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THE STRUCTURE OF A SECURITY KERNEL FOR A 28000
BULTIPROCESSOR

LYLE A. COX, Jr., and ROGER R. SCHELL, Col., USAF

Department of Coamputer Science
Naval Postgraduate School

Monterey, California

AB3TIRACT

The security kernel technology has provided the technical
foundation for highly reliable protection o2f computerized
information. However, the operating system impleamentations
face two significant challenges: providing (1) adeguate
computatisnal resources for applications tasks, and (2) a
clean, straightforward structure whose correctness can be
easily reviewved. This paper presents the experience of an
ongoing security kernel isplementation using the Aadvanced
Micro Devices 4116 single-board computer based on the 28002
microprocessor. The performance issues of process switch-
ing, domain changing, and sultiprocessor bus contention are

explicitly addrassed. The strictly hierarchical (i.e.,
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loop-free) structure provides a series of increasingly capa-
ble, separately usable operating systea subsets. Security
enforcema3nt is structured in two layers: the basic kernel
rigorously enforces a non-~discretionary (viz., lattice mo-
del) policy, vwhila an upper layer provides the access re-

finements for a discretionary policy.

BACEGROUND

For the last two and a half years the Naval Postgraduate
School has been conducting a research and developaent pro-
ject involving security kernel based operating systeams de-
signed for multiple processor iamplementations. As this work
continues we feel that it is important to report on our pro-
gress and 2xperiences, especially in the area of aicropro-

cessor implementations.

This effort has come to be known as the "SASS"™ or Secure
Archival Storage Systeama project [1]. Ia fact, this is a
misnomer, as SASS is but a single instance of a more general
fanily of secure operating systems designed early in the
project (2]. WwWhile SASS has been the object of the aajority
of the research reported it is not the oaly iaplementation.
Another oparating system of this faamily has also been writ-
ten to support a signal processing systea that uses aultiple

Intel 8086 processors [(13].
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SASS has been our principal testbed for exploring the ia-
plementation and performance issues related to these types
of operating systems. SASS itself vas designed to be a coa-
prehensive aultiuser, multilevel secure file storage systea.
As designed, it will consist of a small number of
28000-based [4]) single board computers sharing a single Mul-
tibus with storage devices and input/output devices. SASS
vill interface via bidirectional lines to a nuaber of "host"
systems, as illustrated in Pigure 1. SASS will provide 2ach
host with a hierarchical file systea. This systea can be
used to store and retrieve files, and share files with other
hosts. This design will allow SASS to serve as a central
hub of a data secure netvwork of computers with diverse se-
curity authorization fér gsensitive information. SASS pro-
vides archival, shared storage while insuring that each in-
terfaced host processor can access only that information

appropriate to its security authorizations.

- iy -
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SIRUGIURE

Por this family of operating systeams the security kernel
technology has been used not only to effect security but
also to provide the underlying organizational framework for
the operating systea. The SASS, one aeamber of this family,
is in the final stages of iamplementation. This developaent
experience has highlighted the importance of several fea-

tures that are kay to this faaily:

- The pervasive, yet systematizing iapact of the security
kernel methodology [5].

- The design simplicity that accosmpanies a loop~free mo-
dularization that is highly compatible with the resource
sharing and multiprogramaing functions.

- The significance of a high degree of configuratiom in-
dependence, particularly for the ability ¢to use the latest

microprocessors for testbed implementation.

Independent of security, this particular kernel structure

is attractive as a canonical operating systaam interface. It

appears adequate for a wide range of functionality and ca-

pacity, and it evidences a high degree >f independence froa
hardvare idiosyncrasies. These operating system featuras

will be discussed further below.
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Secyrity Karnel Approach

- Members of this operating system family are organized
with thres distinct extended aachine layers: (1) the secur-
ity kernel, (2) tha supervisor, and (3) the applicationms.
This is illustrated in Figure 2. The concept of a hierarchy
of extended machines is, to be sure, not new; however, the
| security kernel significantly constrains <the organization.
i In particular, for reason of security all the management of
| physical rasources aust be within the kernel itself. Furth-

ermore, confidence is increased by keeping the Kkernel as

R small and simple as possible. This means that much of what

is commonly thought of as the operatingy systea is provided
outside the kernel in the supervisor layer. Por this parti-
cular family meaber there is n> nmajor applications layer
(viz., within SAsS itself), since the applications are con-

tained in the individual hosts.

The basic family of operating systeas requires the ker-
nels to provide extended virtual machines that specifically
support both asynchronous processes and segmeated address
spaces. Within sSAsS, the kernel virtualizes processors, all
& i levels of storage, and input/output. The kernel creates

‘ virtualized objects -~ processes, segments, and devices. It

is this "pure" virtual interface that is attractive as the

- vii -
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basis for canonical operating system features. The SASS su-

pervisor is in turn built upon the kernel, using these vir-

tualized objects to construct the file systeam.

Both the kernel and the supervisor have certain responsi-
bilities for system security. The kern2l manages all physi-
cal resources, and the kernel is distributed (i.e., includ-
ed) in the address space of every process. At this level,
isolation of the kernel -- protection from users and the su-
pervisor -- must be provided by hardware enforced domains.
The design of the system is strictly hierarchical (viz., the
kearnel is more privileged than the supervisor) so protection
rings, as defined for Multics {6])], are a satisfactory doaain

implementation,

The kernel has the respomnsibility £for the eaforceaent of

access limitations: that is, the kernel provides the mechan-
ism for supporting non-discretionary security policy. The
SASS kernel can support any such policy which can be ex-
pressed by a lattice of access classes [7]. Every object --
process, segment, or device -- has a non-forgable label that
denotes its access class. This non-discretionary security
has been parameterized in SASS such that sxactly one module
has knowledge of the interpretation of this 1label in teras

of a specific policy. Thus, only this singles module need be

tailored to support a particular policy.
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SASS provides discretionary security (shared access
within the bounds of non-discretionary pslicy based on indi-
vidual user identification) via the supervisor and the file

structure. This discretionary security is coapletely dut-

, .ﬂ_h_
B N SN OU,

side of the kernel (in contrast with the KSOS [8]) approach).

’ The supervisor handles the "Secure Reader~Writer Problea”
! vith a non-exclusionary approach (one writer, retry on read)
1 to provide synchronization between processes of differeat
access classes. This control of interprocess communication
is implemsnted via kernel primitives using Reed's event-

counts and sequencers (9].

The SASS supervisor capabilities are achieved by associ- i
ating two processes with each host 1link. These processes |
access that portion of the SASS file structure associated
with that host. One of these processes provides I/O0 tran-
smission and link management, while the other, a file manag-
er, 1is responsible for the file systea structure of its as-
sociated host. Communication between these processes (as is
i’ comaunication between all processes) is achieved using

shared segments -- a mailbox. Synchronization is provided

. by the kernel (with eventcounts and sejuancers).

The complementary kernel/supervisor approach to security

i has several advantages for SASS: the size and the coaplexi-
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ty of the kernel can be a2ainimized, and, given reliable host
authentication, any host weaknesses will not iapact the re-

liable e2nforcement of the non-discretionary security policy.

The security kernel approach constrains not oaly the in-

terface but also the detailed design and iaplementation of
internal state variables. The problem is to prevent indi-
rect inforamation paths between processes with different ac-
cess classes. We address this problea using essentially the
approach detailed by Millen [10], although without the rigor
of a proof. 1Internal state variables, #.3., shared resource
tables, are assigned an access class, and it is confirmed
that its values will not be reflected to processes of an in-
consistent access class. The most apparent result is that
the "success code® (returned in responss to the invocation
of kernel primitives) primarily reflects the state of the
per-process virtual resources, not the shared physical re-

sources,

- xi -
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Loop Eree Organization
Another aspect of the design that has helped to keep the

security karnel simple and understandable is the loop-free
structure of SASS. The loop-free design supports the soft-
vare engineering concept of "information hiding® ([11]), as
there are really no global data structures within SASS. The
kernel is internally organized into four distinct layers, as
illustrated in Pigure 3; these layers, that will be de-
scribed below, are termed (1) segment and event managers,
(2) traffié controller, (3) aemory manager, and (4) inner

traffic contreoller.

In practice we have been quite doctrinaire in enforcemernt
of the 1loop-free structure for this organization. While
many operating systems claim to be modular or well-struc-
tured, we empirically validate this claina. He "peel-off"
the upper 1layers one at a time by literally removing the
ccde and data, and then demonstrate that the remainder can
be loaded and run as a functionally intact, but obviously
limited, operating system subset. The function of each lay-

er vill now be described, proceeding froa the bottoa upward.

- xii -
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Inner Traffic contgroller. Processor multiplexing has tvo

layers, similar to those proposed for Multics [12]. Bach
physical processor has a fixed nuaber of "virtual proces-

sors" that are aultiplexed onto it. Two of these virtual

B e U

processors are dedicated to system services: an idle virtu-
al procassor and a memory manager procass to asanage the as-
ynchronous access to secondary storage devices. The resain-
ing virtual processors (currently tvo per physical
! processor) are available to the (upper level) traffic cont-

roller. The inner traffic controller provides signal and
K vait synchronization priamitives that include a message that
! is passed between virtual processors. In teras of tradi-
i tional jarjon, the inner traffic controller provides multi-
| programaingy by scheduling virtual processors to run on the
CPU they are (permanently) associated with. Note that this

structure implies that the security kernel is interruptible,

viz., is not a critical section; howvever, the inner traffic

controller itself is not interruptible. In addition, this

layer provides all the wmultiprocessing interactions between
5 individual physical processors, using a hardware "preempt"™
interrupt.
Memory Hdanager. This layer manages the amultiplexing of the
physical storage resources, viz., "disk" and "core". This
layer also nmanages the segaent descriptors in the memory
managesent unit (MMU) image for each process. Most of the

functions of this layer are executed by the per-CPU aeaory

- Xiv -
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manager processes, vith synchronization provided by ianner
traffic controller signal and wait primitives. The single
board computers have per-processor, local aemory; there is
also additional global aemory that is addressable by all

processes. The memory manager insures that (oaly) shared

segmaents are in jlobal memory.

This policy can require some transfers between local and
global memory; however, the low transaction rate of the ar-
chival storage system is not desanding, and this structure
minimizes bus transfer requirements under expected operating
conditions.

Traffic Controller. The variable number of processes (twvwo
per host) are aultiplexed onto virtual processors defined by
the inner ctraffic controller. Bach process has an affinity
to the physical processor whose local memory contains a por-
tion of its address space at the time 5f the process sche-
duling decision. As indicated earlier, the traffic cont-
roller layer uses Reed*s advance and await mechanisa [9] to
provide interprocess coamunication.

Seqpent and Event Ydapagers. All entries into the kernel
pass through the segment/event manager layer. The explicit
non-discretionary security checks are made at this level by
coaparing the access class labels of subjects and objects.

This layer uses a per-process knovn segment table to convert




process local names (viz., segment number) for objects into

system-vid=2 nanmes. Bach segment has associated with it two
eventcounts and a sequencer; thus, segment numbers also
serve as their names. The segment manager provides for the
creation and deletion of segments and their entry into and
removal from a process address space.

gate Keepeg. A process invokes a security kermel function
using the <traditional trap mechanisa. The 28000 “systaa
call® instructioan causes a trap, and the gate keeper is
merely the trap handler. All paraametars and return values
are "passad by value®" in CPU registers; this simplifies se-
curity validation, The gate keeper merely calls the parti-

cular procedure that corresponds to the requested function.

Micpoprocessor Iesthed

Ore important aspect of this research has been the actual
implementation and testing of the concepts daveloped. Trad-
itionally the impleaentation of multiple processor struc-
tures has been an expensive undertaking. Becently the de-
velopment of sophisticated nmicroprocessors that feature
multiple operating modes, advanced addressing, support of
nultiple processor configurations, and a standard bus co-
nfigquration with peripheral support have all nmade the imple-
mentation of advanced operating systeas op microprocessor

devices possible, and economically feasible.

- xvi -
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The processors of SASS all share the same bus; 2ach
processor is a commercial single board coaputer with on-
board random accass memory. These processors also share a
global amemory, and certain peripheral devices. This co-

nfiguration is illustrated in Pigure 4.

In general, security kernel bas=d operating systeas find
three processor-supported execuxion domains (operating
states) highly dssirable: for ths rernel, supervisor, and
applications. This is true of ¢the operating system family
discussed here. Currently there are no single chip proces-
sors that support three states. This is aot a significant
problea for SASS, since it is the hosts rather than the SASS
systea processors that execute wuser applicatioan prograas.
Under these circuastances a two mode (kernel and supervisor)
machine is sufficient. Such architectures are currently

available as microprocessors, in particular the 28000.

Accordingly, we are implementing a aultiple aicroproces-
Sor systea to test the SASS concept. The current hardvare
in use is the AMD 4116 single board cosputer [13] in a stan-
dard Multibus backplane. This configuration has a signifi-
cant limitation: it does not include the hardware Memory

Manager Unit, as described ia [2].

- xvii -




[ ] o ®
ODATA LINKS

SASS BOUNDARY
LOCAL LOCAL
MEM CPu e0e wem M1 cru
b
GLOBAL
MEM
SECONDARY SECONDARY
MEM e o o MEM
(ey., (eg.,
hard disk) hard disk)

Pigure 4: Multiprocessor Configuration

- xviii -

R L e T T




~yrmT

Currently we simulate in software the aesory aanageament

unit, so the kernel is not protected froa the supervisor as
the original design specified. Hardware protection in the
form of addressing 1limitations is available, and has been
used in some of the experiments to assure the integrity of
the kernel. In this configuration, the hardware protects
one half of the local memory froa any access when the CPU is
operating in the noramal mode. Any attempt to access memory
vhich is thus protected generates an interrupt and the fault
detection software traps the access. This is adequate for
current tests, but a complete aeaory manageaent systea is
clearly aore desirable. Our experiences on this testbed in
terms of performance and software development are discussed

further below.

IHE SA3S EXRERIENGE

The lessons learned to this point fall into two broad ca-
tegories: programming (software engineering) experiences,
and performance experiences. We will discuss both of these

issues below.

Brogramaing Ezperiences

The nature of this research effort has been highly struc-
tured, eaphasizing wmodularity at every opportunity. The

software design is strictly ®"top=-down®. This has bheen a
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matter of gJood design practice, and of necessity. Since the
majority of the work has been performed by a succession of
1 Master's degree students [14,15,16,17,18,19] during their |
i brief six to nine months of research each, the clear defini-

tion of software modules has been key to the success of the
? . effort. We have found that the high degree of modularity
| has allowved the students to work on the project with a aini-
f aum of "start-up" time, and a maximum of productive effort

1 and learning.

The actual inplementation is proceeding in an essentially 1

F bottom up manner, with test harnesses and stubs being writc-

; ten as necessary for testing. The SASS modules were speci-
f fied in a pseudo-language resembling curreat higher level ;
languages. The SASS nmodules as iaplemented were coded in ‘
PLZ~-ASH [20], the 28000 structured assambly laaguage. We
found that the pseudo-code specifications of modules vere
adequate, and that the translation from this code to the

structured asseably language was straightforwvard.

The structured assembly language of the Zilog 28000 sup-

ported many of the constructs usually thought‘ to be unique

to higher 1level languages, including typed record struc-
tures, DO-loops, IP-THEN~ELSE, and CASE. In fact, our pro-
grammers think of this asseably language as a higher level

language. Approximately 40 percent of the statements writ-
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ten in SASS are equivalent to statesents in modern prograas-

ming languages.

Despite the gqualities of the structured asseambler, it was
selected by default. When the decision vas aade, the proto-
type hardvare boards were just becoming available. There
vas virtually no software suypport available. In particular,
no higher level language was available. The software envi-
ronaent vas (by modern standards) very primitive, with no
tools for operating systeam developaent available. Neverthe-
less, the progression from microprocessor developaent systea
to commercial single board computer systeam has been surpris-
ingly smooth (an opinion that some students might dispute).
The software development environment has grown slowly. Yet,

this has not proved to be a handicap.

- xx3i -
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Performance Issues

In the programming for the SASS, we have generally treat-
ed performance as a secondary issue, in deference to more

basic concerns such as security and aodularity. Howvever, ve

e e o b .

have addressed performance on a design level wvhere perfor-

mance is strongly related to a. i1itectural choices.

Obviously, one basic design choice is the use of sulti-
processing as a wvay to increase processing capacity. Howev-
er, bus contention is a major performancs concern in the
_f multiprocessor configurations, since all processors share a
single Multibus. If, for example, all code and data vere

located in global memory, then even two or three processors

would saturate the bus. However, in reality only shareqd,
writable segaents need be in global aemory. OJur use of a
purely virtual, segmented memory peraits the kernel to let-
ermine exactly which are the shared, writable segments. As
noted before, the memory manager layer totally controls tae
allocation to global memory, and thus markedly controls bus

contention.

f In the current SASS implementation we use the "Normal"™
and "System" modes of the 28000 hardware, with the system
node dedicated to the security kernel. The doamain changes

automatically generate a switch of the stack within the

- xxii - '
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hardware. This is particularly important to the efficiency

with wvhich we can switch domains while waintaining the in-

tegrity of the kernel.

In SASS a process swvitch is achieved by switching the

stack. SASS saves the process history in the stack, so a
switch requires only the stack exchange. Preeapt hardware
interrupts can initiate scheduler changes, and associated
virtual interrupts to the virtual processors. This sequence
is relatively efficient given the Zilog architecture. The
process switching performance question is aore interesting

in the context of processor multiplexing.

The multiprogramaing time is the interval from <the tinme
the ipner traffic controller signal primitive is invoked in
one virtual processor until there is a return froam a (pend-
ing) wait invocation in a different virtual processor. This
includes both process switching and aessage passing opera-

tions.

Por interprocess communication, the read and ticket calls
(from the normal mode) include a system call though the gate
keeper to the kernel, the non-discretionary security checks,
and access to the eventcount or sequencer value; howaever, no
process switch is involved. The syanchronization time in-

cludes the interval from the invocation of the systea call

- xxiii -
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(in normal mode) for advance in one process until the retura
from a (blocking) awvait invocation in a different process.

J This includes the security checks and scheduling of both a

} virteal and a physical processor.

A set of n@measurements on the current implementation are
: summarized in Table 1. There has been no effort to “tune®
the system to improve performance. We find these results

vithin our range of expectations for a single chip aicropro-

3 Cessor.
-
- ' Pugction Tise (milliseconds)
| Multiprogramaing 0.5
1 signal/vait pair
i
: Synchronization 2.3
advance/avait pair
z Read (Eventcount) 0.6

Ticket (Sequencer) 0.6

Table 1. Performance Measurements |

- ¢
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SUUMARY

A modern operating system featuring kernel based securi-
ty, sejaented memory and amultiple processors has been de-
signed and is being implemented using =modern aicroproces-
Sors. To date our focus on methodical design has paid off:
the implementation of a carefully designed, siaple structure
using elementary softwvare development tools has proceeded

vell.

The initial testbed implementation is running and prelia-
inary data is now available regarding the operating perfor-
mance of such systems implemented on microprocessors of ad-
vanced architectures. Data gathered suggests that the
security kernel is indeed an attractive structure for a mo-
dern operating systen. There is a wide range of applica-
tions whera sophisticated operating systems can be iaple-
mented upon aicroprocessors, and attractive performance can
be achieved, particularly through the use of aultiple pro-

cessors.
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POREBHEORD
This technical report contains edited sagments of four mas-

ters' theses:

The Design and Iaplementation of the Hemory Mamag-

ek £2r a sSecurs Archival Storage sSystes by B. E.
Moore and A. V. Gary

Ap Iaelemepntation of Multiprogramming and Brocess
ggnggegsngeggi a Security Eecnel 2perating Systen

Isplesentation of Segpent Napnagement £oI 3 Secure
Archival $iorage Systeg by J. T. Wells

Isplegentation of Process Mapadgement £or 4 Secuge
archival sStorage System by A. R. Strickler

vhich describe the development and implementation of the Na-
val Postgraduate School Secure Archival Storage Systea
(SASS) . These theses are based upon the design outlined in
the Naval Postgraduate School SECURE ARCHIVAL STORAGE SYSTEM
Part I -~ Design - by R. R. Schell and L. 4. Cox [ 17]. This
design is updated and presented in detail.

Some sactions of each thesis have been excluded in order
to eliminate repetition amd bulk. Similarly, the progras
listings in this —report represent the current state of the
project and do not pertain to any one thesis, An atteapt

has been nmade to footnote some discrepancies between the




P R

r -

systea dascribed by these theses and the currert state.
However, there say be some details described herein which do
not correspond to the current SASS systea. Consequently,
the reader is advised to consult the individual thesis if
more detail on a particular phase of the dsvelopment is re-
quired. A prograa description document, providing greater
clarification of SASS organization amnd listings, is also

available.
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Chapter I

BACKGROUND

This chapter is an updated excerpt froa Jgplenen-

tation of Segment Mapnagement for a Secure Archival
Storage System by J. T. Wells [20].

O'Connell and Richardson provided the design for a faami-
ly of secure, distributed, aulti-microprocessor operating
systems froa which the subset, SASS, was later derived [7].
In their work, ¢two of the primary amotivations were to pro-
vide a systea that (1) effectively coordinated the process-
ing pover of microprocessors and (2) provided inforaation
security.

The basis for emphasis on utilization of microprocessors
is not purely that of replacing software with more powerful
(and faster) hardvare (microprocessors) but is also an eco-
nomic issue. Softvare developaent and computing operations
are beéoning more and more expensive, putting further pres-
sure on system designers to increasingly utilize people
solely for systea functions that computers cannot perfora in
a cost effactive manner. Microcomputers, on the other hand,
are becoaing less and less expensive and are, therefore, in-
creasingly being used for more functioas.

The need for information security has been gradually re-

cognized as the uses of computers have expanded. As security




needs for specific computer systeas have been recognized,
attempts have been made to wmodify the existing systeas to
provide the desired security. The results have been systeas
that could not be certified as secure and/or which have
failed to resist penetration efforts, i.e. systeams which, in
effect, did not provide adequate information security. It
has become clear that, in order to be certifiably secure, a
computer system must have security designed in froa first
principles [ 10,11]). Such is the case with SASS. Inforaation
security was and continues to be a chief design feature,
Integral t> the design goal of inforaation security were two
related goals. One of these goals was to provide multilev-
2l controlled access to a consolidated warehouse of data for
a network of aultiple host computers. The other key goal was
to provide for controlled sharing among the coamputer hosts.
A brief background of prior work relative to SASS fol-
lovws. 0'Connell and Richardson originated the design of a
secure family of operating systems. ZTheir design provided
two basic parts for their system -~ the supervisor (to pro-
vide operating system services) and the kernel (to provide
for physical resource management) . The design of the SASS
supervisor was completed by Parks (9]. No iaplementation or
further design effort on the supervior has followed, to
date. The initial design of the kernel was coampleted by
Coleman (2]. That design described the kernel in teras of

seven modules:




1.

2.

7.

Gate Keeper Nodule -- provided for ring-crossing ae-
chanisa and thus isolation of the kernel.

Segaent Manager Module -- provided for management of
segaented virtual msesmory.

Traffic Controller Module -- multiplexed processes
onto virtual processors and supports the inter- pro-
cess communication primitives Block and Wakeup.

Non-Discretionary Security Module -- aediated non-
discretionary security access atteapts.

Inner Traffic Controller Module -- multiplexed virtu-
al processors onto real processors and provided the
Kernel synchronization primitives Signal and Wait.

Memory Manager Module -~ managed main memory and sec-
ondary storage.

Input-Output Manager -- managed the moving of infor-
mation to external devices outside the boundaries of
the SASS.

Refinement of the kernel design and partial iaplementation

vas

completed by Gary and Moore [{5] in conjunction with

Reitz [12). The resultant description of the kernel as a re-

sult of their work was:

1.
2.
3.

4.
5.

6.
7.

Gate Keeper MNodule
Segment Manager Module

Event Manager Module -- worked with the Traffic Cont-~
roller to manage <the event data associated with the
IPC mechanisa of eventcounts and sequencers.

Non-Discretionary Security H#odule

Traffic Controller Module -- replaced Block and Wake-
up with Advance and Await (to implesment Supervisor
IPC mechanisa of eventcouants and sequencers).

Memory Manager Module

Inner Traffic Controller Module
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Reitz impl2mented <the Traffic Controller Hodule and Inner

Traffic Controllar Module. Gary and Moore completed a de-
tailed design of the Memory Manager, originated the Memory
Manager code (vritten predoaminantly in PLZ/SYS), selected a
thread of the code, hand compiled it into PLZ/ASM and ran it
on the Z8000 developmental module. Wells provided the im-
plesentation of the Segment Manager and Non-Discretionary
Security Modules as well as partial implemeantation of Dis-
tributed Memory Manager functions. Strickler refined and
implemented the process manageament functions for the SASS

(vritten in PLZ/ASH).




3 Chapter II
BASIC CONCEPTS/DEFIMNITIONS

This chapter is an excerpt froam lpplsaspntation of

Procsss Management f£or 3 Securs Acshival Ssorage
; Systea by A. R. strickler [ 19]. Minor changes

have been made for inteqration into rasport.

S This section provides an overview of several concepts
essential to the SASS design. Readers familiar with SASS or
] vith secura operating systea principles amay wish to skip to

the next section.

N A.  PBOCESS

The notion of a process has been viewed in many ways in
| coaputer science literature. Organick [8] defines a process
| as a set of related procedures and data undergoing execution
and manipulation, respectively, by one of possibly several
procassors of a coaputer. Madnick and Donovan [6] view a
process as the locus of points of a processor executing a
collection of programs. Reed [ 10] describes a process as
the sequence of actions taken by some proccessor. In other

vords, it is the past, preseat, and future *history® of the
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states of the processor. In the SASS design, & process is

viewed as a logical entity entirely characterized by an ad-
dress space and an execution point. A process' address

space consists of the set of all memory locations accessible




by the process during its execution. This may be viewed as

a set of procedures and data related to the process. The
execution point is defined by the state of the processor at
any given instant of process execution.

AsS a logical entity, a process aay have logical attri-
butes associated with it, such as a security access class, a
unique identifier, and an execution state. This notion of
logical attributes should not be confused with the more typ-
ical notion of physical attributes, such as location in me-
mory, page size, etc. In SASS, a process is given a securi-
ty access class, at the time of its creation, to specify
vhat authorization it possesses in teras of information ac-
cess (to be discussed in the next section). It is also giv-
en a unigue identifier that provides for its ideantification
by the system and is utilized for interaction among process-
es. A process may exist in one of three execution states:
1) running, 2) ready, and 3) blocked. In order to execute,
a process aust be mapped onto (bound to) a physical proces~
sor in the systea. Such a process is said to be in the
*"running" state. A process that is not mapped onto a physi-
cal processor, but is otherwise ready to execute, is in the
“ready" state. A process in the "blocked" state is wvaiting
for some event to occur in the system and cannot continue
execution until the event occurs. At that time, the process

is placed into the ready state.
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B.  INEORMATIION SECURITY

There is an ever increasing demand for computer systeas

that can provide controlled access to the data it stores.
In this thesis, "information security® is defined as the
process of controlling access ‘to informatior based upon
proper authorization. The critical need for information se-
curity should be clear. Banks and other coamercial enter-
prises risk the theft or loss of funds. Insurance and cre-
dit companies are bound by law to protect the private or
otherwise personal information they maintain on their cus-
tomers. OUniversities and scientific institutions aust pre-
vent the unauthorized use of their often over-burdened sys-
teas. The Department of Defense and other governaent
agencies must face the very‘rgal possibility that classified
information is being compromised or that weapon systeams are
being tampered with. In fact, security related probless can
be found at virtually every level of computer usage.

The security of computer systeas processing sensitive
information can be achieved by tvo means: external security
controls and internal security controls. In the first case,
security is achieved by encapsulating the computer and all
its trusted users within a single security periameter estab-
lighe by physical means (e.g., armed guards, fences, etc.)
This means of security is often undesirable due to its added
cost of impleaentation, the inherent risk of error~-prone ama-

nual procedures, and the problema of trustworthy but error-




prone users. Also, since all security controls are external 1
to the computer system, the computer is incapable of secure-
ly handling data at differing security levels or users with
differing degrees of authorization. This restriction great-

ly limits the utility of modern computers. Internal securi-

P S

ty controls rely upon the computer system to internally dis-
tinguish between multiple levels of inforsmation
i classification and user authorization. This is clearly a
smore desirable and flexible approach to information securi-
ty. This does not mean, however, that external security is
not needed. The optimal approach would be to utilize inter-
- nal security controls to wmaintain information security and
external security controls to provide physical protectioa of
our system against sabotage, theft, or destruction. The
primary concern of this thesis is inforaation security and
will therefore center its discussion on the achieveaent of
information security through implementation of the security
kernel concept.

One might argue that a "totally secure® computer systea
is one that allows no access to its classified or otherwise
sensitive information. Such a systeama would not be of amuch
value to its users. Therefore, vhen wve say that a systea
provides information security, it is only secure with res-

pect to some specific external security policy established

by laws, directives, or regulations. There are two distinct

aspects of security policy: non-discretionary and discre-
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tionary. Each user (subject) of the systes is given a label
denoting what classification or level of access the user is

authorized. Likewise, all inforamation or segments (objects)

S e 4 .

vithin the systes are labelled with their classification or
level of sensitivity. The non-discretionary security ae-
chanisa is responsible for comparing the authorization of a
: subject with the classification of an object and deteramining
\ vhat access, 1if any, ;hould be granted. The DOD security
classification system provides an example of the non-discre-
tionary security policy and is the policy inplelénted in

SASS. The discretionary security policy is a refineaent of

the non-discretionary policy. As such, it adds a higher de- |

gree of restriction by allowing a subject to specify or res-

trict who may have access to his files. It must be eapha-

4

sized that the discretionary policy 1is contained within the’
non-discrationary policy and in no wvay underlineé or substi-
tutes for it.  This prevernts a subject froam granting access
that would violate the non-discretionary policy. An exaaple
of discretionary security is provided by the DOD "need to
know"® policy. In SASS, the discretionary policy is imple-
mented within the supervisor [9] by aeans of an Access Con-
;' trol List (ACL). There is an ACL maintained for every file
in the system, vhich provides a list of all users authorized
access to that file. Every attempt by a user to access a
file is first checked against the ACL and then checked

' against the non-discretionary security policy. The “laast*

- 10 -




or "most restri~tive" access found in these checks is then
granted to the user.

The relationship between the 1labels associated with the

subject's access class (sac) and the object’s access class

(cac) is defined by a lattice model of secure information

e B ————— 7

flow {12] as follows (" |" dgnotes "no relationship"):
1. sac = oac, read and write access permitted
2. sac > oac, read access peraitted
3. sac < oac, write access permitted

" 4. sac | oac, no access permitted

In order to understand how these access levels are deter-

A mined, it is necessary to gain an awareaness of and coasider-

ation for several basic security properties.
- v 5 ]

“The "Simple Security Property" decals with "read® access.

It states that a subject may bhave read access only to those
object's whose classification is less than or equal to the
classification of the subject. Tﬁis prevents a subject froa
reading any objeét possessing a classification higher than
his‘ovn. ‘

' The "Confinement Proéetty” (aiso koown as "#-property")
governs "write®" access. It states ihat a user msay be grant-

ad vwrite access only to those objects whose glassiiication

O is greater than or equal to the classification of the sub-

ject. This prevents a user from writing info:‘ation of a

higher classification (e.g.., Secret) into a file of a lower

classification (@.9., Unclassified). It is noted that while

- 11 -
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this property allows a user to vwrite into a file possessing

a classification higher than his own, it does not allow hinm

J access to any of the data in that file. The SASS design

i does not allov a2 user %o “write up"™ to higher classified

1 files. Therefore, in SASS, "Ysac < oac" denotes "no access
permitted."

The "Compatibility Property" deals with the crsation of

objects in a hierarchical structure. In SASS, objects (seg-

ments) are hierarchically organized in a +tree structure.
This structure consists of nodes with a root node froa which
f the tree eminates. The Compatibility Property states that
} the classification of objects must be non-decreasing as we
! move down the hierarchical structure. This prevents a pa-
rent node from creating a child node of a lower classifica-
tion.
Several prerequisites mnpust be met in order to insure
that the security kernel design provides a secure eaviron-
ment. Pirstly, =svery attempt to access data aust invoke the
Kernel. In addition, the Kernel must be isolated and taa-
perproof. Finally, ¢the Kernel design amust be verifiable. :
i. This implies that the mathematical model, wupon which the
; i Kernel is based, must be proved secure and that the Kernel

is shown is to correctly implement this model.




C. SEGMENIAIION

Segmentation is a key element of a security Kernel based
systen. A segment can be defined as a logical grouping of
information, such as a procedure, file or d4ata area [6].
Therefore, we can redefine a process' address space as the
collection of all segments addressable by that process.
Segmentation is the technique applied to effect management
of those segments within an address space. In a segmented
environment, all references within an address space require
tvo components: 1) a segment specifier (number) and 2) the
location (offsat) within the segaent.

A segment may have several logical and physical attri-
butes associated with it. The logical attributes may in-
clude the segment's classification, size, or peraissable ac-
cess (read, vwrite, or execute). These logical attributes
allov a segment to nicely fit the definition of an object
within the security kernel concept, and thus provide a means
for the enforcement of information security. A segaent's
physical attributes include the current location of the seg-
ment, whether or not the segment resides in main aemory or
sacondary storage, and where the segment's attributes are
maintained by a segment descriptor. The segment descriptors
for each segment in a process* address space are contained
vithin a Descriptor Segment (viz., the MMU Image in SASS) to

facilitate the memory management cf that address space.




Wm» A iR 54 R e T

Segaeantation supports information sharing by allowing a

i single segment to exist in the address spaces of multiple
processes. This allows us to forego the maintenance of aul-

tiple copisas of the same segment and eliminates the possi-

bility of conflicting data. Controlled access to a segment

) is also enforced, since each process can have different at-

tributes (read/write) specified in its segaent descriptor.

e

In the iaplementation of SASS, any segment which is shared,
but has “resad only® access by every process sharing it, is
placed in the processor local amemory supporting each of

these processes rather than in the global aemory. This ia-

—

plies the maintenance of aultiple copies of some shared seg-

ments. It is noted that the problem of "conflicting data®

is avoided since this only applies to read only segments.
This épparent vaste of meaory and nonuse of existing shariang
facilities is justified by a design decision to provide max-
imum reduction of bus contention among processors accessing
global aemory. This reduction in bus contention is consid-
ered to be of wmore importance than the saving of wmemory
space provided by single copy sharing of read only segments.
i; This decision is also well supported by the occurrence of
? f decreasing memory costs, which ve have experienced in teras

B of high speed bus costs.
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D.  PROIECTIION QQMAINS
The requirement for isoclating the Kernel from the re-

mainder of the system is achieved by dividiag the address
space of each process into a set of hierarchical domains or
protection rings (18]. O°Connell and Richardson [7) defined
three domains in the family of secure operating systess:
the user, the supervisor, and the kernel. Only tvo domains
are actually necessary in the SASS daesign since it does not
provide extended user applicationms. The Karnel resides in
the inner or most privileged domain and has access to all
segments in an address space. System wide data bases are
also maintained within the Kernel domain to insure their ac-
cessibility is only through the Kernel. The Supervisor ex-
ists in the outer or least privileged domain where its ac-
cess to data or segments within an address space is
restricted.

While protection domains may be created through either
hardvare or software mechanisas, a hardvare implementation
provides amuch greater efficiency. surrent micropreocessor
technology only provides for the iapleaentation of two do-
mains. This two donmain restriction does not support O°*Con-
nell and Richardson'’s complete family design, but it is suf-
ficient to allow hardware implementation of the ring

structure required by the SASS subset.
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E.  ABSIBACIION

Dijkstra (4] has shown that the notion of abstraction

can be used to reduce the coamplexity of a probles by apply-
ing a general solution to a nuamber of specific cases. A
structure of increasing levels of abstraction provides a
poverful tool for the design of complex systeas and general-
ly leads to a better designm with greater clarity and fewer
errors.

Bach level of abstraction creates a virtual hierarchical
machine (6] which provides a set of ®wextended instructioas"™
to the systes. A virtual amachine cannot wmake calls to
another virtual machine at a higher level of abstraction and
in fact is unawvare of its existence. This implies that a
level of abstraction is independent of any higher levels.
This independence provides for a loop-free design. Addi-
tionally, a higher level may only make use of the resources
of a lower level by applying the extended instruction set of
the lovwer level virtual machine. Therefors, once a level of
abstraction is created, any higher level is only interested
in the extended instruction set it provides and is not con-
cerned with the details of its isplementation. In SASS,
once a level of abstraction is created for the physical re-
sources of the system, these resources become "virtualized®

saking the higher levels of the design independent of the

physical configuration of the systea.
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Chapter III
BASIC SASS OVERVIER

The purpose >f the Secure Archival Storage Systeam is to
provide a secure "data varehouse" or information pool which
can be accassed and shared by a variable set of host coapu-
ter systeas possessing differing security classificatioans.
The primary goals of the SASS design are to provide informa-
tion security and controlled sharing of data among systea
users.

Figure 5 provides an example of a possible SASS usage.

The systea is used exclusively for managing an archival sto-

rage systes and does not provide any programaing services to

its users. Thus the users of the SASS may only create,
store, retrieve, or modify files within the SASS. The host
computers are hardwired ¢to the system via the I/0 ports of
the 28001 with each connection having a fixed security clas-
sification. Each host must have a separate connection for
each security level it wishes to work on (It is iaportanmt to
note that Pigure 5 only represents the logical interfacing
of the systea. Specifically, the actual connection with the
host system aust be interfaced with the Kernel as the I/0
instructions for the port are privileged). In our exaaple,

Host #1 can create and modify only Top Secret files, but it




can read files which are Top Secret, Secret, Confidential,
or Unclassified. Likevwise, Host #2 can create or aodify
secret files, using its secret connection or confidential
files, using its confidential connection. Host #2 cannot
create or modify Top Secret or Unclassified files.

In order to provide information security and comtrolled
sharing of files, the SASS operates in two domains: (1) the
Supervisor domain and (2) the Kernel domain. The SASS ac-
hieves this desired environment through a distributed oper~
ating systean design which consists of tvo primary aodules:
the Supervisor and the Security Kernel. Bach host systea
connected to the SASS has associated with it two processes
within the SASS which perform the data transfer and file
managemant on behalf of that host. The host computer coaau-
nicates directly with its own I/0 process and Pile Hanager
process within the SASS.

We can use our notion of abstraction to present a systea
overview of the SASS. The SASS comsists of four priaary
levels of abstraction:

Level 3-The Host Computer Systeas

Level 2-The Supervisor

Level 1-The Security Kernmel

Level 0-The SASS Hardvare
A pictorial representation of this abstract systea overview

is presented in Pigure 6. This representation is liaited to

a dual host systam for clarity and space restrictions. HNote
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that ¢the Gate Keeper module is in actuality the 1logical
boundary between levels one and two and as such will be de-
scribed separately.

Level 3, the host computer systeas, of SASS has already
been addrassed. It should be noted that the SASS design
makes no assumptions about the host computer systeas. Thera-
fore each host may be of a different type or size (i.e.- mi-

cro, aini, or maxi-computer systea). Furthermore, the ne-

cessary physical security of the host systems and their

respective data links with the SASS is assumed.
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Chapter IV

P SUPERVISOR
Level 2 of the SASS system is coaposed of the Supervisor
domain. As already stated, the SASS consists of two do-
b mains. The actual inmplementation of these domains was
- greatly siamplified since the Z8001 aicroprocessor provides
: two modes 2>f execution. The systea mode, with which the
Kernel was iamplemented, provides access to all machine in-
structions and all segments within the systea. The noraal
mode, with which the Suvpervisor was iamplemented, only pro-
vides access to a linited subset of machine instructions and

sagments within the system. Therefore, the Supervisor oper-

ates in an outer or less privileged domain than the Kernel.
The purpose 5f the Supervisor is to manage the data link
between the host computer systems and the SASS by aeans of
Input/Output control, and to create and manage the file
hierarchy of each host within the SASS. These functions are
accomplished via an Input/Output (I/0) process and a PFile
Manager (PM) process within the Supervisor. A separate FM
and I/0 process are created and dedicated to each host at

the time of system initialization.
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A.  EILE BANAGER PROCESS

The PM process directs the interaction between the host

computer systems and the SASS. It interprets all commands
received from the Host computer and perforas the necessary
action upon them through appropriate calls to the Kernel.
The primary functions of the FM process are the managesent
of the Host's virtual file system and the enforcement of the
discretionary security policy.

The virtual file system of the Host is viewed as a hier-
archy of files vhich are implemented in a tree structure.
The five basic actions which may be initiated upon a file at
this level are: 1) to create a file, 2) to delete a file, 3)
to read a file, 4) to store a file, and 5) to modify a file.
The PM process utilizes a FM Knovwn Segment Table (FM_KST) as
the prisary database to aid in this management.

The FM process maintains an Access Control List (ACL)
through which it enforces the discretionary security in
SASS. The PM process initializes an ACL for every file in
its Host's file systea. The ACL is merely a list of all us-
ers that are authorized to access that file. The ACL is
checked upon every attempt to access a file to deteraine its
authorization. The user (host computer) directs the FM pro-
cesg as to what entries or deletions should be made in the
ACL, and as such, specifies who he vishes to have access to
his file. As noted earlier, discretionary security is a re-

fineaent to the Non-Discretionary Security Policy and there-
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fore can only be utilized to add further access restrictions
to those provided by the Non-Discretionary Security. This
prevents a user from granting access to a file <to somecne

who othervise would not be authorized access.

!
1
&
| 1 B.  INRUTZQUIRUT BROCESS

The I/2 process is responsible for managing the input
and output of all data between the host coaputer systeas and
] the SASS. The I/0 process is subservient to the FM process

and receives all of its commands from it. Data is transfer-

i ‘! red between the SASS and Host Computer systeas in fixed size

“packets", These packets are broken up into three basic
.2 types: 1) a synchronization packet, 2) a command packet, and
? 3) a data packet. In order to insure raliable transaission

F ! and receipt of packets between the Host computer and the

SASS, there must exist a protocol betveen thea. Parks [ 9]
provides a more detailed description of these packets, and a

possible multi-packet protocol.
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Chapter V
GATE KEEPER

The primary objective of the gate keeper is to isolate
the Kernel and make it tamperproof. This goal is accom-
plished by reason of a software ring crossing mechanisa pro-
vided by the gate keeper. In teras of SASS, this notion of
"ring-crossing" is merely the transition from the Supervisor
domain to the Kernel domain. As noted earlier, the gate
keeper establishes the logical boundary between the Supervi-
sor and the Kern2l, and as a matter of course, it provides a
single software entry point (enforced by hardware) into the
Kernel. Therefore, any call to the Kernel must first pass
through tha gate keeper.

The gate keeper acts as a trap handler. Once it is in-
voked by a user (Supervisor) process, the hardware preempt
interrupts are masked, and the user process' registers and
stack pointer are saved (within the kernel domain). It then
+akes the arquaent list provided by the caller aad validates
these passad parameters to insure their correctmess. To aid
in the validation of these parameters, the gate Kkeeper uti-
lizes the Parameter Table as a database. The Parameter ta-
ble contains all of the permitted functions provided by the

Kernel. These relate directly to the extended instruction
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set (viz., Supervisor calls) oprovided by the Kernel (these

extended instructions will be described in the next sec-

tion). If an invalid call is encountered by the gate keep-
er, ~an error code is returned, and the Kernel is not in-

voked. If a valid call is encountered by the gate keeper,

ettt e

the arguments and control are passed to the appropriate Ker-

nel module.
i Once the Kernel has completed its action on the user re-
quest, it passes the necessary parameters and control back
to the gate keeper. At this point, the gate keeper deter-
mines if any software virtual preemapt interrupts have occur-
red. If they have, then the virtual preempt handler is in-
voked vice the Kernel being exited (virtual interruct
structure is discussed by Strickler [19]. Correspoandingly,
if a software virtual preempt has not occurred, then the re-
turn arquments are passed to the user process. The user
process' registers and stack pointer (viz., its execution
point) are restored and control returned to the Supervisor
domain. A detailed'description of the Gate Keeper interface

and implementation is provided by Strickler [19].
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Chapter VI
DISTRIBUTED KERNEL

Level 1 of our abstract view of SASS consists of two
components: the distributed Kernel and the non-distributed
Kernel. These two elements comprise the Security Kernel of
the SASS. The Security Kernel has two primary objectives:
1) the management of the systea's hardware resources, and 2)
the onnrcament of the non-discretionary security policy.
I+ exacu®~es in the most privileged domain (viz., the systea
mode of the 28001) and has access to all machine instruc-
tions. The foilowing section will provide a brief descrip-
tion of the distributed Kernel, its components, and the ex-
tended instruction set it provides. A discussion of the
non-distributed Kernel will be given in the next section.

The distributed Kernel consists of those Kernel modules
wvhose segaents are contained (distributed) in the address
space of avery user (Supervisor) process. Thus, in effect,
the distributed Kernel is shared by all user processes in
the SASS. The distributed Kernel is composed of the Segment
Manager, the EBvent Manager, the Non-Discretiomary Security
Module, the Traffic Controller, the Inner Traffic Controll-
er, and the Distributed Memory Manager Module. The Segment

Manager and <the Event Manager are the only ™“user visible®
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modules in the distributed Kernel. Tn other words, <he sat

of extended instructions available to usur processes invokes

either the Segment Manager or the Event Manager.

A.  3RGHENT MANAGER

The objective of the Segment Manager is the management
of a process'! segmented virtual storage. The Segament Manag-
er is invoked by calls from the Supervisor domain via the
gate keeper. Calls to the Segment Manager are made by means
of six extended instructions provided by the segment manag-
er. These extended instructions (viz., entry points) are:
1) CREATE_SEGMENT, 2) DELETE_SEGMENT, 3) MAXE _KNOWN, 4)
TERMINATE, 5) SM_SWAP_IN, and 6) SM_SHAP_OUT. The extended
instructions CREATE_SEGMENT and DELETE_SEGMENT add and re-
move segments from the SasSs. MAKE_KNOWN and TERMINATE add
and remove segmants from the address space of a process.
Pinally, SM_SWAP_IN and S¥_SWAP_OUT move segments from sec-
ondary sto-age to main storage and vice versa.

