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ABSTRACT

A number of methods are presented for finding clusters
in collinear collections of line segments. The methods are
of two kinds--merging methods and splitting methods. Both
make use of an evaluation function, and several alternative
functions are illustrated. The methods are evaluated using
randomly generated clusters on backgrounds contairing vary-

ing amounts of noise.
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1. Introduction

The problem of detecting clusters in collinear collections
of line segments is of interest both in psychology and in
computer vision. For example, the result of running an edge
detector over an image is usually a set of line segments,
some of which correspond to the same edge but are broken be-
cause of noise in the image. It would be useful to be able
to cluster these lines, but, at the same time, to avoid in-
cluding spurious or distant responses in the cluster.

Proximity grouping is one of the problems that has long
concerned Gestalt psychologists [2,3,4]. Surprisingly little is
known about the mechanisms involved, however, although Wer-
theimer {3}, working with dot clusters, observed that the lengths
of the gaps between dots were insufficient to define groupings.
A ratio between intra-cluster and inter-cluster gap lengths
should be used instead. This observation, suitably modified
for the case of line segments, forms the b:sis for some of the
methods to be discussed here.

This paper treats a one~dimensional case of proximity
grouping. Indeed, it deals with the most general binary one-
dimensional case. Several methods for clustering collinear
line segments are presented. The élgorithms fall into two
main classes, merging methods and splitting methods. A further
method adapted from an algorithm for finding peaks in waveforms

is also presented.




er)‘;'mﬂ*"' v

The merging methods initially assume that every indivi-
dual line segment forms a trivial "cluster". Each cluster
attempts to expand by including neighboring segments, until
an evaluation function prevents further additions. The methods
may be sequential, for example starting at one end of the data
and moving towards the other, or they may operate in parallel
on all the segments in the collection. By iterating a cluster-
ing process it is possible to find clusters of clusters to any
desired level.

In the splitting methods, the whole collection of line
segments is initially treated as forming a single cluster.

This cluster may be split recursively into subclusters based

on the separations between segments in the cluster. Various
evaluation functions are investigated for controlling the split-
ting process.

All the evaluation functions rely on ratios between the
length of a line segment and the sizes of the gaps surrounding
it. Various ways of combining these measures are discussed

below.
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1.1 The Data

Clustering is a complex process that depends on several
different kinds of information. Two important kinds are pro-
ximity and similarity. 1In this study we were concerned with
proximity grouping, and in the experiments we attempted to
remove the effects of similarity grouping. This was done by
allowing the gap sizes to vary, but keeping the size of the
line segments fixed.

The data were generated using two random processes with
different means and variances. One of the processes generated
a single cluster with mean gap size My and variance Ve The
other process was used to generate the background, and had mean
my, > m, and variance vy 2 V.- The background was generated
in two parts, one to the left of the cluster and one to the
right. This was done to eliminate the chance of two line seg-
ments partly intersecting within the cluster, which would have
given rise to line segments of non-standard length.

Six sets of data were generated for the examples to be
presented here (Figure 1l). 1In all of them the same central
cluster was used, with mean gap size 10 and variance 3. The
background in the examples was initially generated with a mean
gap size of 40 and a variance of 13. These parameters were
gradually made to approach those of the central cluster by

changing the mean and variance as shown in Table 1.
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2. Descriptions of the Algorithms

2.1 Merging Methods

All the merging methods, and some of the splitting methods,
make use of the following evaluation function. This function
is based on the observation that the ratio between the length
of a group of segments and the amount of black (i.e. the pro-
portion of the group that is not gap) is a useful measure for
grouping.

Denote the sequence of line segments and gaps that forms
the data by Ioragr9yrdyree 903,09 1 where the 95 denote
lengths of gaps, and the a; denote lengths of line segments.

99 and In+1 are usually taken to be zero.

Then define

f(gi) = f(ai_l,ai) =
i i i-1
X aJ z aj L a
=0 - .Qi=0 - =0J (1)
1-1 i i-1
I a, Z (g.+a.) I (g.+a.)
j=0 ‘=0 3 =0 )

This equation has the form

¢ = new amount of black _  new ratio of black to length
old amount of black old ratio of black to length

Notice that the first part of the expression (i.e. the ratio of
the amounts of black) is always greater than 1, since the amount
of black always increases. The second part, however, varies
between 0 and 1 depending on the relative sizes of the gaps

and the line segments. The first part of the expression re-

flects a desire to increase the number of segments in the




cluster, while the second penalizes the addition of new line
segments if this involves adding a large gap as well. The
expression thus has sensible properties for evaluating clusters.
It has shown itself robust and useful in a variety of

clustering methods.

