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\/ ABSTRACT

A simple mathematical formalism is presented suggesting a
mechanism for computing relative depth of any two texture elements
characterized by the same relative motion parameters. The method
is based on a ratio of a function of the angular velocities of
the projecting rays corresponding to the two texture elements.

The angular velocity of a ray cannot, however, be computed direct-
ly from the instantaneous characterization of motion of a
"retinal" point. It is shown how it can be obtained from the
(linear) velocity of the image element on the projection surface
and the first time derivative of its direction vector. A similar
analysis produces a set of equations which directly yield local
surface orientation relative to a given visual direction. The
variables involved are scalar quantities directly measurable on
the projection surface but, unlike the case of relative depth,
the direction of (instantaneous) motion has to be computed by
different means before the method can be applied. The relative

" merits of the two formalisms are briefly discussed.
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1. Introduction

Optical flow is the distribution of angular velocities of pro-
jecting rays due to relative motion of objects with respect to
the observer. Conceptually, optical flows undoubtedly carry a
wealth of information about the spatial arrangement of the
viewed scene, and prominent psychologists such as Gibson (1950,
1979) have argued forcefully for the predominant role of this
information in human vision. Discontinuities in the distribution
of angular velocities have been shown to directly correspond to
occluding (or self-occluding) edges (Nakayama and Loomis, 1974).
Corresponding discontinuities in "retinal” motions thus offer
powerful information for segmentation purposes. Some recent work
has illuminated some of the relationships between variables
directly involved in the formation of optical flows (Koenderink and
van Dcorn, 1975, 1976, 1977; Longuet-Higgins and Prazdny, 1980;
Prazdny, 1980).

The purpose of this paper is to present a mathematical analy-
sis of some relations containing information about spatial dis-
positions of a set of texture elements. Using the concept of
polar projection as the model for the physical image-forming
process we show that the relative depth of two texture elements
can be computed as a simple ratio. The entities involved are the
angular velocities of the rays through the texture elements and
the center of projection, and the visual directions of the rays,

which are unit vectors specifying the directions of the rays in
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some egocentric reference frame centered at the center of pro-
jection. We show that the angular velocity at an image loca-
tion can be obtained from the image velocity vector and its first
time derivative at that locus.

A slightly different analysis requiring an a priori know-
ledge of the direction vector of the translatory component of
the relative motion leads to an interesting characterization of
local surface orientation.

Underlying our research on the interpretation of image
motions is the assumption that (an approximation to) the velocity
vectors associated with individual image elements can be obtained
with reasonable accuracy. Some recent research regarding the
computation of "retinal" velocities directly from the image
brightness values (Hadani et al. 1980; Horn and Schunck, 1980)
supports this assumption. Other promising support comes from the
research on discrete solutions to the correspondence problem
(Ullman, 1979; Barnard and Thompson, 1980) which relies on match-

ing various higher-level image "token" structures.
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2. The basic image forming geometry

To begin, let us first consider motions of the projecting
rays independently of any particular projection surface. Refer
to Figure 1. A texture element P projects, along the ray OP,
into the image element Q on the unit sphere centered at the
center of projection, O. As the object moves relative to the
observer, the ray OP (instantaneously) rotates about an axis
through O causing the image element Q to trace a path (T3) on
the unit sphere.

Consider a unit vector (Q) determining the direction of the
ray OP at a given instantr<Note 1>. 1Its velocity is d/dt(6)=é.
© is perpendicular to 6. As the ray moves with angular velocity
Q moves along T3 with (linear) velocity 6 (=v'). The two velo-
cities are related by 6ééxa. Later we will show how the velocity
v" of an image element on the projection plane relates to the
velocity é of the unit vector Q. For the moment it suffices to
note that the equation 6=éxa does not determine A uniquely; it
only constrains A to lie in the plane a normal of which is 6
(see Figure 8 for further explanation).

