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SECTION I
INTRODUCTION

Fan and compressor blade damage resulting from the
ingestion of foreign objects into gas turbine aircraft engines
has to be given serious consideration for reasons of flight
safety and costs. The blades are exposed to potential impacts
from a variety of objects ranging from large birds and ice to
small hard particles such as sand. The threat is defined by
the environment in which the engine is constrained to operate.
The engine speed, blade material, blade geometry, point of
impact, and type and size of the impactor all play important
roles in determining the type, if any, and the severity of

damage which might occur.

Impacts between blades and foreign objects will almost
always cause at least localized minor damage which may be
treated as maintenance problems. This blade damage may also
be severe to cause instantaneous fracture or failure, or may
be of the type that could lead to eventual failure through
fatigue crack initiation or growth to a catastrophic size.
This blade failure may result in immediate power loss of the
engine and lead to destruction of the aircraft and crew. The
task of the blade designer is to either design a blade which
has a specified level of resistance to foreign object damage
(FOD) or to evaluate a given blade and predict the extent of
damage to be expected.

The overall design problem has two aspects. The first
aspect is a ballistic impact problem. In this instance, a
method must be developed to relate the mode and extent of
damage to the threat and target parameters. The second aspect
of the design problem is to relate the ballistic impact induced
damage to the residual properties of the blade. It is the
mechanical properties of the blade that are of the most
importance or significance in the foreign object damage design
problem.




Compressor blades can be especially susceptible to damage
from ingested small hard particles such as sand or stones be-
cause of the large quantity of such particles in the environ-
ment and the thin leading edge of these blades. Leading edge
thicknesses of 0.010 inches (0.25 mm) or less are common in
the compressor stages of high performance engines currently in

the field. In-service inspections of such blades occasionally
reveal damage in the form of small nicks, dents, or bulges.

This type of damage can lead to complete blade failure due to
the propagation of fatigue cracks from the damaged area. Visual
inspection of blades nicked or damaged along the leading edge
does not permit accurate determination of the size and type

of object that may have caused the damage.

This report describes an experimental study conducted to
investigate the response of typical fan and compressor blade
materials to small hard particle leading edge impacts. Numerous
parameters investigated in the study include material density, !
material yield strength, material modulus, leading edge thick-

ness, impact angle, and impactor size.




SECTION II
EXPERIMENTAL PROGRAM

The experimental program involved performing leading edge

impact tests on flat constant thickness specimens using small
hard particles in the size range of 0.063 to 0.250 inch (1.60 to
6.25 mm) diameter. The study involved determining the critical
velocity region (cracks are generated with the damage) for each
test condition. Previous work conducted on titanium material
indicated that the extent of damage depended primarily on the
typre of damage and appeared to be relatively independent of

size (see Reference 1l). In this work, the least severe damage
for impacted leading edges was a clean perforation with complete
material removal. The next worst case was that where the
leading edge curled back extensively or bulged. The worst case
in regards to extent of damage was where the curl back or bulge
initiated a rip or tear along the leading edge from which the
fatigue crack could propagate. For a given projectile size

and leading edge geometry, the test data of the previous work
indicated that perforation occurred at the highest impact
velocities, bulging at lower velocities, and a bulge with a

tear as some intermediate or critical velocity which is analo-
gous to a ballistic limit velocity in projectile-plate penetra-

tion phenomena.

The intent of the program was to determine this critical
velocity for each test condition. Then, using this velocity,
at least seven specimens were impacted under identical test
conditions so that fatigue tests could be used to evaluate the
damage. Each material investigated was characterized in terms
of notch fatigue strength such that the fatigue testing of the
impact damaged specimens could be compared with notch fatigue
data for each test material. Thus, equivalent stress concentra-
tion factors could be evaluated for each test condition using
machined notched specimens with a known (calculated) stress




concentration factor as the reference. This technique to charac-
terize impact induced fatigue strength degradation was developed
in the previous work of Reference 1. 1In this study, the effects
of leading edge thickness, impact angle, particle size, particle

material, and target material were investigated for damage response.

1. MATERIALS INVESTIGATED

Three materials were investigated in the study to evaluate
the effects of different material properties to resist impact
damage from the hard particle leading edge impacts. The materials
were 8Al-1Mo-1lV (8-1-1) titanium, 7075-T651 3}uminum, and 4130
steel. The titanium material was selected as the baseline materi-
als for all tests in this program. The effect of shot-peening
on the titanium material was also investigated for damage response
for two intensities of 0.005 to 0.008 N and 0.010 to 0.16 N using
glass beads 0.023 to 0.033 inch (0.58 to 0.84 mm) diameter. The
4130 steel material was tested in the annealed condition with a {
Rockwell hardness of B-84 and a heat-treated condition with
Rockwell hardness of C-31.

a. Material Characterization

Notch fatigue specimens were machined from 6.0 x
1.0 inch (152.4 x 25.4 mm) blanks cut from the sheet of material
to be investigated to the dimensions shown in Figure 1. The
test section containing the notches was machined onto the
center 1.0 inch (25.4 mm) portion of the specimen. The test
section thickness was a constant 0.02 inches (0.508 mm) across
the width of the specimens. The nominal thickness for the
titanium and steel sheets was 0.063 inches (1.59 mm) while the
nominal thickness for the aluminum sheet was J.250 inches
(6.35 mm) thick. All specimens were cut in the same direction
in each material sheet to avoid any preferred orientation
effects in the sheet.

At least six specimens of each notch type for
each material were machined. The calculated stress concentra-
tion factors (KT) of 1.39, 2.12, and 3.55 were determined for
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Figure 1. Geometry of Notch Fatigue Specimens.

each notch size (see Reference 2). The specimens were then
fatiqgue tested in tension in a 2-ton (17.8 KN) Shenck Resonant
Fatigue Testing Machine using a ratio of minimum load to
maximum load (R ratio) of 0.1l. The cyclic frequency of the
Shenck machine is approximately 33 Hz. The number of cycles
to failure (complete separation) was recorded for each speci-
men. No attempt was made to correct for the number of cycles
necessary to propagate from the first observable crack to
failure; in all cases this was small compared to the total
cycles. The data for the three notch groups of specimens for
each material could then be plotted as N, (number of cycles to
failure) versus maximum net section stress. For each notch
group, a straight line can be drawn through the data and used
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as the baseline representation of the notch fatigue strength

of the test material.

