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1. Introduction

The concept of an edge is a difficult one to define

precisely. The stimulus conditions that cause the perception

of an edge by humans are by no means simple to describe.

There are many well known visual paradoxes in which an edge

is clearly seen where none physically exists. (See for ex-

ample Cornsweet [1974], Dember (3966], or Gregory [1974].)

In the analysis of images by computer, exactly what consti-

tutes an edge depends greatly on the objectives of the anal-

ysis.

Keeping the above in mind, we can nonetheless regard an

edge as the boundary between two adjacent regions in an image,

each region homogeneous within itself, but differing from the

other with respect to some given local property. Thus an edge

should ideally be line-like.N

In this paper we restrict our attention to the simplest

case, brightness edges, although the edge evaluation techniques

we present below are applicable to color or texture edges as

well. Brightness edges in an image have many possible causes

in the original scene: discontinuities in surface properties

(such as reflectance), in surface orientation, in illumination

(shadows, for example) or in depth (causing occlusion of one

surface by another). However, the interpretation of the

cause of an edge will not concern us here.

Brightness edges (henceforth just edges) are important

features in image analysis, and, accordingly, many schemes have

been devised for detecting them. Here we are concerned chiefly



with so-called enhancement/thresholding edge detectors: In

the enhancement step, an operator which computes local bright-

ness differences is applied to an image. Such an operator

will have a high response when positioned -n the boundary

between two regions, but little or no response within each

region. (The operators discussed below also compute an esti-

mate of the direction of brightness change.) In the next step,

the edges in the image are extracted by suitably thresholding

the operator output. The final result of processing is a

binary picture, pixels deemed to be on an edge (edge pixels)

having the value 1, all others (non-edge pixels) having the

value 0.

It is of interest to evaluate the quality of the output of

an edge detector, both to compare one detector scheme with

another, and also to study the behavior of a given detector

under different conditions and parameter settings. Several

authors have proposed techniques for edge evaluation. In the

next section we review their work.
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2. Survey of Previous Work

Fram and Deutsch (1974, 1975) studied the effect of noise

on various edge detector schemes. For this purpose they used

synthetic images composed of three vertical panels. The outer

panels were of two different grey levels; the narrow inner

panel interpolated between these grey levels. It was consid-

ered that the position of the edge was defined by this central

panel and only here should an edge detector respond. Images

were generated for a number of different levels of contrast

between the two outer panels, and to each image was added

identically distributed zero-mean Gaussian noise.

Several different edge enhancement techniques were applied

to these test images, and thresholds were chosen so that the

number of detected edge points was as close as possible to the

number of points expected for a well-found edge, based on in-

spection of a sample of detector outputs. The thresholded

output was evaluated according to two measures. The first, PV,

estimated what fraction of the detected edge pixels were

actually edge points. The second, P 2, estimated what fraction

of the vertical extent of the edge was covered by detected edge

pixels. These estimates are possible because it was known

that edge pixels actually due to the edge could be found only

in the central panel, and it was assumed that edge pixels due

to noise would be uniformly distributed throughout the image.

As would be expected, the experimental results showed that

edge detector performance, as measured by P 1 and P 2  improves

when contrast is increased relative to noise. They also



demonstrated that some edge detection schemes perform con-

sistently better than others.

While their measures are directly applicable only to ver-

tical edges, Fram and Deutsch also performed experiments

with synthetic oblique edges. They did this by the expedient

of numerically rotating the enhancement output until it cor-

responded to a vertical edge. It could then be thresholded

and evaluated as if it had been vertical. By this means they

examined the sensitivity of the detectors they used to edge

orientation.

The approach of Abdou and Pratt [1979] is more analytic.

(See also Abdou [1978].) Using a simple model for the dig-

itization of a straight edge passing through the center of

( an operator's domain, they geometrically analyzed the sensi-

tivity of a number of edge enhancement operators to the

orientation of the edge. They similarly analyzed the fall-off

of operator response with displacement from the center of the

domain for straight edges with vertical and diagonal orientations.

They described a statistical design procedure for threshold

selection in noisy images with vertical and diagonal edges.