The primary database utilized by the Seyaent Manager is
the Kncwn Segment Table (KST). A Trepresentation of the
structure 2f the KST is provided in Figure 7. The KST is a
process local database that contains an entry for every seg-
maent in the address space of that process. The KSTI is in-
dexed by segment number with each record of the KST contain-
ing descriptive information for a particular segaent. The

KST provides a mapping aechaniss by wbhich the segmert nuaber
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of a particular segment can be converted into a unigue han-

dle for use by the Memory Manager. The Memory Mapager will

be discussed in the next clLapter.
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B.  EVENT MANAGER

The purpose of the Event Manager is the =management of

event data which is associated with interprocess coamunica-

1 tions within the SASS. This event data is implemented by

means of eventcounts (a synchronization primitive discussed

by BReed [11]). The Event Manager is invoked, via the Gate

Keeper, by user processes residing in the Supervisor domain.

m— e

There are tvwo eventcounts associated with every segaent ex-
isting in the Supervisor domain. These eventcounts (viz.,

Instance 1 and Instance 2) are maintained in a database re- 4

siding in the Memory Manager. The Event Manager providas

its management functions through its extended instruction

e — e < <

set READ, TICKET, ADVANCE, and AWAIT, and in conjunction
with the extended instructions TC_ADVANCE and TC_AWAIT pro-
vided by the Traffic Controller (to be discussed next).
These extended instructions are based on the wmechanisa of
eventcounts and sequencers {11). The Event Manager verifies
the access permission of every interprocess comaunication
regquest through the Non-Discretionary Security Module. The
extended instruction READ provides the current value of the
ko eventcount requested by the caller. TICKET provides a com-
plete time ordering of possibly concurrent events through
the mechanism of sequencers. The Event Manager will be dis-

cussed in more detail by Strickler (19].
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C. MNON-DISCRETIONARY SECURIIX UOQDULE
The purpese of the DNon-Discretionary Security Hodule

——

(NDS) is the eaforcement of the non-discretionary security
policy of the SASS. While the current iaplementation of
SASS represents the Department of Defanse security policy,
any security policy which may be represented through a lat-
tice structure [3] may also be iaplemented. The NDS is in-

voked via its extended instruction set: CLASS_EQ and

CLASS_GE. The NDS 1is passed two classifications which it
compares and then analyzes their relatioaship. CLASS_EQ
will return a true value to the calling procedure only if
the two classifications passed were equal. The CLASS_GE in-

struction will return true if a given classification is ana-

e —————— e een

lyzed to be either greater than or equal to another given
classification. The NDS does not utilize a data base as it

werks only with the parameters it is passed.

D.  IRAREIC CONIROLLER

The task of processor scheduling is perforaed by the
traffic controller. Saltzer ([(14) defines traffic controller
as the processor aultiplexing and coatrol communication sec-~
tion of an operating systea. The current SASS design uti-~
lizes Reed's [10] notion of a two level traffic comtroller,

consisting of: 1) a Traffic Controller (TC) and 2) aam Inner

Traffic Controller (ITC).




or
e ———— . e

The primary function of the Traffic Controller is the

scheduling (binding) of user processes onto virtual proces-
sors. A virtual processor (VP) is an abstract data struc-
ture that simulates a physical processor through the preser-
vation of an executing process' attributes (viz., the
execution point and address space). Multiple VP's may exist
for every physical processor in the systea. Two VP's are
permanently bound to Kernel processes (viz., Meaory Manager
and Idle) and as such are not in contention for process
scheduling. These processes and their corresponding virtual
processors are invisible to the TC. The remaining virtual
processors are either idle or are temporarily bound to user
processes as scheduled by the TC. The database utilized by
the TC in process scheduling is the Active Process Table
(APT). Pigure 8 provides the structure of the APT.

The APT is a systea-vwide Kernel database containing an
entry for avery user process in the systea. Siuce the cur-
rent SASS design does not provide for dynamic process crea-
tion/deletion, a user process is active for the life of the
systeas. Therefore, the size of the APT is fixed at the tinme
of system generation. The APT is 1logically composed of
three parts: 1) an APT header, 2) the main body of the APT,
and 3) a VP table. The APT header includes: 1) a Lock to
provide for a autual exclusion mechanisa, 2) a Running List

indexed by VP ID to identify the current process running on

each VP, 3) a Ready List, which points to the linked list of
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Piqure 8: Active Process Table (APT)
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processes vhich are ready for scheduling, and 4) a Blocked
List, which points to the linked list of processes which are
in the blocked state awaiting the occurrence of some event.
A design decision was made to incorporate a single list
of blocked processes instead of the smore traditional notion
of separate lists per eventcouant because of its siaplicity
and its ease of iaplementation. This decision does not ap-
preciably affect system performance or efficiency as the
“hlocked™ list will never be very long. The VP table is in-
dexed by logical CPU number and specifies the nuaber of VP's
associated with the logical CPU and its first VP in the Run-
ning List. The logical CPU number, obtained during systea
initialization, provides a sinplgfneans of uniquely identif-
ving each physical CPU in the syéten. The main body of the
APT contains the user process data reguired for its effi-
cient control and scheduling. NEXT_AP provides the 1linked
list threading mechanisa for process entries. The DBR entry
is a handle identifying the process' Descriptor Segaent
which is enmployed in process switching and amemory manage-~
ment. The ACCESS_CLASS entry provides every process with a
security label that is utilized by the Event Manager and the
Seqment Manager in the enforcement of the Non-Discretionary
Security Policy. The PRIORITY and STATE entries are the
primary data used by the Traffic Controller to effect pro-
cess scheduling. APFPINITY identifies the logical CPU which

is associated with the process. VP ID is utilized to iden-
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tify the wvirtual processor that 4is currently bound to the

process. Pinally, <+<he EVENTCOUNT entries are utilized by

j the TC to manage processes which are blocked and awvaiting
i the occurrence of some event. HANDLE identifies the segaent
J associated with the event, INSTANCE specifies the event, aad

COUNT determines which occurrence of the eveat is needed.

i The Traffic Controller determines the scheduliag order

by process priority. Every process is assigned a priority
at the time of its creation. Once scheduled, a process will
run on its VP until it either blocks itself or it is
preeapted by a higher priority process. To insure that the
; TC will always have a process available for scheduling,

i there logically exists an "idle" process for every VP visi-

ble to the TC. These "idle® processes exist at the lowest
process priority and, consequently, are scheduled only if
there exists no useful work to be performed.

The Traffic Controller is invoked by the occurrence of a
virtual preempt interrupt or through its extended instruc-
tion set: ADVANCE, AWAIT, PROCESS_CLASS, and
GET_DBR_NUMBER. ADVANCE and AWAIT are used to implement the
IPC mechanism envoked by the Supervisor. PROCESS_CLASS and
GET_DBE_NUMBER are called by the Segment Manager to ascer-
tain the security label and DBR handle, respectively, of a

named process. A more detailed discussion of the TC is pro-

vided by Strickler [ 191].
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E.  INNER IRAPPIC CONTROLLER

The Inner Traffic Controller is the second part of our
two~level traffic controller. Basically, the ITC performs
two functions. It multiplexes virtual processors onto the
actual physical processors, and it provides the priaitives
for which inter-VvP coammunication within the Kernel is iample-
| mented. A design choice was made to provide each physical
processor in the system with a small fixed set of virtual ;
processors. Two of these VP's are permanently bound to the
Kernel processes. The Memory Manager is bouand to the high-
est priority VP. Conversely, the Idle Process is bound to
} the lovest priority VP and, as a result, will only be sche-
{ duled if there exists no useful work for the CPU to perfora.
The primary database utilized by the ITC is the Virtual Pro-
cessor Table (VPT). PFigure 9 illustrates the VPT.

The VPT is a system wide Kernel database containing en-
tries for every CPU in the systea. The VPT 4is logically
composed of four parts: 1) a header, 2) a VP data table, 3)
a message table, and 4) an external VP lis.. The header in-
cludes a LICK (spin lock) that provides a mutual exclusion

mechanisa for table access, a RUNNING LIST (indexed by logi-

cal CPU #) that identifies the VP currently running on the
corresponding physical CPU, a READY LIST (indexed by logical
CPU #) which points to the linked list of VP's which are in
the "ready" state and awaiting scheduling on that CPU, and a

| FREE LIST which points to the 1linked list of unused entries
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Pigure 9: Virtual Processor lakle (VPT)
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in the message table. The VP data table contains the de-
scriptive data required by the ITC to effectively manage the
virtual processors. The DBR entry points within the MNU In-
age to the descriptor segment for the process currently run-
ning on the VP, PRI (Priority), STATE, IDLE_FLAG, and
PREEMPT are the primary data used by the ITC for VP schedul-
ing. PREEMPT indicates whether or not a virtual preeapt is
pending for the VP, The IDLE_FLAG is set whenever the TC
has bound i1n "idle" process to the VP. Normally, a VP with
the IDLE_FLAG set will not be scheduled by the ITC as it has
ro useful work to perfora. In fact, such a VP will only be
scheduled if the PREEMPT flag is set. This scheduling will
allow ¢thse VP to be given (bound) to another process.
PHYSICAL PROCESSOR contains an entry froa the Processor Data
Segment (PRDS) that identifies the physical processor that
the VP is executing on. EXT_VP_ID is the identifier by
which the VP is known by <+the Traffic Controller. A design
choice was made to have the BIT_VP_ID equate to an offset
into the External VP List. The External VP List specifies
the actual VP ID (viz., VPT entry number) for each external
VP identifier. This precluded the necessity for run time
calculation of offsets for the BXT_VP_ID. NEXT_READY_VP
provides the threading wmechanisa for the "Ready" linked
list, and MSG_LIST points to the first entry in the Nessage

Table containing a mwmessage for that VP. The Message Table

provides storage for the messages generated in the course of

5




Inter-Virtual Processor communications. MSG contains the

actual communication being passed, while SENDER identifies
the VP which initiated the communication. NEXT_MSG provides
a threading mechanism for multiple gmessages peanding for a
single VP.

The ITC is invoked by means of its extended instruction
sets WAIr, SIGNAL, SWAP_VDBR, IDLE, SET_PREEMPT, and
ROUNNING_VP. WAIT and SIGNAL are the primitives employed in
implementing the Inter-VP coamunication. SWAP_VDBR, IDLE,
SET_PREEMPT, and RUNNING_VP are all invoked by the Traffic
Controller. SWAP_VDBR provides the means by which a user
process is temporarily bound to a virtual processor. IDLE
binds the "Idle" process to a VP (the implication of this
instruction will be discussed later). SET_PREEMPT provides
the seans of indicating that a virtual preeapt interrupt is
pending on a VP (specified by the TC) by setting the PREEMPT
flag for +that VP in the VPT. BUNNING _VP provides the TC
with the external VP ID of the wvirtual processor currently

running on the physical processor.

F.  DISIBIBUIED BEUORY BABAGER

The Distributed Memory Manager provides an iaterface
structure between the Segment Manager and the Memory Manager
Process. This interfacing is necessitated by the fact that
the Memory Manager Process doaes not reside in the Distribut~

ed RKernel and consequently is not included in the user pro-




cess! address spacse. The primary functioans perforamed in
this module are the establishment of Inter~VP Coammunication
betveen the VP bound to its user process and the VP persa-
nently bound to the Memory Manager Process, the manipulation
of event data, and the dynamic allocation of available nmeamo-
rY. The Distributed Memory Manager Module is invoked by the
Segment Manager through its extended instruction set:
MM_CREATE_ENTRY, M%_DELETE_ENTRY, MM_ACTIVATE,
MM_DEACTIVATE, MM_SWAP_IN, and MM_SWAP_OUT. These extended
instructions are utilized on a one to one basis by the ex-
tended instruction set of the Segment Manager (e.q.,
SM_SWAP_IN utilizes (calls) MM_SWAP_IN). Wells [20] pro-
vides a wmore detailed description of this portion of the
Distributed Memory Manager and the extended instruction set
associated with it.

The Distributed Memory Manager is also invoked through
its remaining extended instructions: MM_READ_EVENTCOUNT,
MM_TICKET, MM_ADVANCE, and MM_ALLOCATIE. These Distributed
Memory Manager functions are discussed in detail by Strick-

ler [(19].
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Chapter VII
IOI-DISTRIBUTEb KERNEL
The Non-Distributed Kermel is the secoand element resid-
ing in Level 1 of our abstract system view of the SASS. The
sole component of the Non-Distributed Kernel is the Memory

Yanager Process.

A.  HENORY MANAGER PROGESS

The primary purpcse of the Memory Manager Process is the
manageaent of all memory resources within the SaSS. These
include the local and global main memories, as well as the
hard-disk based secondary storage. A dedicated Memory Man-
ager Process exists for every CPU in the systea. Each CPU
possesses 3 local memory where process local segments and
shared, non-writeable segaents are stored. There is also a
global memory, to which every CPU has access, vhere the
shared, writeable segments are stored. It is necessary to
store these shared, vriteable segments in the global memory
to ensure that a current copy exists for every access.

The Memory Manager Process is tasked by other processes
within the Kernel domain (via Signal and Wait) to perfornm
mcemory manageaent functionms. These basic functions include

the allocation/deallocation of local and global memory and
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of secondary storage, and the transfer of segments between

the local and global memory and between secondary storage
and the main memories. The extended instruction set provid-
ed by ¢the Memory Manager Process includes: CREATE_ENTRY,
DELETE_ENTRY, ACTIVATE, DEACTIVATE, SWAP_IN, and SWAP_JUT.
These instructions correspond one to one with those of the
Distributad Memory Manager Module. The system wide data
bases utilized by all Memory Manager Processes are the Glo-
bal Active Segment Table (G_AST), the Alias Table, the Disk
Bit Map, and the Global Memory Bit Map. The processor local
databases used by each Memory HManager Process are the Local
Active Segment Table (L_AST), and the Local Hemory Bit HNap.
Gary and Moore [5] provide a detailed description of the Me-
mory Manajer, its extended instruction set, and its databas-
es.

A summary of the extended instruction set created by the
components of the Security Kernel is provided by Figure 10.
One night question the prudence of omitting
PHYS_PREEMPT_HANDLER and VIRT_PREEMPT_HANDLER (viz., the
handler routines for physical and virtual interrupts) from
the extended instruction set as both of these interrupts may
be raised (viz., initiated) from within the Kernel. A deci-
sion vas made to not classify these handlers as "extended
instructions"” since they are only executed as the result of
a physical or virtual interrupt and as such cannot be di-

rectly invoked (viz., "called"®) by any module in the systesx.
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A suamary of the databases utilized by Kernel modules is

presented in Pigure 11.
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MODULE

Segment Manager

Event Mapager

Non-Discretionary
Security

Traffic Controller
Inner Traffic

controller

Distributed
Memory Manager

Non-Distributed
Nemory Manager

INSIRUCTIION 3SEI
Create_Segment®
Make_Known*
SM_Swap_In*
Read*

Advances

Class_EQ

TC_Advance
Process_Class
Signal
Swap_VDBR
Set_Preeapt
Running_VP
MM_Create_Entry
MM_Activate
MM_Swap_In
Create_Entry
Activate

Swvap_In

% Denotes user visible instructions

Pigure 10:
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Delete_Segaent®
Terainate*
SH_Swap_Out#
Ticket®

Avait*

Class_GE

TC_Await r

fait
Idle

Test_Preeapt

M4 _Delete_Entry
MM_Deactivate
MM _Swap_0Out
Delete_Entry

Deactivate

Swap_Out

Extended Instruction Set
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Gate Keeper
Segment Manager
Traffic Controller
Inner Traffic

1 controller
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Pigure 11:

DATARASE

Parameter Tablae
Known_Segment_Table (KST)
Active_Process_Table (APT)
Virtual_Processor_Table (VPT)
Memory_Manageaent_0Unit Image i
(MMU)
Global_Active_Sagment_Table (G_AST)
Local_Active_Segment_Table (L_AST)
Disk_Bit_Map
Global_Memory_ Bit_Map

Local_Memory_Bit_Map

Kernel Databases
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Chapter VIII

S

SYSTEN HARDWARE
Level 0 of the SASS consists of the systea hardware.
This hardware includes: 1) the CPU, 2) the local amemory, 3)
the global wmemory, 4) the secondary storage (viz. hard

disk), and 5) the I/0 ports connecting the Host computer

systeas to the SASS. Since the SASS design allows for a
multiprocessor environment, there may exist multiple CPU's
and local aemories. The target machine selected for the in-
' J itial implementation of the systea is the Zilog 28001 aicro-

? processor [22]. The 728001 is a general purpose 16-bit, re-

i gister oriented machine that has sixteen 16-bit general
purpose registers. It cap directly address 8M bytes of me-
mory, extensible to uU8M bytes. The 28001 architecture sup-
ports memory segmentation and two-domain operationms. Tke
memory segmentation capability is provided externally by the
Zilog 28010 Memory Manageaent Unit (MMO). The Z8010 MMU
(23] provides management of the 28001 addressable amenmory,
b dynamic sejyment relocation, and memory protection. Heaory
segments are variable in size from 256 bytes to 64K bytes
by . and are identified by a set of 64 Segment Descriptor Regis-
ters, which supply the inforsmation needed to map logical ae-

mory addresses to physcal memory addresses. Each of the 64
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Descriptor Registers contains a 16-bit base address field,

an 8-bit liait field, and an 8-bit attribute field. Unfor-
tunately, the 28001 hardvare was not available for use dur-
ing systea development. Therefore, all work to date has
been complated through utilization of the Z8002 non-segment-
ed version of the 28000 microprocessor faamily [22]. The ac-
tual hardware used in this impleaentation is the Advanced
Micro Computers Am96/4116 MonoBoard Coaputer [1] containing
the AmZ8002 sixteen bit non-segmented aicroprocessor. This
computer provides 32K bytes of on-board RAM, 8k bytes of
PROM/ROM space, two RS232 serial I/0 ports, 24 parallel I/0
lines, and a standard INTEL Multibus interface. The general
structure of the design has been preserved by simulation of
the segmentation hardwvare in software. This software MNU
Inage (see Figur2 12) is created as a database within the
Inner Traffic Controller.

The MMU Image is a processor-local database indexed by
DBR_No. Each DBR_No represents one record within the MMU
Image. EBEach record is an exact software copy of the Segment
Descriptor Register set in the hardware MNO. Each eleaent
of this software MMU Image is in the same fora utilized by
the special I,/0 instructions to load the hardware MMU. Each
DBR record is indexed by segment number (Segaent_No). Each
Segment_No entry 1is composed of three fields: Base_Addr,

Limit, and Attributes. Base_Addr is a 16-bit field which

contains the base address of the segment in physcal memory.




DBR_NO==-==========>

‘ - - - T D D D D D Y D TP D WP WD D G A AP e e

| Base_Addr | Limit | Attributes |

Segment | | | |

No.

L -

jmmeom————- formmmmn | e mm e [

(entries for one DBR #)

Pigure 12: Memory Management Unit (2MU) Image
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Limit is an 8-bit field that specifies the number of conti-

guous blocks of memory occupied by the segament. Attributes

——t

is an 8-bit field representing the eight flags which specify
the segment's attributes (e.g., "read%, "“execute", "write",

etc.) .

e —— o ———
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! Chapter IX
SUMMARY

An extended overview of the current SASS design has been
presented. The four major levels of abstraction comprising
the SASS system have been identified, and the major coapo-
{ nents of each level have been discussed. The extended in-
' struction set provided by the SASS Kernel was aiso defined.
The actual details of this iamplementation are described by

Strickler [19].
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PART C

THE DESIGN AND IMPLEMENTATION OF THE MENORY
MANAGER POR A SECURE ARCHIVAL STORAGE SYSTEM

This section contains updated excerpts from a Naval Postgra-
duaduate School MS Thesis by E. E. Moore and A. V., Gary [5].
The origins of these excerpts are:

INTRODUCTION from Chapter I
MEMORY MANAGER PROCESS DETAILED DESIGN from Chapter III
STATUS OF RESEARCH froa Chapter IV

Minor changes have been made for integration into this report.
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Chapter X
INTRODUCTION
This thesis addresses the design and partial implementa-

~ion of a memory manager for a member of the family of se-
cure, distributed, multi-microprocessor operating systeas
designed by Richardson and O'Connell [{7]. The memory manag-
er is responsible for the secure management of the main me-
mory and secondary storage. The memory manager design wvas
approached and conducted with distributed processing, multi-
processing, configuration independence, ease of change, and
internal computer security as prisary goals. The problenms
faced in the design wvere:

1) Developing a process which would securely aan-

age files in a multi-processor environaent.

2) Ensuring that if secondary storage was inadver-

tantly damaged, it could usually be recreated.

3) Minimizing secondary storage accesses.

4) Proper parameter passing during interprocess

coamunication.

5) Developing a process with a loop-free structure

vhich is configuration independent.
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6) Designing databases wvhich optiamize the memory
management functions.

The proper design and implementation of a aemory manage-
ment process 1is vital because it serves as the interface
between the physical storage of files in a storage systea
and the logical hierarchical file structure as viewed by the
user (viz., the file systea supervisor design by Parks [9].
If the aemory sanager process does not function properly,
the security of that systea cannot be guaranteed.

The secure family of operating systeas designed by Rich-
ardson and 0'Connell is composed of two primary modules, the
supervisor and the security kernel. A subset of that systea
vas utilized in the design of the Secure Archival Storage
System (5ASS). The design of the SASS supervisor was ad-
dressed by Parks [9], while the security kernel wvas ad-
dressed concurrently by Coleman [2]. Tae SASS security ker-
nel design is coamposed of two parts, the distributed kernel
and the non-distributed kernel. The design of the distribut-
ed kernel was conducted by Coleman [2], and processor man-
agement was implemented by Reitz [12]. This thesis presents
the design and implementation of the non-distributed kernel.
In the SASS design, the non-distributed kernel consists
solely of the memory manager.

The design of the memory manager and its data bases vas
completed. The initial code was written in PLZ/SIS, but

could not be compiled due to the lack of a PLZ/SYS coampiler.
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A thread of the high level code vas selected, bhand compiled *
into PLZ/ASHM, and run on the Z8000 developamental module.

m— e

,,.,.
e e et st
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Chapter II

MENORY MANAGER PROCESS DETAILILED DESIGN

A.  INIRODUCIIOQN

The memory manager is responsible for the management of
both main aemory (local and global) and secondary storage.
It is a non~distributed portion of the kernel with one memo-
ry manager process existing per physical processor. The me-
mory manager is tasked (via signal and wait) to perfora me-
mory management functions on behalf of other processes in
the system. The major tasks of the memory manager are : 1)
the allocation and deallocation of secondary storage. 2) the
allocation and deallocation of global and local memory, 3)
segment transfer from local to global ameamory (and vice ver-
sa), and 4) segment transfer from secondary storage to main
memory (and vice versa). There are ten service calls (via
signal) wvhich task the memory wmapager Process to perfora

these functions. The ten service calls are:

CREATE_ENTRY
DELETE_ENTRY
ACTIVATE
DEACTIVATE
SWAP_IN
SWAP_OUT
DEACTIVATE_ALL*
MOVE_TO_GLOBAL®*
MOVE_TO_LOCAL®*
UPDATE®*
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Upon completion of the service request, the memory manager
returns The results of the operation to the waiting process
(via signal). It then blocks itself until it is tasked to
perfora another service. The hardware configuration managed
by the memory manager process is depicted in Pigure 13. The
shared data bases used by all meaory msanager processes are
the Global Active Segment Table (G_AST), the Alias Table,
the Disk Bit Map, and the Global Memory Bit Map. The proces-
sor local data bases used by each process are the Local Ac-
tive Segment Table (L_AST), the Memory Manageament Unit Imag-

€s and the Local Memory Bit MNap.

# In the current state these service calls are not implemented;

therefore, there are currently six service calls.
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B. DRSIGN RARAMETERS AND DECISIONS
Several factors wvere identified during the design of the

meaory manager process that refined the imitial kernel de-
sign of Coleman [2]. The two areas that were modified, vere
the management of the MNU images and the management of core
memory. Both of these functions were mapnpaged outgide of the
meaory manager in the initial design. The inclusion of
these functions in the memory manager process significantly
improved the 1logical structure of <the overall systea de-
sign. Additional design parameters were established to fa-
cilitate the initial iapleaentation. These design paraae-
ta2rs need to be addressed before the detailed design of the
memOry sanager process is presented.

It was decided to make the block/page size of both main
3emory and secondary storage equal in size. This was to sia-
plify the mapping algoritha froam secondary storage to aain
semory (and vice versa). In the initial design the block/
page size was set to 512 bytes,

The size of the page table for a segmaent was set at one
page (non-paged page table). This vas to siaplify isplemen-
tation, and had a direct bearing on the saximum segment size
supported in the memory manager. For exasple, a page size
of 256 bytas will address a saximum segment size of 32,768
bytes, vhile a page size of 512 bytes vill address a segament

size of 131,072 bytes.




hd 2 he

The size of <the alias table was set to one page
(non-paged alias table). The nuaber of eptries that the
alias table will support is limited by the size of the page
table (viz., a page size of 512 bytes will support up to 42
entries in the Alias Table).

In the original design, the main aeaory allocation was
external to the memory manager. This was due to the parti-
tioned memory management scheme outlined by Parks (9] and
Coleman [2]. In the current design, all address assignment
and segaent transfer are managed by the memory manager. This
design choice enhanced the generality of the design, and
provided support for any memory management scheme (either in
the memory manager or at a higher level of abstraction).
However, the current design still has a maximum core const-
raint for each §rocess.

Dynanic aemory manpagement is not implemented in this de-
sign. Bach process is allocated a fixed size of physical
core. Hovever, it is not a linear allocation of physical
memory. The design supports the aaxiamum sharing of segments
in local and global =memory. A1l segments that are not
shared, or shared and do not violate the readers/vriters
problen will reside in local memory to eliminate the glabal
bus contention. The need to compact the memory (because of
fragmentation) should be minimal in this design due to the
naximua sharing of segments. If contiguous memory is aot
available, the memory amanager will coapact aain amemory. Aft-
er compaction, the memory can be allocated.
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: : The design decision ¢to represent Amemory as one

contiguous block (not partitioned) was made to support a dy-

E ‘ naaic memory management scheme. Without dynaaic semory man-
] agement, the process' total physical =memory can not exceed
L the systeas aain memory. The supervisor knows the size of

the segments and the size of the process®' virtual core,
| ; therefore it can manage the swap in and swap out to ensure
that the process' virtual core has not been exceeded.
: ‘! In the original design, the user's process inner-traffic
; controller maintained the software images of the aemory man-
E ﬁ agement unit. This design required the aemory amanager to re-
f turn the appropriate memory management data (viz.,segment
i location) to the kernel of the user's process. In the cur-
rent design, the software images of the MNU are maintained
by the memory manager. A descriptor base pointer is proviad-
ed for the inner-traffic controller to aultiplex the process
address spaces. The MNMU image data base does not need to be
locked (to prevent race conditions) due to the fact that
process interrupts are masked in the kernel. Thus, if the
aemory manager (a kernel process) is running then no other
process can access the MMU image.

The system initialization process has not been addressed

to date. However, this design has made some assuaptions
about the initial state of the systea. Since the memory
wanager handles the transfer of segments from secondary sto-

rage to main memory, it is likely to be one of the first
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processes created. The aeaory manager's core image will con-

sist of its pure code and data sectioms. The minimal ini-

tialization of the memory manager's data bases are entries
for the systea root and the supervisor's segments in the
G_AST and L_AST(s), and the initializaton of the MMU images
with the kernel segments. The current design does not call
for an entry in the G_AST or L_AST for the kernel segments.
However, wvhen system generation is designed this will have
to be readdressed.

The original [ 2] memory manager databases have been re-
fined by this thesis <to facilitate the memory manageaent
functions. The major refinements of the global and local ac-

tive segment tables are outlined in the following section.

C.  DAZIA BASES
t.  Global Active Segment Table
The Global Active Segment Table (see Figure 14) is a

systenm wide, shared data base used by memory manager pro-
cesses to manage all active segments. A locks/unlock amechan-
ism is uytilized to prevent any race conditions from occur-
ring. The signalling process locks the G_AST before it
signals the memory manager. This is done to prevent a dead-
ly embrace froa occurring betwveen memory manager processes,
and also to simplify synchronization between amemory manag-

ers, The entire G_AST is locked in this design to simplify

the implementation (vice locking each individual entry).
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Figure 14: Global Active Segment Table




The G_AST size 1is fixed at compile tiame. The size of

the G_AST is the product of the G_AST record size, the maxi-
mum number of processes and the number of authorized known
segments per process. Although the G_AST is of fixed size,
it is plausible to dynamically g=anage the entries as pro-
posed by Richardson and O'Connell (7]. The current msemory
aanager design could be extended to include this dynaamic
management.

The Unigque_Id field is a unique segment identification
puaber in the G_AST. This field is four bytes wide and will
provide over four billion identification numbers. A design
choice was made not to manage the reallocaticn of the uni-
Jue_id*s. Thus when a segment is deleted £from the systenm,
the unique_id is not reusegd.

The Global_Address field is used to indicate if a seg-
ment resides in global or local memory. If not aull, it con-
tains the global memory base address of a segment. A null
entry indicates that the segment might be in local aemo-
ty(s).

The Processors_L_ASTE_# field is used as a connected
processors list. The field is an array structure, indexed
by Processor_Id. It identifies which L_AST the segment is
active in, and provides the index into each of these tables.
The design choice of maintaining an entry in the L_AST for
all locally active segments implies that if all entries in

the Processors_L_ASTE_# field are null, the segaent is not
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active and can be removed from the G_AST (viz., no proces-
sors are connected).
The Plag_Bits £field consists of the written bit, and
the writable bit. The written bit is set wvhen a segment is
svapped out of memory, and the MMU image indicates that it i

has been written into. The writable bit is set during seg-

ment loading to indicate that some process has write access

l to that segment.
If an active sagment is a 1leaf, the G_ASTE_#_Parent
! field provides a back pointer to the G_AST index of its pa-

f rent. This back pointer to the parent is important during

the creation of a segment. If a request is received to

create a sagment wvhich has a leaf segsent as its parent,
then an alias table has to be created for that parent.
Also, the alias tabie of the paéent's parent needs to be up-
dated to reflect the existence of the newly created alias
table (sea2 Pigure 15). The indirect pointer shown is the
back pointer to the parent via the G_AST.

The No_Active_In_Memory field is a count of <the nuaber
of processes that have the segment in global memory. It is
used during swap out to determine if the saegment can be re-
moved from global menmory.

The No_Active_Dependents field is a count of the number

of active leaf segments that are dependent oan this entry

E (viz., require that this segment remain in the G_AST). Each
ﬁ time a process activates or deactivates a dependent segment

b this field is incremented or decreamented.
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The Size field is the size of the segment in bytes. The
Page_Table_location field is <the disk location of the page
table for a segment, and the Alias_Table_Location field is
the disk location of the alias table for the segment. The
Alias_Table field can be null to 4indicate that no alias ta-
ble exists for the segment.

The last three fields are used in the aanageament of ev-
entcounts and sequencers [ 12]. The Sequencer field is used
to issue a service number for a segment. The Instance_1
field and Instance_2 field are eveantcounts (i.e., are used

to indicate the next number of occurances of some event).

2. Local Active Segment Table

The Local Active Segment Table (see Figure 16) is a
processor local data base. The L_AST contains the character-
istics (viz., segment number, access) of each locally active
segment. An entry exists for each segaent that is active in
a process "loaded" on this CPU and in local aenmory. The
first field of the L_AST contains the memory address of the
segment. If the segment is not in memory, this field is
used to indicate whether the L_AST entry is available or ac-
tive. The Segment_No/Access field is a coambination of seg-
ment number and authorized access. It is an array of records
data structure that is indexed by DBR_#. The first record
element (viz.,most significant bit) is used to indicate the

access (read or read/write) permitted to that segment. The




second record element (viz., the next seven bits) is used to
indicate the segment naumber. A null segment naumber indi-

cates that the process does not have the segment active.

R

Index_#

Memory Seguent_#/Access_Auth

Addr DBR_O | DBR_1 | DBR_2 | DBR_3 | DBR_4 | DBR_S

« e - A ———

Figure 16: Local Active Segament Table

3. Alias Table

The alias table (see Figure 17) is a2 memory manager data
base which is associated with each non leaf segment in the
kernel. An aliasing scheme is used to prevent passing sys-
teawide information (unigue_id.) out of the kernel. Seg-

ments can only be created through a mentor segment and eatry
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number into the mentor's alias table. #hen a segment is
created, an entry msust be made in its mentor segment's alias
table. Thus the mentor segment aust be known before that

segment can be created.

Entry_¢#

| Uniqua_ID | Size | Class | Page lable | Alias Table |
| | [ Location | Location |

LB K K

Figure 17: Alias Table

The alias table consists of a header and an array struc-
ture of eatries. The header has two "pointers" (viz., disk
addresses), one that links the alias table to its associated
segment and one that 1links the alias table to the mentor
segment’s alias table. The header is provided to support the

re-construction of the file systea after a systea crash due
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to device I/0 errors. It is not used at all during norsal
operations. Bach entry in the array structure consists of
five fields for identifying the created segments. The OUni-
que_Id field contains the unique identification nuaber for
the segment. The Size field is used to record the size of
the seqaent. The Class field contains the appropriate secur-
ity access class of the segment. The Page_Table_Location
field has the disk address of the page table. A aull entry
indicates a zero-length segament. The Alias_Table_Location
field has the disk address of the alias table for the seg-
ment. A null entry indicates that the segment is a leaf

segment.

4. Hemory Hapagement Upit Image

The Memory Management Unit Image (MMU_Image) is a pro-
cessor local data base. It is an array structure that is in-
dexed by the DBR_#. Each MMU_Image (see Figure 18) incluades
a softwvare representation of the segment descriptor regis-
ters (SDR) for the hardvare MMU ([23]. This is in exactly
the format used by the special I/0 instructions for lcading/
unloading the MMU hardwvare. The SDR contains the
Base_Address, Limit and Attribute fields for each loaded
segment in the process'! address space. The Base_Address
field contains the base address of the segaents in aemory
(local or jlobal). The Liamit field is the number of blocks

of contiguous storage for each segment (zerc indicates oae
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block). The Attribute field contains eight flags. Pive
£lags are used for protecting the segment against certain
types of access, tvwo encode the type of accesses made to the
segment (read/vrite), and one indicates the special struc-
ture of the segaent [23]. Pive of the eight flags in the
attribute field are used by the memory manager. The "systea
only” and "execute only* flags are used to protect the code
of the kernel froa msalicious or unintentioral modifications.
The "read only"™ flag is used to control the read or write
access to a segaent. The "change® flag is used to indicate
that the segment has been written into, and the "CPU-inhi-
bit"* flag is used to indicate that the segment is not in ae-
ROTY.

The last tvo fields of the MNNU_Image are the Block_Used
field and the NMaximum_Available_Blocks field. These two
fields are used in the aangement of each process! virtual

core and are not associated with the hardware HMMU.
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S. Hemory Allocations/Deallocation Bit Haps

All of the memory allocation/deallocation bit maps (see
Pigure 19) are basically the same structure. Secondary sto-
rage, gJglobal memory and local nmemory are managed by memory
bit maps. The Disk_Rit_Map is a global resource <that is
protected from race conditions via the locking convention
for the G_AST. Zach kit in the bit map is associated with a
block of seconda.  <torage. A zero indicates a free block
of storage while a one indicates an allocated block of sto-
rage. The Globai_Memory_Bit_Map is used to manage global me-
BOTY. It is a shared resource that is protected from race
conditions by the locking of the G_AST. The Lo-
cal_Nemory_Bit_Nap is the saae structure as the Glo-
bal_Memory_Bit_Map and is used to wmanage local memory. The
Local_Memory_Bit_Map is not locked since it is not a shared

resource betveen memory managers.




- e .

Memory Bit HMap

Page 0 t 2 3 456789

Pigure 19: Mesory Allocation/Deallocation Map

D.  BASIGC RUNCIIONS

The detailed source code for the basic functions and
main line of the memory manager is presented in Appendix J.

In the discussion of the memory manager design, a pseu-
do-code similar to PLZ/SYS is utilized. The rationale for
using this pseudo-code was to provide a suamary of the nemo-
Ty manager source code, and to facilitate the presentation
of this design.

It is assumed that the memory aanager is initialized
into the ready state at system gJeneration (as previously
mentioned). When the memory asanager is initially placed

into the running state, it will block itself (via a call to
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the kernel primitive Wait). Wait will return a message from
a signalling process. This message is interpreted by the me-
mory manager to deteramine the requested function and its re-
quired argquments. The function code is used to enter a case
statement, wvhich directs the request to the appropriate me-
mory asanager procedure.

Whan the requested action is completed, the memory man-
ager returns a success code (and any additional required
data) to the signalling process via a call to the kernel
primitive Signal. This call will avaken the process wvhich
requested the action to be taken, and place the returned
message into that process' message queue. When that action
is completed, the memory manager will return to the top of
the loop structure and block itself to wait for the the next
request. The main 1line pseudo-code of the memory manager

process is displayad in Pigure 20.
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ENTRY
INITIALIZE_PROCESSOR_LOCAL_VARIABLES

DO
! CHECK_IP_MSG_QUEUE_EMPTY !
VP_ID, NSG := WAIT
PONCTION, ARGUMENTS := VALIDATE_MSG (MNSG)
IF FUNCTION
CASE CREATE_ENTRY THEN
SUCCESS_CODE := CREATE_ENTRY (ARGUMENTS)
CASE DELETE_ENTRY THEN
SUCCESS_CODE := DELETE_ENTRY (ARGUMENTS)
CASE ACTIVATE THEN
SUCCESS_CODE := ACTIVATE (ARGUMENTS)
CASE DEACTIVATE THEN
SUCCESS_CODE := DEACTIVATE (ARGUMENTS)
CASE SWAP_IN THEN
SUCCESS_CODE := SWAP_IN (ARGUMENTS)
CASE SWAP_OUT THEN
SUCCESS_CODE := SWAP_OUT (ARGUMENTS)
CASE DEACTIVATE_ALL THEN
SUCCESS_CODE := DEACTIVATE_ALL (ARGUMENTS)
CASE MOVE_TO_GLOBAL THEN
SUCCESS_CODE := MOVE_TO_GLOBAL (ARGUMENTS)
CASE MOVE_TO_LOCAL THEN
SUCCESS_CODE := MOVE_TO_LOCAL (ARGUMENTS)
CASE UPDATE THEN
SUCCESS_CODE := UPDATE (ARGUMENTS)
FI
SISNAL (VP_ID, SUCCESS_CODE, ARGUMENTS)
oD

END MEMORY_MANAGER_PLZ/SYS MODULE

Pigure 20: Memory Manager Mainline Code
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1. Create ap Alias Iable Entry

Create_Entry is invoked wvhen a user desires to create a

segment. A segment is created by allocating secondary sto-

.
R TP S

rage, and by making an entry (unique_id, secondary storage
location, size, classification) 4into it's mentor segment's ]
1 alias table. This implies that the mentor segment must have
‘ an alias table associated with it, and that the mentor seg-
1 ment must be active in order to obtain the secondary storage
] location of the alias table.

! The meator segmernt can be in one of two states. It aay

have children (viz., have an alias table), or it may be a
? leaf segment (viz., not have an alias table). If the mentor

seqment has children, it has an alias table and this alias

table can be read into core, secondary storage cam be allo-
cated, and the data can be entered into the alias table. If
the mentor segment is a leaf, an alias table msust be created
for that segment before it (the alias table) can be read
into core and data entered into it (see Pigure 15).

The pseudo-code for CREATE_BNTRY PROCEDURE is presented

in Figure 21. The arguments passed to Create_Entry are the

index into the G_AST for the mentor segmsent, the entry num-
ber into its alias table, the size of the segaent to be
created, and the security access class of that segment. The

return parameter 1is a success code, wvhich would De

}

"gseg_created® for a successful segaent creation.
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CREATE_ENTRY PROCEDURE (PAR_INDEX ®ORD, ENTRY_# WOBD,
SIZE WOBRD, CLASS BYTE)
RETURNS (SUCCESS_CODE BYTE)
LOCAL BLKS WORD, PAGE_TABLE_LOC WORD
ENTRY
IF ALIAS_TABLE_DOES_NOT_EXIST THEN
. SUCCESS_CODE := CREATE_ALIAS_TABLE
IF SUCCESS_CODE <> VALID THEN RETURN
FI

e N R

PI

BLKS := CALCULATE_NO_BLKS_REQ (SIZE)
: SUCCESS_CODE := READ_ALIAS_TABLE (
! G_AST[ PAR_INDEX J.ALIAS_TABLE_LOC)
IF SUCCESS_CODE <> VALID THEN RETURN
PI
~ SUCCESS_CODE .= CHECK_DUP_ENTRY ! in alias table !
| IP SUCCESS_CODE <> VALID THEN RETURN
FI
SUCCESS_CODE, PAGE_TABLE_LOC := ALLOC_SEC_STORAGE (BLKS)
IP SUCCESS_CODE <> VALID THEN RETURN
PI
UPDATE_ALIAS_TABLE(ENTRY_#, SIZE, CLASS, PAGE_TABLE_LOC)
SUCCESS_CODE := WRITE_ALIAS_TABLE (

G_AST{ PAR_INDEX ).ALIAS_TABLE_LOC)

IP SUCCESS_CODE <> VALID THEN RETURN
ELSE SUCCESS_CODE := SEG_CREATED
FI

T

END CREATE_ENTRY

Figure 21: Create Entry Pseudo-code
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When invoked, Create_Entry will deteraine which state
the mentor segment is in (viz., if it has an alias table).
If an alias table does not exist for the lent?r segaent, one
is created and the alias table of the nmentor fegnent's pa-
rent is updated. The alias table is read into core and a
duplicate 2ntry check is made. If no duplicate entry exists,
the segment size is converted from bytes to blocks, and the
secondary storage is allocated for non-zero sized segaments.
The appropriate data is entered into the alias table and the

alias table is then written back to secondary storage.

2. Delete ap Alias Table Entry

Delete_Entry is invoked when a user desires tc delete a
segment. A segment is deleted by deallocating seccandary
storage, and by removing the appropriate entry fio% the ali-
as table of its aentor segment (the reverse 1logic of
Create_Entry). This implies that the mentor segment aust be
active at the time of deletion. There are three conditions
that can be encountered during <the deletion of a segment:
the segment to be deleted may be an inactive leaf segment,
an active leaf segment, or a mentor segaent,

If the segment to be deleted is an inactive leaf segment
(viz., has been swvapped out of core, and does not have an
entry in the G_AST), the secondary storage can be deallocat-
ed and the entry deleted from the aentor segsent's alias ta-

ble. If the segment is an active leaf segment, <the segament




must first be swvapped out of
can be deleted. This entails

of each processor,

If the
alias table

empty, the

be deallocated,

segment can
segment can

alias table

{ is encountered a success
! returned to> the process vhic:

Due to a confinement problea

success_code cannot alwvways be
This impliss that the segment
deletion of a segment with an
of the process.

The pseudo-code for
in Pigure 22.

The parameters

dure are ¢the parent's index
number into

deleted.

and the appropriate action is

in which the segment is active,

segment to be deleted
exists for that segment .

secondary storage for
be removed froa its mentor's alias table.

contains any entries,

’i leted because these entries would be lost.

code of

the parent's alias table of the segment

] ' the state of the mentor segaent (either a leaf

core and deactivated before it
signalling the memory manager

to swap

i out and desactivate the segment.

is a mentor segment, an
If the alias table is
the alias table and the
and the eatry for the deleted
If the
the segment cannot be de-~
If this condition
"leaf_segment_exists" is
requested to delete the entry.
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DELETE_ENTRY_PROCEDURE is presentad

that are passed to this proce-
into the G_AST and the entry

to be

The alias_table_loc field is checked to determine

or a nodej,

then taken. A success code is

returned to indicate the results of this procedure.
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DELETE_ENTRY PROCEDURE ( PAR_INDEX WORD, ENTIRY_# WORD )

RETUBNS (SUCCESS_CODE BYTE)
LOCAL PAR_INDEX WORD
ENTRY

! Check if the passed mentor segment has an alias table. !

IP G_AST[ PAR_INDEX ). ALIAS_TABLE_LOC <> NULL
SUCCESS_CODE := READ_ALIAS_TABLE (
G_AST{ PAR_INDEX].ALIAS_TABLE_LOC)

ELSE
SUCCESS_CODE := NO_CHILD_TO_DELETE

PI

IF SUCCESS_CODE <> VALID THEN  RETURN

1 34

Determine if segment has children in alias table !
IF ALIAS_TABLE_NOT_EMPTY THEN

SUCCBSS_CODE := LEAF_SEGMENT_EXISTS

RETURN ! Deletion will delete children !
ELSE

1 Search G_AST with ONIQUE_ID to verify segment inactive !

IF ACTIVE_IN_G_AST THEN
! Check if active in AST !
IF ACTIVE_IN_L_AST THEN
DEACTIVATE_ALL (G_AST_INDEX, L_AST_INDEX)

PI

! Check G_AST to verify segment inactive in other L_AST's !

IF ACTIVE_IN_OTHER_L_AST THEN
SIGNAL_TO_DEACTIVATE_ALL (G_AST_INDEX)
FI
PI
PREE_SEC_STORAGE_OP_SEG_&_ALIAS_IF_EXISTS
DELETE_ALIAS_TABLE_ENTRY
FI
DELETE_ALIAS_TABLE_ENTRY
SUCCESS_CODE := WRITE_ALIAS_TABLE (
G_AST{ PAR_INDEX].ALIAS_TABLE_LOC)
IF SUCCESS_CODE = VALID THEN
SUCCESS_CODE := SEG_DELETED
FI

END DELETE_ENTRY

Pigure 22: Delete Entry Pseudo-code !
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3. Activate 3 Segment

Activate is invoked wvhen a user desires to make a seg-
ment known by adding a segment to his address space. A seg-
ment is activated by making an entry into the L_AST for that
processor, and the G_AST. The activated segment could be in
one of three states; it could have previously been activated
by another process and have a current entry in both the
G_AST and L_AST, it could have previously been activated by
another process on a different processor and have an entry
in the G_AST but not the L_AST, or it could be inactive aad
have an entry in neither the G_AST nor the L_AST.