The motions of the object and/or the observer are relative,
i.e., we can only resolve the motion of the object relative to
the observer (or vice versa).  The (instantaneous) motion of an
object with respect to the observer (in the reference frame in
which the observer is stationary) can always be described as a
rotation (with some angular velocity AR) superimposed on a trans-

lation specified by a vector v. The axis of rotation can be

A,
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chosen, without loss of generality, to pass through the center
of projection (Chasles' theorem) to remove the ambiguity
(Whittaker, 1944). The total (linear) velocity of an environ-
mental point P (with position vector P) is then V=v+AxP. An
equivalent expression in terms of the angular velocity of the
projecting ray OP is

(1) A=Ap*Ag
where éT is the angular velocity due to the translation alone,
and A, is the rotational component (note that the values of Ay
and v specify relative motion, and not, in any sense, the actual
3D motion of the object). The simplicity of equation (1) results
from the fact that angular velocities about a common point add
vectorially (Weatherburn, 1965). Observe that éR does not vary from
point to point on a rigid body; it is a property of the body as
a whole and independent of distance or visual direction. Aq, on
the other hand, is a function of visual direction and the distance
of the texture element to the center of projection (see below).
Of these two component fields, only AT carries information about
relative distance. We will not derive an expression for AT here.
The reader is referred, for example, to Nakayama and Loomis (1974)
or Prazdny (1980) for a detailed discussion. Briefly, when the
object translates relative to the observer, individual rays of
projection all move in the same plane (different for different
rays). The direction of Ar is normal to this plane spanned by
the vectors v and Q. The magnitude of A, is equal to dB/dt where

B is the angle between the direction of translation and the given
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ray (see Figure 2). A, is then given by

(2) A,=dp/dt (vxQ)/sin(B)=v/S (vxQ)
where S=|0P| is the distance of a given texture element to the
center of projection.

The observation that enables us to derive an expression for
the relative depth of any two texture points moving in the same
way relative to the observer concerns equation (1). Consider any
two points P.» Pj on the same object <Note 2>. From equation

(1) it follows that
(3)  A;=A,.+A. and éj=éTj+éR

We see that because Ap is the same for the two points it cancels

out when the angular velocities are subtracted:
(4) By =R;-RAy=Rp; -Apy
Using (2) and substituting we obtain
(5) {-\_ij=vx (kiQi-kaj)
where ki=v/Si. We form the scalar product of both sides of (4)
with (kiQi~kaj) to obtain

(6)  ky(A;4.0;)-k; (3, 4.05)=0

This is because the scalar triple product involving one vector

j'ai and substitute back into

twice is always zero. We set a;=A,
(5):

(7) ai/aj=si/sj
In other words, the relative depth of any two points having the

same relative motion parameters (v and Ap) is computable as a

simple ratio. Observe that (6) does not involve A, or v; relative

.
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depth can be computed independently of relative motion. This is

a simple but important finding. 1In general, all mathematical for-
malisms for computing surface orientation or 3D structure from

] motions on the projection surface depend (implicitly or explicit-
ly) on computing the rotational component of the relative motion
first (e.g., Ullman, 1979; Longuet-Higgins and Prazdny, 1980;
Prazdny, 1980). To obtain Aps One has to solve a set of non-
linear equations whose coefficients are the velocity vector compo-
nents of at least five neighboring image elements (Prazdny, 1980),
or use the first and second spatial derivatives of the image velo-

city field to obtain enough information to solve for A

Ap and v

( directly as an integral step in computing the local surface orien-
' tation (Longuet-Higgins and Prazdny, 1980). Ullman's scheme
N (Ullman, 1979), which uses orthogonal projection and relies on a
theorem from affine geometry (the structure-from-motion theorem
<Note 3>), uses not only spatial information (mutual position of
a set of image elements) but also temporal information (the rela-
tive position of a given image element in successive snapshots)
to recover the rotation of the configuration prior to the compu-
tation of relative depth [see Meiri (1980) for some comments on
the number of image points and snapshots necessary to solve for
the relative motion parameters]. Of course, the assumption of
orthogonal projection works only for some situations. )