Method 1

The first and simplest merging method involves a left to
right scan of the data, applying the evaluation function at
each point as follows.

Given the sequence 9gr2gr9yrdyre 9@ Ty where 99 and
9,41 are zero,
1. sSet CLUSTER = {aj}

Set i =1
2. 1If i = n+l stop

If f(gi) 2 1 then

Set CLUSTER = CLUSTER U {a,_ ;!
Set i = i+l
Repeat Step 2
else output CLUSTER as a complete cluster
Set CLUSTER = {a;}
Set 1 = i+l
Repeat Step 2, disregarding Sgragre+++1951 in the
calculation of £ (i.e. assuming a; is the start of

the data)

1




This method finds many "noise" clusters as well as the "real"
clusters (Figure 2). The following method is an attempt to

decrease the number of noise clusters that are reported.

Method 2

Method 2 is similar to Method 1, except that, in addition
to running the evaluation from left to right, it is run from
right to left also. A substantial improvement over Method 1
is obtained by intersecting the results of these two passes

(Figure 3).

Methods 1 and 2 are essentially sequential in nature. A

more satisfying algorithm is one that can operate on all seg-
ments in parallel. Method 3 uses local neighborhoods of each
segment, and joins segments to their neighbors if the evalua-

tion criterion is met.

} Method 3 1
|
! For every sequence ai'gi+1’ai+l’ compute (in parallel)

i

|

a,+a a.+a
1 1

| - i+l i+l
| Flas2ia) a; a;j*9; %54

and f(ai+1,ai), defined similarly (these are not the same

because of the division in the first term). 4

If f(ai,ai+1) 2 1 and f(ai+l,ai) 2 1, join a; and a4

into a cluster; otherwise leave them separate.




Notice that the function f is the same as (1), except
that it is restricted to individual pairs of segments. De-~
spite the local nature of the evaluation, this method works

reasonably well (Figure 4).




2.2 sSplitting Methods

With the exception of the first method described, all the

splitting methods have the following basic structure.

1. Calculate a best splitting point according to some
criterion. If there is no such point, stop.

2. Split the line segments into two subsets at the calcu-
lated point, and discard the subset that is less dense.
Density is definfd4 as the amount of black in the sub-
set, divided by its total length. The splitting point
is assumed to lie in the center of a gap, so that half
the gap length is counted in each density calculation. 1

3. Repeat steps 1 and 2 on the denser part.

4. Evaluate the clusters that were found and filter out

those considered to be noise.

Method 4
The simplest splitting scheme for cluster detection pro-
ceeds as follows.
1. Calculate the evaluation function (1) for each gap.
2. Find the minimum value of the function, and split if
the value is less than 1.
3. Recursively apply steps 1 and 2 to the left and right
sides of the split, stopping if the minimum value of
(1) is greater than or equal to one, or when only

single segments remain.




Simple splitting methods like this one have two problems

(see Figure 5). First, they find spurious "noise" clusters

in addition to the "correct" clusters. Second, they do not

find the borders of clusters accurately. Both these problems
are caused by an inflexible splitting function. In the first
case, the splitting function becomes more and more short-sighted
as the recursion proceeds until it acts like the local merging
function above. The second problem is due to the fixed
threshold in the splitting function. The methods to be discussed
below attempt to overcome these problems by taking a more global
view of the data and by using more sophisticated evaluation
techniques.

The succeeding methods follow the basic format described
above. The main differences between the methods are in the
functions used to find the splitting point at each stage, and
in their stopping criteria. All the methods rely on an evalua-
tion step which determines the optimal cluster from among all

the clusters found.

Method 5

Given a sequence gi’ai'gi+l'ai+1’gi+2' define

3j%3541
oo 2it3ier | 95%83%279540%854,04954 2
ai ai
9i*a;*9;541




This function has the same format as (1). The first term is
the ratio of the amount of black in the pair of lines to that
in the single segment. The other term is similar to the old
ratio of black to length, but includes the gap lengths on
either side of the segments, thus making the function non-
symmetric. The function (2) 1is defined only for pairs of
line segments.

At each gap in the data, (2) is applied twice, once as

F(ai,a ), and once as F(ai+l’ai)' The score is taken as a

i+l

weighted average of F(ai’ai+l) and F(ai where F(ai,a

¥1733) i+1)
is weighted by gi+ai+gi+l, and F(ai+1,ai) is weighted by
9i+1721417 942" That is, each term is weighted by the sum of
the lengths cf the segment and the gaps surrounding it. These
weighted averages have their maximum change on the inside edge
of a cluster. That is, the actual splitting point is one gap
out from where the weighted average changes most. This over-
shooting appears to be caused by the edge effects inherent in
splitting methods.

