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RANDOM SEQUENTIAL PACKING IN EUCLIDEAN SPACES
OF DIMENSIONS THREE AND FOUR
AND A CONJECTURE OF PALASTI

By

B. Edwin Blaisdell and Herbert Solomon

INTRODUCTION.

Random sequential packing of hypercubes in a larger hypercube
and a conjecture of Palasti [11]) that the limiting density ﬁd in
a space of dimension d equals Bd where £ 1s the limiting packing
density in one dimension, i.e., on a line, continues to be studied,
but with inconsistent results. Rényi [12] and Dvoretzky and Robbins
[5] have derived an integral-difference equation for £ and Blaisdell
and Solomon [3], in an investigation of the Palasti conjecture, have
calculated the value of B to 14 significant digits, for purposes of
this paper approximately 0.7476. In that paper, we have also studied
packing on finite lattices with rigid boundaries by computer experiment
in one and two dimensions. In one dimension our results were in good
agreement with our extension of an analytic result of Mackenzie (10]

for lattice lines, namely

n/2

(1) c=1-[l+a/n+0(2 /(n/a)!][ko-kla‘1+ 0(a~%)

where B = 1lim ¢ as an-1 + 0 and a-l + 0,

and k0 = 1-8, kl

constant, n is the number of lattice nodes on the bounding lattice

"%[8-exp(-2Y)] % 0,2162 and Y {is Euler's

line and a is the number of lattice nodes on the edge of the randomly

deposited lattice segment. Define




r

2) x; = (1-c)/(1+a/n) - 0.252 + 0.2162a1

by a partial rearrangement of (1). This permits satisfactory extra-
polation of our finite one-dimensional lattice data to the infinite
continuum. A least squares treatment of our one-dimensional data in

[3] ylelded
(3) x, = 0.0000(+0.0001) + 0.0038(+0.0036)a”

where the values in parenthesis are the estimated standard deviations
of the preceding estimated parameters. Note that the estimated inter-
cept is zero, thus agreeing with equation (1) (that is, the lattice
lines situation). A similar treatment in [3] of our two-dimensional

data yielded
(%) X, = Xg = =0.0025(+0.0001) + 0.0109(+0.0023)a">

where xy 1s the same as 3 in equation (2) except that c¢ 18 re-

placed by (cd)lld

. The subscript of x indicates the dimensionality
of the lattice space. This result is evidence for a small but signi-
ficant discrepancy when Palasti's conjecture is viewed in two dimensions,
i.e., the packing density is larger in two dimensions than Palasti's
assertion.

In 1975 Akeda and Hori published a note [1] in which verification

of Palasti's conjecture in the plane was asserted on the basis of

computer experiments in two dimensions on squares with n/a = 100 and




a = the value of the floating point mantissa of their computer, i.e.,
the “continuous" model. After being informed by us of our paper [3]
they carried out further experiments [2], performed the necessary
extrapolation to a/n + 0 and obtained a value x, = =0.0027(+0.0002) .
Akeda and Hori also studied the three-dimensional "continuous’ model
by a different and undescribed method for values of a/mn = 8, 10, 12,
15, 20 and 30 and on extrapolation to a/n + 0 obtained a value

X, = 0.0018(+0.0008) . The discrepancy, X3, has a sign opposite to
that for two dimensions and the line through the individual points
crosses the expected extrapolation line, both results unappealing
intuitively.

In 1978 Weiner published a purported proof of the Palasti conjec-
ture [17] hut the validity of his proof has been challenged by several
correspondents [7,8,13,14,15,16) and we agree that his claim is not
valid. Finegold and Donnell [6] published a note in 1979 on computer
experiments on the two-dimensional "continuous" model with periodic

boundaries by a "fine mesh" and a "coarse mesh" method and asserted

verification of the Palasti conjecture. Their three summary values

are x, = -0.0027(+0.0005), -0.0040(+0.0005) and -0.0034(+0.0012).
They assert that the use of periodic boundaries makes it unnecessary to
extrapolate to a/n + 0, a statement which isonly true in one-dimension
for §-> 14, The accuracy of the approximation is unknown for higher
dimensions. In 1980 Jodrey and Tory [9] published the results of
extensive computer experiments on the "continuous' model with periodic

boundaries for dimensions 1, 2, and 3 and a few results for dimension

4. Their extrapolated values are x, = 0.0004 (+0.0005),

x, = -0.0021(+0.0002), and x, = -0.0029(+0.0002) and the average

of their 3 values for X, = -0.0003(+0.0006) .




The values of x, obtained by three of the sets of authors

2
[2,3,9) are in good agreement ~0.0027, -0.0025, and -0.0021
respectively and show a small departure from the Palasti conjecture.
The values of xq obtained by two of the authors [2,9] are in
poor agreement and of opposite sign +0.0018 and -0.0029 respec-
tively.