Using additive Gaussian noise as an example, they derived the

conditional probability distributions of operator response for

a number of enhancement operators, given the existence or

non-existence of an actual edge. They could thus compute for

each operator the probabilities of correct and false detection

as a function of threshold and of noise level. By this means

they showed the superiority of some detection schemes over
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others. They also presented a pattern-classification approach

to threshold selection using training samples of edge and no-

edge neighborhoods, and gave experimental results for a number

of edge detectors in discriminating edge from non-edge neigh-

borhoods, using this approach. These results show a similar

ordering of the quality of the various edge detection schemes.

More relevant to the present paper, Abdou and Pratt provided

another experimental comparison of the various edge detector

schemes using Pratt's figure of merit of edge quality. (Pratt

1978]. They used synthetic test images very similar to those

of Fram. and Deutsch above. The only difference worth remarking

on is that Abdou and Pratt vary the relative strength of signal

to noise by holding the contrast constant and changing the

standard deviation of the added noise. Pratt's figure of merit

is based on the displacement of each detected edge pixel from

its ideal position (known from the geometry of the synthetic

image), with a normalization factor to penalize for too few or

too many edge points being detected. Its definition is:

F = 1Lc 1~))

maxtIA I I

where I Ais the actual number of edga pixels detected; I I is

the ideal number of edge pixels expected (known from the

geometry of the synthetic image); d(i) is the miss distance

of the i th edge pixel detected; and a is a scaling factor to

provide a relative weighting between smeared edges, and thin,



but offset edges. For these experiments, Abdou and Pratt set

a=1/9 . Like Fram and Deutsch's parameters P1 and P2 " this

figure of merit was implemented for vertical edges, but Abdou

and Pratt also present a modification of it for diagonal edges.

Unlike Fram and Deutsch, Abdou and Pratt used the less

arbitrary procedure of choosing thresholds so as to maximize

the figure of merit. The experimental results showed, as one

would expect, that the figure of merit declines with increased

noise, and also again showed the superiority of certain edge

detection schemes over others.

The work of Bryant and Bouldin [1979] is different in

several respects: They used real aerial photographs instead

of synthetic images. Their threshold selection was based on

accepting a fixed upper percentile of the distribution of

enhanced edge output. More significantly, they proposed two

quite distinct edge evaluation measures. One, called absolute

grading, is based on the correlation of the edge detector output

with an ideal "key" output, this key being determined apparently

by hand. Their other technique, called relative grading, is

rather novel. Omitting the details, it is based on comparing

the output of a number of detectors, and rating each detector

by how often it agrees with the consensus of the other detec-

tors in deciding whether an edge exists at each pixel. By

these means they compared a number of edge detectors, and were

able to some extent to quantify the improvement in edge output

achieved by such post-processing as edge-linking and edge-

thinning. They also gave an example of effect of threshold level

on the absolute grade of an edge detector.



Relative grading, while an interesting idea, suffers from

a number of weaknesses. Its results depend on the details of

the consensus determination used, and on the particular mix of

operators chosen for comparison. Most important, it is com-

pletely oblivious to detection errors made by all detectors,

and may even penalize a good detector that does not make an

error make by a majority of bad detectors.

Aside from relative grading, all methods discussed above

require prior knowledge of the location of the actual edge,

since they are more or less based upon the discrepancy between

the detected edge pixels and the ideal position of the edge.

This is fine for experiments with controlled synthetic images,

( but raises questions when applied to real images, since the

determination of edges in such pictures is very much the sub-

* jective decision of a human observer. The techniques are

completely inapplicable to images for which the actual edge

locations are unknown.

Further, the discrepancy between detected and ideal edge

is not the sole determinant of the quality of edge output.

See Figure 1. Here we have two detected edges, both of equal

discrepancy from the ideal. Howeverone of them is clearly

preferable, since the detected edge is continuous, rather than

fragmanted. It is clear that some attention should be paid

to the good form of the detected edge.

Finally, none of the above edge evaluation measures take

any account of the edge direction information produced by

most edge enhancement operators. This information is used



in many applications and is an important consideration in

determining the good form of an edge. Even though a set of

edge pixels may lie in the shape of a well-formed edge,

something is amiss if the estimated edge directions are

chaotic. Ideally the brightness gradient direction should be

everywhere perpendicular to the edge, and perpendicular in

the same sense.