A ranking is assigned to each cluster found. It is the
change between the score described above and the score of the
cluster found one level down in the recursion (a sub-cluster of
the current cluster). The ranks are used to order the clusters.
For instance, if only one cluster is desired, the one with the

smallest rank is chosen, i.e. that cluster which is most

similar to its sub-cluster.




Figure 6 shows the result of applying Method 5 to the

test data. Figure 7 shows some results of substituting
Function (1) for Function (2) in the method. Function (2)

was found to be more effective in this method than Function (1).
This is partly because it has a slightly more global view of
the data (an extra gap length}, and partly because of the asym-
metry. It is to be expected that Function (2) would improve
the performance of Methods 1-4 as well. Function (1) is, how-
ever, simpler to compute, and need only be applied once at

each gap.

Method 6
Method 6 is slightly more global than the previous method.
It uses a neighborhood to calculate an evaluation function that

works as an edge detector, or gradient operator. The size of

the neighborhood is that of the largest gap in the data. This
meéns that the neighborhood over which the gradient is calcu-
lated could end in the middle of a segment. It is thus not
possible to treat the data in terms of segments and gaps as in
the other methods. This method can be considered an approxima-
tion to Method 10 described below.

At each endpoint, the absoclute difference between the sum

of the values in the neighborhood to the left of the point and

that to the right of the point is used as the score for splitting

at that point. The point with the highest score is chosen.




Note that it is only necessary to consider endpoints of seg-
ments, since the maximum gradient will always occur there.
The point at which the split is actually made is the central
point of the gap. As usual, this method is repeated on the
denser side of the gap.

As in the previous method, a rank is assigned to each
cluster found. It is the change between the score for the
cluster and the score of its sub-cluster. The cluster with the
smallest rank is chosen. Figure 8 shows the results of apply-

ing the method to the data of Figure 1.

Method 7

The function used in Method 7 is based on examining average
gap lengths. At each potential splitting point (i.e. each gap
between segments) the average of all gap lengths to the left of
the point is calculated, as is that for the gap lengths to the
right. (This method is global since it considers all of the
data at every point.) The split point chosen is the one that
has the greatest negative difference between its left average
and the preceding point's left average or the greatest positive
difference between its right average and the preceding point's
right average. The assumption is that the average gap size
on the left of the cluster has its sharpest decrease when the

point is just inside the cluster, and similarly, its sharpest




increase just after the right of the cluster. The splitting
stops when there is no decrease in average gap size on the
left or increase in average gap size on the right, or the
point chosen is one of the endpoints of the data.

Note that half the gap at which the split is being evalu-~
ated is added in to the average for each side.

The method usually provides a good estimate of the correct
split point, but, due to edge effects and the small size of
some neighborhoods, it sometimes over- or undershoots the
best split point. A further examination of the local neigh-
borhood about the split point is thus made to locally improve
the positioniny.

Figure 9 shows the situation for the right side of a cluster
(i.e. the left region is denser than the region to the right
of the split point). The situation is analogous for the left
side of a cluster. For this case, the four gaps A, B, C, and
D are examined, and max(D-C,C-B,B-~A) is found. If D-C is the
maximum value, then D is a bigger gap than C, and the split
point is moved to D. If B-A is the maximum, the split point
is moved to B; otherwise it remains at C. With this fine tuning,
the true edges of the cluster can be found more accurately.

As before, a rank is applied to each cluster found. It is
the difference between the cluster's average gap size and the
average gap size of its sub-cluster. The cluster with the
smallest rank is chosen. Figure 10 shows the results of apply-

ing the method to the data of Figure 1.




Method 8

Method 8 is similar to Method 7 but uses the variance of
the gap sizes on either side of each gap instead of the average
of the gap sizes to calculate the splitting point. The assump-
tion is made that the cluster has a mean and variance different
from the background, and that an endpoint of the cluster can
be found by looking for changes in the variance to the left
and right of each gap. The split point that is chosen is that
which has the greatest positive difference between its left
variance and the previous point's left variance or the great-
est negative difference between its right variance and the pre-
vious point's right variance. This method works well if the
background is fairly uniform. It would break down if the back-
ground were too noisy, or if its variance were too close to
that of the cluster.

A cluster is ranked by the difference between its variance
and the variance of its sub-cluster. The cluster with the
smallest rank is chosen. Figure 11 shows the results obtained

from applying this method to the test data.

Method 9
The function used for splitting in Method 9 is based on

entropy. For a group of segments A = ayrdy9...,a the entropy

nl

of A is defined as

IRy’



entropy(A) = ;pilog(pi)
i

The pi's are defined by the gaps on either side of each

segment a; as:

_ 2 * smallest gap in data

Pi = 1 = Tength of Teft gap + length of right gap
The pi's are then normalized.

