

1. Introduction

The problem of detecting clusters in collinear collections

of line segments is of interest both in psychology and in

computer vision. For example, the result of running an edge

detector over an image is usually a set of line segments,

some of which correspond to the same edge but are broken be-

cause of noise in the image. It would be useful to be able

to cluster these lines, but, at the same time, to avoid in-

cluding spurious or distant responses in the cluster.

Proximity grouping is one of the problems that has long

concerned Gestalt psychologists [2,3,4]. Surprisingly little is

known about the mechanisms involved, however, although Wer-

theimer (3], working with dot clusters, observed that the lengths

of the gaps between dots were insufficient to define groupings.

A ratio between intra-cluster and inter-cluster gap lengths

should be used instead. This observation, suitably modified

for the case of line segments, forms the bzsis for some of the

methods to be discussed here.

This paper treats a one-dimensional case of proximity

grouping. Indeed, it deals with the most general binary one-

dimensional case. Several methodh for clustering collinear

line segments are presented. The algorithms fall into two

main classes, merging methods and splitting methods. A further

method adapted from an algorithm for finding peaks in waveforms

is also presented.

1.1 The Data

Clustering is a complex process that depends on several

different kinds of information. Two important kinds are pro-

ximity and similarity. In this study we were concerned with

proximity grouping, and in the experiments we attempted to

remove the effects of similarity grouping. This was done by

allowing the gap sizes to vary, but keeping the size of the

line segments fixed.

The data were generated using two random processes with

different means and variances. One of the processes generated

a single cluster with mean gap size mc, and variance vc. The

other process was used to generate the background, and had mean

mb > mc, and variance vb > vc . The background was generated

in two parts, one to the left of the cluster and one to the

right. This was done to eliminate the chance of two line seg-

ments partly intersecting within the cluster, which would have

given rise to line segments of non-standard length.

Six sets of data were generated for the examples to be

presented here (Figure 1). In all of them the same central

cluster was used, with mean gap size 10 and variance 3. The

background in the examples was initially generated with a mean

gap size of 40 and a variance of 13. These parameters were

gradually made to approach those of the central cluster by

changing the mean and variance as shown in Table 1.

2. Descriptions of the Algorithms

2.1 Merging Methods

All the merging methods, and some of the splitting methods,

make use of the following evaluation function. This function

is based on the observation that the ratio between the length

of a group of segments and the amount of black (i.e. the pro-

portion of the group that is not gap) is a useful measure for

grouping.

Denote the sequence of line segments and gaps that forms

the data by g0 ,a0 ,gl,al,...,gn a ngn+l, where the gi denote

lengths of gaps, and the ai denote lengths of line segments.

g0 and gn+ are usually taken to be zero.

Then define

f(gi) = f(ai_,a i) =

Ea. {i a. a.J j j=0
i-1 " i-i i
E a. Ej (gj+aj) E (gj+aj)

j=0 I -J

This equation has the form

f = new amount of black new ratio of black to length
old amount of black old ratio of black to length

Notice that the first part of the expression (i.e. the ratio of

the amounts of black) is always greater than 1, since the amount

of black always increases. The second part, however, varies

between 0 and 1 depending on the relative sizes of the gaps

and the line segments. The first part of the expression re-

flects a desire to increase the number of segments in the

cluster, while the second penalizes the addition of new line

segments if this involves adding a large gap as well. The

expression thus has sensible properties for evaluating clusters.

It has shown itself robust and useful in a variety of

clustering methods.

Method 1

The first and simplest merging method involves a left to

right scan of the data, applying the evaluation function at

each point as follows.

Given the sequence g0 ,a0 ,gl,al,... 1n a ngn+l, where g0 and

gn+ 1are zero,

1. Set CLUSTER = {a0}

Set i = 1

2. If i = n+l stop

If f(gi) z 1 then

Set CLUSTER = CLUSTER U {a i_}

Set i = i+l

Repeat Step 2

else output CLUSTER as a complete cluster

Set CLUSTER = {ai}

Set i = i+l

Repeat Step 2, disregarding g0 ,a0 ,... gi-l in the

calculation of f (i.e. assuming ai is the start of

the data)

~/

This method finds many "noise" clusters as well as the "real"

clusters (Figure 2). The following method is an attempt to

decrease the number of noise clusters that are reported.