In contrast, equation (6) above only requires that the

angular velocities (Ai'éj) at two visual directions (5i,6j) be ﬁ
known. Unfortunately the angular velocity at a "retinal" locus

cannot be computed from the information available at that locus




at an instant. The equation v'=Ax(Q does not specify A uniquely
(see also Figure 8). The angular velocity of a ray through an
image point can be obtained only when some additional information
is available. We show that it can be computed when the vector
specifying the time rate of change in the direction of the "retinal"
velocity is available,

To see this consider Figure 3. Due to (relative) motion of
a texture element, the ray specified by the direction vector Q
rotates about O so that Q moves on the surface of the unit sphere
with some velocity g'=é. To find the instantaneous plane of rota-
tion of Q it is sufficient to apply a few concepts from elementary
differential geometry. Observe that v', the unit vector in the
direction of 6, is the unit tangent to the path at Q. This means
that 3' is in the direction of the principal normal at Q. Toge-
ther, v' and 3- span the plane on which lies the circle of curva-
ture at Q. In other words, the plane a normal of which is V'X%'
(this vector lies in the direction of the binormal vector at Q)
is the plane of instantaneous rotation of Q, and A, the angular
velocity vector of Q, must lie in the direction of this vector.
Observe that here we bring in temporal information to obtain the
angular velocity vector. Other kinds of additional information are
possible. 1In the next section we show, for completeness, how v'
ahd é' relate to "retinal" variables when the projection surface
is a plane. Then we analyze a method for computing local surface
orientation directly, without computing the relative depth map

first.




3. Computing the angular velocity of a projecting ray from

"retinal" variables

In this section we assume that the projection surface is a
plane at unit distance from O. As the projecting ray rotates
about O with some angular velocity A, Q moves with velocity v'
along T3, and QFQa, the point at which the ray pierces the pro-
jection plane, moves with velocity v" along T2 (see Figure 4).
Observe also that T3 is a perspective transformation of T2 and vice
versa. For example, if T3 is a circle, T2 could be any conic
section. The exact type of the curve will depend on the mutual
orientation of the plane containing T3 (determined by the direc-

As mentioned

tion of the angular velocity vector A) and PP.
above, the angular velocity vector A is normal to the instantane-~
ous plane of rotation of the ray OP, i.e., parallel to the binor-
mal vector. Our first task is thus to determine the direction of
the binormal vector associated with the motion of Q. First, we
express 652' in terms of the velocity of the image element at a
given point, and then we will find the direction of A as the
vector product of v' and 3'. We will establish a few interesting
auxiliary relations before proceeding further.

Consider Figure 5. The figure illustrates the fact that the
projection of a segment with magnitude v' along a perpendicular
to a given line 2 on another line L, which makes an angle A with
line & is v"=v'Q/(sin(X)-v'cos(A)). We will refer to this equation
as the "radial projection equation." Next we will establish a
e ...t ¢+ cprising fact about the relation between the velocity of

a point and the velocity of its projection. We will first
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consider, for simplicity, only planar motions, but the relation
holds for space motions too (see below). Consider Figure 6.
Suppose that the point 'a' moves along a circular trajectory C
so that its distance to O remains unchanged. The (infinitesi-
mal) displacement is d¢. The displacement of the projection of
‘a' on %, is tan(d¢). The displacement of the projection of 'a’
on &, is otan(d®)/[sin(A)-cos(A) tan(d?)] (using the radial pro-

jection equation). To compute the relation between the velo-

cities on C and 22, we divide by dt and take the limit as dt-+0:

lim [ Qtan (d¢) ;L_] - ; Q
dtag 'sin(X)-cos(M) tan(de) dt sin(X)

This is because ®?(t) is a continuous function of t, and lim[tan
(x)/x)=1 as x»0. This means that when a point 'a' moves along
a path with speed v', its projection on the line 22 moves with
speed-

(8) . v"=Qv'/sin(})
In other words, the velocity of the projection of a point moving
along a curve'is not the projection of the velocity with which
tke point moves along that curve <Note 10>. This relation holds
also in 3D space <Note 4>, Next we will derive the equation which
will enable us to express the angular velocity in terms of the
image velocities.