If the segment to be activated already has entries in
both the L_AST and G_AST, these entries need only be updated
to indicate that another process has activated the segment.
The segaent number is entered into the Seg-
ment_No/Access_Auth field of the L_AST, and if the segment
is a leag, its mentor's No_Active_Dependents field in the
G_AST is incremented. In this design, the G_AST is always
searched to determine if the segment has been previously ac-
tivated by another process.

If the segment to be activated has an entry in the G_AST
but not the L_AST, an entry must be aade in the L_AST and
the G_AST must be updated. The L_AST is searched to deter-
mine an available index. The segment nuamber is entered into

the L_AST, and the index nuaber is entered into the G_AST
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Processors_L_ASTE_# field. If the segment to be activated is

a leaf segaent, its @mentor's No_Active_Dependents field in

the G_AST is incremented.

s U

If the activated segment does not have an entry in eith-

er the G_AST or L_AST, an entry aust be made in both. The

D S

G_AST is searched to find an available iandex, and the entry
E is made. The L_AST is then searched to find an available in-
i dex, and the entry is made. The L_AST index is then entered
into the G_AST Processors_L_ASTE_# field. If the activated
segaent is a leaf, <the No_Active_Dependents field of its
] mentor's G_AST entry is incremented.

The pseudo-code for ACTIVATE PROCEDURE is presented in
‘ Pigure 23. The parameters that are passed are the DBR_# of

f the signalling process, the mentor segment's index into the

G_AST, the alias table entry number, and the segment number
of the activated segment. The mentor segment is always
checked t> determine if it has an associated alias table. If
i+ does not, the success code of "alias_does_not_exist" is
returned. If the alias table does exist, it is read into
core and the entry number is used as an index to obtain the
activated segment's unique_id. The G_AST is then searched
to determine if the segment has already been activated. If

+he unique_id is found, the G_AST is updated and the L_AST

- i3 either updated or an entry is made (depending on whether
an entry existed or not). If the unique_id of the segament

was not found during the search of the G_AST, an entry aust
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be made in both the G_AST and L_AST. Activate returns the

activated segment's classification, size,

signalling process.

and handle to the




ACTIVATE PROCEDURE (DBR_# BYTE, PAR_INDEX WORD,

END

ENTRY_& WORD, SEGMENT_NO BYTE)
RETORNS (SUCCESS_CODE BITE, RET_G_AST_HANDLE HANDLE,
CLASS BYTE, SIZE WORD)
LOCAL G_INDEX WORD, L_INDEX WORD
ENTRY
Verify that passed segment is a mentor segament I
IF G_AST{ PAR_INDEX].ALIAS_TABLE_LOC <> 0 THEN
SUCCESS_CODE := READ_ALIAS_TABLE ¢(
G_AST(PAR_INDEX ]J.ALIAS_TABLZ_LOC)

ELSE

SUCCESS_CODE := ALIAS_DOES_NOT_EXIST
FI
IF SUCCESS_CODE <> VALID THEN RETURN
rI

Check 3_AST to determine if active !
SUCCESS_CODE,INDEX := SEARCH_G_AST (UNIQUE_ID)
IP SUCCESS_CODE = POUND THEN
IP SEGMENT_IN_L_AST THEN
UPDATE_L_AST (SEGMENT_NO)
ELSE
MAKE_L_AST_ENTRY (DBR_#, SEGMENT_NO)
UPDATE_G_AST (L_INDEX)
IP G_AST{INDEX J.ALIAS_TABLE_LOC = NULL THEN
G_AST[PAR_INDEX ]. NO_DEPENDENTS_ACTIVE ¢= 1
PI
PI
ELSE
MAKE_G_AST_ENTRY (ENTRY_#)
MAKE_L_AST_ENTRY (PAR_INDEX, ENTRY_#)
PI
SUCCESS_CODE := SEG_ACTIVATED
ACTIVATE

Pigure 23: Activate Pseudo-code

‘ae




P T T

B TETPRRE T

4. Deactivate a Segsent

Deactivate is invoked when a user desires to remove a
seqaent from his address space. To deactivate a segment,
the memory manager either reaoves or updates an entry in
both the L_AST and G_AST. Deactivate uses the reverse logic
of activate. Once a segment is deactivated, it can only be
reactivated via its mentor's alias table as discussed in ac-
tivate. If a process requests to deactivata a segment which
has not been swapped out of the process! virtual core, the
3em0TY manager swaps the segment out and updates the MMU inm-
age before the segment is deactivated. The segment to be
deactivated could be in one of three states; wore than one
process could concurrently hold the segment active in the
L_AST, the segment could be held active by one process ina
the L_AST and more than one in the G_AST, the segment could
be held active by only one process in both the L_AST and the
G_AST.

Deactivation of leaf segments and mentor segments are
handled differently. If the segment is a mentor segment and
has active dependents, it cannot be removed froa the G_AST
(even though no process currently has that segaent active),
This is based on the design decision which requires that the
mentor of all active leaf segments remain in the G_AST to
allow accass to its alias table. The aentor's alias table

aust be accessible when an alias table is created for a de-
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pendent lsaf segaent. If a leaf segment is deactivated, the
No_Active_Dependents field of its agmentor's G_AST entry is
decrementsd. A mentor segment can only be reamoved from the
G_AST if no process holds it active, and it has no active
dependents.

If mor2 than one process concurrently hold a segment ac-
tive in the L_AST, and one of them signals to deactivate
that segment, the entry in the L_AST is updated. This is ac-
complished by nulling out the Segment_No/Access_Auth field
of the L_AST for the appropriate process. If required, the
No_Active_Dependents field of its aentor segaent's G_AST en-
try is decremented.

If only one process holds the segment active in <the
L_AST, and that Process signals to deactivate the segaent,
the L_AST entry for that segaent is removed. The Proces-
sors_L_ASTE_# is updated and checked to deteraine if there
are other connected processors. If there are no other coa-
nected processors and the segment has no active dependents,
the segaent is removed froam the G_AST. If there are other
connected processors, the G_AST is updated. If the deacti-
vated saguent is a leaf, the mentor segment's
No_Active_Dependents field in the G_AST is decremented.

The pseudo~cdode for DEACTIVATE PROCEDURE is presented in
Pigure 24. The parameters that are passed to the aemory aan-
ager are the DBR_# of the signalling process, and the index

into the G_AST for the segment to be deactivated. The
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procedure first updates the L_AST, and then removes the en-

try if no local process holds the segment active. The G_AST
is then updated, and its mentor segment is checked (if the
deactivated segment was a leaf), to determine if it can be
removed. If no processes currently hold the segament active,
and it has no active dependents, the segment is removed froa

the G_AST.
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DEACTIVATE PROCEDUBE (DBR_# BYTE, PAR_INDEX WORD) 1
RETURNS (SUCCESS_CODE BYTE) {
LOCAL INDEX WORD 3
ENTRY

! Check if segment is im core !
IF G_AST({ INDEX ]. NO_ACTIVE_IN_MEMORBRY <> 0 THEN
! Check 44U image to determine if in local mesory !
IP IN_LOCAL_MEMORY THEN
SUCCESS_CODE := OUT (DBR_#, INDEX) ]
FI

PI
! Remove process segment_no eantry in L_AST ! %
L_AST[L_INDEX ]J.SEGMENT_NO/ACCESS_AUTH[DBR_#] = 0
CHECK_IF_ACTIVE_IN_L_AST (L_AST_INDEX)
IF NOT_ACTIVE_IN_L_AST THEN
L_AST[L_INDEX].MEMORY_ADDR := AVAILABLE
FI
! Check if deleted segment was a leaf !
IF G_AST{ INDEX].G_ASTE_#_PAR <> 0 THEN
G_AST{PAR_INDEX }].NO_DEPENDENTS_ACTIVE -~= 1
! Determine if parent can be removed !
CHECK_FOR_REMOVAL (PAR_INDEX)
FI
! Deteraine if deactivated segmaent can be removed !
CHECK_POR_REMOVAL (INDEX)
SUCCESS_CODE := SEG_DEACTIVATED
END DEACTIVATE

Pigure 24: Deactivate Pseudo-code
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5. Swap 1 Seqgment In
SWAP_IN is invoked vhen a user desires to swap a seg-

ment into main memory (global or local) froa secondary sto-
rage. A segment is swapped into main memory by obtaining the
secondary storage location of its page table froa the G_AST,
allocating the required amount of main aemory, and readiag
the segment into the allocated main memory. The segment must
be active before it can be swapped into core, and the re-
quired main memory space must be available. Three conditions
can be encountered during the invocation of SWAP_IN. The
segment can already be located in global memory, the segment
can already be located in one or more local memories, or the
segment may only reside in secondary storage.

If the segment is not in 1local or global memory, local
m2mory is allocated, the segment is read into the allocated
meaory, and the appropriate entries are made in the MMU ia-
age, the L_AST and the G_AST. 1f the segment is already in
global amemdory, it can be assumed that the segmaent is shared
and writable. In this case the only required actions are to
update the G_AST and L_AST. The No_Active_In_Memory field of
the G_AST entry is incremented, and the MMU image is updated
to reflect the swapped in segment's core address and attri-
butes.

If the segment already resides in one or more local me-

mories, it must be determined if the segment is "shared®™ and
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®"writable". A segment is "shared®™ if it exists in more than

one local memory. A segment is “writable" if one process has
vrite access to that segneni. If the segment is not shared
or not vwritable and in local memory, the appropriate entries
are updated in the MMU image, the L_AST, and the G_AST. If
the segment does not reside in local aeaory, the required
aaount of 1local memory is allocated, the segment is read
into the allocated memory, and the appropriate entries are
made in the MN0 image, the L_AST, and the G_AST.

If the segment is shared, writable, and in local meamory,
the segment must be moved to global meaory. If the segment
is not in the @memory manager's 1local meamory, it signals
another memory manager to move the segment to global aesory.
After the segment is moved to global aemory, the meaory man-
ager signals all of the connected memory manager's to update
their L_AST and MMU data bases. #hen all local data bases
are current, the memory manager updates the G_AST and re-
turns a success code of seg_activated.

The pseudo-code for SWAP_IN PROCEDURE is presented in
FPigure 25. The arguments passed to SWAP_IN are the
G_AST_INDEX of the segment to be nmoved in, the process!'
DBR_#, ard the access authorized. SWAP_IN will convert the
segqaent size froam bytes to blocks, and verify that the pro-
cess' core will not be exceeded. If the virtual core will

be exceeded, a success code of "core_space_exceeded" will be

returned. If write access is permitted, the writable bit is
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set., Checks are then periormed to deteraine the segmentt's

storage location (local or global), and the appropriate ac-

tion is taken.
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SWAP_IN PROCEDURE (INDEX WORD, DBR_# BYTE,
: ACCESS_AUTH BYTE)
! RETURNS (SUCCESS_CODE BYTE)

| LOCAL L_INDEX WORD, BLKS WORD
! ENTRY
{ BLKS := CALCULATE_NO._OF_BLKS (G_ASI{INDEX).SIZE)
SUCCESS_CODE := CHECK_MAX_LINEAR_CORE (BLKS)
IF SUCCESS_CODE = VIRTUAL_LINEAR_CORE_FULL THEN
RETURN
PI

G_AST{ INDEX ). NO_SEGMENTS_IN_MEMORY += 1

IP ACCESS_AUTH = WRITE THEN

! G_AST{INDEX ).PLAG_BITS := WRITABLE_BIT_SET

PI

' { Determine if segment can be put in local aemory !

1 IP G_AST{ INDEX]).PLAG_BITS AND WRITABLE_MASK = 0

: ORIF G_AST(INDEX).NO_ACTIVE_IN_MEMORY <= 1 THEN

{ Determine if already in local memory !

CHECK_LOCAL_MEMORY (L_AST_INDEX)

i IF NOT_IN_LOCAL_MEMORY THEN

ALLOCATE_LOCAL_MENORY (BLKS)

READ_SEGMENT (PAGE_TABLE_LOC, BASE_ADDR)

L_AST{L_INDEX] := BASE_ADDR

s ————— s

FI
ELSE
IP NOT_IN_GLOBAL_MEMORY THEN
UPDATE_NMU
UPDATE_L_AST
RETURN
ELSE
ALLOCATE_GLOBAL_MEMORY (BLKS)
IF IN_LOCAL_MEMORY THEN
MOVE_TO_GLOBAL (L_INDEX, BASE_ADDR, SIZE)
ELSE
SIGNAL_OTHER_MEMORY_NMANAGERS (LNDEX,BASE_ADDR)
PI
PI

FI
UPDATE_MMU_IMAGE (DBR_#,SEG_#,BASE_ADDR,ACCESS,BLKS)
_ UPDATE_L_AST_ACCESS (L_INDEX,ACCESS,DBR_#)

P § SUCCESS_CODE := SWAPPED_IN

END SWAP_IN

Pigure 25: sSwap_In Pseudo-code
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6. gyap 3 Segament Out

SWAP_QUT is invoked when a user desires to move a seg-
ment out of core. A segment is swapped out of core by ob-
taining its secondary storage location, writing the segment
to that location (if required), and deallocating <the main
memory used. The decision to write the segment is deter-
mined by the G_AST vritten bit. This bit is set whenever the
segment has been modified. The segment to be swapped out
can be in 2ne of two states: the segaent can be in local
memory, or the segment can be in global msaory.

If one process has the segment in local amemory and the
written bit is set, the segment is written into secondacy
storage and the local memory is deallocated. If the written
bit is not set, the local memory need only be deallocated.
If more than one process has the segment in the same local
memory, the segment remains in coc-e. The appropriate MU ia-
age 1is updated to reflect the segments deletion and the
G_AST No_Active_In_Memory field is decremented.

All segments in global memory are shared and wvritable.
If a process requests the segment to be swapped out, the
segment remains in memory. The MMU image is updated to re-
flect the segment's deletion, and the G_AST
No_Active_In_Mesmory field is decremented. 1f the
No_Active_In_Memory indicates that one process has the seg-
ment in core, its memory manager is signalled to move the

segment to local memory.
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The pseudo~code for SWAP_OUT PROCEDURE is presented in
Pigure 26. The arguments passed to SWAP_OUT are the DBR_#

of the signalling process, and the G_AST_INDEX of the seg-
ment to be removed. The return parameter is a success code.
SWAP_OUT removes the segment from the process's virtual
core, deletes the segment from its MMU image, and decrements
the No_Active_In_Meamory field. If the segment can be removed
from memory, it is determined which memory can be deallocat-
ed, If the segment has been modified, it is written back to
secondary storage and the appropriate memory deallocated.
If the segaent has not been modified, the appropriate amemory
is deallocated. If after the deletion one process has the
segaent in global nemory, its memory manager need only be
signalled to wmove the segment to local aemory. When
SWAP_OUT successfully completes, it returns a success code

of "swapped out".
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SWAP_OUT PROCEDURE (DBR_# BITE, INDEX WORD)

END

RETURNS (SUCCESS_CODE BYTE)
ENTRY
BLKS := G_AST[ INDEX }.SIZE / BLK_SIZE
PREE_PROCESS_LINEAR_CORE (BLKS)
DELETE_MMU_ENTRY (DBR_#, SEG_#)
G_AST{INDEX ].NO_SEGMENTS_IN_MEMORY -= 1
Deternine if segment has been written into !
IF MMU_IMAGE{DBR_#)].SDR{SEG_# ]J.ATTRIBUTES=WRITTEN THEN
! If segment has been written into, update G_AST !
G_AST(INDEX].PLAG_BITS := WRITTEN
FI
Determine if segment is in global aemory !
IP G_AST{INDEX ].GLOBAL_ADDR <> NULL THEN
IP G_AST({ INDEX ].NO_SEGMENTS_IN_MEMORY = 0
ANDIP G_AST[INDEX )}.PLAG_BITS = WRITTEN THEN
WRITE_SEG (PAGE_TABLE_LOC, MEMORY_ADDR)
FPREE_LOCAL_BIT_MAP (MEMORY_ADDR,BLKS)
ELSE
IFP G_AST{INDEX ].NO_ACTIVE_IN_MEMORY = 0 THEN
FPREE_LOCAL_BIT_MAP (MEMOBY_ADDR,BLKS)
FPI
FI
ELSE 1 If not in global memory !
IF G_AST{ INDEX].NO_ACTIVE_IN_MEMORY = 0
ANDIF G_AST[ INDEX].PLAG_BITS = WRITTEN THEN
WRITE_SEG (PAGE_TABLE_LOC, GLOBAL_ADDR)
FREE_GLOBAL_BIT_MAP (GLOBAL_ADDR, BLKS)
ELSE
IF G_AST{INDEX J.NO_ACTIVE_IN_MEMORY = 0 THEN
FREE_GLOBAL_BIT_MAP (GLOBAL_ADDR, BLKS)
FI
FI
PI
SUCCESS_CODE := SWAPPED_OUT
SWAP_OUT

Figure 26: Swap_Out Pseudo-code
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7. Deactivate All Seqments
DEACTIVATE_ALL is invoked wken it becomes necessary to

remove a segment froms every process’ address space, Each
process is checked to determine if the segsent is active. If
a process has the segment active, it is deactivated froa its
address space. The pseudo code for Deactivate_all is illus-
trated ia PFigure 27. The parameters passed to Deacti-
vate_all are the deactivated Seglent's G_AST index and the
L_AST index. The L_AST is searched by DBR_# to deteramine
wvhich process has the segment active. If the check reveals
that the segment is active, it is deactivated by calling
Deactivate. If the segment wvas successfully deactivated froa

all processes, a success_code of valid is returned.

- 98 -




DEACTIVATE_ALL PROCEDURE (INDEX WORD, L_INDEX «&ORD)
RETURNS (SOUCCESS_CODE BYTE)
ENTRY
LOCAL I BIYTE
I:=4
DO
IP Y = MAX_DBR_# THEN
EXIT
Pr
IP L_AST{L_INDEX).SEGMENT_NO/ACCESS AUTH[I]
<>, ZERO THEN N
SUCCESS_CODE := DEACTIVATE (I, INDEX)
IP SOCCESS_CODE <> SEG_DEACTIVATED THEN
RETURN
P
PI
I ¢+= 1
0D
SUCCRSS_CODE := VALID
END DEACTIVATE_ALL

Pigure 27: Deactivate All Pseudo-code

8. Hovs a Seqment to Global Hewory
MOVE_TO_GLOBAL is invoked when it becomes necessary to

move a segaent froa local to global memory. If a segment re-
sides in one or amsore local memories, and a process with-
write access swaps that segsent into cote, or if a segaent
resides in ip local memory (vwith write access) and another
process vith read access reguests the segment swapped in,
the segment is noved from a local to global memory to avoid
a gecondary storage access. If the segment resides in the

running semory msanager’s local msesmory, it will affect the
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segment transfer, otherwise it will signal another amemory

manager of a connected processor to affect the transfer.
Pigure 28 illustrates the pseudo-code for MOVE_TO_GLOBAL.
Once the segaent has been aoved to global memory, the sig-
nalled memory manager will update the MMU images for all
connected processes, and deallocate the freed local memory.
A success code of completed will be returned to the signall-
ing memory manager. The parameters passed to the memory
manager ar2 the segaent's L_AST index the global memory ad-
dress of the move, and the size of the segaent. This infor-
mation is passed because the G_AST is locked during this re-

quest.

MOVE_TO_GLOBAL PROCEDURE (L_INDEX WORD, GLOBAL_ADDR WORD,
SIZE HNHOQRD)
RETURNS (SUCCESS_CODE BYTE)
ENTRY
1 Move segment from local memory to global aemory !
DO_MEMORY_MOVE (MEMORY_ADDR, GLOBAL_ADDR)
L_AST[{ INDEX ]J. MEMORY_ADDR := AVAILABLE
! Update the MMU image to reflect new address !
DO POR_ALL_DBR'S
IP L_AST{L_INDEX]).SEGMENT_NO/ACCESS_AUTH <> 0 ANDIF
MMU_IMAGE[ DBR_#).SDR[SEG_#].ATTRIBUTES=IN_LOCAL THEN
MMU_IMAGE[ DBR_# ].SDR[ SEG_#].BASE_ADDR :=GLOBAL_ADDR
PI
oD
SUCCESS_CODE := VALID
END MOVE_TO_GLOBAL

Pigure 28: Move To Global Pseudo-code
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9. Hove a Sedment 9 Local Nemery .
YOVE_T0_LOCAL is inveked whea it becomses anecessary to

a0ve a segaent from global to local sesocy. This occurs vhan
one of two processes vhich hold a segment in global aemory
svaps the seqment out. The segmnent is moved from global me-
aory to the local aemory of the resaining process. Pigures 29
illustrates the pseudo-code for NOVE_T0_LOlAL. The parsse-~-
ters passed to the memory aanager are the segment's L_AST
index, the global address of the .Segmeat, and the size of
the segment. The return paraseter is a success code. The
MN8U isages of the signalled process are updated after the

move has been zade, and the global memory is deallocated.

MOVE_TO_LOCAL PROCEDURE (L_INDEX «OBD, GLOBAL_ADDR WORD,
SIZE WO0RD)
RETUBNS (SUCCESS_CODE BYTE)
ENTRY
BLKS := SIZE / BLK_SIZE
BASE_ADDRESS := ALLOCATE_LOCAL_MBMORY (BLKS)
! Move froam global to local mesory !
MEMORY _MOVE (GLOBAL_ADDR, BASE_ADDRESS, SIZE)
L_AST{L_I¥DBX }.MEBORY_ADDR := BASE_ADDRESS
DO PFOR_ALL_DBR*S
IF LAST{L_INDEX ).SEGMENT_XO/ACCESS_AUTH <> 0 ANDIF
MMO_INAGE(DBR_#).SDR{SEG_#].ATTRIBUTES=IN_iOQCAL THEN
MMU_IMAGE({ OBR_# ].SDBR{ SEG_#].BASE_ADDR:=BASE_ADDRESS
| 3
oD
SUCCESS _CODE := VALID
END NOVE_TO_LOCAL

Plgare 29: Move To Local Pseudo-code
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10. Jpdate she 347 Image
UPDATE is iavoked following a HOVE_TO_GLOBAL operation.

After a segment has been asoved froa local aemory to global
senory, it is necessary to signal the asaory aanagers of all
connected é:ocosso:s to update their 420 images and L_AST
vith the current location of the segaent. They aust also
deallocate the moved segment’s local aemory. Figure 30 il-
lustrates the pseudo-code of UPDATE. The paraaeters passed
to the memory sanager are the segaent's L_AST index, the nsw
global address for the segment, and the size of the segaent.

The return paraameter is a success code.

UPDATE PROCEDURE (L_INDBX WORD, GLOBAL_ADDR WORD,
SIZE WORD)
RETURNS (SUCCESS_CODE BYTE)
ENTRY
DO POR_ALL_DBR'S
IP L_AST{L_INDEX ).SEGMENT_WO/ACCESS_AUTH <> 0 ANDIP
NM0_INAGE[ DBR_#].SDR( SEG_#].ATTRIBUTES=IN_LOCAL THEX
ANU_INAGE({DBR_# ). SOR{ SEG_¢# ].BASE_ADDR :=
GLOBAL_aDDR
134
oD
BLKS := SIZE / BLK_SIZE
PREB_LOCAL_BIT_MAP (MEMORY_ADDR,BLKS)
L_AST{ L_INDEX ).MENORY_ADDR := ACTIVE
SUCCESS_CODE := VALID
END UPDATE

Pigure 30: Update Pseudo-~code
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E.  SUBNARYX

In this chapter the detailed design of the memory manag-
er process has been presented. The purpose of the memory
manager was outlined, followved by a detailed discussion of
the memory managar's data basaes. The design presented has
identified ten basic functions for the meamory manager. The
success codes returned by the aemory manager are presented
in Pigure 31.

This design has assumed that the kernel level inter~-pro-
cess synchronization primitives will be Saltzer's signal and
wait primitives [ 14]. This fact dominated the design deci-
sion to lock the G_AST in the user's process before it sig-
nals the memory manager. In a multi-processor environaenct,
the possibility of a deadly embrace exists if the amemory
manager processes lock the G_AST. Should follow on vork iam-
plement eventcounts and sequencers as kernel level synchron-
ization primitives, *he locking of the G_AST and aemory man-

ager synchronization will need to be readdressed.
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SYSTEM WIDE

INVALID
SWAPPED_IN
SWAPPED_OUT
SEG_ACTIVATED
SEG_DEACTIVATED
SEG_CREATED
SEG_DELETED
VIRTUAL_CORE_PULL
DUPLICATE_ENTRY
READ_ERROR
WRITE_ERROR
DRIVE_NOT_READY

MEMORY MANAGER LOCAL

VALID

INVALID

FOUND

NOT_POUND

IN_LOCAL_MEMORY

NOT_IN_LOCAL_MEMORY
! + DISK BRRORS !

KERNEL LOCAL

LEAP_SEGMENT_EXISTS
NO_LEAP_EXISTS
ALIAS_DOES_NOT_EXIST
NO_CHILD_IO_DELETE
G_AST_FULL

L_AST_PULL
LOCAL_MENORY_PULL
GLOBAL_MEMORY_PULL
SECONDARY_STORAGE_FULL

Pigure 31: Success Codes
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Chapter XII

STATUS OF RESEARBCH

A.  CONCLOSIOQNS

The memory manager design utilized state of the art
software technigues and hardware devices. The design was de-
veloped based upon ZILOG'S 28001 sixteen bit segmented ai-
croprocessor used in conjunction vith the 28010 MYemory Man-
agement Uait ([23]. A microprocessor wvhich supports
segmentation is required to provide access coatrol of the
stored data. The actual inmpleamentation of the selected
thread was conducted upon the 28002 non-segaented micropro-
cessor without the 28010 MMO.

While information security requires that the micropro-
cessor support segmentation, the nmemory manager was devel-
oped to be configuration independent. The design will sup-
port a nmulti-processor environment, and can be easily
implemented wupon any aicroprocessor or secoandary storage
device. The 1loop free modular design facilitates any ce-
quired expansion or modification.

Global bus contention is ainimized by the memory wsanag-
er. Seqments are stored in global memory only 4if they are

shared and writable. Secondary storage is accessed only if
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the segment does not currently reside in global aemory or
some local memory. The controlled sharing of segments optia-
izes main memory usage.

The storage of the alias tables in secondary storage
supports the recreation of user file hierarchies following a
system crash. The aliasing scheme used to address s :gaents
supports systea security by not allowing the segment’s aemo-
ry location or unique identification to leave the memory
manager.

The design of the distributed kernel was clarified by
assigning the #fMU image management ¢ the memory manager.
The transfer of responsibility for aemory allocatiom and
deallocation froa the supervisor to the memory manager pro-
vides support for dynamic memory managemeat.

In conclusion, the amemory manager process vill securely
manage segments in a multi-processor environment. The pro-
cess is efficient, and 1is configuration independent. The
primitives provided by <the memory manager will support the

construction of any desired supervisor/user process built

upon the kernel.
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B. POLLO® ON HORK
There are several possilkle areas in the SASS design that

can be looked into for continued research. The complete im-
plementation of the memory manager design (refine and optim-
ize the current PLZ/SYS code) is one possibility. Other pos-
sibilities include the iomplementation of dynaaic memory
management, and modifying the interface of the memory manag-
er with the distributed kernel using eventcounts and se-
quencers for inter-process comsunication.

The implementation of the supervisor has not been ad-
dressed to date. Areas of research include the implmenta-~
tion of the file manager and input/ocutput processes, and the
complete design apd implementation of the user-host proto-
cols. The implementation of the gatekeeper, and systeam ini-
tialization are other possible research areas., Dynamic pro-
cess creation and deletion, and the introducticva of

aulti-level hosts could also prove interesting.
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AN INPLEMENTATION OF MULTIPROGRAMMING AND

PROCESS MANAGEMENT POR A SECURITY KERNEL
OPERATING SYSTEHM

This section contains updated excerpts froam a Naval Post~
graduate School MS Thesis by S. L. Reitz [12]. The origins
of these excerpts are:

INTRODUCTION from Chapter I
IMPLEMENTATION from Chapter IV
CONCLUSION froa Chapter V

Minor changes have been made for integration into this report.
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Chapter XIII
I¥NTRODUCTION

The application of conteaporary aicroprocessor technolo-
gy to the design of large-scale multiple processor systeas
offers many potential benefits. The cost of high~power coum-
puter systeas could be reduced drastically; <fault tolerance
in critical real-time systeas could be improved; and compu-
ter services c¢ould be applied in areas where their use is
not now cost effective. Designing such systeas presents
many foraidable problems that have not been solved by the
specialized single processor systeas available today.

Specifically, there is an increasing demand for coaputer
systeas that provide protected storage and controlled access
for sensitive information to be shared among a wide range of
users. Data controlled by the Privacy Act, classified De-
partment o5f Defence (DoD) information, and the transactions
of fipnancial institutions are but a few of the areas wvhich
rTequire protection for multiple levels of sensitive informa-
tion. Multiple processor systeas which share data are vell
suited to providing such services - if the data security
problem can be solved.

A solution ¢o these problems - a aultiprocessor systea

design with verifiable information security - is offered in
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a family of secure, distributed aulti-microprocessor operat-
ing systeas designed by O'Connell apd Richardson ([7]. A
subset of this family, ¢the Secure Archival Storage Systenm
(sass) {9.,5), has been selected as a testbed for the gemeral
design. SASS will provide consolidated file storage for a
network of possibly dissimilar "host* cosputers. The systea
vill provide controlled, shared access to aultiple levels of
sensitive information (Figure 32).

This thesis presents an impleamentation of a basic moni-
tor for the O'Connell-Richardson faamily of operating sys-
teas. The @onitor provides aultiprogramaing and process
management functions specifically addressed to the control
of physical processor resources of SASS. concurrent thesis
work [7] is developing a detailed design for a security ker-
nel process, the Memory Manager, vhich will aanage SASS ae-

AO0LY resources.
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Pigure 32: SASS SYSTEM

- 111 -

’
!




LA R AR w‘ﬁ

Chapter XIV
IMPLENENTATION

Iapleaentation of the distributed kernel was simplified
by the hierarchical structure of the design for it perait-
t2d aethodical bottom-up construction of a series of extend-

? ed machines, This approach was particularly useful in this

L St e s A A RO e i Ao M
R [ S TR R R -

implementation since the bare sachine, the 28000 Developmen-
| tal Module, wvas provided with only a ssall amount of soft-

vare support.

A. DEVELJOPUENTIAL SUPPORT
A Zilog MCZ Developmental Systea provided support in de-

veloping 28000 machine code. It provided floppy disk file

management, a text editor, a linker and a loader that creat-
ed an imagz of each 28000 load aodule.

A Z8000 Developaental Module (D¥) provided the necessary
hardvare support for operation of a 28002 non-segmented ami-
croprocessor and 16K words (32K bytes) of dynaaic RANM. It
included a clock, a USART, serial and parallel I/0 support,
and a 2K PROM aonitor.

The monitor provided access to processor registers and
memory, single step and break point functions, basic I/0
functions, and a downloads/upload capability with the NMCZ

system.
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Since a sagmented version of the processor was not
available for systea development, seqmentation bardvare was
sisulated in softvare as an ¥MU image (see Pigure 33). Ale-
hough this data structure did not provide the hardware sup~
port (traps) required to PIotect segments of the kernel do-

®ain, it preserved the general structure of the design.

OPPSET ATTRIBUTES

{ High byte } Low byte || Size § Attributes |

i { 1 i —l

| [ ) i { {
i | I { il [ B |
seqg | { i i |
# | { i1 i i
i | ! i 1 {
¥ . i RN | { i
1 | it | |

{ $ Hi H |

Pigure 33: BMT_IMAGE
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B.  INNER TRAFEIC GONIROLLER

f The Inner Traffic Controller runs on the bare machine to
create a virtual environment for the remainder of the sys-
tea. Only this msodule is dependent on the physical proces-
sor configuration of the system. All higher levels see oaly

! a set of running virtual processors. A kernel data base,

i the Vvirtual Processor Table is used by the Inner Traffic

‘ Controller to create the virtual environment of this first
level extended machine. A source listing of the Inner

Traffic Controller module is contained in Appendix G.

1.  ¥Yictual Brocessor Iakle (¥R])
The VPT is a data structure of arrays and records that

e er——— g = - o———

maintains the data ased by the Inner Traffic Controller to
sultiplex virtual processors on a <real processor and to
create the extended instruction set that controls virtual
processor operation (see Figure 34). There is one table for

each physical processor in the system. Since this impleaen-

tation was for a uniprocessor systea (the 28000 DN), only

one table was necessary.

The table contains a LOCK which supports an exclusion

mechanisa for a multiprocessor systea. It was provided in

this implementation only to preserve the generality of the

design.

The Descriptor Base Register (DBR) binds a process to a

virtual processor. The DBR points to an MMU_IMAGE contain-




Lock
RUNNING _LIST
READY_LIST
FREE_LIST

VP (DBRy PRI) STATE| IDLE_FLAG| CPU| MNEXT_VP}| MSG_LISTI|

INDEX | === |==========] =mm==Zcme|mmm | mmm e Zem | o m e n e

I R R e B hamel Rt e b e R

|
i oo I ro [ i
l

' - '---- ' - - - ' - - - - - '---- ‘ --------‘ ---------.

.| MESSAGE | SENDER | NEXT_MSG |

|

I

O R e R |
b [ | |
T R R Bl
v

' - - --l - - - - ' ---—--—---‘

Figure 34: Virtual Processor Table

ing the list of descriptors for segaments in the process ad-

dress space.
A virtual processor (VP) can be in one of three statss:
running, ready, and vaiting (Figure 35). A runniang VP is

currently scheduled on a real processor. A ready VP is 1

ready to be scheduled when selected by the level-1 schedul-
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ing algorithm. A vaiting VP is awaiting a message from soame

other VP to place it in the ready list. In the meantime it

is not in contention for the real processor.
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! Pigure 35: Virtual Processor states
&
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2. Level-1 scheduling

Virtual processor state changes are initiated by the in-
ter-virtual-processor coamunication mechanisas, SIGNAL and
WAIT. These level-1 instructions implement the scheduling
policy by letermining vhat virtual processor to bind to the
real processor. The actual binding and unbindiang is per-
formed by a Processor switching mechanisa called SWAP_DBR
{147, Processor switching implies that sosehovw the execu-
tion point and address space of a new process are acquired
by the processor. Care aust be taken to lasure that the old
process is saved and the nev process loaded in an orderly
manner. A solution to this problem, suggested by Saltzer
{14], 1is to design the switching sechanisa so that it is a
common procedure having the same segment number in every ad-
dress space,

In this implementation a processor register (R14) was
reserved within <“he switching mechanisa for use as a DBR.
Processor switching was performed by saving the old execu-
tion point ( i.e., processor registers and flag control
vord), 1loading the new DBR and then loading the nev execu-
tion point. The processor switch occurs at the instant the
DBR is changed (see Figure 36). Because the switching
procedure is distributed in the same numbered segment in all
address spaces, the "next"™ instruction at the instant of the

switch will have ¢the same offset no aatter vhat address
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space the procassor 1is in. This is the key to thé& priper
operation of SWAP_DBR.

To convert this switching mechanisa to segaented hard-
vare it is necessary merely to replace SWAP_DBR with special
I/0 block-move instructions that save the contents of the
8MU in the appropriate MMU_IMAGE and load the contents of

the new MMU_IMAGE into the MNO.

a. Getwork

SWAP_DBR is contained within an internal Inner Traffic
Controller procedure called GETWORK. In addition to> aulti-
plexing victual processors on the CPU, SGETHWORK interprets
the virtual processor status flags, IDLE and PREENPT, and
modifies VP scheduling accordingly in an atteapt to keep the
CPU busy doing useful work.

There are actually two classes of idle processes within
the systea. One class belongs to the Traffic Controller.
Conceptually there is a ready level-2 idle process for each
virtual processor available to the Traffic Controller for
scheduling. When a running process blocks itself, the
Traffic Controller schedules the first ready process. Phis
will be an idle process if no supervisor processes are in
the ready list.

The second class of idle process exists in the kernel.
The kernel Idle process is persanently bound to the lowest

priority virtual processor.
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| l
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(process $2)
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Pigure 36: SRAP_DBR
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The distinction is made between these classes because of
the need to keep the CPU busy doing useful work whenever
possibla. There is no need for GETWORK to schedule a lev-
€l-2 idle process that has been 1loaded on a virtual proces-
1 sor, because the idle process does no useful work. The vir-

tual processor IDLE_PFLAG indicates that a virtual processor

P N

has been loaded with a level-2 idle process. GETWORK will

schedule this virtual processor only if the PREEMPT flag is

] also set. The PREEMPT flag is a signal from the Traffic
Controller that a supervisor process is now ready to run.

When GETWORK can find no other ready virtual processors

with IDLE and PREEMPT flags off, it will select the virtual

processor permanently bound to the kernel Idle process.
Only then will the Idle process actually run on the CPU.

i Getwork contains two entry points. The first, a normal

entry, res2ts the preempt interrupt return flag. (R0 is re-
served for this purpose within GETWORK.) The second, a
hardware interrupt entry point, contains an interrupt han-
dler which sets the preempt interrupt return flag. The DBR
(R14) must also be set to the current value by any procedure
that calls GETWORK in order to peramit the SWAP_DBR portion
of GETWORK to have access to the scheduled process's address
space. Upon completion of the processor switch, GETWORK ex-
amines the interrupt return flag to determine whether a aor-

mal return or an interrupt return is regquired.
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The hardware interrupt entry point in GETWORK supports
the technique used to initialize the systea. Each process
address space contains a kernel domain stack segament used by

SWAP-DBR in GETWORK to save and restore VP states. Por the

same reason that SWAP-DBR is contained in a system wide seg-
ment number, the stack segment in each process address space
will also have the same number (Segment #1 in this implemen-
tation). Bach stack segment is initially created as though
it*s process had been previously preempted by a hardware in-
terrupt. This greatly siamplifies the initialization of pro-
ﬁ cesses at system generation time. The details of system in-
? itialization will be described later in this chapter. It is
! important to note here, however, that GETWORK aust be able

to determine whether it was invoked by a hardware preempt

interrupt or by a normal call, befors it can execute a re-
turp to the calling procedure. This is because a hardware
interrupt causes three items to be placed on the systen
stack: the return location of the caller, the flag control
word, and the interrupt identifier, vhereas a normal call
places only the return location on the stack. Therefore, in
order to clean up the stack, GETWORK must execute an inter-
iy rupt return (assambly instruction:IRET) if entry was via the

hardvare preempt handler (i.e., RO set). This instruction

will pop the three items off the stack and return to the ap-

propriate location. If the interrupt return flag, &BO, is

off, a normal return is executed.
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During normal operation, SWAP-DBR @manipulates process
stacks to save the o0ld VP state and load the new VP state.
This action proceeds as follows (Pigure 37):

1. The Plag Control Word (FCW), the Stack Pointer (R15)

and the preeapt zeturn flag (BRO) are saved in the old
VP's kernel stack.

2. The DBR (R14) is loaded with the new VP's DBR. This
permits access to the address space of the new pro-
cess.

3. The Plag Control Word (FCW), the Stack Pointer (R15)
and the Interrupt Return Flag (RO), are loaded into
the appropriate CPU registers.

4. RO is tested. If it is set, GETWORK will execute an
interrupt return. If it is off, a normal retura oc-
curs.

By constructing GETWORK in this way, both system initializa-
tion and normal operations can be handled in the same vay.

A high level GETWORK algorithm is given in Figure 38.

- 123 -




014 VP Stack

 ——

New VP Stack

SP->| RET ADDR | 1CPU | { BET ADDR | <~-=-SP
| |==-~- | | REGS| |-=-====-== |
| . | ------ . |
{ . | i . {
, . i l . i
K SB=D|=mr-emm——e= | {====e=e=e=| <=-SB
S | sP: R15 | I SP: R1S5 |
! === | | == mmem—me
: { IRET:RO | { IRET:RO | ;
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Pigure 37: Kernel Stack Segaents
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GETWORK Procedure (PBR = R14)
Begin
Reset Interrupt Return Plag (RD)

Skip hardvare preempt handler

Set DBR

Save CPU registers

Save supervisor stack pointer
Set Interrupt Return Flag (RO)

i
; Hardware Preempt Entry:

; Get first ready VP

Do while not Select
If Idle flag is set then

' if Preenpt flag is set then
! select

else

get next ready VP
; end if
A else
: select
f end if
) end do

SWAP_DBR:

Save old VP registers in stack segment
Swap dbr (R14)

Load new VP registers in stack seqment

If Interrupt Return Plag is set then
unlock VPT

simulate GATEKEEPER exit:

Call TEST_VPREENPT

Restore supervvisor registers
Restore supervvisor stack pointer

Execute Interrupt Beturn (IRET)
end if

Execute normal return

end GETWORK

Figure 38: GETWORK
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3. Uizsual Processor Iastryction Set

The heart of the SASS scheduling mechanisa is the inter-
nal procedurse, GETWORK. It provides a powerful internal
priaitive for use by the virtual processors and greatly sia-
plifies the design of the virtual processor instruction set.
Virtual processor instructions perform *three :types of func-
tions: aultiprogramming, process management and virtual in-
terrupts.

SIGNAL and WAIT provide synchronization and cosaunica-
tion between virtual processors. They multiplex virtual
processors on a CPU to provide multiprograaaming. This ia-
plementation used a version of the signal and wait algor-
ithms proposed by Saltzer [14]. In the SASS design each CPU
is provided with a unique (fixed) set of virtual processors.
The interaction among virtual processors is a result of aul-
tiprogramming them on the real processor. Only one virtual
processor is able to access the VPT at a time because of the
use of the VPT LOCK (SPIN_LOCK) to provide mutual exclusion.
Therefore race and deadlock conditions will not develop and
the signal pending switch used by Saltzer is not necessary.

This implementation also included message passing mecha-
misa not provided by Saltzer. The message slots available
for use by virtual processors are initially coatained in a
queue pointed to by FREE-~LIST. #hen a message is sent from

one VP to another, a message slot is removed from the free
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list and placed in a FIF0O message queue belonging to the VP
receiving the aessage. The head of sach VP's message queue
is pointed <to by MSG-LIST. Each amessage slot contains a
message, the ID of the sender, and a pointer to the next
message in the list (either the free list or the VP message
list.

IDLE and SWAP_VDBR provide the Traffic Controller with a
means of scheduling processes on the ruaniang VP.

SET_VPREENPT and TEST_VPREEMPT install a virtual inter-
rupt mechanism in each virtual processor. When the Traffic
Controller determines that a virtual processor should give
up its process because a higher priority process is now
rezady, it sets the PREEMPT flag in that VP. Then, even if
an idle process is loaded on the VP, it will be schedulad
and will be loaded with the first ready process.
Test_VPrzeeapt is a wvirtual dinterrupt unmasking mechanisa
vhich forces a process to examine the preempt flag each tiae

it exists from the kernel.

a. Wait

WAIT provides a means for a virtual processor to aove
itself froa the running state to the waiting state vhen it
has no more wvork to do. It is invoked only for systeas
events that are always of short duration. It is supported

by three internal Procedures.
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SPIN_LJCK enables the running VP to gain control of the
virtual Processor Table. This procedure is oanly necessary
in a multiprocessor environment. The running VP will have
to wvait only a short amount of time to gain control of the
VPT. SPIN_LOCK returns when the VP has locked the VPT.

GETWORK loads the first eligible virtual processor of
the ready list on the real processor. Before this procedure
is invoked, the running VP is placed in the ready state.
Both rsady and running VP's are members of a FIFO gueue.
GETWORK selects the first VP in this ready list, loads it on
the CPU, and places it in the running state. When GETWORK
returns, the first VP of the gqueue will always be running
and the second will be the first VP in the ready queue.

GET_PIRST_MESSAGE returns the first aessage of the mes-
sage list (also managed as a PIFO queue) associated with the

running VP. The action taken by WAIT is as follows:

WAIT Procedure (Returns: Msg, Sender_ID)
Begin
Lock VPT (call SPIN_LOCK)
If message list eapty (i.e., no wvork) Then
Move VP froa Running to Waiting state
Schedule first eligible Ready VP (call GETWORK)
end if

(NOTE: process suspended here until
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it receives a signal and is

selected by GETWORK.)
Get first message from message list
(call GET_PIRST_MNSG)
Unlock VPT
Return

end WAIT

If the running virtual processor calls WAIT and there is
a message in its message list (placed there when another VP
signaled it) it will get the message and continue to run.
If the message list is enmpty it will place itself in the
wait state, schedule the first ready virtual processor, and
nmove it to the running state. The virtual processor will
remain in the waiting state until another runaing VP sends
it a message (via SIGNAL). It will then move to the ready
list. Pinally it will be selected by GETWOBRK, the next ia-
structions of WAIT will be executed, it will receive the
message for which it was waiting, and it will retursn to the

caller.
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b. Signal

Messages are passed between virtual processors by the
instruction, SIGNAL, which uses four internal procedures,
SPIN_LOCK, ENTER_MSG_LIST, MAKE_READY, and GETWORK.

SPIN_LOCK, as explained above insures that only one vir-
tual processor has control of the Virtual Processor Table at
a tinme.

ENTER_MSG_LIST manages a FIPO message gqueue for each
virtual Processor and for free messages. This queue is of
fixed maxiaum length because of the implementation decision
to restrict the use of SIGNAL. A running VP can send no
more than one aessage (SIGNAL) before it receives a reply
(i.e., WAIT's for a message). Therefore if there are N fir-
tual processors per real processors, the message Jueue

length, L, is:

MAKE_READY manages the virtual processor ready queue.
If a nmessage is sent toa VP in the waiting state,
MAKE_READY wakes it up (it places it in the ready state) and
enters it in the ready 1list. If a running YP signals a
waiting VP of higher priority, it will place itself back in
the ready state and the higher priority VP will be selected.
The action taken by signal is as follows:

SIGNAL Procedure (Message, Destination_VP)

Begin




Lock VPT (call SPIN_LOCK)

Send message (call ENTER_MSG_LIST)

: 1 If signaled VP is waiting Then
' Wake it up and aake it ready
I (call MAKE_READY)

- end if

Put running VP in ready state.