Method 2

Method 2 is similar to Method 1, except that, in addition

to running the evaluation from left to right, it is run from

right to left also. A substantial improvement over Method 1

is obtained by intersecting the results of these two passes

(Figure 3).

Method 3

Methods 1 and 2 are essentially sequential in nature. A

more satisfying algorithm is one that can operate on all seg-

ments in parallel. Method 3 uses local neighborhoods of each

segment, and joins segments to their neighbors if the evalua-

tion criterion is met.

For every sequence ai,gi+lai+l, compute (in parallel)

a+a a+

ai i+l aiai+l
f(ai,ai+ I) = ai ai+gi++ai+l

and f(ai+1 ,ai), defined similarly (these are not the same

because of the division in the first term).

If f(aiai+l) Z 1 and f(ai+i,a i) z 1, join ai and ai+1

into a cluster; otherwise leave them separate.

p

Notice that the function f is the same as (1), except

that it is restricted to individual pairs of segments. De-

spite the local nature of the evaluation, this method works

reasonably well (Figure 4).

2.2 Splitting Methods

With the exception of the first method described, all the

splitting methods have the following basic structure.

1. Calculate a best splitting point according to some

criterion. If there is no such point, stop.

2. Split the line segments into two subsets at the calcu-

lated point, and discard the subset that is less dense.

Density is definrA as the amount of black in the sub-

set, divided by its total length. The splitting point

is assumed to lie in the center of a gap, so that half

the gap length is counted in each density calculation.

3. Repeat steps 1 and 2 on the denser part.

4. Evaluate the clusters that were found and filter out

those considered to be noise.

Method 4

The simplest splitting scheme for cluster detection pro-

ceeds as follows.

1. Calculate the evaluation function (1) for each gap.

2. Find the minimum value of the function, and split if

the value is less than 1.

3. Recursively apply steps 1 and 2 to the left and right

sides of the split, stopping if the minimum value of

(1) is greater than or equal to one, or when only

single segments remain.

.,

Simple splitting methods like this one have two problems

(see Figure 5). First, they find spurious "noise" clusters

in addition to the "correct" clusters. Second, they do not

find the borders of clusters accurately. Both these problems

are caused by an inflexible splitting function. In the first

case, the splitting function becomes more and more short-sighted

as the recursion proceeds until it acts like the local merging

function above. The second problem is due to the fixed

threshold in the splitting function. The methods to be discussed

below attempt to overcome these problems by taking a more global

view of the data and by using more sophisticated evaluation

techniques.

The succeeding methods follow the basic format described

above. The main differences between the methods are in the

functions used to find the splitting point at each stage, and

in their stopping criteria. All the methods rely on an evalua-

tion step which determines the optimal cluster from among all

the clusters found.

Method 5

Given a sequence gi,ai,gi+l,ai+l gi+2, define

a i+ai+ 1

ai+ai+ 1 gi+ai+2 gi+li+l+gi+2
a. a. (2)

gi+a i+g i+l

/

This function has the same format as (1). The first term is

the ratio of the amount of black in the pair of lines to that

in the single segment. The other term is similar to the old

ratio of black to length, but includes the gap lengths on

either side of the segments, thus makinq the function non-

symmetric. The function (2) is defined only for pairs of

line segments.

At each gap in the data, (2) is applied twice, once as

F(ai,a i+l), and once as F(a i+l,ai). The score is taken as a

weighted average of F(ai,ai+l) and F(ai+l,ai), where F(ai ,ai+

is weighted by gi+ai+gi+l, and F(ai+l,ai) is weighted by

gi+l +ai+1+i+2' That is, each term is weighted by the sum of

the lengths cf the segment and the gaps surrounding it. These

weighted averages have their maximum change on the inside edge

of a cluster. That is, the actual splitting point is one gap

out from where the weighted average changes most. This over-

shooting appears to be caused by the edge effects inherent in

splitting methods.

A ranking is assigned to each cluster found. It is the

change between the score described above and the score of the

cluster found one level down in the recursion (a sub-cluster of

the current cluster). The ranks are used to order the clusters.

