbered text files that provide a

consistent and stable interface between the Compiler,

Editor and Debugger.

13. An efficient, rehostable and retargetable Debugger that

uses the separate process technique to allow debugging of

operational software with a minimum of interference.

The MAPSE is composed of three major components: KAPSE Data Base System

(KDBS), KAPSE Framework (KFW), and MAPSE Tool Set.

The KDBS maintains and controls the use of all data objects and is the

repository of all information used by MAPSE tools. It contains all data

associated with the development of Ada programs and Ada probram libraries.
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It also provides project management and configuration management services in

conjunction with tools from the Tool Set. The design of the KDBS is

independent of the host environment. The mapping of the KDBS facilities

into host facilities is provided by the KFW.

The KFW is the virtual operating system of the MAPSE. It provides run-time

support facilities to supplement those provided by the KDBS, schedules Ada

programs and tasks for execution, and handles all interfaces with the host

environment.

The MAPSE Tool Set, consisting of the APSE Command Language Interpreter,

Configuration Management System, Compiler, Linker, Editor, and Debugger,

provides specific aids for the MAPSE user in the development of Ada

software. Tools are designed to be as machine independent as possible. The

Tool Set relies on the KDBS for data base management support and on the KFW

for host system support. The facilities of the KDBS and KFW that are

directly available to the MAPSE Tool Set and user programs are made visible

through Ada package specifications, the collection of which is called the

KAPSE virtual interface. This KAPSE virtual interface provides Ada

specifications of all functions available to KAPSE tools and user programs

to invoke other Ada programs, interact with the KDBS, and communicate with

the KFW.
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SECTION 2 - DESIGN PRINCIPLES

The objective of this preliminary design effort is the design of a program

development and maintenance environment for embedded computer system

projects involving Ada programs, with the intent of improving long-term cost

effective software reliability. An integrated, comprehensive environment

design facilitates the priorities for software quality in military embedded

computer applications: reliability, performance, evolution, maintenance,

and responsiveness to changing requirements. The system is designed to be

rehostable and retargetable, providing flexibility in future applications.

The MAPSE is designed to provide portability of the system itself as well as

facilitating project portability.

2.1 MAPSE DESIGN GOALS

The MAPSE design goals incorporated in the CSC/SEA design include:

1. User-friendly and efficient interfaces

2. Logical entities and relationships to provide communication

between the user and the MAPSE

3. Host logon facility extension into the KAPSE to improve

user authentication and provide data privacy and security

4. Isolation of machine dependent interfaces in a single

modular primary component, the KFW, dealing directly with

host characteristics

5. A system designed to support the full range of Ada language

features coupled with a highly efficient Ada compiler

6. Functional extensibility of the environment to facilitate

MAPSE to APSE enhancements

7. A portable, retargetable, and readily maintainable

environment.

2-1
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2.2 STONEMAN DESIGN GUIDELINES

Specific design guidelines as described in STONEMAN include provision of an

effective system development facility, MAPSE flexibility, and design of a

practical system with priority given to user-frienoliness. Each of these is

described below.

2.2.1 Effective System Development Facility

In order to provide an effective system development facility, support is

provided to projects throughout the software life cycle from requirements

specification and design through implementation to long-term maintenance and

modifications. The MAPSE supports the development of Ada programs by pro-

viding a state-of-the-art Ada Compiler that will handle full Ada as defined

in the Reference Manual for the Ada Programming Language (July 1980), a set

of program development tools, and all of those functions required by a

project team, including project management control, documentation and

recording, and long-term configuration and release control.

2.2.2 MAPSE Flexibility

MAPSE flexibility is enhanced by designing the system to be as portable as

practicable, providing consistency across host environments, supporting the

addition of other system tools and supporting the development of software

for various embedded target computers. Portability is provided by writing

the system in Ada and by identifying and isolating machine-dependent

features of the MAPSE. Consistency across host environments is provided by

designing a standara user interface and by providing host-like facilities

within the MAPSE itself so that the capaoilities of the system and the user

access to these capabilities does not change from host to host. Through the

provision of a standard interface, additional tools can be added to the

MAPSE to allow the system to evolve into a full APSE. Applications of the

MAPSE will involve developing software for embedded target computers. Thus,

the design has considered the amount and type of target support necessary

for these applications.

2.2.3 Practical System Design

In order for the MAPSE and the Ada language itself to be accepted by current

users and adopted by future users, it must provide a practical system. The

structure of the design is based on simple overall concepts that are

straightforward to understand and use. Whenever possible, the design has
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drawn on concepts that have been successfully implemented to reduce the risk

involved in this system, The MAPSE has been designed to be reliable and

robust, to protect itself from user and host system errors, and to provide

meaningful diagnostic information to its users. Whenever possible, the

cozicepts of the Ada language are used throughout the HAPSE. The MAPSE has

been designed to provide adequate response/turn-around times for its users

by considering efficiency issues in the design and by exploiting host system

capacity and performance insofar as possible. The MAPSE system implemented

from this design will be highly maintainable because it has been designed in

a modular top-cown fashion, is written in Ada, and is well documented. User

documentation will be sufficiently detailed to enable the overnment to

maintain the system readily. In addition, for the first year after delivery

of the system, maintenance will be provided by the CSC team.

2.2.4 User-Friendliness

High priority has been given to human engineering requirements in the

design. The APSE Command Language (ACL) has been designed to provide

commands that are both simple and flexible. Adequate response time will be

provided and the MAPSE will be tolerant of user errors and provide

meaningful diagnostic messages when errors occur. The ACL will support a

broad spectrum of users from systems programmers to those with no

programming experience. The MAPSE provides a well coordinated set of useful

tools, with uniform intertool interfaces, standard communication

capabilities, and a common data base that serves as the information source

and data repository for all tools. The standard intertool interface can be

exploited to facilitate the development and integration of new tools.

Improvements, updates, and replacement of tools will be supported.

2.3 MAPSE CHARACTERISTICS

In order for the MAPSE to provide a usable programming environment it must

demonstrate reliability, maintainability, and reasonable performance.

Without any one of these characteristics, the user may find it difficult to

use the MAPSE effectively.

2.3.1 Reliability

The MAPSE must be reliable. Whenever there is a switch from an existing

system or operational mode, the reliability of the new system is of utmost
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importance. The requirement for reliability of the MAPSE means that it does

not promote errors and that it is tolerant of user errors. Upon

catastrophic error, whether user or system generated, the MAPSE provides

users with sufficient means to recover and be left in a well-defined state

with minimal loss.

2.3.2 Maintainability

Several factors affect the maintainability of a large system such as the

HAPSE. Perhaps the most important of these factors is that all components

of the system are designed with a consistent philosophy. The HAPSE

accommodates maintenance and upgrade of host systems. New releases of host

operating systems may provide new features that would improve the MAPSE

system. The maintainability of the MAPSE is supported by defining standard

visible specifications of facilities provided.

2.3.3 Performance

The performance of the MAPSE depends on the host configuration, number of

users, host performance, host/target interactions, as well as on the MAPSE

design. Response time, which is the usual criterion for measuring

interactive systems, varies according to the amount of processing required

for a particular terminal input, the load on the HAPSE, and the load on the

host. Reasonable response time is a prime requirement because it determines

the usefulness of the MAPSE. The HAPSE has been carefully designed so as

not to preclude its efficient implementation.
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SECTION 3 - MAPSE SYSTEM DESIGN

The MAPSE system designed in this preliminary design effort meets all of the

requirements as stated in the SOW. It will provide all of the data base

support, interfaces to host facilities, user interfaces and tool interfaces

necessary to satisfy requirements of the MAPSE tools and system users. All

external interfaces are isolated, clearly identified and designed to

facilitate portability of the system. Uniform protocol conventions for

communication between users, tools, and the system have been established.

The MAPSE software is designed to be modular and reusable; tools, such as

the Linker, that may be required simultaneously by more than one user will

be implementeu as reentrant sharable code. MAPSE documentation will provide

the necessary information to allow safe use of such code segments.

The CSC/SEA team has designed a systeu that meets not only the stated

requirements of the SOW, but also those requirements derived from adherence

to the guidance contained in the STONEMAh environment report.

The MAPSE system development has evolved from adherence to four major design

principles:

1. The use of proven systems engineering and software design

concepts to reduce risk.

2. The requirements to provide a fully self-contained Ada

development facility to support both program development and

program management.

3. The requirement for a highly modular design to support the

evolution of the current systems oesign to a full APSE

system.

4. The requirements for support of machine-independent virtual

operating system structure to meet the goal of providing an

easily rehostable MAPSE.

An overview of the major system components is illustrated in Figure ,-I.

The basic design approach is to provide a portable programming support

environment by developing a KAPSE and surrounding it with a minimal tool set
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to form a MAPSE. The KAPSE components consist of the KDBS, which provides a

machine-independent data base facility for users, and the KFW, which

provides the host-dependent interface for the system as well as internal

process scheduling and control. To provide consistency across host

environments, the KFW provides a virtual operating system so that the user

need not interface directly with the host. The MAPSE tools designed for

this implementation of the MAPSE include: the APSE Command Language

Interpreter (ACLI), which provides the user interface to the process and

data base management facilities of the KAPSE; the MAPSE Editor, which

provides basic text editing facilities for source programs and program

documentation; the Ada Compiler, which supports full Ada ano is designed to

be rehostable and retargetable; the Linker, the Debugger, and the

Configuration Manager, which works in conjunction with the KDBS to provide

version, history, and configuration control.

The preliminary modular design approach for the MAPSE is baseo on past
experience with the development of portable programming support environments

and with effective programming support tools. This experience include the

design and implementation of a portable JOVIAL programming support

environment, called the Communications Software Development Package, which

will be hosted on both the DEC System 20 and the Honeywell Multics System.

Extensive experience with UNIX TM Multics, SHARE/? and TOPS-20 operating

systems has contributed to the selection and design of the support

environment. The CSC Computer Sciences Timesharing System (CSTS) also

contributed to the design of the KAPSE.

3.1 THE KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE)

The components of the KAPSE are designed to provide the support necessary

for the development and maintenance of Ada programs throughout the software

life cycle. It provides the data base support, interfaces to host facili-

ties, user communication interfaces, and tool communication interfaces in

order to satisfy the requirements contained in the SOW. Host-independent

interfaces are supplied for user-tool, tool-tool, and tool-KAPSE

communication. These interfaces are supplied through the KAPSE virtual
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interface, which provides the capability for the user to invoke any tool,

for tools to invoke other tools, for communication to pass from user to tool

and among tools in a controlled manner, and for communication with the KDBS

and the KFW. User logon/logoff, initiate/terminate functions are provided

through this interface by the KFW.

The KAPSE consists of two of the Computer Program Configuration Items

(CPCIs) deliverable under this contract, the KDBS and the KFW.

Two key issues, one in each of these CPCIs, provided major design objectives

that had to be met within the KAPSE.

1. The full ADA tasking capabilities must be extensible to

multiprocessor host systems as well as multiprocessor

targets. Ada tasking must also be compatible with the

multi-user requirements for the MAPSE.

2. The data base structures must provide both full program-

ming and project management support with an efficiency that

meets large scale system development needs.

The design meets both of these objectives completely. The underlying

structure of the KFW provides full apparent concurrency and is extensible to

any multiprocessor host environment to provide real parallel processing

should that feature be available. The data base provides a hierarchically

structured logical data base with full facilities for object maintenance and

manipulation in the software development environment. It also incorporates

all the requisite facilities for project management control of that software

development environment. As such, it provides an integrated system for

defining, manipulating, and managing configurations, versions, and history

attributes.

The interface between the KAPSE components and the MAPSE tools is described

below.
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IV /

3.1.1 The KAPSE Framework (KFW)

The goals of a portable HAPSE efficiently catering to multiple users

requires that the traditional notion of a run-time support interface to the

host environment for each user program be synthesized into the concept of a

virtual operating system. The KFW is designed to fulfill this role in the

MAPSE.

The KFW presents the facilities through which the user accesses the host

operating system. These facilities are embodied in a virtualization of

operating system services that provides for resource management, process

scheduling, and servicing of user requests. The view of the KFW presented

to users and to the MAPSE Tool Set will be consistent from implementation to

implementation. The KFW will also provide the translation of the user

requests from the virtual system to the host system. The KFW may execute on

a bare machine or under an existing operating system, depending upon the

implementation. In each instance, the KFW must interface directly with the

host to provide the support for the canonical interface that is visible to

the portable MAPSE components through the KAPSE virtual interface.

A principal objective of the KFW design is to optimize the coexistence and

integration of the MAPSE and the underlying operating system. The MAPSE

user's awareness of the host environment should be minimal or nonexistent,

but the MAPSE, through the KFW, should exploit existing facilities, where

appropriate, to maintain the required efficiency.

Standard terminal interface specifications and functions are provided

through the KFW to facilitate the use of a variety of batch and interactive

terminals and to ensure that machine-dependent interfaces do not affect the

user. The KFW also provides the host interfaces required to support low-

level I/O functions and basic data transfer and control functions. All host

dependent computer programs necessary to implement the MAPSE system on the

IBM and Interdata computers specified for delivery of the system will be

specified and implemented as part of the KFW. Although these initial hosts

are both uniprocessors, considerable attention has been given to the design

of the KFW control functions so as to permit efficient implementation on

multiprocessors.
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An inherent property of the KFW is the ability to supervise and control the

execution state of the MAPSE within the constraints imposed by the host

environment. A fundamental requirement of this execution state is the

servicing of multiple users or processes. Consequently, the design

contemplates the existence of a privileged state in which only the KFW can

execute and which has global rights to the MAPSE. In this state all MAPSE

execution contexts may be accessed and controlled. In addition, where

appropriate, the KFW executes in the context of a MAPSE process. A useful

analogy is to consider the KFW as a consistent, systematic extension to the

Ada Standard Environment. This extension specifies and implements the

necessary functionality to comply with those Ada semantics that are

dependent upon or relate to the execution environment. This functionality

has commonly been identified as run-time support.

The Ada Run-Time Support Package, supported by both the KDBS and the KFW,

provides for high-level I/O and the basic run-time facilities needed to

execute Ada programs, such as the Ada Tasking Package. The Ada high-level

I/O Package is supported by the KDBS and KFW. Facilities will be comparable

to, or exceed, those typical in existing FORTRAN systems.

The KDBS and the KFW will both contain certain kernel functions that are not

visible to the average user. These portions of the components are labelled

KDBS Kernel ano KFW Kernel, respectively. The KDBS Kernel will provide I/O

support for the data base functions and will interface directly with the KFW

Kernel, which provides the functions of an I/O dispatcher, a process

administrator, an event monitor, and a context manager. The KFW Kernel will

interface with the portions of the KFW that are machine-depenuent and

provide the direct interface with the host system.

3.1.2 The KAPSE Data Base System (KDBS)

The KDBS will present a logical data base structure to the user that will be

hierarchical. It will be the logical repository of all MAPSE data and will

provide the capability to create, delete, modify, store, retrieve, input,

and output data base objects. It incorporates the requisite data base

management facilities to control these manipulations. The KDBS provides
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flexible storage facilities to all MAPSE tools and supports the creation and

storage of Ada libraries in source form. The KDBS provides the capability

to define, create, and manipulate categories, partitions, attributes,

versions, and configurations of objects. In conjunction with the

Configuration Management System, the KDBS controls access to - data base

objects based on version qualifier, attributes, and partition/configuration

information. This capability is flexible to allow controls to be modified

or redefined from project to project. The KDBS provides for archiving and

for backup/restoration of data base objects in such a manner as to retain

the integrity, consistency, and eventual availability of the objects. All

KDBS functions will be implemented as callable Ada procedures or functions,

and therefore will be availa0% to Ada programmers.

All logical operations on objects. such as read, write, create, and delete,

are performed by the KDBS. Object name expansion for use by tools is

accomplished by the KDR. ti & are consistency among all MAPSE tools. When

an object is opened, user access and usage rights are validated. Objects

changed or created obey thf' KDBS policy for versioning.

3.1.3 KAPSE-to-MAPSE Interface

The KDBS and KFW interface with the MAPSE tools through the KAPSE virtual

interface. Operations made available by the KAPSE permit the MAPSE tools

access to the data base, and allow executing processes to initiate and

communicate with other executing processes. This functional aspect of the

virtual interface is designed with particular attention to completeness and

consistency. Completeness ensures the portability of MAPSE programs as

future KAPSE rehostings will find the set of virtual interface facilities

sufficient. Consistency is important in order to facilitate a compact and

efficient KAPSE implementation, and to present a uniform, straightforward

virtual machine to the user.

As indicated above, the virtual interface can be viewed as the union of

functional specifications for data base and process communication

facilities. The functions visible to this interface consist of utility

packages and the Ada Run-Time Support (RTS) Package, as illustrated in
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Figure 3-1. The KDBS Utility Package provides access, attribute, archive,

backup, and partition support to the MAPSE user. The KDBS also supports Aoa

I/O, which is contained in the Ada RTS Package. The KFW Interface Package

makes available the KFW facilities for process initiations and control. The

task management functions of the Ada RTS are provided by the KFW.

Figure 3-2 illustrates the KAPSE/MAPSE interfaces as described by this

design. The tools conanunicate with each other and with the KAPSE through

the KAPSE virtual interface, which contains the specifications of the Ada

RTS Package, the KDBS Utility Package, and the KFW Interface Package. The

KDBS Utility Package relies on the KDBS Kernel to supply the needed I/O

functions. The KDBS Kernel, in *turn, receives I/O services from the host

through the KFW Kernel. Similarly, requests for KFW services are channeled

through the Ada RTS Package or the KFW Interface Package to the KFW Kernel

for service. Only the KAPSE virtual interface is visible to the user. The

host system only sees the host interface with the KFW Kernel. All other

interfaces are internal to the MAPSE system. Details of the operation and

functions of all of these KAPSE components are given in the appropriate

sections of this interim technical report and in the corresponding B

specifications.

3.2 THE MAPSE TOOL SET

The KAPSE is enhanced by the addition of the six MAPSE tools: the ACLI, the

Configuration Management System, the Ada Compiler, the Linker, the Editor,

and the Debugger. This MAPSE tool set comprises the remaining six CPCIs to

be delivered under this contract.

3.2.1 APSE Command Language Interpreter (ACLI)

The ACLI provides the most common and standard user interface to the MAPSE.

Its basic function is to interpret ACL commands, which are usually

directives to execute an Ada program as a MAPSE process. The ACL combines

command language and programming language constructs to support a broad

spectrum of users. Although it is possible to construct complex and

powerful command files, the ACL is designed primarily to provide simple,

straightforward commands. Capabilities not available in the ACL can be

obtained by the user through PAa programs.
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The purpose of the ACLI is to provideia user-friendly, efficient means of

initiating and communicating with processes. This requirement precludes the

use of full Ada as the Command Language. It is anticipated that many users

of the Command Language will not bl Ada programmers. Moreover, it is

unlikely that an Ada interpreter would be practical. The goal, -therefore,

is to provide sufficient functionality without undue syntactic overhead.

The ACL has been designed to explo.t Ada constructs whenever possible, and

to extend the capabilities needed for a simple, efficient, user-friendly

congand language. The ACLI is designed to be usable by anyone, it has no

declarations and, for common operations, no knowledge of Ada is necessary.

The ACL uses the standard Ada character set. Ada-like statements function

as they would in an Ada program, given the restriction that this is an

interpreted, not compiled language.

V
The ACLI provides the capability, through the KAPSE virtual interface, for

users and tools to,, invoke other Ada programs. Uniform formats for user

commands and tool invocation are provided through the ACLI. In addition,

the format Cor similar commands used by different tools are uniform and

consistent throughout the MAPSE.

A number of essential command utilities are included to augment the language

features of the ACLI. In particular, these include report generation

facilities to provide the following reports: configuration composition

report, attribute report, partition report, attribute select report, and

summary reports based on combinations of attribute, partition,

configuration, or version qualifiers.

3.2.2 Configuration Management System (CMS)

The Configuration Management System (CMS), in conjunction with the KDBS and

the ACLI, provides facilities to support project configuration management.

The CHS was designed against two specific requirements for object control:

1. The CMS is required to provide features for maintaining

both object grouping and object derivation.
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2. The configuration manager provides features for determining

minimal operations sequences required to both update and

reconstruct the objects.

The CMS is part of a unified system to handle version, history and

configuration management. The CMS will also aid in project management and

assist programmers in defining configurations.

The CMS processes and maintains configurations objects (COs). A CO defines

a set of data base objects along with a set of rules, written in ACL,

describing how objects are to be derived from other objects.

COs are used by the CMS to provide for object updating and object

reconstruction. The updating function will bring objects in the

configuration up-to-date with respect to each other. This facility easily

enables the definition and enforcement of compilation order rules. The

reconstruction function allows any previous version of an object to be

reconstructed. This facility has been carefully integrated with object

history attributes to achieve both space and time efficiency in

reconstruction.

3.2.3 Ada Compiler

The Ada Compiler has as its primary purpose the compilation of Aoa

programs. in addition, it facilitates source formatting, statistics

collection and reporting, program flow description, Ada program library

creation and maintenance, diagnostic reporting, listing generation,

compilation order validation, and internal compiler debugging. These

features, many of which could be implemented as separate tools, are included

as modules within the Compiler to provide a more useful facility to the

initial MAPSE user. The modularity of the Compiler will enable these to be

user opticns.