3. Local Edge Coherence

Bearing in mind the deficiencies of the above techniques,

we have developed an edge evaluation measure based solely on

the criterion of good edge formation, without using any prior

knowledge of ideal edge location. This new measure is inten-

ded as a supplement to existing measures, not a replacement,

since it it clear that a measure which-disregards the correct

location of an edge connot be a fully adequate measure (although

the results presented below show that it is quite good). For

example, an edge detector that systematically mislocates edges

will, by our scheme, receive an evaluation measure equal to

that of a detector which perfectly locates edges.

However, since the new measure does not require prior

knowledge of edge location, it can be used much more freely,

in particVlar on images for which this knowledge is lacking.

In addition "b the standard uses of comparing edge detector

schemes, the new measure can be used for selecting and ad-

justing edge operators an they-4are applied to an- actual image.

For example, an edge detector threshold can be chosen so as

to maximize the edge evaluation measure. This will be the

threshold which extracts the best-formed edges. (This parallels

the work of Weszka and Rosenfeld [1978] on threshold evaluation

for segmentation of regions. One of their techniques rated a

threshold level on the basis of the busyness of the resulting

thresholded image.) In applications where edge extraction is an

important part of the processing, the edge evaluation measure

can serve as an indication of image quality.



The approach we have used is based on what we call local

edge coherence. Essentially, we examine every three by three

neighborhood of the thresholded edge output, taking into account

the direction output as well. If the center of the neighborhood

is an edge pixel, then we call the neighborhood an edge neighbor-

hood and rate it on the basis of two criteria, continuation

and thinness, which should both be exhibited by a well-formed

edge passing through the center of the neighborhood. Both these

criteria are based on the working definition of an edge given

in Section 1. It should be locally line-like, with due regard

for the consistency of direction of brightness changes. Con-

tinuation requires, ideally, that adjacent to the central pixel,

along the edge (this is perpendicular to the gradient direction

of brightness change at the center), there be two edge pixels

with almost identical direction which form the continuation o'

that edge. Thinness requires, ideally, that all the other six

pixels of the neighborhood be no-edge pixels. The continuation

and thinness ratings of an entire edge output can be measured

as the fraction of edge neighborhoods satisfying these respect-

ive criteria.

Of course, for most images, very few edge neighborhoods

will perfectly satisfy these two criteria, because of digiti-

zation problems and even slight noise. We therefore compute

instead continuation and thinness scores, ranging form 0 to 1,

with the overall scores being averaged over every edge neighbor-

hood in the output. These scores are designed to take the

value 1 for perfectly-formed edge neighborhoods, dropping off

only slightly for almost well-formed neighborhoods, but falling



eventually to 0 for badly formed neighborhoods.

The continuation score is computed as follows:

Let ja-61 represent the absolute difference between two

angles a and , the difference ranging from 0 to r radians.

Let

7a ,7 
I7

This function ranges from 1 for identical angles a and 8,

linearly down to 0 for angles that differ by half a revolution,

that is, point in opposite directions. It thus measures the

extent to which the two angles agree in direction.

Let us number the neighbors of an edge pixel as shown in

Figure 2. Let d stand for the edge gradient direction at the

center pixel, and let d0 , dl,..., d7 stand for the edge gradient

directions at each of the eight neighbors respectively. Let

L(k) a(d,dk)a(!-,d+!L) if neighbor k is an edge pixel

= 0 otherwise.

This function measures how well a neighboring pixel continues

on the left the edge which passes through the central pixel.

It is 0 when the neighbor is not an edge pixel, since no con-

tinuation exists. When the neighbor is an edge pixel, its

rating is composed of two factors: The first, a(d,dk), measures

how well the edge gradient direction at the neighbor agrees
ik +!,mes

with that at the center. The second factor, a(f, d m

ures how close neighbor k is to the expected direction of

leftward continuation of the edge, based on the direction at
wk

the center. The term ir is the direction to neighbor k, and
4

the term d+. is at right angles to the gradient direction andgrdetdreto2n

. ..Ul,



therefore lies along the edge. Similarly we define

R(k) - a(d,d ).a(2k,d-Z) if neighbor k is an edge pixel

M 0 otherwise

which measures how well neighbor k continues the edge toward the

right.

