




1. \,atroduction

This project is concerned with the study of advanced

techniques for the analysis of reconnaissance imagery. It

is being conducted under Contract DAAG-53-76-C-0138 ARPA

Order 3206), monitored by the U.S. Army Night Visi and

Electro-Optics Laboratory, Ft. Belvoir, VA (Dr. George Jones).

The Westinghouse Systems Development Divisif, under a sub-

contract, is collaborating on implementation and application

aspects.

The previous phase of the-project, entitled "Image Under-

standing Using Overlays", was concluded during the past report-

ing period. Accomplishments under this phase are summarized

in a Final Report dated May 1980 [11, which also contains a

bibliogrphy of all reports and papers produced during this

periodf

The current phase of the project is concerned with three

principal areas: (a) comparative analysis of segmentation tech-

niques applied to FLIR imagery; (b) development of an inference-

based approach to target detection on FLIR imagery; and (c)

optical flow analysis of time-varying imagery. Work in area (b)

is in progress and will be described in forthloming technical

reports. Area (a) has emphasized methods based on hierarchical

("pyramid") image representations, some of which are reviewed

in this report and in individual Technical Reports (2,3]. Other

individual reports [4,51 deal with some of the work done in area



(c). In addition, the project is preparing software contri-

butions to the DARPA/DMA Image Understanding Testbed; the

first of these will be a general-purpose software package for

implementing relaxation processes at the pixel level.

This report reviews activities on the project during the

period April 1980-January 1981. This work is covered under

the headings of segmentation; local feature detection; feature

linking; and hierarchical representation. The work is summarized

only briefly, since it is covered in greater detail in individual

technical reports and Image Understanding Workshop papers.
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2. Segmentation

2.1 Color pixel classification

When pixels in a black-and-white image are classified

by thresholding their gray levels, gradient magnitude infor-

mation can be used in various ways as an aid in threshold

selection. In particular, a histogram of the gray levels of

pixels whose gradient magnitudes are low has sharper peaks and

deeper valleys than the histogram of the entire image, since

the low-gradient pixels tend to come from the interiors of

regions, not from region border zones; it is easier to choose

useful thresholds (at valley bottoms) from this improved histo-

gram. Analogously, when pixels in a color or multispectral

image are classified on the basis of their spectral signatures,

the color gradient magnitude can be used as an aid in defining

decision surfaces that separate clusters of pixels having like

signatures. In fact, a scatterplot of the signatures of pixels

whose color gradient magnitudes are low has more clearly separ-

ated clusters than the scatter plot of the entire image, for the

same reason as in the grayscale case. This phenomenon is illus-

trated in Figure 1. For further details and additional examples,

i4 see [6].

2.2 Mosaicking

When aerial photographs are combined into a photomosaic, seams

are often apparent between the parts. These seams are caused by

gray level differences due to the different conditions under

which the parts were recorded. A relaxation method has been
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developed that generates a gray level correction function such

that, when this function is subtracted from the mosaic, the

seams are eliminated, but the details of the photographs are

not affected. The algorithm does not assume any specific types

of gray level differences among the parts, nor does it require

the existence of overlaps between the parts, and it can be used

for arbitrary numbers of parts; but it does have the drawback

that if a seam coincides with an edge between two regions, that

edge will be eliminated. The algorithm constructs a seam-

eliminating function which, when subtracted from the mosaic,

causes the gray levels at pairs of adjacent points on opposite

sides of a seam to become equal, and which otherwise is as

smooth as possible. An example of mosaic seam elimination

using this algorithm is shown in Figure 2. Other examples,

and further details, can be found in [7].



3. Local Feature Detection

3.1 Higher-order edge detectors

one way to define edge detectors for digital images is

to fit a polynomial surface to a neighborhood of each pixel,

and take the magnitude of the gradient of that surface as an

*estimate of edgeness. The polynomial fitting process is

usually carried out for symmetric neighborhoods, using poly-

nomials of degree 1 or 2. Using least squares fitting by

orthonormalization and Richardson extrapolation, one can

calculate such edge estimates for other classes of neighbor-

hoods, and for higher-order polynomial models [8].

As further application of this approach, edge detectors

can be defined based on least squares surface fitting in

which the surface is a step edge superimposed on a low-order

polynomial function. This makes it possible to "filter" op-

timal step-based operator responses so as to discriminate

against noise responses, by rejecting responses for which the

fit is poor, without discriminating against low-contrast edges

(which is unavoidable if thresholding is used for noise sup-

pression). An example of such edge "filtering" is shown in

W Figure 3. For other examples, and further details, see [9].

3.2 Edge evaluation

A method of evaluating edge detector output has been

developed, based on the local good form of the detected edges.