The key design goals of the Aaa compiler are as follows:

1. Use of proven design techniques in the development of a

performance oriented Ada compiler.
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2. An Ada compiler design that minimizes memory requirements

and maximizes rehostability.

3. An Ada compiler design that places paramount emphasis on

the generation of efficient, highly optimized code coupled

with ease of retargetability.

The Ada Compiler processes Ada source programs and produces efficient

equivalent programs in the form of object modules. It is designed for

batch, remcte batch, and on-line use and processes the full Ada language.

Language-defined pragmas and other pragmas used to convey information to the

Compiler are specified. The design is modular to minimize host resources

required. The Compiler is designed to tailor its memory utilization to

accommodate source programs of different sizes. While the Compiler is

designed to be easily rehosted and retargeted, object code efficiency is of

paramount importance. Code generator phases for different target machines

are designed to be separable. The machine-independent parts of the Compiler

will be parameterized. The front-end will be able to interface with a

variety of back ends, which contain the machine-dependent characteristics.

The Compiler design minimizes the host computer system resources required

for a compilation and permits utilization of available memory to improve

compilation speed and increase internal compiler table limits.

An innovative concept to enhance the optimization effectiye.ess t %o

preprocess the Intermediate Language (IL) produced by the front-end to

incorporate machine-dependencies into 'the program representation. Included

in these dependencies are such information as register-versus-stack

guidance, number of registers, calling convention expansions, addressing

requirements, loop control orientation, etc. The intent is to supplement

the IL with information that orients the global optimization toward the

selected target while retaining the machine-independence of the major

optimizing phases.
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Optimization occurs at the user's option through the use of language

pragmas. Global optimizations to be provided include common subexpression

elimination, loop optimizations, dead code and variable elimination,

constant and value folding, code motion, and inline substitition. Local

optimizations provided include order of expression evaluation, peephole

optimizations, subscript linearizations, Boolean optimizations, constant

arithmetic and conversions. Ada-related optimizations to be performed

include exception checking, discriminant validation, space reclamation an(

management, and generic subprogram combining. Machine-oriented

optimizations include path merging, pattern matching, register allocation,

full instruction usage, efficient calling sequences, and addressing mode

optimizations.

The Compiler performs extensive error checking and reports errors in a

meaningful manner to the user. Frror severities will be reported as notes,

warnings, errors, serious errors, and fatal errors. Compilation will

continue unless the error is serious or fatal, but the object code produced

may be unreliable. Error messages will contain an error identifier,

severity code, and descriptive text indicating the meaning of the error.

All syntactic and semantic errors as identified by language constructs are

to be detected. Capacity errors will also be indicated. A complete list of

all error messages capable of being geneated by the Compiler will appear in

the Users Manual, which will be delivered at the end of Phase II.

As the only component of the MAPSE Tool Set that is required to parse and

analyze Ada source programs, the Compiler is in a position to collect

information about the program and to perform as a simple, inexpensive,

compilation by-proouct certain functions that would otherwise require

substantial and largely redundant software. Furthermore, because the

Compiler is one of the programs that must be used during program

development, it may perform certain administrative functions

unconditionally, and even unknowingly to users. Performed otherwise, these

functions would require an additional level of control or conventions to

achieve.
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3.2.4 Linker

Performance considerations are a major concern in the Linker design. The

Linker requires multipass access to the programs being linked. The programs

must be accessed at least once to locate the descriptive information about

the program, satisfy all references, and compute the allocation. They must

be accessed again to perform the reference resolution, address relocation,

and creation of the new program image. Design decisions, particularly with

respect to program libraries, have been made to minimize the overhead

normally incurred during the opening and closing of the relocatable objects.

The present design utilizes the relocatable object format as the executable

format. To minimize the requirement for dynamic relocation at load time,

the Linker optionally biases addresses to eliminate this relocation where

possible.

The Linker combines two or more relocatable object modules in standard

object module format and produces a standard relocatable object module. It

will perform external name resolution and location counter relocation, space

allocation, memory map generation, and will validate version and compilation

order for the objects to be linked. The Linker is designed to operate in

the environment of the MAPSE as a machine-independent tool.

3.2.5 Editor

The Editor will provide line and string insertion, replacement, deletion,

copying, and moving. Its primary purpose is to support text object

creation, modification, and browsing facilities. The Editor will recognize

Ada constructs, interpret sophisticated commands, and use simple commands

for frequent functions. It has been designed to provide primitive word

processing capabilities to support the development of program documentation,

in addition to its function in source editing.

This design imposes no size constraints on the object being created. Modern

text search algorithms are utilized to perform the Editor commands

efficiently.
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A design objective is to build an understanding of Ada symbols into the

Editor, although the Editor need not recognize full Ada syntax. This allows

the location or replacement of strings of symbols regardless of spaces and

line boundaries. This facility prevents the inadvertent location of a

series of characters that are a part of a larger token. For example,

optionally, a string may be searched for as an entire identifier, and would

not be found if its occurrence is only as part of a larger identifier,

comment, or string literal.

To promote nicely formatted Ada prugrams, the Editor provides features to

support Ada declaration and statement-structure indenting and tab character

facilities.

Because the Editor will frequently be used for the entry and modification of

software documentation, the Editor provides a capability to establish

margins, to set listing page length, to allow line filling and

justification, to set up and reference file markers, and to locate and

replace on a word basis rather than on an unspecified context basis.

Often during the production of a large programming system and the

accompanying documentation, there is a need to combine or partition the

associated text objects. The Editor supports this requirement.

3.2.6 Debugger

The MAPSE Debugger will provide symbolic, interactive debugging support to

the user. It will permit breakpoints and program interruption, symbolic and

machine level inspection and modification. The Debugger provides symbolic

and relative program dumps and traces subprogram calls and statements. It

will inte ace with target simulators to aid in debugging programs written

for a tar, machine.

Performance considerations are a major concern of the Debugger design. The

technique selected to facilitate program control uses instruction

implantation rather than interpretation. To prevent a space impact due to

an increased memory space requirement for containing the tables, portions of

the debug tables will only be brought into memory as required.
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Although the normal mode of program checkout is to load a program, perform

some initial setup of breakpoints or implanted commands, and then initiate

interactive execution, an important requirement is to permit interruption of

an already executing program showing signs of aberrant behavior. Tht most

difficult bugs are those occurring in large programs after substantial

processing has been performed. The requirement for embedded debugging code

can never be completely anticipated and apparently thorough test cases

seldom reveal problems of timing, space management and the interactions of

optimization and all language features.

3.3 SUMMARY

This introduction has provided an overview of the CSC/SEA design for the Ada

Integrated Environment. The foilowing sections address each major component

of the system individually. Each of the following sections is presented

from the viewpoint of the component itself'. Interfaces to the rest of the

system, the design principles that guided its development, the functional

description of the component, and the rationale for the design decisions,

are presented for each of the system elements.
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the KFW

preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AlE contract. The requirements

on which the preliminary design is based are given in the System

Specification (Type A) and details of the preliminary design are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The KFW provides the administrative, control, and resource management

services that are necessary for the MAPSE to support the execution of

multiple programs interacting with a shared data base. These services are

provided through a canonical interface to a virtual operating system

structure that has well defined interfaces to those host system facilities

that are normally defined and provided by various host execution domains.

1.2 DESIGN PRINCIPLES

The KFW is designed to comply with a set of principles considered essential

in attaining a prototype MAPSE that conforms to the spirit of the STONEMAN

Report and the requirements of the SOW. These principles are the rationale

for the decisions that have motivated the design model for the KFW. In

addition, the design is formulated to complement the proven software

technology that is synthesized in the Ada language. As a result, the

development of the detailed design for the KFW can be expressed using those

Ada constructs suited to preparing formal specifications for complex systems.

The principles that have influenced the design are:

1. The portability of MAPSE components

2. The support for a multi-user environment

3. The adaptability of the design to diverse hosts

4. Concise interfaces

5. The effective decomposition and execution of the defined KFW

functionality

TAB 1
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6. The exploitation of multiprocessor architectures.

Figure 1-1 illustrates where these design principles are best exemplified in

the KFW design.

1.2.1 HAPSE Portability

The requirement to ensure a high level of portability for all MAPSE

components through the encapsulation of the host haraware/software

dependencies within the functional domains of the KFW is regarded as the

original precept for the existence of the KFW. All MAPSE components are

perceived as Ada programs that are provided with a canonical interface to

the host environment. This interface is made available through Ada packages

that constitute the visible specification of the KFW. The use of each

package is restricted by the inherent access control features for Ada

Program Libraries that are maintained in the KAPSE data base. By strict

adherence to this principle, a measure of portability, in the KFW, is

realized as a desirable side effect.

1.2.2 Multi-user Environment

The notion of the MAPSE mandates that it be responsive to multiple users.

Traditionally, this results in increased complexity in the design

specification. Recognition of the multi-user requirements early in a design

specification is critical in order to develop the necessary parallel

functionality. Therefore the KFW is designed to support such parallelism

within the MAPSE. Because of the early acceptance of this design principle,

both the ACL and the KDBS take advantage of the enhanced multi-user

interaction capabilities.

This design principle is incorporated in the KFW in concert with the

concurrency features that are defined as an intrinsic capability of an Ada

program. Consequently, the resulting design specification defines the

semantics for the execution of multiple Ada main programs. This is an area

not within the scope of the current language specification, but absolutely

essential for the establishment of large-scale software development systems.
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Figure 1-1. Application of Design Principles
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1.2.3 Diverse Host Adaptability

The two initial host environments are the IBM VM/370 and Interdata 0/32.

This predicates that a design principle for diverse host adaptability be

followed in the KFW. The VM/370 provides to the KFW a low level interface

while the OS/32 provides a conventional multiprogramming operating system

interface. Therefore, for economic and viable implementations on the

immediate hosts, it is essential that host adaptability of the KFW be
introduced into the design so that reliance on specific nongeneric host

features be minimized without compromising the operational performance of

the MAPSE. Adherence to this principle increases the scope of the initial

design because functional domains must accommodate a complex mapping of the

canonical interface into either hardware or software materializations for

host execution.

1.2.4 Concise Interfaces

A major concern in the design of a complex network of service programs is to

present the encapsulated facilities through concise interfaces that are

simple and well understood. The design principle derived from this concern

has influenced the specification of the KFW interfaces. The anticipated

goal to formally specify and verify programs in the MAPSE emphasizes the

need to limit the KFW facilities to the essential requirements of the

MAPSE. These specified facilities use reliable techniques that do not

preclude the formal specification of the KFW or other MAPSE components.

In the KFW design this requirement is balanced so as to comply with other

important MAPSE objectives. This is typified by those interfaces that are

used in the object code generated by the Ada Compiler. Minimization of KFW

facilities is carefully orchestrated to support requirements for efficient

and straightforward object code generation.

1.2.5 Effective Decomposition

The Ada language embodies a principle for the effective decompositiop of

large, complex programs through the package and separate compilation

features. This principle is perpetuated in the design of the KFW by
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isolating and specifying it by functional domain, thereby logically

extending the concept of component software technology beyond the MAPSE tool

set.

Compliance with the previous design principles of host adaptability and

concise interfaces combined with effective decomposition leads to the

analogy that the KFW represents a virtual (generic) operating system

included in the Ada Standard Environment that is instantiated for each host

system. The embodiment and refinement of this concept in the MAPSE design

is an ambitious but achievable goal necessitated by the requirement for

maximal portability.

Recent experiences in Ada compiler technology to develop packaged compiler

components clearly demonstrate that pursuit of this principle is a

consistent progression in the propagation of economic software.

In addition, application of this design principle is especially germane to

the MAPSE, where real-time software can be initially developed prior to

final testing and production execution in an embedded target environment.

Effective decomposition permits ready identification and modification of the

required functional domains for the embedded software for real-time

execution in the target environment.

Finally the effective decomposition of the KFW is considered vital when

combined with the application of the following design principle relating to

multiprocessors. Each functional domain of the KFW may, in the future, be

conceived as potentially executing on different processors.

1.2.b Multiprocessor Architectures

The base architectures for the initial hosts are uniprocessors enforcing

serialized execution of the MAPSE. Awareness of possible future hosts that

provide for parallel execution of the MAPSE require that another design

principle be adopted. This principle as applied in the KFW ,.sign ensures

that when host multiprocessing capabilities are available they are not

automatically precluded by a restrictive design geared to interleaved serial

execution of the MAPSE. Rather, the KFW is designed so that multiprocessing

opportunities can be exploited. This principle is clearly manifested in the
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design of the interface between the Task Manager and Process Administrator.

The importance of this principle is reinforced in those embedded target

environments where multiprocessors are not uncommon. The availability of

such a host KFW enables a target KFW subset to be ported without a major

design overhaul. In addition, target software developed on the host is

already debugged and is ported with a minimal change.
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SECTION 2 - BACKGROUND

This section provides the background information on which the design of the

KFW is based. The requirements for a portable environment have imposed on

the KFW the necessity to provide to the MAPSE a virtual operating system so

that the other MAPSE components are not required to have detailed knowledge

of the underlying host operating system. In addition to providing this host

interface, the KFW also presents a standard interface to the rest of the

MAPSE system through the KVI. Machine-dependent and machine-independent

portions of the KFW are separated and clearly identified to facilitate

rehosting the MAPSE.

2.1 PREVIOUS WORK

Many of the design decisions which have been made in this preliminary design

effort are 16he result of CSCls experience with another portable programming

support environment, called the Communications Software Development Package

(CSDP) which is being developed for RADC. The CSDP is a JOVIAL programming

support environment and is being implemented on a DEC System 20. This

system will be rehosted to the Honeywell Multics system at RADC in late

1981. The scope of the contract includes providing a portable user

interface, a program support library, a set of support tools, a tool

manager, and a machine-dependent interface. The design of the machine

dependent interface has provided background and understanding in the design

of the KFW. In addition, ongoing technical support to the U.S. Navy's

Automatic Electronic Guided Intercept System (AEGIS) program for the Share/7

CMS-2Y programming environment executing on a UNIVAC AN/UYK-7 multiprocessor

has provided practical insight into developing embedded software.

Finally, recent work undertaken at Stanford University to develop Ada-M a

language for specifying and implementing multiprocessing supervisors has

been reviewed. From this review it is expected that the proposed language

can be used to provide a formal specification of the KFW design that will

provide a reliable basis for implementation.
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SECTION 3 - FUNCTIONAL DESCRIPTIUN

The following section provides a general overview of the KFW interfaces

within the MAPSE and describes the design tradeoffs performed during the KFW

preliminary design.

3.1 INTRODUCTION

This paragraph dicusses the system interfaces and functional design

capabilities for this system element in terms of the design principles

outlined in Paragraph 1.2.

3.2 SYSTEM INTERFACES

The services of the KFW provided to the other components of the MAPSE are

encapsulated in the MAPSE-KFW interface services of the KVI. These services

may be executed in the calling execution state or in the privileged

execution state, depending upon the function to be performed.

Figure 3-1 illustrates the MAPSE system interfaces. The bold vertical lines

identify the interfaces that comprise the virtual operating system

encapsulated by the KFW in the Kernel Process. These interfaces may be used

by any MAPSE process, while the interfaces depicted as faint broken lines

identify the interfaces supplied to the KDBS and for the support of Ada

tasks.

3.3 FUNCTIONAL CAPABILITIES

Ada user programs and MAPSE tools execute in a nonprivileged execution

state. The KFW considers these execution domains to be MAPSE processes.

The functional domains of the KFW and KDBS that execute in a privileged

execution state constitute the Kernel Process of the MAPSL. In order to

support this functional dichotomy of the KFW and KDBS between a MAPSE

process and the Kernel Process, the KFW supplies an interface that enables a

MAPSE process to request a service provided by the Kernel Process. Any KDHS

or KFW Kernel service that is requested by a MAPSE process is connected to

the Request Director in the Kernel for the service to be recognized and

routed to the appropriate Kernel function. The nature of the interface to
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the Request Director depends upon the host system facility available for

communicating between execution states.

The KFW is designed to include the Task Manager functional domain as an

extension to a MAPSE process. All other KFW functional domains are included

in the Kernel or execute as MAPSE processes.

The following sections describe the functional capabilities of the KFW in

terms of operating system services, data base interface, communications

services, and execution services. In addition, Paragraph 3.3.5 addresses

each specific functional area of the KAPSE KFW design.

3.3.1 Operating System Services

The KFW services are visible to the other MAPSE components through the KVI,

thereby enabling the other components to be designed with a minimum

knowledge of the host environment. The interface is designed to specify the

functionality that is usually offered in an operating system. Therefore,

when the host execution domain includes an operating system, as in one of

the initial implementations, the KFW services are derived from existing

facilities to avoid duplication of or interference with a system facility.

The KFW design is based upon the availability of fundamental equipment that

is a direct consequence of the system facilities provided by the IBM VM/j70

and the Interdata OS/32 operating system. If this equipment were not

available, the dependent KFW service would be provided in a degraded state.

The following paragraphs identify the critical equipment characteristics

that are beneficial to the KFW and the performance of the MAPSE. The

equipment characteristics pertain to the processing architecture of the

execution states in which the KFW resides.

The KFW interface is designed to comply with the requirements of the Ada

language. In those instances where the language semantics are to be defined

by implementation considerations, the KFW functionality is designed so that

a minimum of constraints are imposed in exploiting the host execution

domain. This results in the designed functionality being restricted when

the host execution domain does not supply the foundation facility (such as

multiprocessing).
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An execution state that possesses properties not necessary for normal MAPSE

processing is required. Properties that are associated with this state

include the ability to reference any address domain defined within the MAPSE

and the ability to use system facilities that have restricted visibility for

controlled utilization.

The concurrent existence of execution states is required to allow the KFW to

provide the parallelism implicit in the facilities it offers. This

requirement has ramifications on both the hardware and software that

constitute the system facilities. When this support is not available, the

KFW parallel functionality is serialized and presents only logical

parallelism to MAPSE programs.

Communication between a nonprivileged state and a privileged state is

required. The KFW organizes its functionality in both states using the

intercommunication between the states achieved through host system

facilities.

The creation of a dynamic address domain that may be referenced by a

nonprivileged state is required. The KFW is designea to exploit this

facility to achieve economical information transfer between the privileged

and nonprivilegeo states of the MAPSE. Ideally, a nonprivileged state must

be restricted from referencing the dynamic address domain of a concurrently

executing nonprivileged state.

The definition of shared execution domains that may be referenced by all

nonprivileged states is required. The KFW is designed to exploit this

facility so that KFW functions, where possible, may be performed in the

nonprivileged execution states.

Because the KAPSE initiates actions that may be performed asynchronously in

the host environment through the KFW, the KFW is designed to monitor

completion of these actions by establishing an event protocol with the host

environment. This protocol relies on the system facilities notifying the

KFW that a requested action has been performed, so that the result of the

action may be analyzed prior to the resumption of the execution state

initiating the action.
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3.3.2 Data Base Interfaces

A primary design objective is the integration of the KDB into the host

environment to ensure the portability of the KAPSE functionality that

maintains the logical entities within the data base. A consequence of this

objective is that the KFW is aesigned to use system facilities to

materialize logical entities of the KDB into items that are acceptable for

storage on devices in the host environment. In addition, the KFW design

provides those facilities required by the MAPSE to communicate interactively

with terminal devices that are configured in the host hardware suite. Where

feasible, the KFW relies on the system facilities to provide this

functionality.

The KDB physically resides on devices in the host environment. These

devices may be classified as logical or physical devices depending on the

nature of the host system facilities. The entities (objects) comprised in

the KDB are accessed by an Ada program without regard for this

classification through the functionality provided by the KFW.

Logical devices are characteristically typified as files in the host

environment and are manipulated through the services of a file management

system. The KFW is designed to provide an interface to these services

thereby enabling a straightforward correspondence between data base objects

and files to be established and maintainea. To ensure that the

correspondence may be implemented using different file management systems,

the KFW relies only on those services that are traditionally conceived as

being generic to most host systems.

Physical devices are defined to include those devices configured in the host

hardware suite on which data may be recorded and subsequently retrievea.

The KFW is designed to provide an interface to these devices as required to

support those data base objects that have been designated as devices for

manipulation by an Ada program. The KFW relies on the availability of

device handlers in the host system facilities so that the correspondence

between a data base object and a device may be established and maintained in

a manner consistent with that of a data base object and a file.
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3.3.3 Communications Services

An important requirement in the utilization of I/0 by the KFW is that in

those host environments that do not include logical devices, the system

facilities for the physical devices provide sufficient functionality for the

KFW to support its specified interface.

The interaction between a MAPSE user and the MAPSE is enabled through the

communication devices configured in the host hardware suite. The nature of

the communication devices determines the style of user interaction that is

available, batch, interactive, or both.

When console or terminal communication devices are configured, the KFW is

designed to provide the functionality necessary for a user to converse with

the ACL. The host system facilities for handling communication devices are

used by the KFW to implement an interface that is responsive to the needs of

all MAPSE tools that may establish a dialogue with a user.

A consistent user communication interface to the MAPSE requires that the KFW

incorporate in its design a standard line editing protocol for console or

terminal input. Host system facilities, while providing services for

reading and writing characters to communication devices, are unlikely to

conform to this protocol. Therefore, the system facilities must permit the

KFW to implement the necessary functionality to support the editing of input

characters without interference. A critical requirement is that the defined

MAPSE break-in or attention signal be discernible by the KFW so that a user

may be connected initially to the MAPSE Logon Utility, or for a user to

terminate a current execution state in the MAPSE.