2. IMPACT TEST SET-UP AND PROCEDURES

The impact tests were conducted on the test range shown

schematically in Figure 2.

a. Test Range

The range set-up consisted of a launch tube,
velocity measuring system, and a target tank with a mounting
fixture. The launch tube had a smooth bore of 30 cal (7.62 mm)
and a length of 3.0 feet (0.91 m). 1In every case, the pro-
jectile particle to be fired was positioned into a recessed
pocket of a lexan sabot to provide protection and support for
the particle during launch. The particle was held within
the pocket by an o0il film during the launch. The projectile |
particle/sabot package was launched down the tube by utilizing 1
either compressed gas or powder gas depending on the desired {
impact velocity. Compressed gas was used for impact velocities
up to 1,000 ft/sec (305 m/s). Above 1,000 ft/sec (305 m/s},

LASERS

FLIGHT TU%E—Z

I----I---‘
L B | .

—TARGET

LAUNCH TUBE ]
P

PHOTOCELLS

COUNTER

Figure 2. Schematic of Range Set-Up.




a powder gun was used. A sabot stopper device was located at
the muzzle of the launch tube. The purpose of this device was
to slow down and eventually stop the sabot, permitting the
particle to separate from the sabot and continue on a tra-

jectory toward the target specimen.

b. Impact Velocity Measurement

The projectile velocity was measured by utilizing
a pair of HeNe laser/photomultiplier stations spaced a known

distance apart. Each laser beam intersected the projectile !

particle trajectory normal to the trajectory and illuminated
one of the photomultiplier stations. When the projectile/sabot
package interrupted the first beam (first station had laser
beam projecting through slots at muzzle of launch tube), the
first photomultiplier station generated a voltage pulse to
start a counter-timer. The counter-timer was stopped when the
particle interrupted the second beam. The projectile velocity

was then calculated from the travel time between the stations.

c. Target Mounting Procedure

The impact testing of the target specimens was
conducted using the free-free method of mounting by taping
the specimen to a mounting frame which was rigidly fixed to
the base of the target tank as shown in Figure 3. Upon impact,
this free-free method of mounting would permit the specimen
to free flight. The mounting fixture was designed to be ad-
justable such that the desired impact angle could be achieved.
Due to the high drag of the small projectile particles, the
target specimen was located about 4.0 inches (102 mm) from the
launch tube muzzle. In addition, the air within the target

tank was partially evacuated for all impacts.

The majority of the impacts on the three materials
were conducted at an impact angle of 30 degrees. To determine
the effect of the angle of incidence on the damage generated,




Figure 3. Free-Free Mounting Frame Utilized. {
(Specimen not shown.)

additional tests were conducted on the baseline titanium

material at impact angles of 7.5, 15.0 and 45.0 degrees.

d. Target Alignment

Target alignment onto the mounting fixture was
achieved by projecting a laser beam through the bore of the
launch tube onto the desired impact site of the target. Since
all of the impacts were edge impacts, the target was positioned
such that the laser beam was split by the target edge at the
desired impact site.

e. Projectile Types and Sizes

Two types of projectile materials were utilized
in the impact tests. The projectiles were either spheres of
2017-T4 aluminum or chrome steel. Early in the program, the
aluminum spheres were observed to be deforming substantially
during the impact event; therefore, the chrome steel spheres




were used in the remainder of the program. This switch was

made to avoid the uncertainty surrounding the effect of projectile

deformation upon the damage inflicted on the test specimens.

The nominal particle sphere sizes used in the study

were 0.063 (1.60), 0.125 (3.18), and 0.250 inch (6.35 mm) diam-
eters. These various size sphere particles were used in the
impacts to investigate the concept of geometric scaling of the
damage generated on var.ous specimen leading edge thicknesses.
The majority of the impacts were conducted using the 0.063-inch

(1.6 mm) diameter spheres,

f. Tar;+ Specimen Size and Leading Edge Thickness

The test specimens for the impact tests were
machined from 6.& x 1.0 inch (152.4 x 25.4 mm) blanks cut out
from the sheet of material to be investigated. A flat constant
thickness test section, where the edge impacts were to be con-
ducted, was machined onto the center 1.0 inch (25.4 mm) portion
of the specimen similar to that for the notch fatigue specimens.
The test section thickness for the majority of the testing was
0.02 inches (0.508 mm). In addition, impact tests were also
conducted on 0.01 and 0.04 inch (0.254 and 1.016 mm) thick test
sections on the baseline titanium material to investigate the
concept of geometric scaling. The nominal thickness for the
titanium and steel sheets was 0.063 inches (1.59 mm) while the
nominal thickness for the aluminum sheet was 0.250 inches
(6.35 mm). Again, as for the notch fatigue specimens, the
impact specimens were cut in the same direction in each material
sheet to avoid any preferred orientation effects in the sheet.
Sufficient specimens were prepared for each test condition to
determine the critical velocity and impact at least seven speci-
mens under identical test conditions at the critical velocity
level. Single particle impacts were conducted on the test

specimens in every case.




g. Damage Assessment

The damage assessment of the data collected was
given particular consideration in the study. The critical
velocity for each test condition was determined. Then, using
this velocity, at least seven specimens were impacted under
identical test conditions. The mode of damage was determined
for each impact and the extent of damage was measured. Tests
were then conducted on the selected damaged specimens to deter-
mine either the residual tensile strength or residual fatigue

strength properties. {
(1) Mode and Extent of Damage

The damage mode occurring on the target
specimens was anticipated to be in the form of a nick with
mass loss from the leading edge or substantial deformation
with material loss and a crack. The damaged specimens having
a nick were characterized by measurements of the depth and
width of the resulting dent, crater, or perforation. The {
damaged specimens having a substantial deformation with
material loss and a crack were characterized by determining
the crack length.

In all impact experiments, the damage
was measured, described, and photographed.

(2) Residual Property Measurements

Having completed the damage measurements
and photographing the damaged specimens, the damage was des-
cribed in terms of an equivalent stress concentration factor
or residual tensile strength. To investigate the concept
of an equivalent stress concentration factor, a series of
fatigue tests was conducted using the various groups of speci-
mens impacted under identical conditions. The fatigue data
was then compared to that received in the baseline notch fatigue
tests.