Of the three neighboring pixels lying to the left of the central

edge gradient direction, the one with the highest value of L(k)

is taken as the left continuation. Similarly, of the three pixels

on the right, the one with the best value for R(k) is taken as

the right continuation of the edge. The average of these two best

continuations is taken as the continuation measure C for the

entire neighborhood.

k The thinness measure T for the neighborhood is computed as

that fraction of the remaining six pixels of the neighborhood

which are non-edge pixels. This will range from 1 for a perfectly

thin edge, down to 0 for a very blurred edge.

Neither of these measures is independently useful for edge

evaluation, as will be explained below. However a linear com-

bination of the two

E = yC + (l-y)T

serves quite well for suitable values of y. This parameter y

can be adjusted to give a relative biasing of the measure E in

favor of well-connected edges as against thin edges. The choice

of y will also be discussed below.

While this approach to edge evaluation is a little ad hoc,

no simpler technique seemed able to capture the notion of a



locally well-formed edge. We were first led to investigate

the possibility of an edge evaluation measure based on good

form by an observation on compatibility coefficients for relaxa-

tion labelling [Peleg and Rosenfeld, 1977]. The arrays of com-

patibility coefficients showed a particular diagonal tendency

when derived from images with clear edges which was far less

pronounced when derived from noisy or blurred images. We

attempted to devise an edge evaluation measure based on character-

istics of the compatibility coefficient arrays, and later on

characteristics of the edge direction co-occurrence matrices,

which are closely related. Preliminary experiments showed that

k none of these measures were satisfactory, although they suggested

that a measure based on good form could ultimately be developed.

Several techniques based on local properties of the edge output

were investigated, culminating in the method presented here. This

measure is intuitively reasonable, and more important, performs

quite well, as the experimental results below demonstrate.

One defect of our measure (though shared by all others) is

that it can only be applied after thresholding. We endeavored

to remedy this by devising methods that treat all pixels as

potential edge pixels, but weight their contributions by a func-

tion of their edge magnitudes. Unfortunately, the enormous num-

ber of low-magnitude pixels distorts the measure, unless the

weighting function is of such a form as to be tantamount to

thresholding.



It should be pointed out that this approach can be easily

adapted to measuring the good form of other features, such as

lines or corners, which are normally detected by some sort

of template matching.



4. Experiments

We present here some experiments which investigate the be-

havior of a number of edge detection schemes under various con-

ditions. To permit a comparison, we have tried to make our experi-

mental setup as similar as possible to that of Abdou and Pratt.

We have used the same edge detection schemes (although our measure

also makes use of edge direction information), the same noise

model (additive, independent zero-mean Gaussian noise), the same

threshold selection criterion (choosing that threshold which maxi-

mizes the evaluation measure), and for one series of experiments,

essentially the same test image.

4.1. Test Images and Edge Detectors Tested

Two test images of edges were used: the first, 64 by 64

pixels, consisted of a left panel with grey level 115, a right

panel with grey level 140, and a single central column of inter-

mediate grey level 128. This we will call the "vertical edge"

image. It is virtually the same as one of the test images used

by Abdou and Pratt. In order to present conveniently edges at

all orientations, we chose a second test image consisting of con-

centric light rings (gray level 140) on a dark background (grey

level 115). This image was originally generated as a 512 by 512

image, with a central dark circle of radius 64, surrounded by

three bright rings of width 32, these being separed by two dark

rings of the same width, with a dark surround. The decision as

to whether a pixel should be light or dark was based on its



Euclidean distance from the center of the image. Then this

image was reduced to size 128 by 128, by replacing each 4 by

4 block with a single pixel having the average grey level of

the block. The reduction gave a convenient way of approximating,

for curved edges, the digitization model used by Abdou and

Pratt. We call this the "rings" image. While the edges in

this test image are curved, they are locally almost straight,

at all possible orientations.

To study the effects of noise, independent zero-mean

Gaussian noise was added to each of the test images at seven

different signal to noise ratios: 1,2,5,10,20,50 and 100.

Following Pratt, the signal to noise ratio (SNR) is defined to be

SNR =

where h is the edge contrast (in this case 25), and a is the

standard deviation of the noise, adjusted to give the selected

values of SNR. As an extreme case, we used an additional 64 by

64 test image with no well-formed edges, just Gaussian noise

with mear 128 and standard deviation 16.