Several of these authors have also reported the variance of the
limiting density and a similar account may be given. In one dimen-

sion our results were in good agreement with an analytic result of

Mackenzie [5] for the lattice line. Define
(5) yy = 82/1(a/n) (1+a/n) ] > Ay(a)
as a/n+0 and 1l/a+ 0 and Az(a) is an undetermined power series

in 1/a. A least squares treatment of our one-dimensional data in [3]

yielded

(6) y, = 0.0381(+0.0003) + 0.0161(+0.0065) (1/a) - 0.0422(+0.0238) (1/2)2

where 0.0381 1is in good agreement with the result (0.038156) we
obtained in {3] by numerical integration of the analytic expression
for the contimious line obtained by Dvoretzky and Robbins [5]. A

plausible generalization to d dimensions of equation (5), namely

) yq = 83/ [(a/n) (1+a/m) |




TABLE 1

Average normalized variances for sequential random packing densities.

Ref Dimension Yq notes
(1) 2 0.0402 + 0.0213 a
(2 2 0.0482 + 0.0135 a
3 0.0413 + 0.0206
1 0.0400 + 0.0058
(9 2 0.0468 + 0.0069
3 0.0451 + 0.0101
4 0.0324 + 0.0176
(3) 1 0.0393 + 0.0014 c
2 0.0526 + 0.0027 c
this work 3 0.0519 + 0.0062
4 0.0518 + 0.0158

Notes: (a) only the values for squares of edge > 40 have been used.

(c) only a subset of the values obtained in (3) have been used,
as described below.




was found by least squares to be in good agreement with our two-dimen-

sional data [3], namely

® y,- 0.0508(+0. 0010)+1.3697 (+0.3905) (1/a)>-3.6660(+1.1400) (1/a)* .

in it .

Average values for yq @are given in Table I. The factor l+a/n
which normalizes for finite hypercube size is not used for experiments

with periodic boundaries.

New Developments

We have now conducted experiments in three and four dimensions.
In doing so, we have adhered to our earlier policy of studying finite
lattices with rigid boundaries. Although this policy results in loss
of accuracy when extrapolating to the infinite continuum [9], it is
easier to program and permits an exact accounting of every lattice

site as occupied or unoccupiable. Authors who have studied the

"continuous' case, 1.e., have used floating point arithmetic, have

not agreed with each other nor with our present results in dimension
three. One possible explanation for this is the occurrence of holes that
present a very tight fit in at least one dimension, and which have been
missed because of round-off error in the continuous case. The likelihood
of these tight fits occurring will increase with increasing dimension and

may account for Jodrey and Tory [9] finding densities increasingly lower

than ours in dimensions two, three and four.

Our calculations were made as described before in [3] except that

we now used a DEC PDP11/55 computer running PORTRAN programs under 1




operating system RSX11M. Lattice points were identified with bits
in the computer's 16-bit words, which permitted use of hypercubes

3 or 244 (about 330,000) lattice nodes. The new

containing up to 70
values obtained in dimensions three and four are given in Table II.
These values together with subsets of those obtained formerly in [3]
in dimensions one and two have been treated together since a regular
pattern related to dimension has become apparent. For dimension one
we used values for a < 100, n/a < 20 and for dimension two, values
for a < 20, n/a < 10. This yielded sets of about the same number
for each of the four dimensions so that the large number of values
otherwise available for dimensions one and two would not outweigh
those calculated for dimensions three and four. The numbers for dimen-
sions one, two, three, and four are respectively 28, 34, 51, and 32
including all values, and 18, 22, 30, and 24 excluding values for
a=2 and n/a = 5 which we found as before [3] to require more
terms in the expansion of equation (1) for obtaining a satisfactory
fit.

We have examined our results guided by the theoretical equation
(2) for one dimension, substituting for ¢, the value c:/d, (the
Palasti conjecture) in higher dimensions. The results of our examina-
tion are given in Table III. Lines 1, 2, 3, and 4 contain the least
squares results treating each dimension separately. It is apparent
that the intercept (a measure of the departure from the Palasti conjec-
ture) increases rather regularly with dimension and that the coefficient

of the term in 1/a2 (a measure of the departure from the limiting

equation (2)) decreases with dimension. Lines 5, 6, 7, and 8 contain
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the least squares results treating each dimension separately but
including least squares estimates of these observed trends. The
fit is of course the same but the near constancy of the respective
parameter estimates shows that the model form is satisfactory.
Lines 9, 10, 11, and 12 contain least squares results treating all
dimensions at once but successively adding the less well fitted
values for a = 2 and n/a = 5. The standard error of estimate
increases about 257 but the F value increases about 30%, because
of the substantial increase in degrees of freedom, as these values
are included. A search was made for further terms which might sig-
nificantly improve the fit using program P9R, all possible subsets
regression, of the BMDP package [4]. Lines 13, 14, 15, and 16 con-
tain the least squares results for the best choice of 4 terms from
the following: (d-1), 1l/a, a/n, 1/32, 1/a3, llaa, 1/(82/5), (a/n) (llaz).
The additional terms make a significant improvement in the standard
error of estimate if the data for a =2 or n/a =5 are included
but not otherwise.