Refer to Figure 4. As Q moves along T3, its projection QQ
on PP moves along T2 with velocity

(9)  v"=d/dt(Q0) =Q0+00=Q0+Qv’

along T2. Observe that v",v', and Q all lie in the same plane




<Note 4>. This means, however, that the following two vector
equation hold simultaneously:

(10) v'xQ=(v" Q) /sin(A) and Vv'.0=0

We can solve for v' from these two simultaneous vector equations
<Note 6> to obtain

(11) v'=0x (v"xQ) /sin(A)=csc (M) v"-cot (A1) Q

This is the main equation. Note that V' is the unit tangent to
T3 at Q. 1Its first time derivative, 3', thus lies along the
principal normal to T3 at Q. Their vector product in turn spe-
cifies the direction of the sought angular velocity vector A.
Differentiating (11l) we obtain

(12)  v'=csc(A)v"-Acsc (M) {cos (M) V"-0}-cot (M) v

Taking the vector product of (12) with v' and using the relation
v'xv=cos(A) (v'xQ) leads to

(13) v'xv"=csc (A) (T'x0")+A (V' x0)

Substituting for v' from (11), for v' from (8), and simplifying,
we finally obtain

(14)  ¥'xv'=Qcsc (1) 2 (F"-cos (1) Q) xv"+QAcsc (A) (¥ xT)

Now, A=d/dt()) can be expressed in terms of v" and the relation
between the visual direction Q and the projection plane PP (its
unit normal). Using v'.Q=cos(A) and differentiating we obtain

(15)  A=-csc(A) (V".0+v".0) =—csc (A) (V".Q+7".¥")

However, v".v'=(v'sin(\)+Qcos(}A)).v'=v'sin(}), because v'.Q=0

by definition. Substituting for v' from (8) yields




(16) i=-csc(k)(3".5)-v"sin(k)/Q

Equations (l4) and (16) indicate that the direction of the
: angyular velocity vector at a visual direction Q can be deter-
mined completely once the image velocity vector v" at the locus
on PP corresponding to the visual direction Q, and the first
time derivative of the direction vector of v", are available.
The only other gquantities entering the equation are Q and A,
expressing the metrics of the projective system <Note 6>. :
Observe that the direction of the vector é" is known as
soon as v" is known. Because T2 is a planar motion, v lies :
in PP, and is perpendicular to v". Referring to Figure 7, we
5 ( see that the direction of v", V" is specified by v"=cos(n)x +
sin(n)y where X and y are a set of mutually perpendicular unit
vectors on PP, é“ is thus given by
(17)  v"=n[-sin(n)X + cos(n)y]
and the magnitude of 3" is 6.
Finally, it remains to specify the magnitude of A. Observe
that A, the magnitude of A, is a function of the mutual orienta-

tion of A and the direction vector Q. This is related to the

already mentioned fact that-v' and Q do not specify A uniquely ‘%
(see Figure 8). Using v'=AxXQ we see that v'=v'v'=A(AxQ)=Asin(w)V"', !
and from this it follows directly that

(18) =v'/sin(w)=v"sin())/[Qsin(w)]

Here, w is the angle between A and Q, and cos(w)=A.Q.




4. Computing local surface orientation

In this section, we analyze a method of computing local sur-

face orientation relative to a given visual direction. An inter-

esting result will be that the directions of angular velocity
vectors are not required explicitly. However, we cannot obtain
something for nothing; the analysis requires an a priori know-
ledge of the (instantaneous) direction of motion (the direction
of the translatory component of the relative motion).

First, let us express vectors in a cartesian (rectangular)

coordinate frame as a function of two angles a and 8. Then, for

( a given visual direction Q(a,B), we can compute dA/da and 3A/3B.
Using equation (3), it is easy to see that

(19)  3A/30=3A,/3a and 3A/BB=3A,/38.

in other words, the information contained in the gradient of the
angular velocity field in the given visual direction is equiva-

lent to the information contained in the gradient of its transla-

tory component. This is not surprising, for as we saw above, only

the translatory component carries information about depth rela-
tions between the 3D texture elements.