When non-interactive communication devices, such as card or paper tape

devices, are configured, the KFW is designed to provide conventional batch

operation by directing the device to the ACLI. Again, the host system

facilities for handling these devices are used by the KFW.

The KFW is designed to support a variety of non-standard 1/O requirements.

These requirements arise from an Ada program and from the KFW itself.
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Through the KFW, an Ada program is provided the functionality to connect to

a device that is not in the prescribed host hardware suite. In this

instance, the host system facilities must enable the KFW to have control of

the I/O channel for the device so that the KFW may receive ana send

instructions or data from the Ada program to the device or device controller.

3.3.4 Execution Services

Other nonstandard inputs required by an Ada program are specific entry

interrupts and clock data. The KFW is designed to field the interrupts and

read the clock through the host system facilities. Similar interrupt and

timer services are required by the KFW to detect the termination of

asynchronous events that it may have initiated in the host environment. For

example, the completion of a MAPSE I/O operation is recognized by its

termination interrupt being made available to the KFW through the host

system facilities.

The execution domain of the MAPSE consists of the Kernel Process and one or

more MAPSE processes. The Kernel Process executes in a privileged execution

state while the MAPSE processes execute in a non-privileged execution

state. The Process Administrator is the part of the Kernel Proce3s that is

designed to coordinate and schedule the MAPSE execution domain so that it

may coexist with other execution domains in the host environment. The host

system facilities are used by the Process Administrator as necessary to

ensure the efficient, economical execution of a process in the host

environment.

A MAPSE process may invoke the execution of another MAPSE process through

the Process Administrator. After invocation, the calling and called

processes are candidates for execution. In order to comply with the

semantics of the ACL, parameters may be passed between the calling and

called process.

A consequence of the Ada task semantics is for a MAPSE process to

synchronize the execution of different code domains (tasks) within the load

object. The Process Administrator recognizes this requirement by

maintaining the scheduling of a MAPSE process to be consistent with the task

synchronization specified in the MAPSE process.
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The Process Administrator is designed to facilitate the physical parallel

execution of processes where the host system facilities support

multiprocessors in the host hardware suite. When such facilities are not

available the Process Administrator implements conventional logical parallel

(interleaved) execution of processes.

In host environments that provide system facilities that preclude the

Process Administrator's direct control over the scheduling of process

execution, the Process Administrator relinquishes final scheduling of

process execution to the host environment.

3.3.5 KFW Functional Areas

Each of the following eleven subsections describes the KFW function and its

design goals in terms of the design principles stated in section 1.2.

3.3.5.1 KAPSE Initiator

The KAPSE Initiator receives control when the KFW Kernel Process is loaded

for execution in the host environment. It prepares the MAPSE for process

execution and starts execution of the Logon Utility. The KAPSE Initiator

relies on the facilities provided by the Process Administrator ana Context

Manager and the information contained in the environment system parameters.

As a result, it is a KFW functional domain that is designed to be portable

when rehosting the MAPSE.

3.3.5.2 Logon Utility

The Logon Utility permits a user access to the MAPSE through an

authentication protocol. For each authenticated user, an instantiation of
the ACLI is started. The Logon Utility is a HAPSE process that relies on

the KFW interfaces available through the virtual interface and is therefore

portable. The design of the Logon Utility is specifically oriented to

servicing a multi-user environment through the ACL1 instantiation mechanism

that It supports for each user communication device configured in the

environment system parameters.
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3.3.5.3 Request Director

The Request Director provides the KFW functionality through which Kernel

Process facilities defined in the KAPSE virtual interface may be performea.

It is designed to reconcile the transition mechanisms between the

nonprivileged and privileged execution states. As a result, the Request

Director executes as a part of a HAPSE process and in the Kernel Process.

In those base architectures that feature comprehensive execution state

transition facilities, the MAPSE process execution requirements are minimal.

3.3.5.4 KAPSE Terminator

The KAPSE Terminator receives control when the MAPSE is to be shutdown--n i

orderly fashion and the Kernel Process removed from the host environment.

The KAPSE Terminator relies on the facilities provided by the Process

Administrator and Context Manager. Consequently, it is designed to be

portable when rehosting the MAPSE.

3.3.5.5 Process Administrator

The Process Administrator schedules MAPSE process execution through a

concise interface made available to MAPSE processes. This interface is

designed to enable the Task Manager to be specified as a portable functional

domain within the KFW. In addition, the Process Administrator provides the

necessary functionality for the MAPSE to be a multi-user environment. The

multi-user environment is achieved by defining a concept of multiple

executing Ada main programs. When an executing main program is an ACLI

process connected to a user communication device all the requirements for

maintaining a comprehensive multi-user environment are satisfied.

An intrinsic design feature of the Process Administrator is the recognition

of potential multiprocessor environments. It is designed to exploit

multiprocessor opportunities when available in its interface to the host

system. Process executions are activated in accordance with the environment

system parameters and multiple activations for the same process may be

forwarded for host execution. In these instances, the Process Administrator

uses the Ada task scheduling data maintained by the Task Manager. Task

execution is viewed as simply different executions of the same process where
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process identification for a thread of control is the Process Control Block

(PCB) and a Task Control Block, the union of which constitute a PCB

instantiation.

The scheduling and activation of processes result in the interleaved

execution of tasks from different processes as compliant with any priorities

that are to be maintained. If multiprocessing is available, these process

executions may be performed in parallel.

3.3.5.6 Task Manager

The Task Manager maintains the task control and synchronization information

required to support Ada task objects enclosed by a MAPSE process. It is

designed to provide a concise but straightforward interface in order for the

Ada compiler to generate efficient code for the tasking constructs of the

language. The use of the Process Administrator interface makes the Task

Manager portable. The Task Manager is designed to execute in a multi-user

environment and is specified as an extension of a MAPSE process that resides

in the shared execution domain.

Because the Task Manager relinquishes the actual scheduling of tasks to the

Process Administrator, parallel execution of tasks is achieved by default in

multiprocessor environments.

3.3.5.7 Context Manager

The Context Manager establishes and maintains the execution context

requirements necessary to support a dynamic multi-user environment. It is

designed to provide a concise portable interface that enables an executing

MAPSE process to acquire and release storage by modifying its program

context map. In addition, debugging facilities are supported by the

interface, and allow the execution context of one MAPSE process to be

dynamically changed by another concurrently executing process (such as the

Debugger).

The facilities available through the Context Manager are designed to be

compatible with and achievable in different host systems. Using the Context

Manager, the Kernel Process prepares the initial state of the MAPSE for the
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execution of multiple processes. The design provides the required

interfaces to build and access the execution domain for the shared KFW and

KDBS facilities necessary to efficiently support concurrently executing

processes. These shared facilities depend on the Context Manager to acquire

and protect dynamic address domains for storing private data.

3.3.5.8 Event Monitor

The Event Monitor maintains control of asynchronous events emanating in the

host environment that effect the execution of a MAPSE process. Intrinsic in

the design of the Event Monitor is the support for a multi-user environment

consisting of processes that explicitly or implicitly depend upon execution

stimulants external to the MAPSE. The interface to the Event Monitor is

designed to be concise and portable, providing facilities that are adaptable

to different host systems. Through the Event Monitor, the other functional

domains of the KFW are designed to coordinate process execution so that

service requests to the Kernel Process that cannot be performed immediately

do not precipitate delays in the Kernel Process or the scheduling of another

MAPSE process for execution.

The Event Monitor promotes an adaptive approach for handling manual process

interruption that is compatible with the entry interrupt of the Ada language.

5.3.5.9 Volume Manager

The Volume Manager is designed to provide the KDBS with a concise portable

interface for storing and retrieving data that comprises the object

relationships and values in the data base. A straightforward abstract

linear data structure is maintained through simple manipulative operations

that are adaptable to mapping on a logical file management system or for

implementation using the device handling subsystems of the host

environment. The design of the Volume Manager relies on the facilities of

the I/O Dispatcher to initiate the storage manipulation operations in the

host environment. A consequence of this design is that the Volume Manager

is isolated from issues related to concurrent data access by the KDBS at the

logical object level and by the I/O Dispatcher at the host level.
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Included in the Volume Manager is the editing of character transmissions to

and from communication devices. The attention and break-in etiquette for

process interruption is provided through the Event Monitor in a fashion

conducive to its implementation on different host systems.

3.3.5.10 I/0 Dispatcher

The I/O Dispatcher is designed to provide coordination of data transfer

requests to the host environment from concurrently executing MAPSE

processes. The interface supports requests that result from logical object

manipulations in the KAPSE data base that have been reconciled to host

system operations by the Volume Manager, or requests from a MAPSE process

enclosing Ada low level I/C calls.

The design of the I/O Dispatcher is oriented to developing scheduling

strategies for data transfer requests that promote their optimum handling by

different host systems. In addition, an attendant requirement is to ensure

that multiple requests performed for one process are not interleaved with

requests from another when efficiency penalties would result because of

access interference in the host system.

3.3.5.11 KAPSE Loader

The KAPSE Loader is designed to provide a flexible and adaptive approach for

loading MAPSE processes into the host environment for execution. The

Process Administrator starts a new process by instantiating an execution of

the KAPSE Loader to load the new process from a host object that is in the

Ada standard relocatable object format. This approach maintains the

portability of the process load object and ensures that a new protected

execution domain within the host system is created for a new process. A

consequence of the design is that processes may be started through the MAPSE

and execute solely in the host environment.
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SECTION I - INTRODUCTION

This part of the Interim Technical Report presents an overview of the KDBS
preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AIE contract. The requirements

upon which the preliminary design is based are given in the System

Specification (Type A) and details of the preliminary oesign are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The KDBS is the cornerstone of the MAPSE and provides facilities for

maintaining the different kinds of data needed in developing computer

systems. The KDBS includes the facilities for storing the data as well as

the data base management functions necessary to control data manipulation.

All system and user-generated data is represented in the data base as

objects and attributes. The KDBS is designed to ensure the correctness,

consistency, and security of this data base.

The specific functional support areas within in the KDBS are ob.pct and

attribute storage, partitions, categories, abstract objects and their

versions, access control, Ada I/0, archiving, and backup.

1.2 DESIGN PRINCIPLES

Within the requirements to support the functional areas listed above, the

fundamental goals of the KDBS design are to provide:

1. A standardized user interface to the data base

2. A data base structure that is portable and efficiently implementable

3. A secure, efficient access control mechanism

4. An integrated system for handling configurations, versions, and

object histories

User interface standardization is of paramount importance. The portability

of Ada programs between implementations of the MAPSE is possible only if the

interface to the data base is rigidly standardized. This standardization

requires that careful attention be paid to data base portability, and thus
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I

any parameterization of the data base structure must be sufficiently

innocuous to preserve the interface.

The data base structure must also be efficiently implementable, not only for

a particular host, but for a range of hosts. There are two areas that

deserve special attention with respect to storage efficiency: access

control, and history maintenance. The principle that governed the design of

access control was that the storage efficiency should be directly related to

the degree of access control granularity. Thus, projects with uniform

access control applied to broad partitions would incur minimum access

control overhead. History maintenance, which is closely tied to version

control, is an area subject to classical time/space tradeoffs. Because

users with different needs would choose different points on the tradeoff

curve, the design must provide flexibility in allowing users to explicitly

identify the level of maintenance they require.

It has been advocated [] that for the history attribute, all information

about the construction for each object be kept. While this may be an

obvious way to capture the information for object reconstruction, it

requires disproportionate system overhead. A critical aspect of the KDBS is

to design a method that supports object reconstruction without inundating

the MAPSE with superfluous information. Collecting the command script, the

referenced objects (including tools) and their versions should be sufficient

to support the reconstruction of an object. A significant part of the

design effort is to provide a system that substantiates this approach and

permits a referenced object to be deleted safely.
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SECTION 2 - BACKGROUND

The following section describes the background of this design effort.

Previous work and literature have contributed to the design of the KDBS.

2.1 PREVIOUS WORK

The design of the KDBS extends the tradition of the UNIXTM and MULTICS

file systems. In particular, the partition structure, access control

mechanism, and version control owe a great deal to the corresponding UNIX

concepts. In each case, however, these concepts have had to be modified and

extended to satisfy the more comprehensive requirements of the MAPSE.

2.2 RELEVANT DOCUMENTS

1. Ada Support System Study (for the United Kingdom Ministry of Defence),

Systems Designers Limited, Software Sciences Limited, 1979-1960.

2. Dolotta, T. A., S. B. Olsson, and A. G. Petruccelli, ed., UNIX User's

Manual, Release 3.0, Bell Telephone Laboratories, June 1980.

3. Feiertag, R. J., and E. I. Organick, The Multics Input-Output System,

Proc. Third Symposium on Operating Systems Principles, October 1971.

4. Fisher, David A., Design Issues for Ada Program Support Environments,

Science Applications Inc., SAI-81-289-WA, October 19b0.

5. Reference Manual for the Ada Programming Language, United States

Department of Defense, July 1980.

6. Requirements for Ada Programming Support Environments - STONEMAN, United

States Department of Defense, February 1980.

7. Revised Statements of Work for Ada Integrated Envirqnment, Rome Air

Development Center, 26 March 1980.

8. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharin4 System, The Bell

System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978.

9. Rochkind, M. J., The Source Code Control System, ;EE Transactions on

Software Engineering, SE-1, December 1975.

10. Thompson, K., UNIX Implementation, The Bell System Technical Journal,

Vol. 57, No. 6, Part 2, July-August 1978.
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SECTION j - FUNCTIONAL DESCRIPTION

This section provides a general overview of the KDBS interfaces within the

MAPSE and describes the design tradeoffs performed.

3.1 INTRODUCTION

This paragraph discusses the system interfaces and functional design

capabilities for this system element in terms of the design priciples

outlined in Paragraph 1.2 of this tab.

3.2 SYSTEM INTERFACES

The KDBS has two levels of interfaces to the MAPSE system; those that are

made available to MAPSE processes, and those required by the Kernel in order

to process requests and remain transportable.

The KDBS facilities available to MAPSE processes are made visible through

the KVI. These facilities are packaged into the Ada RTS Package and the

KDBS Utility Package. The Ada RTS Package contains those functions

necessary to support Ada Standard I/O as specified in the Ada Language

Reference Manual. The KDBS Utility Package provides those functions

necessary to manipulate and control the data base objects. These facilities

are provided as separate packages because of their relationships to the

MAPSE system. The KDBS strictly belongs to the MAPSE; it is designed for

software development and has no place on a target machine. The Ada RTS

Package is a portable package from the host MAPSE to the target machine,

while those facilities found in the KDBS Utility Package are required only

for the KDBS itself.

The above packages interface with the Kernel KDBS in order to provide the

Kernel-level servicing required in order to process I/O requests. At the

Kernel-level, the IO servicing functionality is again partitioned, and

there is an interface to the KFW. The KFW is responsible for mapping the

logical KDBS and Ada I/O to physical I/0 in the host environment. These

interfaces are designed to maximize the portability of the KDBS portion of

the MAPSE. All host-dependent functions are relegated to the KFW. Thus,

aside from some simple parameterization, the KDBS and its interfaces are

completely portable.
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3.3 FUNCTIONAL CAPABILITIES

The KDBS provides the logical data base required by the MAPSE system. Its

major functions support:

1. Partitions - To create, delete, and list partitions

2. Objects and attributes - To add, delete, and modify objects and

attributes

3. Categories - To qualify names to denote the kind of object

4. Abstract objects and version control - To define and control

abstract objects and their versions

5. Access control - To set and control the access control attributes

of objects

6. Ada and KDBS I/O - To provide file and text I/O to support Ada

Standard I/O and operations on KAPSE data base objects

7. Archives - To create and maintain archive objects

8. Backup - To backup and r( store selected portions of the KDBS

hierarchy.

Each of these functional areas is described in more detail in the following

sections.

3.3.1 Partitions

A partition is a kind of KDB object analogous to a "directory" in many

hierarchical file systems (see [6). The partition object provides the

mapping between the names of objects and the associated host files. A

partition object is itself an object so that it can contain other partition

objects (thus inducing a hierarchical data base structure). The MAPSE user

creates subpartitions to contain groups of objects conveniently treated

together.

The hierarchical structure of the KDB requires a partition from which all

other objects can be reached. This partition is called the root of the

hierarchy and is the starting point of searches for objects.
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The unique object name is given by specifying the logical path from the root

to the specified object. The root is specified by the "/" symbol, which is

also used as the separator between other subpartitions. For example:

/RADAR/TRACK/PROG

nanies the object "PROU" in partition "TRACK", which is in turn a

subpartition of "RADAR" under the root partition.

3.3.1.1 Current Working Partition

The KDBS permits references to objects to be relative to what is called the

current working partition (CWP). The CWP is initialized for each MAPSE

process, and the process can change it at any time. Within the ACLI, for

example, the CWP may be changed by assignment to a command language variable:

$CWP := /RADAR/TRACK;

When a relative reference to an object is made:

SUBSYS/TRAINPGM

the KDBS forms the absolute path to the specified object by linking the CWP

to the relative reference to form the following absolute path name:

/RADAR/TRACK/SUBSYS/TRAINPGM

3.3.1.2 Links

The major difference between the KDBS partition structure and the UNIX

directory structure is the treatment of links. A link is a name in one
partition that is used to access an object in another partition. The KDBS

link is treated as a synonym for the absolute path name of the object,

rather than as a direct link to the object itself. The present design is

required to preserve security. With a direct link, it is impossible for the

original object owner to prevent further access to an object from a user who

has a link to it. The "alias link" requires each access to be subject to
full access control.
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3.3.2 Objects and Attributes

All data in the KDB is represented as objects: a KDB object corresponds

exactly with an Ada file. All objects have attributes, which supply

additional meta-information about an object. Much of this information is

required by the KDBS to provide access control and configuration management,

but user-defined attributes are also supported.

The KDBS supports logical object formats that provide both keyed and unkeyed

access, and records of different lengths. This design contrasts sharply

with that of UNIX, which provides only unstructured character stream files.

While the UNIX design permits great flexibility in file handling at the user

level, it does so at the expense of efficiency. Because the MAPSE is

explicitly oriented toward programming-in-the-large (as opposed to UNIX's

equally explicit orientation toward programming-in-the-small), efficiency

assumes considerable importance. In fact, on many hosts it is anticipated

that the efficiency of object accessing will be the most significant factor

affecting the performance of the MAPSE. As a result, object formats that

are conducive to efficient implementation must be provided. Therefore, the

KDBS supports both keyed and unkeyed object access, and provides facilities

for record 1/O.

3.3.3 Categories

Categories provide a user-friendly means of dealing with object names. A

category may be explicitly written as a qualifier to an object name:

prog'XQT or prog'TXT

However, most system tools will automatically supply a category for

otherwise ambiguous names, based on context. For example, if the Compiler

were asked to compile "prog", it would look for the source object "prog'TXT"

and generate as output the relocatable object "prog'REL". There are twelve

predefined categories for the MAPSE, and user-defined categories may be

created as well.
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3.3.4 Abstract Objects and Version Control

The version control system for the MAPSE is designed to manage changes made

to textual and nontextual objects in the KDB. It provides facilities for

storing, updating, and retrieving versions of objects, for controlling

updating privileges, and for recording who made each change. The goals of

version control are to provide for developer noninterference and multiple

release maintenance, as well as to retain a program development history.

First, in programming-in-the-large, several developers will simultaneously

need to access a given abstract object. For example, a developer may be

testing one version of an object, while a second developer may be modifying

a new version of the same object. Whenever possible, such access should be

noninterfering.

A related requirement is that version control must permit multiple releases

to be maintained. Typically, at some point in the development process a

given version of an object will be designated a released version.

Development may then proceed to generate a second release, but independent

maintenance of the first release is permitted.

In order to permit reconstruction of previous versions of a program, and to

maintain a development history, sequential versions of each module (object)

must be maintained. These versions show the object's evolution. The last

version in such a sequence is usually the preferred (or default) version,

but it is possible to specify intermediate versions as well. Additional

information can be associated with each version of a sequence, indicating

who made the change and why it was made.

The above requirements for both sequential and parallel versions lead

naturally to a tree-structured abstract object. Each branch of the tree can

be considered to be a independently maintainable release. Each version

along a branch represents an iteration of the corresponding release.

Whenever necessary, a given version may be identified as a base for a new

release, and a new branch can be sprouted at that point. Moreover, to

provide for project control, the project administrator can restrict, on a
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per-branch basis, permission to add new versions or to create new branches.

These permissions are associated with the abstract object, and are

independent of the usual access control mechanisms.

By definition, a version group is a set of objects that represent related

iterations of a single abstract object. The name of the abstract object

serves as a generic name for each version, and the abstract object itself

serves as a directory for the version group. Version control is, however,

an option to the MAPSE user. An object can be placed under version control

when the object is created with the ACL command:

create(prog,delta);

The object "prog" is created in the CWP, and is placed under "delta" version

control. This form of version control specifies the storage method to be
used for the versions. Although this command is issued to the ACLI,

subprograms are provided in the KAPSE Utility Package to perform the same

functions. These subprograms are callable from MAPSE-level processes

without involving the ACLI.