10




Each group of specimens with assumed
identical damage was fatigue tested in the Schenck resonant
tensile fatigue machine using an R ratio of 0.1. The load
levels were chosen to produce failure in the range from 103
to 105 cycles, the same region in which the baseline notch
fatigue data were obtained for each material. For each group
of specimens, the data were plotted in the form of net section
average stress against the number of cycles to failure. Cor-
rections were made for the area removed due to the impact or

the crack length across the width of the specimens. 1

In the case where the damage was sub-

stantial with long tears on the specimens, tensile tests were

used to determine the residual tensile strength of the damaged

specimens.




SECTION III
EXPERIMENTAL RESULTS

The experimental results of the edge impacts conducted to

investigate the response of typical fan
materials from small hard particles are
A total of about
to obtain 231 good impact data shots on

following paragraphs.

and compressor blade
summarized in the
360 shots were fired
the test specimens.

A fairly large number of shots were test shots to determine

the critical velocity region (cracks are generated with the

damage) , velocity determination, and alignment purposes.

Tables of all the impacts giving the test conditions, damage

measurements, and a description of the damage are presented

in Appendix B.

1. MATERIAL CHARACTERIZATION

The physical and mechanical properties of the three

materials investigated are presented in Table 1. The

materials were 8-1-1 titanium,

steel.

7075~T651 aluminum, and 4130
The 4130 steel material was tested in the annealed

condition with a Rockwell hardness of B-84 and a heat treated

condition with a Rockwell hardness of C-31.

TABLE 1
MATERIAL PHYSICAL AND MECHANICAL PROPERTIES

Yield Density Modulus of Elasticity
Strength 1b/in3 in Tension
Material ksi (MPa) (Kg/m3) ksi  (MPa)
4130 steel 60 (413.7) 0.283 30x10®  (206.8)
(annealed) (7.83x103)
4130 steel 116 (799.8) 0.283 30x10%  (206.8)
(heat-treated) (7.83x103)
g8-1-1 150 (1034.2) 0.158 18x106 (124.1)
titanium (4.37x103)
7075-T651 73 (503.3) 0.101 10.4x10% (71.7)
aluminum (2.77x103)




The results of the fatigue tests conducted on the notch
fatigue specimens are presented in Figures 4 through 7. A
straight line was drawn through the data and used as the
baseline representation of the notch fatigue strength of
the test materials. The stress concentration factor (Kgp) is
also given for each notch group. Figure 4 presents the baseline
notch fatigue data for the 8-1-1 titanium material. Also included
in Figure 4 is the baseline notch fatigue data from the same
titanium sheet for 0.063-inch (1.60 mm) thick specimens.

Figures 5 and 6 present the notch fatigue data for the 4130
steel material in the annealed and heat-treated condition,
respectively. The notch fatiqgue data for the 7075-T651 aluminum

is given in Figure 7.

2. RESULTS OF THE IMPACT TESTS

The testing involved conducting leading-edge impacts on
flat constant thickness specimens of the three materials investi-
gated. The study involved determining the critical velocity
region where cracks or tears are generated with the damage for
each test condition. Then, using this velocity, at least seven
specimens were impacted under identical test conditions. Each
group of specimens with assumed identical damage was then
fatigue tested in tension to evaluate the damage. In several
cases, residual tensile testing was substituted for the fatigue
tests because of the extensive damage received from the impact.
The fatigue data of the damaged specimen for each test condition
was then plotted in the form of net average stress against the
number of cycles to failure. Each material investigated was
characterized in terms of the notch fatigue strength such that
the fatigue data of the impact damaged specimens could be compared
with the notch fatigue data for each test material. Egquivalent
stress concentration factors were then evaluated for each test
condition by superimposing the curves of the notch fatigue data
onto the plots of the damaged specimens. The stress concentra-
tion factors for the notch fatigue tests were Kq¢=1.39, 2.12,
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and 3.55. Using this technique, an equivalent stress concentra-

tion factor was determined for each test condition. The effects
of leading edge thickness, impact velocity, impact angle, particle
size, particle material, and target material were investigated

for damage response in the study.

a. Critical Velocity

The critical velocity was determined for each test
condition. Table 2 presents a summary of the impact results.
Impacts at similar test conditions are grouped together and
averaged. The number in parenthesis in the table indicates the
number of tests averaged in that group. Included in the table
is the damage mode observed for each group. The equivalent
stress concentration factor is also determined from the fatigue

curves which are presented in a later section of this report.

The aluminum sphere impacts on the titanium
material required the highest impact velocities to generate
damage where tears or rips were received with bulging at the t
impact site. It was observed that the aluminum spheres would
substantially deform plastically during the impact event; there-
fore, chrome steel spheres were substituted for the aluminum
spheres. This switch was made to avoid the uncertainty surround-
ing the effect of projectile deformation upon the damage inflected
on the test specimens. The impact test results for the aluminum
sphere impacts are given in Tables 1 and 2 of Appendix B.

The damaged titanium specimens impacted by the
0.125 inch (3.18 mm) diameter aluminum spheres at a velocity of
1054 ft/s (321 m/s), were pulled to failure in tension to give
an average residual net section strength value of 109.1 ksi
(752.2 MPa). The damage for the titanium specimens impacted by the
0.063 inch (1.60 mm) diameter aluminum spheres was substantial and
no tests were conducted to determine the residual tensile or fatigue
strength values for this test condition. It was during these
tests that it was discovered that the aluminum spheres were

18
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plastically deforming during the impact event at velocities of
2852 ft/s (869 m/s). Typical damage for the 0.063 and 0.125
inch (1.60 and 3.18 mm) aluminum sphere impacts on the 0.101
inch (0.254 mm) thick titanium specimens is presented in Figures
A.l and A.2 of Appendix A, respectively.

The critical velocity data of the chrome steel
impacts on the various materials, material thicknesses, and
different angles of incidence are presented in Figure 8. This
figure plots the critical velocity versus the material thick-
ness. Based on this plot, the highest critical velocity value
for the 0.02 inch (0.508 mm) thick specimens was for the 4130
steel material in the annealed condition. The shot peened
titanium material also required higher velocity values to gen-
erate tears than for the basic titanium material. Impact re-
sults for all the sphere impacts are presented in Tables 1
through 18 of Appendix B for the various material and test

conditions.