For instance, if only one cluster is desired, the one with the

smallest rank is chosen, i.e. that cluster which is most

similar to its sub-cluster.

/

Figure 6 shows the result of applying Method 5 to the

test data. Figure 7 shows some results of substituting

Function (1) for Function (2) in the method. Function (2)

was found to be more effective in this method than Function (1).

This is partly because it has a slightly more global view of

the data (an extra gap length), and partly because of the asym-

metry. It is to be expected that Function (2) would improve

the performance of Methods 1-4 as well. Function (1) is, how-

ever, simpler to compute, and need only be applied once at

each gap.

Method 6

Method 6 is slightly more global than the previous method.

It uses a neighborhood to calculate an evaluation function that

works as an edge detector, or gradient operator. The size of

the neighborhood is that of the largest gap in the data. This

means that the neighborhood over which the gradient is calcu-

lated could end in the middle of a segment. It is thus not

possible to treat the data in terms of segments and gaps as in

the other methods. This method can be considered an approxima-

tion to Method 10 described below.

At each endpoint, the absolute difference between the sum

of the values in the neighborhood to the left of the point and

that to the right of the point is used as the score for splitting

at that point. The point with the highest score is chosen.

i .(,/

Note that it is only necessary to consider endpoints of seg-

ments, since the maximum gradient will always occur there.

The point at which the split is actually made is the central

point of the gap. As usual, this method is repeated on the

denser s'de of the gap.

As in the previous method, a rank is assigned to each

cluster found. It is the change between the score for the

cluster and the score of its sub-cluster. The cluster with the

smallest rank is chosen. Figure 8 shows the results of apply-

ing the method to the data of Figure 1.

Method 7

The function used in Method 7 is based on examining average

gap lengths. At each potential splitting point (i.e. each gap

between segments) the average of all gap lengths to the left of

the point is calculated, as is that for the gap lengths to the

right. (This method is global since it considers all of the

data at every point.) The split point chosen is the one that

has the greatest negative difference between its left average

and the preceding point's left average or the greatest positive

difference between its right average and the preceding point's

right average. The assumption is that the average gap size

on the left of the cluster has its sharpest decrease when the

point is just inside the cluster, and similarly, its sharpest

/
L .~~~ - ,

increase just after the right of the cluster. The splitting

stops when there is no decrease in average gap size on the

left or increase in average gap size on the right, or the

point chosen is one of the endpoints of the data.

Note that half the gap at which the split is being evalu-

ated is added in to the average for each side.

The method usually provides a good estimate of the correct

split point, but, due to edge effects and the small size of

some neighborhoods, it sometimes over- or undershoots the

best split point. A further examination of the local neigh-

borhood about the split point is thus made to locally improve

the positioning.

Figure 9 shows the situation for the right side of a cluster

(i.e. the left region is denser than the region to the right

of the split point). The situation is analogous for the left

side of a cluster. For this case, the four gaps A, B, C, and

D are examined, and max(D-C,C-B,B-A) is found. If D-C is the

maximum value, then D is a bigger gap than C, and the split

point is moved to D. If B-A is the maximum, the split point

is moved to B; otherwise it remains at C. With this fine tuning,

the true edges of the cluster can be found more accurately.

As before, a rank is applied to each cluster found. It is

the difference between the cluster's average gap size and the

average gap size of its sub-cluster. The cluster with the

smallest rank is chosen. Figure 10 shows the results of apply-

ing the method to the data of Figure 1.

L -

Method 8

Method 8 is similar to Method 7 but uses the variance of

the gap sizes on either side of each gap instead of the average

of the gap sizes to calculate the splitting point. The assump-

tion is made that the cluster has a mean and variance different

from the background, and that an endpoint of the cluster can

be found by looking for changes in the variance to the left

and right of each gap. The split point that is chosen is that

which has the greatest positive difference between its left

variance and the previous point's left variance or the great-

est negative difference between its right variance and the pre-

vious point's right variance. This method works well if the

background is fairly uniform. It would break down if the back-

ground were too noisy, or if its variance were too close to

that of the cluster.

A cluster is ranked by the difference between its variance

and the variance of its sub-cluster. The cluster with the

smallest rank is chosen. Figure 11 shows the results obtained

from applying this method to the test data.