Let us find expressions for BQT/aa and BQT/BB and analyze
them to see how local surface orientation is specified in these
expressions. If a and B are chosen such that the vector corres-
ponding to a=0 and B=0 specifies the direction of the translatory
component v, we see that K& does not change as we move on the

plane a=const. Using this fact and differentiating (2) with

respect to B yields




(20)  3A,/08=0A/3B A,

Now, R=vsin(B)/S (see Figure 2), and dA./38=38/3B. Thus,

(21) aé/as=vcos(ﬁ)/5—ése/s where SB=§%

Multiplying both sides by tan(B8), and recalling that B=vsin(8)/S,
we see that
tan(B)3R/38=B-Btan(B) SB/S so that

(22)  §,/S==1/8138/38]+cot (B)

To derive a similar expression for Sa/S requires a little
more ingenuity. Differentiating equation (2) with respect to «a
yields

(23)  3AL/d =-sin(B) [v/S} IS /S1AL+[v/S](vxQ )

But we have also

(24) BAT/8a=8(ATAT)/8&=3AT/8aAT+AT8AT/8a=8B/BaAT+§

where X is some vector which does not have to be specified in

detail (for our purposes). It can be seen immediately that
(25)  38/d0a=-[S_/S]v sin(g)/S

and from this sa/s is specified as

(26) s /S=-11/8136/3a

The quantities Sa/S and SB/S are depth invariant characterizations
of (local) surface orientation relative to a particular visual
direction Q(a,B) <Note 8>. 1In fact, they are directly related

to the gradient of the distance. Because of the dependence of
this specification of local surface orientation on a particular
visual direction (defining thesurfaces of constant a and B), two

different surface orientations cannot be directly compared. To




do so, one could transform one characterization into another
using a simple rotation matrix. It is important to realize that
the expressions characterizing the (local) surface orientation
in a pure translatory situation hold also in a general situation
of a curvilinear motion. The only prerequisite is (as in the
pure translation case) that the direction of the instantaneous
motion (i.e., the direction of the translatory component of the
curvilinear motion) is known. The knowledge of v allows us to
define, for each "retinal" locus, a direction along which o=const.
By projecting the "retinal" velocity vector into this direction
we obtain é, and by differentiating these "retinal" velocities
along the directions a=const. and B=const. (see Figure 10)
we obtain aé/aa and aé/ae.

If this process is to be carried out on the projection plane,
the best thing to do is to locate the focus of expansion which
then determines the lines a=constant as the lines joining the
focus of expansion and the particular "retinal" locus. The locali-
zation of the focus of expansion (FOE) is a difficult task. One
may try to decompose the image velocity field there into its con-
stituents. The rotational component of the angular veloctiy vector
at a given instant can be decomposed into two image velocity fields:
one, a hyperbolic field (the component vectors being tangent to
hyperbolas through given loci) due to rotation about an axis
through the center of projection parallel to the projection plane,
and the other, a circular field (the component vectors being tan-

gent to circles with centers at the center of the image coordinate
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system) due to rotation about the normal to the projection plane.
The remaining translational component would consist of vectors
defining the focus of expansion (possibly at infinity) as the
unique intersection of all straight lines defined by these vec-
tors and the corresponding "retinal" loci. The whole process

is essentially a constrained minimalization problem of a func-
tion of three variables: the magnitude of the circular component,
the direction of the hyperbolic field (specified by a single
angle), and the magnitude of the hyperbolic field (see Figure

11). The constraining condition is that the straight lines of
the translational component meet at FOE. Note that such a pro-
cess, if successful, would essentially recover the translational as
well as the rotational component of the angular velocity vector A
(see equation (l)). We are currently trying to solve this prob-

lem using a relaxation scheme <Note 9>.