Typical photographs of the damage received from
the sphere impacts for each test condition are presented in
Figures A.l1 through A.18 of Appendix A. The failure mode for
the majority of the test conditions was bulging with a rip or
tear. A nick on the leading edge with mass loss was the failure
mode for the 0.063 inch (1.60 mm) diameter sphere impacts on the
0.020 inch (0.508 mm) thick titanium and aluminum materials and
the 0.125 inch (3.18 mm) diameter sphere impacts on the 0.04
inch (1.016 mm) thick titanium specimens.

The effect of the various parameters on the specimen
damage from the sphere impacts is discussed in detail in a later

section of this report.

b. Residual Tensile and Fatigue Test Results

After documenting the damage on each specimen by
making the damage measurements and taking photographs, the dam-
aged specimens were either pulled to failure in tension or fa-
tigue tests were conducted to be able to describe the damage in
terms of an equivalent stress concentration factor.
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The residual tensile strength was determined for
the 0.01 inch (0.254 mm) thick titanium groups and the 0.020-inch
(0.508 mm) thick aluminum material impacted by the 0.125-inch

(3.18 mm) diameter steel spheres. Each group of specimens im-
pacted under identical conditions were pulled to failure under
tension. The impact angle for all these groups was 30 degrees.
For the titanium material, the average residual tensile strength
for the 0.125 inch (3.18 mm) diameter aluminum sphere impacts
was 109.1 ksi (752.2 MPa). For the 0.063 inch (1.60 mm) and
0.125 inch (3.18 mm) chrome steel impacts on the 0.01 inch
(0.254 mm) thick titanium, the average residual net section ten-
sile strength was 116.6 ksi (803.9 MPa) and 84.4 ksi (581.9 MPa),
respectively. The average residual tensile strength of the

0.02 inch (0.508 mm) aluminum material for 0.125 inch (3.18 mm)
diameter steel spheres was 77.4 ksi (533.3 MPa).

The remaining groups of specimens damaged under
identical test conditions were fatigue tested in tension. The
data points for the various groups of damaged specimens are pre- t
sented in Figures Al9 through A3l of Appendix A in the form of -
plots of average net section stress (0) against number of cycles

to failure (Nf).

The fatigue data in the form of straight lines
taken from Figures Al9 through A28 of Appendix A for all test

conditions on the titanium material are presented in Figure 9

as solid lines. The baseline notch fatigue data for KT = 2,12
and 3.55 for the 0.02 inch (0.51 mm) thick notch specimens are
superimposed on the plot as dashed lines. 1In addition, the
baseline notch fatigue data from the same sheet of material
conducted in the previous study of Reference 1 for 0.063 inch
(1.60 mm) thick material is also superimposed on the plot

with KT values of 1.50, 2.40, and 4.10 as dashed lines. This
simplified comparing one set of data with another by deter-
mining an equivalent stress concentration factor for each group
of specimens impacted under identical test conditions. Based

on these KT values for the notch specimens, an equivalent stress

21
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concentration factor was determined for each test condition and
is given in Table 2. In several cases, extrapolation of the data
was necessary to determine the equivalent stress concentration
factor for the damaged specimen groups. The lowest KT value of
3.2 was received for the 0.063 inch (1.60 mm) diameter steel
sphere impacts on 0.02 inch (0.51 mm) thick titanium specimens

at an impact angle of 30 degrees. The damage mode was in the
form of a nick with mass removed from the leading edge at the
impact site at a critical velocity of 1154 ft/s (353 m/s).

The highest KT
of 0.250 inch (6.35 mm) diameter steel spheres on a 0.04 inch

value of 4.9 was received for 30 dgree impacts

(1.016 mm) thick titanium specimens. A velocity of 836 ft/s
{255 m/s) was required to generate this damage which was in

the form of bulging with tearing at the impact site. Figure

10 presents a plot of the equivalent stress concentration
values (KT) versus the critical velocity for the titanium
material. Notice that the majority of the various groups of
specimens had a critical velocity value between about 750 ft/s
{228 m/s) and 900 ft/s (274 m/s) and a KT value between 3.4

to 4.9. Typical damage on the titanium material due to the
steel sphere impacts is shown in Figures A.3 through A.14 of
Appendix A. The effects of leading edge thickness and angle of
incidence on the type and extent of damage sustained due to the
particle impacts were investigated and are reported in a later
section of the report. In addition, the applicability of
geometric scaling concepts was investigated which is also

reported in a later section of this report.

The fatigue data in a form of a straight line
taken from Figures A.29 and A.30 of Appendix A for the annealed
and heat-treated steel are presented in Figure 11 as solid lines.
The data are in the form of a plot of the average stress (o)
versus the number of cycles to failure (Nf). The baseline notch
fatigue data for both material conditions are also superimposed

on the plot as dashed lines. The KT values for the notched
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specimens were 1.39, 2.12, and 3.55. Then, using the notch
fatigue data, the damaged specimens of each group could be com- ]
pared by describing the damage in terms of an equivalent stress !
concentration factor. Based on this technique to quantitatively
measure the damage, the KT values for the 0.125 inch (3.18 mm)
diameter steel sphere impacts at 30 degrees on 0.02 inch (0.51 mm)
thick specimens was 1.4 for the annealed group and 2.1 for the
heat-treated group. Notice that the slope for the heat-treated
group (both notch and damaged) is much greater than for the
annealed condition group. This indicates that the heat-treated
specimens are more sensitive to the loading than the annealed
specimens; however, the stress is also higher for the heat-treated 1
specimens. Both groups had a failure mode of bulging with a tear

or rip at the impact site. The annealed group of specimens had

the highest critical velocity level of 922 ft/s (281 m/s) for all

materials at similar test conditions. The critical velocity for

the heat-treated group was 820 ft/s (250 m/s). From this infor-

mation, one can say that the annealed specimens were ductile 1
enough to be able to absorb a substantial amount of energy; how-

ever, it also had the property of being very tough. Typical

damage received for the steel material is given in Figures A.1l5

and A.16 of Appcndix A.