It combines two desirable qualities of well-formed edges --

good continuation and thinness. The measure has the expected



behavior for known input edges as a function of their blur

I and noise. It yields results generally similar to those

I obtained with measures based on discrepancy of the detected

edges from their known ideal positions, but it has the ad-

vantage of not requiring ideal positions to be known. It

can be used as an aid to threshold selection in edge detection

(pick the threshold that maximizes the measure), as a basis

for comparing the performances of different detectors, and as

I a measure of the effectiveness of various types of prepro-

cessing operations facilitating edge detection. This method

I is described in detail in a separate Technical Report, where

examples of its performance are also given [10].
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4. Feature Linking

4.1 Edge segment linking

A system of programs that links edge segments based on

both gray level and geometric criteria has been developed

and applied to the detection of buildings and roads on

aerial photographs. Preliminary results using these programs

were described in [111; a more detailed description, and

numerous additional results, are presented in [121. Further

work along these lines led to the development of figures of

merit for linking compatible segments (i.e., segments that

could be consecutive sides of an object) and antiparallel seg-

ments (i.e., segments that could be opposite sides). For compa-

tible pairs, the figure of merit is based on the geometrical

configuration of the segments, the similarity of the gray levels

on their "object" sides, and the similarity between their object

sides and the line joining their endpoints. For antiparallel pairs,

it is based on the homogeneity of gray level between the edges and

the amount of overlap between them. These figures of merit

have highly bimodal histograms, making it quite easy to decide

which pairs of segments should be linked, as illustrated in

Figures 4 and 5. They should be useful in the design of

relaxation-like schemes for classifying edge segments. For

further details, and many additional results, see [13,14].

4.2 Reconstruction from gray-weighted medial axes

A method of defining a "min-max medial axis transformation"

(MMMAT) for grayscale images, based on iterated local MIN and

MAX operations, was described in a previous report [1]. This

___ I.



transformation associates with each pixel a vector of gray

level increments, and exact reconstruction of the image is

possible from these vectors. Moreover, good approximations

to the image can be reconstructed using only the strongest

components of the strongest few vectors. A few illustrations

of this were given in an earlier report; further details and

additional examples can be found in [15].
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5. Hierarchical Representation

Extensive work has been done on this project on the use

of pyramid and quadtree structures for image representation

and processing. The work done in this area through March

1980 was summarized in [16]. In this section we briefly

sunarize developments in this area during the past reporting

* tperiod.

5.1 Quadtree-to-raster conversion

An algorithm for converting quadtree representations

of binary images to row-by-row (e.g., run-length) representa-

tions was described and partially analyzed in an earlier report.

More recently, a comparative study and complete analysis of

four such algorithms has been conducted [17]. The simplest

algovithm is a straightforward top-down approach that visits

each run in a row in succession starting at the root of the

tree; the other algorithms proceed in a manner akin to an in-

order tree traversal. The analysis shows under what circum-

stances each algorithm is preferable. They have all been

shown to have execution times proportional to the sum of the

heights of the blocks comprising the image.

5.2 Quadtree-based image smoothing

Two methods for smoothing an image using quadtree approxi-

miiations to the image have been developed. One uses the sizes

of Lhe leaves in the quadtree to determine neighborhood sizes

over which to apply the smoothing. The other method maps each

image gray level i into the gray level j into which i most
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frequently maps when we replace the level of each pixel by

the level of the quadtree leaf to which it belongs. Results

obtained using these methods, as well as a local histogram

peak sharpening method, are shown in Figure 6. The second

quadtree-based method seems to give the best results. Addi-

tional examples, and detailed descriptions of the methods,

can be found in [18].

5.3 Edge pyramids and quadtrees

An edge (or curve) pyramid is a sequence of successively

lower-resolution versions of an image, each containing a

summary of the edge information in its predecessor. This

summary includes the average edge magnitude and direction in

each "block" of the higher-resolution image, together with

an intercept in that block and a measure of the error in the

direction estimate. An edge quadtree, analogously, is a

variable-resolution representation of the edge or curve

information in the given image, constructed by recursively

splitting the image into quadrants based on magnitude,

direction, intercept, and error information. Advantages of

these representations include their registration with the

original image, their ability to represent many edges or curves

in a single tree structure, and their ability to perform many

operations on the represented data efficiency. A detailed

description of these representations, together with examples,

can be found in a separate Technical Report [2].



5.4 Pyramid linking

When an image is smoothed using small blocks or

neighborhoods, the results may be somewhat unreliable due

to the effects of noise on small samples. When largerI blocks are used, the samples become more reliable, but they

are more likely to be mixed, since a large block will often

not be contained in a single region of the image. A compro-

mise approach is to use several block sizes, representing

* I versions of the image at several resolutions, and to carry

out the smoothing by means of a cooperative process based

cn links between blocks of adjacent sizes. These links

define "block trees" which segment the image into regions,

not necessarily connected, over which smoothing takes place.

The basic "pyramid linking" scheme was described in an

earlier report. Further experiments with this scheme have

led to some improvements over the original method, based on

better ways of initializing the process and measuring the

link merit. A detailed description of these experiments

and their results can be found in a separate Technical

Report (3). It has also been found that forced-choice

linking of blocks to larger blocks is not necessary; one

can use weighted links, recomputing the weights at each

iteration, and it turns out that the weights converge to

0's and l's as the process stabilizes. Generalizations

of this approach to image features other than gray level,

including color signatures and textural properties, have

also been investigated and will be described in future reports.
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Figure 5. Antiparallelness merit for edge segments