Method 9

The function used for splitting in Method 9 is based on

entropy. For a group of segments A = a1 ,a2 1 ..., an the entropy

of A is defined as

entropy(A) = Epilog(pi)
1

The pi's are defined by the gaps on either side of each

segment ai as:

P length 2 * smallest gap in data

length of left gap + length of right gap

The pi's are then normalized.

Segments in the interior of a cluster tend to have smaller

gaps separating them than those in the background. The pi's

are large if the gaps surrounding the segment are large, and

small if the gaps are small. They thus approximate the proba-

bility that segment a1 is not in a cluster. Similarly,

entropy(A) estimates the likelihood that the group of segments

A is entirely in the background.

The gap with the greatest entropy on either its left or

right side is chosen as the split point, since it is most likely

to delimit the foreground from the background of a cluster.

A cluster is ranked by the difference of this greatest

entropy and the greatest entropy of its sub-cluster. The cluster

with the lowest rank is chosen. Figure 12 shows the clusters

found using this method.

I.
- *,'- - . I

2.3 Finding Peaks in a Waveform

In addition to the splitting and merging methods, another

method was developed. This method was originally designed to

find peaks and valleys in waveforms (Eklundh and Rosenfeld (1]),

but was adapted to detect clusters of line segments. The

main differences between the waveform application and the

clustering application are that the waveform data change less

abruptly than clustering data, and can take on more values.

Also, in finding clusters, only the peaks (or only the valleys)

are of interest, whereas in waveform applications both must be

found.

Method 10

The method of Eklundh and Rosenfeld was adapted to search

only for peaks. Like Method 6, this method treats the data

as a sequence of points or pixels. It involves applying

simple difference operators at each point to neighborhoods

having a wide range of sizes. Simple comparisons between the

outputs of these operators for various sizes and positions are

used to evaluate the results. This method is expensive because

of the number of neighborhoods to be compared, and it works no

better than some of the methods discussed earlier (Figure 13).

_______ I

3. Discussion

One result that is apparent from the experiments described

above is the usefulness of the evaluation function (1). This

function was shown to be robust and applicable to several dif-

ferent merging and splitting algorithms. Note that the function

is not restricted to the case in which all the segment lengths

are the same, but that when it is applied to this case, it has

a somewhat simpler form.

Some general remarks can be made about the methods

described in Section 2. First, it is apparent that the simple

merging algorithms are reasonably powerful, but have the charac-

teristic of finding many small "noise" clusters in addition to

the "real" clusters. This is partly because the so-called

noise clusters do indeed group together, but can be largely

ascribed to the local nature of the merging processes.

Splitting algorithms have a more global view of the data,

but require more sophisticated evaluation techniques to find

the clusters. It was found that evaluation methods as simple

as those used for merging did not give satisfactory results

(e.g., Method 4). This means that the splitting methods

described here are more expensive than the merging methods,

but they do give cleaner output.

A major disadvantage of using splitting algorithms is the

introduction of edge effects into the evaluation. Whereas

merging can be done locally, and is too myopic to be affected

1ag

by the endpoints of the data, the splitting algorithms always

have to deal with the edges explicitly at each stage in the

splitting process. Various methods of avoiding edge effects

were used. For example, the data were treated as having gaps

on either side (Method 9), or the points on the border were

ignored (Method 5), or the data was reflected about the border

(Method 10). All of these expedients are reasonable, but

may affect the results produced by the evaluation function.

This is apparent in some of the methods that required fine

tuning of the split position.

In practice, the splitting methods are preferable to the

merging methods. All the splitting methods work well with the

exception of Method 4, which suffers from similar defects to

the merging methods. Of the remaining methods, Method 9 based

on entropy was less successful than the others because of the

poor evaluation function. The best overall method to use is

probably Method 5. It is computationally simpler than the

other methods, and works just as well.

It would be of interest to consider using a splitting

technique to find initial candidates for clusters, and then

applying a less expensive merging technique to delimit the

clusters more exactly. Although from the examples shown here

such a technique appears redundant because of the success of the

splitting methods in finding clusters, such an approach might

have its merits for more complex data.

vs

4. Conclusions

A number of methods have been described for finding

proximity groupings of line segments. It has been shown

that a particular evaluation function (1) is useful for find-

ing clusters using a number of different methods. This func-

tion is base& c. the proportion of a grouping that is made up

of line segments, and the total length of the grouping, includ-

ing the gaps.