The fatigue data curve from Figure A.31 of Appendix
A for the 0.063 inch (1.60 mm) steel impacts on 0.02 inch (0.51
mm) thick 7075-T651 aluminum material is presented in Figure 12.
Again, the notch fatigue curves as dashed lines are superimposed
to permit determining an equivalent stress concentration factor
(KT) for the damaged group. A KT value of 3.0 was determined for
the 30 degree impacts at a critical velocity of 1003 ft/s (306
m/s). The mode of failure for the specimens was in the form of
nick with mass removal at the impact site as shown in Figure A.l7

of Appendix A.
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3. GEOMETRIC SCALING

-One phase of the investigation was to determine the
applicability, if any, of gecmetric scaling concepts. Geometric
scaling is based on the concept of comparing responses of geo-
metrically similar bodies. In this case, spherical projectiles
of diameter (d) impacting leading edges of thickness (t) are con-
sidered. If the ratio of the projectile diameter and leading edge
thickness is s for two different events, then for a given velocity
(the same for both cases) the ratio of momentum or kinetic energy
is s3. It is assumed that the material density is identical in
both cases. The forces that impacts exerts on the target specimen
have a magnitude ratio of 52 and a duration ratio s. The local
pressure or stress depends only on the velocity and thus is inde-
pendent of s. (Note that the stress due to a one-dimensional im-~
pact against a rigid target is CV, i.e., depends on the velocity
of impact (v) for a given material having density (p) and wave
speed (c). The resistance to bending of a target specimen or
structure varies as s3, s2 due to the thickness, and s for the
width or lateral dimensions. Resistance to shear or penetration
also varies as s3, 32 due to the area of a shear plug, and s due
to the thickness. With identical stresses in both cases, the de-
flections should scale linearly with the ratio s. One can expect,
for example, that the damage in an 0.010 inch (0.254 mm) thick
specimen due to an impact of an 0.063 inch (1.60 mm) diameter pro-
jectile would be geometrically similar to that in an 0.020 inch
(0.508 mm) thick specimen impacted with an 0.125 inch (3.18 mm)

diameter projectile.

The average damage results of a series of tests performed
on leading edge thicknesses of 0.01, 0.02, and 0.04 inch (0.254,
0.508, and 1.016 mm) are given in Table 3. The material for all
the specimens was from the same sheet of 8-~1-1 titanium. The
incidence angle was 30 degrees and the chrome steel projectile
diameters were 0.063, 0.125. and 0.250 inch (1.60, 3.18, and
6.35 mm). Although the impact velocities are not equal for
Table 3 for comparing the various groups, the results indicate
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that linear scaling seemed to work as well as expected, consider-
ing the reproducibility of damage scatter from test to test

because of the difficulty of hitting the leading edge in the same
central location in every test. For linear scaling to be appli-
cable, the damage measurements for the large projectile sizes im-
pacting the thicker specimens should be twice that for the smaller
projectiles impacting the thinner specimens. The equivalent stress

concentration factors should be equal for each group compared.

Based on this information, the tear length for the 0.125 inch
(3.18 mm) projectile impacts on 0.02 inch (0.508 mm) thick speci-
mens is 13 percent higher than would be oredicted by the results
of the half scale impacts for the 0.063 inch (1.60 mm) projectiles
on 0.01 inch (0.254 mm) specimens. The KT value of 4.9 for the
larger projectile impacts on the thicker specimens is also about
17 percent greater than that for the KT of 4.2 received for the
smaller projectile impacts on the thinner specimens. The mode of
damage for these two groups of specimens compared was similar with

bulging and tearing. |

The comparison of the results for the second two groups
of specimens in Table 3 was for 0.063 and 0.125 inch (1.60 and
3.18 mm) projectile impacts on 0.02 and 0.04 inch (0.508 and
1.061 mm) thick specimens. The damage mode for these two groups
was similar with nicks and mass removed from the leading edge.
The width and depth for the larger projectile was 6 percent and
25 percent lower than for the smaller size projectile, respec-
tively; however, the KT value for the larger projectile was about
13 percent too high for linear scaling.

The comparison of the results for the last two groups of
specimens in Table 3 for linear scaling was for 0.125 and 0.250
inch (3.18 and 6.35 mm) projectile impacts on 0.02 and 0.04 inch
(0.508 and 1.016 mm) thick specimens. The damage mode for these
two groups was similar with bulging with tearing at the impact
site. 1In this case, the tear length damage for the larger pro-
jectile was 15 percent higher than predicted for linear scaling.
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The KT value for the larger projectile was also 17 percent higher

than predicted for linear scaling to be applicable.

Based on the results of the three separate groups, linear
scaling seemed to work as well as expected and the consistency of
linear scaling data can be considered as good. The groups with
tearing at the impact site were high as much as 15 percent for
the tear length for linear scaling to be applicable. 1In the case
of the damage mode being a nick, the width and depth damag~ was
low 6 percent and 25 percent, respectively, for linear scaling.

Also, the KT values were off as much as 17 percent for

linear scaling.

Another technique used to investigate the concept of
geometric scaling was to plot the critical velocity versus the
normalized projectile diameter as given in Figure 13. The pro-
jectile size for each of the critical damaged groups was normal-
ized to that causing equivalent damage in an 0.02 inch (0.508 mm)
thick leading edge specimen following the concept of geometric
scaling outlined above. Thus, an 0.125 inch (3.18 mm) projectile
impacting an 0.01 inch (0.254 mm) leading edge thickness was
normalized to an 0.250 inch (6.35 mm) projectile impacting a ref-
erence 0.02 inch (0.508) leading edge. The data of Figure 13 show
a general trend; namely, the critical velocity increases dramati-
cally when the particle size gets smaller than 0.08 inches (2.0
mm) or the particle size becomes smaller than four times the
leading edge thickness. A small decrease in critical velocity is
observed as the projectile increases in (normalized) size above
0.08 inches (2.0 mm). Considering the scatter in the data due to
the difficulty in hitting the leading edge at the same central
location in every test, the consistency of the data is good.