Object versions are named by qualifying the abstract object name with the

branch and version names: object.branch.version. Incompletely qualified
object version names are permitted, relieving users of the need to refer to

specific versions. If only the branch name is specifiea, the last version:*

on that branch will be taken as the default. If both the branch and version

identifiers are omitted, the last version on the last-created branch is the

default. This default scheme satisfies the most prevalent case, since most

users will be accessing the last released version.

Version control is managed automatically by the KDBS whenever a request is

made for an abstract object. As indicated above, the abstract object itself

serves as a "directory" for all of its versions, and maintains the tree

topology and creation permissions as well.
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3.3.4.1 A Version Control Scenario

As an example of the use of version control, consider the development of a

system by two teams of developers, a programmer team and a test team. The

programmer-team is responsible for developing and unit testing each module

of the system. '" ' test team is responsible for integration testing.

The program administrator creates an empty abstract object, "prog," in the

"official" partition, "ofc". An initial development branch is created named

"dev", and the programmer team is given permission to create versions on

this branch:

%CWP := "/ofc"; -- set CWP

create(prog'TXT,delta); -- create the abstract object "prog"

- with category "TXT"

createb(prog,dev); -- create the branch "dev"

bwa(prog.devpteam,add); -- allows "pteam" to have branch

- access (version create

-- permission) on branch "dev"

One programmer creates the first version of pro& using the Editor. The

version tree begins as:

OFC/PROG -- Di 1I

During unit testing, a programmer discovers a bug and edits the dev.1

version of prog, creating version dev.2. Note that the programmer can

simply edit ofe/prog, the dev.1 version will be selected by default, and the

dev.2 version will be created by default. Also, when the Editor opens

ofc/prog for editing, it actually reads from ofc/prog.dev.1 and opens

ofc/prog.dev.2 for writing. Thus other programmers are temporarily

prevented from adding a new version to the dev branch, and from interfering

with development.

Version dev.3 may be created similarly, resulting in the tree:

OFCIPROG'" -DEV. 1HV.3
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At this point, dev.3 is successfully unit tested and turned over to the test

team for integration. The test team cannot add versions to the dev branch,

but a release branch called "rel" is created for them by the project

administrator:

createb(prog.dev.3,rel); -- create the branch rel,

s stemming from version prog.dev.3

bwa(prog.rel,testteam,add); -- allow the testteam to ado

-- versions to this branch

The initial version on the release branch, rel.1 is simply a placeholder,

and equivalent to version dev.3. Note that the programmer team may not add

versions to the rel branch. This ensures that the test team can always test

from a stable base.

OFC/PROG - - IDEV. I H DEV. 2 DEV. 3

The test team integrates rel.1 and discovers a bug. Depending on the degree

of project control desired, the project manager may then give the programmer

team temporary permission to add a version to the rel branch.

Alternatively, the programmer team may be required to perform their editing

and unit testing in a separate partition. This latter method provides

greater control; any changes must be unit tested to the satisfaction of the

test team, who will then make the change to the rel branch themselves. A

programmer can thus copy the current version on the rel branch to partition

pgm, creating a new abstract object with the initial tree:

PGM/PROG- E 1I
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.~ ....... ...

The programmer can edit this pgmn/prog.re1.'. version, creating and

successfully unit testing pgm/prog.rel.2:

PGM/PROG REL L~1 R~~EL. 2

When the test team is satisfied with the unit test, they can edit the
official version /ofc/prog.rel.1, updating it with /pgm/prog.rel.2.

Meanwhile, the programmer team may have indepencently continued to ado a

version to the dev branch. The official tree then looks like this:

OFC/PROG -- DEV. 1 DEV. 2 DEV. DEV.4
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The version control system has permitted the programmer team to continue

incremental development, while allowing controlled maintenance of a

release. Multiple releases present no additional problems, as arbitrary

tree structures are permitted. For example, an "R2" release may-be created

based on dev.4:

R2. 1

OFCI'PROG - - DEV. 1 DEV. 2 DEV. 3 DEV. 4
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3.3.4.2 Version Storage Options

For storing the versions, several options are available. First, each

version may be kept as a separate object. This method provides for fast

access at the expense of storage space. Second, the information content,

but not the attributes, of a version may be deleted as long as it is defined

in a configuration object and is thus reconstructible (configuration objects

are discussed under the tab on the Configuration Management System in this

report).

For text objects a third option is available. This is the delta method

whereby only the differences between each version and its ancestor are

recorded. These deltas are stored in the abstract object itself. The

algorithm for delta maintenance ensures that only a single pass over the

abstract object is required to extract any version. The advantage of deltas

is that the differences between successive versions is usually very small,

and thus the additional storage required for a version is correspondingly

small.

The delta storage method is the default for text objects, and is unavailable

for nontext objects. However, even with delta storage, frequently

referenced object versions may be separately stored. Whether or not a text

version is stored using deltas is invisible to the user, the KDBS

automatically determines the necessary operations for version retrieval.

3.3.5 Access Control

The access control system used by the KDBS is a substantial extension to the

system used by UNIX. The design provides a highly flexible, secure system.

In addition, the design enables access attributes to be efficiently and

compactly stored.

One of the first design issues was whether to associate access control

information with users or with KDB objects. User-associated access control,

aside from not satisfying the SOW requirements, was found to have several

drawbacks despite its intuitive appeal. First, for a user to create an
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object and restrict access to it, all user-associated access profiles must

be changed. Permission to change these profiles is usually limited to

system administrators or project managers. Thus it is difficult for users

to effectively administrate their own objects. Second, objects -may not be

moved within the data base, or renamed, and still retain their access

restrictions. Similarly, objects that are archived and subsequently

retrieved into a different partition will find that their access

restrictions have changed. The final objection to user-associated access

control is that it is difficult, given any object, to determine which users

have access to it. This determination involves searching the access

profiles for all users, an extremely expensive operation.

Therefore, access attributes must be associated directly with the KDB

objects themselves. In order to minimize the storage required for these

access attributes, partition objects can be given partition access rights

that apply to each object in the subtree rooted by the partition. If a

finer degree of access control is desired, additional access rights can be

individually assigned to subpartitions and member objects. Thus the storage

required for access attribute storage is directly related to the granularity

of control that is specified.

The access rights themselves include read, write, execute, append, modify,

and delete. Append permission conveys the right to add to an object, and is

distinguished from write permission. Modify permission allows modification

of the object's attributes. Sets of these access rights may be specified

for individual users, user groups, or all other users.

Because partitions have rights that are distributed to an object's members,

the access permissions for objects are determined when it is accessed. The

rights for the particular form of access are extracted from each containing

partition and intersected. With this algorithm, detailed in the KDBS B5

Specification, access to an object can never be less restrictive than that

specified by its containing partitions. This rule gives project management

the ability to selectively delegate access rights, while permitting users to

administer and control their own objects within the delegated restrictions.

Users can therefore exercise discrete control only within those portions of

the KDB hierarchy where they themselves have the proper access rights.
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When access to an object is requested by a HAPSE process, the access

permissions associated with the object are determined for the effective user

and user group identifiers associated with the process. The ACLI is

initiated with its effective identifiers set to identify the logged-in

user. When a process is initiated, the effective identifiers of the invoked

process are ordinarily copied from those of the invoking process. The

invoked process will thus have the same access rights as the invoker. It is

possible, however, for a user to create an executable load object and assign

it the "set effective ids" attribute. This attribute will ensure that when

the object is executed as a process, it will have its effective identifiers

set to the owner and group iaentifiers of the object. For example, a user

may own a data object that others may access only by executing a program

also belonging to the same owner. Thus, with the "set effective ids"

attribute, the rights accorded to a process are those of the owner of the

associated load object, not of the user who invoked the process.

3.3.6 Ada Input/Output

Input/Output facilities are predefined in the Ada language in two packages.

The generic package INPUTOUTPUT defines a set of input/output primitives
applicable to files containing elements of a single type. Additional

primitives for text I/O are supplied in the package TEXT_10. These packages
are supplemented with text formatting packages that are described in detail

in the B5 Specification for the Compiler.

The context of execution for Ada I/O, supported by the KDBS, is divided

between two domains: the high-level subprograms that comprise the Ada RTS
Package and KDBS Utility Package are called from executing Ada programs and

execute at the MAPSE process level; the underlying support routines execute

at the kernel level. There are several reasons for this separation. First,

I/0 within the MAPSE is interrupt-driven and the requesting MAPSE process

may not always be in main memory when the requested I/0 has been completed.

In this way, other MAPSE processes (or tasks) can be scheduled and executing

while other MAPSE processes wait for their I/O requests to complete.
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Moreover, it is usually not feasible to allow user processes to field their

own interrupts. Another reason is that the high-level packages are all

designed to be highly portable, because they must be provided on target

systems as well as in the MAPSE. The interface between these packages and

the underlying KDBS I/O facilitios is specified in detail; I/O facilities

that support this interface must be provided for each target. Finally, the

KDBS I/O support is required to handle version storage, while this is

unnecessary for target systems. The processing required to read a version

under delta storage is provided entirely within the kernel.

The KDBS facilities defined in the Ada RTS Package to do I/0 are designed to

eliminate the differences between the various devices ana styles of access

found on each implementation of the MAPSE. An object exists in the the KDB

for each type of device supported, so that the structure of a device name is

the same as that of any other object name. Moreover, the same access

protection afforded to objects of the KDB apply to the device objects as

well.

Names exist for terminal devices, and may exist for disk devices or tape

drives regarded as physical units outside of the KDB. Since terminals and

other objects are treated identically, both may use the same I/0 calls.

Thus it is easy to redirect input and output from the terminal to another

object. Moreover, it is equally easy to implement "pipes", which redirect

output from one process to be input to another process.

The KDBS maintains no locks visible to the user, nor is there any

restriction on the number of users that may have a specific object open.

There are, however, sufficient internal locks to maintain the logical

consistency of the KDB when two users try to update the same object, create

objects of the same name in the the same partition, or delete objects that

are currently being used.
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j.,.7 Archive

The archive facility is provided to allow users to selectively save KDB

objects on backing storage. Archiving is particularly useful as a means of

reducing online storage requirements for infrequently accessed objects.

Archiving is also convenient for packaging sets of related objects on

removable media for transporting between installations.

The archiving facility provides a full complement of functions that operate

on archive objects to list the members, to add members, to replace members,

to update members only with a more recent version, to delete members, and to

retrieve members.

In order to preserve data base security, users may request archiving only

for those objects to which they have full access.

j.. Backup

The backup facility is provided to minimize loss of data due to hardware

failures and inadvertant deletion or modification of objects by users. The

backup function dumps the entire KDB hierarchy or selected portions of the

hierarchy onto a removable medium. Backup thus establishes a checkpointed

data base, which is formatted to permit selective restoration of lost or

damaged objects. Backup may be activated automatically by a timer-activated

process, or may be callea by the user. In any case, the backup operation

must wait until the desired portion of the data base is inactive, and must

lock out any further activity until the backup is complete. User

cooperation may be required to achieve data base inactivity, or this may be

forcibly accomplished by the system administrator.

As with the archive facility, users may request backup only for those

otjects to which they have full access.
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SECTION I - INTRODUCTION

This part of the Interim Technical Report presents an overvie of the ACLI

preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AlE contract. The requirements

on which the preliminary design is based are given in the System

Specification (Type A) and details of the preliminary design are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The ACLI is the most visible communication channel between the MAPSE and its

users. The ACLI interprets the ACL, which is a command programming langua~e

providing a flexible user interface to the process and data base management

facilities of the KAPSE. ACL is specifically designed to be usable by both

project management and software development personnel.

The ACLI is designed to provide an efficient, powerful, user-friendly

mechanism for invoking MAPSE programs. The ACLI interprets ACL, which

combines both programming language and command language constructs. The

programming constructs are those usually found in most algorithmic

languages, and include variables, aggregates, assignments, control-flow

primitives, and subprograms with parameter passing. The command constructs

provide access to the process management and data base management facilities

of the KAPSE.

Many of the ACL commands are directives to the ACLI to establish a named

program as a MAPSE process. These commands permit the user to initialize

the environment in which processes are invoked, and to redirect their

standard input, standard output, and standard error files. A few commands

are directly executed by the ACLI to alter the state of the ACLI process.

In addition, the ACLI may, for efficiency, execute directly some frequently

used comnands that could also have been implemented as separate programs.

The ACLI executes as an ordinary MAPSE process, and possesses no special

privileges. Thus the ACLI is not part of the KAPSE, and users are free to

substitute their own MAPSE programs to execute in place of the ACLI.
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In order to provide a user-friendly environment for debugging, the Debugger

is provided as an integral part of the ACLI. Since the Debugger contains

considerable functionality in its own right, it is treated under a separate

tab in this Report.

1.2 DESIGN PRINCIPLES

The overriding requirements influencing the design were, of course,

presented in the Statement of Work (see Paragraph 3.2.8.2 in L12]) and

STONEMAN (see Paragraphs 4.C, 4.D, and 5.D in (111). Within these

constraints, the design was directed toward providing a command language

with the following characteristics:

1. User-friendly syntax for frequently executed contructs

2. Organized around simple and straightforward concepts that are few

in number

3. Easily usable by project management personnel who may not be Ada

programmers

4. Sufficiently powerful for implementing sophisticated command

language subprograms.

Given the need for having project management and program support personnel

online, it was recognized that the ACLI must be usable by people not versed

in Ada programming. The resulting simplicity need not, however, be

pervasive. ACL is carefully organized toward providing simple-to-use

facilities for casual users, while giving sophisticated users many of the

constructs found in algorithmic languages.

The suggestion has been made that the command language should be an

interpretable version of Ada E53. Aside from violating the principle

enunciated in the previous paragraph, an Ada command language would suffer

from other problems. These problems all result from a divergence in the

design goals of programing languages and command languages. Ada was

designed to be a compilable, strongly type-checked, algorithmic language for

embedded systems. Command languages, on the other hand, are used as

vehicles for program development, for initiating, monitoring, and debugging
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processes. Command languages are thus highly interactive by definition, Ada

is not. Most importantly, a user-friendly mechanism for invoking and

composing the invocations of processes is intrinsic to command languages,

this facility is unavailable in Ada.

Nevertheless, in order to provide sufficient expressive power to combine and

monitor process invocations in nontrivial ways, a number of constructs

common to programming languages must be included in the command language.

Wherever possible, these constructs were adapted, if not borrowed, from

Ada. A substantial effort was made to ensure that any differences would not

be likely to lead to user confusion and error.

Deviations from Ada syntax were never be made purely for reasons of

stylistic preference. Deviations were only permitted in those areas where

the candidate Ada constructs clearly did not satisfy the fundamental needs

of a command language.

Since the ACLI is a MAPSE program, it has access through the KVI to the

facilities of the KAPSE. It is important to note that the user has an

alternative access to the KAPSE by writing, compiling, and executing Ada

programs. However, MAPSE users need not all be Ada programmers. The ACLI

must therefore cater to the needs of managers and program support personnel

as well.

One aspect of process initiation for which the ACLI is responsible is that

of environment initialization. Part of the process state for each process

is a description of how that process is connected to the system. This

description includes data describing terminal characteristics, standardI/O

devices or objects, interrupt vectoring, parent and child process

identification, etc. This information is initially set by the ACLI, and is

available to the process through an Ada Standard Environment package

definition.
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SECTION 2 - BACKUROUND

The following section provides a description of the background of this

design effort. Previous work and literature have contributed to the design

of the ACLI.

2.1 PREVIOUS WORK

The fundamental concepts present in both the ACLI and ACL are derived from

the highly acclaimed UNIX T M Shell and its command language. In fact, a

major goal of this design effort was to achieve an elegant blend of

Shell-like concepts with Ada-like syntax. In addition, the early decision

to treat the ACLI as a MAPSE program and not as part of the KAPSE was based

entirely on the success that this concept has enjoyed in UNIX.

UNIX has had a number of Shells, and the features of the original Shell, the

PWB-UNIX Shell, the "Bourne" Shell, and the Berkeley C Shell were all

examined. A lesser, and sometimes indirect, debt is owed to the Cambridge

Multiple Access System, CTSS, and MULTICS.

2.2 RELEVANT DOCUMkNTS

The following documents are all related to the design and the design history

of the ACLI and ACL:

1. Ada Support System Study (for the United Kingdom Ministry of Defence),

Systems Designers Limited, Software Sciences Limited, 1979-19b0.

2. Bourne, S. R., The UNIX Shell, The Bell System Technical Journal, Vol.

57, No.6 Part 2, July-August 1978.

3. Crisman, P. A. (ed.), The Compatible Time-Sharing System, M.I.T. Press,

1965.

4. Dolotta, T. A., S. B. Olsson, and A. G. Petruccelli, UNIX User's Manual,

Release 3.0, Bell Telephone Laboratories, June 1980.

5. Fisher, David A., Design Issues for Ada Program Support Environments,

Science Applications Inc., SAI-81-289-WA, October 190.
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b. Hartley, D. F. (ed.), The Cambridge Multiple Access System - Users

Reference Manual, Cambridge University Mathematical Laboratory, 1968.

7. Joy, W., An Introduction to the C Shell, Dept. of Elec. Engr. and

Computer Science, Univ. of California, Berkeley, 1980.

8. Mashey, R., Using a Command Language as a High-Level Programming

Language, Proc. 2n d Int. Conf. on Software Engineering, October 1976.

9. Organick, E. I., The MULTICS System, M.I.T. Press, 1972.

10. Reference Manual for the Ada Programming Language, United States

Department of Defense, July 19b0.

11. Requirements for Ada Programming Support Environments - STONEMAN,

Department of Defense, February 1980.

12. Revised Statements of Work for Ada Integratea Environment, Rome Air

Development Center, 26 March 19b0.

13. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The Bell

System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978.

14. Wegner, P., The Ada Language and Environment, Software Engineering

Notes, Vol. 5, No. 2, April 1980.
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SECTION 3 - FUNCTIONAL DESCRIPTION

This section provides a general overview of the ACLI interfaces within the

MAPSE and describes the design tradeoffs performed during the ACLI design.

3.1 INTRODUCTION

This paragraph discusses the system interfaces and functional design

capabilities for this system element in terms of the design priciples

outlined in Paragraph 1.2 of this tab.

3.2 SYSTEM INTERFACES

The ACLI uses the facilities of the Ada Standard I/O Package, the KDBS

Utility Package, and the KFW Interface Package. The ACLI is initiated by

the KFW Logon Process, and may also be invoked by any MAPSE-level process.

3.3 FUNCTIONAL CAPABILITIES

The ACLI serves as the user interface to the facilities of the MAPSE - to

the process initiation and control functions provided by the KFW, and to the

data base management functions provided by the KDBS. The ACLI possesses the

same potential access rights to these functions as any other MAPSE tool;

naturally, certain kinds of access may be restricted to particular users or

programs. The ACLI executes as a MAPSE process, and may initiate other

MAPSE processes. The ACLI provides the user the option of either suspending

the ACLI instance pending the completion of another process, or continuing

to execute asynchronously.

It must be noted that process initiation by the ACLI is not the same as Ada

task activation. A process is an initiated Ada program, and by definition

an Ada program cannot be a task. The logical control of Ada tasks is solely

the responsibility of the program in which those tasks are declarea. The

Ada language provides mechanisms for task management, and these mechanisms

use primitives that are part of the RTS Package.

The Debugger is an integral part of the ACLI, and enables operational

programs to be debugged. That is, the Debugger need not be called before

the invocation of the program to be debugged. As indicated above, the
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functionality of the Debugger is discussed under a separate tab in this

report.

There are a number of command utilities that are provided to complement the

functionality of the ACLI. These constitute an initial, minimal set of

programs that make available to the ACLI user the requisite functionality of

the KFW process control facilities and the KDBS data base management

facilities. The utilities are all invoked as process calls. Most will

execute as separate processes; however, a few (the Debug call, for example)

affect the execution state of the ACLI and will be executed directly within

the ACLI.

There are two major functional capabilities to be discussed. Paragraph

3.3.1 will present the design of the ACLI and of its role in the MAPSE.

Paragraph 3.3.2 will concentrate on the design of ACL itself.

3.31 ACLI Design

As has been emphasized above, the ACLI is simply another tool in the MAPSE

tool set, and is not part of the KAPSE operating system. The ACLI thus

enjoys no special privileges, and has the same access as any other MAPSE

program to the KFW and KDBS facilities provided through the KAPSE virtual

interface. This arrangement has two major advantages. While the Kernel

must be resident, the ACLI need not be. Thus the size of the ACLI is not

particularly important. Moreover, other MAPSE programs are not required to

invoke the ACLI in order to request Kernel services.

The ACLI is usually invoked by the Logon Utility of the KFW. After

verifying the user's identity through a password protocol, the Logon Utility

invokes the program named in the user's password entry record. This program

is ordinarily the ACLI, but the user may specify a different program if so

desired. Users may thus define their own command languages, and new or

nonstandard versions of the ACLI may be tested without impairing the

reliability and security of the KAPSE. In addition, limited versions of the

ACLI may be provided for users who are to be restricted from accessing the

full functionality of the KAPSE.
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The user may provide a profile object to be processed by the ACLI

immediately after logon. The commands in this object will typically

initialize environment variables to tailor the invocation of the ACLI to the

user's needs.

3.3.2 ACL Design

ACL is both a command language and a programming language. The command

processing facilities are, however, the reason for the existence of ACL. As

will be seen, the command constructs are responsible for most of the

differences between ACL and Ada. The discussion of the design of ACL

parallels the order of presentation in the ACL Reference Manual.