Schedule first elgible ready VP
(call GETWORK)

Unlock VPT
Return (Success_code)

End SIGNAL

c. SWAP_VDBR

SWAP_VDBR contains the same processor switching mechan-
ism used in SWAP_DBR, but applies it to a virtual processor
rather than a real processor. Switching is quite siample in
this virtual environment bDecause both processor execution

point and address space are defined by the Descriptor Base
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Register. SWAP_VDBR is invoked by the Iraffic Controller to
load a new process on a virtual processor in support of lev-
€l-2 scheduling. It uses GETHORK to control the associated
level-1 scheduling. The action taken by SWAP_VDBR is:
SWAP_VDBR Procedure (Nev_DBR)

Begin

Lock VPT (call SPIN_LOCK)

Load running VP with New_DBR

Place running VP in ready state

Schedule first eligible ready vp

(call GETWORK)
Unlock VPT
Return

End SWAP_VDBR

In this implementation one restriction is placed upon
the use of this instruction. If a virtual processor's mes-
sage list contains at least one message, it can not give up
its current DBR. This problea is avoided as the natural re-

sult of using SIGNAL and WAIT only for system events, and
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"masking" preeapts within the kernel. If this vere permit-
ted, the aessages would lose their context. (The messages

i in a VP_MSS_LIST are actually intended for the process load-

s bt ot e e L

J ed on the VP.)

d. IDLE
The IDLE instructior 1loads the Idle DBR on the running
! virtual processor. Only virtual processors in conteantion
for process scheduling will be loaded by this imstruction.
(The Traffic Controller is not even aware of virtual proces- {
sors permanently bound to kernel processes.) é
IDLE has the same scheduling effect as SWAP_VDBR, but it :
| also sets the IDLE_FLAG on the scheduled VP. The distinc-
' tion is wmade between the two cases because, although the
Traffic Controller must schedule an Idle process on the VP
if there are no other ready processes, the Inner Traffic
Controller does aot wish to schedule an Idle VP if there is
an alternative., This would be a waste of paysical processor
resources. The setting of the IDLE_FLAG by the Traffic
Controller aids the Inner Traffic Controller in making this
scheduling decision. Logically, there is an idle process
4 for =2ach VP; actually the same address space (DBR) is used
for all idle processes for the sane éPU. since only one will
run at a tinme. As previously explained, virtual processors
loaded by this instruction will be selected by GETWOBK only
to give the Idle process away for a new process in response

to a virtual preempt interrupt. The action of IDLE is:
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IDLE Procedure
Begin
Lock VPT (call SPIN_LOCK)
Load running VP with Idle DBR
Set VP's IDLE_PFLAG
Place running VP in ready state
Schedule first elgible ready VP
(call GETWNORK)
Unlock VPT
Return

End IDLE

a, SET_VPREEMPT

SET_VPREEMPT sets the preempt intecrupt f£lag omn a speci-
fied virtual processor. This forces the virtual processor
into level-1 scheduling cortantion, even if it is loaded

with an 1Idle process. The instruction retrieves an idle
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virtual processor in the same way a hardware preeapt ret-
rieves an idle CPU by forcing the VP to be selected by
GETHORK. The only difference between the two cases is the

entry point used in GETWORK. The action of SET_VPREEMPT is:

SET_VPREEMPT Procadure (VP)
Begin
Set ¥P's PREENPT flag
If VP belongs to another CPU Then
send hardwvare interrupt
end if
Return

End SET_VPREEMPT

Since the action is a safe sequence, pno deadlocks or

race conditions will arise and no 1lock is required on the

VeT.

f. TEST_VPREEMPT
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Within the kernel of a multiprocessor system all process
interrupts (vhich excludes system I/0 interrupts) are
masked. If process interaction results in a virtual preempt
being sent to the running virtual processor by apother CPU,
it will not be handled since GETWORK has already been in-
voked. TEST_VPREREMPT provides a virtual preeapt interrupt
unmasking mechanisa.

TEST_VPREEMPT minmics the action of a physical CPU when
interrupts are unmasked. It forces the process execution
point back down into the kernel each time the process at-
tempts to leave the kernel domain, where the preeapt flag of
the running VP is exaained. If the flag; is off,
TEST_VPREEMPT returns and the execution point exits through
the Gatekeaper into the supervisor domain of the pro-ess ad-
dress space as described above. However, if <the PREEMPT
flag is on, the TEST_VPREEMPT executes a virtual interrupt
handler located in the Traffic Controller. This juap from
the 1Inner Traffic Controller to <the Traffic Controller
(TC_PREEMPT_HANDLER) 4is a close parallel to the action of a
CPU in response to a hardware interrupt, that is a juamp %o
an interrupt handler. The Traffic Controller Preempt Han-
dler forces level-2 and level-1 scheduliag to procead in the
normal manner. The preempt handler forces the Traffic Cont-
roller to 2xamine the APT and to apply the level-2 schedul-
ing algoritha, TC_GETWORK. If the APT has been changed

since the last invocation of this scueduler, it will

be re-
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flectad ia the scheduling selectioans. Eventually, vhen the

running YP's preempt flag is tested and found to be reset,
TEST_VPREEMPT will return to the Gatekeeper where tne pro-
cess axecution poin¢ will finally nmake a noraal exit into
its supervisor domain. TEST_VPREENPT perforas the following
action:
TEST_VPREEMPT Procedure
Begin
Do while running VP's PREEMPT flag is set
Reset PREEMPT flag
Call preeapt handler
(call TC_PREEMPT_HANDLER)
End do
Return

End TEST_VPREENPT
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C. IBAFFIC CONIROLLES

The Traffic Controller runs in a virtual envirooment
created by the Inner Traffic Coatroller. It sees a set of
cunning virtual processor instructions: SHAP_VDBR, IDLE,
SBET_VPREEMPT, and RONMING_VP, and provides a scheduler,
TC_GETWORK, which multiplexes processes on virtual proces-
sors in response to process interaction. It also creates a
level-2 instruction set: ADVANCE, AWAIT, and PROCESS_CLASS,
which is available for use by higher levels of the design.
The Traffic Controller uses a global data base, the ACTIVE

PROCESS TABLE to support its operation.

1.  Active Process Iable (ARI)

The Active Process Table is a system-wide kerpel data-
base containing entries for each supervvisor process in SASS
(Figure 39). I+ is indexed by active process 1ID. The
s«ructure of the APT closely parallels that of the Virtual
Processor Table. It contains a LOCK to support the imple-
mentation of a autual exclusion mechanism, a RUNNING_LIST,
and a READY_LIST_HEAD. The Traffic Controller is only con-
cerned with virtual processors that can be 1loaded with su-
pervisor processes. Since two VP¢'s are permanently bound to
kernel processes (the Memory Manager and the Idle Process),
they cannot be in contention for level-2 scheduling; the
Traffic Controller is unaware of their existence; since

there are a number of available virtual processors, the
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RUNNING_LIST was implemented as an array indexed by VP_ID.

both running and ready processes. The running processes

|
The READY_LIST_HEAD points to a PIFO gqueue that includes i
will be at the top of the ready list. !

|

o —A——— ey %6

Becausa of their completely static nature, idle process- j
es require no entries in the APT. Logically, there is an

idle process at the end of the ready list for each VP avai-

lable to the Traffic Controller. If the ready list is emp-

i ty, TC_GETWORK loads one of these “virtual" idle processes

by calling IDLE, and enters a reserved identifier, #IDLZ, in i
the appropriate RUNNING_LIST entry. This identifier is the |
only data concerning idle processes that is contained in the
! APT. Idle process scheduling coasiderations are aoved down
to level-1, because the Inner Traffic Controller knows about
physical processors, and can optimize CPU use by scheduling
idle processes only when there is nothing else to do.

The subject access class, S_CLASS, provides each process
with a label that is required by level-3 aodules to enforce,

the $aSS non~discretionary security policy.
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Figure 39: Active Process Table
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2. Leyel-2 Scheduling

Above the Traffic Controller, SASS appears as a collec-
tion of processes in one of the three states: running,
ready, or blocked. Running and ready states are analogous
to the corresponding virtual processor states of the Inner
Traffic Controller. However, because of the use of event-
count synchronization mechanisms by the Traffic Controller,
the blocked state has a slightly different connotation than
the VP vaiting state.

Blockad processes are waiting for the occurrence of a
ncn-systea eveat, e.g., the event occurrence may be sig-
nalled from the superviser domain. ¥Nhen a specific avent
happens, all of the blocked processes that wvere awaiting
that event are awakened and placed in the ready state. TIkis
broadcast feature of event occurrence is mcre powerful than
the message passing mechanism of SIGNAL, which must be di-
rected at a single recipient.

Just as SIGNAL and WAIT provide virtual processor amulti-
plixing in level-1, the eventcount functions, ADVANCE and

AWAIT, control process scheduling in level-2.

a. TC_GETWORK

Le7el-2 scheduling is implemented in the internal Traff-
ic Controller procedure, TC_GBTWORK. This procedure is in-

voked by eventcount functions when a process state change
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may have occurred, It loads the first ready process on the
!»‘ currently scheduled VP (i.e., the virtual processor that has

‘ been scheduled at level-1 and is currently executing on the

-ww..,,
——— .

CPU).

TC_GETWORK Procedure

i Begin
1 i VP_ID := RONNING_VP
Do while not end of ready list
if process is running then

get next ready process
else

RUNNING_LIST [VP_ID] := PROCESS_ID

Process state := running

SWAP_VDBR
end if
end do
If end of running list (no ready processes) Then
RUNNING_LIST := #IDLE
IDLE
end if
Return

End TC_GBTWORK
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b. TC_PREENPT_HANDLER

Preeap* interrupts are masked while a process is execut~
ing in the kernel domain. As the process leaves the kernel,
the gatekeeper unmasks this virtual interrupt by invoking
TEST_VPREEMPT. This instruction tests the scheduled VP's
PREEMPT flag. If this flag is off, the process returns to
the Gatekeasper and exits from the kernel; out if the flag is
set, TEST_VPREEBMPT calls the Traffic Controller's virtual
preeapt interrupt handler, TIC_PREEMPT_HANDLER. This handler
invokes TC_GETWORK, which re-evaluates level-2 scheduling.
Eventually, when the schedulers have completed their func-
tions, the handler will return control to the preeampted pro-~
cess, whizh will retura to te Gatekeeper for a normal exit.
This sequence of events closely parallels the action of a
hardware interrupt, but in the environment of a virtual pro-
cessor rather than a CPU. The virtualization of interrupts
provides the ability for one virtual processor to interrupt
execution 2f another that may, or may aot, be running on a
CPU a+ that tise. This is provided without disrupting the
logical structure of the systea. This capability is parti-
cularly useful in a multiprocessor environment where the
target virtual processor may be executing on another CPU.
Because these interrupts will be virtuaiized, the oparatiag
systen will retain control of the systea. The action of the

TC_PREEMPT_HANDLER is described in the procedure below.
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TC_PREEMPT_HANDLER Procedure
Begin
Call WAIT_LOCK
VP_ID := RUNNING_VP
Process_1ID := RUNNING LIST [VP_ID]
If process is not idle Then
Process state := ready
end if
Call TC_GETWORK
Call WAIT_UNLOCK

RETURN

End TC_PREEMPT_HANDLER

WAIT_LOCK and WAIT_UNLOCK provide an exclusion mechanisa
which prevents siasultaneous aultiple use of the APT in a
multiprocessor configuration. This wmechanism invokes WAIT

and SIGNAL of the Inner Traffic Controller.
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3. Byentcounts
An eventcount is a non-decreasing integer associataed

vith a global object called an event [11]., The Event Manag-
er, a leval-3 module, controls access to event data when re-
quired and provides the Traffic Controller with a HANDLE, an
INSTANCE, and a COUONT, The values for all esventcounts (and
sequencers) are maintained at the Memory Manager level and
are accessed by calls to the Memory ¥amager. The HANDLE
provides the traffic controller wvwith an eveant ID, associated
with a particular segament. INSTANCE is a more specific da~-
finition of the event. Por example, each SASS supervisor
segment has two 2ventcounts associated wita it, a INSTANCE_1
and a INSTANCE_2, that the supervisor uses keep track of
read and write access to the segment {9]. Eventcounts pro-
vide information concerning system-wide events. They are
manipulated by the Traffic Controller functions ADVANCE and
AWAIT and by the Memory Manager functions, READ and TICKE~
A proposed high 1level design for ADVANCE and AWAIT is pro-
vided by Reitz (12].

a. Advance

ADVANCE signals the occurrence of an event (e.g., a read
access to a particular supervisor segment). The value of
the eventcount is *he number of ADVANCE operations that have
been performed on it. When an event is advanced, the fact

nust be broadcast <o all blocked processes awaiting it and
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the process aust be avakened and placed on the ready list.
Some of the newly avakened processes aay have a higher pri-

ority than some of the running processes, In this case a

—— s 2

virtual preeapt, SET_VPREEMPT (VP_ID), aust be sent to the
virtual processors loaded with these lover priority process-

es.

b. Await ‘
; When a process desired to block itself until a particu-
l lar event occurs, it invokes AWAIT. This procedure returas
to the calling process wvhen a specified eventcount is

reached. Its function is similar to WAIT.

i C. Read g

READ returns the current value of the eventcount. This

is an Event Manager (level three) function. This module
calls the Memory Manager module to obtain the eventcount va-

3 lue.

d. Ticket

TICKET provides a complete time-ordering of possibly
concurrent events, It uses a non-~-decreasing integer, called
a sequencer, which is also associated with each supervisor
segaent. As vwith READ, this 4is an Event Manager function
that calls the Memory Manager to access the sequencer value.

Bach invocation of TICKET increments the value of the se-
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quencer and returns it to the caller. Two different uses of
ticket will return two different values, corresponding to

the order in which the calls were made.

D.  3SYSIEY INITIALIZAIIOR

Because the Inner Traffic Controller's scheduler,
GETWORK, can accommodate both normal calls and hardvare in-
terrupt jumps, the problem of system initialization is not
difficult.

When SASS is first started at level-1, the 1Idle VP is
running and the memory manager VP, vwhich has the highest
priority, is the first ready virtual processor in the ready
list. All VP's available to the Traffic Controller for lev-
el-2 schedling are ready. Their IDLE_FLAG's and PREEMPT
flags are set.

At level-2, all VP's are loaded with idle processes and
all supervisbr processes are ready.

The kernel stack segment of each process is initialized
to appear as if it had been saved by a hardware Preeapt in-
terrupt (Pigure 40).

All CPU registers and the supervisor stack pointer are
stored on the stack. R15 is reserved as the kernel stack
point; R14 contains the DBR. All other registers can be
used to pass initial parameters to the process. The order
in which these registers appear on the stack supports the

PLZ2/ASM block-move instructions.
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The status block contains the current value of the stack
pointer, R15, apd the preempt iaterrupt return flag. This
flag is set to indicate that the process has been saved by a
preempt interrupt. The first three itess on the stack: the
process entry point, the initial process flag control word,
and an interrupt indentifier, are also initialized to sup-
port the action of a hardware interrupt.

To start-up the system, R14 (the DBR) is set to the Idle
process DBR; the CPU Program counter is assigned the
'PREEMPT_ENTRY point in GETWORK; the CPU Flag Control #ord
(PCW) 1is initialized for the kernel domain; and the CPUO is
started. Because the Idle VP is the lowest priority VP in
the system, it will place itself back in the ready state and
move the Memory Manager in the running state, The Memory
Manager will execute an interrupt return because the inter-
rupt return flag was set by system initialization. There
will be no work for this kernel process so it will call WAIT
to place itself in the waiting state. The next ready VP is
idling, but since it's IDLE_FLAG and PREEMPT flag are set,
GETWORK will select it. It toc will execute an intercupt
return, but beciuse its PREEMPT flag is set, it will call
TC_PREEMPT_HANDLER. This will cause the first ready process
to be scheduled. Bach time a supervisor process blocks it-
self, the next idle VP will be selected and the sequence

w.ll be repeated.
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The action described above is in accord with norsal op-
eration of the systea. The only unique features of initial-
ization are the entry point (PREEMPT-EMNTRY: in GRBTWORK) and
the values in the initialized kernel stack.

The implementation presented in this thesis has been run
on a 28000 develospmental module. System initialization has
been tested and executes correctly. At the current level of
imsplementation, no process aultiplexing function is availa-
ble. There is no provision for unlocking the APT after an
initialized process has been loaded as a result, a call to
the Traffic Controller (viz., ADVANCE or AHAIT). In a pro-
cess multiplexed environment this would cause a systea dead-
lock. Once the process left the kernel domain wvith a locked
APT, no process would be able to unlock it. The Traffic

Controller must handle this systea initialization probles.
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Chapter XV
CONCLUSION

The inplementation presented in this thesis created a
security kernel monitor that runs on the 28000 Developmental
Module. This monitor supports aultiprogramming and process
management in a distributed operating systes. The process
executes in a multiple virtual processor snvironaent which
is independent of the CPU configuration.

This monitor was designed specifically to support the
Secure Archival Storzge System (SASS) (2, 9, 5]. However,
*he impleamentation is based on a family of Operating Systeas
(7) desigyned with a primary goal of providing multilevel se-
curity of information. Although the moaitor currently ruans
on a single sicroprocessor system, the iaplementation fuily

supports a multiprocessor design.

A.  BECOMUENDAIIONS
Because the Zilog MMU is not yet available for the Z8000

Develormerntal Module, it was necesary to siaulate the seg-
mentation hardware. As BReitz explained [12], this was ac-
complished by reserving a C2U register, R4, as a Descriptor
Base Register (DBR) to provide a link to the loaded addresss
space. #When the MMU becomes available, this siaulation aust

be removed. This can be done in two steps.
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Pirst, the addressing format sust be translated to the
segmented fora. This requires no systea redesign.

Second, the switching mechanism aost be amodified to ac-
comodated to use the MMU., This can be done by modifying the
SWAP_DBR portion of GETWORK to aultiplex the MMU_IMAGE onto
the MMU hardware and this can be accomplished Dby changing

about a dozen lines of the existing code.

B.  POLLOW ON HQRK
Although the w@monitor appears to execute correctly, it

has not been rigorously tested. Before higher levels of the
systen are added, it is essential that the monitor be highly
reliable. Therefore a formal test and evaluation plan
should bhe developed.

An automated system generation and initialization ae-
chanisa is also required if the aonitor to be is a useful
tool in the development of higher levels of the daesign.

Once the monitor has been proven reliable and can be
loaded easily, work on the implementation of the Memory Man-

ager kernel process and the remainder of the kernel can con-

tinuge.
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PART E

INPLEMENTATION OF SEGMENT MANAGEMENT FOR A
SECURE ABRCHIVAL STORAGE SYSTEM

This section contains excerpts from a Naval Postgraduate
School MS Thesis by J. T. Wells [20]. The origins of these

excerpts are:

INTRODUCTION from Chapter
SEGMENT MANAGEMENT FUNCTIONS

SEGMENT MANAGER
NON-DISCRETIONARY SECURITY MODULE

MEMORY MANAGER

SUNMARY froa Chapter
SEGMENT MANAGEMENT INMPLEMENTATION from Chaprer
CONCLUSIONS AND FOLLOW ON WORK from Chapter

Minor changes have been made for integration into this

II
III
v

report.




Chapter IVI

INTRODUCTION

This thesis addresses the implementation of the segament
management functions of an operating system known as the Se-
cure Archival Storage System or SASS. This system, with full
implementation, will provide: (1) nmultilevel secure access
to information (files) stored in a “data wvarehouse® for a
network of multiple host coamputers, and (2) controlled data
sharing among authorized users. The correct perforamance of
both of these features is-directly dependeant upon the prop-
er implementation of the segment management functions ad-
dressed in this thesis. The issue of access to seasitive in-
formation is addressed by the Non-Discretionary Security
Module, wvhich mediates all non~discretionary access to in-
formation. Sharing of information is accomplished chiefly
through the properties of segmentation, the SASS aemory aman-
agement scheme that is supported by the Memory Manager Mo~
dule and the Segment Manager Module. TIhe implementation of
segment management for SASS is thus integral to the attain-
ment of the two key goals that SASS wvas designed to achieve.
This isplementation addresses the Non~Discretionary Securi-

tyY, Distributed ¥emory Manager (the interface to the Meamory

Manager Process), and Segament Manager aodules.
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Chapter IVII

SEGNENT HANAGENENT FUNCTIONS

A. SEGHENT MANAGER
1. PRunction

The Segment Manager is the focal point of the segment
management function. Using the per-process Known Segment Ta-
ble as its database and the Memory Manager and Non-Discre-
tionary Security Module in strongly supportive roles, it is
responsible for managing the segmented virtual amemory for a
process. Its role can be viewed as somevwhat intermediary in
natare (viz., between the Supervisor asodules and the Heaory
Manager modules). = The extended instruction set created in
the Segaent Manager includes the following ianstructioans:
CREATE_SEGMENT, DELETE_SEGMENT, MAKE_KNOGWN, TERMINATE
SM_S®AP_IN, and S¥_SWAP_OUT (note that the names for SWAP_IN
and SWAP_OUT have been modified by preceding each with SH_;
this is strictly for clarity because the MNemory Mdanager also
creates two instructions called SWAP_IN and SWAP_OUT).
These instructions are invoked by the Supervisor doaain of
the process (viz,, calis are made froam the Supervisor domain
via the Gatekeaper to the Segmant Mapnager in the Kernel do-

main) to provide SASS supporr to the Host.
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In g2neral, wvhen the Segment Napnager receives these
calls, it performs certain checks to ensure the validity and
security coapliance (vhen required) of the request (call).
These checks are perforaed using its own database (the KST)
and by calls to the Non-Discretionary Security Module (when
required). The Segment Manager invokes one of six Memory
Manager (more specifically, the Distributed Memory Manager
Module) created instructions. These instructions include:
4M_CREATE_ENTRY, MM_DELETE_ENTRY, MM_ACTIVATE,
MM_DEACTIVATE, MM_SWAP_IN, and MM_SWAP_OUT. These invoked
instructions (procedures) in turn perform interprocess coa-
aunciations with the noa-distributed aemory manager process
(vhere actual meamory management functions are accoaplished).
These interprocess invocations and returns are accoaplished
through the use of the IPC primitives Signal and Wait. The
Segment Manager returns the required arguments to the Super-
visor by value (as passed back to it by the Memory Manager
and/or deteramined within itself). The Segment Manager per-
foras actual segment number assignment wvhen 2a segment is
aade known <o a process' address space. It also perforas

any further database (KST) updating as may be regquired.

2. Database
The Known Segment Table (KST) is the database used to

manage segments. The KST is described in its tabular fora

and PLZ/SYS structured representation in Figure 41. There
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are several basic and pertinent facts to be noted of the

KST:

1.

2.

It is a process local database; that is, each process
has its own KST.

The KST is indexed by segment nuaber; each record of
the KST consists of a set of fields (description ia-~
formation) regarding a particular segment.

Entering information into the fields of a segaent is
called "making a segaent known®. This siaply refers
to adding a segment <to a process' address space
(viz., making a segment accessible to a process).

In SASS, a correspondence exists between making a
segnent "known® and making a segment "active®; i.e.,
when a segment is added to the address space of a
process, ¢this action results in an entry in the KST
(!aking “knovn") by the Segment Manager and an entry
in:the Global Active Segment Table (G_AST) by the Me-
mory Manager process (making it "active"). The G_AST

will be described later in this chapter.

A proper dascription of the structure and fields of the KST

is necessary at this point. Using the representation of the

PLZ/SYS language structure, the KST is described as an array

of records of fields of varying types. The fields are de-

scribed separately below. Althcugh the KST index is not :in

itself a field in the record, it does perform a rather sig-

iZicant role. The KST index is an integer closely related
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to the segment number of the segment described in that KST

entry (viz.,, it is the subscript into the array of recoris).
This segmant nuaber also corresponds to the MMU descriptor
register (number) for that segment.

The MM_Handle is the first field in a KST record. The
MM_Handle is a system wide unique number that is assigmed to
each segment with an entry in the G_AST (viz., every active
segaent) . This "handle" is the instrumaent of controlled sin-
gle copy sharing of information (segments). It allows a seg-
ment to exist under one unique handle but be accessible in
“he address space of more than one process (vith different
segment nuabers in each address space). The MM_Handle is re-
turned to the Segment Manager by the Memory Manager during
+he execution of the Make_Known instruction.

The Size field is an integer value (of language struc-
ture type "word®) vhich represents the aumber of 256 byte
blocks coaposing a segment.

The Access_Mode field is used to describe the process!
access to the segment (i.e., null or read and/or vrite).

The In_Core field is used to indicate if the segment is
or is not in main memory (i.e., this field is a flag ox
true/false boolean svitch).

The Class field is a long vord field used to represent
the degree of information sensitivity (viz., access class)
assigned to the segment. This field (for exaample) would be
used to numerically describe a classification label (as de-

scribed above).
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The Mentor_Seg_Nr field is a number representing the
segment number of a segment’s parent or "mentor® segaent.
Its importance will discussed shortly.

The Entry_Nr field is a number representing a segaent's
index number into its parent or mentor segmsent's Alias Table
(not yet discussed).

The Alias Table is a Memory Manager database and will be
described later. The aliasing scheme provided via the alias
tables is used to prevent passing systea wide information
out of the Kernel (i.e., the Unigque_ID of a segment). The
#alias® of a segment is the concatenation of the Nen-
tor_Seg_Nr with the segment's Entry_Nr (index) into the amen-
tor segment's Alias Table. It is «clear that the last two

fields of a KST record are the “alias™ of that segment.

B.  NOW-DISGRETIONARY SECURIIX MODULE

The key in protection of secure information using inter-
nal controls was identified as the security kermel concept.
The basic idea within this concept is to prove the hardware
part of the Kernsl correct and, similarly, to keep the soft-
ware part small enough so that proving it correct is feasi-
ble. A central component of the kernel software is the
Non-Discretionary Security Module (hereafter referred to as
the NDS Module). The NDS Module is concerned only with the
non-discretionary aspect of the security policy in effect;

since the discretionary aspect is subservient in nature to




+he non-discretionary aspect, it is then sufficient that the
K2rnel contain only the software representing the nop-dis-
cretionary aspect of the security policy. The discretionary
security is provided outside the kernel in the SASS supervi-
sor. Every attempt to access information must result in an
invocation of the NDS Module.

The function of the NDS Module is to compare two classi-
fications (viz., compare two labels), make a decision as to
their relationship (i.e., =,>,<,|), and return a true/false
interpretive answer relative to the guery of the calling
procedure. The mechanism used as a basis is the lattice ao-
d21 abstraction previously discussed. The NDS Module doces
not require a Jatabase since the labels it compares are

storad in (passed from) other Kernel databases.

C.  MEMORY MANAGER
1. upction

The Meaory Manager process is the only component of the

"%

non-distributed kernel. It is responsible for managing the
reai memory resources of the systema =-- pain (local and glec-
bal}) smemory and secondary storage. It is tasked by other
processes wi<hin the Kernel domain {via Signal and Wait) to
perfora nemory management functioas. This thesis wili ad-
dress the Memory Manager in teras of two components: (1) the
Memory Manager Process (also called the nondistributed ker-

221 ard the Memory #anager Module), and (<) <the distributed




Memory Manager (also called the Distributed Hdemory HManager
Module). The former is the "true® meaory manager while the
latter is the interface with other processes, that is, it
resolves the issue of interprocess coamaunication with the
"true" memory manager.

The Distributed Meamory Manager Module creates the fol-
lowing 2xtended instruction set: MM_CREATE_ENTRY,
MM_DELETE_ENTRY, MM_ACTIVATE, MM_DEACTIVATE, MM_SWAP_IN, and
MM_SWAP_OUT. The instructions form the mechanisa of communi-~
cation between the Segment Manager of a process and a memory
manager process (where the actual memory aanagement func-
tions are performed). The Memory Manager Process instruction
set corresponds one to one with that of the Distributed Me-
mory Manager; the set consists of: CREATE_ENTRY,
DELETE_ENTRY, ACTIVATE, DEACTIVATE, SHAP_IN, and SWAP_JUT.
The basic functions performed by the Memory manager are al-
location/deallocation of global and local memory and of sec-
ondary storage, and segment transfers from local to global
meaory (and vice-versa) and from secondary storage to aain

nenaory (and vice~-versa).

2. Databases
A detailed and descriptive discussion of the Memory Nan-

ager databases is presented in the work of Gary and Moore

{S), and the reader may refer to it for memory manager data-

base details. This thesis addresses the implementation of
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the distributed Memory Manager but not the Memory Manager
Process, thus brief descriptions are provided of the lat-
tert's databases.
The Global Active Segment Table (G_AST) is a system wide
j (i.e., shared by all memory manager processes) database used
to manage all active segments. A lock/unlock aechanism is
E used to prevent race conditions froam occurring. The distri-
 § buted memory manager of <the signalling process locks the
i G_AST before it signals the memory manager process.
1 The Local Active Segment Table (L_AST) is a processor
1 local database which contains an erntry for each segament ac-
.j tive in a process currently loaded in local memory.
? The Alias Table is a system wide database associated
5 with each nonleaf segaent in the Kernel. It is a product of

the aliasing scheme used to prevent passing system wide in-

formation out of the Kernel. The alias table header (provid-
ed for file system reconstruction after system crashes) has
two pointers, one linking the alias table to its associated
segaent, the other linking the alias table to the mentor
segment’'s alias table. The fields in the aliias tabla are
Unique_ID, Size, Class, Page_Table_Loc, and Alias_Table_Loc.
The index into the alias table is Entry_No.

The Mdemory Management Unit Image (MNU_Image, Figure 42)
is a processor local database indexed by DBR_No (viz., for
each DBR_No there is a MMU_Image recorg, with each record

contzining a softwvare image of the segment descriptor regis-
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ters of the hardware HMMU). The MMU_Image is an exact image
of the MMU. Bach record is indexed by Segment_No (segment
numsber) and each Segment_No entry contains three fields. The
Base_Addr field contains the segment'’s base address in memo-
ry. The Liait field contains the number of blocks of conti-
guous storage for the segment (2ero indicates one block).
The Attributes field contains 8 flags including 5 which re-
late to the memory manager. The Blks_Used field and the
Max_Blks (available) fields are per record (not per segament
entry) and are used in the sanagement of

each process' virtual core.

The Memory Bit Maps (Disk_Bit_Nap, Glo-
bal_Memory_Bit_Map, and Local_MHemory Bit_Map) are memory
block usage maps that use true/false flags (bits) to indi-
cate the use or availability of storage blocks.

The only database in the Distributed Memory Manager is
the Memory Manager CPU Table (Pigure 43). It is an array of
ReBOrYy manager VP_ID's (NM_VP_ID) indexed by CPU nuaber.
This table enables a signalling process to identify the ap-
propriate memory manager process (virtual processor) to sig-

nal.
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Pigure 43: Memory Manager-CPU Table

D.  SUNNARX
The segment management functions and key related con-

cepts (such as segmentation) were discussed in this chapter.
The iaportance of segmentation to data sharing and informa-
tion security vas emphasized as vere key information securi-
ty concepts. With this background, the impleamentation of
segment management and a non-discretionary security policy

¥vill be described in the following chapter.
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Chapter IVIII
SEGNENT MANAGEMENT INPLEMENTATION
The implementation of segment management functions and a
non-discretionary security policy is presented in this chap-
ter. Paramount to this iamplementation were several key is-
sues that affected the implesentation. These issues are dis-
cussed first. The implementation is discussed in teras of
the Segment Manager, Non-Discretionary Security (¥DS), and

Distributed Memory Nanager aodules.

A.  INRLEMENTATION ISSUES

Segment management for the SASS was provided through the ias-
plementation of the Segment Manager Module, the ¥DS Module,
and the Distributed Memory Manager Module. Additionally,
since a Jesmonstration/testbed was integral to the testiag
and verification of the implementation, it vas necessary to
complete other supportive tasks. Reitz {12] provided a de-
sonstration of the operation of the Inner Traffic Controller
primitives SIGNAL and WAIT (for interprocess coaaunica-
tion). Inteqral to this demonstration was the correct perc-
formance of the 1Inner Traffic Controller ¥P scheduling me-
chanisma and a *“"stub® of the Traffic Contiroller and its

process scheduling mechanisa (the TC support and use of the
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aechanisa 5f aventcounts and sequencers wvwas not a part of
the deamonstration). The Segment managemant demonstration
(hereafter referred to as "“Seg_Mgr.Demo¥) was "built on top
of® Reitz' ITC synchronization primitive demonstration

(hereafter referred to as "sSync. Demo¥). Thus, an imamediate

et bt S o o, s ~

issue wvas to resolve the feasibility of adding on to
; Sync.Deso and also to refine the present design of the Syamc.
! Demo to facilitate its integration into the Seg_Mgr.Demo.
One aspect of this effort was in resolving the probles of

hov to pass (i.e., in interprocess coamunication) a larger

| message. i

1. Interprocess lHessages
’ The Sync.Damo passed "word® (16 bit) messages. To pro-

vide the mechanisa for the distributed aemory manager to
signal the =memory mapager process with a coamand function

identification code and the arguaents needed to perfora that

function (e.g., CREATE-ENTRY and its input arguments), a
message size of at least eight words (16 bytes) was neces-
sary. An obvious ansver was to signal with an array of

eight words as the message. PLZ/SYS, however, does not al-

P ¢ low passing arrays in its procedure calls (a procedure call
f‘j is analogous to a subroutine call). Another alternative vas
to signal with a pointer to the array of words, since

PLZ/SYS does allowv passiag pointers in procedurs calls (thus

the nessage vould be a pointer to the real maessage). This,




howvever, would be invalid in the segmented iaplementation
(on the 28000 segmnented aicroprocessor) since identical seg-
ment numbers in different processes may not refer to identi-
cal segments. PFor exanple; a pointer in a process (e.g..
file management) points to an array (i.e., provides its ad-
dress) by segment number and offset; passing this pointer to
another process {(e.g., memory manager) would provide this
sape segment number and offset which, of course, Bmay be a
different object in the second process's address space).
Anothar alternative considered was that of a shared
"Majilbox" segment with an associated eventcount acted oan by
the Kernel Inner Traffic Controller priaitives

TICKET,ADVANCE and AWAIT. A design for using this concept

in the supervisor ring is provided by Parks {9]. This al-
ternative vas not deeply considered since these primitives
are not included in the current Inner Iraffic Controller.
The method ultimately used to signal the new length mes-
sages is based on the fact that the ITC is in both the sig-
ralling and the receiving (meaory manager) processes' ad-
dress space. The message is loaded into aa array in process
#1 and a pocinter to the array is passed in the call SIGNAL;
the VPT, the ITC's database, is then updated by (using tbhe
pointer) putting the message into its MSG_Q section. The
mnessage is retriaved by process #2 by execution of Reitz*
WAIT primitive with only one refineameant. That refineament is

for the "waiting® process to provide as an argument (in the
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WAIT primitive) a pointer to its own message array so that
the message in the VPT can be copied to it. This refineament
provides for passing a long message esseantially "by value"

between processes.

2. Structures as Arguments
Another issue concerned the use of pointers in the ia-

plesentation of segment maniqgesen:. This necessary "“evil"
is a result of the need +o ©vsss linguistically "coaplex*®
data types in procedure calls. Complex types refer to array
and record structures iz PLi/SYS (as opposed to the "simple"
types--byte, word, integer, short-integer, 1long, and poin-
ter). In managing databases (e.g., KST, G_AST) which con-
sist of arrays of records (which in turn coatain records
and/or arrays), it vas frequently necessary to reference
data as an array or record. Within a process, the use of
pointers was npnot a problem (i.e., not a problem such as

vould be ancountered in IPC passing of pointers).

3. Reentrant Code
The issue of code reentrancy was addressed at the assea-

bly languaje level through the use of a stack segaent and
ragisters for storage of 1local variables. PLZ/SYS (high
level lanjuage) does not address reentrant procedures and
thus the sagment management high level code is not automati-

cally reentrant. The problea of reentrancy can be seen by




looking at a shared procedure that is not reentrant; such a
procedure has storage for its variables allocated statically
in memory. Suppose a procedure (e.g., in the Kernel) can be
activated by more than one process. Bhile the procedure is
executing in one process, a process switch occurs (e.g., to
vait for a disk transfer) and its execution is suspended.
The second process is activated, and vhile it is running it
invokes the procedure. While the procedure is executing for
the second process it uses the same storage space for varia-
bles as it did when executing for the first process. Eventu-
ally, it relinquishes the processor. However, vhen the
procedure resumes its execution for the first process, the
variable values that were in use by it originally have been
changed during its execution in the second process. Thus,

incorrect results are now inevitable.

4. Process sStructure of ihe NMemory Nagager

References to the “Memory Manager®™ in past works have
generally meant the memory manager procaess (mnon-distributed
kernel) . This work references two distinct components of
the "memory manager rodule”. The Distributed Memory Manager
is an interface provided to the Memory Manager Frocess. It
is, in fact, distributed in the address space of each Super-
visor process. In contrast, the Memory Manager Process
clearly is not distributed and its address space is con-

tained entirely in the Kernel.
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S. Per-Process Known Segment Table

Another key issue was that of the per process Segaent
Manager database, the KST. 5Since each process has its own
KST, it cannot be linked to the (shared) segmeéent manager
procedures. To implement the KST as a per process database,
it was convenient to establish, by convention, a KST segaent
nuaber that is consistent from process to process. That
segaent in each process is the KST segment for that process.
Iaplementation is then accoaplished by using the segment
number to construct a pointer to the base of the appropriate
KST. It is then easy to calculate an appropriate offset to

index any desired entry in the KST darca.

6. DBR Hapdle

In Reitz's iaplementation of the multilevel scheduler
and the IPC priaitives, references to "DBR" (descriptor base
register) are references to an address. That address value
represents a pointer to an MHBU_IMAGE record containing the
list of descriptors for segaents in the process address
space. Gary and Moore [5] reference a "DBR_NO“ that is es-
sentially 2 handle used within the mnmemory manager as an ia-
dex within the MMU_IMAGE to a particular MMU record. The
base address of the MNU record indexed by DBR_NO is then
equivalent to the concept of DBR value used in Reitz' work.
The effect of this inconsistency on the segment sanagement
iaplementation wvas minor and vill be further discussed later
in this chapter.
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B. SEGHUENT NANAGER HODULE

The Segment Manager Module comsists of six procedures

} representing the six extended instructions it provides.
These are based on the design of Coleaan [2]. Only calls
from external to the Kernel (via the Gate Keeper) say be
nade to the Segment Manager (per the loop-free structure of

: the SASS). The normal sequence of ipvocation of the Segament

Nanager functions to allow referenciag a segment is: (1)

CREATE_SEGMENT--allocate secondary storage for the segaent

and update the fentor segment's Alias Trable, (2)

MAKE_KNOWN--add the segment <to the process address space

E (segaent number is assigned), (3) SWAP_IN--move the segment

, froa seconéary storage into the process's aain meaory,. The

normal sequence of invocation to "undo® the above is: @))

SHEAP_JUT--move the segaent from main amemory to secondary

storage, (2) TERMINATE--reaove the segment from the pro-
cess's address space, (3) DELETE_SEGMENT-~deallocate secon-
dary storage ard remove the appropriate entry from the alias
table of its mentor segment, The six Supervisor eutries
into the Segment Manager (viz., the six extended iastruc-

tions) will be discussed individually below. The PLZ/ASH

listings for the Segment Manager are in Appendix H.




1. Greate a Segment

The function that creates a segment (i.e., adds a new

3 g segment to the SASS) is CREATE_SEGMENT. This function vali-
i dates the correctness of the Supervisor call by checking the
1 parameters and making certain security checks. The distri-
buted memory manager is then called to accoamplish interpro-
cess coamunication with the Memory Manager Process, where
seqment creation is realized through secondary storage allo-
| cation and alias table updating.
‘ CREATE_SEGMENT 1is passed as arguments: (1) Men-
i tor_Seg_No--the segment number of the mentor segment of the

segment to be created, (2) Entry_No--the desired eantry num-

ber in the alias table of the mentor segment, (3) Class--the

access class (label) of the segment to be created, and (4) h

Size--the desired size of the segment (in blocks of 256
bytes) . The initial check is to verify that the desired
size does not exceed the designed maxiaua segment size. If
this check is satisfactory, a coanversion of the Men-
tor_Seg_No to a KST index is necessary. This is because the
Kernel segments use the first several segment nuambers avai-
lable but do not have entries in the KST. Thus if therse

vwere 10 Kernel segments and a system segaent had segment

number 15, then its index in the KSI would actually be 5
(i.e.,the Xernel segments would use numbers ¢-9, and this

segument would be the sixth segaent in the KST and its index

would be 5). A call is then made to the procedure
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ITC_GET_SEG_PTR with the constant KST_SEG_NO passed as a
parameter. This procedure will return a pointer to the base
of this process' KST. This pointer is then the basis for
addressing entries in the KST,. The next check is to see if
the mentor segment is known (viz., is in the address space
of the process, and thus, in the KST). The key to deteraian-
ing if any segment is known is the aentor segment entry
(M_SEG_No) for that segment . the KST. If not krnown, this
entry in the segment's KST record will be filled «ith the
constant NOLL_SEG. The basis for <checking to see if the
segment's aentor segment is known is the aliasing schese ia-
plication that a nentdr segment aust be known before a seg-
ment can be created. The process classification must next
be obtained froa the Traffic Controller. The process clas-
gsification is checked ¢0 ensure that it is egual to the
classification of the; mentor segment since write access to
its alias table is needed to create a segment. The NDS mo-
duie’'s CLASS_EQ procedure is called apd returns a code of
true or false. The last check is the ccapatibility check to
ensure that the classification of the segament to be created
is greater than or aequal to the classification of the amentor
saqgment. This is accomplished by calling the NDS Mcdule's
CLASS_GBE procedure which returns a c¢ode of true or false.
If any of these checks are unsatisfactory, an appropriate
error code is generated and the Segment MHanager returns to

its calling point. If all checks are satisfactory, then a
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pointer to the mentor segment’s MM_Handle array is derived
(HPTR) . Note that in the current memory manager design (5]
the actual MM_Handle contents are a Umigue_ID (a long word,
viz,, two words concatenated), and an Index_No (index into
the G_AST, a word); thus together these two fields are a to-
tal of three words. Since the Segment Manager does not in-
terpret this handle, it is considered a three word array at
this 1level. For this reason, the entire unintexrpreted
MM_Handle array will be passed by passing its pointer. This
pointer and Entry_No, Size, and Class are then passed in a
call to the distributed REeROry manager procedure
MM_CREATE_ENTRY. This procedure, in turn, perforas IPC with
the memory manager process where segment creation ultimately
is accoaplished. A success code is returned in an IPC aes-
sage from the memory manager process via the distributed me-
mory @manager to the CREATE_SEGMENT procedure to indicate
success or failure as appropriate. This success code is
checked by the Segment Manager to ensure confineaent would
not be wviolated if it is returned to the calling process'
supervisor domsain. Only after the success code has been re-
turned can the action of segaent creation be considered coa-
plete. Segaent creation does not iaply the ability to re-

ference that segment; MAKE_KNOWN will accomplish that.
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2. Delete 3 Seqment

The function that deletes a segment (i.e., deletes a
segment from SASS) is DELETE_SEGMENT. Validation of paraame-
ters and security checks are performed here siailar to (but
fever than) the CREATE_SEGMENT checks. The distributed ae-
mory manager is then called to cause IPC with the aemory
manager process, where segment deletion is realized through
secondary storage deallocation and alias table entry dele-
tions. DELETE_SEGMENT is passed as argumeats: (1) Men-
tor_Seg_No and (2) Entry_No. Conversion of the Men-
tor_Seqg_No to a KST index is accoamplished first. The
pointer tc the base of the KST is located and returned, as
before. The men*or segment is c¢..ecked to eansure it is
known, again, by verifying that its own WM_SEG_No (mentor
segment number) entry in the KST is not the NULL_SEG. The
process classification is obtained from the TC and checked
(by a ¢call to CLASS_EQ} to ensure it is equal to the meantor
seqment classification, since deleting an entry requires
vrite access to the alias table. If all checks are satis-
factory, then the mentor segment's MM_Handle pointer is der-
ived. This pcinter and the mentor segment alias table entry
number are passed in a call to the distributed aenory manag-
er procedure MM _DELETE_ENTRY. It then performs IPC with the
REemory manager process where segment delation is accoa-

plished and a success code is returned as beforse.
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3. Hake a Seament Kpown

The function that makes a segment known (i.e., adds that
segment to the process' address space by assigning a segment
nusber, wupdating the KST, and causing the nemory sanager
process to "activate™®™ the segment (that is, add it to the
AST )) is MAKE_KNOWN. Making a segment known is the way the
Supervisor declares its intention to use a segaent.
MAKE_KNOWN is passed as arguaents: (1) Meator_Seg_No, (2)
Entry_No, and (3) Acess_Desired (e.g., write, read, or
null). It returns (1) a success code, (2) the access al-
loved to the segment, and (3) the segaent nuaber. conver-
sion of the mentor segment nuamber to a KST index, <finding
the KST pointer, and verifying that the amentor segment is
known occur as previously discussed.

There are three basic cases that may occur in
MAKE_KNOWN: (1) the segment is already known (has an entry
in the KST), (2) the segment is not known and there is a
segment nuaber available, or (3) the segment is not known
and there is no segment number available.

A search 1is made of the KST using each record’s (seg-
ment's) M_SEG_No (mentor segaent nuaber) acd Entry_Nuaber
fields as the search key. If these two fields match the in-
put values Mentor_Seg_No and Entry_No, then the record in-
dexed is that of the desired segment; thus the segment to be
sade known is already known. In this case, all that need be

done is to return the success code, segaent nuaber (convert-
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ed froam the index by adding to it the nuamber of kernel seg-
ments), and the access allowed (equal to the Access_Mode en-
try in the KST for the already known segaent) .