Figure 3 shows the vertical edge image, noise free as well

as with the various levels of added noise. Figure 4 shows the

same for the rings image. At the higher signal to noise ratios,

the noise is almost imperceptible to the human eye. However, it

is quite significant to the edge detectors used, since all of

them have only small domains.



Ten different edge enhancement schemes were tested. The

first group are the so-called "differential" operators. These

measure the horizontal and vertical components of the brightness

change by applying a pair of linear masks. The edge gradient

direction is computed from these two components using the inverse

tangent; and the edge gradient magnitude is computed either as

the square root of the sum of squares of the two components,

or as a sum (or max) of absolute values, for computational simpli-

city. Three different pairs of masks were used: those defined

by Prewitt, Sobel and Roberts. Since the edge magnitude can

be computed in two ways, this gives six methods altogether.

The second group are the "template-matching" operators: three-

level, five-level, Kirsch and compass-gradient. Each of these

applies eight masks at every neighborhood. The edge magnitude

is taken to be the strongest response out of these eight masks,

and the edge gradient direction is given by the preferred ori-

entation of the strongest-responding mask. For details on and

references to all these operators, see Abdou and Pratt [1979].



4.2 Detailed Evaluation of One Detector

Before presenting an overall comparison of these edge

detection schemes, we would like to examine in detail the results

of the edge evaluation on a single scheme in order to discuss

the properties of the edge evaluation measure itself. For this

we have chosen the three-level template matching operator

because it performed consistently better than any of the other

operators in the comparison experiments described below. Even

so, the results of the edge evaluation measure follow much the

same pattern for the other operators as well.

Figure 5 shows the histogram of edge magnitude outputs for

the three-level operator applied to the rings image with SNR 50,

and Figure 6 shows the edge magnitude thresholded at nine levels

equally spaced through its range. In Figure 7 are shown plots

of edge evaluation against threshold for various values of the

weighting factor y. Figure 8 shows the same data, but plotted

instead against the fraction of pixels which are edge pixels

at each threshold, scaled logarithmically. This is a better

way of presenting the data, since it is the selection of edge

pixels that really matters, not the threshold directly.

We see that the thinness measure alone (y=0.0) is of

little use for edge evaluation. It reaches its maximum value

at high thresholds since it rates a set of isolated edge pixels

higher than an even slightly blurred edge. On the other hand,

the continuation measure performs reasonably well by itself

(Y=1.0), reaching a maximum value at a threshold which selects

quite a good set of edge pixels. (This peak is more pronounced



Ir
in Figure 8, since changing the threshold near the maximum pro-

duces only a small change in the population of edge pixels.

Notice that this threshold lies in the valley of the histogram.)

However, a close examination shows that these edges are several

pixels thick. Better results are achieved with a lower value

of y. For tiie rest of this paper we will use y=0.8, since this

value seems to give the best compromise between continuation

and thknness.

STx 1 shows the maximum values of the edge evaluation

measure, and the thresholds at which they occur, for the various

values of y. Figure 9 shows the thresholded edge magnitude

( for a range of closely spaced thresholds around that at which

the edge evaluation takes its maximum value for y=0.8. Even

though we have chosen y=0.8, two remarks should be made: Firstly,

values of y from 0.6 to 0.9 produce similar results. Secondly,

y can be adjusted depending on the relative seriousness of bro-

ken edges as against thickened edges, for a given application.

In general, y should be fairly high, since filling breaks in

edges is usually a more difficult task than edge thinning.

To show that the peaks in Figure 8 are actually caused

by more or less well formed edges, we give in Figure 10 an

analogous plot, but for the test image of pure noise. The forms

of the curves are quite different, without any well-defined

peaks for the higher values of y. However, this graph does reveal

a noteworthy property of the edge evaluation measure: Even on

an image of pure noise, it is possible to choose a threshold



which gives a moderately high value of the edge evaluation

measure. At first thought, this may seem to be a defect.

However, on reflection, it is clear that this is an inevitable

characteristic of any such measure based on local good form.