3.3.2.1 Lexical Elements

ACL commands are formed by combining data base object names, constants,

variables, and operators. Names, constants, and variables must be
distinguished from each other: names are unadorned, string constants may be

enclosed in quotes, and variables must be prefixed with a "". Context will
always allow distinction between names and unquoted constants. Strings need

be quoted only to prevent interpretation of their contents as ACL commands.

The above convention is a deviation from Ada, which quotes object names and

leaves variables unadorned. In command languages, however, object names are
used far more frequently than variables, and so deserve the unencumbered

syntax. This convention is unlikely to cause confusion, because the use of

quotes is superfluous, not erroneous.

A number of identifiers are reserved, and the Ada preference for full

English words over abbreviations is followed. Special characters, blanks,

horizontal tabs, and line breaks all serve as delimiters. ACL commands are

entirely free-format, and statements are terminated with a semicolon.
Although a user may thus divide a statement across several lines, no portion

of the statement is interpreted by the ACLI until the entire statement is

read.

Object names have a somewhat specialized syntax. The simplest object name

is an identifier:
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prog

prog names an object in the current partition, the default partition in

which names are looked up. In general, an object name consists of sequence

of identifiers where all but the last identifier names a partition. Thus:

/radar/tracking/prog

names the object "prog" in partition "tracking", which is a subpartition of

"radar", which is a subpartition of the root "/". The partition structure

is discussed in more detail under the KDBS tab of this interim report.

Names that identify abstract objects (objects with versions) may be

qualified to specify particular versions. For example:

prog.ibm370.5

denotes the fifth version on the branch "ibm370" of the abstract object

"prog".

prog. ibm370

denotes the last version on branch "ibm370", and

prog

denotes the last version on the default branch of the abstract object
"prog". A full discussion of objects and versions may also be found under

the KDBS tab of this report.

Simple patterns may be used to generate lists of object names. The ,,*,, will

match any sequence of characters in a component of a name. For example, if
the current directory contained progl, prog2, and progabc:

prog*

would generate the list (progl prog2 progabc) as an aggregate. Similarly:

/radar/*/prog. ibm70.

would generate a list of all versions on the ibm37U branch of each abstract

object prog appearing in any subpartition of the partition radar.
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Two special object names are provided. "." identifies the current

partition, and ".." identifies the partition containing the current

partition.

3.3.2.2 Variables, Types, and Expressions

ACL is a typeless language, and there are no declarations. This is a

radical departure from Ada, necessitated by the requirement that ACL be

usable by the non-Ada-programmer, and friendly to the Ada programmer. Thus

a project manager can login and type:

printreport (znyproject);

without declaring either the program "printreport" or the partition

"myproject". Virtually all of the interaction of the nonprogrammer with the

ACLI will be to invoke canned procedures using a similar syntax.

Variables are declared when they appear on the left of an assignment, or in

an out parameter position in a process call. Only two types may occur as

the values of variables: strings and aggregates of strings. This lack of a

complex typing structure simplifies ACL considerably without affecting its

usefulness as a command language. Admittedly, the programming aspects of

ACL suffer, but the ACLI is not the only pathway to the functionality of the

KAPSE. The user who requires programming capabilities beyond the scope of

ACL can always write an Ada program that interacts directly with the KAPSE.

Strings are handled as in Ada, and the string catenation operator, "&", is

available. There are, however, some differences. Strings need be quoted

only if they contain delimiters significant to ACL, and variables do not

have a predeclared maximum string length (although a host-dependent

parameter may limit string length).

Aggregates may be delimited by blanks or commas:

(abc,def,ghi) or (abc def ghi)

Simple Ada-like slices are also available:

%a := (abc def ghi);

%b %: a(2..3);

-- the value of %b is now (def ghi)
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The syntax for expressions is borrowed, almost in its entirety, from Ada.

Thus Boolean operators (and, or, etc.), membership operators (in, and not

in), relational operators (<, >, etc), arithmetic operators, and the string

catenation operator are allowed.

There is, of course, no overloading of operators. Each operator will

convert its operands, if necessary and possible, to conform to the required

operation. Thus, for example, the string "15" may appear as an operand to

the string catenation operator as well as to an adding operator. Boolean

operators interpret their operands as Boolean values. The only operands

interpreted as FALSE are the string "0" and the aggregate with the string

"0" as its only component. All other operands are interpreted as TRUE.

Boolean, relational, and membership operators always generate a result of

"1" for TRUE and "0" for FALSE.

3.3.2.3 Process Invocation

A process call is the mechanism that causes the execution of an Ada program

as a MAPSE process. The simplest form of a process call specifies the names

of the program and its arguments:

list(/radar/tracking);

This call would list on the Standard Output file the names of the objects in

partition /radar/tracking. Note that compatibility requires that the

parameter passing mechanism used by ACL conform to that used by Ada. Ada

allows parameters to be passed to a main program that is a function or a

procedure. Although parameter passing is an extra burden on the underlying

KFW process invocation facility, this use of parameters provides a feature

of considerable power.

ACL provides a means to redirect the standard input and standard output

files. One form of redirection specifies that the output of one process be

"piped" to the input of a second process. For example:

list(/radar/tracking) I sort();

This pipeline would sort the object list created by "list" before printing

it on the terminal. Process calls separated by aIe characters result in
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separate processes being created. The standard output of the first enters a

pipe, which is a special temporary buffer created by the KAPSE. The

standard input of the second process is read from the pipe, and

synchronization of the processes is handled automatically by the KAPSE.

Thus, for the above example, "list" is suspended when the pipe is full, and

"sort" is suspended when the pipe is empty. Many process calls may be

connected in a pipeline, although the KAPSE may limit the number of

processes a single user may activate.

The standard input and output files may be redirected to other data base

objects (or devices) as well. For example:

list(/radar/tracking) -> listl;

listl -> sort() -> list2;

Here, the standard output of "list" will be written into the data base

object "list1". For "sort", the standard input will be read from "listi"

and the standard output will be written into "list2".

Given this pipeline facility, it is desirable that error and warning

messages should appear on a file other than standard output. The file

standard error is provided for this purpose, and is ordinarily connected to

the user's terminal. Thus, in the "list sort" pipeline above, the user

would see any warnings from "list" on the terminal; they would not be sent

down the pipeline for "sort". If desired, the standard error file may be

redirected to a data base object for each process call in a pipeline:

list(/radar/tracking) *> warnings I sorto)

Here, the object named "warnings" would receive all error or warning

messages from the "list" process.

Redirection of standard output or standard error may also specify appending

to an existing object with the operators "->>" and "*> ", respectively.

For process calls, in, out, and in out parameters are all permitted. The

form of the parameter is determined by the specification in the calleU

program. The ACLI arranges all parameter transmission with the aid of KAPSE

facilities. In addition, a process call that names a function may return a
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value. By convention, for system tools, this return value will indicate

whether the process executed successfully or terminated abnormally.

Ordinarily, the ACLI will invoke a process (or pipeline) and await

completion. The user may, however, specify that a process is to be executed

asynchronously, in which case the ACLI will not wait for the process to

finish. Asynchronous, or background execution is accomplished by enclosing

the process call or pipeline in parentheses:

(list(/radar/tracking) I sort() -> list );

To avoid confusion, it is generally a good idea to redirect the output of

asynchronous programs away from the terminal.

It is possible to substitute the standard output of a process back into the

command stream as a string or as an aggregate. For example, if the "sort"

program sorted an aggregate provided as an argument instead of its standard

input, the following would be equivalent to the original example:

sort(# list(/radar/tracking) #);

The ACLI would reformat into an aggregate the Standard Output of the "list"

process call. In the reformatting, blanks characters, horizontal tabs, and

newlines serve only to delimit the strings that become the components of the

aggregate. The syntax " '# #' " is provided to preserve the

standard output as a string and include the above delimiters.

3.3.2.4 Statements

Although process calls and pipelines are the most common forms of

statements, ACL provides a full complement of programming constructs. It

should be noted that most of these constructs are designed to be used in ACL

subprogram objects. While they may be entered and interpreted "on the fly",

experience with the UNIX Shell indicates that the large majority of users

direct requests are for process invocations, process pipelines, and I/o

redirection.

Simple statements include the assignment statement, which assigns a string

or aggregate to a variable. The following are all valid assignment

statements:
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%a := abc;

Sb 25;

%c := 14 + %b; -- c now has the value "9"

a a & Sc; - d now has the value "abc39"

e :(ad); -- %e now has the value (abc.abc39)

Since process calls may return a value, these values are assignable:

%retval := list(/radar/tracking);

In this case the return value, by convention, might encode "0" for

successful termination, "1" for "cannot access partition", "2" for

"partition does not exist", etc. (note that these error messages may be

written to standaru error as well).

Assignment aefines the variable on the left side, and reassignment

constitutes a new definition. A variable with a string value may thus be

reassigned an aggregate value.

A number of control-flow statements are provided, as noted above they are

provided primarily for use in ACL subprograms (see Paragraph 3.3.2.5

below). There is the Ada-like conditional statement:

if expression then

sequence-of-statments

elsif expression then

sequence-of-statements

else

sequence-of-statements

end if

Any number (including zero) of "elsif" clauses may be specified, and the

"else" clause is optional. As in Ada, the "if - end if" bracketing

obviates the dangling-else ambiguity.

Case statements are particularly useful for testing values returned from

process calls. If, for example, "list" did not write its error messages,

the following would test the value returned and take appropriate action:
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case list(/radar/tracking) -> list is

when "0" => null;

when "1" => echo("cannot access file");

when "2" => echo("file does not exist");

end case,.

The standard output of "list" would be written to the object "list", but the

success of its execution would be monitored by the case statement. The

"null" statement is provided expressly for these situations, and the "echo"

program writes its argument to its standard output..

Several forms of loop statements are available. Simplest is an endless loop

that can be exited only via "exit" or "return" statements:

loop

sequence-of-statements

end loop;

"While" loops are permitted:

while expression

loop

sequence-of-statements

end loop;

A form of "for" loop is provided that allows iteration through components of

an aggregate. For example:

for %i in # list(/radar/tracking) #

loop

if Ada(5i) /: ok then

echo("error in compiling object & " %1);

exit;

end if;

end loop;

This statement would compile each object in the /radar/tracking partition,

until a compilation resulted in an error.
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A loop may specify a loop identifier as in Ada, and an exit stateuent is

provided:

exit loop-identifier when expression;

Both the loop identifer and the expression are independently optional. The

loop identified with the loop identifier is exited, unless the loop

identifer is absent, in which case the innermost enclosing loop is exited.

If the when clause is specified, loop termination occurs if and only if the

expression is TRUE.

3.3.2.5 Command Language Subprograms

Command language subprograms may be specified in ACL. An ACL subprogram is

invoked with the syntax of a process call, and the ACLI checks the category

of the named program object to determine whether the call is for an Ada

program or for an ACL subprogram. To invoke an ACL subprogram, the ACLI

creates another ACLI process to interpret the named object.

For example, the following is a subprogram, copar, that compiles and links

all objects within a partition. It can be invoked by "copar(partition

name)".

function($partition : in) is

for %i in # list(%partition) #

loop

if ada(%i) /z ok then

return "bad compile" & %i;

end loop;

Is := link(# list(%partition) #, PAROUT);)

if Is = ok then

return success;

else

return "link failure";

Invocation would then be as in a normal process call:

copar(/radar/tracking);
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Standard input and standard output behave as for normal process calls, so

ACL subprograms may appear in pipelines. Subprograms specified with the
function keyword, rather than the procedure used above, may return values:

return expression;

As indicated above, ACL subprograms are invoked by creating another instance

of the ACLI process. Such an invocation does not permit the subprogram to
directly access the standard environment of the calling process. Sometimes,

however, it is useful to execute a subprogram inline. Such an invocation
does not create a new process, but instantiates the text from the named

object with parameters handled appropriately. The inline statement has the

following syntax:

mcl-program-name ( parameters );

Execution is in the environment of the current instance of the ACLI. Inline

calls may not appear in pipelines because of the clash with the semantics of

standard input and standard output.
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the CMS

preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AIE contract. The requirements

upon which the preliminary desi&n is based are given in the System

Specification (Type A) and details of the preliminary design are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The CMS is responsible for processing and maintaining configurations and

object histories. The system consists of a MAPSE-level tool, Configure,

which utilizes underlying KDBS functions to manage the history attributes.

The CMS automates many of the configuring activities involved in project

development, testing, and maintenance. This automation is accomplished

through a careful integration of the notions of configurations, versions,

and history attributes.

A configuration is a set of oata base objects combined with a set of rules

that specify how these objects may be derived from each other. A

configuration is defined by a configuration object, which is prepared by the

user. The Configure tool uses the configuration object to provide two major

functions:

1. Update - Determine and perform the minimal set of operations

required to bring specified objects up to date with the

other objects in the configuration.

2. Reconstruct - Determine and perform the minimal set of

operations that are required to reconstruct a specified

version of an object in a configuration.

Configure calls on the ACLI to execute the indicated operations, which are

written in ACL.
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Central to the operation of Configure is the maintenance of the history

attributes. These objects record how an object was constructed, and permit

its reconstruction. The history attributes also prevent the removal of an

object necessary to the reconstructability of other objects.

The next paragraph will describe the design principles that provided the

basis for the design of the CMS. Section 2 will document previous related

work. Section 3 will present the rationale that guided the design

decisions, and give examples illustrating the use of Configure.

1.2 DESIGN PRINCIPLES

Large projects typically require the development of many programs. These

programs, in turn, are commonly divided into a number of smaller modules.

The construction of a given pro6ram from its constituent modules often

entails a lengthy sequence of compilation and linkage steps. This sequence

may be further complicated 'y special options or by the use of program

generators such as parser or scanner generators. Many dependencies are

embedded in the construction sequence, and the order in which the steps are

performed is critical. Moreover, after a program has been constructed, the

testing and maintenance cycles will modify the constituent modules. It is

difficult for a developer to recall exactly which modules will have to be

rebuilt, and errors in this process tend to generate bugs that are

particularly difficult to locate. Recompiling everything is expensive, and

often not practical for large projects.

The requirements regarding configuration management in both the SOW ana

STONEMAN left open many design issues. The present design is specifically

oriented toward solving the problems of project and configuration management

presented in the above paragraph. The CMS is designed to achieve the

following goals:
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1. Configurations should specify how member objects are derived

from each other

2. Configurations should interact closely and naturally with the

concept of object versions

3. Configurations should interact closely and naturally with the

concept of object history attributes

4. The interaction between configuration management and history

attributes should enable the minimization of the storage

required for history preservation

5. Configuration management should integrate the concepts of

object generation and object reconstruction

6. Configuration management should be useful in every stage of

project development: initial program development, unit

testing, integration testing, and maintenance.

In achieving each of these goals, simplicity and efficiency were the primary

concerns. For example, an early design effort L13 suggested that lengthy

derivation scripts be stored with each object in order to preserve

generation history. While this approach is theoretically sufficient, it

imposes unrealistic storage requirements for large projects. In short, the

aim of the present effort was to achieve the above design goals within the
confines of a practical and implementable system.

TAB 4
1-3



SECTION Z - BACKUROUND

The following section provides a description of the background of this

design effort. Previous work in this area as well as literature have

contributed to the design of the CMS.

2.1 PREVIOUS WORK

The fundamental concept for Configure was derived from the Make facility of

UNIXT M . The UNIX Make permits the specification of how files are to be

derived from other files. The present design has successfully solved the

problem of adapting the Make concept to handle object versions, manage

history attributes, and provide for object reconstruction. In general, this

adaptation was an extension. However, Make was not designed to handle

object reconstruction, and therefore permits considerable freedom in

derivation specifications, which the present design has restricted. In

particular, Configure does not permit user interaction during the derivation

of an object defined in a configuration. This restriction guarantees

reconstructability using the derivation script maintained in the

configuration object.

2.2 RELEVANT DOCUMENTS

1. Ada SUPPORT SYSTEM STUDY (for the United Kingdom Ministry of Defence),

Systems Designers Limited, Software Sciences Limited, 1979-190.

2. Dolotta, T. A., S. B. Olsson, and A. G. Petruccelli, ed., UNIX USER's

Manual, Release 3.0, Bell Telephone Laboratories, June 1980.

3. Feldman, S. I., Make -- A Program for Maintaining Computer Programs, in

Documents for the PWB/UNIX Time-Sharing System, Edition 1.1, Bell

Telphone Laboratories, October 1977.

4. Fisher, David A., Design Issues for Ada Program Support Environments,

Science Applications Inc., SAI-81-289-WA, October 1960.

5. Reference Manual for the Ada Programming Language, United States

Department of Defense, July 1980.

6. Requirements for Ada Programming Support Environments - STONEMAN, United

States Department of Defense, February 1980.

7. Revised Statements of Work for Ada Integrated Environment, Rome Air

Development Center, 26 March 19b0.
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8. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The Bell

System Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978.

9. Rochkind, N. J., The Source Code Control System, IEEE Transactions on

Software Engineering, SE-1, December 1915.
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SECTION 3 - FUNCTIONAL DESCRIPTION

The following section provides a general overview of the CHS interfaces

within the MAPSE and describes the design tradeoffs performed during the

Configuration Management System preliminary design.

3.1 INTRODUCTION

This paragraph dicusses the system interfaces and functional design

capabilities for this system element in terms of the design principles

outlined in Paragraph 1.2 of this tab.

3.2 SYSTEM INTERFACES

The CMS interfaces with the ACLI and the KDES. The ACLI interprets the

Configure commands. The KDBS is the repository of all the data, attributes,

etc., that Configure uses in its configuration management function.

3.3 FUNCTIONAL DESCRIPTION

The functionality of the CMS depends on the integration of configurations

with object versions and history attributes. Paragraph 3.3.1 discusses this

integration, along with the role of the ACLI, in the context of a simple

example. An advanced example is provided in Paragraph 3.3.2 to further

illustrate the power and versatility of Configure.

3.3.1 Configurations, Versions, and Histories

Consider the following configuration object (CO), which describes how an

executable object is derived from a relocatable object, which in turn is

derived from a text object:

prog'XQT : prog'RL

link(prog,NAME=>prog);

prog'REL : prog'TXT

Ada(prog);

The left-justified lines specify dependencies, and the indented command

lines define the operations, written in ACL, required to fulfill the

dependencies. This CO indicates that the relocatable program prog'REL
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depends on prog'TXT, and is built by compiling prog'TXT. Similarly,

prog'XQT depends on and is built from prog'REL using the linker. Letting

co_.prog be the name of the above CO, and assuming neither prog'XQT nor

prog'REL exists, the command:

Configure(co_prog,prog'XQT);

would result in the compilation of prog'TXT and the linking of prog'REL.

Actually, Configure does not interpret the command lines itself, but invokes

the ACLI for this purpose.

In a real project, the "prog" objects would be abstract objects. That is,

iterated versions of these objects would exist. From the point of view of

configuration management, versions are necessary to permit the

reconstruction of previous instances of the program. In the present

example, assume that the only extant versions are prog'XQT.1.1,

prog'REL.1.1, and prog'TXT.1.1. The CO object must also have versions, so

let the current version be coprog.1.1. The above invocation of Configure

has then created the versions of the "XQT" and "REL" objects, and has set

their history attributes. There are four history attributes attached to

each created version:

date-time -- set to the date and time when the version was

created.

dep-list -- set to the versions that the version immediately

depends upon. For instance, the dep-list attribute

for prog'REL.1.1 is:

prog'TXT.1.1,Ada.m.n,ACLI.p.q,

Configure.s.t,coprog. 1.1

Note that the versions of all tools that were used,

along with the version of the CO that was used,

must be included. The Ada Compiler was used

explicitly, while the ACLI and Configure were used
implicitly.

ref-count - incremented for each version that immediately

depends on this version. For instance, the

ref-count of prog'REL.1.1 is set to 1 since

prog'REL.1.1 depends on it.
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cfg-list -- set to include the name of each CO that references

this version. This is an optional attribute that

the user may request when an abstract object is

created. For sirrlicity, the current example will

not use cfg-list.

These history attributes provide a record of the steps that were performed

in generating a given object version from the object versions upon which it

immediately depends. The dep-list attribute enables the construction of a

dependency graph. The complete derivation record of the object versionA that

roots the graph is thus available from the history attributes of all

versions in the graph.

Having available the derivation record of a version enables the information

content of the version to be deleted and later reconstructed. Thus, for

instance, in order to minimize the storage required for an infrequently used

version, the object code portion of prog'XWT.1.1 may be deleted. The

derivation record still would be preserved in the history attributes,

enabling reconstruction via the call:

Configure(prog'XQT.1.1);

This minimization of storage becomes especially significant for large

projects that must be maintained for long periods of time.

The present design results in relatively little information being stored in

the history attributes, compared with designs that store the entire

derivation record with each version. The key observation is that the

derivation structure and commands in the CO tend to change far less

frequently than the objects being configured. This stability is due to the

fact that the CO represents the module structure of a program, and such

structure is rarely changed over the program's lifetime. Thus the same

version of the CO will provide derivation commands for a large number of

configured object versions.

It must be noted that further economy is achieved by the storage method usec

for versions of text objects. Derivation histories are not maintained for
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text objects (except when program generators are used). Instead, a version

of a text object is indicated by a delta on the previous version. Delta

storage eliminates much of the redundancy ordinarily inherent in versions of

the same object. The algorithms for computing and storing deltas are

described in X.Y.Z-KDBS.