During the search of the KST, the M_SEG_No field is also
checked to see if it contains the NULL_SEG entry (this im-
plies that the segaent number associated with the record is
"availablen). The first time this is noted, the index is
saved. Note the first available index is saved since it is
desired to assign segment nuabers at the "top" of the KST to
keep it dense there. When the search does not find that the
segment is already known, the index for the available seg-
sent number is retrieved and converted to segment number by
adding to it the nuaber of kernel segments. If this index
is the NULL_SEG entry, then there is no segaent nuaber avai-
lable. In ¢this event, the success code is set to
NO_SEG_AVAIL, the segment number is assigned NOLL_SEG, and
access allowed is set to NULL_ACCESS (this is the third case
mentioned). If the index is not equal to MULL_SEG and con-
version to segment nuaber has occurred then the Traffic
Controller is called to provide the DBR_No (descriptor base
register number) for the current process. The DBER_No is
used by the amemory manager process as an index in the
MMU_Image and the local AST. The distributed memory aanager
procedure MM_Activate is called; it is passed the DBR nua-
ber, the pointer ¢to the mentor segment's MNM_Handla eantry,

the mentor segment alias table Entry_No, and the segment
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nuaber, MM_Activate perforams the normal interface function
(performs IPC with the memory manager procass procedure that
updates the local and global AST's) and also updates the KST
entry for the nev segaent's MM_Handle eantry (returned froa
the memory manager process). It also returns to the Segment
Manager the success code, the segment classification, and
the segment size from the meaory manager process. If the
success code is ‘'succeeded®" then the issue of access to be
granted must be resolved. The process classification is ob-
tained from the TC and passed with tha segaent classifica-
tion to the NDS Module procedure CLASS_GE. If the
CONDITION_CODE roturned is PALSE then access allowed is
NULL_ACCESS, the segment nusber is NULL_SEG, and
MM_DEACTIVATE is called to deactivate the segament. An appro-
priate error code is returned. If it is greater thamn or
equal then the access alloved is assigned as follows: (1)
the two classifications are coapared again--this time to see
if equal; (2) If they are equal, then the access allowed is
either read or write per the access desired; (3) if they are
not equal (i.e., the process class is greater than the seg-
ment class) then the access allowed is read. Pinally the
KST entries for that segment number (more accurately for its
index in the KST) are filled with the appropriate informa-
tion (e.3., IN_CORE is false, etc.). If the success code
returned froa *he memory manager process via the distributed

memory manager is not "succeeded®, then the segaent nuaber
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is set to NULL_SEG and the access allowed is set to

NULL_ACCESS.

4. Nake a Seament Unkpown (Ierminate)

The function that sakes a segment upknovwn (i.e., removes
that segment from the process' address space-~-by updating
the KST and causing the memory sanager process to "deacti-
vate" the segment) is TERMIMATE, It results in removal of
the M_SEG_No (mentor segment number) entry from that seg-
ment?'s KST record. Terainate is passed the segment nuaber
of the segment to be terminated as an arguaeat. It returas
a1 success ccde. Conversion of the segment nuaber to a KST
index, £inding the KST pointer, and verifying that the seg-
ment is known occurs in the same aanner as previously dis-
cussed. The next check is to verify that the segment is rot
still loaded in the process! virtual core (viz., it has been
"swapped-out"). If not, an error code is returned and the
user must cause <*he Segment Manager extended instructionm
SM_SWAP_OUT to be axecuted. The next check is to easure
that the user is not attempting to terminate a Kernel seg-~
aent. The first several segment numbers -n a process' ad-
dress space will be used by Kernel procedures and Jata
(though they will not be entries in the KST). Thus if there
vere 10 Kernel segments, then the segment nuaber to be ter-
minated must be greater than or equal to #10 (since the Ker-

nel segments used #'s 0-9). Thus a check is made to ensure
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that the segment nuaber is not less than the number of Ker-
nel segments; othervise an error code is returned. Next,
the segment nusber is checked to ensure that it is anot lar-
ger than the maximum segaent nusber allowable (if so, an er-
ror code is returned). If all checks are satisfactory, then
the segment's MN_Handle pointer and the process DBR_No are
obtained (as discussed before) and passed in a call to the
MN_Deactivate procedure. It calls the memory manager pro-
cess procedure DEACTIVATE vwhich removes or updates (as ap-

propriate) the entries in the local and global AST's.

S. Swap 3 Segment In

The function that swaps a segment froa secondary storage
to main wmemory (global or local) is sSM_SWAP_IN. It is
passed the segment number of the segment to be swvapped in as
an argument and returns a success code. Coanversion of the
segment number to a KST index, finding the KST pointer, and
verifying that the segment number is known are accomplished
as previously discussed. If the check is satisfactory, then
the segmert's MM_Handle pointer and the process DBR nuaber
are obtained. They are passed with the segaent's access
nmode (from the KST) as arguments in the call to M¥_SWAP_IN.
It perforas normal interface (IPC) functions and returns a
success codae from the memory manager process® SHAP_IN proce-
dure (wvhere, if not already in core, allocation of main ae-

mory space and reading the segaent into main aemory occurs).
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If the success code is ‘"succeeded"® then the segmeat's

IN_CORE entry in the KST is updated to show that the segsent
is in sain memory for this process (i.e., the antry is now

"true").

6. Swap a2 Segment Qut

The function that svaps a segment from sain meaory to
secondary storage is SM_SWAP_OUT. It is passed the segaent
nuamber of the segment to be swapped out as an argumsent and
returns a success code. The behavior of SM_SWAP_OUT is ex-
actly analogous to that of SM_SWAP_IN except that the seg-
ment's KST IN_CORE entry is updated to reflect that the seg-
ment has been removed frca wmain aemory for this process

(i.e., the new entry is "false").

C. NON-DISCRETIONARY SECURITY HODULE

The Non-Discretionary Security Module implemeéents the
non-discretionary security policy for the SASS. The NDS ao-
dule contains two procedures: CLASS_EQ and CLASS_GE; both
compare two labels (classifications) and determine if their
relationship meets that of the procedure's name (i.e.,
equal, or greater than or equal). Although the type of
checks being made are, in fact, coapatibility checks, Siapie
Sacurity Condition checks, etc, the NBS Module does not re-
cognize or need to recognize this. It simply uses an algor-

itha to datesrmine if classification #1 = classification #2




or if classification #1 >= classification #2, as appropri-
ate. It then returns a condition code of true or false in
accordance with the particular case. The earlier discussion
of label comparison in accordance with a partially ordered
lattice structure is relevant in discussing the NDS Module's
algoritha. cConsider the same "totally ordered" relationship
TS >S >C > U of levels and the "disjoint¥ relationship Cy
] N1 Na | % of categories. Comparison of levels will be
numerical comparisons while comparison of categories will
use set theory comparison as a basis. If TS=4, S=3, C=2, U=1
are level numerical assignaments, then the totally ordered
relationship is maintained (i.e., TS>S>C>U is still true).
Now consider the categories and make the following assign-
ments: Cy=1, N=2, Nu=4, %=0. Note that a classification nay
have only one 1level and one category set (the category set
may contain several categories). Consider this example:
(TS, CY,N . The level is TS (=4). The category is the set
Cy.N and numerically is formed by performing a logical OR
vith the categories Cy and N¥. Sixteen bit representation of
this is:
Cy OR N

(0000 0000 0000 0001) OR (0000 0000 0000 0010)
= 0000 0000 0000 0011 = Cy,N

If (TS, Cy,¥ ) 4is considered label #1 and (S, N ) as label
#2 then a coaparison of the two labels would be:

(1) Compare level #1 with level #2 -- & > 3?2

Clearly, the ansver is yes.
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(2) Compare category #1 with category $2 -~ is

(0000 0000 0000 0011) a superset of

(0000 0000 0000 0010), or more clearly

is the latter a subset of the former?

The ansver is yes, and one way to show that is true is
by performing a 1logical OR of category #1 with category #$2
and comparing the result to category #i1. If the result of
the OR operation equals category #1 then category #1 is a
superset (not necessarily proper) of category #2. Since us-
age of the term subset is nmore frequent than that of super-
set, this relationship will typically be stated as "category
$¢2 is a subset of category #1. To illustrate the above:

Cy.N OR N 3
(0000 0000 0000 0011) OR (0000 0000 0000 0010)
= 0000 0000 0000 0011 = category #1.

This means , in this example, that category ¢2 is a sub-
set (not necessarily proper) of category #1. Since level #1
> level #2 and category #2 subset category #1 then label #1
> iabel #2. Thus, a call to the CLASS_EQ procedure with
these twvo labels as the input classifications would returz a
condition code of false while CLASS_GE would return true.
The decision to have the classifications as long word (32
bits) supports the requirement of some DoD specificatioans
for eight levels and sixteen categories. This module uses
sixteen bits for the level and sixteen bits for the catego-

ry. Appendix I is the PLZ/ASH listings for the NDS Module.
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1. Equal Classification Check

The CLASS_EQ procedure perforas cosparison of two clas-

sifications (labels) and returns a condition code of true if
they are equal (an exact match of the two long words bit per

bit) or false if they are not.

2. Greater or Egual Classification check

The CLASS_GE procedure performs coaparison of two clas-
sifications (labels) and returns a condition code true if
classification #1 is greater than or equal to classification
#2 or a condition code of false otherwise. Por classifica-
tion #1 to be greater than or equal to classification #2,
the following must be true: (1) level #1 >= level $Z (deter-
mine this by simple numerical comparison of values) and (2)
category #2 subset category ¢1 (determine this by perforaing
a logical OR with the categories and comparing the result to
cateqgory #1 -- if they are equal then category $2 is a sub-
set of category #1).

Since PLZ/SYS allows passing only "siample® types in
calls, the labels vere passed as long words (as opposed to
each being word arrays of length two). An access class label
is never interpretedloutside the NDS Module. However, with-
in the NDS Module it is necessary to address the classifica-
tion's components separately (viz., level and category).
Thus, an "overlay®™ of the logical view of the classification

vas created. This overlay was a record of type ACCBSS_CLASS
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and it consisted of two fields: 1level -- 16 bit integer and

category -~ 16 bit integer. A pointer type CPTR was declared
to be of type pointer to ACCESS_CLASS. Two other pointers
CLASS1_PTR and CLASS2_PTR were declared to be of type CPTR
and vare set equal to the base address of CLASS1 and CLASS2
respectively. This "overlay" of the record frame over the
two classification 1labels passed as arguments allowed the
desired component addressibility. Puthermore, the non-dis-
cretionary policy enforced by SASS can be changed froa the
curtent DoD policy to another lattice policy by changing

{(only) the NDS Nodule.

D.  DISTRIBUIED MEMORY MANAGER HODULE

The Distributed Memory Manager Module perforams as an in-
terface between the Segaent Manager and the Memory Manager
Process. As its name implies, it is distribuved in the ker-
nel domain of =ach Supervisor process. The key role per-
formed in this modul2 is to arrange and perform interprocess
communication batveen its process ({(actuaily the VP) and the
memOry mapager process (VP). The mocdule consists of eight
procedures. Six of the procedures are called directly by
Segment Manager procedures; they are MM_CREATE_ENTRY,
MM_DELETE_ENTRY, MM_ACTIVATE, MM_DEACTIVATE, MM_SWAP_IN, and
MM_SWAP_OUT. The other two procedures are "service" proce-
dures called by aultiple procedures; they are:

MM_GET_DBR_VALUE and PERFORM_IPC. The iogic wused in the
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first six procedures is somevhat unifora (except for
MM_ACTIVATE), Thus, the general 1logic will be explained
(vith MM_CREATE_ENTRY as an exaaple) and it saould suffice
as a description for all (except MM_ACTIVATE) procedures.

The servica procedures will be described separately.

1.  Description of Procedures

Each procedure is invokad (and returns) on a one to one
basis with a corresponding procedure in the Segaent Manager.
For example, CREATE_SEGMENT invokes MM_CREATE_ENTRY which
signals the CREATE_ENTRY procedure in the Meamory Manager
Process Module. Associated with each procedure is amn IPC

message "frame" to describe the unique format of the con-

tents of the message to be signalled to the memory manager
process. Siailarly, there amust be a message "frame" for re-
turn messages from the aemory manager process; this frase is
the same for all but the MM_ACTIVATE procedure. Consider the
message frame for MM_CREATE_ENTRY; it consists of: (1) a
code to describe which function 4is to be performed (e.g.,
CREATE_CODE indicates that the CREATE_ENTRY procedure is the
intended recipient of the message), (2) MN_Handle (am array
of three words), (3) Entry_No, (4) Size, and (S5) Class. The

message frame has a filler (in this case) of one byte to en-

i ’ sure that it is of 1length 16 bytes. The purpose of this
frame is to provide am overlay oato the actual amessage array

! to be signalled and to facilitate loading the arguments into




the message array. This is accomplished by having a pointer

of the type that points to the frame but by converting its
address so that it actually points to the base of the mes-
o sage array. Consider these lines of PLZ/SYS code:
* f CE_MSGPTR := CE_PTR COM_MSGPTR
¢ CE_MSGPTR-~.CREATE_CODE := CREATE_ENTRY_CODE
This code is putting a value into the structure pointed to
by CE_MSGPTR at entry CREATE_CODE. The key point is that
t : the frame of that structure is, in fact, CREATE_MSG (as de-~
: l scribed before), but the physical location pointed *o is the
message array. This is assured by having the pointer
CE_MSGPTR ({(which points to a structure of type CREATE_NSG)
set equal to a pointer (COM_MSGPTR) +to the actual message

array (COM_MSGBUP). This is accoeplished by the first line

E of code. The message array itself is never directly refer-
enced, but rather the message array that is overlayed by the
message frame is filled in the format of the CREATE_MSG
frame. In this exampl&, the first two bytes of the message
array ncw contain the value of the constant
CREATE_ENTRY_CODE. The remainder of tha message array is
filled in the same manner (all procedures use the same no-
S g tion of a frame, although the frames have different for-

mats) . The PERFORM_IPC (perforam interprocess coaaunication)

procedure is called by all procedures at this point in their

execution. The key is that the arqument passed is the mes-

sage array pointer not the pointer to the CREATE_MSG record




'
!
|
?
‘

(after all it is only an overlay frame -- linguistically, it
is only a type and is never declared as a structure requir-
ing memory storage allocatidn). When PERFOBM_IPC returns,
the message array contains a return amessage. This aessage
consists of only a success code and £f£iller space in all cas-
es but MM_ACTIVATE. Interpretation of the return message is
performed in the same manner as loading the message array.
The retrieved success code is returned to the calling Seg-
ment Manager procedure. For MM_ACTIVATE, the return message
must be interpreted and values for success code, segment
size, and segment classification retrieved and returned to
the Segment Manager MAKE_KNOWN procedure. The value for the
MM_Handle (called the G_AST_Handle by the memory wmanager
process) aust be retrieved and entered in the KST record for

this segaent.

2. Interprocess Gommupication

The final arrangements and actual performance of IPC is
completed by the internal procedure PERFORM_IPC. By locating
the identity of the current physical processor (CPU) and us-
ing that identity to index into the MM _CPU_TABLE, the VP_ID
of the current memory manager is resolved, so that the menmo-
ry manager process dedicated to this physical processor is
signalled. The call to K_LOCK is, in fact, a disguised call
to the SPIN_LOCK procedure (since K_LOCK calls SPIN_LOCK).

K_LOCK represents an ultimate (as yet unimpleamented) goal of




a Kernel lacking (wait-lock) systea. In any event, the
G_AST lock must be set prior to signalling the aemory smaaag-
er process. After SIGNAL has been called, a call is made to
WAIT vwith the pointer to the message array as the arguament.
The synchronization cycle that results is: (1) PERFORN_IPC
calls the ITC procedure SIGNAL vwith the memory manager VP_ID
and message array pointer as arguments; PEBFORM_IPC then
calls WAIT with the message array as the argument, (2)
SIGNAL causes the message array to be copied into the ses-
sage queue (in the VPT) of the appropriate VP_ID, (3) ulti~
mately, the signalled VP is scheduled; it had previously
called WAIT, passing a pointer to its own local aessage ar-
ray; the action of WAIT is to copy the message from the VPT
to the signalled process' local amessage array; there it is
interpreted by the memory manager process main procedure and
the appropriate procedure is called £for action (e.g.,
CREATE_ENTRY), (4) when action is completed the aemory man-
ager process fills 1its local message artay with the appro-
priate return message and calls SIGNAL with a pointer to the
message and the original signalliing process® VP_ID as argu-
ments, (5) SIGNAL causes the memory Kanager process' message
to be copied into the VPT message queue for the appropriate
VP_ID, (6) that VP is aventually scheduled and through the
action of WAIT bhas the return message copied froam its aes-
sage queue in *he VPT to its local message array; WAIT then

returas to PERFORM_IPC. The G_AST lock is unlocked ard
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PERFORM_IPC returns to the appropriate distributed nmemory
sanager procedure.

The last procedure in the distributed memory manager is
MM_GET_DBR_VALUE. This procedure sisply provides the ser-
vice of translating a DBR_NO (DBR number) into its appropri-
ate DBR address. It is called by the TC_GETWORK procedure to
allovw it to call the ITC procedure SWAP_VDBR (remember that
presently the Inner Traffic Controller deals with the DBR as
the address of the appropriate MMU record in the MMU_INAGE
vhile the Traffic Controller uses DBR as a DBR number which

indexes to the appropriate MMU record).

E.  SUMBARY

The implementation of segment management functions and a
non-discretionary security policy for the SASS has been pre-
sented in this chapter. The implementation of the Segaent
Manager Module, Non-Discretionary Security Module, and Dis-
tributed Memory Manager aanagement deamonstration was de-

scribed.
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Chapter XIX

CONCLUSIOBS AND POLLON ON WOBK

The implementation of segment management for the securi-~
ty kernel of a secure archival storage system has been pre-
sented. The implementation was completed on Zilog's 28002
sixteen bit nonsegmented microprocessor. Segaentatior hard-
vare (Zilog's 28010 Meamory Management Unit) was not availa-
ble, therefore it was sismulated in software as described by
Reitz {12]). The loop free nmodular construction used in the
implenentation facilitates ease of expansion or amodifica-
tion.

A non~discrectionary security policy wvas implemented us-
ing a partially ordered lattice structure as a basis. En-
forcement was realized through an algorithm that coapared
tvo labels and dsteramined if their relationship vas egual to
a desired relationship. Although the DaD security classifi-
cation system was represented, any non-discretionary securi-
ty policy that may be represented by a lattice structure majy
similarly be iamplemented., This implementation has shown that
by having the non-discretionary security policy enforced in
one module, changing to another policy requires changing

only this one module.
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Software engineering techniques used in previous vwork
enphasized the advantages of working with code that is well
structured, wvell docuaented, and well organized. Despite be~
ing written in asseambly language, Reitz' implementation of
multiprograaaing and process managemsent proved to be consis-
tent in style, clarity and documentation. This enhanced the
construction of a segment aanagement demoanstration which was
built onto his synchronization demonstraticn. Further, re-
finements made to his code (not necessitated by any failures
of his code) were relatively easily accoamplished.

K #hile the segment management iaplesentation appears to
perfora properly, it has not been subjected to a formal test
plan. Such a test plan should be developed and iaplemented.

The Memory Manager Process has been designed but not ia-
plemented. Segment managesent implementation, provision for
IPC using aore practical size messages, and the detailed de-
sign of the aemory manager by Moore and Gary [5]), provide a
sound foundation for memory manager isplementation. A frame-
work of the mainline code needed is provided in the Meamory
Manager Module of the demorstration code in Appendix J. Pri- |
or to this isplementation, formal testing of the segaent
managesent implementation herein and the monitor iasplementad

F" by Reitz [12] should be completed.
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] PART P

INPLEMENTATION OF PROCESS MANAGEMENT FOR A
SECURE ARCHIVAL STORAGE SYSTEHN

This section contains excerpts from a Naval Postgraduate
School MS Thesis by A. R. Strickler [19]. The origins of
these excerpts are:

INTRODUCTION froa Chapter 1
IMPLEMENTATION ISSUES from Chapter IIIX
PROCESS MANAGEMENT IMPLEMENTATION from Chapter IV
CONCLUSION from Chapter v

Minor changes have been made for integration into this resport.
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Chapter XX
INTRODUCTION

This thesis addresses the iamplementation of process aan-
agement functions for the Secure Archival Storage Systea or
SASS. This systea is designed to provide multilevel secure
access to information stored for a network of possibly dis-
similar host computer systeas and the controlled sharing of
data amongst authorized users of the SASS. Effective pro-
cess managament is essential to insure efficient use and
control of the systea.

The major accomplishments of this thesis effort inclade
the provisions for efficient process creation and manage-
Rent, These functions are provided through the establish-~
ment of a system Traffic Controller and the creation of a
virtual interrupt structure. An effective mechanisa for in-
ter-process comaunication and synchronization is realized
through an Event Manager that makes use of uniquely identi-
fied segments supported by eventcount and sequeacer priai-
tives. A hardware controlled two domain operational eanvi~-
ronment is created with the necessary intarfacing between
domains provided by a software "gate"” mechanisa. Additional
support is provided through considerable work in the area of
database initialization apd a technique for liamited dynaaic
semory aliocation.
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This iaplementation was completed oa the commercial ANC
An96/4116 ¥onoBoard Computer with a standard Multibus inter-

face.
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chapio: XXI
INPLEBENTATION ISSUBS

Issues bearing on the implementation of process manage-
ment and refinements made to existing aodules are presented
in this chapter. Process manageaent for the SASS vas pro-
vided through the implementation of tane Iraffic Controller
Module, the Event Manager Module, the Distributed Meamory
Manager Module, and a Gate Keeper Stub (systea trap). 2addi-
tionally, since a demonstration/testbed wvas integral to the
testing and verification of the implementation, it vas ne-
cassary to complete other supportive tasks. These suppor-
tive tasks included limited Kernel database initialization,
revised preempt interrupt handling mechanisas, 1Idle process
definition and structure, and additional refinements to ex-

isting modules.

A.  DATABASE INITIALIZATIION

Previous work on SASS has relied on statically built da-
tabases, which proved to be sufficient for demonstration of
a single processor, single host suppocted systenm. In the
current demonstration, aultiple hosts are simulated, and the

Kernel data structures have been refined to represent a mul-

tiprocessor environaent. Since a aultiprocessor systea vas




]
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unavailable at the time of: this demonstration, several
“runs" were gsade and traced, using different logical CPU
numbers, to show the correctness of this structure. Due to
this aultiprocessor representation and simulation of multi-
ple hosts, the use of statically built Kernel databases was
no longer «coavenient. Therefore, it became necessary to
provide initialization routines for the dynaaic creation of
those Kernel databases required for this iapleaentation.
While it was not the intent of this effort to implement sys-
tem initialization, care was taken in the writing of these
initializing routines so that they aight be utilized in the
system intialization iaplementation with, hopefully, aminimal
refinement. Database initialization was restricted to those
databases existing in the Inner Traffic Controller and the
Traffic Controllar. Linmited elements of the Known Segment
Tabla (KST) and Global Active Segment Tabla (G_AST) were

also created for demonstration purposes.

1. Ioner Iraffic comtroller Iaitialization

A "Bootstrap Loader” Module, which logically exists at a
higher level of abstraction within the Ksrnel, wvas created
to initialize the databases of the Inner Traffic Controller.
This initialization includes the creation of: 1) the Pro-~-
cessor Data Segment (PRDS), 2) an MMU Map, 3) Kernel domain
stack segments for Kernel processes, &) allocation and up-
dating of 4MU entries for Kernel processes, and 5) Virtual
Processor lable (VPT) entries.
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The PRDS was loaded with constant values that specify
the physical CPU ID, logical CPU ID, and number of VP's al-
located to the CPU, A design decision was made to allocate
logical CPU ID's in increments of two (beginning with zero)
so that they could be used to directly access lists indexed
by CPU nuaber. The MMU sap, constructed as a "byte" map,
vas created to specify allocated and free MMU Image entries.

A separate procedure, CREATE_STACK, was created to es-
tablish the initial Kernel domain stack conditions for Ker-
nel processes. A discussion and diagram of these initial
stack conditions is presented in the next section.
ALLOCATE_MMU checks the MMU Map and allocates the next
availabe uﬂuuentry to the process being created. The PRDS
is inserted in the allocated MMU entry and the DBR nusmber is
returned to the calling procedure. The DBR nuaber (handle)
is merely the offset of the DBR in the MMU Image. Since the
ITC deals with an address rather than a handle, a procedure,
GET_DBR_ADDR, wvas creataed to convert this offset into a phy-
sical address. UPDATE_NMU_IMAGE is the procedure which
creates or modifies MMU Image entries. UPDATE_MMU_IMAGE ac-
cepts as arguments the DBR number, segment nuaber, segment
attributes, and segment limits. To facilitate process
swvitching and control, various process segments aust possess
the same segaent number systea vwide. This is accomplished
during initialization through the use of the

UPDATE_MMU_IMAGE procedure. In the ITC, these segaents in-
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clude the PRDS (segnent‘nunber zero) and the Kernel stack
segment (sagment number one).

The final task required in ITC intialization is the
creation of the VPT. The VPT header is initialized with the
*ryunning® and "ready" lists pointers set to a *nil' state,
and the "free"™ list pointer set to the first entry in the
message table. virtual Processor entries are inserted in
the main body of the VPT by the UPDATE_VP_TABLE proceduare.
Entries are first made for the VP's permanerL“ly bound to the
Memory Manager and Idle processes. The VP bound to the MM
process is given a priority of 2 (highest), and the VP bound
to the Idle process is given a priority of 0 (lowest). The
External VP ID for both of these VP!'s is set to "nil" as
they are not visible to the Traffic Controller. The remain-
ing VP's allocated to the CPU (viz., TC visible VP's) are
then entersd in the VPT with a priority of 1 (intermediate),
and their "idie" and "preeapt" <clags are set. The preempt
flag is set for these TC visible VP's to insure proper sche-
duling by the Traffic Controller. The DBR for these remain-
ing VpP's is initialized with the 1Idle process DBR. A dis-
cussion of "idle" processes aad VP's will be provided later
in this chapter. The External VP ID for each TC visible VP
is merely the offset of the next available entry in tiae
EXTERNAL VP LIST. This External VP 1ID is entered in the
¥PT, and the corresponding VP ID (viz., VPT Eantry #) is en-

tered in the EXTERNAL VP LIST.
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Once these VPT entries have been made, it is necessary
to set tha state of each VP to "ready" and thread them (by
priority) into the appropriate ready list. A VPT threading
mechanisa vas provided by Reitz (12} in procedure
MAKE_READY. However, it was desired to have a aore general
threading mechanisa that could be used for other 1lists.
Procedure LIST_INSERT was created to provide this general
threading mechanisa. LIST_INSERT is 1logically a "library"
function that exists at the lowvest level of abstraction in
the Kernel. This function threads an object into a list
(specified by the <caller) in order of priority, and then
sets its state as specified by the calling parameters.

Once the "Bootstrap Loader" has completed ITC initiali-
zation, it passes «control to the ITC GETWORK procedure to

begin VP scheduling.

2. Traffic controller Ipitialization
The initialization routines for the TC include TC_INIT,

CREATE_PROCESS, and CREATE_KST. These routines are called
from the Memory Manager process. The MM process was chosen
to initiate these routines as it is bound to the highest
priority VP and will begin running iamediately after the In-
ner Traffic Controller is initialized. Procedure
MM_ALLOCATE was written to allocate memory space for data
structures during initialization (viz., Kernel stacks, user

stacks, and KST's). Memory space is allocated in blocks of
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100 (hex) bytes. MM_ALLOCATE is merely a stub of the memory

allocating procedure designed by Mcore arnd Gary {5].

It wz. necessary to pass long 1lists of arguments to the
TC for initialization purposes. To aid in this passing of
parameters, a data structure template was used. This taap-
late was created by declaring the parameters as a data
structure in both the sending and receiving procedures, anad
then imaging this structure at absolute address zero. The
process'! stack pointer was then decremented by the size of
the parameter data structure, and the parameters were loaded
into this 3ata structure indexed by the stack pointer. This
template made it very easy to send and recaive long arguament
lists using the process' stack segment.

TC_INIP? initializes the APT header and virtual interrupt
vector (discussed later). Each element of the running list
is marked "idle", <the ready and blocked lists are set to
“nil", and the number of VP's and first VP for each CPU are
entered 10 the VP table. The address of the virtual preempt
handler .s then passed to the ITC procedure CREATE_INT_VEC
for insertion in thke virtual interrupt vector.

CREATE_PROCESS intializes user processes and creates en-
tries in the APT. ALLOCATE_MMU is called to acquire a DBR
number, and an APT entry is created with the process de-
scriptors (viz., parameters). The process is cthen declared

"ready" and tar. .ied into the approciate ready list by

calling tha ttreading function, LIST_INSERT. A user stack




is allocated and UPDATE_MMU_IMAGE is called to include the
user stack in the MMU as segment number three. The user
stack contains no information or user procaess initialization
parameters (viz., execution point and address space) as all
processes are initialized and begin execution from the Ker-
nel domain. Next, a Kernel domain stack is allocated and
included in the MMU Image. A design decision was made to
initialize the Kernel stacks for user processes with the
same structure as the Kernel process?'! stacks. The rationale
for this decision is presented in the next section. As a
result of this decision, it became possible to use the
CREATE_STACK procedure in building Kernel domain stacks for
both Kernel and user prosesses. CREATE_STACK was therefore
used as a library function and placed in the library sodule
with LIST-INSERT.

Pinally, a Known Segment Table (KST) stub is created to
provide a means of demonstrating the mechanisa provided by
the eventcounts and sequencers for interprocess communica-
tion (IPC) and autual exclusion. Space for the process' KST
is created by calling MM_ALLOCATE. The KST is then included
in the process' address space, as segaent number two, by
UPDATE_MMU_IMAGE. Initial entries are wmade ia the Kanown
Segment Table by procedure CREATE_KST. CREATE_KST makes an
entry in the KST for the “root" and marks the remaining KST
entries as "available.®” The Unique_ID portion of the root's

handle (viz., upper two words) is ipnitialized as -1 (for
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convenienc2) and the G_AST entry number portion of the han-

dle (viz., lowest word) is initialized with zero.

3. Additional Initialization Requirements

As already mentioned, the Memory Manager Process prepares
the arguments utilized by TC_INIT, CREATE_PROCESS, and
CREATE_KST for TC initialization and usar process creation.
Additionally, the M¥ process creates a Global Active Segment
Table (G_AST) stub utilized fcr demonstration of eveat data
management. The G_AST stub is declared in a separate module
(viz., the DEMO_DATABASE Module) with the format prescribed
by Moore and Gary [{5]. Hovever, the only fields initialized
and utilized by this iaplementation are UNIQUE_ID,
SEQUENCER, INSTANCE 1, and INSTANCE 2. The eventcouats and
sequencer fields are initialized as zers vhenever an entry
is created in the G_AST. The UNIQUE_ID is created just to
support this demonstration and dces not reflect the seg-
ment's unique identifier as specified by Moore and Gary [5].
In this demonstration, UNIQUE_ID is built with the parane-
ters passed tc MM_ACTIVATE. The first word in UNIQUE_ID is
the G_AST entry number of the segment's parent, and the sec-
ond word is the segment’s entry number into the alias table.
The UNIQUE_ID together with the offset of the segment's en-
ty in ths G_AST coaprise the segment HANDLE aaintained in
the KsT. The first entry in the G_AST is reserved for the

root, and is initialized with an Unigque_ID of ainus one
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(=1). It should be noted that any call to MM_ACTIVATE for a
segaent already possessing an entry in the G_AST will not
effect any changes to that entry. This is to insure that a
single G_AST entry exists for every segaent as specified by

Moore and Gary [5].

B.  PREEMRTI INIERROPIS

Various refinements were made in the handling of both
physical (hardvare) and virtual (software) preempt inter-
Tupts. A hardvare preeapt is a non-vectored ianterrupt that
invokes the virtual processor scheduling mechaanisa (viz.,
ITC GETWORK). A virtual preempt is a software vectored in-
terrupt that invokes the user process scheduling mechanisa
(viz., TC_GETWORK). This implementation provides the notion
of a virtual interrupt that closely mirrors the behavior of
a hardware interrupt. In particular, there are similar con-
structs for initialization of a handler, invokation of a
handler, masking of interrupts, and return from a handler.
As vith most hardware interrupts, a virtual interrupt can
occur only at the completion of execution for am #*instruc-
tion," where each kernel entry and exit for a process delim-

it a single "virtual imstruction.®

- 206 -




1.  Physical Rreeapt Handle:
The physical preeapt handler resides in the virtual pro-

cessor manager (viz., Inner Traffic Controller). The func-
tions it perform are: 1) save the execution point, 2) in-
voke ITC GETWORK, 3) <check for virtual preeapt interrupts,
4) restore the execution point, and 5) return control via
the I1RBET instruction. Reitz [12] iacluded the hardware
preeapt handler in ITC GETWORK by establishing two eatry
points and two exit points, one for a regular call to
GETWORK ani 2nother for the preeapt interrupt. He had a se-
parate procedure, TEST_PREEMPT, that was used to check for
the occurreance of virtual preempt interrupts. This structure
works nicely, but it requires some means 2f determining how
GETWOBK was invoked so that the proper exiting aechanisa is
used. This was resolved by incorporating a preeapt inter-
rupt flag :n the status register block of every process?
Kernal domain stack segment. A design decision was made to
restructure the hardvare preeampt handler into a single aand
separate procedure, PHYS_PREEMPT_HANDLER. This allowed 1I7C
GETWORK to have a single entry and exw.t poire, and it 4:id
avay with the necessity of maintaining a preempt interrupt
flag in the process stacks. PHYS _FREEMPT_HANDLER vwas coa-
structed from the preeapt handling code ia GETWQEX and
procedura TEST_PREEMPT. TEST_PREEMPT was delated from the

ITC as its functions were perforaed by PHIS_PREEMPT-HANDLER.
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A further refinement was made to the hardware preeapt
handler dealing with the method by which the virtual preespt
handler was invoked. Reitz {12] invoked the virtual preeapt
handler from TEST_PREENMPT by means of the %call" instruc-
tion. Since the virtual preeapt handler logically exists at
a higher level of abstraction than the I?C, this ianvocation
violated our notion of omnly allowing "calls®™ to lover or
equal abstraction levels, However, this deviation was ne-
cessitated by the absence of a virtual interrupt structure.
This problea was alleviated by creating a virtual interrupt
vector in the ITC that is used in the same way as the hard-
ware interrupt vector. The virtual preeapt vas given a vir-
tual interrupt number (zero). The virtual interrupt handler
is then invoked by means of a "jump" through the virtual in-
terrupt vector for virtual interrupt number 0. This invoca-
tion occurs in the same manner that the handlers for hard-
vare interrupts are invoked. The virtual interrupt vector
is created by procedure CREATE_INT_VEC. CREATE_INT_VEC ac-
cepts as arguments a virtual interrupt number and the ad-

dress of the interrupt handler. The creation of the virtual

preempt entry in the virtual interrupt vector is accoa-

plished at the time of the Traffic Controller initialization i

by TC_INIT.
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2. Yiptual Preeapt Handlex
The virtual preeapt handler (VIRT_PREEMPT_HANDLER) re-

sides in the user process manager (viz., the Traffic Cont-
roller). The functions performed by VIRT_PREEMPT_HANDLER

are: 1) deteraine the VP ID of the virtual processor being

preeapted, 2) invoke the process scheduling mechanisa (viz.,
TC_GETWORK), and 3) return control via a virtual interrupt
return. The correct VP ID is obtained by calling RUNNING_VP
in the ITC. The Active Process Table is then locked, and

the state of the process running on that VP is changed to

"ready.®™ At this time, process scheduling is effected by
| _! calling TC_GZETWORK. Once process s heduling is completed,
é the APT is unlocked anrd control is returned via a virtual
interrupt return. This virtual interrupt return is merely a
jump to the PREEMPT_RET label in the hardvare preeampt han-
dler (This jump 2mulates the action of the IRET instruction
for a hardware interrupt return). This label is the point
at wvhich the virtual preeapt interrupts are unmasked.

All K2rnel processes are initialized to appear as though
they are returning from a hardware preeapt interrupt. All
user processes initially appear to be returning from a virc-
tual presapt interrupt. Therefore, the initial coanditicas
of a process' Kernel domain stack is largely influenced by
the stack manipulation of the preeapt handlers. Pigure 44
illustrates the initial Kernel domain stack structure for

all systea processes.
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The initial Kernel Plag Control Word (FCW) value s

"5000%, indicating non-segmented code, system sode of opsra-
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tion, non-vectored interrupts masked, and vectored inter-
| rupts enabled. The Current Stack Pointer value is set to
1 the first entry in the stack (viz., SP). The IRET Prame is
the portion of the Kernel stack atffected by the IRET in-
struction. The first element, Interrupt ID (set to “FFPPY)
is merely popped off of the stack and discarded. The next
element, Initial PCW, is popped and placed in the systeam
Plag Control Word. Initial PCH is set to "5GQ0% for Kerspel
i processes and "1300" (iadicating noraal mode with all inter-
i rupts enabled) for user processes. The firal element of the

IRET fraame, Initial IC is popped off cof <the stack and

placed in the program counter (PC) register. This value is

initialized as the entry address of the process in question.

The "register™ entries on the stack represent the ini-
tial register contents for the prccess at the begipning of
irs execution. Since the Kernel processes (viz., MM and
Idle) do not raguire any specific initial register states,
their entries reflect <the register coantents at the time of

stack creation. Initial register conditions are used to

provide initial "parameters" required by the user processes.
This will depend largely upor the paraseter passing conven-
tions of the impleaentation language. The means for regis-
tor initialization wvas provided through CREATE_PROCESS; how-

| ever, the only initial register conditicn used for the user

- 211 -

PN Babsange & £ NS




90 N

processes in this demonstration was register #13. Register
#13 vas used to pass the user ID/Host number of the process
Created. This value is utilized by the user process in ac-
tivating the segment used for inter-process coamunication
between a Host's Pile manager and I/0 processes. Another
logical parameter passed to the user processes is the root
segment numaber. This did not require a register for passiag
in the demonstration as it is known to be the first entry in
the KST for all processes. The N_S_P entry on the stack
represents the initial value of the normal stack pointer.
For user processes, this value is obtairced vhen the Supervi-
sor domain stack for that process is created. For Kernel
processes, this value is set to "FFFF" since they execute
solely in the Kernel domain and have no Superivsor domain
stack., The Preeapt Return Point specifies the address where
control will be passed once the process' VP is scheduled and
the "return" from ITC GETWORK is executed. For Keranel pro-
cesses, this is the point within the hardware preeapt han-
dler wvhere the virtual processor table is unlocked. Por
user processes, this is the point within the virtual preempt
handler wvhere the Active Process Table is unlocked.

It is important to note that if the APT was not unlocked
vhen a ussr process began its initial execution, the systea
would become deadlocked and no further process scheduling
could occur. It should be further noted that the initial

stack conditions for user processes do not reflect a valid
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history of execution, The "normal" history of a user pro-
cess returning from ITC GETHORK after a virtual preempt in-
terrupt would reflect the passing of control <through
SWAP_VDBR and TC_GETWORK to the point in the virtual preesmpt
handler where the APT is unlocked. Another ®possible" his-
tory could reflect the occurrence of a hardvare preeapt in-
terrupt at the point in the virtual preeapt handler vhere
the APT is unlocked. Such a history would be depicted by
replacing the current top of the stack with th2 return point
into the hardware preeapt handler (viz., at the point of
virtual preempt interrupt unmasking) and an additional hard-
vare preeept interrupt frame whose 1IC value in the IRET
frame is the point in the virtual preeapt handler where the
APT is unlocked. The current initial stack condition for
user processes vas chosen for its eass of understanding and
its clear 3depiction of the fact that the structure of a Ker-
nel domain stack is the same for both Kernel and user pro-

cesses.

c. aDLE RBOCESSES
in the SASS design, there logically exists a Kernel do-

main "Idle" process for every physical processor in the sys-
tem and a Supervisor domain "Idle" process for every "“IC vi-
sible” virtual processor in the system. These processes are
necessary to insure ¢that both the VP scheduler (viz., ITC

GETWORK) and the process scheduler (TC_GETWORK) will always
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have some object > schedule, hence precluding any CPU or VP

from ever having an undefined execution point. Since the
Kernel domain Idle process performs no useful work, it could
be included within <the ITC by means of an infinite looping
mechanism. The Kernel Idle process was maintained separate-
ly, howevser, as it is hoped that future work on SASS will
provide ¢this Idle process vith some coanstructive purpose
(e.g., performing maintenance diagnostics).

The Supervisor domain Idle processes (hereafter referred
to as TC Idle processes) dare scheduled (bound) oa VP's when
there are no user processes awaiting scheduling. 3ince a TC
Idle process perforas no user constructive work, we do not
want any VP executing a TC Idle process to be bound to a
physical processor. 1In other words, a VP bound to a TC Idle
process assumes the lowest system priority (represented by
the vidle flaqg"). Therefore, any such VP will have its idle
flag set and vill not be scheduled unless it receives a vir-
tual preeapt interrupt. Suck an interrupt will allow the VP
to be rescheduled by the Traffic Controller. It should be
obvious, at this point, that a TC Idle process will never
actually bagin execution on a real processor. This know-
ledge allowed a design decision to be made to only simulate
the existence of TC Idle processes. At the TC level, this
was accomplished by a constant value, IDLE_PROC, that was
used as a process ID in the APT running list, thus preclud-

ing the necassity of any "Idle™ entries in the APT. At the
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ITC level, any VP marked "Idle” (viz., the idle flag set)
was given the DBR number (viz., address space) of the Kernel
Idle process solely to provide the use of a Kernal domain

stack for rescheduling of the VP.

D.  ADDITIONAL KERNEL REEINEMENIS

In addition to those already discussed, several other
refinements to existing Kernel modules were sffected in this
implementation. One of these refinements deals with the way
virtual processors are identified by tae Traffic Cocntroller.
In the current implementation, all TC visible virtual pro-
cessors are given an External VP ID which corresponds to its
entry nuabsr in an External VP List. This required a modi-
fication to the ITC procedure RUNNING_VP. The benefits der-
ived froam this refinement included the ability to directly
access the EBExternal VP ID ia the Virtual Processor Table
vice the requirement of a run time division to compute its
value and the ability to use the External VP ID as an index
into the TC running list.

Refinemernts were also made to the existing Memory Manag-
er, Pile Manager and IO process stubs used for demonstratica
purposes. These refinements were largely associated with
the eventcount and sequencer mechanisms utilized in this ia-
plementation. The current status of these processes is pro-

vided in this report.
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The reaaining refinements deal largely vith the MNU In-
age. In Moore and Gary's {5] design, the MMU Image was man-
aged b} the Memory Manager process. This was largely be-
cause the MMU Image is a processor local database and would
seea well suited for management by the anon-distributed Ker-
nel. In fact, the MMU Image is utilized mainly by the ITC
for the multiplexing of process address spaces. Therefore,
in the current design, the MMU Images are maintained by the
Inper Traffic Controller. However, the MMU header proposed
by Moore and Gary (viz., the BLOCKS _USED and
MAXIMUM_AVAILABLE_BLOCKS fields) was retained in the Memory
Manager as it is used strictly in the management of a pro-
cess' virtual core and is not associated with the hardware
MMU.

In Wells' design [20], the Traffic Controller used the
linear ordering of the DBR entries in the MMU Iaage as the
DBR handle (viz., 1,2,3...). This required a run time divi-
sion operation to compute the DBR nuamser, and a rua tiae
multiplication operation, by MM_GET_DBR_VALUE, <to recompute
the DBR address for use by the ITC. In the current design,
the offset of the DBR entry 3in the MMU Image (obtained at
the time of MMU allocation) is used as the DBR handle in the
Traffic Controller. Purthermore, SWAP_VDBR was refined to

accept a DBR handle rather than a DBR address to preclude

the necessity of the Traffic Controller having to deal with

MMO addresses. DBR addresses are cosputed only within the
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ITC (viz., by procedure GET_DBR_ADDR) by adding the value of
the DBR handle to the base address of the MMU Image. Since
DBR addresses are now used solely within the ITC, procedure
MM_GET_DBR_VALUE was no longer needed and was deleted froa

the Memory Manager.

E.  SUNHARY

The primary issues addressed in this thesis effort have
been presented in this chapter. Aside from the process msan-
agement functions, this description included a mechanisa for
limited Kernel database initialization, a revised preespt
iaterrupt handling mechanism, the creation of a virtual in-
terrupt structure, a definition of "idle" processes and
their structure, and a discussion of the minor refinements
effected in existing SASS nmodules. A detailed description
of the implénentation of process manageaent functions for

the SASS is presented in the next chapter.
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Chapter XXII
PROCESS MANAGEMENT INMPLEMENTATION

The implementation of process management functions and a
gate keeper stub (system trap) is preseated in this chapter.
The isplementation is discussed in teras of the Event Manag-
er, Traffic Controller, Distributed Memory Manager, User
Gate, and Kernel Gate Keeper modules. A block diagraa dep-
icting the structure and interrelationships of these modules
is presented in Pigure 45. Support in developing the 28000
machine code for this implementation was provided by a Zilog
MCZ Developmental System operating under the RIO operating
systea. The Developmental System provided disk file manage-
ment for a dual drive, hard sectored floppy disk, a line
oriented text editor, a PLZ/ASM asseambler, a linker and a
loader that created an executable image of each 28000 load
module. An upload/download capability with the Am96/4116
MonoBoard computer was also provided. This «capability,
along with the general interfacing of the Am96/4116 into the
SASS systaam, vwvas accoaplished in a concurrent thesis endea-
vor by Gary Baker. Baker's work relating to hardware iai-

tialization in sSAss, will be published upon coapletion of

his thesis work in June 1981.
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A.  EVENT MAHNAGER MODULE
The eventcount and sequencer primitives [11], which are

system-vide objects, collectively comprise the event data of
SASS. As mentioned earlier, this event data is tied direct-
ly to systea segments and is stored in the Global Active
Segment Table. There are two eventcounts and one sequencer
for every segment in the systea. These objects are identi-
fied to the Kernel in user calls by specification of a seg-
ment number. Once this segment number is identified by the
Kernel, the segment’s handle can be obtained froam the pro-
cess' Known Segment Table. The segment handle idecntifies
the particular entry in the G_AST containing the event data
desired.