5. conclusion
In this paper we have shown that the relative depth of any

two texture elements moving in the same way relative to the ob-
server can be computed in a simple way from the angular velo-
cities of the corresponding rays of projection. We have illus-
trated how the required angular velocity at a point on the planar
projection surface can easily be computed from the (linear)
velocity of the image element at that locus, and the first time
derivative of its direction vector. We have also shown that
local surface orientation can be obtained rather straightforwardly
once the direction of the translatory component of the relative motion
is known. The recovery of this direction from the information

- contained in the distribution of the "retinal" velocities is a
rather complicated task. It is hoped that it may be possible to
decompose the instantaneous velocity field on the projection plane
into its constituents using a relaxation process. Some work on

this problem is currently in progress in our laboratory.

The applicability of the method will depend on the accuracy
with which the image velocities can be obtained. It remains to
be specified how these errors will propagate through the equations
and affect the accuracy of the computed relative depth and local
surface orientation.

The computation of relative depth and local surface orienta-

tion were presented as two distinct processes. This does not

have to be so. Local surface orientation may be obtained from a
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relative depth map, for example, by simply fitting a plane to

a set of relative depth values in a given (small) neighborhood.

I believe that the relative depth map is practically a much more
useful construct than local surface orientation. Because the
available data are noisy, the computation of local surface ori-
entation relying on quantities obtained in a small neighborhood
of a "retinal" point is likely to be affected much more than

the rclative depth of two widely separated points, where the

two angular velocities can be obtained much more precisely, e.g.,

by averaging over a small neighborhood.
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Notes

<Note 1>

The following notation is used throughout the paper.

If v is a vector then v is a unit vector in its direction, and v
is the magnitude of v. The scalar product is denoted by ".", and
the vector product by "x". All velocities, position vectors, and
the associated quantities are functions of time. This is assumed
implicitly throughout the paper. i and v denote the time deri~
vatives, asz .asuai. Angular velocities are vectors perpendicular
to the plar4 ¢f (instantaneous) rotation, with magnitude equal to
angular speed (radians/sec).

<Note 2>

The texture elements can be on two different objects as long as
the objects move in the same way relatively to the observer (i.e.,
have the same v and 5R)' Thus, for example, in the stationary
world where the observer is the only moving agent, the relative
depth of all texture elements can be recovered using the present
method. A

<Note 3>

The structure-from-motion theorem states that the relative depth

of four non-coplanar points is recoverable from three non-degenerate
orthographic projections. The mutual orientation of the projection
planes has to be determined before the actual relative depth of

the four points can be computed. The recovery of the mutual orienta-
tion of the projection planes is an integral part of the schema.

<Note 4>

To see this, note that !"=d/dt(06)=56406

Now 6=g' and v'.Q0=0. Thus v"xQ=Q(v'xQ), i.e., v', v", and Q all

lie in the same plane. Setting n to be the unit normal of this plane,

we have v'xQ=v'n; but also v"xQ=v"sin(A)n (see Figure 4). Thus
n=(v'*xQ)/v'=(v"xQ)/v"sin()). Substituting for v"xQ we obtain

(v'xQ)/v'=Q(v' xQ) /v"8in()A) and so v'=v"sin())/Q, as stated in (8).

o~ — - - i . e = o e~ —




<Note 5>
A set of vector equations of the form

X x A=B and X.C=p

where A.C# 0, has a general solution X=(pA+CxB)/(A.C).

<Note 6>
Given the unit normal m defining the projection plane PP, these
gquantities are computable easily as

Q=1/(3.m), and A is given by cos(A)=(Q.V").

<Note 7>

As can be seen in Figure 9, KT is the same for all Q(a,B) on the
plane a=const.;_it is the unit normal of this plane. It follows
directly that %%1 = 0,

<Note 8>
Expressions similar to (22) and (26) were also independently ob-
tained by Clocksin (1980) using a different approach.