Referring back to the example, suppose the programmer now edits prog'TXT to

produce a pro&'TXT.1.2. The next step is to bring the configuration up to

date. This updating is accomplished by the command:

Configure(coprog,prog'XQT);

Note that this is precisely the same command that was used to create the

original version of prog'XQT. Configure first builds the dependency graph

that is implicit in the dependency rules in coyprog. The graph is fairly

simple in this case:

PROG'XQT

PROGREL

PROGrXT

Examination of the graph yields the fact that the current version of

prog'REL is older than the current version of prog'TXT. Thus a new version

of prog'REL must be built, and the ACLI is invoked to execute the command

line defining the compilation step. Next, it is determined that the current

version of prog'XQT is older than the current version of prog'REL, so the

ACLI is invoked again to execute the linking step. Thus each object in the

configuration is brought up to date relative tc one other. Note that if a

configuration is up to date, the above Configure call will examine the graph

and report that nothing needs to be done.
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3.3.2 A More Detailed Example

The dependency rules in a CO can define an arbitrarily complex directeo

acyclic graph. These rules are therefore sufficient for describing the

compilation order that must be imposed on the modules of an Ada program.

The following CO might be provided to specify the construction of the

program given as Example 3 in Chapter 10 of the Reference Manual for the Ada

Programming Language. (This program is reprinted in Figure 3-1).
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procedure TOP is
type REAL is digits 10;
R, S : REAL := 1.0;
package D is

PI : constant := 3.14159_26536;
function F (X : REAL) return REAL;
procedure G (Y, Z : REAL);

end D;
package body D is separate; -- stub of D
procedure Q (U : in out REAL) is separate; -- stub of Q

begin -- TOPQCR);

;:G(R.S);
end TOP;

separate (TOP)
procedure Q (U : in out REAL) is

use D;
begin

U := F(U);

end Q;

separate (TOP)
package body D is

-- some local declarations followed by
function F (X : REAL) return REAL is
begin

-- sequence of statements of F
end F;
procedure G (Y, Z : REAL) is separate; -- stub of G

end D;

with INPUT OUTPUT;
separate (TOP.D)
procedure G (Y, Z : REAL) is

-- use of INPUT-OUTPUT
begin

- sequence of statements of G

end;

Figure 3-1. Example of Constructed Program
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-Configuration co-top

top'XQT :q'REL O'REL. gIREL iojackcage'JREL

link((q,d,g,iojackae,top)NAME=-.top);

q 'REL : topIREL qITXT

Ada(q);

d'REL : top'XEL d'TXT

Ada(d);

g'REL : d'HEL g'TXT io package'REL

Ada(&);

topIREL : top'TXT

Ada (top);

The derivation graph implicit in co top is illustrated in Figure 3-2.

WMtRPCKEL E

70"T~EL 1"XV

Figure 3-2. Derivation Graph

Given this graph, which Configure builds for its internal use, we can see

the effects of changes to the constituent objects of the configuration.
Assume that all objects are currently up-to-date. A programmer then edits

and produces a new version of q'TXT, and calls Configure:

Configure(co top, top'XQT);

The only recompilation required is that of qITXT, followed by a relinking to

generate an updated version of top'XQT. Configure will determine and
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perform this minimal set of operations. Similarly, if a new version of

d'1TXT is created, Configure will call for a recompilation of d'TXT, a

recompilation of q'REL, and a relinking to update top'XQT. Once the CO has

been defined, the programmer is relieved of remembering which modules have

been changed and which comand lines need to be executed to process the

changed modules.

Not all cbjects menLioned in a CO need to be defined, by a dependency line

in that CO. The example refers to the object io package'REL but does not

mention what it depends on. Such objects will ordinarily be given the same

treatment as text objects, and the date-time of their current versions will

be examined. It is possible, however, to invoke Configure recursively to

check the currency of these objects. If iopackage'REL were defined in

another CO, coio, then the following dependency rule could be added to

co_top:

io.package'REL

Configure(co_io,io_package'REL);

Because in cotop the object io_package'REL depends on nothing, the command

associated with this dependency rule will always be executed. The recursive

invocation of Configure will, if necessary, update io_package'REL.

The current example exactly represents the compilation order required by

Ada. For such cases, it is possible to provide further automation by adding

a system tool that processes a set of Ada text objects and generates a CO.

Often, however, the CO will contain nonstandard derivation steps. Such

steps may specify test scripts and installation commands. For example, the

following dependency rules may be added to the above CO:

test : top'XQT sample'DAT

test'DAT -- top'XQT(;

install : top 'XQT

copy (top 'XQT,project 'PTN);

The command line associated with the "test" dependency will execute the

TAB 4
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current version of top'XQT with input sample'dat. Note that test is not an

object, and will therefore never be considered up to date. Thus the call:

Configure(cotop,test);

will always run the test, whether or not a new version of top'XQT needs to

be rebuilt. Similarly, install is not an object, so the call:

Configure(co top,install);

will always result in the current version (or, if necessary, the rebuilt

version) of top'XQT being copied to the partition project'PTN. This

extension of the CO to include nonobjects allows Configure to be used to

specify many additional operations that naturally occur in project

development and maintenance.
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the

Compiler preliminary design, the basic design principles involved, and the

rationale for the decisions made during Phase I of the AIE contract. The

requirements upon which the preliminary design is based are given in the

System Specification (Type A) and details of the preliminary design are

given in the corresponding B5 Specification.

1.1 FUNCTIONAL SUMARY

The Ada Compiler is one of the largest and the most complex of the MAPSE

CPCIs. However, because its functions are dictated largely by the formal

definition of the Ada Language, it is also the most formally defined system

element. Its primary function, of course, is to accept an Ada source

program and translate this program into a relocatable object program for a

particular target computer. The target computer may be the host upon which

the compiler runs, or a separate, possibly dissimilar, machine.

1.2 DESIGN PRINCIPLES

The AlE design has provided an opportunity to develop a sorely needed, but

clearly achievable, language-oriented development system. One of the major

goals established at the beginning of this effort was to take full advantage

of this opportunity by developing an integrated set of MAPSE tools.

The precepts that guided the design of the Compiler are outlined below:

1. The full Ada Language must be implemented.

2. The Compiler must be designed to produce very efficient code for

the required hosts and allow for very efficient code generation for

future targets.

3. The Compiler must meld easily and cleanly with other MAPSE tools.

All tools should use a consistent user interface.

4. The Compiler should promote total life-cycle cost reduction. It

must be reliable and easily maintained. It must be retargetable

without compromising code efficiency and rehostable without

2 TAB 5
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sacrificing performance. Its development should allow for maximum

reusable code across other tools as well as for other hosts and

targets.

5. The Compiler shall be comprehensive. When a function may be

performed as an inexpensive by-product of compilation and thereby

eliminate the need for a separate tool and, hence, a separate

process for the user, the function should be incorporatea.

6. The Compiler shall be practical in its use of resources. It shall

be sharable. Its minimum memory requirements should permit

rehosting to a wide range of hosts. Its resource utilization

should be parameterizable to maximize performance and capacity when

increased resources are available.

7. The Compiler shall promote productivity. It shall be thorough in

its error detection and explicit in its diagnostic reporting. It

shall detect and alert the user, as early as possible, of potential

compilation order violations.

8. The Compiler shall use an intermediate language approach that

provides a clean interface for retargeting the Compiler.

Additionally, this interface should be usable by other APSE tools.
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SECTION 2 - BACKGROUND

The following section provides a description of the background of this

design effort. Previous work and literature have contributed to the design

of the Compiler.

2.1 PREVIOUS WORK

During the design phase, an analysis was performed on past compiler

techniques awd, to the extent possible, on the current Ada approaches.

Although Ada provides a number of new language features, there is nothing

that invalidates accepted and successful techniques for developing

rehostable and retargetable compilers. The problems of generics, exception

handling, overloading, and separate compilation will entail extensions to

these techniques, but the design represents a low-risk, cost-effective

approach.

Past efforts that have contributed to the proposed design are:

1. For retaretability/rehostability - Several families of proven

rehostable/retargetable compilers including those for ALGOL 60

hoste6 on the UNIVAC 490/494, IBM 7090/7094 and GE 635 (Honeywell

600/6000) and targeted to the three hosts plus the XDS 910 an the

CDC 3600; GENESIS/JOVIAL J3 compilers hosted on the IBM 60, CDC

6600 (and Cyber Series) and the HIS 600/6000 and producing code for

those hosts and the Rolm 1666; and JOVIAL J73 compilers operating

on the DEC-10/20, the IBM 360/370, and the UNIVAC 1100 series with

code generators for the hosts, the AN-AYK/15 (Westinghouse HBC),

the Delco Magic 362F, the Brassboard Fault-Tolerant System

Computer, the MTL-STD-1750 and -1750A architecture, the Collins

CAPS-7, and the TI 9900 series. This latter family is also being

targeted to the PDP 11/70, VAX 11/7b0 and the Zilog Z6002.

2. For optimization - Numerous CSC-developed FORTRAN compilers that

have been recognized as industry standards for optimization. The

GENESIS/JOCIT J3 family of compilers has two to four global

optimization passes from which much of the proposed design has been

drawn.
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3. For user-friendliness and comprehensive function - The CSC/SEA

developed J73 compilers provide statistics collection, compool
processing, source reformatting, debugging interfaces, relocatable

output, source copy, compool procedure definition/reference

compatibility, high payoff optimization, alphabetically sorted

cross-reference/attribute listing, global system name concordance,

and symbolic trace and walkback support.

4. For system integration - The manner in which the compiler fits
into the overall MAPSE system and interfaces with other tools is

modeled after the CSTS GPS environment.

2.2 RELEVANT DOCUMENTS

1. Goos, G. and G. Winterstein, Towards a Compiler Front-End for Ada,

SIGPLAN - Symposium on the Ada Programming Language, December 1980.

2. Rosenberg, J., et al., The Charrette Ada Compiler, SIGPLAN -

Symposium on the Ada Programming Language, December 1980.

3. Hisgen, A., et al., A Runtime Representation for the Ada Variables

and Types, SIGPLAN - Symposium on the Ada Programming Language,

December 1980.

4. Sherman, M., et al., An Ada Code Generator for VAX 11/780 with

Unix, SIGPLAN - Symposium on the Aaa Programminb Language. December

1980.

5. Cornack, G. V., An Algorithm for the Selection of Overloaded

Functions in Ada, SIGPLAN Notices, Vol. lb, No. , February 1981.

6. Ichbiah, J., et al., Rationale for the Design of the Ada

Programming Language, SIGPLAN Notices, Vol. 14, No. 6, June 1979.

7. Hecht, M. S., Flow Analysis of Computer Programs, North-Holland,

1977.

8. Aho, A. V., and J. D. Ullman, The Theory of Parsing, Translations,

and Compiling Volumes I and II, Prentice-Hall, 1972.

9. JOCIT/J3 Project Workbook.

10. JOVIAL J73 Maintenance Manual.
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11. Reference Manual for the Ada Programming Language, United States

Department of Defense, July 1980.

12. Tarjan, R. E., Depth-First Search and Linear Graph Algorithms, SIAM

Journal of Computing, 1:2, 1972.

13. Loveman, D. B. and Faneuf, Program Optimization - Theory and

Practice.
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SECTION j - FUNCTIONAL DESCRIPTION

The following section provides a general overview of the Compiler interfaces

within the MAPSE and describes the design tradeoffs performed ouring the

Compiler preliminary design.

3.1 INTRODUCTION

This section discusses the system interfaces and functional design

capabilities for the Compiler in terms of the design priciples outlined in

Paragraph 1.2.

3.2 SYSTEM INTERFACES

The Ada Compiler interfaces with other programs in the MAPSE as described

below:

ACLI - Although the Compiler may be invoked by any tool, the MAPSE user

will normally perform compilations by an ACLI request that will establish a
Compiler process.

KDBS - The KDBS is called by the Compiler through use of Ada Standard I/0

to access source and library objects, to read and write temporary work

files, and to produce the relocatable object and output listings.

MAPSE Tools - The Compiler will have indirect interfaces with other MAPSE
tools through shared objects: Editor-Compiler for Ada source and listing

objects; Compiler-Linker for program libraries and relocatable objects; and
Compiler-Linker-Debugger for the Ada debug tables.

MAPSE Development System - Because the Compiler will be written in Ada and

will be at least partially developed and certainly maintained under MAPSE,

the compiler must conform to all design and development conventions

necessary for program implementation and installation.

3.3 FUNCTIONAL CAPABILITIES

The Ada Compiler is the single MAPSE tool that must be used to obtain an

executable program. Its function is to read Ada source from a text object
or from the standard input file, include other text objects as directed by

TAB 5
3-1



pragmas, access information describing separate compilation units from

Program Libraries, and produce a relocatable object.

3.3.1 Compiler Functions

As the program directly in the mainstream of software development, the

Compiler is in an excellent position to perform many other useful

development support and monitoring functions. The functions to be performed

by the Compiler are (including usual compiler functions):

1. Full Ada Language translation

2. Comprehensive listing generation

a. Originai fource libtings with Editor line numbers

b. Reformatti-. ,ource listings

c. Luciii dfagnostic messages

d. StatisticA summary

e. Cross-re.ference/attribute listing

f. Side-by-side assembly listing

g. Compilation summary

h. Maintenance dumps and traces

3. Creation, use and updating of Ada Program Libraries

4. Generation of Symbolic Abstract Program Representation and Program

flow description

5. Thorough, machine-dependent and independent optimization

a. Common sub-expression elimination

b. Loop Optimizations

(1) Strength Reduction

(2) Code redistribution

(3) Loop collapsing

(4) Loop control

c. Constant computations and conversions

d. Value folding

e. Register name/value dedication
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f. Dead code and variable elimination

g. Inline substitution

h. Exception checking

i. Discriminant validation

j. Space reclamation and management

k. Expression reordering

1. Subscript linearization

m. Boolean/relational optimization

n. Path merging

o. Instruction exploiting

p. Efficient calls and parameter passing

q. Register allocation

r. Peephole optimizations

6. Full target machine code acceptance

7. Debug table generation

8. Compilation order validation

9. Support for environment simulation, performance tuning and path

entrance verification

If
10. Support for system wide compilation unit name concordance.

In addition to the functional requirements satisfied by the list above,

several other requirements must be satisfied by the Ada Compiler. Those

requirements include:

11. Retargetability

12. Rehostability

13. A compilation rate of at least 1000 statements per minute

14. Small programs compilable in 25bKB

15. Reliable and maintainable.
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3.3.2 Compiler Organization

The compiler is organized as a tree with a root containing compiler-resident

subprograms. The remaining components of the Compiler are structured as

logically related groupings with sequentially executing groups arranged as

parallel or nested branches. The groupings (also known as phases) and a

diagram illustrating the component structure are presented in Figure 3-1.

Figure 3-1. Ada Compiler Structure
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.j.3.3 Compiler Phases

The EXEC is the root phase of the compiler and contains the KAPSE interfaces

and miscellaneous utility routines used throughout the compilation process.

The functions performed by the EXEC phase are:

1. Compiler option setting and monitoring

2. Phase sequencing, loading and executing

3. Dump and formatting utilities

4. Space management packages

5. Symbol table routines

6. Diagnostic message handling

7. Listing header and pagination control

The remaining fourteen compiler phases, along with their respective

functions, are presented below.

8. LEX

a. Lexical analysis

b. Syntax checking

c. Name numbering

d. Partial declaration and scope processing

e. "With" and "use" name scope qualification

f. Initial name resolution

9. LIBI

g. Library unit name/attribute extraction

10. RESANL

h. Declaration completion

i. Final name resolution

j. Semantic analysis

k. Expression processing

1. Statement processing

m. Intermediate language generation

n. Generic instantiation

o. Generic and inline subprogram preservation
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p. Separate body stub generation and symbol table

checkpointing

q. Cross-reference file generation

11. ALL

r. Determination of object size requirements

s. Organization of packed variables

t. Allocation of variables

12. o CHECKS

U. Constraint analysis

v. Flow label reference recording

w. Inline insertion

13. TOP

x. Target machine intermediate language transformations

14. FLOW

y. Subprogram/label reference count computation

z. Code straightening

aa. Data usage list generation

15. OPT

ab. Common subexpression elimination

ac. Value folding

ad. Constant arithmetic and conversion evaluation

ae. Code deletion

af. Inline procedure/function optimization

ag. Branch optimization

ah. Redundant constraint elimination

ai. Miscellaneous local optimizations

16. LOOPER

aj. Code movement

ak. Strength reduction

al. Test replacement

am. Loop collapse
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17. CODE

an. Intermediate language-to-code transformations

ao. Logical register assignment

ap. Temp allocation

aq. Operand accessibility analysis

ar. Synonym creation and spoiling

18. POST

as. Code macro expansion

at. Register allocation

au. Code improvements

av. Path merging

aw. Conditional code resolution

ax Constant pooling

ay. Branch optimizations

az. Relative address optimizations

19. ASM

ba. Preset processing

bb. Relocatable object generation

bc. Formal assembly listing

bd. Final address resolution and control section allocation

20. XREF

be. Cross-reference listing generation

bf. Concordance name usage support

21. LIBO

bg. Program Library updating

bh. Debug table generation

The determination of phase versus memory load organization will be an

implementation decision based upon resources and relative phase sizes.
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3.3.4 Design Rationale

The following paragraphs illustrate how the design principles presented in

Paragraph 1.2 have been achieved and justify the various design decisions

made.

3.3.4.1 Full Language Implementation

The approach throughout this effort has been to design a compiler that
accommodates the full Ada Language.

Recognizing that the Ada language is a new development and is pioneering new

high-level language facilities such as generic subprograms, comprehensive
exception handling, built-in tasking and nontrival operator and procedure

overloading, a concerted effort is made to provide flexible language

analysis algorithms that permit changes to the language in the advent that

ambiguities or omissions are discovered.

3.3.4.2 Efficient Code Generation

Six compiler phases are dedicated to the production of efficient object

code. Three of these phases are oriented to the specific target computer.
A common problem with past retargetable optimizers has been that the global

optimizations performed have not been tailored to the selected tarp 't
computer. The proposed design achieves this by the inc 1s1tn of an

optimizer prepass that transforms the intermediate language as necessary to
orient the subsequent global optimizations toward the target computer.

Additionally, static information aescribing the target resources will be

used by the optimizer.

The machine-independent phases of the optimizer perform full program flow

analysis, and, using flow-related variable set/use lists, perform the

optimizations listed in Paragraph 3.3.1.

Perhaps the most important optimization that can be performed on a register
computer is the global allocation and dedication of values ana addresses to

registers. This function has been accomodated by logically assigning
registers during code generation and performing the dedication and

allocation of registers in a subsequent phase using frequency counts
(weighted by loop depth) collected by the optimizer and code generator.
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Rather than produce simplified intermediate language out of the front end to

reduce code generator retargeting costs at the expense of code efficiency,

the Ada semantic operators will be represented in the intermediate language

and TOP will tailor the intermediate language and simplify it for the

particular target code generator. This allows such operations as slicing,

loop control, boolean array logical arithmetic, membership and constraint

tests, etc. using machine instructions where possible on the target, and

simplifying such operators when not supported by the target.

No attempt is made to table-drive the code generator to enhance

retargetability because of the decision not to compromise target code

efficiency. Past experience indicates that table-driven and interpretive

code generation approaches cannot match the traditional proven techniques in

either compiler or code efficiency. Those that attempt to accommodate the

full characteristics of the target instruction architecture and addressing

facilities have tables that require equivalent effort and time to retarget.

The drivers for such code generators must make the full spectrum of tests

regarding the availability of features on the particular target - most of

which will be false for any particular target, again resulting in poor

performance. Finally, if history is to be our guide, the first new target

is apt to have a characteristic that was not, and could not be, anticipated,

thereby obsoleting, or at least compromising, both the driver and possibly

the table formats.

3.3.4.3 MAPSE Tool Integration

The source text objects produced by the Editor are fully compatible with the

Compiler. The Compiler will utilize in its listings any source line numbers

or keys created using the Editor. Source correlation will be achieved by

using these Editor line keys in the following listings: source,

diagnostics, name cross-reference, machine-level side-by-side relocatable,

etc. These same line keys will be passed to the Debugger in the Ada debug

tables to again permit a stable cross-referencing of source program location.
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Additionally, the compiler listings will be produced in the same text object

format to allow for common text and listing routines and for convenient

perusal by the Editor. To further support listing perusal, the compiler

will proouce a listing code associated with each listing line, which

identifies the line by listing type: source, diagnostic message,

cross-reference. This code will permit a user to easily list only certain

line types such as diagnostic messages.

The Ada debug tables (ADTs) will be structured for efficient processing by

the Debugger. Addresses contained in the ADTs will be marked to permit

their relocation by the Loader. The Compiler will compute the legal implant

addresses for the Debugger to minimize its target dependence.

A consideration in the design of program library and the ADTs produced by

the Compiler is the anticipated requirement to provide a description of a

program's data base to permit the development of environment simulation

programs and data recording/reduction tools.

The Compiler provides information to the Linker to detect attempts to

combine object programs with incompatible interface specifications. Such

incompatibilities can arise because different descriptions were used or, for

example, a called subprogram's specification was changed since a caller was

last compiled.