The Event Manager module manages the event data within
the systea and provides the wmechanisa for interprocess coa-
munication between user processes. The Event Manager con-
sists of six procedures. Pour of these (Advance, Await,
Read, and Ticket) <represent the four user extended instruc-
tions provided by the Event Manager. The remaining two
procedures provide internal computational support to include
necessary security checking. The Event Manager is invoked
solely by user processes, via the Gate Keeper, through uti-
lization of the extended instruction set provided. For ev~
ery Bvent Manager axtended instruction invoked by a user

process, the non-discretionary security is verified by com-
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paring the security access classification of the process in-

voking the instruction with the classification of the object
{segment) being accessed. Access to the user process' Known
Segment Table is required by the module in order to ascer-
tain the segment handle and security class for a given seg-
ment nuaber. The PLZ/ASM assembly language listing for the
Event Manager module is provided in Appendix a. A more de-
tailed discussion of the procedures coaprising the Evert

Manager follows,

1. Sypport Procedures
The procedures GET_HANDLE acd CONVERT _AND_VERIFY provide

interral support for the Event Manager and are not visible
to the user processes. Procedure CCNVERT_AND_VERIFY is in-
voked by the four procedures representing the instruction
set of the Event Manager. The dinput parameters to
CONVERT_AND_VERIFY are a segaent nuaber and a requested mode
«f access (viz., read or write). CONVERT_AND_VERIFY returns
a pointer to the segment!s haandie apd a success code.
procedure GET_HANDLE is invoked solely by
CONVERT_AND_VERIFY. The input parameter to GET_HANDLE is
the segment number received as input by CONVERT_AND_VERIFY.
GET_HANDLE returns a pointer <o the segmeant®s handle, a
prsinter to the segment's security ciassification, and a suc-
cess code, A discussion of the functions provided by these

support procedures follows.




Procedure GET_HANDLE translates the segment number, re-
ceived as input, into a KST index nuaber and verifies that
the resulting index number is wvalid. Next the base address

of the process!' KST is obtained froa procedure

A ettty et e . s 7 o .

ITC_GET_SES_PTR. The KST index number is then converted
into a KST offset value and added to the base address to ob-

tain the appropriate KST entry pointer for the segaent in

————

question. A verification is then made to insure that the
1 referenced segment is “known" to the process. If the seg-

ment is not known, an errcr message is returned to
3 i CONVERT_AND_VERIPY. Otherwise, a pointer to the segment's
' handle is obtained to identify the segmeant to the meaory |
ranager. A pointer to the segment’s security class eatry ia

the KST is also returned for use ir appropriate security

checks.

Procedure CONVERT_AND_VERIPY provides the necessary
non~-discretionary security verification for the extended in-
struction set of the Event Manager. Procedure GET_HANDLE
is invoked for segment onumber verification and to obtain
pointers to the segment's handle and security class. If
GET_HANDLE returns with a successful verification, the pro-
cass' security class is compared to the segmeat's sacurity ]
class to verify the mode of access requested. A request for
"yrite® access causes invocation of the CLASS_EQ function in

the Non-Discretionary Security Module to insure that the se-

curity ciassification of the process is equal to the classi-
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fication of the eventcount or sequencer, which is the sane
as that of the segment., Otherwise, the CLASS_GE function is
called to verify that the process has read access. If the
appropriata security check is unsuccessful, an error code is
returned by CONVERT_AND_VERIPY. Otherwise, the segment han-
dle is returned along with a success code of "succeeded" in-
dicating that the user process possesses the necessary se-
curity clearance to complete execution of the extended

instruction.

2. BRead

Procedure READ ascertains the current value of a user
specified eventcount and returns its value to the caller.
The input parameters to READ are a segment number and an
instance (viz., an event nuaber). CONVERT_AND_VERIPY is in-
voked with a "read" access request to obtain the segment's
hzndle and necessary veirification. "Read® access is suffi-
cient for this operation as it only requires observation of
the current eventzount value and perforas no data modifica-
tion. if verification is successful, procedure

MM_READ_EVENTCOUNT is called to obtain the eventcount value.

3. ZIigket

Procedure TICKET returns the current sequencer value for
the segment specified by the user. CONVERT_AND_VERIPFY is

called with a request for write access to obtain verifica-
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tion and the segment handle. Write access is required be-

cause once the sequencer value is read it must be increament-
ed in anticipation of the next ticket reguest. Once verifi-
cation is zomplete, MM _TICKET is invoked to obtain the se-
quencer value that is returned to the user process. It is
noted that every call to TICKET for a particular segment
number will return a unique and time ordered segquencer va-
lue. This is because the sequencer value may only be read
vithin MM _TICKET while the G_AST is locked, thereby prevent-
ing simultaneous read operations. Puthermore, once the se-
quencer value is read it is incremented before the G_AST is

unlocked.

4. Avait
Procedure AWAIT allows a user process to block itself

until some specified event has occurred. The parameters to
AWAIT include a segment number and instance, which identify
a particular event, and a user specified value vhich identi-
fies a particular occurrence of the event., Verification of
read access and a pointer to the segaent's handle is ob-
tained froa procedure CONVERT_AND_VERIFY. Procedure
TC_AWAIT is invoked to effect the actual vaiting for the
event occurrence. TC_AWAIT will not return to AWAIT until
the requested event has occurred. It is noted that AWAIT

makes no assuaptions about the event value specified by the

user. Therefore, the Kernel cannot guarantee that the event

S i i S g g
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specified by the user will ever occur; this is the responsi-

bility of other cocperating user processas.

S. Advaace
Procedure ADVANCE allovs a user process to broadcast the

occurrence of some event. This is accomplished by incre-
menting the value of the eventcount associated with the
event that has occurred. The parameters to ADVANCE include
a segment number and instance which identify a particular
event. The calling process aust bhave write access to the
identified segment as modification of the eventcount is re-
quired. Verification of write access and a pointer to the
segment's handle is obtained through procedure
CONVERT_AND_VERIPY. Procedure TC_ADVANCE is invoked to per-

fora the actual brocadcasting of event occurrence.

B.  IRARELGC QONIROLLER HODULE

The primary functions of the Traffic Controller module
are user process scheduling and support of the inter~process
communication mechaaisa. The Traffic Controller is invoked
by the occurrence of a virtual preeapt interrupt and by tke
Event ¥anajer and the Segment Manager through the extended
instruction set: TC_Advance, TC_Await, Process_Class, and
Get_DBR_NUMBER. The Traffic Controller module is coaprised

of nine procedures. Four of these procedures reprasent the

extended instruction set of the Traffic Controller. A de-
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tailed discussion of six of the procedures contained in the

Traffic Controller module is presented below. The remaining
three procedures (viz., TC_INIT, CREATE_PROCESS, and
CREATE_KST) were described in chapter three. The PLZ/ASH
asseably language source code listings for the Traffic Cont-

roller wodule is provided in Appendix B.

1. IC Getwerk
Procedure TC_GETWORK provides the mechanism for user

process scheduling. The input parameters to TC_GETWORK are
the VP ID of the virtual processor to which a process will
be scheduled and the logical CPU number to which the virtual
processor belongs. The deteraination of which process to
schedule is made by a looping mechanism that finds the firsec
“ready® process on the ready list associated wvwith the cur-
rent logizal CPU nuaber. Processes appear in the ready list
by order of priority. This looping mechanism is reguired as
both "ruaning™ and "ready" processes are maintained on the
ready list. This ready list structure was chosen to simpli-
fy the aljoritha provided in procedure TC_Advance. If a
ready process is found, its state is chaaged to "ruaniang®
and its process ID (viz., the APT entry nuaber) is inserted
in the running list entry associated with the current virtu-
al processor. Procedure SWAP_VDBR is then invoked in %he
Inner Traffic Controller to effect the actual process

switch. If a ready process was not found (viz., the ready




list was ampty or comprised solely of "running processes%),
then the running list entry associated with the current virc-
tual processor is amarked with the constant %“Idle_~Proc® and

procedure IDLE is invoked in the Inner Traffic Controller.

2. IC_Await
The primary function of TC_AWAIT is the determinatioan of

vhether some user specified event has occurred. If the
event has occured, control is returned to the caller. Oth-
ervise, the process 1is blocked and another process is sche-
duled. The input parameters to TC_AWAIT are a pointer to a
segaent handle, an instance (event number), and a user spe-
cified eventcount value. TC_AWAIT ipitially locks the Ac-
tive Process Table and obtains the curreat value of the ev-
entcount in question by calling proceduare
MM_READ_EVENTCOUNT. The deteraination of eveant occurrence
is made by comparing the user specified eventcount value
with the current eventcount. If the user value is less than
or equal ¢> the current eventccunt, the awvaited event has
occurred and control is returned to the caller. Otherwise,
the awaited event has not yet occurred and the process aust
be blocked.

If the process is to be blocked, procedure RUNNING_VP is
invoked to ascertain <the VP ID of the virtual processor

bound to the process. The process' ID (viz., APT entry nua-

ber) is then read from the rumning list. The input paranme-
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ters to TC_AWAIT (viz.,, Handle, Instance, and Value) are
then stored in the Event Data portion of the process' APT
entry. The process is resoved froa its associated ready

list by redirecting the appropriate linking threads (poin-

ters). Once reaoved from the ready list, the process is
threaded into the blocked list and its state changed <to
"hlocked" by invocation of the library function LIST_INSERT.
Procedure TC_GETWORK is then called to schedule another pro-

cess for the current virtual processor.

3. IC_Advapce
The primary purpose of TC_ADVANCE is the broadcasting

of some event occurrence. This entails incrementing the ev-
entcount associated with the event, awakening all processes
that are waiting for the event, and iasuring proper schedul-
ing order by generating any necessary virtual preeumpt inter-
rupts. The high 1level design algorithm for <TC_ADVANCE is
provided in Pigure 46. The input parameters to TC_ADVANCE
are a pointer to a segment's handle and an instance (event
number). Initially, TC_ADVANCE locks the APT to prevent the
possibility of a race condition. The eventcount identified
by the input parameters is thean incremented by callaing
MM_ADVANCE. MM_ADVANCE returns the new value of the event-
count. Once the eventcourt has been advanced, TC_ADVANCE
avaxens all processas awaiting this event occurrence. This

is accomplished by checking all processes that are curreantly
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in the blocked list. The process' HANDLE and INSTANCE en-
¢ries are compared with the handle and instance identifying
the current event. If they are the same, then the process
is awaiting some occurrence of the current event. In such a
case, the process' VALUE entry in the APT is compared with
the current value of the eventcount. If the process' VALUE
is less than or equal to the current eventcount value, the
avaited avent has occurred and the process is removed froa
the blocked 1list and threaded into the appropriate ready
list by the library function LIST_INSERT.

Once the blocked list has been checked, it is necessary
to reevaluate each ready 1list to insure that the highest
priority processes are running. It is relatively siample to
datermine if a virtual preespt interrupt is necessary, how-
ever, it is considerably more difficult to determine which
virtual processor should receive the virtual preeapt. 7o
assist in this evaluation, a "“count" variable (number of
preempts needed) is zeroed and a preempt vector is created
on the Kernel stack with an entry for every virtual proces-
sor associated with the logical CPU being evaluated. Ini-
tially, every entry in the preeampt vector is marked "truae®
indicating that its associated virtual processor is a caadi-
date for preesmption. Once the preempt vector, is initial-
ized, the first "n®" processes on the ready list (where n
ejuals the number of VP's associated with the current logi-

cal CPU) are checked for a deteramination of their state. If
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TC_ADVANCE Procedure (HANDLE, INSTANCE)

- Begin

COUNT := MM_ADVANCE (HANDLE, INSTANCE)

|
: ! { Get new eventcount ¢
1 Call WAIT_LOCK (APT)

! Wake up processes |
PROCESS := BLOCKED_LIST_HEAD

E 1 Do while not end of BLOCKED_LIST

1 If (PROCESS.HANDLE = HANDLE) and
o (PROCBSS.INSTANCE = INSTANCE) and
2 (PROCESS.COUNT <= COUNT)
| then
~ Call LIST_INSERT(READY LIST)
end if

PROCESS := PROCESS.MNEXT_PROCESS
end do

! Check all ready lists for preempts !
LOGICAL_CPU_NO := 1

Do while LOGICAL_CPU_NO <= #NR_CPU
! Initialize preeapt vector !
VP_ID := PIRST_VP (LOGICAL_CPU_NO)

Do for LOOP := 1 to NR_VP(LOGICAL_CPU_NO
ROUNNING_LIST[VP_ID].PREEMPT := #TRUGE

VP_ID := VP_ID + 1
and do

! Pind preempt candidates 1
CANDIDATES := 0

PROCESS := READY_LIST_HEAD (LOGICAL_CPU_NO)

Pigure 46: TC_ADVANCE Algorithm
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VP_ID := PIRST_VP (LOGICAL_CPU_NO)

Do (for CYCLE = 1 to NR_VP(LOGICAL_CPU_NO) and

not end of READY_LIST(LOGICAL_CPU_NO)

If PROCESS = #RUNNING
then
RONNING_LIST{VP_ID].PREEMPT := #FALSE
else
CANDIDATES := CANDIDATES + 1

end if

- VP_ID := VP_ID + 1
‘ PROCESS := PROCESS.NEXT_PROCESS
- end do

_ ! Preempt appropriate candidates !
| YP_ID := PIRST_VP(LOGICAL_CPU_NO)

E Do for CHECK := 1 to XR_VP(LOGICAL_CPU_NO)
; If (RUNNING_LIST{VP_ID].PREEMPT = #TRUE) and
! (CANDIDATES > 0)
é then
' Call SET_PREEMPT (VP_ID)

|
: f CANDIDATES := CANDIDATES - 1
; end if

YP_ID := VP_ID + 1
end do

LOGICAL_CPU_NO := LOGICAL_CPU_NO + 1
end do

Call ONLOCK (APT)
Return

End TC_ADVANCE

Pigure 46: TC_ADVANCE Algoritha (Continued)
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a process 1is found to be "running® themn it should not be

preempted as processes appear in the ready list in order of
priority. When a running process is found, its associated
entry in the preempt vector is marked “false."™ 1If a process
is encount2red ian the "ready" state then it should be run-
ning and the "count" variable is incremented. When the
first "n" processes have been checked or when we reach the
end of the current ready 1list (vhichever comes first), the
entries in the preeapt vector are “popped" froa the stack.
If an entry from the preeapt vector is found to be "true",
this indicates that its associated virtual processor 1is a
candidate for preemption since it is either bouand to a lower
priority process, or it is widle." In such a case, the
“count" variable is evaluated to deteraine if the virtual
processor associated with the vector entry should be
preempted. If the count exceeds zero, a virtual preempt in-
terrupt is sent to <the VP and the c¢ount is decremented.
Othervise, no preempt is sent as there is no higher prioricy
process awaiting scheduling.

This preemption algorithm is coapleted for every ready
list in the Active Process Table. Once all ready lists have
been evaluated, the APT is unlocked and control is returned
to the caller. I+ is noted that it is not necessary to in-
voke TC_GETWORK before exiting ADVANCE. If the current VP
requires rescheduling, it wvwill have received a virtual

preeap- interrupt from the preeaption algorithn. If this
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has occurred, ¢the VP will be rescheduled when its running

process attempts to leave the Kernel domain and the virtual

preempt interrupts are unmasked.

4.  Vigtual Preempt Hapdler
VIRTUAL _PREEMPT_HANDLER is the interrupt bhandler for

virtual preempt interrupts. The entry address of
VIRTUAL_PREEMPT_HANDLER is maintained in the virtual inter-
rupt vector located in the Inner Traffic Controller. Once
invoked, the handler locks the Active Process Table and det-
ermines which virtual processor is being preempted by call-
ing RUNNING_VP. The process running on the preempted VP is
then set to the "ready" state and TC_GETWOBK is invoked to
reschedule the virtual processor. When TC_GETIWORK returns
to VIRTUAL_PREEMPT_HANDLER, the APT is unlocked and a virtu-
al interrupt return is executed. This return is siaply a
jump to the point in the hardware preempt handler where the
virtual interrupts are unmasked. This effects a virtual in-

terrupt retuxn instruction.

S. Besaining Procedures

The remaining two procedures in the Traffic Controller
module represent the extended instructions: PROCESS_CLASS
and GET_DBR_NUMBER. Both procedures lock the Active Process
Table and call RUNNING_VP to determine which virtual proces-

sor is executing the current process. The process ID (viz.,
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APT entry Number) is then extracted from the running list.
PROCESS_CLASS reads and returns the curreant process' securi-
ty access classification from the APT. GET_DBR_NUMBER reads
and returns the current process* DBR handle. It should be
noted that in general the DBR number provided by procedure
GET_DBR_NUMBER is only valid vhile the APT is locked. Par-
ticularly, 4in the current SASS impleaentation, the Segment
Manager invokes GET_DBR_NUMBER and then passes the obtained
DBR number to the Distributed Memory Manager for utilization
at that level. 1In a more general situation, the process as-
sociated with the DBR number may have been unloaded before
the DBR number was utilized, <thus amaking it invalid. This
problem does not arise in SASS as all prccesses remain load-

ed for the life of the systea.

C. DISIRIRUIED SEMORY MANAGER HODULE

7he Distributed Memory Manager module provides an inter-
face betw2en the Segment Manager and the Memory Manager pro-
cess, manipulates event data in the Global Active Segment
Table (G_AST), and dynamically allocates available memory.
A detailed description of the Cistributed Memory Manager in-
terface to the Memory Manager process was presented by Wells
{201, The reaaining extended instruction set is discussaed
in detail below. The coaplete PLZ/ASM source listings for
the Distributed Memory Manager module is provided in Appen-

dix C.
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1. 48 _Read Eventcoynt
MM_READ_EVENTCOUNT is invoked by the Event Manager and

the Traffic Controller to obtain the current value of the
eventcount associated with a particular event. The input
parameters to this procedure are a segment handle pointer
and an instance (event Number), vhich together uniquely

identify a particular event.

: The G_AST is locked and the entry offset of the segment
into the G_AST is obtained from the segment's handle. The !
instance parameter is then validated to deteraine which ev- j
entcount is to be read. If ap invalid instance is speci-
fied, control is returned to the caller specifying an error

condition. Otherwise, the current value of the specified

eventcount is read. The G_AST is then unlocked, and the

current eventcount value is retnrned to the caller.

2. MM _Advance
MM_ADVANCE is invoked by the Traffic Controller to re-

flect the occurrence of some evant. The input parameters to
MM_ADVANCE are a pointer to a segament’s handle and a parti-

cular instance (event number).

The Global Active Segment Table is locked to prevent a

race condition, and the offset of the segaent's entry into

the G_AST is obtained from the segment handle. The instance
paraneter is then validated to deteraine which eventcount is

to be advanced. If an invalid instance is specified, an or-




ror condition is returned to the caller amd no data entries
are affected. If the instance value is valid, the appropri-
ate eventcount is incremented, and its onewv value is re-

turned.

3. uH_Ticket
MM_TICKET is invoked by the Event Manager to obtain the

current value of the sequencer associated with a specified
segment. Ihe input parameter to MM_TICKET is a pointer to a
segment's handle.

Initially, MM_TICKET locks the Global Active Segament Ta-
ble to prevent a race condition. Next the offset of the
segment's entry into the G_AST is obtained froam the segment
handle. The current value of the sequencer for the speci-
fied segment is then read and saved as a return paraameter to
the caller. The sequencer value is then incremented in an-
ticipation of the next ticket request. dnce this is coa-
plete, the G_AST is unlocked and control is returned to the

caller.

4. BM_Allogcate
The MM_ALLOCATE procedure provided in this iasplementa-

tion is a stub of the MM_ALLOCATE described in the Hemory
Manager design of Xoonre and Gary [S5]. The primary function
of MM_ALLOCATE is the dynamic allocation of £fixed size

blocks of available memory space. It is iavoked in the cur-
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rent implementation by the initjialization routines 1in
BOOTSTRAP_LOADER and TC_INIT for the aliocation of meaory
space used in the creation of the Kernel doamain and Supervi-
sor domain stack segaments and the creation of the Known Seg-
ment Tables for user processes. Dynamic reallocation of
previously used memory space (viz., garbage collection) |is
not provided by the MM_ALLOCATE stub in this implementation.
All memory allocation required in this iaplementation is for
segments supporting system processes that resain active, and
thus allocated, for the entire life of the systea. Meaory
is allocated in blocks of 256 (decimal) bytes of processor
local memory (on-board RAM). In this stub allocatable memo-
ry i1s declared at coapile time by a data structure
(MEM_POOL) that is accessible only by MM_ALLOCATE.

The input parameter +to MM_ALLOCATE is the nuaber of
blocks of reguested meaory. This parameter is converted
from a block size to the actual number <¢f bytes requested.
T"his computation is made simple since meaocry is allocated :in
povwers of two. The byte size is obtained by logicalily
shifting left the input parameter eight times, «here eight
is the power of two desired (viz., 256). Once the size of
the requested memory is coamaputed, it is necessary to deter-
sine the starting address of the memory block (s) to be allo-
cated. To assist in this computation, a variable
(NEXT_BLOCK) 1is used to keep track of the next available

block of ma2mory in MEM_POOL. NEXT_BLOCK, which is initial-
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ized as zero, provides the offset into the mesory being al-
located. once the starting address is obtained, the physi-
cal size of the memory allocated is added to NEXT_BLOCK so
that the next request for aemory allocation will begin at
the next free byte of memory in MEN_POOL. This new valua of
NEXT_BLOCK is saved and the starting address of the aemory

for this request is returned to the caller.

D. GAIE KRERER NODULES
The SASS Gate Keeper provides the logical boundary bet- |

veen the Supervisor and the Kernel and <:isolates the Kernel
from the system users, thus making it tamperproof. This is
accoaplished by means of the hardware system/normal amode and

the software ring-crossing mechanisa provided by the Gate

Keeper. The Gate Keeper is comprised of two separate amo-
dules: 1 the USER_GATE aodule, and 2) the
KERNEL_GATE_KEBRPER module. These modules are disjoint, with
the USER_GATE module residing in the Supervisor domain and
the KERNEL_GATE_KEEPER module residing in the Kernel domain.

It is important to note that the USER_SATZ is a separately

linked coaponent in the Supervisor domain ard is not linked
to the Kernel. The only thing in comaon between these two
modules is a set of constants identifying the valid extend=d
instruction set which ¢he Kernel provides to the users.

The Gate Keeper modules presented in this implementation

are only stubs as they do not proviie all of the functions
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required 2f the Gate Keeper. However, the only task not
' provided in this implementation is the validation of parame- 4
} ters passed from the Supervisor to the Kernel. A detailed
description of this parameter validation design is provided
by Coleman [2]. In the process amanagement demonstration,

the Supervisor stubs are written in PLZ/ASM with all parame-

+ers passed by CPU registers. A detailed description of the

Gate Keeper modules and the nature of their interfaces is

—— e

presented below. The PLZ/ASH source listings for the two

Gate Keeper modules are provided in Appendix D.

1. User_Gate Module
The USER_GATE aodule provides the interface structure

between the user processes in the Supervisor domain and the

Kernel. The USER_GATE is comprised of tem procedures (viz.,
entry points) +that correlate on a one to one basis with the
ten "user visible" extended instructions (listed in Figure
10) provided by the Kernel. The only action performsed by
each of these procedures is the execution of the "systea
call" instruction (SC) with a constant value, ideatifying
E the particular extended imstruction invoked, as the source
;; operand.

2, The SC instruction is a system trap that forces the
pj' hardvare into the system mode (Kernel domain) and loads re-
gister 15 with ¢the system stack pointer (Kernel domain

stack). The current instruction counter vaiue (IC) is
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pushed onto the Kernel stack along with the curreant CPU flag

control word (PCW). In addition, the systea trap instruc-

et T

tion is pushed onto ¢the Kernel stack with the upper byte
representing the SC instruction and the lower byte repre-
senting the SC instruction's source operand (viz., the Ker-
nel extendad instruction code). Together, these operations
form an interrupt return (IRET) frame as illustrated in Pig-
ure 44, 'Once this is coaplete, the PCW is loaded with the

FCW value found in the System Call frame of the Program Sta-

——— o b — o 0

tus Area (viz., the hardware “interrupt vector®). The

structure of the Program Status Area is illustrated in Pig-

—

ure 47. The instruction counter is then loaded with the ad-

dress of the SC instruction trap handler; This value is

i also located in the SC frame of the Program Status Area.
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2. Kernel_Gate Keeper Module

The systes trap handler for the Systea Call ianstruction
is the KERNEL_GATE_KEEPER. The address of the
KERNEL_GATE_KEEPER and the Kerpnel PCW value are placed in
the System Call frame of the Prograam Status Area by the
BOOTSTRAP_LOADER module during initialization. The
KERNEL_GATE_KEEPER fetches the extended instruction code
from the trap instruction entry in the IRET frame on the
Kernel stack. This value is then decoded by a "case® state-
ment to determine which extended instruction is to be exe-
cuted. If the extended instruction code is valid, the ap-
propriate Kernel procedure is invoked. Otherwise, anh error
condition is set and no Kernel procedures acre not ianvoked.
Once control returns to the KERNEL_GATE_KEEPER, the CPU re-
gisters and normal stack pointer (NSP) value are pushed onto
the Kernel stack in preparation for return to the Supervisor
domain. It is noted that this operation would normally oc-
cur immediately upon entry into the KEBRNEL_GATE_KELEPER. In
this implementation, however, parameter validation is not
accomplished and the CPU registers are used to pass paraae-
ters to and from the Kernel only for use by the process man-
ageaent demonstration. In an actual SASS environaent, all
parameters would be passed in a2 separate argument list and

the CPU ragisters would appear exactly the saae upon leaving

th2 Kernel as <¢hey did upon entering the Kernel. This is
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important to insure that no data or inforamation is leaked
from the Kernel by means of the CPU registers.

Control is returned to the Supervisor by ameans of the
return mechanisa in the hardware preeampt handler. This ae-
chanism is utilized to preclude the necessity of building a
separate mechanisa for the KERNEL_GATE_KEEPER that would ac-
tually perform the very saame function. To accoaplish this,
the KERNEL_GATE_KEEPER executes an unconditional jump to the
PREEMPT_RET label in PHYS_PREEMPT_HANDLER. This "juamp" to
the hardware preempt handler represents a "virtual IRET" in-
struction providing the same function as the virtual inter-
rupt retarn described in the discussion of the virtual
preempt handler. At this point, the virtual preempt inter-
rupts are unmasked, <the normal stack pointer and CPU regis-
ters are restored from the stack, and control is returned to

the Supervisor by execution of the IRET instruction.

E.  SUNNARX

The implementation of process management functions for
the SASS has been presented in this chapter. The implemen-
tation was discussed in teras of the Event Manager, Traffic
Controller, Distributed Memory Manager, and Gate Keeper mo-

dules.
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Chapter IXIXIII

CONCLUSION

The implementation of process management for the securi-
ty Kernel of a secure archival storage system has been pre-
sented. The process management functions presented provide
a logical and efficient means of process creation, control,
and scheduling. In addition, a simple but effective mechan-
ism for inter-prccess coamunication, based on the eventcount
and sequencer primitives, was created. dork was also coa-
pleted in the area of Kernel database initialization and a
Gate Keeper stub to allow for dual domain operation.

The design for this iamplementation was based on the Zi-
log 28001 sixteen bit segmented microprocessor [22] used :ia
conjuncticn with the Zilog 2Z8010 Mewmory Management Unit
[23]. The actual implementation of process manageament for
the SASS was conducted on the Advanced Micro Computers
Am96/4116 MonoBoard Computer {1] featuring the Am28002 six~-
teen bit non-segmented microprocessor. Segmentation hard-
vare vas simulated by a softvare Meaory Manageament Unit Im-
age.

This implementation was effected specifically to support
the Secure Archival Storage System (SAS3) (17]. However,

the implementation is based on a faaily of Operating Systeas
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[7) designad with a primary goal of providing multilevel in-
formation security. The loop <£free modular design utilized
in this implementation easily facilitates any required ex-
f pansion or modification for other family members. In addi-
f i tion, this implementation fully supports a aultiprocessor
design. While the process management iampleaentation appears
to perform correctly, it has not been subjected to a formal
i test plan. Such a test plan should be developed and iaple-

mented before kernel verification is begun.

A.  POLLOW ON HORK
There are several possible areas in the SASS design that
would be immediately suitable for continued research. In

the area of hardware, this includes, the establishaent of a

multiprocessor environmeant, hardware initialization, and in-
terfacing to the host coamputers and secondary storage.
Further work in <the Kernel includes the actual iamplementa-
tion of the wmemory manager process, and the refineament of
the Gate Keeper and Kernel inrializatioa structures. The
implementatior of the Supervisor has not been addressed o
date. Its areas of research include the implementation of
+he File Manager and Input/Output processes, and the final
design and implementation of the SASS-Hosts protocols.

Other areas that «could also prove interesting in rela-
tion to the SASS include the implementation of dynaaic zemo-

ry aanagemsnt, the support of multilevel hosts, dynaaic pro-
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cess creation and deletion, and the provision

constructive work to be performed by the Idle process.
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EVENT MANAGER LISTINGS
|
1 Z8000ASM 2.02
Loc 0BJ CODE STMT SOURCE STATEMENT
- $LISTON $TTY
F
‘ EVENT_MGR MODULE
; CONSTANT
TRUE =1
| PALSE := 0
‘ READ_ACCESS = 1
WRITE_ACCESS 2= 0
; SUCCEEDED := 2
R SEGMENT_NOT_KNOWN 1= 28
; ACCESS_CLASS_NOT_EQ := 33
! ACCESS_CLASS_NOT_GE := 41
L KST_SEG_NO 1= 2
i NR_OP_KSEGS := 10
' MAX_NO_KST_ENTRIES 1= 54
NOT_KNOWN := XFF
TYPE
H_ARRAY ARRAY[3 WORD]

KST_REC RECORD
(MM_HANDLE  H_ARRAY

SIZE WORD
ACCESS_MODE BYTE
IN_CORE BYTE
CLASS LONG

M_S2G_NO SHORT_INTEGER
ENTRY_NUMBER SHORT_INTEGER]

EXTEENAL
¥M_TICKET PROCEDURE
MM_READ_EVENTCOUNT PROCEDURE
TC_ADYVANCE PROCEDURE
TC_AWALT PROCEDURE
PROCZSS_CLASS PROCEDURE
CLASS_EQ PROCEDURE
CLASS GE PROCEDURE
ITC_GET_SEG_PTR PROCEDURE
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INTERNAL

$SECTION EM_KST_DCL
3 ! NOTE: THIS SECTION IS AN WOVERLAY"®
; OR "PRAME" USED TO DEPINE THE
f FORMAT OP THE KST. NO STOBAGE IS
ASSIGNED BUT RATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
ABREA. (A SEGMENT SET ASIDE POR IT)!

$ABS 0
0000 KST ARRAY(MAX_NO_KST_ENTRIES KST_REC]
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GLOBAL
$SECTION BEM_GLB_PROC

0000 READ PROCEDURE
1 ESRAEEEAEREEEREEEBEEESEBERE SRS
* READS SPECIFIED EVENTCOUNT *
* AND RETURNS IT*S VALUE TO *

APt o T At oy T34 -

* THE CALLER ®
R RERREREEREEEEEEE L RE KRR EE X
* PARAMETERS: *
* PR1: SEGMENT ¢ *
: * R2: INSTANCE *
i BEERERER ERRRERREEREEE EREEEE TR E
: * RETURNS: *
! * RO: SUCCESS CODE *
i * PRR4: EVENTCOUNT *

EEREERRRESEXESE R RERR B EERER KK !

ENTRY
! SAVE INSTANCE !
0000 93Fr2 PUSH aR15, R2

! YREAD" ACCESS REQUIRED !
0002 2102 LD R2, #READ_ACCESS
2004 0001
k { GET SEG HANDLE & VERIPY ACCESS !
0006 5F00 CALL CONVERT_AND_VERIFY !R1:SEG ¢

- 0008 0000°
R2:BEQ. ACCESS
RETURNS:
RO:SUCCESS CODE
R1:HANDLE PTR!
0002 0B0O cp RO, #SUCCEEDED
000C 0002
IP EQ !ACCESS PERMITTED!
000E 5EQE THEN !READ EVENTCOUNT!
0010 001C*
!RESTORE INSTANCE!
0012 97r2 POP R2, @R15
0014 5P00 CALL MM_READ_EVENTCOUNT !R1:HPTR
0016 1000+
3 B2: INSTANCE
- 4 RETURNS:
by R0:SUCCESS CODE
: REY:EVENTCOUNT!
0018 5B08 ELSE IRESTORE SP!
0014 001E*
001C 97F2 POP R2, aR15
PI
001E 9E08 RET
0020 END READ
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0020

0020
0022
0024
0026

0028
002a

002C
002E
0030
00322

0034
0036

0038
003a

2102
0000
SF00
0000°*

0BOO
0002

SEOBE
0038°*
5Fr00
0000#

2100
0002

9E08

TICKET PROCEDURE
{1 REBEEERRE RSB EREEE SRR EE R SEE S kS
* RETURNS CURRENT VALUE OF *
* TICKET TO CALLER AND INCRE- *
* MENTS SEQUENCER FOR MNEXT *

* TICKET OPERATION .
REREERES BER BB R RERRERRES R EFEEEE S
* PARAMETERS: .
* R1: SEGMENT # .
AR ERERRERRERE R R EE RS S R L LS SR
* RETORNS: *
* PRO: SUCCESS CODE .
* RR4: TICKET VALUE .

EEEREERERRRERREFRERERREEEBEEE S ]

ENTRY
! GET SEG HANDLE & VERIFPY ACCESS !
! “YRITE®" ACCESS REQUIRED !
LD R2, #WRITE_ACCESS

CALL CONVERT_AND_VERIFY 1R1:SEG ¢

R2:ACCESS REQ

RETURNS:

RO:SUCCESS CODE

R1:HANDLE PTR!
cp RO, #SUCCEEDED

IP EQ !ACCESS PERMITTED!
THEY ! GET TICKET !

CALL MM_TICKET !R1:HANDLE PTR

RETURNS:
RB4 : TICKET!
! RSTORE SUCCESS CODE 1
LD RO, #SUCCEEDED

PI
RET
END TICKET




003a

a2

—— e e =

- 003a
003C

Q03E
0040

e e e

0042
0ou4u

0046
0ous

004A
004cC

O04E
0050

0052
0054

v Vanur. Wmmewd

91P4
93F2

2102
0001

5FQ0
0000

0800
0002

SEOE
005A"

97F2
9SF4

5F00
0000+

AWAIT PROCEDURE
I ERERERREEREREREARERRRRRREREE KR

* CURRENT BVENTCOUNT VALUE IS *
* COMPARED TO USER SPECIFIED *
® YALUE. IF USER VALUE IS *
# GREATER THAN CURRENT EVENT- *
* COUNT VALUE THEN PROCESS IS #
* WBLOCKED" UNTIL THE DESIRED *
* EVENT OCCURS. .
ERREERERERBRERRRE R BERRBREREE R E K&
* PARANETERS: .
* R1: SEGHENT # *
* R2: INSTANCE (EVENT #) .
* RR4: SPECIPIED VALUB .
BEEBRERRREBREBR R ERERE EE X EREEEEE
* RETURNS: .
* RO: SUCCESS CODE *

RRRBEEREXRREEREXBERBEEEE R ERERERE ]

ENTRY
! SAVE DESIRED EVENTCOUNT VALUE !
PUSHL @R15, RRY
! SAVE INSTANCE !

PUSE  aR15, R2
! “READ"® ACCESS REQUIRED !
LD R2, #READ_ACCESS

! GET SEG HANDLE & VERIFY ACCESS !
CALL CONVERT_AND_VERIFPY IR1:SEG #

82:ACCESS HEQ

RETURNS:

R0:SUCCESS CODE

R1:HANDLE PTR!
CcP RO, #SUOCCEEDED

IF EQ ! ACCESS PERMITTED !
THEN | AWAIT EVENT OCCURRENCE !

! RESTORE INSTANCE !

POP R2, 3R15

{ BESTORE SPECIFPIED VALUE !
POPL RR&, @R15

CALL TC_AWAIT $R1:HANDLE PTR

B2: INSTANCE
RRUSVALUE
RETURNS:
RO:SUCCESS CODE!
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0056 SEO8
0058 00SE!*
005A 95P4
00SC 97r2

00SE 9E08
0060

ELSE 1RESTORE STACK!

POPL RR4, aR1S5
POP R2, 3R15
PI
RET
END AWAIT

oy NS A r Ty W



0060 ADVANCE PROCEDURE
TRRRREERERRREREREEEERE SR R RRERERK

; # SIGNALS THE OCCURRBRENCE OF # ;

| * SOME EVENT. EVENTCOUNT IS ¢ .

i # INCREMENTED AND THE TRAFPIC = f
! # CONTROLLER IS INVOKED TO .
i ® AWAKEN ANY PROCESS AWAITING ¢
1 * THE OCCURRENCE. *
B REREERREEREREREERERE EEEE LGRS
* DARAMETERS: *

L - # R1: SEGMENT # » -

! # R2: INSTANCE (EVENT #) .
f EEEERREERERREEREREREERE R EEE R
i * RETURNS: *
) * RO: SUCCESS CODE *

EEREEREEREERRERERESE SR EEREEE R {

' ENTRY
! SAVE INSTANCE !
0060 93F2 PUSH aR15, R2

|

, ! GET SEG HANDLE & VEBRIPY ACCESS !
| ! "WRITE" ACCESS REQUIRED !

; 0062 2102 LD  R2, #WRITE_ACCESS

| 0064 0000
] 0066 5P00  CALL CONVERT_AND_VERIFY IR1:SEG #

! 0068 0000°

, R2:ACCESS REQ
RETYRNS:

RO :SUCCESS CODE
R1:HANDLE PTR!
006A 0B0OO cP RO, #SUCCEEDED

006C 0002
IP BQ ! ACCESS PERMITTED ! *
006E SEOB THEN | ADVANCED EVENTCOUNT !
0070 007C*
! RESTORE INSTANCE !
0072 97P2 POP  R2, @R15
: 0074 SPO0 CALL TC_ADVANCE {R1:HANDLE PTR
" 0076 0000+
X R2: INSTANCE
- RETURNS:
, RO :SUCCESS CODE! i
0078 SE08 ELSE !RESTORE STACK! {
0072 007E* i
007C 97P2 POP B2, 3R15
PI
007E 9208  RET
0080 END ADVANCE
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INTERNAL
$SECTION ENM_INT_PROC

0000 CONVERT_AND_VERIPY PROCEDURE
! 1RRRRERERKEEBEEERERRRR RS XBE SRR R KRR KK

* CONVERTS SEGMENT NUMBER I0 KST INDEX*
* AND EXTRACTS SEGMENT'S HANDLE FROM =
* KST. IP SUCCESSPUL, THEN ACCESS *
* CLASS OF SUBJECT IS CHECKED AGAINST *
* ACCESS CLASS OF OBJECT TO INSURE =
# THAT ACCESS IS PERMITTED. *
: REERBERE R RR R WM R PR R @A g 2 0 o e g
i * PARAMETERS: *
. * R1: SEGMENT NUMBER *
| # R2: ACCESS REQUESTED *
; RERREERERERREE XSRS REEREE R EBR R G E RR
* RETURNS: »
1 *# RO: SUCCESS CODE *
* R1: HANDLE POINTER »

EEERERBE R AL R EX RERRERERAREEE R EREREREEE EX

K ENTRY
» ! SAVE REQUESTED ACCESS !
! 0000 93F2 PUSH @R15, R2
| ! GET SEGMENT HANDLE !
E. 0002 SFOQ CALL GET_HANDLE IR1:SEG #
| 0004 0062°

N

RETURNS:

RO :SUCCESS CODE

R4 :HANDLE PTR

85 :CLASS PTR!
0006 0B0OO cp RC, #SUCCEEDED

0008 0002
IF BQ ! SEGMENT IS KNOWN !
000A SEOE THEN ¢ VERIPY ACCESS !
000C 005E*
{ SAVE HANDLE & CLASS PIR !
000E 91P4 PUSHL 2R15, RRU
! GET SUBJECT'S SAC !
0010 5P00 CALL PROCESS_CLASS !RETURNS:
0012 0000#* $
RR2:PROC CLASS!
{ RETRIEVE SEG CLASS POINTER !
0014 9520 POPL RRO, aR15
! GET SEGMENT'S CLASS 1
0016 1414 LOL  RR4, @Rt
{ RETRIEVE REQUESTED ACCESS !
0018 97P1 POP R1, 3R15
! SAVE HANDLE POINTER ! b
001A 93P0 PUSH aR15, RO
! CHECK ACCESS CLEARANCE ! !
; 001C 0831 cp BR1, #WBITE_ACCESS 1
, 001E 0000 4
IP BQ ! WRITE ACCESS REQUESTED !
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R Y

0020
0022
0024
0026

0028
002A

002C
002E
0030
0032
0034
0036
0038
003A

003C
003E
0040
0042

oouy
0046

0048
00u4a
00uC
004E
0050
0052
0054
0056

0058
0052
005¢C

00SE

0060
0062

SEOE
0040°*
SF00
0000+

0B01
0000

52Z0E
0038°
2100
0021
SE08
063C*
2100
0002

SE08
0058°
5F00
0000%

0801
0000

SEOE
0054"
2100
0029
SE08
0058°*
2100
0002

97P1
5E08
0060°*
97P2

9E08

- v ———— e o b

THEN

CALL CLASS_BQ !RR2:PROCESS CLASS
RR4:SEGMENT CLASS
BRETURNS:
R1: CONDITICN CODE!

cep R1, #PALSE

IFP EQ I1ACCESS NOT PEBRMITTED!
THEN

LD RO, #ACCESS_CLASS_NOT_EQ
ELSE {ACCESS PERMITTED!
LD RO, #SUCCEEDED

PI
ELSE ! READ ACCESS REQUESTED !

CALL CLASS_GE !RBR2:PROCESS CLASS

RR4:SEGMENT CLASS

RETURNS:

R1:CONDITION CODE!
cp R1, #PALSE

IF EQ {ACCESS NOT PERMITTED!
THEN

LD RO, #ACCESS_CLASS_NOT_GE
ELSE {ACCESS PERMITTED!
LD RO, #SUCCEEDED

FI
FI
! RETRIEVE HANDLE POINTER !
pop R1, 3RS
ELSE

! RESTORE STACK !
POP R2, 3R15
PI
RET
END CONVERT_AND_VERIFY
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0062 GET_HANDLE PROCEDURE
1EREERARBRERSEFRRERERE SR BRBRE K S

* CONVERTS SEGMENT NUMBER TO #

* KST INDEX AND DETERMINES IF #
* SEGMENT IS KNOWN. IF KNOWN *
* POINTER TO SEGMENT HANDLE *
* AND POINTER TO SEGMENT CLASS*
* ABRE RETURNED. *
ERRRBEREERERERBEEREEERE SR ERBERE R R E
* DARAMETERS: *
*# R1: SEGMENT NUMBER *
EBE SRR B EREREEEEERRERE SRR RBERE LS
# RETURNS: *
* BRO: SUCCESS CODE .
* R4: HANDLE POINTER *
* RS: CLASS POINTER .
SREEREREREE SR B EERBEEE KRR R RRE KR RK !
ENTRY

{ CONVERT SEGMENT # TO KST INDEX # 1
0062 0301 SUB R1, #NR_OP_KSEGS

0064 Q00A
! VERIFY KST INDEX !
0066 2100 LD RO, #SUCCEEDED

0068 0002
006A 0801 cp R1, #0
006C 0000
IF LE ! INDEX NEGATIVE!
006E SEOA THEN
0070 007A*
0072 2100 LD RO, #SEGMENT_NOT_KNOWN
0074 001C
0076 S5E08 ELSE {INDEX POSITIVE!
0078 0086°
007a 0801 cp R1, #MAX_NO_KST_ENTRIES
007C 0036
IF GT 1EXCEEDS MAXIMUM INDEX!
007E SE02 THEN (INVALID INDEX!
0080 0086°*
0082 2100 LD RO, #SEGMENT_NOT _KNOWN
0084 001C
FI
PI
0086 0B0O ce RO, #SUCCEEDED
0088 0002
I? EQ !INDEX VALID!
006A SEOE THEN
008C OOBE®
! SAVE KST INDEX !
008E 93P1 PUSH @aR15, RB1
! GET KST ADDRESS !
0090 2101 LD R1, #KST_SEG_NO
0092 0002
0094 SP00 CALL TITC_GET_SEG_PTR !R1:KST_SEG_NO
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0098

009A
009cC

009E

0040
00a2
00a4

00a6
00a8
00aA
00AC
00AE
00BO
00B2
00B4

00B6
00B8

00BA
00BC

00BE
00CO

97F3

1902
0010

8103

4D31
000E
OoFrP

SEOE
ooB2*
2100
001cC
SE08
Q00BE*
2100
0002

7634
0000

7635
0002

9E08

! RETRIEVE
POoP R3, 2

! CONVERT K
MULT RRZ,

! COMPUTE K
ADD B3, R
! SEE IP SE
cp KST.H

IP EQ !SEGHM
THEN
LD RO, #
ELSE ISEGH
LD RO, ¢

! GET HAN
LDA R4,

! GET CLA
LDA RS,

PI
FI
RET
END GET_HANDLE
END BVENT_NGR

RETURNS:
RO:KST ADDR!
KST INDEX # !
R15

ST INDEX # TO KST OFFPSET !

$SIZEOF KST_REC
ST ENTRY ADDRESS !
0

GMENT IS KNOWN !
_SEG_NO (R3) , #NOT_KNOWN

ENT NOT KNOWN!

SEGMENT _NOT_KNOWN
ENT KNOWN!
SUCCEEDED

DLE POINTER !
KST. MM_HANDLE (R3)

SS POINTER !
KST.CLASS (R3)
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A
TRAFPIC CO

Z28000AsSH 2.02

LoC

OBJ CODE STHNT SO

SLISTON S$TTY
TC MODULE

CONSTANT

! ssxksess SYSTEM

NR_PROC
VP_NR
NR_CPU
NR_KST

{ sxssssen SYSTE

RUNNING
READY
BLOCKED
IDLE_PROC
NIL

INVALID
KERNEL_STAC
USEE_STACK
KST_SEG
KST_LINIT
USER_PCW
WRITE
{INDICATES
SECURITY C
SYSTEM_LOW
STK_OPFSET
REMOVED
TRUE

FALSE
SUCCEEDED

TYPE
AP_PTR #ORD
VP_PTR WORD
ADDRESS WORD
H_ARRAY ARRA

prendix B

NTROLLER LISIINGS

URCE STATEMENT

PARANETERS *#s&sexs |
:= 4
= 2
:= 2
:= 54

M CONSTANTS sssxngkx |
:= 0

.
0w
-

2

XD DDD
%FFFF
%EEEE

K 1
3
2

1
%1800
0

LOWEST SYSTEM
LASS!