Because of overlap between the neighborhoods to which the edge

operators are applied, an isolated noise point will produce a

correlated set of edge pixels. For example, the three-level

operator will produce a tiny ring. Even though this ring is

highly curved, it is coherent, and will receive a moderate edge

evaluation score. This evaluation score for isolated noise

spots can be computed analytically as an intrinsic property of

( each edge detection scheme. For an image of pure noise, as

used for Figure 10, the evaluation is somewhat lower than one

would expect, apparently because of interference between adjacent

noise pixels. In summary: even in a noisy image, there will

be a certain occurrence of well-formed edges, either by acci-

dental alignment or as an artef act of the edge detection scheme

used. It is not the fault of the edge evaluation measure that

it reflects this unavoidable property of the images and detection

schemes used.

Figure 11 illustrates the effects of various levels of

noise on the edge evaluation measure. For clarity, only a sub-

range of the data is plotted. Outside this subrange the plots

for the different noise levels tend to converge. The results

show a consistent pattern: The peaks decrease in step with the

signal-to-noise ratio. Below SNR-10, there are no clear peaks,

but the shapes of the curves show that the presence of edges



still has some effect on the edge evaluation. (Although we

have not pursued the matter, this suggests that an edge evalua-

tion measure might be based on the value E of the measure for the

given image relative to the value measured for the same detector

on an image of pure noise. But such a relative measure would

be useful only for cases of high noise, when E has no clear

peaks, and would not be a good means of comparing the outputs

of different edge operators. Away from the peaks, the evalua-

tions for the different noise levels tend to become similar,

while retaining the same ordering. This shows that a poor

threshold leads to a bad selection of edges, no matter how

noisy the original image.

All the above results are pretty much what one would expect

intuitively from a measure of edge quality. They thus serve

to confirm the validity of the edge evaluation measure. While

the figures show the results for the rings image, the results

for the vertical image are similar, and if anything, more dis-

tinct, since a vertical edge can be more cleanly digitized, and

has not even the slightest curvature.



4.3 Comparison of Detectors

Having established that the measure E behaves well, we

now present a comparison among the ten edge enhancement opera-

tors mentioned above. Every operator was applied to the test

image at the seven different signal-to-noise ratios, and at

each noise level the threshold was adjusted to maximize E.

Figures 12 and 13 show these maximum values for the differential

and template-matching operators respectively using the rings

image. As expected, these results show that the three by three

operators are far better than the two by two operators at detect-

ing edges in the presence of noise. Among the three by three

( operators, the three-level operator is clearly the best, and

the compass gradient the worst. The other four operators pro-

duce results of about the same quality. The same ordering is

preserved if we subtract out the intrinsic response for each

operator on pure noise, although the separations are not so

great.

Analogous results for the vertical edge image are shown in

Figures 14 and 15. They are not directly comparable, especially

at the lower SNRs, because the rings image has a greater density

of edges. However, some general remarks can be made. Firstly,

as explained earlier, the vertical edge gives a higher evaluation.

Secondly, the evaluations of the four three by three differential

operators are more spread out. This can be attributed to rela-

tive orientation biases in the four operators which are brought

out by the vertical edge, but which are cancelled out over the



full range of edge orientations in the rings image.

Overall, this comparison is in accord with the findings

of Abdou and Pratt. Our results differ from theirs only when

the difference between operators is small by both measures.

They also find the three by three operators consistently better

than the two by two. However, at the highest signal to noise

* ratios, the performance of the two by two operators, according

to their figure of merit, approaches that of the three by three,

* while our measure still reveals a considerable difference. This

shows that while the two by two operators can properly locate

edges at low noise levels, they poorly estimate the edge direction.

By both their measure and ours, the compass gradient is the

worst of the three by three operators, but their figure of merit,

while rating the three-level operator fairly highly, does not

show it as clearly superior in all cases. These small discrep-

ancies are not at all surprising, since the two edge evaluation

schemes, after all, measure quite different characteristics of

edges. The general agreement between the two schemes is encour-

aging: It serves both to confirm, in large part, the edge opera-

tor ratings of Abdou and Pratt, but from a different perspective;

and also to strengthen our confidence in the usefulness of the

measure E.



4.4 Effects of Preprocessing

Quite a number of techniques have been proposed for

improving the quality of edge detection. We present here

some experiments to demonstrate how the effect of a selection

of these techniques is reflected in the edge evaluation measure

E.

For coping with the effects of noise, two commonly used

techniques are mean and median filtering, that is, each pixel

in the original image is replaced by respectively the mean or

median of the grey levels in a neighborhood around the pixel.