Rather than actually perform stub generation at the occurrence of "is

separate", the Compiler will create a null library entry indicating a body

stub object. The Linker will replace all calls on body stubs by a call on a

general target dependent body that will optionally report its entry, and

raise an exception if the call had "out" parameters or was to a function

subprogram.

The program library concept has been expanded to enhance Linker

performance. By including all compilation units' preambles in the Library,

the Linker may perform complete link allocation and name resolution without

having to open and read each relocatable object. This library format

minimizes double opening of the object files and reduces the number of files

open simultaneously.
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The program library is also used as the repository of other data created by

the Compiler to support the global program concordance of compilation unit

name references. This feature allows composite data to be collected by the

Linker during partial linking and finally, a listing to be produced by which

managers and programmers may quickly determine any program s use of

independent subprograms, packages, and individual visible names within

packages.

The Compiler will obey MAPSE conventions for diagnostic message formatting

and control. Message brevity will be controlled, as with all tools by ACL

commands. Listing options for the Compiler and Linker will be identical for

similar functions.

An important function required during the development of any system is

history maintenance. To support this function, the Compiler includes the

generated relocatable object tracing information that describes the

derivation of the object program. Included in this information are the

versions of all input objects (original source, included source, packages

and the Compiler itself).

The Compiler also conforms to MAPSE conventions for default naming and

versioning of output objects.

.3.4.4 Life-Cycle Cost Reduction

The L.mpiler will be written entirely in Ada. Strong typing and abundant

use of types will be exploited to enhance reliability. Enumerated types

will be used to maximize the readability of Ada programs.

To promote retargetability, a standard relocatable object module format is

to be developed. This format is described as an Ada package whose

definition is adapted for each target machine and therefore permits

definition of any size target computer word. In addition, to minimize cost,

a standard object module formatter is to be designed for the Compiler and

Linker and delivered as an additional tool for use by later NAPSE programs

that need to construct object modules. Similarly, a standard assembly

lister capability reduces the cost of future retargetings.
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The optimized intermediate language will contain redundant synonyms for

values to permit simpler code generation by not requiring value/name tables

as in several earlier optimizing compilers. TOP will transform the

intermediate language from the front-end phases, RESANL and CHECKS, into an
intermediate language tailored for the target and eliminate

target-inappropriate operators.

Literal values will be maintained in a canonical form to allow compile-time

computation and conversion routines to be rehostable.

Formatting and conversion routines, listing header and pagination packages,

a standard diagnostic message formatter, and common command parameter
scanners required by the Compiler will be developed as general purpose

utilities to serve the needs of other MAPSE tools.

3.3.4.5 Comprehensive Functions

The Compiler will perform functions that eliminate the need for other

tools. There are several utility functions available in language-oriented

systems that have been incorporated as an integral part of the Compiler,

thus eliminating the need for independent programs performing these

functions. These are described in the following paragraphs.

3.3.4.5.1 Pretty Printing

To eliminate the need for a separate pretty printer, the Compiler produces,

as an option, a reformatted representation of the input program. The
structure of the program as indicated by declarations, program flow

statements, subprograms, and blocks is made clearly visible by source
indentation. Nesting levels are indicated for easy nest/unnest

association. Source lines included by the INCLUDE pragma are displayed in

accordance with the user option.

..3.4.5.2 Statistics Collection

The Compiler will be instrumented to collect statistics during the

compilation process. These statistics will be used to provide language

feature usage frequency for optimizer tuning; error frequency for future

language analysis, documentation improvements, and training emphasis; and

correlation of language feature usage versus program checkout time.
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To assist users in program checkout and performance tuning, the Compiler

supports the Debugger facility for collecting dynamic statistics and timing

information. Included in this facility is path entrance verification.

3.3.4.5.3 Program Flow Description

As a by-product of the extensive flow analysis performed by the Compiler for

the purpose of global optimization, the Compiler will optionally produce a

list of all basic blocks (regions of code entered only at the beginning and

exited only at the end) and the paths to and from each block. Each block

will also point to the beginning and end of the external intermediate

program representation (assumed to be Diana as of the date of this document)

associated with this block. This information is produced to accomodate path

entrance statistics as well as automatic flow documenting tools.

3.3.4.5.4 Global Name Concordance

As an integral function of the set/use processor, XREF, and the library

updater, LIBO, the Compiler will produce the data for a global compilation

unit visible name concordance.

3.3.4.6 Practical Performance

The Compiler design has been selected to fit within modest host

requirements. Design decisions that foster reduction of space requirements

include: putting all literals in the intermediate language rather than the

symbol table, spilling the name table after LIBI, flushing inactive symbol

table scopes, representing expressions in an encooed form during optimizer

expression analysis rather than the interphase intermediate language form,

purging unneeded package symbol table entries, structuring the compiler in

compact functional phases to reduce instantaneous memory requirements,

duplicating common and redistributed expressions and synonyms in the

intermediate language to eliminate the need for memory tables in the code

generator, generating intermediate language and code macros from the larger

phases to be expanded by trailing smaller phases, using an indexed symbol

table record array structure rather than access records that require full

address size links rather than the smaller entry indexes.
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To maximize compilation rate, the design avoids use of table driven scans

and interpretive forms of intermediate languages and code generation.

The optimizer utilizes a nested region analyzer scheme that has been found

to be considerably faster than those based upon the scheme described by

Tarjan [12) and the P-graph algorithm described by Loveman and Faneuf 01 .
The LNRA scheme documented in the JOCIT/J3 Project Workbook makes two

simplifying assumptions that permit a simple forward optimization pass. The

assumptions made - that forward branches enclose conditional code and

backward branches enclose a loop - will usually be true with the application

of structured program concepts and as encouraged by the Ada Language.

However, to ensure the validity of the assumptions, the intermediate

language will LE straightened on an intermediate language scope basis

allowing the more efficient algorithm to be used.

On computers with abundant memory, the Compiler will be organized to

increase its performance and capacity. The symbol table will be arranged to

increase its space as additional memory is provided. The phases will be

combined to reduce phase load and I/0 requirements.

3.3.4.7 Productivity

The Compiler syntax and semantic analysis performs thorough error

detection. In all but a few table overflow situations, error recovery will

occur at a statement end or at a recognizable statement start. The

diagnostic messages will be parameterized with user names and source symbols

to explicitly describe the error detected. Pointers placed under the

offending source line will assist the user in pinpointing the error. The

message text will be carefully selected to aid the user in correcting the

problem. Checks will be made to prevent errors from cascading throughout

the program.

Statements found to have serious errors will be replaced in the Compiler by

a "raise sourceerror" exception statement to permit partial testing of

erroneous programs.
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The Compiler will append information to the Program Library at each library

unit use to permit the detection of compilation order violations and to

support reporting of the required recompilations.

3.3.4.8 Intermediate Language (Diana) Usage

A major concern throughout this design has been the possibility of a forced

intermediate language usage. The TCOLAda and AIDA forms were studied

initially and compared with the existing and proven intermediate language

forms used in past compilers. The Ada semantic requirements were

determined, as well as the requirements for thorough optimization,

acceptable performance and retargetability. The potential needs of the

other tools for an alternate representation of a program were considered.

Late in the contract, another representation was developed - Diana. All

representations seem to be oriented toward human consumption rather than

compiler performance, code efficiency, or ease of retargeting. The design

phase of this effort was, contractually, far too short to allow for the

development of compiler algorithms to adjust to an evolving standard

intermediate language. There is no question that a documented retargetable

interface is required. However, it would seem that the intermediate

language should be primarily designed for efficient processing by the

Compiler.

The intermediate language to be used internally by the specified compiler

will be oriented to the producing/consuming compiler phases. Operators and

attributes that are present in one compiler phase's intermediate language

may be totally absent in the next phase. The Retargetability Manual

required as a deliverable of the implementation phase will document the

particular compiler interface that will minimize a retargeting effort. This

interface will likely be a memory-resident data base within the CODE phase

that will be quite complex but will maximize the reusable code. This

interface will not likely have a simple human-readable form but will be

thoroughly documented and a cookbook approach to the effort required to add

additional targets will be described. A capability will be provided by the

compiler to transform, on option, its internal intermediate language into an

external representation when a standard intermediate language form is

settled upon. As of this writing this external representation will be Diana.
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the Linker

preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AIE contract. The requirements

on which the preliminary design is based are given in the System

Specification (Type A) and details of the preliminary design are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The MAPSE Linker is the tool used to combine the relocatable objects of

several indepenoently compiled program units into a single load object for

loading and execution, or, with the partial link option, into a relocatable

object for further linking.

1.2 DESIGN PRINCIPLES

The Linker is one of the basic tools of the MAPSE system and will be

frequently used during the development and maintenance of the MAPSE itself

as well as any program developed under the MAPSE.

The major design goals of the Linker are:

1. It shall support all Ada requirements.

2. It shall support the requirements of large program development

efforts.

3. It shall be efficient and easy to use.

An efficient linker is an absolute necessity for large program oevelopment

efforts. This requirement has guided the design of the Linker as well as

the relocatable object and the progranm library format(s).
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SECTION 2 - BACKGROUND

The following section provides a description of the background of this

design effort. Previous work and literature have contributed to the design

of the Linker.

2.1 PREVIOUS WORK

The basic design and functional capabilities of the Linker are derived from

the development of the CSTS linker and experience with use of the linking

facilities on several program development systems -- CSTS, CTS, TENEX, GCOS,

TOPS-lO, MULTICS, IBM-370 and others.

2.2 RELEVANT DOCUMENTS

1. Reference Manual for the ADA Programming Language, July 1980

2. Requirements for ADA Programming Support Environment, STONEMAN,

Uniteo States Department of Defense, February, 1980

3. Statement of Work, Contract No. F30b02-80-C-0292, 80 Mar 26.
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SECTION 3 - FUNCTIONAL DESCRIPTION

The following section provides a general overview of the Linker interfaces

within the MAPSE and describes the design tradeoffs performed during the

Linker preliminary design.

3.1 INTRODUCTION

This section dicusses the system interfaces and functional design

capabilities for the Linker in terms of the design principles outlined in

Paragraph 1.2.

3.2 SYSTEM INTERFACES

Both the Ada compiler and the Linker will make use of a common relocatable

object formatting package for formatting the respective output object.

Some targets may require that a special target-dependent load object format

be produced. In these cases a program would be provided to transform the

target-independent load object to the target specific format.

All programs developed under the MAPSE must be linked before they can be

executed. Under user direction, either from the Link command or from a Link

directive text object, the Linker reads program libraries and relocatable

objects produced by the Ada compiler, or produced by the Linker itself from

a prior partial link, and creates a single relocatable load object. The

Linker will interface with the KDBS to access and update program libraries

and relocatable objects.

3.3 FUNCTIONAL CAPABILITIES

The explicit Linker requirements specified in the SOW, STONEMAN and the Ada

Reference Manual are minimal.

The common Linker functions are an implied requirement of the Ada language

because of the need to create programs from separate, independently compiled

compilation units. These Linker functions include the support of multiple

location counters, the resolution of external references, the relocation of

address references, the specification of symbolic equivalencies and name

definitions and the evaluation of address equations.
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In addition, the concept of a program library is defined in Ada to ensure

that a program consisting of several independent compilation units will have

the same degree of type safety as the same program submitted as a single

compilation. The Compiler largely supports this compatibility requirement;

however, the Linker further satisfies this requirement by validating the

actual date of compilation of the objects in a link.

Further, the Ada language specifies a required order of elaboration of

library units included in a program. The Linker satisfies this requirement

by creating an elaboration procedure for each load segment; this procedure

performs the required library unit elaboration in the proper order at

execution.

Beyond these limited requirements the functions supplied by the MAPSE Linker

are those that are required in a useful user-oriented program development

system and that are available in some form in many commercial operating

systems.

These functions are outlined below.

3.3.1 Partial Linking

To facilitate construction of large programs, it must be possible to link

portions of the program independently, form them into partial link objects,

and present them as input into a larger link activity. This idea is

analogous to independent subprogram compilation. To support this, the

Linker will construct linked objects in relocatable object format so that

the Linker can accept its own output as input to a subsequent link.

Furthermore, the user is able to specify in partial linking those external

symbol definitions within the link that are to be retained as external

symbols for resolution of references from outside the link. This approach

results in a far more efficient use of the system resources by not requiring

a total relink when only a few compilation units within an overlay segment

are recompiled.
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j.3.2 Multilevel Overlay Structure

Many linkers support only simple tree-structure overlays. This is clearly

not sufficient for most large program organization efforts such as

command/control systems or compilers. The MAPSE Linker supports this

requirement by allowing the specification of a multilevel overlay program

structure through simple linker directives.
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As an example the following diagram pictures a simple two-level overlay

structure. Names to the left of the overlay legs are used to represent

segments, names to the right represent library units.

Px

Py

*ROOT PZ

EXEC

PW PV PT

PHI AA PH2 cc PH3 EE

BB DO FF

GG
PR PS

PHIA JHH PHIB JJK TP No. 031-3002-A

The link directives to build such a program are shown below:

ROOT SEGMENT

INCLUDE PX, PY, PZ, EXEC

PHi SEGMENT

INCLUDE PW, AA, BB

PHiA SEGMENT

INCLUDL PR, HH

Ph1le SEGMENT PHiA -- overlay PHIIA

INCUDE PS, JJ, KK

PH2 SEGMENT PH1 -- overlay on PHi

INCLUDE PV, CC, DD

PH3 SEGMENT PHII -- another overlay on PHII

INCLUDE PT, EE, FF, GG

END
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Following the execution of these link directives, the following library

units will have been linked in the following order: PX, PY, PZ, LXC, PW,

AA, BB, PR, HH, PS, JJ, KK, PV, CC, DD, PT, EE, FF, GG.

.3.3 Automatic Segment Fetching

In a program with an overlay structure it is necessary that the overlay

segments be loaded before they can be referenced. This is supported by the

MAPSE Linker as follows. Every call to a procedure located in a lower level

overlay segment is replaced by an indirect call to a system routine that

will check to see if the referenced segment is loaded. If the segment is

not loaded, the referenced segment and any unloaded higher level segments

will be loaded before executing the procedure call. Once the procedure (or

the segment containing the procedure) has been loaded, the indirect

reference will be changed to point directly to the subject procedure.

This approach allows the program overlay structure to be modified without

requiring any source changes or any recompilations - only a new link is

needed.

3.3.4 Heap and Stack Space

For each target system a suitable default size and location will be defined

for the heap and stack space. Where the default is not adequate, the user

may specify the size or the allocation of heap and stack space and whether

or not the heap and stack space should share a common area or should be

controlled separately.

3.3.5 Library Unit Elaboration

The Ada language has specific requirements concerning the order of

elaboration of library units in the execution of a program.

The Linker must ensure that elaboration is performed for all library units

in the program in the proper order. This is accomplished as follows.
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Each compilation unit that requires specific elaboration has a callable

elaboration prologue generated as a procedure by the compiler in a standard

location in the code section of the object. For each object included in a

load segment, the Linker finds its elaboration prologues (if any) and

includes a call to it in an elaboration procedure for that segment at the

start of the code section for the segment.

The elaboration procedure consists of a set of calls, in the proper order,

to the elaboration prologues in the segment. When a segment is loaded, its

elaboration procedure can be executed to perform the elaboration of every

library unit in the segment.

3.3.b Stub Generation

The Ada compiler produces a program library unit specification for every "is

separate" procedure that identifies the procedure as being a stub. When the

Linker includes such a stub procedure, it is replaced with a dummy procedure

that simply returns. Optionally, the dummy stub procedure will raise a

SOURCEERROR exception.

3.3.7 Copilation Order Validation

The Linker will perform the final verification of the Ada requirements for

proper compilation order. All violations will be reported to the user

although they will not abort the link.

3.3.8 Module Promotion

Where an object is referenced in two or more overlay segments of a program,

that object will be promoted to a higher level segment that is common to

those overlay segments and no others. If such a dominating segment does not

exist, the referenced object will not be promoted.

If an object is explicitly included in a segment with the INCLUDE directive,

that object will not be promoted. This allows the user total control over

the program structure without relying on the linker defaults for implicit

library unit inclusion.
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3.3.9 Automatic Retrieval/Library Hierarchies

The user will be able to define a library hierarchy to specify the order of

library searching for automatic object retrieval. This automatic retrieval

is felt to be an essential element of a MAPSE Linker design.

The retrieval is based on the external symbols and library units referenced

within a compilation unit and on the definition of those symbols that are

contained in the program specifications of the usert s program library

hierarchy. For example, a user's program library hierarchy might contain

the user's library, the project library and the system library. Anything

unresolved in the user library will be resolved in the project library,

anything remaining unresolved will then be resolved in the system library.

3.3.10 Boundary Alignment Module Placement

The user will be able to specify boundary alignment for any externally

relocatable element of the link such as an object or location counter. The

boundary alignment could be expressed as an absolute address or as some

function of the next available location, such as double-word alignment, next

byte, or next page. The user will be able to place objects in the linked

program in a particular order allow the Linker to choose the order.

3.3.11 Linker Listings

The Linker shall produce user-oriented map and concordance listings. The

map will show the allocation and the attributes of the various program

location counters and entry points for each object and segment in the linked

program. The concoroance listing will show the referencing library unit

name, the referenced library unit name, and the referenced element name for

every external reference from a compilation unit. The order in which these

names are applied in the sort may be user-specified.
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the Editor

preliminary design, the basic design principles involved, and the rationale

for the decisions made during Phase I of the AIE contract. The requirements

upon which the preliminary design is based are given in the System

Specification (Type A) and details of the preliminary design are given in

the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The MAPSE Editor provides the facilities for the creation and modification

of text objects in the KDB. The capabilities provided include line- and

string-oriented find, insert, delete, copy and move commands, object read

and write commands, and command macro facilities.

1.2 DESIGN PRINCIPLES

The minimum functional requirements affecting the design of the Editor were

specified in Paragraph 4.1.6 of the SOW.

The general design goals of the Editor, beyond meeting the SOW requirements

are as follows:

1. The Editor must be simple and easy to use.

2. The commands must be natural, easy to learn and remember, but

powerful and flexible.

3. The Editor must be a sharable, fully portable tool.

4. Support must be provided for minimal word processing and

documentation generation.

5. Comprehensive editing facilities must be provided for line-oriented

and screen-oriented devices.
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SECTION 2 - BACKGROUND

The following section provides a description of the background of this

design effort. Previous work in this area as well as literature have

contributed to the design of the MAPSE Editor.

2.1 PREVIOUS WORK

The design of the MAPSE Editor has been influenced by experience with

several editors on a number of different systems. The influence has been

both positive and negative, and we have attempted to selectively include the

good features of existing editors and to exclude the bad features.

A summary of some of these influences is shown below.

1. SOS - This DEC editor has had a major influence on the design of

the MAPSE Editor. SOS has simple commands with an intuitive

syntax; however, many of its commands have many, hard-to-remember

options.

2. TECO - Several Versions - TECO has a cryptic but easily learned

syntax. The comprehensive capabilities of Editor command macros,

conditional and repetetive commands, and multiple commands per line

were adopted from TECO.

3. CSTS - This CSC Editor has an unnatural syntax but its features of

allowing a list of separate ranges over which an operation would

apply and of allowing a fractional record key were adopted.

4. UCSD Pascal - The very natural screen-oriented editing features,

the functions of the Environment specification and automatic

indenting were adopted from this editor.

5. WYLBUR - The method of performing intralinear editing on a

half-duplex system was adopted from this IBM editor.

6. GCOS - The ability to specify a long, complex string with a simpler

string range syntax was adopted from this Honeywell editor.
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2.2 RELEVANT DOCUMENTS

1. SOS Reference Manual

2. TECO Reference Manual (in DECSYSTEM1O User's Manual)

3. WYLBUR Reference Manual

4. Edm (in Multics Programmer's Manual)

5. Wordstar User's Guide, MicroPro International Corp

6. UCSD Pascal System Reference Manual

7. CSTS CPS Reference, Vol. 1: General

TAB 7
2-2

L A ,. .. . .. . . . . .... ..iiar .. . . . .... . ... .. . .. . . . . .' ....



SECTION 3 - FUNCTIONAL DESCRIPTION

The following section provides a general overview of the Editor interfaces

within the MAPSE and describes the design tradeoffs performed during the

Editor design.

3.1 INTRODUCTION

This section dicusses the system interfaces and functional design

capabilities for this system element in terms of the design priciples

outlined in Paragraph 1.2.

3.2 SYSTEM INTERFACES

The Editor is basically an interactive tool that will communicate with the

user through the standard input and stanoard output devices for the creation

and maintenance of text objects.

3.3 FUNCTIONAL CAPABILITIES

The editor will interface with the KDBS to create and access text objects

and for version control, and with the ACLI to allow ACLI command execution.

There will be an interface to the user, interactively or through a command

object.

The functional capability provided by the MAPSE Editor is summarized below,

followed by some examples of the common editing commands and a sample

editing scenario.

3.3.1 Basic Editing Functions

The Editor shall support line- and character-oriented find, insert, delete,

substitute, copy, and move commands, screen cursor positioning commands,

text object read and write operations, and parameterized command macro

execution.

3.3.2 Line Numbers

Line numbers, which may be fractional, shall be supported as the record keys

of a text file. This is required for a number of very commonly used line-

oriented editing commands available in the Editor.
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For Ada program development and testing, line numbers offer an additional

advantage because they are supported and used as static reference points

throughout the Editor, the Ada Compiler and the Debugger.