= 0

:= KPP

:= XABCD

7{3 WORD]
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AP_TABLE RECORD

[ NEXT_AP AP_PTR
DBR WORD
SAC LONG
PRI INTEGER
STATE INTEGER
APPINITY WORD
VP_ID VP_PTR
HANDLE H_ARBAY
INSTANCE WORD
VALOE LONG
PILL_2 ARRAY[2 WORD]
]
RUN_ARRAY ARRAY[VP_NR AP_PTR])
RDY_ARRAY ARRAY{ NR_CPU AP_PTR]
AP_DATA ARRAY[ NR_PROC AP_TABLE)
VP_DATA RECORD
[NR_VP ABRAY[ NR_CPU WORD ]
PIRST ARRAY( NR_CPU VP_PTR]
]
KS™_REC RECORD
(4M_HANDLE  H_ARRAY
SIZE WORD
ACCESS BYTE
IN_CORE BYTE
CLASS LONG
M_SEG_NO SHORT_INTEGER
ENTRY_NUM  SHORT_INTEGER
]
EXTERNAL
K_LOCK PROCEDURE
K_UNLOCK FROCEDUBE
SET_PREENPT EROCEDURE
SWAP_VDBR PROCEDURE
IDLE PROCEDURE
RUNNING_VP PROCEDURE
CREATE_INT_VEC PROCEDURE
LIST_INSERT PROCEDURE
ALLOCATE_MNNU PROCEDURE
MM_ALLOCATE PROCEDURE
UPDATE_MNU_IMAGE PROCEDURE
CREATE_STACK PROCEDURE
MM_ADVANCE PROCEDURE
MM_READ_EVENTCOUNT PROCEDORE
G_AST_LOCK WORD
PREEMPT_RET LABEL
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L $SECTION TC_DATA
. INTERNAL

i 0000 APT RECORD

[ LocK ¥ORD
RONNING_LIST  RUN_ARBAY
READY_LIST RDY_ARRAY
BLOCKED_LIST  AP_PTR
PILL_3 LOHG
VP VP_DATA
PILL ARRAY[ 4 WORD]
AP AP_DATA

]

ITHESE VARIABLES ARE USED DURING TC
INITIALIZATION TO SPECIFY AVAILABLE
ENTRIES IN THE APT, AND ARE INITIAL-
IZED BY TC_INIT IN THIS IMPLEMENTATION!

0040 NEXT_VP WORD
00a2 APT_ENTRY WORD
$SECTION TC_LOCAL
$ABS 0
INOTE: USED AS OVERLAY ONLY!
0000 ARG_LIST RECORD
(REG ARRAY[ 13 WORD]
Ic WORD
CPU_ID WORD
sact LONG
PRI WORD
USR_STK WORD
KER_STK WORD
KST1 LONG
]
$ABS 0

INOTE: USZD AS STACK PRAME FOR
STORAGE OF TEMPORARY VARIABLES
FOR CREATE_PROCESS.!
0000 CREATE RECORD
(ARG_PTR  WORD
DBR_NUM  WORD
LIMITS WORD
SEG_ADDR ADDRESS

N_S_P WORD
1
$AB3 0
0000 HANDLE_VAL KECORD
(HIGE  LONG
LO§  WORD
]

{THE POLLOWING DECLARATION IS UTILIZED
AS A STACK FRAME POR STORAGE OF
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TEMPORARY VARIABLES UTILIZED BY
TC_ADVANCE AND TC_AWAIT.!

| $ABS 0
0000 TENP RECORD
(HANDLE_PTR  WORD
EVENT_NR WORD
EVENT_VAL LONG
ID_VP WORD
; CPU_NUN WORD
; HANDLE_HIGH LONG
k | ]aAuan_Lou WORD

{

X $SECTION TC_KST_DCL

' INOTE: KST DECLARATION IS USED HERE

{ TO SUPPORT KST INITIALIZATION FOR
THIS DEMONSTRATION ONLY. THIS
DECLARATION AND INITIALIZATION
SHOULD BXIST AT THE SEGMENT MANAGER

| LEVEL AND THOUS SHOULD BE REMOVED

a UPON IMPLEMENTATION OF SYSTEM

' INITIALIZATION.!

$ABS 0
0000 KST ARRAY[ NR_KST KST_REC]
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0000

0000
0002

0004
09006
0008
000A
000C
000E

0010
0012
0014
0016
co1s
001a
001C

001E
0020
0022
0024
0026
0028
0022
oo02c

002E
0030
0032
0034
0036
0038

6132
0006"

0B02
PPFP
S5EQE
0010"
5EQ8
0026°"

4p21
002A*
0001
5EQ0E
Q01E!*
5E08
0026°"

6124
0020°
AN42
ESEF
0802
FPPP
S5EOE
003c*

4315
0002*
DDDD
5F00
0000%
SE08

$SECTION TC_INT_PROC \
TC_GETWORK PROCEDURE
1 BREERE R B L ER R BB BEEEE RS R SR RE B S
* PROVIDES GENERAL MANAGE- *
* MENT OP USER PROCESSES BY *
* EPPECTING PROCESS SCHEDU- *
* LING ON VIRTUAL PROCESSORS*
SEESESSE RSB EP LS SE SR RS EE S

* PARAMETERS: .
* R1: CURRENT VP ID .
* R3: LOGICAL CPU # .
SRR RNEBRR BN EBE LR R E RS RB R EERx
* LOCAL VARIABLES: .
* R2: NEXT READY PROCESS *
* BR4: AP PTR .

R RERNEEEEREEEREEREERE BN REEEE
ENTRY
{ PIND PIRST READY PROCESS 1
LD R2, APT.READY_LIST (R3)
GET_READY_AP:
DO I!WHILE NOT (END OP LIST OR READY)!
CP R2, #NIL
IP BQ !NO READY PROCESS! THEN
EXIT PROM GET_READY_AP
PI
CP  APT.AP.STATE(R2), #READY
IF EQ !PROCESS READY! THEN
EXIT PROM GET_READY_AP
PI
! GET NEZXT AP PROM LIST !
LD R4, APT.AP.NEXT_AP (R2)
LD R2, R4
oD
CP  R2,#NIL
IF BQ | IP ¥O PROCESSES READY ! THEN
! LOAD IDLE PROCESS !
LD APT.RUNNING_LIST (R1), #IDLE_PROC
CALL IDLE

ELSE
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003a

003C
003E
0040
0042
0044
0046
0048
004a
004cC
004E
0050

0052
0054

005z<"

6P12
0002*
4D25
002A?
0000
6P21
002E*
6121
0022*
5P00
0000#

9E08

! LOAD PIRST READY AP !
LD  APT.RUNNING_LIST (R1), R2

LD APT.AP.STATE (R2) , #RUNNING

LD APT.AP.VP_ID(R2), R1
LD R1, APT.AP.DBR (R2)
CALL SWAP_VDBR ! (R1:DBR)!
FI

RET
END TC_GETWORK




s+ -2 e - ey ﬁ

0054 VIRTUAL_PREEMPT_HANDLER PROCEDURE
1SS RERREEREER R AR R EE SRB B SR
* LOADS FIRST READY AP *
® IN RESPONSE TO PREENPT *
* INTERRUPT *
XA EEERREREE RS ERRESE S EE |

{

{

{

|

I ENTRY
t##% CALL WAIT_LOCK (APT~.LOCK) *#!
{«* RETURNS WHEN PROCESS HAS LOCKED APT #%!

: 0054 7604 LDA R4, APT.LOCK

i 0056 0000°

0058 SFOO CALL K_LOCK
{ 005A 0000#*

! GET RUNNING_VP ID 1
005C SF00 CALL RONNING_VP !RETURNS:

005E 0000¢ !
R1:VP_ID i
R3:CPU #! |
: ! GET AP ! |
: 0060 6112 LD R2, APT.RUNNING_LIST(R1)
! 0062 0002°
| ! IF NOT AN IDLE PROCESS, SET IT TO READY !
z 0064 0B02  CP R2, #IDLE_PROC
0066 DDDD |
0068 SE06 IF NE ! NOT IDLE ! THEN g
006a 0072° '
006C 4D25 LD APT.AP.STATE(R2) , $READY
006E 002a*
0070 0001 !

FI

! LOAD FIRST READY PROCESS !

0072 SF00 CALL TC_GETWORK !R1:VP_ID
0074 0000°¢

IR

B3:CPU #!¢

INOTE: THIS IS THE INITIAL POINT OF
3 EXECUTION POR USER PROCESSES.!
A VIRT_PREEMPT_RETURN:
. {#* CALL UNLOCK (APT-~.LOCK) %#!
o {#* RETURNS WHEN PROCESS HAS UNLOCKED APT **!
t®** AND ADVARCED ON THIS EVENT #%{
0076 7604 LDA R4, APT.LOCK
0078 0000°*
007 SPOO CALL K_UNLOCK
007C 0000%
! PERPORM A VIRTUAL INTERRUPT RETURN !
’ tNOTE: THIS JUMP EFPECTS A VIRTUAL
IRET INSTRUCTION. !
007E 5E08 JP PREEMPT_RET
0080 0000+
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GLOBAL
$SECTION TC_GLB_PROC

0000

0000 4DOS
0002 09%a0"
0004 0000
0006 4D0S
0008 00A2°
000a 0000
000C 4DO5
00QE 000A°*
0010 PFPF
0012 4D08
0014 0000°

- — - _—

0016 2104
0018 0000

001A 0BO4
001C 0004

001E SEQE
0020 0026°
0022 S5E08
0024 0036°

1 0026 4D45
b 0028 0006°
002A FFPP

TC_INIT PROCEDURE

(SR ERRREEEBERBEEERER SR EERRRE R K

* INITIALIZES APT HEADER *

* AND VIRTUAL INT VECTOR *
BB BBEREREER R LB R LR BB REESSR &S

* PARAMETERS: .
* R1: CPU_ID .
* R2: NR_VP »

e R T P P T Y]

ENTRY
! NOTE- THE MEXT POUR VALUES ARE
ONLY TO BE INITIALIZED ONCE. !

LD kzIT_VP, #0

LD APT_ENTRY, #0

LD APT.BLOCKED_LIST, #NIL

CLR APT.LOCK

(EEERREREEREE IS ERRARERREE R A EERRGEREY
NOTE: THE FOLLOWING CODE IS INCLUDED

ONLY POR SIMULATION OF A MULTIPROCESSOR
ENVIRONMENT. THIS IS TO INSURE THAT THE
READY LIST(S) AND VP DATA OF THE SIMULATED
CPU(S) ARE PROPERLY INITIALIZED. 1IN AN !
ACTUAL MULTIPROCESSOR ENVIRONMENT, THIS ;
BLGCK OF CODE SHOULD BE REMOVED.
SEEREBERREREEREEEEREERREEEEEER RERF R R SRR ER]

LD R4, #0

DO
cp B4, #NR_CPU*2

IF EQ !ALL LISTS INITIALIZED!
THEN BXIT

PI
! INITIALIZE READY_LISTS AS EMPTY !
LD APT.READY_LIST(R4), #NIL

! INITIALLY MABK ALL LOGICAL CPU'S
AS HAVING 1 VYP. THIS IS NECESSARY
TO INSURE TC_ADVANCE WILL PUNCTION
PROPERLY, AS IT EXPECTS EVERY CPU
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- TO HAVE AT LEAST 1 vP. !

002C 4D45 LD APT.VP.NR_VP(R4), #1
- 002E 0010°
] 0030 0001
4 0032 A941 INC R4, %2
] 0034 E8P2 0D

! END MULTIPROCESSOR SIMULATION CODE.
EXERERREREEERRBEABEESSRBREREE SR RS EERRRE S X |

0036 6FP12 LD APT.VP.NR_VP(R1), R2

it o ks s s e T

‘ 0038 0010°
L 003A 6103 LD R3, NEXT_VP
. 003C 00A0*
S 003E 6F13 LD APT.VP.PIRST(R1), R3

' 0040 0014
| { RECOMPUTE NEXT_VP VALUE POR IC
o INITIALIZATION OF NEXT LOGICAL
F cPU. !

| 0042 A125 LD RS, R2 ,

‘ 0044 1904 MULT RRBR4, #2

0046 0002

. 0048 8153 ADD R3, RS
| 004A 6PO3 LD NEXT_VP, R3
: 004C 00A0*
! INITIALIZE RUNNING LIST !
004E 6113 LD R3, APT.VP.PIRST(R1)

0050 0014
DO
0052 0802 cCp R2, #0
0054 0000
0056 SEOE IF EQ THEN EXIT FI
0058 005E*
005a SEO08
005C 006a°
00SE 4D35 LD APT.RUNNING_LIST (R3), $IDLE_PROC
0060 0002°
0062 DDDD
0064 1931 INC R3, #2
0066 AB20 DEC R2, #1

0068 ESFP4 oD

006A 4D15 LD APT.READY_LIST(R1), #NIL
006C 0006°

CO6E FFPF

0070 2101 LD R1, #0

0072 0000

! ENTRY ADDRESS !
0074 7602 LDA R2, VIRTUAL_PREEMPT_HANDLER

0076 0054°*
6078 SP00O CALL CREATE_INT_VEC
4 0071 0000%*
IR1:VIRTUAL INTERRUPT #
‘ R2: INTERRUPT HANDLER ADDRESS!
X i 007C 9E08 RET
, 0078 END TC_INIT
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0078

007BE
0080

0082
0084

Q086
coss
008a
008c

008E
0090

0092
0094

2096
0098
009A

009C
0Q9E

0040
0042
00AL
Qcas
0o0as

00A2
0dacC
Q0AE
00B0

0082

o3or
0004

6FFE
0000

7604
0000°*
SF00
0000%

SFQ0
0000%*

6101
00a2’*

2102
0020
8112

6F02
00a2?

4p15
0020°
PFPP
6F10
0g22°?

54B2
001E
5p12
0024

61E2

CREATE_PROCESS PROCEDURE
1SS REEEREERRER AR SR EE LSRR

* CREATES USER PROCESS #*

* DATABASES AND APT »
* BNTRIES .
SEERE RS REERE R BB RS RE RS B
* PARAMETERS: .

* R14: ARGUMENT PTR *
SEERBBARSEVAABRSRBR R RS S S |

ENTRY
{NOTE: THIS PROCEDURE IS A STOUOB TO ALLOW
PROCBSS INITIALIZATION POR THIS
DEMONSTRATION.!
! ESTABLISH STACK FRAME FOR LOCAL
VARIABLES. !
SUB B15, #SIZEOF CREATE

! STORE INPUT ARGUMENT POIMTER !
LD CREATE.ARG_PTR (R15), R14

¢ LOCK APT !
LDA R4, APT.LOCK

CALL K_LOCK
! RETURNS WHEN APT IS LOCKED |
{ CREATE MNU ENTRY FOR PROCESS !
CALL ALLOCATE_MMU !RETURNS:

BO: DBR #!
{ GET NEXT AVAILABLE ENTRY IN APT !
LD R1, APT_ENTRY

! COMPUTE APT OPFSET !
LD B2, 3SIZEOF AP_TABLE

ADD R2, R1

! SAVE NEXT AVAILABLE APT ENTRY |
LD APT_ENTRY, B2

! CREATE APT ENTRY FOR 2ROCESS !
LD APT. AP. NEXT_AP (R1), #NIL

LD APT.AP.DBR(R1), RO

! GET PROCESS CLASS !
LDL RR2, ARG_LIST.SAC1(R14)

LDL APT.AP,.SAC(R1) , RR2

! GET PROCESS PRIORITY !
Ld R2, ARG_LIST.PRI1(R14)
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N U

00B4 0022
00B6 6F12
00B8 0028°

00BA 61E2
00BC 001C
00BE 6P12
00co 002cC’

00C2 7623
00Cu4 0006°
00C6 7604
00C8 0020°*
00CA 7605
00CC 0028¢
00CE 7606
00D0 002aA*
0002 2107
00D4 0001
00D6 AD21

00D8 6FFPO
00DA 0002
00DC SFO00
0ODE 0000%

00EO0 7604
00E2 0000
00E4 SFOO
00E6 0000+

00ES8 61PE
0O0EA 0000
00EC 61E3
00EE 0024

00FO0 6FF3
00F2 0004

oor4 S5FPO0
00F6 0000¢

O0FP8 A128

00FA 0108

LD APT.AP.PRI (R1) , R2

! GET LOGICAL CPU # !
LD B2, ARG_LIST.CPU_ID(B14)

LD APT.AP.AFFINITY(RY), R2

!THREAD IN LIST AND MAKE READI!
LDA R3, APT.READY_LIST(R2)

LDA R4, APT.AP.NEXT_AP
LDA R5, APT.AP.PRI

LDA R6, APT.AP.STATE
LD BR7, #READY

EX B1, R2
t SAVE DBR # !
LD CREATE.DBR_NUM (815), RO

CALL LIST_INSERT

!R2: 0BJ ID
R3: LIST HEAD PTR
R4: NEXT OBJ PTR
RS: PRIORITY PTR
R6: STATE PTIR
R7: STATE!

! UNLOCK APT !

LDA R4, APT.LOCK

CALL K_UNLOCK

ICREATE USER STACK!
! RESTORE ARGUMENT POINTER !
LD R14, CREATE.ARG_PTR(R1S5)

LD R3, ARG_LIST.USR_STK (R14)

I SAVE LIMITS !
LD CREATE. LIMITS (R15), B3

CALL MMN_ALLOCATE (R3: & OF BLOCKS

RETURNS:
R2: STABRT ADDR!
ICOMPUTE & SAVE NSP!
LD R8, R2
! ESTABLISH INITIAL SP VALUE
POR USER STACK. !
ADD R8, #STK_OPPSET
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00FC
OOFE
0100

0102
0104
0106

0108
010A
010C
010E
0110
0112
0114
0116

0118
ot11a
011C
011E
0120
0122

0124
0126
0128
012a
012C
0128
0130
0132

0134
0136
0138
013a

013cC

0008

61F4
0004
AB4O

61F0
0002
2101
0003
2103
0000
S5F00
0000*

61PE
0000
61E3
0026
5200
0000*

61F0
0002
2101
0001
A134
AB4O
2103
0000

6FPF2
0006
SF00
0000+

61FE

LD CREATE.N_S_P (R15), B8

! RESTORE LIMITS !
LD R4, CBREATE.LIMIIS (R15)

DEC R4 ISBEG LIMITS!
! RESTORE DBR !
LD RO, CREATE.DBR_NUM(R15)

LD R1, #USER_STACK
LD R3, #WRITE (ATTRIBUTE!
CALL UPDATE_MMU_IMAGE

1RO: DBR #

R1: SEGHENT ¢

R2: SEG ADDRESS

R3: SEG ATTRIBUTES

B4: SEG LIMITS!
{CREATE KERNEL STACK!
! RESTORE ARGUMENT POINTER !
LD R14, CREATE.ARG_PTR(R15)

LD R3, ARG_LIST.KER_STK (R14)
CALL MM_ALLOCATE !R3: # OF BLOCKS

RETURNS

R2: START ADDR!
IMAKE M MU ENTRY!
! RESTORE DBR # !
LD R0, CREATE.DBR_NUM(R15)

LD R1, #KERNEL_STACK

LD R4, R3
DEC R4
LD R3, #WRITE

! SAVE START ADDRESS !
LD CREATE.SEG_ADDR(R15), R2

CALL UPDATE_MMU_IMAGE

!RO: DBR #

R1: SEGMENT #

R2: SEG ADDRESS

R3: SEG ATTRIBUTES

R4: SEG LIMITS!
1ESTABLISH ARGUMENTS!
! BESTORE ARGUMENT POINTER !
LD 814, CREATB.ARG_PTR(R15)
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013E

0140
0142
0144
0146
0148
014a

0 t4cC
O14E
0150
: 0152
; 0154
0156
' 0158
; 015a

A+ o

015C
01SE
0160

: 0162
3 0164
0166
0168
0162
016C

016E
0170

0172
0174
0176
0178

017A
017C
’ {

017E

0000

61F1
0006
2103
1800
61E4
0014

61FS
0008
7606
0076°
030F
0008
1CF9
0303

ATFO
93F1
A1E1

5C11
020C
0000
97P1
SF00
0000%

010F
0008

2103
0001
SF0Q
0000+

61F0
0002

6FF2

! RESTORE STACK ADDRESS !
LD R1, CREATE.SEG_ADDR(R15)

LD R3, #USER_FCW
LD R4, ARG_LIST.IC(R14)

! RESTORE INITIAL NSP !
LD RS, CREATE.N_S_P (B1S5)

LDA R6, VIRT_PREEMPT_RETURN
SuB *15, #8
Loy @R15, R3, #4

! LOAD ARGUMENT POINTER FOR
CREATE_STACK CALL !

LD RO, R15

pUsH aR15, R1

LD R1, R14

! LOAD INITIAL REGISTER VALUES TO
BE PASSED TO USER PROCESS AS
INITIAL PARAMETERS., !

LDH4 R2, ARG_LIST.REG(R1), #13

POP BR1, aR1S
CALL CREATE_STACK

IR0z ARGUMENT PTR
R1: TOP OF STACK
R2-B14: INITIAL

REG STATES!

{NOTE: THE ABOVE INITIAL RES STATES
REPRESENT THE INITIAL PARAMETERS
(V1Z., BEGISTER COMTENTS) THAT A
USER PROCESS WILL RECEIVE UPON
INITIAL EXECUTION. !

ADD R15, #8 {OVEBLAY PARAMETERS!

! ALLOCATE KST !
LD R3, #KST_LINMIT

CALL MM _ALLOCATE !R3:# QF BLOCKS

RETURNS

R2: START ADDR!
! BESTORE DBR !
LD RC, CREATE.DBR_NUM (R15)

! SAVE KST ADDRESS !
LD CREATE.SEG_ADDR(R15) B2
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{MAKE MMU ENTRY POR KST SEG!
LD R1, #KST_SEG

LD R3, #WRITE {ATTRIBUTE!
LD R4, #KST_LIMIT-1
UPDATE_MMU_IMAGE

1RO: DBR #
R1: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!
! RESTORE KST ADDRESS !
LD B2, CREATE.SEG_ADDR(BR15)

!t CREATE INITIAL KST STUB !
CALL CBREATE_KST 1R2:KST ADDR!

! REMOVE TEMPORARY VARIABLE
STACK FRAME. !
aDD R1S, #SIZEOF CREATE

RET
END CREATE_PROCESS




01A0 CREATE_KST PROCEDURE
1 ook deafe s s 3 ok e o e A o e ok ok
* CREATES KST STUB FOR *
* PROCESS MANAGEMENT »
* DEMO. INSERTS ROOT =
* ENTRY IN KST. NOT *
* INTENDED TO BE FINAL *

* PRODUCT. *
SRERERREERREREEER BB REEE R
# PARAMETERS: *
* R2: KST ADDRESS *

A e e ol 30 2ol o e o R o 2o K R ¢

g ENTRY
INOTE: THIS PROCEDURE IS A STUB USED
i FOR INITIALIZATION IN THIS IMPLEMENTATION
: ONLY. THE ACTUAL INITIALIZATION CODE
, FOR THE KST WILL RESIDE AT THE SEGMENT
| MANAGER LEVEL ONCE IMPLEMENTATION OF
SYSTEM INITIALIZATION IS EFFECTED. !

- ! CREATE ROOT ENTRY IN KST !
A 01A0 1406 LDL RR6, #-1 (ROOT HANDLE!
| 0142 FFFP
| 01A4 PFPP

0146 5D26 LDL  KST.MM_HANDL™(R2), RR6

01a8 0000

[P

ISET ROOT ENTRY # IN G_AST !
01AA 4D25 LD KST.MM_HANDLE[ 2] (R2) , #0
01aC 0004
0 1AE 0000
! SET ROOT CLASSIPICATION !
01B0 1406 LDL RR6, #SYSTEM_LOW
01B2 0000
0184 0000
01B6 5D26 LDL  KST.CLASS(R2), RB6
01B8 000A
ISET MENTOR SEG #!
01BA 4C25 LDB  KST.M_SEG_NO(R2), #0
01BC 000E
01BE 0000
IINITIALIZE PREE KST ENTRIES
POR DEMO. NOT PULL KST!
: 01C0 2101 LD R1, #10
e 01C2 000a
.. . Do
01C4 0BO1 CP R1, #0
01C6 0000
01C8 SEOE IP EQ THEN EXIT PI
01CA 01D0*
01CcC SE08
01CE 01DE*
01D0 0102 ADD R2, #SIZEOP KST_REC
01D2 0010
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01D4
01D6
0108
01DA
01DC
01DE
01B0

4c2s
000E
PFPFP
AB10
ESF3
9E08

LDB KST.M_SEG_NO (R2), #SFF

DEC R1
oD
RET
END CREATE_KST
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01E0 TC_ADVANCE PROCEDURE
IRER RS EERRRBARREEBESERASHRESR B E

# EVENTCOUNT IS ADVANCED BY ¢
* INVOCATION OF MM_ADVANCE. *
# DROCESSES THAT ARE AWAITING
* THIS EVENT OCCURRENCE ARE ¢
*+ RENOVED PROM THE BLOCKED LIST®
* AND MADE READY. THE READY
* LISTS ARE THEN CHECKED TO ¢
*+ INSURE PROPER SHEDULING IS
* EPPECTED. IF NECESSARY VIR~
* TUAL PREEMPTS ARE SENT TO ALL®
* THOSE VP'S BOUND TO LOWER ¢
* PRIORITY PROCESSES. .
SELBB R R R ESEEEEEEEE R R EBEREE e
*+ PARAMETERS: *
* R1: HANDLE POINTER *
* R2: INSTANCE (EVENT #) .
RERERR BB XERREEREEEEER B ECEREER S &
*+ RETURNS: .
* RO: SUCCESS CODE .

EEEBEREEREREBEBREERL R AR ERBEER SRR |

ENTRY
{ ESTABLISH TEMPORARY VARIABLE
STACK PRAME. !
Q1EO0 030P sSUB R1S5, #SIZEOF TENMP
01E2 0012
! SAVE INPUT ARGUMENTS !
01E4 6FP1 LD TEMP.HANDLE_PTR(R15), R1
01E6 0000
01E8 €FF2 LD TEMP.EVENT_NR (R15), B2
01EA 0002
! LOCK APT !
01EC 7604 LDA R4, APT.LOCK
01EE 0000°
01P0 SFOO CALL K_LOCK
01F2 0000%
! RETURNS WHEN APT IS LOCKED !
! ANNOUNCE EVENT OCCURRENCE BY
INCREMENTING EVENTCOUNT IN G_AST!
01P4 SFOO CALL HH_ADVINCB {R1:HANDLE PTR
01F6 0000%
R2 :INSTANCE
RETURNS:
RO :SUCCESS CODE
‘ RR2: EVENTCOUNT !
? 01P8 0B0O cp RO, #SUCCEEDED
‘ 01PA 0002
01FC SEOE IP BQ THEN
é 01PE 0372¢
! SAVE EVENTCOUNT !
0200 5DP2 LDL  TEMP.EVENT_VAL (R15), BA2
0202 0004
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.

0204
0206

0208
020A

020C
020E
0210
0212
0214
0216
0218
021A

021C
021E
0220
0222

0224
0226

0228
022\
022C
022E

0230
0232

0234
0236
0238
023A

023C
023
0240
0242
0244
02u6

0248
02u4A
Q2u4cC
024E

61F0
0002

61P1
0000

5414
0000
S5DP4
000C
6114
0004
6PPY
0019

6101
000a"
7606
000A*

0B01
1334

SEQE
0230
5208
0284

6117
0020°

S4PU
000cC
5014
0030

5EQB
02a2¢
61P4
0010
4BV
0034

SEQOE
029cC*
61r0
0002

! RESTORE INSTANCE !
LD RO, TENP.EVENT_NR (R15)

! RESTORE HANDLE POINTER !
LD B1, TEMP.HANDLE_PTR(R15)

! SAVE HANDLE 1
LDL RR4, HAMDLE_VAL.HIGH (R1)

LDL TENP.HANDLE_HIGH (R15), RR4

LD R4, HANDLE_VAL.LOW (R1)

LD TEMP.HANDLE_LOW (R1S), R4

! AWAKEN ALL PROCESSES AWAITING
THIS BVENT OCCURRENCE !

! GET PIRST BLOCKED PROCESS !

LD R1, APT.BLOCKED_LIST

LDA R6, APT.BLOCKED_LIST

WAKE_UP:

Do
! DETERMINE IF AT END OF BLOCKED LIST !
cp R1, #¥IL

IP EQ ! ¥NO MORE BLOCKED PROCESSES !
THEN EXIT FRONM WAKE_UP

PI

! SAVE NEXT ITEM IN LIST |

LD R7, APT.AP.NEXT_AP(R1)

! DETERMINE IF PROCESS IS ASSOCIATED
4ITH CURBRENT HANDLE !

LDI, RR4, TEMP.HANDLE_HIGE (R15)

CPL RR4, APT.AP.HANDLE(R1)

IF EQ 'HIGH HANDLE VALUE MATCHES!
THEN

LD R4, TEMP.HANDLE_LOW (R15)
cP R4, APT.AP.HANDLE{2](R1)

IP EQ ! HANDLE'S MATCH !
THEN 1! CHECK FOR INSTANCE MATCH !

LD RO, TEMP.EVENT_NR (R15)
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0250
0252

0254
0256

0258
02SA
025C
025E

0260
0262

0264
0266

0268
026A
026C
026E
0270
0272
0274
0276
0278
027a
027¢
027E
0280
0282
0284

0286
0288
028a
028C
028E
0290

0292
0294
0296

0298
0292

4B10
0036

SEQE
0296°

54P2
0004
5012
0038°

5EO01
0290°

2FP67
91P6

6112
QoacCe
7623
0006°
7604
0Q20°
7605
0028°*
7606
002A*
2107
0001
A112
SFP00
0000#*

95F6
210B
ABCD
5E08
0292¢
8DB8

SEO08
0298°*
8DB8

5E08
029E*

ce RO,

APT.

AP.INSTANCE(RY)

IP BQ ! INSTANCE MATCHES !
THEN (DETEBMINE IF THIS IS THE

OCCURRENCE THE PROCESS
WAITING FOR !
LDL RR2, TEMP.EVENT_VAL (R15)

CPL RR2, APT.AP.VALUE (R1)

IP GE !AWAITED EVENT HAS OCCURRED!
THEN ! AWAKEN PROCESS !

! REMOVE PROM BLOCKED LIST !

LD

aRé,

B7

! SAVE LOCAL VARIABLES !
PUSHL @R15, RR6
ISET LIST

LD
LDA
LDA
LDA
LDA
LD

LD
CALL

{R2:
R3:
R4:
RS:
R6:
K7:

POPL BRR6,

LD

R2,
R3,
R4,
RS,
R6,
R7,

R2,

THREADING ARGUMENTS!
APT.AP.AFFINITY (R1)

APT.READY_LIST (R2)
APT.AP.NEXT_AP
APT.AP.PRI
APT.AP.STATE
$READY

R1

LIST_INSERT

0BJ

ID

LIST HEAD PTR

NEXT OBJ PTR
PRIORITY PTIR

STATE PIR

STATE VALUE !

! RESTORE LOCAL VARIABLES !

aR 15
#REMOVED

ELSE !PROCESS STILL BLOCKED!

CLR

RN

PI ! END VALUE CHECK !
ELSE !PROCESS STILL BLOCKED!

CLR R11
FI ! END INSTANCE CHECK !
ELSE !PROCESS STILL BLOCKED!
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029C

029E
0240
0222

0244
0226

0228
022a
02aC
02AE

0280
02B2

02B4

02p6
02B8
02BA
02BC
02BE
02¢C0

02C2

02ca
02Cs
02C8

02Ca
02¢CC
02CE
0200

0202
02D4
02Dé6

02D8
02pa
020C

02DE
02E0

8DB8

5E08
02a4°
8DB8

0B0B
ABCD

SE06
0280°
76 16
0020

AN
EBBS

8D28

0B02
0004
SEQE
02ca*
SEO8
0366

8D18

2910
4B21
0010°*

SE02
02p2°*
SE08
o2pa*

0DP9
0001
E8F6

8D38
6124
0010°

6121
0006°

CLR BR11
PI ! END HANDLE CHECK !
ELSE {PROCESS STILL BLOCKED!

CLR R11

PI ! END HIGH HANDLE CHECK !

!t RESET AP POINTER REGISTERS !
ce R11, #REMOVED

IP NE ! PROCESS IS STILL BLOCKED 1
THEN

LDA R6, APT.AP.NEXT_AP (R1)

PI

LD R1, R7

oD

i DETERMINE IPF ANY VIRTUAL PREEMPT
INTERRUPTS ARE REQUIRED !

CLR R2
PREENPT_CHECK:
DO

cP R2, #NR_CPU * 2
IF EQ !ALL READY LISTS CHECKED! THEN
EXIT PROM PREEMPT_CHECK

PI
! CREATE PREEMPT VECTOR FOR VP'S !
CLR R1
DO 'POR R1=1 TO NR_VP'S!
INC R1
cp R1, APT.VP.NRBR_VP (R2)

IP GT ! PREEMPT VECTOR COMPLETED !
THEN EXIT

FI
PUSH @R1S, #TRUE

oD

! ¢ TO PREEHNPT 1!

CLR R3

LD R4, APT.VP.NR_VP (R2)

! # OF VP*'s 1|
! GBET PIRST READY PROCESS !
LD R1, APT.READY_LIST(RZ2)

CHECK_RDY_LIST:
DO
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! SEE IP READY LIST IS EMPTY !

02BE2 0BO1 cP R1, #NIL
02E4 PPFP
: IF EQ ILIST IS EMPTY!
i 02E6 SEOE THEN EXIT FROM CHECK_RDY_LIST
! 02E8 O2EE*
02EA SEO8
02EC 0324¢
' PI
} 02EE 4D11 cp APT.AP.STATE (R1) , #BUNVNING
02FP0 002A!*
02P2 0000
; IP EQ !PROCESS IS RUNNING!
! 02P4 SEOEB THEN !DON'T PREEMPT IT!
i 02P6 030C!*
; 02P8 6115 LD RS, APT.AP.VP_ID(R1)
! 02PA 002B*
1 1COMPUTE LOCATION IN PREEMPT VECTOR!
- 02PC 4325 SOB R5, APT.VP.PIRST(B2)
02PE 0014°
, 0300 74F6 LDA R6, B15(RS)
i 0302 0500
" 0304 0D65 LD 386, $PALSE -
| 0306 0000
- 0308 S5E08 ELSE ! PREEMPT IT !
f 030A 030E*
s 030C 1930 INC R3
FI
030E AB4O DEC RG
0310 0BO4 (o4 4 R4, #0
0312 0000
IF BEQ !ALL VP'S VERIFIED!
0314 SEOE THEN
0316 031C*
0318 SEO08 EXIT PROM CHECK_RDY_LIST
0314 0324
PI
{ GET NEXT AP IN READY LIST !
031C 6110 LD RO, APT.AP.NEXT_AP(R1)
031E 0020
0320 1101 LD R1, BO
0322 E8DF 0D {END CHECK_RDY_LIST!
{ SET NECESSARY PREEMPTS !
0324 6124 LD R4, APT.VP.NR_VP (R2)
0326 0010°
0328 6121 LD R1, APT.VP.PIRST (R2)
032A 0014¢
SEND_PREEMPT:
DO
032C 97F0 POP RO, ¥R15
! CHECK TEMPLATE !
) 032E 0BOO cp RO, #TRUE
' 0330 0001
IF EQ !CAN BE PREEMPTED!
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0332
0334
0336
03306

0332
033C

033E
0340
0342
0344
0346

0348
034
034C
034E

0350
0352
0354
0356

0358
035a
035¢C
035E

0360

0362
0364

0366
0368
036A
036C

036E
0370

0372
0374
0376
0378

SEOEB THEN
0350°
0B03 CP R3, #0
0000
I? GT IPREENPTS REQUIRED!

5E02 THEN ({PREENPT IT!
03s0°

ISAVE ARGUMENTS!
93P1 PUSH aR15, R1
91P2 PUSHL aR15, RR2
93P4 PUSH dR15, R4
5P00 CALL SET_PREEMPT
0000+«

!R1: VP IDI

! RESTORE ARGUMENTS !
97P4 PoOP R4, aR1S
95F2 POPL RR2, aR1S
97 POP B1, aR1S
AB30 DEC R3

PI
FI
A9 11 INC R1, #2
AB40O DEC R4
0BO4 cp R4, #0
0000
IP BEQ !STACK RESTORED!
SEQOE THEN
0360°
SEO08 EXIT
0362°
PI
EBES OD !END SEND_PREENPT!
! CHECK NEXT BREADY LIST ¢

A921 INC R2, #2
E8A8 OD !END PREEMPT_CHECK!

! UNLOCK APT ¢
7604 LDA R4, APT.LOCK
0000
SPO0 CALL K_UNLOCK
0000+

! RESTORE SUCCESS CODE !
2100 LD B0, $SUCCBEDED
0002

FI
! RESTORE STACK 1
o10p ADD  R15, $#SIZEOF TENP
0012
9808 RET
END TC_ADVANCE




(RS

0378 TC_AWAIT PROCEDURE
1 RREBEERERRERIB SRS RAER SRR ABESERE &

ATt S AL A - S |

* CHECKS USER SPECIFIED VALUE *
: * AGAINST CURRENT EVENTCOUNT #
: # VALUE. IP USER VALUE IS LESS *
J * THAN OR EQUAL EVENTCOUNT THEN®
# CONTROL IS RETURNED TO USER. *
* ELSE USER IS BLOCKED UNTIL *
# EVENT OCCURRENCE. *
ERRBEEEERREB RS REE R B LR EREREEEE ek &
* PARAMETERS: *
: *# R1: HANDLE POINTER .
i * R2: INSTANCE (EVENT #) .
. * PRBR4: SPECIFIED VALUE *
| SRS REERERBEERERBERERERE R EEEREEE S
: * RETURNS: .
* RO: SUCCESS CODE *

EERERRBREEREEEREEEEERREKERBEEEBEE |

ENTRY
, ! ESTABLISH STACK FRAME FOR
A TEMPORARY VARIABLES. !
- 0378 030P SUB R15, $#SIZEOF TEMP
! 0374 0012
i ! SAVE INPUT PARAMETERS !
037C 6FF1 LD TEMP.HANDLE_PTR(R15), R1

: 037 0000
‘ 0380 6FF2 LD TEMP.EVENT_NR(R15), &2
0382 0002
0384 SDP4 LDL TEMP.EVENT_VAL (R15), RR4
0386 0004
! LOCK APT !
0388 7604 LDA R4, APT.LOCK
038Aa 0000°
038C 5F00 CALL K_LOCK
038E 0000*

! BETURNS WHEN APT IS LOCKED !
! GET CURRENT EVENTCOUNT ¢
0390 5F00 CALL MM_READ_EVENTCOUNT
0392 0000%
IR1:HANDLE POINTER
R2: INSTANCE
RETURNS:
RO:SUCCESS_CODE
S RR4: EVENTCOUNT!
| 0394 0BOO cp RO, #SUCCEEDED
S 0396 0002
0398 SEOE IF EQ THEN
039A 0Qu40’

! DETERMINE IF REQUESTED EVENT
HAS OCCURRED 1
039C 54F6 LDL RR6, TEMP.EVENT_VAL(R15)
0392 0004
0310 9046 CPL RR6, BRU
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cm—r mee . aaea -

03a2
03a4

0346
03a8

03aa
03Ac
03AEB
03B0O
03B2
03B4

0386
03B8
03BA
03BC

03BE
02co
03cC2
03Cuy
03Cs
03cCs
03ca
03cc
03CE
03p0
03D2
03D4
03Dpé
03ps

03Da
03DC
03DE
03E0

03E2

03E4
03E6
03ES
03EA
C3EC
O03EE
03P0
o3r2

03Py

SE02
o440

SP00
0000*

6PP1
0008
6FF3
000a
6118
0002*

61PF2
0002
61P1
0000

S4 1y
0000
5D84
0030
6114
0004
6P84
0034
6F82
0036"
SUF6
0004
5D86
0038°*

6181
002c*
6112
0006

8862

SEQE
Q3P4
6183
0020°
6FP13
0006°
SE08
0408

6123

IF GT !EVENT HAS NOT OCCURRED! H

THEN !BLOCK PROCESS!

! IDENTIFPY PROCESS !
CALL RUNNING_VP $RETURNS:

RI1:VP ID
R3:CPU #!
! SAVE RETURN VARIABLES !
LD TEMP.ID_VP (R15), R1
LD TEMP.CPU_NUM (R15), B3
LD R8, APT.RUNNING_LIST (R1)

! RESTORE REMAINING ARGUMENTS !
LD R2, TEMP.EVENT_MNR(R15)

LD R1, TEMP.HANDLE_PTR (R15)

! SAVE BVENT DATA !
LDL RR4, HANDLE_VAL.HIGH (R1)

LDL  APT.AP.HANDLE(RS), RR&
LD R4, HANDLE_VAL.LOW (R1)
LD APT.AP.HANDLE( 2](88), RU
LD APT.AP.INSTANCE (R8), R2
LDL  RR6, TEMP.EVENT_VAL (R15)
LDL  APT.AP.VALUE (R8), RRB6

! REMOVE PROCESS PROM READY LIST !
LD R1, APT.AP.AFFINITY (R8)

LD R2, APT.READY_LIST (R1)
! SEE IF PROCESS IS PIRST
ENTRY IN READY LIST !
CE B2, B8
IF EQ {INSERT NEW READY LIST HEAD!
THEN
14)) R3, APT.AP.WEXT_AP (B3)
LD APT.READY_LIST (R1), R3
ELSE {DELETE FROM LIST BODY!

DO
LD R3, APT.aP.NEXT_AP (R2)
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03r8

03Fa
03FC
03FPE
04900
0uo02
0404
o406
0uo08

ou4oa
ou40cC

QuQE
0410
o412
o411y
ou16
0418
0414
041C
041E
0420
0422
0424
0u26

0428
0422
ou42C
OuzE

0430
0432

0434
0436
0438
043A

043C
Q43E

8883

SEQE
040A"
6183
0020°
6F23
0020"
5EQ8
040E"

A132
ESP3

A182
7603
000a*
7604
0020¢*
7605
0028*
7606
0o02a!
2107
0002
5P00
0000#

61P1
0008
61F3
000A

S5F00
0000

7604
0000°*
SFO0
0000+

2100
0002

ce R3, RS
IF EQ !FOUND ITEM IN LIST!
THEN

LD R3, APT.AP.NEXT_AP (R8)
LD APT.AP.NEXT_AP(R2), R3
EXIT

PI
LD R2, B3
oD
FI
ITHREAD PROCESS IN BLOCKED LIST!
LD R2, R8
LDA R3, APT.BLOCKED_LIST

LDA R4, APT.AP.NEXT_AP

LDA RS, APT.AP.PRI

LDA R6, APT.AP.STATE

LD R7, #BLOCKED

CALL LIST_INSERT !R2:0BJ ID
R3:LIST HEAD PTR
B4:NEXT OBJ PTR
BRS:PRIORITY PTR
R6:STATE PTR
R7T:STATE !

! GET CURRENT VP ID !

LD BR1, TEMP.ID_VP (R15)

LD R3, TEMP.CPU_NUM (R15)

! SCHEDULE FIRST READY PROCESS !
CALL TC_GETWORK {R1:VP_ID

R3:CPU #!
1 UNLOCK APT !
LDA R4, APT.LOCK

CALL K_UNLOCK

! RESTORE SUCCESS CODE !
LD RO, #SUCCEEDED

FI
PI
! RESTORE STACK !
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A b et S e M AR e i * ‘
i

0440 010P ADD R15, #SIZEOF TEMP

Quu2 0012

: o4uy4 9E08 RET
! ouu6 END TC_AWAIT

— e

e o — e -
—
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et S e o 5 v

ouue

0446
0448
044A
o44cC
Qu44E
0450

ous52
0454
0456
0458

045A
045C
04SE
0460
0462
ou6l

7604
0000°*
S5FP00
0000=
5P00
0000*

6115
0002
5452
0024

7604
0000
5P00
0000*
9E08

PROCESS_CLASS PROCEDURE

1 RN RERRERREREBRERREEERRREEE K

* READS SECURITY ACCESS .
* CLASS OF CURRENT PROCESS *
* IN APT. CALLED BY SEG *

* MGR AND EVENT MGR .
AEEREREBBEEE PR EEEEEEERERERE S
* LOCAL VARIABLES: .
* Ri: VP ID .
* RS: PROCESS ID .
EERRERRBRRERERREER BB ERRE R EE &
* RETURNS: .
* RR2: PROCESS SAC .