The residuals from the fit in line 9 are plotted against (d-1)
in Figure 1 and against 1/(a2.’5) in Figure 2. The plotted digits
show the number of superposed values at that location. There appears
to be no trend in the residuals with either term, further testimony
that the model is satisfactory,

Computer experiments on the random sequential packing of finite
lattices with rigid boundaries in dimensions one, two, three and four
indicate a discrepancy with the Palasti conjecture in the limit 1/a+0,

1/4

a/n + 0 which increases about 0.0025 in c, ' per dimension. These

10




A

correspond to discrepancies for dimensions two, three and four of

0.0037, 0.0084, and 0.0127 in the density itself, c¢, being greater

d

than cd. This may be seen by a rearrangement of the limiting form

1
of equation (2) with c¢ replaced by c:/d.

C:Id—cl = z(d-1) where the right side is the limiting expression

found in Table III. Then

We can now write

ey = [c1+z(d-1)]d

or
e et = zedlaqa1y + 5 8201y + 2 8 3aa1) (@e2) + -
a™c1 " 2 %1 - 6 1 - :

where e = 7476 and 2z = /E;-cl 2 .0025, the excess over the value (

given by the Palasti conjecture when d = 2. Note that the expansion
truncates at (d+l) terms and because 2z = .0025 is quite small, no
terms beyond the first are significant to four decimal places and this
leads to the discrepancies for dimensions two, three, and four given

above.




R
E
S
I
D
|\
A
L
S

15

12

o+cooo+¢-.u+t.oo+uono+o.oo"’.-oo+o-ou+--o.+-o-.+oooo+c

T
N RN N
N
w WWN [y
[ Sy ~

=

e
- w

-

- N
T

e
Pt

e o s
[\
o v o e

+ 1 +
. 1.

+.l..+....+"..+...0+'...+...'+II..+..'.+.‘..+....+
.30 .90 1.5 2.1 2.7 U
.00 .60 1.2 1.8 2.4 3.0

(d-1) i
Figure 1




15

12

Nnrrrpacouxnmx

. -60

-90

-12,

etecsetii et iiitiiieteieetais bl kil
+ 1
. 1
. 1
+
. 1 1
. 1
. 1
+ 1 1
. 1
. 1
. 1
1 1
1
. 2
1 1
. 1 2 2 1
+ 1 2
1 3 1
1 11 1 1
1 1 2
.1 1 1
+11 1
. 2 1
.1 1
.1 11
. 21 1 1
.11
. 1 1 1
. 1 2
. 1 1
. 1 1 1
+
. 1 2 1 1
. 1 1
. 1
+1
. 1 1 2
. 1 1
+ 1
. 1

'.+.t.’+....+...0+..I.+I...+....+....+l...+.‘
.009 . 027 . 045 .063
. 000 .018 .036 . 054 .072

1/(:2/3)

Figure 2

seteseet.

o e o s s e o

o s e e

.'+..ll+
. 081
.090

13




References

1. Akeda, Y. and Hori, M. (1975). Numerical test of Palasti's conjecture
on two-dimensional random packing density. Nature, 254, 318-319.

Akeda, Y. and Hori, M. (1976). On random sequential packing in two and
three dimensions. Biometrika, 63, 361-366.

Blaisdell, B.E. and Solomon, H. (1970). On random sequential packing in
in the plane and a conjecture of Palasti. J. Appl. Prob., 7, 667-698.

Dixon, W.J. and Brown, M.B. (eds.) (1977). BMDP-77, University of
California Press.

Dvoretsky, A. and Robbins, H. (1964). On the "parking" problem. Publ.

Math. Inst. Hung. Acad. Sci., 9, 209-224.

Finegold, L. and Domnell, J.T. (1979). Maximum density of random placing
of membrane particles. Nature, 278, 443-445.

Hori, M. (1979). On Weiner's proof of the Palasti conjecture. J. Appl.
Prob., 16, 702-706.

Hori, M. (1980). Comments on the second letter of Weiner. J. Appl. i
Prob., 17, No. 3, 888-889.

Jodrey, W.S. and Tory, E.M. (1980). Random sequential packing in R".
J. Statist. Computing and Simul., 10, 87-93.

Mackenzie, J.K. (1962). Sequential filling of a line by intervals placed
at random and its application to linear adsorption. J. Chem. Phys., 37
723-728.