4. EFFECT OF VARIOUS PARAMETERS ON SPECIMEN DAMAGE

Important impact, material, and geometry parameters were
varied in the testing to determine the effect of the various

parameters on the specimen damage.
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The following paragraphs discuss the trend of the specimen
damage or critical velocity for the various parameters varied.

a. Projectile Parameters

The two projectile parameters investigated in the

testing were projectile density and projectile size.
(1) Effect of Projectile Density on Damage

The density of the projectile material
greatly affected the velocity required to obtain critical damage.
The data of Table 2 shows that the critical velocity of 2017-T4
aluminum 0.125 inch (3.18 mm) diameter sphere on 0.01 inch (0.254
mm) thick titanium specimens was 1054 ft/s (321 m/s), whereas for
similar test conditions using chrome steel projectiles the criti-
cal velocity was 700 ft/s (213 m/s). Thus, the aluminum spheres
required a much higher velocity to obtain critical damage on the
specimens. The residual tensile strength of the damaged specimens
for the aluminum sphere impacts was 109.1 ksi (752.2 MPa), while
the tensile strength for the same material for the steel sphere !
impacts was 84.4 ksi (581.9 MPa). Based on these results, the
chrome steel impacts generate much greater damage at lower impact
velocities.

(2) Effect of Projectile Size on Critical

Velocity

The effect of projectile diameter on the
critical velocity values was shown in Figure 13. The plot of the i
critical velocity versus an equivalent projectile diameter with
the data being normalized to a leading edge thickness of 0.02 inch
(0.508 mm) shows that as the projectile size decreases the criti- ]
cal velocity increases at a substantial rate below a projectile
size of 0.08 inch (2.0 mm). Above a projectile size of 0.08 inch
(2.0 mm), a small decrease in critical velocity results as the
projectile increases in (normalized) size.

The effect of projectile size on genera-
ting damage on titanium specimens is shown in Figure 14.
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Figure 14 presents a plot of average net-section stress (0)
against number of cycles to failure (Nf) for the impacts of the
three projectile sizes used in the study. The leading edge thick-
ness of the 8-1-1 titanium material was 0.02 inch (0.508 mm) and
the angle of incidence was 30°. Notice that the KT value or
damage of the 0.063 inch (0.254 mm) diameter sphere was the low-
est at 3.2. The damage mode for this size projectile was a nick
with mass removal at the impact site. The Ko, values for the
0.125 and 0.250 inch (0.508 and 1.016 mm) diameter spheres were
similar at 4.2 and 4.1, respectively. The KT value for the

0.125 inch (0.508 mm) diameter projectile was determined to be
slightly greater than that for the 0.250 inch (1.016 mm) diameter
projectile. The failure mode of these larger projectile impacts
was in the form of bulging with tearing at the impact site. The
critical velocity for the 0.063, 0.125, and 0.250 inch (0.254,
0.508, and 1.016 mm) diameter steel spheres was determined to be
1154, 760, and 745 ft/s (352, 232, and 227 m/s), respectively.
Thus, the critical velocity decreased as the projectile size was

increased.

b. Material Parameters

The three material parameters investigated in the
testing were density, modulus, and yield strength.
(1) Effect of Material Density on Critical
Velocity
The effect of material density on the
critical velocity is presented in Figure 15. Figure 15 gives a
plot of the critical velocity against the density of the 8-1-1
titanium, 4130 steel, and 7075-T651 aluminum material. Data for
the shot-peened titanium is included along with the data for the
steel in the annealed and heat-treated conditions., Based on the
results of this plot, the critical velocity increases with a den-
sity increase; however, changing the hardness of the material or
material surface also affects the critical velocity. Thus, it
can be stated that using the material density is not sufficient
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in determining the critical velocity of a material. The material
hardness or surface hardness must also be known to accurately

determine the critical velocity.

The damage on the three materials is also

affected as shown in Table 2 by the equivalent stress concentra-

tion factor K. The lowest KT of 1.4 was received by the annealed
steel followed by a KT of 2.1 for the steel in the heat-treated
condition. The KT for the alumimum was 3.0. The KT values for

the titanium was 3.2 for the raw titanium, 4.1 for the 5-8N shot
peening, and 4.3 for the 10~16N shot peened condition.
(2) Effect of Material Modulus of Elasticity

on Critical Velocity

The effect of the material modulus of
elasticity on the critical velocity is presented in Figure 16,
Figure 16 gives a plot of the critical velocity against the material ;
modulus for the 8-1-1 titanium, 4130 steel, and 7075-T651 aluminum.
Again, data for the shot peened titanium is included along with
the data for the steel in the annealed and heat-treated conditions.
The plot makes it clear that specimen modulus and critical veloc-

ity are not sensibly correlated.

The damage quantified by the equivalent
stress concentration factor also was affected in the same manner

as for the material density.

(3) Effect of Material Yield Strength on

Critical Velocity

The effect of material yield strength on
critical velocity is presented in Figure 17. Figure 17 gives a
plot of the critical velocity versus the yield strength for the
three basic materials investigated along with that for the shot
peened conditions for the titanium and the heat-treated condition
of the steel material. Based on the results of this plot, no
correlation can be established for the yield strength on the
critical velocity.
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An attempt was made to establish some
correlation by plotting the critical velocity versus the yield
strength divided by the density as presented in Figure 18. Again,
the results of the plot shows that no correlation can be
established.

(4) Effect of Shot Peening Titanium on

Critical Velocity

The effect of shot peening the 8-1-1
titanium on the critical velocity can be determined from Figure
15 which is a plot of the critical velocity versus material den-
sity. Based on this plot and Table 2, the shot peening increases
the critical velocity. The bkasic unpeened titanium material has
a critical velocity of 760 ft/s (232 m/s) for the 0.125 inch i
(3.18 mm) diameter steel impacts on the 0.02 inch (0.508 mm)
thick leading edge. Shot peening the material surface to an
intensity of 0.005-0.008N increased the critical velocity to a
value of 819 ft/s (250 m/s). Increasing the shot peening inten-
sity further to 0.010-0.016N again increased the critical velocity
to a value of 883 ft/s (269 m/s). Thus, the effect of shot peen-
ing can increase the critical velocity by as much as 16 percent.

The effect of shot peening on the damage

is shown in Figure 19 and Table 2. Figure 19 presents a plot of
the average net-section stress (o) versus the number of cycles to
failure (Nf). Notice that the curves are close to one another

which indicates that shot peening has little effect on the damage
received. The equivalent stress concentration factors for the
0.005-0.008N and 0.010-0.016N shot peening intensities are 4.1
and 4.3, respectively. The KT value for the unpeened material is
4.2,

c. Impact Parameter

The impact parameter investigated in the testing
was the angle of incidence.
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(1) Effect of Incidence Angle on Critical
Velocity
The effect of the incidence angle on the
critical velocity is shown in Figure 20. Figure 20 gives a plot
of the critical velocity versus the impact angle for the steel

sphere impacts on the 8-~1-1 titanium material. The data of

Figure 20 shows that the angle of incidence has very little

effect on the critical velocity.