IP- haii urther been shown that simple merging techniques

can successfully find clusters, although the local nature of

such methods gives rise to somewhat noisy output. While

simple splitting algorithms are not as successful, more sophis-

ticated techniques have the advantage of a global view of the

data, and can be employed to find the clusters without being

affected as much by the noise.

I

References

1. J. 0. Eklundh and A. Rosenfeld, Peak detection using
difference operators, IEEE Trans. PAM~I, vol. 1, pp.
317-325, 1979.

2. K. Koffka, Principles of Gestalt Psychology, Harcourt,
Brace, New York, 1935.

3. M. Wertheimer, Unterschungen zur lehre von der Gestalt
II, Psychologische Forschung, Zeitschrift fur Psychologie
und ihre Grenzwissenschaften, vol. 4, pp. 301-350, 1923.

4. L. Zusne, Visual Perception of Form, Academic Press, New
York, 1970.

Figure 1

Figure 2

Figure.3

Figure 4

Figure 5

Figure 6

F r

Figure 7

Figure 8

.....

A B CD

Figure 9

* I Figure 10

Figure 11

Figure 12

Figure 13

Data set Mean Variance

Cluster 10 3

15 5

2 20 7

3 25 8

4 30 10

5 35 12

6 40 13

Table 1

UNCLASSIFIED
SECuRITY CLASSIFICATION4 OF TICIS 111401 (UlMe, Des. Ecers)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

I. 09PIOAT NUMSIX 2 GOVY ACCESSION NO. 3. RECInPIENT'S CATALOG0 MUMMER

4. TITLE (and Subtitle) s. Type or EPaOR 4 spEeoo covento

CLUSTERING OF COLLINEAR LINE SEGMENTS Technical
9. PERFORMING ONG. REPORT mlel

TR-888
7. AU 700111(f) S. CONTRACT OR GRANT NMSER(s)

Ann Scher DAAG-53--76C-0138
Michael Shneier
Azriel Rosenfeld______ _______

S. PERFORMING ORGANIZATION MA64E AMD ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Computer Vision Laboratory, Computer AREA 4 WORK UNIT NUMEERSII

Science Center, University of Maryland,
College Park, MD 20742

1I. CON TROLLING OFFICE NAME ANC ADDRES 12. REPORT OATE

U.S. Army Night Vision Laboratory April, 1980
Ft. Belvoir, VA 22060 13. NUMBER OF PAGES 2

Ill. MONITORING A491NCY NAME 6 AOORIESSI different trn Conaclift Office) 15. SECURITY CLASS. (of hi rperta)

Unclassified

1S.. OECCLASSIFICATIOPI/OCW"GPAOING
SCHEDULE

1IL OISYRtioulON, STATEMENT (a is Au. iv

Approved for public release; distribution unlimited.

17. DISTRIOUTION STATEMENT (of thme abstraut .eered in, Blak 20. It iff~erent from Repcfl)

1S. SUPPLEMENTARY NOTES

I9. KEtY WORDS (CaWk, a res Oide if aqw.crn, med idaeifi by bleak nmber)

Image processing Visual perception
Pattern recognition Proximity
Clustering
Collinearity

20. AOSTRACT (CoteeUdo me ,..wside It neea.ccr and Iduentitr by bleak ambet)

A number of methods are presented for finding clusters in
collinear collections of line segments. The methods are of two
kinds--merging methods and splitting methods. Both make use of
an evaluation function, and several alternative functions are
illustrated. The methods are evaluated using randomly generated
clusters on backgrounds containing varying amounts of noise.

DO ?,1473 closnof, I' Nov toi 6501.6ISOeW UNCLASSIFIED

114CURIF CLASSIFICATION 0F THIS IIIGE (WhenS =0e tIwOdJ

A~r

UNCLASSIFIED
SgE:UfIY'V C.ASfiPCATEom of rkis A~Gcwhomost dae~d,d)

UNCLASSIFIED

99CURITY CLASSIFICATION OF THIS PAGIfm.. Dots EntoeE)