<Note 9>

While the problem is conceptually rather simple, there are some
difficulties relating to the formulation of the criterion function
to be minimized. The difficulty is related to the fact that the
projection plane is an augmented Euclidean plane, in terms of pro-
jective geometry. For example, the translational vector components
on the plane may all meet at an (ideal) point at infinity. It is
rather difficult to incorporate this condition into a nicely behaving
criterion function.

<Note 10>
This result is intuitively rather surprising. It follows directly,
however, from the definition of the angular velocity (see Figure 2).




Figure 1. A texture point P projects into a point ¢ on the unit
sphere. The direction vector of the projecting ray OP is determined
by the two angles, a, the meridian, and B, the eccentricity; the
vector Q is a function of o and B. The plane a=0 and the direction
(u=0,8=0) are arbitrary, but it is advantageous for the future
analysis to choose them so that the principal x-axis coincides with
{ the direction vector of the translatory motion component.
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Figure 2. The angular velocity of a ray due to a pure translation.
The angular speed is defined as d8/dt, i.e., as the projection of
v on the perpendicular to the ray, divided by the distance S.
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Figure 3. To compute the direction of the angular velocity vector
of the ray specified by the visual direction {, observe that Q moves
(on,a 3D path on the surface of the unit sphere) with velocity !
v'=Q. Because v' is the unit tangent to this path, V lies in the
direction of the principal normal to the path at Q. The unit bi-
normal yector at @, which is perpendicular to the plane spanned by
v' and V', is parallel to the angular velocity vector A of Q.
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Figure 4. The basic projection geometry. The ray, determined by

its direction vector Q, moves due to the relative motion of the
object with respect to the observer. The point QQ=Q at which it
pierces the planar projection surface, PP, describes a planar trajec-

tory T2. The unit vector Q describes a 3D trajectory T3. The angle

A is the angle between the image velocity v" of Q, the projection
of P onto PP, and the ray OP.




Figure 5. The radial projection equation.
at unit distance from the center of projection is proj

L

tﬁe displacement v" on &,. To compu
and v", we note that b/(a+Q)=v'; b/v
v"sin(A)=v'v"cos(A)+v'Q. Finally, v

te the relation between v'
"_sin(A); and a/v"=cos(}A).
"=y'Q/(sin())-v'cos(A)).

The displacement v' on
ected into

Thus
Ob-

serve that here, v' and v" are finite displacements and not velo-

city vectors!
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Figure 6. The relation between an infinitesimal displacement 4¢

along the circle C, and its projection on the line 22. The speed
at which b, the projection of a on ¢,, moves along

2, is not the projection of the speed with which a moves along C.
Seée text for further explanation.
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Figure 7. The direction of v" on PP is determined by an angle n.

The first time derivative of v" has direction perpendicular to v",
and magnitude n. x and y are a set of mutually perpendicular unit

vectors on the projection plane PP.




Figure 8. Knowing that the point Q (with position vector Q) moves
with some (linear) velocity v does not specify the angular velocity

of the ray 0Q. The equation v=AxQ constrains A to lie in the plane

of which v is a normal. Q could (instantaneously) move on an infinite
number of possible circles of rotation, only three of them being
shown. Observe that A, the magnitude of A, depends

on the angle between Q and A (it determines the radius of the in-
stantaneous circle of rotation).
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Figure 10. For each given visual direction Qf{a,B), the circles
a=const., B=const., and Q itself define a rectangular coordinate
system. Observe that while the condition a=const. defines a plane,
B=const. defines a cone with apex at 0! The circles C, on the
plane and C, on the cone are mutually perpendicular.
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Figure 11. An image velocity v" (on the planar projection sur-
face PP) of a point Q can be resolved into three components. The
hyperbolic component h is due to the rotation of the ray about an
axis (through O) in the projection plane (the angular velocity

is a linear combination of x and y). The circular component cC

is due to the rotation of the ray about an axis (through 0) paral-
lel to m. The translational component t is the remaining vector .
which constraints the decomposition of v"; t is constrained to be
such that v¥Q.¢PP: (t. intersect in one common point). 1In the
illustration®above, the direction angle of the hyperbolic field
is zero (measured anticlockwise from the x-axis).
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