The effect of the incidence angle on the
damage received is shown in Fiqgure 21. Figure 21 gives a plot
of the average net-section stress (o) versus the number of cycles
of failure (Nf) for the various angles of incidence. Based on
the results of this plot and Table 2, the curves tend to flatten
out for the 7.5, 15 and 45 degree impacts compared to the 30 de-
gree impacts. The slope for the 15 and 45 degree impacts is very
similar. The equivalent stress concentration factors (KT) were
determined to be 3.6, 3.4, 4.2, and 4.1 for the 7.5, 15, 30, and
45 degree impacts, respectively. Thus, KT increased appreciably
between 15 and 30 degrees. The 30 degree impacts gave the high-
est KT
expect the greatest damage for the 45 degree impacts and this

value for the various angles of incidence. One would

difference may be attributed to the scatter in impacting the
exact center of the leading edge repeatedly.

d. Specimen Geometry

The specimen geometrical parameter investigated in
the testing was the leading edge thickness.
(1) Effect of Leading Edge Thickness on
Critical Velocity
The effect of the leading edge thickness
on the critical velocity is shown in Figure 22. Data for glass
and sand particle impacts of Reference 1 are included in the
figure. Figure 22 plots the critical velocity against the
leading edge thickness of the titanium material for 30 degree
impacts. All of the data were normalized using linear scaling
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to a 0.125 inch (3.18 mm) diameter projectile. The solid line
presents the data for the chrome steel sphere and it shows a
trend of increasing critical velocity as the leading edge thick-
ness is increased as one would expect. The dashed line curve
for the glass and sand particle impacts of Reference 1 shows

the same trend except that it has a much greater slope than for
the steel sphere impacts. This greater slope may be attributed
to particle breakup which was experienced in the Reference 1

work for the glass particles.

The damage received for the various
leading edge thicknesses is quantified in Figure 23. Figure 23
gives a plot of the average net-section stress (o) against the
number of cycles to failure. The equivalent stress concentration
factors (KT) for the 0.02 and 0.04 inch (0.254 and 0.508 mm)
thick titanium speciniens were determined to be 4.2 and 3.6,
respectively for the 0.125 inch (3.18 mm) diameter steel sphere
impacts at 30 degrees. For the larger 0.250 inch (6.35 mm) {
diameter steel sphere impacts at 30 degrees, the KT values from
Figure 10 and Table 2 were determined to be 4.1 and 4.9 for the
0.02 and 0.04 inch (0.254 and 0.508 mm) thick leading edge
specimens. Thus, the trend for the 0.125 inch (3.18 mm) diameter
projectile impacts was that the damage decreased as the leading
edge thickness was increased. For the larger 0.250 inch

(6.25 mm) projectile impacts, the trend was opposite that for

the 0.125 inch (3.18 mm) projectile impacts. The trend for the
larger projectile impacts was that the damage increased as the
leading edge increased. This may be attributed to the much
higher critical velocity required for the larger projectile
impacts on the thicker leading edge. For the 0.04 inch (1.016 mm)
thick specimens, the critical velocity was 802 ft/s (244 m/s) for
the 0.125 inch (3.18 mm) diameter projectiles and 836 ft/s

(255 m/s) for the 0.250 inch (6.35 mm) diameter spheres. For

the 0.02 inch (3.18 mm) thick specimens, the critical velocity
was 760 ft/s (232 m/s) for the 0.125 inch (3.18 mm) projectiles
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and 745 ft/s (227 m/s) for the 0.250 inch (6.35 mm) projectiles.
Note that the larger projectile impacts on the thicker targets
required a higher critical velocity than for the smaller pro-
jectile impacts on the thicker targets. This is opposite of
what one would expect; however, the mode of damage for the
smaller projectile impacts was a nick with mass removal at the
impact site while the damage mode for the larger projectile
impacts was bulging with tearing at the impact site. The data
for the 0.125 inch (3.18 mm) diameter sphere impacts on the
0.04 inch (1.016 mm) thick leading edge is tending to indicate
that this projectile size may be too small for this leading

edge thickness.
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SECTION 1V
SUMMARY AND CONCLUSIONS

Leading edge impact damage was studied by performing a
series of hard particle impact tests on three materials and vis-
ually observing the damage. The materials investigated were
8-1-1 titanium, 4130 steel in the annealed and heat-treated con-
ditions, and 7075-T651 aluminum. The concept of a critical veloc-
ity to guantitatively evaluate damage was investigated. Fatigue
and residual tensile tests also were used as a measure of damage
and the concept of an equivalent elastic stress concentration
factor to characterize severity of damage was investigated.
Fatigue and residual tensile tests also were used as a measure of
damage and the concept of an equivalent elastic stress concen-
tration factor to characterize severity of damage was investigated.
Finally, geometric scaling was examined by using different leading

edge thicknesses and various projectile sizes.

The conclusions for the various parameters investigated in !

E the study are given in the following paragraphs.

1. CRITICAL VELOCITY

The study involved determining the critical velocity region

for various material and test conditions where the damage was

either in the form of bulging with tearing of the leading edge or
nicks with mass removal at the impact site.

The aluminum sphere impacts on titanium material required
the highest impact velocities to generate damage where tears or
rips were received with bulging at the impact site. The aluminum
spheres were not suitable for testing because they were observed
to be substantially deforming plastically during the impact event;
therefore chrome steel spheres were substituted for the aluminum
spheres. This switch was made to avoid the uncertainty surround-
ing the effect of projectile deformation upon the damage inflict-

ed on the test specimens.