Palasti, I. (1960). On some random space filling problems. Publ. Math.
Ingt., Hung. Acad. Sci., 5, 353-359.

Rényi, A. (1958). On a one dimensional problem concerning space filling.
Publ, Math. Inst. Hung. Acad. Sci., 3, 109-127.

Tanemura, M. (1979). Has the Palasti conjecture been proved?: A criticism
of a paper by H.J. Weiner. J. Appl. Prob., 16, 697-698.

Tanemura, M. (1980). Some comments on the letters by H.J. Weiner,
J. Appl. Prob., 17, No. 3, 884-447.

Tory, E.M. and Pickard, D.K. (1979). Some comments on 'Sequential random
packing in the plane by H.J. Weiner'. J. Appl. Prob., 16, 699-702.

14




le.

17.

18.

19.

20.

Tory, E.M. and Pickard, D.K. (1980). A critique of Weiner's work
on Palasti's conjecture. J. Appl. Prob., 17, No. 3, 880-884.

Weiner, H.J. (1978). Sequential random packing in the plane.
J. Appl. Prob., 15, 803-814.

Weiner, H.J. (1979). Reply to letters of M. Tanemura and E.M. Tory
and D.K. Pickard. J. Appl. Preb., 16, 706~707,

Weiner, H.J. (1980). Further comments on a paper by H.J. Weiner.
J. Appl. Prob., 17, No. 3, 878-880.

Weiner, H.J. (1980). Reply to remarks of Professor M, Hori.
J. Appl. Prob., 17, No. 3, 890-892.




‘—"""""""llllllllllI-'--lIIlllllllIl-l-----......,.,H...gzg,s.‘

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE Bzr%fténcmg%g”:m
7. REPORT NUMBER 1\1:. GOV aCCESSioN uca,:. RECIPIENT'S CATALOG NUMBER
304 AN-AL O 93
4. TITLE (and Subtitle) S. TYPE OF REPOAT & PEMOD COVERED

RANDOM SEQUENTIAL PACKING IN EUCLIDEAN SPACES OF
DIMENSIONS THREE AND FOUR AND A CONJECTURE OF TECHNICAL REPORT

PALASTI 6. PERFORMING ORG. REPORYT NUMBER

7. AUTHOR(s) - CONTRACY OGN GRANT NUMBER(S) |

B. EDWIN BLAISDELL AND HERBERT SOLOMON N00014-76-C-0475

[T FERs URRING GRGANIEATION NANE AND AGORENS TR ROSRRN L ENT PROIECT YA
Department of Statistics NR-042-267

Stanford University
Stanford, CA 94305

1. CONTROLLING OFFICE NAME AND ADORESS 12. Rm RT QAT '
Office Of Naval Research Jﬁt@ 2?’ ﬁga] !
Statistics & Probability Program Code 436 “'fg""‘°"‘°"

‘Tzﬂzljggjon. YA 22217
MONITORING AGENCY NAME & ADORESS(i! diiferent from Controlling Oltice) 18. SECURITY CLASS. (of this ropert)

UNCLASSIFIED

T8a. OECL ASSIPICATION/ DOWNGNADING
SCHEDULE

6. OISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. ODISTRIBUTION STATEMENT (of the sbetract entered in Block 20, it ditierent from Repert)

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side If necossary and identify by block mamber)

Sequential random packing; Palasti conjecture; geometric probability.

20. A2$Y RACT (Continue on reverse side if neceseary and identtly by dieck number)

PLEASE SEE REVERSE SIDE.

; DD ,jon's 1473 toimom or 1 nov 43 13 cesoLETE UNCLASSIFIED ¥
t $/N 0102 L% 274- 2402 SECURITY CLASRFICATION OF Twis PAGE #hon Dore Bntered)




’F'"” ‘ *"""""""""lllIlIIlllll'lllllllllIlllll-l-I|||...............!.,5...==!_5.'

UNCLASSIFIED

SECUMTY CLASUIFICATION OF THIS PAGE (When Date Entoved)

#304

RANDOM SEQUENTIAL PACKING IN EUCLIDEAN SPACES OF DIMENSIONS
THREE AND FOUR AND A CONJECTURE OF PALASTI

A conjecture of Palasti [11] that the limiting packing density

d where 8 is the limiting

Bg is a space of dimension d equals B8
packing density in one dimensidn continues to be studied, but with
inconsistent results. Some recent correspondence to this Journal

(7,8,13,14,15,16,18,19,20]) as well as some other papers indicate a
lively interest in the subject. In a prior study (3], we demon-

strated that the conjectured value in two dimensions was smaller !
than the actual density. Here we demonstrate that this is also so :

in three and four dimensions and that the discrepancy increases

with dimension.

UNCLASSIFIED

JET.0"Y J. A58 SATCN 2P Ta § 243E e Dae Intered)