3.3.3 Primitive Word Processing

Realizing program development systems require the maintenance of numerous

English language texts (system specifications, program documentation, status

reports etc.) some minimal word processing capabilities are required. The

following functions shall be supported in the MAPSE Editor: -indentation,

tabbing and margin facilities, token recognition, line filling, and

justification.

3.3.4 Screen-Oriented Editing

A number of very useful and natural editing features are possible when the

terminal interface is a screen device instead of a hardcopy or line-

oriented device. These features shall be supported in the MAPSE Eaitor with

screen-oriented editing capabilities.

3.3.5 Ada and English Language Token Recognition

In maintaining Ada source program and English language text it is often

convenient to contextually recognize a sequence of tokens rather than an

exact sequence of characters. Thus the string "SQRT(" would be equivalent

to the token "SQRT" followed by the token "" regardless of the number of

blanks between the two tokens. Similarly, it is useful to recognize "the"

only as a word rather than as part of "then" or "other". The Editor shall
supply this feature by allowing exact character string searching and

contextual token searching.

3.3.6 Command Macros

Command macros that consist of a set of normal Editor commands with optional

parameters that may be invoked during editing provide a very simple and

easily used capability that has proven highly useful in many systems.

Provisions shall exist in the Editor for executing such commana macros.
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3.3.7 Environment Setting

The Editor shall allow the default environment parameters of the editing

process to be established and modified to tailor certain editing and

terminal characteristics for a user. Some of these parameters are: screen

size, special characters (line-terminator, escape-character,

cursor-movement-character etc.), verify flag, line increment, token matching

flag, case matching flag, and indentation flag. In normal use, it is

expected that a standard set of environment settings will be initialized

transparently when a user invokes the Editor. The individual environment

parameters may be changed during an edit session.

j.3.b Cut and Paste-File Operations

The Editor shall support the accessing of external files and Editor "work

buffers" for the reading and writing of portions of text to facilitate cut-

and-paste and program construction operations.

3.3.9 Sample Editing Commands

Some of the basic Editor commands are listed below with examples of their

use. These examples represent the general flavor of the command language

and show some of the options.

3.3.9.1 Copy

Copy transfers text from one place to another and retains the original text.

C200..2b0 Lines 200 thru 260 inclusive are copied

into the current position

C50@211 Line 50 is copied into the current buffer

after line 211

C75..99@!Q Lines 75 thru 99 are copied to buffer Q.

3.3.9.2 Delete

D100 Line 100 is deleted

D650..680 Lines 650 thru bOO inclusively are deleted
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,) D Three lines starting at the current line

are deleted

D10,20..40,60 Line 10, lines 20-40 inclusively and line

60 are deletea

D840#3..7 Character positions thru 7 from line 640

are deleted.

j.3.9.j Find

FABC/ Scan forward for the next occurrence of

the string ABC starting from the current

position

3FXYZ/ Scan forward for the third occurrance of

the string XYZ starting from the current

position

FPQR/100..300 Scan forward for the string PWR starting

at line 100 and searching through line 340

inclusively

FP($*);/ Find the string starting with P( and

ending with); starting from the current

position. Thus, for example, the string

P(A+2,SIN(Y)I**J); woula be found.

3.3.9.4 Token Search (Set in Environment)

FALPHA'SIZE/ In the token search mode, this will find

the next occurrence of the three

consecutive tokens - ALPHA, ', and SIZE -

regardless of how many blanks. (if any)

separate them.

3.3.9.5 Insert

L200I Insert the specified lines after line 200
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xxxx tOne or more lines)/

The Editor supplies line number prompts,

xxxx, for each line to be inserted

FABC/ Find string ABC

IXYZ/ Insert string XYZ after the string ABC

found by preceding command.

3.3.9.b ACLI Command

ACLI commands can be executed with the "K" directive. For example,

KLIST(//RADAR);/ This would invoke the utility LIST to list

the contents of the partition /RADAR.

Note that two slashes are required to

represent a single slash in a string.

3..3.9.7 Print

PIO0..200 Print lines 100 thru 200 inclusively

P325 Print line 325

P50$5 Print 5 lines starting at line 50

P Print the current line

5P Print 5 lines starting at the current line

P10,40,70..90 Print lines 10, 40 and 70 thru 90.

The syntax allows more complex text ranges to be printed. For example;

PSB3..b.1/..B3.3.2/ Print the contents of section 3.3.1.

3.3.9.8 Move

Move transfers text from one place to another and deletes the original text.

M540 Move line 540 to the current position then

delete line 540

M750..780@1300 Move lines 750 through 780 inclusive into

the current buffer after line 1.00 then

delete 750 thru 780.
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3.3-.9.9 Numbering

N50..90,60,2 Number lines 50 through 90; start

numbering at O0 in increments of 2

N49b..520,500.5 Number lines 496 through 520 inclusively;

start numbering at 5UO in increments of 5

N500..>,5000,100 Number lines 500 through the end of file

start numbering at 5000 in increments of

100.

3.3.9.10 Quit

Q Quit and terminate the Edit session.

If the file being edited contains

modifications, the user will be requesteo

to confirm the request since otherwise the

modifications would be lost.

3.3.-9.11 Read

RTESTA/@300 Insert the entire file TESTA into the file

being edited after line jUO

RTESTB/50..210 Insert lines 50 thru 210 inclusively from

file TESTB into the current cursor

position.

3.3.9.12 Substitute

SABC/DEFUI/ Substitute the first occurrence of the

String ABC with the string DEFG starting

at the current position

5 SZYX/WV/ Substitute the first 5 occurrences of the

string ZYX with WV starting at the current

position

SUT/SR/200..300 Substitute every occurrence of UT with SR

in the lines 200 thru 300 inclusively.
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3.3.9.13 Write

W Write the current buffer to the current

output object

WSAVEA/ Write the current buffer to text object

SAVEA

W!P50..800 Write the lines 500 through 860

inclusively from the current buffer to

buffer P.

The typical commands to terminate an editing session will be

W Update the current text object

Q Exit from the Editor.

3.3.10 Sample Editing Sessions

Two sample editing sessions are shown below. The first creates a new file,

the second updates the file. Assume automatic indenting and line increment

of 10. Carriage returns are not shown.

3.3.10.1 Initial Creation Session

EDIT (RESO);

I

10 Task Body RESOURC is

20 BUSY: BOLEAN=FALSE;

30 begin

40 loop

50 select

bO When not Busy=>

70 Accept SIEZE do

bO BUSY=TRUE;

90 end;

100 or

110 accept RELEASE do

120 BUSY:=FALSE
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130 end;

140 pt

150 ej

160 e

170 when not BUSY=>terminate;

1bO end loop;

190 end RESOURCE;/

W

Note: The line number prompts were supplied by the Editor.

j.3.1u.2 Text Update Session

User Commands are underlined. Assume a line increment of 1 and verify

mode.

Command Explanation

EDIT (RESO); Invoke the Editor for text

object RESO

PIO Print line 10

10 Task Body RESOURC is Line 10 is displayed

SURC/URCE/ Fix Misspelling

10 ask Body RESOURCE is Line 10 shows correction

S=/:=/ Fix assignment symbol

20 BUSY: BOLEAN:=FALSE; First = was found on line 20

and substituteo with :z

D15.-.160 Delete garbage lines

140 pt In verify mode,

170 when not BUSY=>terminate; line&; bounding deletea lines

are displayed.

Spt/or/140 Fix typographical error on

line 140

140 or Line with correction displayed

L170I Insert new line after 170

171 end select;/ Inserted line

TAB 7
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SBOL/BOOL/20 Fix misspelling on line 20

20 BUSY: BOOLEAN:=FALSE; Correction displayed

L1201;/ Insert missing ; at end of

line 120

120 BUSY:=FALSE;

LO Locate line 0 (beginning of

file)

99 (F:/) Find many =

20 BUSY: BOOLEAN::FALSE; Lines containing z are

60 When not BUSY=> displayed

80 BUSY=TRUE;

120 BUSY:=FALSE;

170 When not BUSY=>terminate;

S_:_/80 Fix = symbol in error on line

bO

80 BUSY:=TRUE;

W

Q Save the edited file and quit

TAB 7
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SECTION 1 - INTRODUCTION

This part of the Interim Technical Report presents an overview of the

Debugger preliminary design, the basic design principles involved, and the

rationale for the decisions made during Phase I of the Ada Integrated

Environment contract. The requirements on which the preliminary design is

based are given in the System Specification (Type A), and details of the

preliminary design are given in the corresponding B5 Specification.

1.1 FUNCTIONAL SUMMARY

The MAPSE Debugger supports program developers by providing comprehensive

symbolic interactions with an executing Ada program. Facilities supported

by the Debugger are Ada data object examination and modification; controlled

execution in the form of single stepping, breakpointing and/or interrupting;

and monitoring and tracing of program execution. The Debugger performs its

function by direct execution of the subject process controlled by

instruction implants rather than by simulation.

1.2 DESIGN PRIWCIPLES

The principles that influenced the design of the Debugger are:

1. The Debugger must allow the programmer to debug at the level the

program was developed, namely at the Ada source level.

2. The Debugger must support the checkout of operational, fu-ly

optimized programs.

3. The Debugger must be efficient and not require excessive memory or

processor resource usage.

4. The user need not anticipate the existence of program errors and

their location in order to correct them effectively.

5. The Debugger must support the checkout of programs that utilize the

full Ada language including Ada tasking.

6. The Debugger must support the checkout of programs compiled for

other target computers and their checkout in both the host

environment and through use of simulators in the host environment.
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7. The Debugger must support the location and correction of program

errors and the performance tuning and quality assurance aspects of

t

program development.

TAB 8
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SECTION 2 - BACKGROUND

The following section provides a description of the background of this

design effort. Previous work and literature have contributed to the design

of the Debugger.

2.1 PREVIOUS WORK

Two major considerations are involved in the design of a user tool such as a

Debugger. First, of course, it must provide comprehensive facilities with a

user-friendly interface that enhances productivity and minimizes errors.

Second, its performance and resource utilizations must not be such as to

discourage its use. Several past models were studied for these

characteristics. These are:

1. CSTS Program Checkout Facility (PCF)

2. DEC-10 Dynamic Debugging Tool (DDT)

3. Software Design Verification System (SDVS)

4. JOVIAL Interactive Debugger (JID)

5. UNIX TM Source Debugger (SDB)

2.2 RELEVANT DOCUMENTS

1. CSTS GPS Reference, Vol. 1: General

2. DEC System-10 Assembly Language Handbook

3. Computer Program Development Specification for Jovial Interactive

Debugger, Type B5.

4. UNIX User's Manual, Dolotta, T. A., S. B. Olsson, and A. G.

Petruccilli, Release 3.0, Bell Telephone Laboratories, June 19b0.
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SECTION 3 - FUNCTIUNAL DESCRIPTION

The following section provides a general overview of the Debugger interfaces

within the MAPF' and describes the design tradeoffs performed during the

Debugger preliminary design.

3.1 INTRODUCTION

The Debugger is a functional part of the ACLI and is invoked when a

debugging command is encountered in an ACLI command stream. The Debugger

operates as part of the ACLI process and permits a user to control and

monitor a child process of the ACLI by interacting with the Debugger through

use of the Debugger directives.

The Debugger permits referencing of program identifiers through the use of

ADTs produced by the Compiler and included by the Linker in the load object.

3.2 SYSTEM INTERFACES

This paragraph identifies the Debugger interfaces ana their purposes.

ACLI-The Debugger forms a part of this MAPSE Tool and is invoked as a result

of the ACLI encountering a Debugger directive. The ACLI and the Debugger

cooperate during the processing of directives to permit each to utilize the

services of the other.

KDBS-The KDBS is called directly and through the standard I/O package to

perform directive input from standard input and to output various Debugger
responses to standard output and standard error listing files. Standard I/O

is also used to access the ADTs from the load object file as required.

KFW-The KFW is called to load the ADTs from the load object of the process

to be debugged; to bind the two processes together to ensure that they are

available to each other during the debugging operations; to control the

initiation, priority, and resumption of the debug process; to establish

addressing access, memory mapping, and memory protection to the debug

process; to acquire additional workspace; and to query and manipulate

TAB 8
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Process Control Blocks in order to test, report on and change the execution

context; register settings, program counter, stack pointers, etc.

Ada Compiler-The Compiler produces the ADTs used by the Debugger to rel~te

the debug process code and data to the Ada source names and attributes. The

code produced by the Compiler represents another interface that the Debugger

must understand to perform its functions. These interfaces embody the

conventions followed by the executing program for subprogram calls and

parameter passing, for exception handling, for space management, for Ada

tasking, for local and heap data referencing, for register usage, and for

optimization.

Linker-The Debugger interfaces with the Linker through the format and

content of load objects. The primary information used by the Debugger from

the load object is contained in the ADTs. The Linker relocates any

addresses occurring in the ADTs.

User-The Debugger presents a system interface to the user for Debugger

functions by utilizing a Debugger directive language (DDL). Ada program

expressions, statements and objects are referenced in the DDL using Ada

compatible syntax. The DDL is oriented toward usage in an interactive

environment but is accepted identically from interactive terminals,

directive objects or batch devices.

3.3 FUNCTIONAL CAPABILITIES

The Debugger provides the user with the interactive facility to discover and

correct Ada program errors. The functions supported by the Debugger are
requested by directives entered through the standard input file (normally

the user's terminal). The Debugger controls the execution of the subject

process by entering instructions into the user's program as a result of user

requests. This debug process and the Debugger operate synchronously -- with
execution of the debug process proceeding until an implant causes the

Debugger to take control. When the Debugger is in control, the user may
examine or set program variables, make procedure calls, enable execution

traces, etc., and then resume execution of the process.

TAB 8
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3.1.1 Debugger Directives

The Debugger directives use a simple syntax with Ada symbols for Ada program

names, expressions, and values. The formats of these directives are

summarized below:

load object-name (parameter-list)

Used to prepare a program object for execution. The

parameters are specified using the ACLI conventions.

goto [address] L, is i} integerexpression 3

Used to begin (or resume) execution. If the address is

omitted, execution will begin at the program entry point (or

resume where last interrupted). This directive may also be

used to execute a specified number of statements or

instructions.

use packagename i,package name)

This directive makes a name declared in a package

referenceable without the package qualifier.

expression ?

The directive computes and displays the value of the

expression or variable. Values displayed will be formatted

according to the expression type. When displaying a variable,

applicable indices or component names will be displayed.

variable name := expression k

This directive is used to set a variable to a value (of the

expression) or to display its address (if the @ is present).

procedure-name [actual_parameter_parti

Used to call an Ada procedure. Upon completion, control

returns to the Debugger for the next directive.

trace [,{p f s a i w o}] [addressil,fileJ

Used to trace execution of the program or Standara I/O

operations on a file. The letter options are p for

subprograms, f for flow paths (sequences of statements
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V 4-

uninterrupted by flow control semantics), s for statements, a

for assembly language level, i for I/O operations w for

subprogram walkback, and o for turning off indicated traces.

The address is the limiting address of the trace. he file

may be used only with I/0 option.

trapL,sj variable address range

trapL,oj Lnumberj

This directive is used to detect and report each time a value

within the variable or addressrange changes. The s option

causes execution to stop when the value has changed. The o

option is used to turn off a trap.

dump Lii r b o h c a s}j addressrange

Dumps the address range specified in the format requested:

integer, real, Boolean, octal, hex, character, assembly

instructions, hardware status.

search addressrange, (expression range) [,mask]

Searches for a value equal to the expression or within the

range. A mask may be applied before the comparison.

time[,p f ri subprogram name [,subprogram name)

Causes timing information to be collected for the subprogram

(or at the flow path level). The r option produces a summary

report of the collected information.

flowL,r] subprogramname {,subprogramname)

Counts path entrance frequency within the subprogram. The r

option prints a summary of the counts by subprogram.

insert address; "directive (;directive}" ?

Effectively inserts the directives at the indicated program

address. If the operand is ?, the active inserts are

displayed.
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cancel insert-number

Cancels a previous insert.

record[,r wi file, variable i , variable }

Used to write a variable to a file or to read a value into a

variable. May be used to support environment simulation or

post data reduction.

print objectname Lline-range]

Used to list text objects such as Ada program source. By

executing the Editor, the user may browse through his source

program or enter his modifications as debugging proceeds.

stop [,{s p1] Lexpression]

Stops execution, displays execution status, active procedure

call chain, and, on option, the value of expression.

quit

Terminates Debugger commands and returns to ACLI.

In addition, Ada raise, abort, and delay statements may be used as
directives. In the above directives, Ada definitions are used. An address

may be an Ada name, an Ada program statement or a machine address. Its

syntax is:

address := access-variable + expression

@ name + expression

e integer

$ line-number

3.3.2 Rationale

The following paragraphs discuss how the design principles were achieved.

3.3.2.1 Ada Source Level Debugging

The Debugger directives and the Ada name referencing are expressed in Ada

syntax. All values whether expressed in a directive or displayed by the
Debugger will be represented according to type using Ada literal syntax.
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Although the intent of the Debugger is oriented toward checkout to the

extent possible at the Ada Language level, circumstances are expectea to

arise where machine-level observation is required. The Debugger supports

this by permitting access to individual instructions, actual addresses,

single stepping, instruction tracing and dumps. Even at this level, the

Debugger attempts to allow references and display values in as symbolic a

manner as possible.

3.3.;.2 Debugging Optimized Operational Programs

Although the Compiler supports an option to suppress optimization, thus

ensuring the user of strict correlation of the source program to the

executing program, the Compiler and Debugger have been designee to permit

the checkout and correction of operational, optimized programs. The

Compiler produces detailed messages that describe the optimizations

performed. The ADTs also include descriptions of the optimizations

performed with each statement. The Debugger will then be able to alert the

user when debugging requests may be affected by optimizations.

3.3.2.3 Resource Utilization

The ADTS that provide the Ada names and attributes are maintained in the

load object and do not occupy any memory until an Ada name is referenced.

Only small portions of the ADTs are required at a time, thus the memory

impact of symbolic name referencing is minimized.

No hooks are required in the code to support debugging. This eliminates the

problem of significant code expansion often associated with debugging.

To minimize performance impact on a program being debugged, direct execution

is utilized rather than interpretation. Execution is controlled by

implanting breakpoints into the program as required. Furthermore, the

Debugger operates as a separate process to prevent the results of the

program being debugged from being affected unexpectedly.

3.3.2.4 Error Anticipation

Since error locations cannot be anticipated, the Debugger has been oriented

to debugging without hooks and without special preparation of the program
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EI
for execution. An operating program may be interrupted and debugged with

the same facilities available as if it had been loaded and started by the

Debugger.

3.3.2.5 Full Language Support

All language features are supported by the Debugger through directives;

however, the full Ada expression and statement capability is not provided

within the Debugger directives to eliminate the need for full interpretation

and the associated debugging performance penalty. The user may interface

with and monitor Ada tasks. All Ada types are supported and all Ada program

objects may be referenced and examined.

3.3.2.6 Target Program Checkout

The Debugger is designed to permit checkout of programs compiled for target

computers being simulated on the host development computer as well as

programs being directly executed on the host. The Debugger interfaces are

fully standardized; the fact that the program is executed through simulation

is transparent to the Debugger.

The Debugger also provides a mechanism to perform data recording and

environment simulation through the recoro directive. By the use of minimal

scaffolding and this record function, both static checkout and post data

reduction facilities are provided.

3.3.2.7 Timing and QA Considerations

An often neglected development requirement is an automated mechanism to

support program validation and refinement. Two features have been included

as an integral part of the Debugger to support this need. These features

allow the user to time individual program regions and count region entrances

thereby providing performance tuning data as well as ensuring that all

program paths have been exercised. The data required to support this

facility is a fallout of the compiler optimizer.
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3.3.3 Debugging Session

The following Ada program and de-,:gging session illustrates the use of the

directives.

1 package trig is

2 type deg is integer range 0 .. 360;

3 type sc is float range -1.0.. 1.0;

4 function sin(d:in deg) return sc;

5 pi:constant := 3.14159;

6 end

7

b package body trig is

9

10 function sin(d:in deg) return sc is

11 i:integer range l..20;

12 limit:integer := 2;

13 factor:float := pi* float (2)/IM0.0;

14 term:fioat 1.0;

15 sin:float := 0.0;

16 begin --use Taylor series to compute sine

17 series: while i in 1 .. limit loop

lb term := term * factor /float (i);

19 if i mod 2 = 0 then

20 term := -term;

21 else sin := sin+term;

22 end if;

23 return sin;

25 end sin;

26 end trig;
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The directives below represent a sample debugging session (the comments on

the right are editorial notes). Debugger responses are underlined.

load trig --loads package trig

go --elaborates package

use trig --default name qualifier

sin (30) ? --compute expression

= 0.52.359 --not very precise

insert $19,"i ?" --sin.i when encountered

insert #1 --1st insert

sin (30) ? --try again

trig. sin.i=1 --1st loop iteration

tria.sin.i= 2  --2nd loop iteration

- 0.52359 --still wrong of course

insert @ sin.series;"limit:=
2 0" --series should have 20 terms

insert #2 --2nd insert

cancel 1 --disable 1st insert

sin (30) ? --one more time

Z0.50001 --much better

quit --done, go correct source
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