( This has the effect of smoothing out irregularities due to noise.

However, as is widely known, mean filtering has the unfortunate

side effect of blurring or thickening real edges, so median

filtering is often preferred since it does not suffer from

this defect. On the other hand, thickening of edges can usually

be dealt with by non-maximum suppression on the edge gradient

magnitudes - that is, a pixel has its magnitude set to zero

unless it is a local maximum among those pixels which lie

closest to the edge gradient direction.

Figure 16 shows the effects of mean and median filtering

on E for different neighborhood sizes. As can be seen, the

edge quality as measured by E is improved by both mean and median

filtering, but if the neighborhood is too large, mean filtering

causes a decrease in edge quality because of blurring, while

mean filtering suffers from no such defect, although it seems



less effective with smaller neighborhoods. This graph also

shows the effect of applying non-maximum suppression to the edge

magnitude output after mean filtering. Even when no averaging

is done (the case of a one by one neighborhood), non-maximum

suppression causes a small improvement in edge quality, by

counteracting the slight blurring introduced by the edge opera-

tor masks. When the averaging is done over a larger neighborhood,

the improvement is more significant, reaching a maximum when

the mean filtering is done over the same sized neighborhood as

the non-maximum suppression (that is, three by three).

That the above interpretation of Figure 16 is correct is

shown in Figures 17 and 18, which are analogous, but use y=0.6,

giving more weight to edge thinness, and y=1.0, showing the

effect on the continuation measure ;Orme T!hOAJe graphs reveal

the relative effects of the operators on edge continuity and

edge thinness.

Peleg [1978] has devised a technique for edge improvement

that fills small gaps and straightens out irregularities in edges.

The effect of this process on edge output is presented in

Table 2. While Peleg's technique certainly improves the form

of edges, it has the undesirable side-effect of thickening them.

However, this can be overcome by applying non-maximum suppression,

as is also shown in Table 2. Again, the relative effects of

this process on edge continuation and edge thinness can be seen

by comparing the results for the different values of y.



5. Conclusions

We have presented a method for evaluating the quality of

edge detector output based solely on the local good form of

the detected edges. It combines two desiderata of a well-formed

edge - good continuation and thinness. This measure behaves

as one would like under the effects of change of threshold,

noise, blurring and other operations. The comparison experi-

ments show that the results obtained with this measure are simi-

lar to those obtained with a measure based on the discrepancy

of the detected edge from a known actual edge position. The

small differences between the two methods reveal some properties

( of the operators not brought out by the other approach.

Like other evaluation measures, ours can be used to compare

the effectiveness of different edge detection schemes and edge

improvement schemes on synthetic images. However, since our

measure does not require knowledge of the true location of

edges, it has much wider application. It can be used to adjust

parameters, such as thresholds, for optimum detection of edges

in real images for which edge location is unknown. The evaluation

of the detected edges can also serve as an indication of the

quality of the original image. Further, the approach of using

local coherence can be extended to the evaluation of other local

feature detectors.
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y - 0.0 0.2 0.4 0.6 0.8 1.0

Maximum 1.000 0.890 0.856 0.852 0.876 0.922
value

At threshold 88-98 74 68 60 56 46
(% of range)

Table 1. Rings image, SNR=10, three level operator.
Maximum value of edge evaluation measure, and threshold
at which this occurs, for various values of y.

y 0.6 0.8 1.0

SNR 10 0.771 0.759 0.757

Enhanced 0.786 0.790 0.806

Enhanced &
non-maximum 0.841 0.823 0.805
suppression

Table 2. Effect of Peleg's edge enhancement procedure
on edge evaluation.
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Figure 11. Using rings test image and three-level operator: edge
evaluation (y = 0.8) against fraction of edge pixels at each threshol
for various values of SNR (top to bottom curve: 100, 50, 20, 10, 5,
2, 1).
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Figure 12. Using rings test image: maximum edge evaluation (y i 0.8)
against SNR, for differential operators.
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Figure 13. Using rings test image: maximum edge evaluation (y = 0.8)
against SNR, for template matching operators.
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Figure 14. Using vertical edge test image: maximum edge evaluation
(y = 0.8) against SNR, for differential operators.
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Figure 15. Using vertical edge test image: maximum edge evaluation
(y = 0.8) against SNR, for template matching operators.
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