Segments in the interior of a cluster tend to have smaller
gaps separating them than those in the background. The pi's
are large if the gaps surrounding the segment are large, and
small if the gaps are small. They thus approximate the proba-
bility that segment a; is not in a cluster. Similarly,
entropy (A) estimates the likelihood that the group of segments
A is entirely in the background.

The gap with the greatest entropy on either its left or
right side is chosen as the split point, since it is most likely
to delimit the foreground from the background of a cluster.

A cluster is ranked by the difference of this greatest
entropy and the greatest entropy of its sub-cluster. The cluster
with the lowest rank is chosen. Figure 12 shows the clusters

found using this method.




2.3 Finding Peaks in a Waveform

In addition to the splitting and merging methods, another
method was developed. This method was originally designed to
find peaks and valleys in waveforms (Eklundh and Rosenfeld [11])},
but was adapted to detect clusters of line segments. The
main differences between the waveform application and the
clustering application are that the waveform data change less
abruptly than clustering data, and can take on more values.
Also, in finding clusters, only the peaks (or only the valleys)
are of interest, whereas in waveform apnlications both must be

found.

Method 10

The method of Eklundh and Rosenfeld was adapted to search
only for peaks. Like Method 6, this method treats the data
as a sequence of points or pixels. It involves applying
simple difference operators at each point to neighborhoods
having a wide range of sizes. Simple comparisons between the
outputs of these operators for various sizes and positions are
used to evaluate the results. This method is expensive because
of the number of neighborhoods to be compared, and it works no

better than some of the methods discussed earlier (Figure 13).




3. Discussion

One result that is apparent from the experiments described
above is the usefulness of the evaluation function (l1). This
function was shown to be robust and applicable to several dif-
ferent merging and splitting algorithms. Note that the function
is not restricted to the case in which all the segment lengths
are the same, but that when it is applied to this case, it has
a somewhat simpler form.

Some general remarks can be made about the methods
described in Section 2. First, it is apparent that the simple
merging algorithms are reasonably powerful, but have the charac-
teristic of finding many small "noise" clusters in addition to
the "real" clusters. This is partly because the so-called
noise clusters do indeed group together, but can be largely
ascribed to the local nature of the merging processes.

Splitting algorithms have a more global view of the data,
but require more sophisticated evaluation techniques to find
the clusters. It was found that evaluation methods as simple
as those used for merging did not give satisfactory results
(e.g., Method 4). This means that the splitting methods
described here are more expensive than the merging methods,
but they do give cleaner output.

A major disadvantage of using splitting algorithms is the
introduction of edge effects into the evaluation. Whereas

merging can be done locally, and is too myopic to be affected
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by the endpoints of the data, the splitting algorithms always
have to deal with the edges explicitly at each stage in the
splitting process. Various methods of avoiding edge effects
were used. For example, the data were treated as having gaps
on either side (Method 9), or the points on the border were
ignored (Method 5), or the data was reflected about the border
(Method 10). All of these expedients are reasonable, but
may affect the results produced by the evaluation function.
This is apparent in some of the methods that required fine
tuning of the split position.

In practice, the splitting methods are preferable to the
merging methods. All the splitting methods work well with the
exception of Method 4, which suffers from similar defects to
the merging methods. Of the remaining methods, Method 9 based

on entropy was less successful than the others because of the

poor evaluation function. The best overall method to use is
probably Method 5. It is computationally simpler than the
other methods, and works just as well.

It would be of interest to consider using a splitting
technique to find initial candidates for clusters, and then
applying a less expensive merging technique to delimit the
clusters more exactly. Although from the examples shown here
such a technique appears redundant because of the success of the

splitting methods in finding clusters, such an approach might

have its merits for more complex data.
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4. Conclusions

A number of methods have been described for finding
proximity groupings of line segments. It has been shown
that a particular evaluation function (1) is useful for find-
ing clusters using a number of different methods. This func-
tion is based c.: the proportion of a grouping that is made up
of line segments, and the total length of the grouping, includ-
ing the ¢aps.

I¢ ka3 iurther been shown that simple merging techniques
can successfully find clusters, although the local nature of
such methods gives rise to somewhat noisy output. While
simple splitting algorithms are not as successful, more sophis-
ticated technigues have the advantage of a global view of the
data, and can be employed to find the clusters without being

affected as much by the noise.
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Figure 13

Data set Mean variance

Cluster 10 3

1 15 5
2 20 7
3 25 8
4 30 10
5 35 12
6 40 13

Table 1
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