For the steel sphere impacts using a projectile diameter
cf 0.125 inches (3.18 mm) and similar test conditions, the 4130
steel in the annealed condition had the highest critical velocity
of 922 ft/s (281 m/s). The shot peened (10-16 N intensity ti-
tanium had the next highest critical velocity of 883 ft/s (269
m/s). The shot peened titanium (5-8 N intensity) and 4130 steel
in the heat-~treated condition had a similar critical velocity of
819 ft/s (250 m/s). The basic titanium material had a critical
velocity of 760 ft/s (227 m/s) while the alumunum material had
the lowest critical velocity of 675 ft/s (206 m/s). 3

2. FATIGUE

Small sphere particle leading edge impacts do cause damage
and have a detrimental effect on the fatigue strength of the
target material. The technique used to characterize the impact
damage was to use fatigue tests to determine an equivalent elastic
stress concentration factor for the severity of damage using 1
machined notch specimens which were fatigue tested to provide the
baseline data. This technique was developed in a previous study

(Reference 1). The extent of damage from a range of particle
sizes on the various materials was evaluated guantitatively by
performing a series of fatigue tests at various load levels on
specimens impacted under nominally identical conditions. The data
demonstrated reasonable reproducibility and the extent of a par-
ticular type of damage was categorized in terms of an equivalent
elastic stress concentration factor (KT) using notch fatigue

data for the various materials. For similar test conditions, the
4130 steel in the annealed condition had the lowest Kp of 1.4
followed by the heat-treated material with a Ko of 2.1. The basic
and shot peened titanium material had a similar Ko value of about
4.2. Damage for the aluminum material was substantial; therefore,
the tensile test was substituted for the fatigue test and its
residual tensile strength was 77.4 ksi (533.3 MPa).

Based on this information, the 4130 steel was less sensitive
to fatigue degredation than the other materials.




3. SCALING

The concept of geometric scaling was investigated by per-
forming a series of impact tests using different leading edge !
thicknesses H»f titanium and different projectile sizes. Obser- !
vation of tne type of damage, the damage measurements, and the :
fatigua tests appeared to validate the scaling concept. It was
demonstrated that the tear lengths were high as much as 15 percent
for the larger projectile impacts for linear scaling to be appli-
cable. For damage in the form of a nick, the width and depth dam-
age for the larger projectile impacts was low 6 percent and 25
percent respectively for the linear scaling. Also, the Ko values 1
for the larger projectile impacts determined from the fatigue
tests were high about 17 percent for linear scaling to be
applicable.

A plot of critical velocity versus particle size (in re-
lation to leading edge thickness) also appeared to validate the
scaling concepts. Use of scaling allows one to consider 4/t
(projectile diameter/leading edge thickness) as a useful impact !
parameter. The data showed that the critical velocity increases
dramatically when d/t < 4. Considering the amount of scatter in
the data due to the difficulty in hitting the leading edge at the
same central location in every impact tests, the scaling law
seemed to work quite well over the ranges investigated.

4. PROJECTILE DENSITY

The effect of projectile density was considerable for
critical velocity determination. The more dense projectiles
cause greater damage. The aluminum spheres required a much high-
er velocity to obtain critical damage on the specimens than for
the chrome steel spheres. As indicated earlier, the steel spheres
were substituted for the aluminum spheres when the aluminum 1
spheres were observed to be plastically deforming during the im-

pact event.
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5. BLADE MATERIAL PARAMETERS

No correlation could be established between the =: tical
velocity and the material density, modulus of elasticity, or

yield strength.

An attempt was made to establish some correlation by plot-
ting the critical velocity versus the yield strength divided by
the material density. Again, the plot showed that no correla-

tion could be established.

6. ANGLE OF INCIDENCE '

The effect of angle of incidence on the critical velocity
was examined very briefly. Within the range of projectile and
target dimensions investigated, the change in the critical

velocity as a function of the impact angle was minor.

Specimen damage is shown in Figure 21, both as failure
stress for various numbers of cycles and as KT values. Damage
increased as the impact angle increased from 15 to 45 degrees.
However, no consistent ranking between 7.5 and 15 degrees or

30 and 45 degrees was possible.

7. LEADING EDGE THICKNESS

As the leading edge thickness was increased, the critical

velocity also increased. This is what would be expected.
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PHOTOGRAPHS AND RESULTS
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Figure A.1l. Typical Damage on 0.254 mm Thick Titanium Due to
1.60 mm Diameter Aluminum Sphere Impact at 30°.
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Figure A.2. Typical Damage on 0.254 mm Thick Titanium Due to
3.18 mm Diameter Aluminum Sphere Impact at 30°.
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Figure A.3. Typical Damage on 0,254 mm Thick Titanium Due to
1.60 mm Diameter Chrome Steel Sphere Impact at 30°.
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Figure A.4. Typical Damage on 0.254 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Tmpact at 30°.
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Figure A.5. Typical Damage on 0.508 mm Thick Titanium Due to
T 1.60 mm Diameter Chrome Steel Sphere Impact at 30°.
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Figure A.6. Typical Damage on 0.508 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Impact at 30°,
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Typical Damage on 0.508 mm Thick Titanium Due to
6.35 mm Diameter Chrome Steel Sphere Impact at 30°.

Figure A.7.
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Figure A.8. Typical Damage on 0.508 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Impact at 7.5°.
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Typical Damage on 0.508 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Impact at 15°,

T

Figure A.9.




Figure A.10.
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Typical Damage on 0.508 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Impact at 45°.
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Figure A.ll. Typical Damage on 1.016 mm Thick Titanium Due to
3.18 mm Diameter Chrome Steel Sphere Impact at 30°.
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Figure A.12. Typical Damage on 1.016 mm Thick Titanium Due to
6.35 mm Diameter Chrome Steel Sphere Impact at 30°.
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Figure A.13. Typical Damage on 0.508 mm Thick (5-8N Shot Peened)
Titanium Due to 3.18 mm Diameter Chrome Steel Sphere
Impact at 30°.
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Figure A.14. Typical Damage on 0.508 mm Thick (10-16N Shot Peened)
Titanium Due to 3.18 mm Diameter Chrome Steel Sphere
Impact at 30°.
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Figure A.15.
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Typical Damage on 0.508 mm Thick Steel in Annealed
Condition Due to 3.18 mm Diameter Chrome Steel

Sphere Impact at 30°.
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! Figure A.16. Typical Damage on 0.508 mm Thick Steel in Heat-
Treated Condition Due to 3.18 mm Diameter Chrome
Steel Sphere Impact at 30°.
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Figure A.17. Typical Damage on 0.508 mm Thick Aluminum Due to
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1.60 mm Diameter Chrome Steel Sphere Impact at 30°.




Figure A.18.
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Typical Damage on 0.508 mm Thick Aluminum Due to

3.18 mm Diameter Chrome Steel Sphere Impact at 30°.
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APPENDIX B

IMPACT TESTS
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