RERBERAEERERERREERER B R RBERE |

ENTRY
LDA R4,APT.LOCK

CALL K_LOCK  !R4:-~APT.LOCK!
CALL RUNNING_VP !RETURNS:
R1:VP_ID
R3:CPU #!
LD RS5,APT.RUNNING_LIST(R1)
LDL RR2,APT.AP.SAC (R5)

! UNLOCK APT !
iba g4, APT.LOCK

CALL K_UNLOCK

RET
END PROCESS_CLASS
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ou6y GET_DBR_NUMBER PROCEDURE i
I RXSXBARE ERRERRUREBERE RS S SBERREE R K ]

* OBTAINS DBR NUMBER FROM APT .

i * FOR THE CURRENT PROCESS. *

* CALLED BY SEGMENT MANAGER .
EREBERRERERERRRESEEBERESERERESESS

* LOCAL VABIABLES: ¢

* R1: VP ID *

* R5: PROCESS ID .
SEREEXRBREBARRRBEEERERE SR REEERRES

F * RETURNS: .
L * R1: DBR NUMBER *

! BERBEREEREERREEERBEEE XN EEREE LG R E |

. ENTRY
' {NOTE: DBR # IS ONLY VALID WHILE PROCESS
- IS LOADED. THIS IS ¥O PROBLEM IN SASS
AS ALL PROCESSES REMAIN LOADED. 1IN A
MORE GENERAL CASE, THE DBR # COULD ONLY
BE ASSUMED CORRECT WHILE THE APT IS LOCKED!
i 0464 7604 LDA R4 ,APT.LOCK

o 0466 0000°
) 0468 5F00 CALL K_LOCK (R4:-APT.LOCK!
. 046A 0000%
i 046C 5P00 CALL RUNNING_VP !RETURNS:
i 046E 0000%
! R1: VP_ID
R3:CPU #!
0470 6115 LD RS5,APT. RUNNING_LIST(R1)
0472 0002°
0474 6151 LD R1,APT. AP. DBR(BS)
0476 0022¢

! UNLOCK APT !
0478 7604 LDA R4, APT.LOCK

0472 0000°
0u7c SF00 CALL K_UNLOCK
04TE 0000+
0480 9208 RET
, 0482 END GET_DBR_NUMBER

END TC
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DISTRIBUTED

Z8000AsM 2.02

LOC

0OBJ CODE STHT

SLISTON 3TTY
DIST_MM MODULE

CONSTANT

CREATE_CODE

DELETE_CODE
ACTIVATE_CODE
DEACTIVATE_CODE
SWAP_IN_CODE
SWAP_OUT_CODE
NR_CPU
NR_KST_ENTRY
MAX_SEG_SIZE
MAX_DBR_NO
KST_SEG_NO
NR_OP_KSEGS
BLOCK_SIZE
MEN_AVAIL
G_AST_LINIT
INSTANCE1
INSTANCE2
INVALID_INSTANCE
SUCCEEDED

TYPE

H_ARBAY
COM_MSG
ADDRESS

G_AST_REC
(UNIQUE_ID

S5LOBAL_ADDR
P_L_ASTE_NO
FLAG
PAR_ASTE
NB_ACTIVE
NO_ACT_DEP
SIZE1

Appendix C

MEMOBRY MANAGER LISTINGS

SOURCE STATEMENT

0 66 00 00 00 80 00 40 40 00 08 85 00 60 60 00 60 ae 60
O O O T I T T T IO IO I O IO T 1]
F

ARBAY {3  WORD)
ARRAY {16 BYTE]
#ORD

RECORD
LONG
ADDRESS
WORD
WORD
WORD
WORD
BYTE
BITE
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0000

i 0000

0r00

0000

» 0000

0000

PG_TBL ADDRESS
ALIAS_TBL ADDBESS
SEQUENCER LONG
BVENT1 LONG
EVENT2 LONG
]
MM_VP_ID #ORD
SEG_ARRAY ARRAY [ MAX_SEG_SIZE

$SECTION D_MM_DATA
GLOBAL

MM_CPU_TBL ARRAY [ NR_CPU MM_VP_ID]

$SECTION AVAIL_MEN
INTERNAL
! NOTE: MEM_POOL IS LOCATED IN
CPU LOCAL MEMORY. !
MEN_POOL ARBAY [MEM_AVAIL BYTE]

GLOBAL

BYTE]

! NOTE: NEXT_BLOCK IS USED IN THE MM_ALLOCATE
STUB AS AN OFFSET POINTER INTO THE BLOCK

OF ALLOCATABLE MEMORX.
IN BOOTSTRAP LOADER. !

NEXT_BLOCK WORD
$SECTION MSG_PRAME_DCL
INTERNAL
INOTE: THESE RECORDS ARE "OVERLAYS"®
TO DEPINE MESSAGE FORMATS. NO MEMORY
$ABS O
CREATE_NSG RECORD ([ CR_CODE
CE_MM_HANDLE
CE_ENTRY_NO
CE_PILL
CE_SIZE
CB_CLASS
$ABS 0
DELETE_MSG RECORD [ DE_CODE
DE_MM_HANDLE
DE_EMNTRY_NO
DE_PFILL
$aA8s 0
ACTIVATE_MSG RECORD [ ACT_CODE
A_DBR_NO
A_MM_HANDLE
A_ENTRY_¥O
A_SEGMENT_NO
A_PILL
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IT IS INITIALIZED

OR “FRAMES"™ USED
IS ALLOCATED !¢

WORD
H_ARRAY
SHORT_INTEGER
BYTE

WORD

LO¥G ]

WORD
H_ARBAY

SHORT_INTEGER
ARBAY{ 7 BYTE])

WORD

WORD

H_ARRAY
SHORT_INTEGER
SHORT_INTBGER
LONG)




o

A

N L R e o R . - . -

0000

0000

0000

0000

0000

0000

<n

ey - " PTRPR 70~ e P oo oo PMIRATWM A <+ hmenr.

$ABS 0

DEACTIVATE_MSG RECORD{ DEACT_CODE  WORD
D_DBR_NO WORD
D_MM_HANDLE  H_ARBRAY
D_FILL ARRAY[ 3 WORD)]

$ABS 0

SWAP_IN_NSG RECORD [ S_IN_CODE WOED
SI_MM_HANDLE H_ARRAY
SI_DBR_NO WORD
SI_ACCESS_AUTH BYTE
SI_PILL1 BYTE
SI_PILL ARBAY[ 2 WORD]]

$ABS 0

SWAP_OUT_MSG RECORD [ S_OUT_CODE WORD
SO_DBR_NO WORD
SO_MM_HANDLE H_ARRAY
SO_FILL ~ ARRAY[ 3 WORD]]

$ABS 0

RET_SUC_CODE RECORD( SUC_CODZ BYTE
SC_PILL ARBAY[ 15 BYTE]]

$ABS 0

R_ACTIVATE_ARG RECORD [ R_SUC_CODE BYTE
R_PILL BYTE
B_MM_HANDLE  H_ARRAY
B_CLASS LONG
R_SIZE WORD
B_FILL1 WORD)

$ABS 0

MM_HANDLE RECORD

(1D LONG
ENTRY_NO WORD
]
EXTERNAL
G_AST_LOCK WORD
G_AST ARRAY[G_AST_LIMIT G_AST_REC]

K_LOCK PROCEDURE
K_UNLOCK PROCEDURE
GET_CPU_NO PROCEDURE
SIGNAL PROCEDURE
WAIT PROCEDURE
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0000

0000
0002
0004

0006
0oo08
000a
000C
000E
0010
0012
014
0016
0018
0012
001C
CO1E
0020
0022
0024
0026
0028
0022

GLOBAL
$SECTION D_MM_PROC

030F
0010
ATFD

4DDS
0000
0032
3116
0000
6PD6
0002
3116
0002
6FD6
0004
3116
0004
6PD6
0006
6PD2
0008
SDDY
000C

MM_CREATE_ENTRY PROCEDURE
1SR RPEREERBERB SR SRR E SR EEEREBER LS
* INTERPACE BETWEEN SEG MGR .
* (CREATE_SEG PROCEDURE) AND *
* MMGR PROCESS (CREATE_ENTRY .
* PROCEDURE). ARRANGES AND .
* PERFOBMS IPC. *
SEREER BB ECBER PR EE NSRS RE R REE R KSR & &
* REGISTER USE: *
% PARAMETERS *
* RO:SUCCESS_CODE (RET) .
* R1:HPTR (INPUT) .
* R2:ENTRY_NO (INPUT) *
* R3:SIZE (INPUT) .
* RR4:CLASS (INPUT) .
* LOCAL USE *
* R6:MM_HANDLE ARRAY ENTRY *
* R8:-~COM_NSGBUP .
* R13:~CON_MSGBUP .
ERERERREREEE SRR LR XL EEREEEERREER §

ENTRY

!USE STACK FOR MESSAGE!

suB R15, #SIZECP COM_MSG

LD R13,R15 I ~COM_MSGBUPF !

IPILL COM_MSGBUF (LOAD MESSAGE; . CREATE MSG
FRAME IS BASED AT ADDRESS ZERO. IT IS
OVERLAID ONTO COM_USGBUF PRAME BY INDEXING
EACH ENTRY (I.E. ADDING TO EACH ENTRY) THE
BASE ADDRESS OF COM_MSGBUF!

LD CREATE_MSG.CR_CODE {(R13) ,#CREATE_CODE

LD R6,R1(#0) (INDEX TO MM_HANDLE ENTRY!
LD CREATE_MSG.CE_NMM_HANDLE([ 0] (R13),R6
LD R6,R1(#2)

LD CREATE_MSG.CE_MM_HANDLE([ 1] (R13) ,R6
LD B6,R1(#4)

LD CREATE_NSG.CE_MM_HANDLE[ 2] (R13) ,R6
LD CREATE_MSG.CE_ENTRY_NO (R13) ,R2

LDL CREATE_MSG.CE_CLASS(R13) ,RBR4
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A S o

002cC
002E
0030
0032
0034

0036
0038
003a
003C
003E
0040
0042

6PD3
000a
A1D8
SFO0
018c

8D08
60D8
0000
010F
0010
9E08

LD

LD

CALL
'

CREATE_MSG.CE_SIZE (R13) ,R3

R8,R13

PERPORM_IPC (R8: -~COM_MSGBUF!

IRETRIEVE SUCCESS_CODE FPROM RETURNED MESSAGE!

CLR
LDB

ADD

RET

RO

BRLO,RET_SUC_CODE.SUC_CODE (E13)

R15,#SIZEQF COM_MSG

END MM_CREATE_ENTRY
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0042 MM_DELETE_ENTRY PROCEDURE
(¥R RERERERRRE SRR EEEE R ESEPEEEER S
* INTERPACE BETWEEN SEG MGR *
* (DELETE_SEG PROCEDURE) AND *
* MMGR (DELETE_ENTRY PROCEDURE) .*
* ARRANGES AND PERFORNS IPC. .
EEERB RS ERRBEBRERES SR EE SR EEEEREE &

REGISTER USE:
PARAMETERS .
RO : SUCCESS_CODE (RET) .
R1:HPTR (INPUT) .
R2: ENTRY_NO (INPUT) .
LOCAL USE *
*
P
®
3

»

bt A S o -

R6:MM_HANDLE ARRAY ENTRY
R8 :~COM_NSGBUP

% % %% RN R RN

|
| R13:~COM_MSGBUP
1 SERRERERXRBBRESREEEREREE SRR REEE R
ENTRY
10SE STACK POR MESSAGE!
0042 030F SUB  R15,#SIZEOF COM_MNSG
i 0044 0010
‘ 0046 ATFD LD  R13,R15 ! ~COM_MSGBUF !
} !PILL COM_MSGBUF (LOAD MESSAGE). DELETE_NSG PRANE
| IS BASED AT ADDRESS ZERO. IT IS OVERLALD ONTO
{ COM_MSGBUP PRAME BY INDEXING EACH ENTRY (I.E. ADD-
f

ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUF!
0048 4DD5 LD DELETE_MSG.DE_CODE (813) , #DELETE_CGDE
004A 0000
004C 0033
004E 3116 LD R6,R1(#0) !INDEX TO MM_HANDLE ENTRY!
0050 0000
0052 6FPD6 LD DELETE_MSG.DE_MN_HANDLE( 0 ] (R13) ,R6
0054 0002
0056 3116 LD R6,R1(#2)
0058 0002
005A 6FD6 LD DELETE_NSG.DE_MM_HANDLE[ 1] (R13) ,R6
005C 0004
005E 3116 LD BR6,R1(#4)
0060 0004
0062 6PD6 LD DELETE_NSG.DE_MM_HANDLE([ 2] (R13) ,R6
4 0064 0006
F- ¢ 0066 6FD2 LD DELETE_MSG.DE_ENTEY_NO (813) ,R2
0068 0008
0 0064 A1D8 LD R8,R13
S 006C 5F00 CALL PERPORM_IPC R8: -~CONM_USGBUP!
0062 018C*
1RETRIEVE SUCCESS_CODE PROM RETURNED MESSAGE!
0070 8008 CLR RO
0072 60D8 LDB  RLO,RET_SUC_CODE.SUC_CODE (R13)

0074 0000

0076 010F ADD R15,4SIZEOF COM_MSG (!{RESTOBRE STACK STATE!
0078 0010

007A 9E08 RET

007¢C END uM_DELETE_ENTRY
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MM_ACTIVATE PROCEDURE
IR LR RE XS REEER SR SR EEEER RS EE X
* INTERFACE BETWEEN SEG MGR .

* (MAKE_KNOWN PROCEDURE) AND .

* MMGR  (ACTIVATE PROCEDURE). *

| * ARRANGES AND PERPORNS IEC. .
. RERERBREEEREREE BB EEEEEE R EEREEEE EE
REGISTER USE: .
PARAMETERS .
R1:DBR_KO (INPUT) .

R2:HPTR (INPUT) *

R3:ENTRY_NO .

R4 : SEGMENT_NO .

R12:RET_HANDLE_PTR *

LOCAL USE .
R8:~COM_NSGBUF .

R13:~COM_MSGBUP .

RETURNS: *
RO: SUCCESS CODE .

RR2:CLASS *

]

L ]

R4:SIZE
EREXEERRREKBEE XRBERRE DR R RKREEEER &

[ K B BE BN B BE K B B B B A A J

ENTRY
!USE STACK FOR MESSAGE!
007C 030F SuUB R15,#SIZEOF COM_MSG
007E 0010
2 0080 ATPD LD R13,R15 1 ~COM_MSGBUF !
§ SAVE RETURN HANDLE POINTER !
0082 93FC PUSH aR15, R12

e ——— =

IPILL COM_MSGBUF (LOAD MESSAGE) . ACTIVATE_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUP!
0084 4DD5 LD ACTIVATE_MSG.ACT_CODB(R13) ,#ACTIVATE_CODE

0086 0000
0088 0034
008A 6FD1 LD  ACTIVATE_MSG.A_DBE_NO (R13) ,R1
008C 0002
008E 3126 LD  R6,R2(#0)
3 0090 0000
| 0092 6PD6 LD  ACTIVATE_NSG.A_MM_HANDLE[O ](R13),R6
» 0094 0004
- 0096 3126 LD  R6,R2($2)
0098 0002
009A 6PD6 LD  ACTIVATE_MSG.A_MM_HANDLE( 1 J(R13),R6

009C 0006

009E 3126 LD R6 ,R2 (#4)

0040 0004

00A2 6PD6 LD ACTIVATE_NSG.A_MM_HANDLE[ 2 J(R13),R6
00A4 0008

00A6 6EDB LDB ACTIVATE_MSG.A_ENTRY_NO(R13),RL3
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00aAA

: ' 00AC
i 00AE
00B0
00B2

00B4

00B6
00B8
00BA
00BC
00BB
00co
Q0cC2
0o0cs

o s a———

00ceé
00Cs8
00ca
- 00ccC
f 00CE
- 00DO0
‘ 00D2
: 00D4
Q0Dé6
o0oD8
00DA

6EDC
0008
A1D8
5r00
018¢C

97PC

54D6
0002
5DCé
0000
61D6
0006
6PC6
0004

8008
60D8
0000
54D2
0008
61D4
000C
010P
0010
9E08

LDB

LD

ACTIVATE_USG.A_SEGMENT_NO (R13) ,RLY

B8,R13

CALL PERPORM_IPC -{ (R8:~CONM_MSGEBUP!

! RESTORE RETURN HANDLE POINTER !

POP

R12, aR15

! UPDATE MM_HANDLE ENTRY !

LDL

LDL

LD
LD

RR6, B_ACTIVATE_ARG.R_MM_HANDLE (R13)
MM_HANDLE.ID (R12) , BR6
R6,R_ACTIVATE_ARG.R_MM_HANDLE[ 2](R13)
MM_HANDLE.ENTRY_NO (R12), B6

!RETRIEVE OTHER BETURN ARGUMENTS!

CLR
LDB

LDL
LD
ADD

RET

RO
BLO,BR_ACTIVATE_ARG.R_SUC_CODE (R13)

RR2,R_ACTIVATE_ARG.R_CLASS (813)
R4,BR_ACTIVATE_ARG.B_SIZE (R13)

R1S,$SIZEOF COM_MSG {RESTORE STACK STATE!

END MM_ACTIVATE
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T T e s 6 D o PN o BN B S5

e B i

90Da

! 00DA 030F
’ 00DC 0010
00DE A1PD

i

00EO 4DD5
00E2 0000
00E4 0035
00E6 6PD1
00E8 0002
O0EA 3126
00EC 0000
00EE 6FD6
00F0 0004
00FP2 3126
00F4 0002
00F6 6FD6
" 00F8 0006
5 00FA 3126
NN 00FC 0004
OOFE 6FD6
0100 0008
0102 A1D8
0104 SF00
0106 018C

' 0108 8D08
010A 60D8

)

MM_DEACTIVATE PROCEDURE
18R RERERRXRRRRERE SR RRREESRE S RERE S

* INTERPACE BETWEEN SEG MGR .
* (TERMINATE PROCEDURE) AND .
® MMGR (DEACTIVATE PROCEDURE). ¢
* ARRANGES AND PERFORMS IPC. .
REXRR RS EER SRR B RN ER R REREREE® E
* REGISTER USE: .
* PARAMETERS .
* RO:SUCCBSS_CODE (RET) *
* R1:DBR_NO(INPUT) .
* R2:HPTR(INPUT) .
* LOCAL USE .
* R6:MM_HANDLE ARRAY ENTRY .
* R8:-~COM_MSGBUP *
* R13:~CON_MSGBUP *
SRBERERRRERERREREERE R RE R R EE |

ENTRY
1USE STACK FOR MESSAGE!
SUB R15, #SIZEOP COM_MSG

LD R13,R15 § ~COM_MSGBUF !

!PILL COM_MSGBUF (LOAD MESSAGE). DEACTIVATE_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUPF!

LD DEACTIVATE_MSG.DEACT _CODE (R13),
$DEACTIVATE_CODE

LD DEACTIVATE_MSG.D_DBR_NO (R13),R1
LD R6 ,R2(#0) IINDEX TO MM_HANDLE ENTRY!
LD DEACTIVATE_MSG.D_MM_HANDLE{O0](R13) ,B6
LD R6,R2 (#2)
LD DEACTIVATE_MSG.D_MM_HANDLE[ 1] (R13) ,R6
LD R6,R2 (#4)
LD DEACTIVATE_NMSG.D_MM_HANDLE[2](R13) ,R6
LD RS8,R13
CALL PERFORN_IPC {R8: ~COM_MSGBUP!

[ ]
IRETRIEVE SUCCESS_CODE PROM RETURNED MESSAGE!
CLR RO
LDB  RLO,RET_SUC_CODE.SUC_CODE (R13)
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e e i e

tad o o

e e r——— - -

010C 0000
010E 010F
0110 0010
0112 9EO8
0114

ADD

BET
END NM_DBACTIVATE

R15,$SIZEOF COM_MSG {RESTORE STACK STATE!
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i i s+ o, -

0114

0114
0116
gt18

011a
011C
011E
0120
0122
0124
0126
0128
012A
012C
012E
0130
0132
0134
0336
0138
013a
013C
013E
0140
0142
0144

0146
0148

MM_SWAP_IN PROCEDURE
I RRERERRRE R RS REEREEE R R KRR RN K& ®
* INTERFACE BEIWEEN SEG MGR (SHd_*
* SWAP_IN PROCEDURE) AND MMGR L
* (SWAP_IN PROCEDURE) . ARRANGES *
* AND PERFORMS IPC. *
BEREEERERREFEREREEREERRE R EEREpg g x
REGISTER USE:
PARAMETERS *
RO :SUCCESS_CODE (RET) *
R1:DBR_NO(INPUT) ¥
R2: HPTR (INPUT) *
R3:ACCESS (INPUT) L
LOCAL USE &
L ]
®
™
"

*

R6:MN_HANDLE ARRAY ELTRY
R8:~COM_NSGBUF
R13:~CON_NSGBUF
BERRRERERREERBEEREESEEEREBRE R Lk &
ENTRY
1USE STACK POR MESSAGE!
03op SUB  R15,#SIZEOF COM_MSG
0010
A1FD LD R13,R15 ! ~COM_MSGBUF !

L 3R 3R 3K 3 JR R IR AR % J

!

IPILL COM_MSGBUF (LOAD MESSAGE). SWAP_IN_MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM_MSGBUP FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_MSGBUF!

4DD5 LD SWAP_IN_MSG.S_IN_CODE (R13),#SWAP_IN_CODE
0000
0036
3126 LD R6,R2(#0) {INDEX TO MM_HANDLE ENTRY!
0000
6FD6 LD SWAP_IN_MSG.SI_MM_HANDLE([ 0 ](813),B6
0002
3126 LD R6,R2(#2)
0002
6PD6 LD SWAP_IN_MSG.SI_MM_HANDLE[ 1](R13),R6
0004
3126 LD R6,R2(#4)
00064
6PD6 LD SWAP_IN_MSG.SI_MM_HANDLE[ 2 ](R13),B6
0006
6PD1 LD SWAP_IN_MSG.SI_DBR_NO (R13) ,R1
0008
6EDB LDB SWAP_IN_MSG.SI_ACCESS_AUTH (R13),RL3
0004
A1D8 LD R8,R13
5PO0 CALL PERFORM_IPC 1B8: ~COM_MSGBUP!
018cC?
IRETRIEVE SUCCESS_CODE FROM RETURNED MESSAGE!
8D08 CLR RO
60D8 LDB  BLO,RET_SUC_CODE.SUC_CODE (R13)
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0144 0000 ‘
014C 010P ADD R15,#SIZEOF COM_NMSG I{RESTORE STACK STATE!
014E 0010

0150 9E08 RET

0152 END MM_SWAP_IN
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0152

0152
0154
0156

0158
015a
015¢C
015E
0160
0162
0164
0166
0168
0162
016C
0 16E
0170
0172
0174
0176
0178
0172a
017C
017E

0180
o182
0184
0186
0188

Rore e - - -

MM_SWAP_OUT PROCEDURE ’
(R ERERBEBERERRERERRERREE SRR ESE RS
* INTERFACE BETHWEEN SEG MGR (SM_*
* SWAP_QUT PROCEDURE) AND MMGR =
¥ (SWAP_OUT PBOTEDURE). ARRANGES®*

* AND PERFORMS IPC. *
EREAERREXZRRBRRREEESREERREEE RS XK &
* REGISTER USE: b

* PARAMETERS .
* RO:SUCCESS_COLE (RET) .
* R1:DBR_NO(INPUT) *
* R2:HPTR(INPUT) *
* LOCAL USE *
* R6:MM_HANDLE ARRAY ENTRY *
* R8:-~CONM_MSGBUF .
* R13:~CON_NSGBUP .
ERRERRRERBRE RS SR EERREEREERE LSS

ENTRY

1USE STACK FOR MESSAGE!

030F SUB  R15S,#SIZEOF COM_MSG
0010
A1FD LD B13,R15 ! ~COM_MSGBUF !

!

!PILL COM_MSGBUF (LOAD MESSAGE). SWAP_OUT_MSG FRAME
IS BASED AT ADDRESS ZERQ. IT IS OVERLAID ONTO
COM_MSGBUF FRAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) THE BASE ADDRESS OF COM_HMSGBUP!

4DDS LD SWAP_OUT_M3G.S_OUT_CODE(R13), #SWAP_OUT_CODE
0000

0037

3126 LD R6,R2(#0) !INDEX TO MM_HANDLE ENTRY!
0000

6PD6 LD SWAP_OUT_MSG.SO_MM_HANDLE[ 0](R13),R6
0004

3126 LD ! BR6,R2(#2)

0002

6PD6 LD SWAP_OUT_MSG.SO_MM_HANDLE[ 1](R13),R6
0006

3126 LD R6,R2(#4)

0004

6PD6 LD SWAP_OUT_MSG.SO_MM_HANDLE[ 2](B13),R6
0008

6PD1 LD SWAP_OUT_NSG.SO_DBR_NO (R13),R1

0002

A1D8 LD R8,R13

SPC’ CALL PERFORM_IPC !R68: ~COM_MNSGBUP!
018cCt

IRETRIBVE SUCCESS_CODE FROM RETURNED MESSAGE!
8008 CLR RO
6003 LDB  RLO,RET_SUC_CODE.SUC_CODE (R13)
0000
010F ADD R15,#SIZEOF COM_MSG !RESTORE STACK STATE!
0010
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018A 9EOS8 RET
018C END MM_SWAP_OVUT
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018C

018C
018E
0190
0192
0194
0196
0198
019a
019C
019E
01a0
01a2
01a4
01A6
01a8
01AA
01AC
01AE
0180
01B2
01B4
0186
01B8
01BA

93FD
SF00
0000%
A112
6121
0000°
7604
0000%
5P00
0300+
SF00
0000*
97FD
A1D8
937D
5F00
0000+
7604
0000#
5°P00
0000+*
97FD
9E08

PERFORM_IPC PROCEDURE
ISR ERRRRRREERESESEERRBR R EEEE SR SR SRE K
* SERVICE ROUTINE TO ARRANGE AND *
* PERPORM IPC WITH THE MEM MGR PROC *
ERERERRRBRERER KRR KRS R EREEESE SR BN RS

* REGISTER USE: *
* PARAMETERS *
* R8: ~COM_MSG (INPUT) *
* LOCAL USE *
* R1,B2: WORK REGS .
* RG: ~G_AST_LOCK x
* R13: ~COM_NSGBUF *
BEEEEEES REREREXRE RN EERE A REEEERE R EEEE R !
ENTRY

PUSH @R15,R13 1-~COM_MSGBUF!

CALL GET_CPU_NO !RET-R1:CPU_NO!

LD R2,R1

LD B1,44_CPU_TBL(R2) {MM_VP_ID!

LDA  BY4,G_AST_LOCK

CALL K_LOCK

CALL SIGNAL $R1:MM_VP_ID,R8:~COM_MSGBUF!

POP R13,3R15

LD B8,R13 1~CON_MSGBUF!

PUSH @R15,R13

CALL WAIT !R8:-~COM_MSGBUF!

LDA  R4,G_AST_LOCK

CALL K_UNLOCK

POP R13,aR15

BET

END PERPORM_IPC
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01BA MM_ALLOCATE PROCEDURE
1 ERRAERREEFSAS VXSS EE RS RESE S
* ALLOCATES BLOCKS OF CPU®*
®# LOCAL MEMORY. EACH *

b
;| * BLOCK CONTAINS 256 *
{ * BYTES OF MEMORY. b
i SRR SR RESSEEESERE SR RE SRS
* PARAMETERS: .
1 * R3: ¢ OF BLOCKS

 J
s RETUSNS: .
* R2: STARTING ADDR *
! * LOCAL: *
f * R4: BLOCK POINTER *
i REREEREREBERREEEREEBEEE kRS
, ENTRY
! ! NOTE: THIS PROCEDURE IS ONLY A STUB
1 OF THE ORIGINALLY DESIGNED MEMORY
‘ ALLOCATING MECHANISM. IT IS USED
BY THE PROCESS MANAGEMENT DEMONSTRATION
TO ALLOCATE CPU LOCAL MEMORY FOR ALL
i MEMORY ALLOCATION REQUIBEMENTS. IN AN
- ACTUAL SASS ENVIROMNMENT, THIS WOULD
| BE BETTER SERVED TO HAVE SEPARATE
i ALLOCATION PROCEDURES FOR KERNEL AND
1 SUPERVISOR NEEDS. (E.G., KERNEL_ALLOCATE
AND SUPERVISOR_ALLOCATE). !
! COMPUTE SIZE OF MEMORY REQUESTED !
01BA B3N SLL R3, #BLOCK_SIZE
01BC 0008

! COMPUTE OFPSET OF MEMORY THAT IS
T0O BE ALLOCATED !

01BE 6104 Ld R4, NEXT_BLOCK !QPFSET!

01C0 OPOO*

01C2 7642 LDA R2, MEM_POOL(R4) !START ADDR!
01C4 0000°*

01C6 8134 ADD R4, R3 'UPDATE OFFSET!
! UPDATE OPPSET IN SECTION OF AVAILABLE
MEMORY TO INDICATE THAT CURRENTLY
REQUESTED MEMORY IS NOW ALLOCATED !

01C8 6PO4 LD NEXT_BLOCK, R4 ISAVE OPPSET!
. 01CA 0P00*
¢ 01CC 9208  RET
: 01CE END MM_ALLOCATE
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: 01CE MM_TICKET PROCEDURE
{ IXREBRERB RSN SRS SR REEEE SRS S S

# RETURNS CURRENT VALUE OF #

- * SEGMENT SEQUENCER AND *
i * INCREMENTS SEQUENCER VALUE®
- * POR NEXT TICKET OPERATION #
] BERBEREEERERERE SRR B R RN R ERBREEEE
] * PARAMETERS: *
* R1: SEG HANDLE PTR .
* RETURNS: *
4 * RR4: TICKET VALUE *
. * LOCAL VARIABLES: *
L * RR6: SEQUENCER VALUE *
- * R8: G_AST ENTRY # *
H R BERRERRR RN RRERERE BEE xRl |
' ENTRY
‘ { SAVE HANDLE PTR !

| 01CE 93F1 PUSH ar15, R1
! ! LOCK G_AST !
01D0 7604 LDA R4, G_AST_LOCK
01D2 0000#*
L 01D4 SF00 CALL K_LOCK
g 01D6 0000%*
: ! RESTORE HANDLE PTR !
’ 01D8 97F1 POP R1, 3R15
! GET G_AST ENTRY # !
01DA 6118 LD R8, MM_HANDLE.ENTRY_NO (R1)
01DC 0004

! GET TICKET VALUE !
01DE 5486 LDL RR6, G_AST.SEQUENCER (R8)
01E0 0014+#

! SET RETUBN REGISTER VALUE !
01E2 9464 LDL RR4, RR6

IADVANCE SEQUENCER FOR NEXT

TICKET OPERATION!

01E4 1606 ADDL RRB6, #1
01E6 0000
01ES 0001

! SAVE NEW SEQUENCER VALUE IN G_AST !
01EA 5D86 LDL  G_AST.SEQUENCER(R8), BR6
012C 0014+

! UNLOCK G_AST !

! SAVE RETURN VALUES !
01EE 91P4 POSHL aR15, RR4
01P0 7604 LDA R4, G_AST_LOCK
. 01F2 0000% ,
; 01F4 SF00 CALL K_UNLOCK
1 01P6 0000

! ! RETRIEVE RETURN VALUES !
] 01P8 95Fu POPL RR&4, 3aR15
! 01F2 9EOQ8 RET

01PFC END MM_TICKET
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01FC

01PC
O1FE

0200
0202
0204
0206

0208
0204

020C
020E

0210
0212
0214
0216
0218
0212
021C
021E
0220
0222
0224
0226
0228
022A
02zC
022E
0230
0232

93P1
93P2

7604
0000*
SP00
0000+

97r2
97P1

6118
0004

0B02
0001
SEOE
0224
5484
0018
2100
0002
SEQ8
023¢!
0B02
0002
S5EOR
0238¢*
S484
001Ce
2100
0002

MY_READ_EVENTCOUNT PROCEDURE
({SERBEERERRREREERE SE SR ES R SEEEE RS
* READS CURRENT VALUE OF THE #
* EVENTCOUNT SPECIPIED BY THE *

* USER. .
SRR BEEEREEREEKSAEEEESEE RSB E RS S
* PARAMETERS: .
* R1: SEG HANDLE PTR *
®* R2: INSTANCE (EVENT #) *
ERRRERRERZERERARERRES SR ERRECE RS
* RETUORNS: .
* RR4: EVENTCOUNT VALUE .
SRR ERRRRRRERSRERRREEEERBERE SR
* LOCAL VARIABLES: .
* RR6: SEQUENCER VALUE *
* R8: G_AST ENTRY ¢ .

RS SRR ERAKRFXEXEEEEEE BB R EREE LS & |

ENTRY

! SAVE INPUT PARAMETERS !
PUSH @R15, R1

PUSH @R15, R2

{ LOCK G_AST !

LDA R4, G_AST_LOCK

CALL K_LOCK
! RESTORE INPUT PARAMETERS !
POP R2, 3R15

POP R1, 3R15

{ GET G_AST ENTRY #

LD R8, MM_HANDLE.ENTRY_NO (R1)
! READ BVENTCOUNT !

! CHECK WHICH EVENT # !

IF R2
CASE #INSTANCE1 THEN

LDL RR4, G_AST.EVENT1(R8)
LD RO, $SUCCEEDED
CASE #INSTANCE2 THEN

LDL RR4, G_AST.EVENT2(RS)
LD RO, #SUCCEEDED
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0234 5E08 ELSE YINVALID INPUT!
0236 023C*
0238 2100 LD RO, S#INVALID_INSTANCE
023A 005P
F1

! NOTE: NO VALUE IS RETURNED IF
USER SPECIPIED INVALID EVENT #!
! SAVE RETURN VALUES !
! 023C 91P4 PUSHL @aR15, RR4 1
! UNLOCK G_AST 1

| 023E 7606 LDA B4, G_AST_LOCK

i 0240 0000* i
0242 5P00 CALL K_UNLOCK i

0244 0000¢

1 RESTORE RETURN VALUES !
0246 95FP4 POPL RR4, 3R1S5
, 0248 9E08 RET
3 02u4a END MM_READ_EVEHNTCOUNT

- co— -— ———
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0244 HM_ADVANCE PROCEDURE 5
1 XREREE R REERBEEEEREREEE R EBEEEEE S £ EE !
DETERMINES G_AST OPFSET FROM |
SEGMENT HANDLE AND INCREMENTS
THE INSTANCE (EVENT #) SPECIPIED
BY THE CALLER, THIS IN EPPECT
ANNOUNCES THE OCCURRENCE OF THE
EVENT. THE NEW VALUE OF THE
EVENTCOUNT IS RETURNED TO THE
CALLER.
. SEEERREBERESEEE LSRR SR SR SR BEE R REE EXE
| * PARANETERS: .
! *+ R1: HANDLE POINTER .
| * R2: INSTANCE (EVENT #) .
EERREEREEREREEE LB ERBEEBEEEEEEREE S k&
‘ * RETURNS: .
|

[ 38 2K 3 BK 3K 3 R J
N REEEREEREN

* RR2: NEW EVENTCOUNT VALUE .
AR BRESRRXXRERRBERREREEERRERERE R K XK |

ENTRY
5 ! SAVE INPUT PARAMETERS !
g 024A 93F1  PUSH @R15, B1
* 024C 93P2  PUSH aR15, B2
= ! LOCK G_AST !
= 024E 7604  LDA R4, G_AST_LOCK
!
|

0250 0000+
0252 SF00  CALL K_LOCK
0254 0000+

! RESTORE INPUT PARAMETERS !
0256 97P2 POP R2, @R1S
0258 97F1 POP R1, aR15
! GET G_AST OPPSET !
0251 6114 LD R4, MM_HANDLE.ENTRY_NO (R1)
025C 0004
! DETERMINE INSTANCE !
IP R2
025E 0B02 CASE #INSTANCE1 THEN
0260 0001
0262 SEOE
0264 027C*
3 0266 5442 LDL  BRR2, G_AST.EVENT1(R4)
¥ 0268 0018#
0264 1602 ADDL BRR2, #1
026C 0000
026E 0001
! SAVE NEW EVENTCOUNT !
0270 5D42 LDL  G_AST.EVENT1 (R4), RE2
0272 0018+
0274 2100 LD RO, #SUCCEEDED
0276 0002
0278 SEO08 CASE S#INSTANCE2 THEN
0271 029B*
027C 0802
027E 0002 !
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0280
0282
0284
0286
0288
028a
028C

028E
0290
0292
0294
0296
0298
029A
029C

029E
02a0
02a2
02A4
0216
02a8

SEQE
029ar
5442
001Ce
1602
0000
0001

5D42
001C#*
2100
Q002
5E08
029E"
2100
005F

7604
0000#
SFQ0
0000+
9E08

LDL RR2, G_AST.EVENT2(R4)

ADDL RR2, #1

! SAVE NEW EVENTCOUNT !

LDL  G_AST.EVENT2 (R4), RR2

LD RO, #SUCCEEDED

ELSE !INVALID INPUT!

LD RO, $#INVALID_INSTANCE
FI )
! NOTE: AN INVALID INSTANCE VALUE

WILL NOT AFPECT EVENT DATA !
! UNLOCK G_AST !

LDA R4, G_AST_LOCK
CALL K_UNLOCK
RET

END MM_ADVANCE
END DIST_HNM
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LOC

Appendix D

GATE_KEEPER LISTINGS

0BJ CODE STMT SOURCE STATEMENT

KERNEL_GATE_KEEPER MODULE

SLISTON $TTY

CONSTANT
ADVANCE_CALL := 1
AWAIT_CALL 1= 2
CREATE_SEG_CALL t= 3
DELETE_SEG_CALL t= 4
MAKE_XNOWN_CALL t= 5
READ_CALL 1= 6
SM_SWAP_IN_CALL i= 7
SM_SWAP_OUT_CALL := 8
TERMINATE_CALL t= 9
TICKET_CALL := 10
WRITE_CALL = 11
WRITELN_CALL 1= 12
CRLP_CALL t= 13
WRITE := %0PC8 !PRINT CHAR!
WRITELN := %0PCO {PRINT MSG!
CRLP := %0PD4 ICAR RET/LINE FEED!
MONITOR t= %4902
REGISTER_BLOCK 1= 32
TRAP_CODE_OFFSET 1= 36
INVALID_KERNEL_ENTRY := %BAD

GLOBAL
SATE_KEEPER_ENTRY LABEL

EXTERNAL
ADVANCE PROCEDURE
AWAIT PROCEDURE
CREATE_SEG PROCEDURE
DELETE_SEG PROCEDURE
MAKE_KNOWN PROCEDURE
READ PROCEDURE
SM_SWAP_IN PROCEDURE
SM_SWAP_OUT PROCEDURE
TERMINATE PROCEDURE
TICKET PROCEDURE
KERNEL_BXIT LABEL
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0000

0000
0002
0004
0006

0008
000A

000C
000E

0010
0012

0014

0016
0018
001aA
001C
001E
0020
0022
0024
0026
Qo028
002A
002C
002E
0030
0032
0034
0036

INTERNAL

$SECTION KERNEL_GATE_PROC H
GATE_KEEPER_MAIN PROCEDURE
ENTRY
GATE_KEEPER_ENTRY:
! SAVE REGISTERS !
030P SUB R15, #BEGISTER_BLOCK
0020
1CF9 LDM  aR1S, R1, #16
010F
! SAVE NSP !
93P2 PUSH aR15, B2
7027 LDCTL R2, NSP
! RESTORE INPUT REGISTERS !
2DP2 EX R2, 3R15
! SAVE REGISTER 2 !
93F2 PUSH @R15, B2
! GET SYSTEM TRAP CODE !
31P2 LD R2, B15 ($TBRAP_CODE_OFPSET)
0024
{ REMOVE SYSTEM CALL IDENTIFIER FPROM
SYSTEM TRAP INSTRUCTION !
8c28 CLRB RH2
! NOTE: THIS LEAVES THE USER VISIBLE
EXTENDED INSTRUCTION NUMBER IN R2 !
! DECODE AND BXECUTE EXTENDED INSTRUCTION !
IF R2
! NOTE: THE INITIAL VALUE FOR BREGISTER 2
WILL BE RESTORED WHEN THE APPROPRIATE
CONDITION IS FOUND !
0802 CASE #ADVANCE_CALL THEN
0001
SEOE
0028¢
97F2 POP  R2, aR15
SPO0 CALL ADVANCE
0000#
SE08 CASE #AWAIT_CALL THEN
010C?
9802
0002
SEOE
003A°
97P2 POP  R2, aR15
5P00 CALL AWAIT
0000+
SE08 CASE #CREATE_SEG_CALL THEN




ropemy

0040
0042
0044
oous
0048
00ua
oouc
004E
0050
0052
00S4
0056
0058
005A
005¢C
00SE
0060
0062
0064
0066
0068
0064
006cC
0062
0070
0072
0074
0076
0078
007a
007¢C
007
0080
0082
0084
0086
0088
0o8a
008c
008E
0090
0092
0094
0096
0098
0092
009c
009E
0Qa0
00a2
0024
0046
00as8
00aa

oc
97P2
5F00
0000#
5E08
010c?
0802
0004
SEOE
005E?
9772
Sr00
0000+
SE08
010cC?
0802
0005
SEQOE
0070*
97P2
SFOO
0000=
SEO8
010c*
0802
0006
S5EOE
0082¢
97F2
5P00
0000+
SE08
010c?
0B02
0007
SEOE
0094
9782
5F00
0000+
5E08
010C?
0802
0008
SEOE
00a6*
97r2
SFOQ
0000+
5E08
otoce
0802
0009

POP  R2, @R15
CALL CREATE_SEG

CASE $#DELETE_SEG_CALL THEM

POP  R2, 3R1S
CALL DELETE_SEG

CASE #MAKE_KNOWN_CALL THEN

pop R2, aB15
CALL HMAKE_KNOWN

CASE #READ_CALL THEN

POP R2, aR1S
CALL READ

CASE #SM_SWAP_IN_CALL TIHEN

POP  R2, aR15
CALL SM_SWAP_IN

CASE #SM_SWAP_OUT_CALL THEN

POP R2, aR1S
CALL SH_SWAP_OUT

CASE $TERMINATE_CALL THEN

£~

s




: 00AC 00B8*
00AE 97F2 POP R2, @R15
0080 5F00 CALL TERMINATE
E 00B2 0000«
v ! 00B4 SE08 CASE #TICKET_CALL THEN
3 3 00B6 010C*
! 00B8 0B02
I 00BA 000A
00BC SEOE
00BE 0OCA*
, 00CO 97P2 POP R2, @R15
f 00C2 5F00 CALL TICKET
: 00C4 0000*
- 00C6 SE08 CASE #WRITE_CALL THEN
i 00Cc8 010C*
- 00Ca 0B02
00CC 000B
| 00CE SEOE
L 00D0 00DC!*
00D2 97FP2 POP R2, @R15
, 00D4 SF00 CALL WRITE
F 00D6 OFC8
" 00D8 SE08 CASE #WRITELN_CALL THEN
! 00DA 010C!
i 00DC 0B02
00DE 000C
00EO0 SEOE
00E2 OOEE?Y
Q0B4 97P2 POP R2, aR1S
00E6 SP00 CALL WRITELN
00E8 OFCO
OOBA SE08 CASE #CBLF_CALL  THEN
00EC 010C*
Q0ER 0802
00F0 000D
O0OF2 SEOE
00P4 0100
00P6 97P2 POP R2, @R1S
00F8 5F00 CALL CRLP
00FPA OFD4
00FC SEO08 ELSE !INVALID KERNEL INVOCATION!
OOPE 010C*
! RETURN TO MONITOR !
{ NOTE: THIS RETURN TO MONITOR IS
POR STUB USE ONLY. AN INVALID
KERNEL INVOCATION WOULD NORMALLY
RETURN TO USER. !
0100 7601 LDA RY, §
0102 0100°
0104 2100 LD RO, #INVALID_KERNEL_ENTRY
0106 OBAD

0108 SFOO CALL MNONITOR




! SAVE REGISTERS ON KERNEL STACK !

: ! SAVE R1 !
010C 93F1 PUSH @R15, R1
! GET ADDRESS OF REGISTER BLOCK !
j 010E 34FP1 LDA  R1, R15 (#4)

! SAVE REGISTERS IN BEGISTER BLOCK
ON KERNEL STACK. !
0112 1C19  LDM  aR1, R1, #16
o 0114 010F
' ! RESTORE R1 BUT MAINTAIN ADDRESS
OF REGISTER BLOCK !
0116 20P1  EX  R1, @R1S
! SAVE R1 ON STACK !
0118 33P1 LD  R15(#4), R1
0114 0004

; 1 0110 0004

! RESTORE REGISTER BLOCK ADDRESS !
011Cc 97P1 POP R1, 2R1S
! SAVE VALID EXIT SP VALUE !
i 011E 33P1 LD R15 (#30), R1
F 0120 001E
E ! EXIT KERNEL BY MEANS OF HARDWARE
PREEMPT HANDLER !
0122 SEOS8 JP KERNEL_EXIT
0124 0000%
0126 END GATE_KEEPER_MAIN
END KERNEL_GATE_KEEPER N
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LocC 0BJ CODE STMT SOURCE STATEMENT

USER_GATE MODULE
$LISTON S$TTY

CONSTANT
ADVANCE_CALL
AWAIT_CALL
CREATE_SEG_CALL
DELETE_SEG_CALL
MAKE_KNOWN_CALL
READ_CALL
SM_SWAP_IN_CALL
SM_SWAP_OUT_CALL
TERMINATE_CALL
TICKET_CALL
WRITE_CALL
WRITELN_CALL
CRLP_CALL

WOWOOSNOWUNEWN -

GLIBAL
$SECTION USER_GATE_PROC

0000 ADVANCE PROCEDURE
FRERRRRERERERRRERER KRR K
* PARANETERS: *
* RIISEGMENT # *

* R2:INSTANCE (ENTRY#)*
REREKREERRRERR G KRR X LR R

* RETURNS: *
* RO:SUCCESS CODE *
(23 PR 2R 2 P22 2 d 2 g
ENTRY

0000 7FO01 sc #ADVANCE_CALL

0002 9E08 RET

0004 END ADVANCE

0004 AWALT PROCEDURE
§ Wk sk e g e Bk AR kR R R KRR
* PARAMETERS: *
*+ R1:SEGMENT # *
* R23INSTANCE *

* RR4:SPECIFIED VALUE *
ARRRRRBEEXEERRERRERRER AR

* RETURNS: *
* RO:SUCCESS CODE *
ARRRRXEEEREABEERRRRRRE RS |
ENTRY

ooou4 7r02 sC $AWAIT_CALL
0006 9E0Q3 RET
0008 END AWAIT
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i it O i st e 0.0

0008

0008
000a
ooac

oooc

000C
000E
0010

0010

TP03
9EQ8

TRO4
9E08

0010 7P05

0012
0014

0014

9E08

CREATE_SEG PROCEDURE
$ o e o A e s s ok a2kl 2k ok ek
* PARAMETERS:
* R1:MENTOR_SEG_NO
* R2:ENTRY_NO
* R3:SIZE
* BR4:CLASS
B A o e R R R ko
= RETURNS: *
* RO:SUCCESS CODE *
WA e e e o o R e ot e e e o 2k Ak ol 0§
ENTRY
sC $CREATE_SEG_CALL
RET
END CREATE_SEG

LR R N

DELETE_SEG PROCEDURE

§ s ot u e o e e e okl e e e ool el oo
* PARAMETERS: *
* R1:MENTOR_SEG_NO *
* R2:ENTRY_NO *
RERREERER R BB RR R XL E XK
* RETURNS: *
*# RO:SUCCESS CODE *
2030 20 aje o ofe e ale o e e e 38 afe ool ot o eok g 1
ENTRY

sC #¢DELETE_SEG_CALL
RET
END DELETE_SEG

MAKE_KNOWN PROCEDURE
9 A aeae o i e afe e e e e e g o ek dk ok A
* PARAMETERS: *
# R1:MENTOR_SEG_NO *
* R2:ENTRY_NO *
* R3:ACCESS DESIRED *
e e o e o o8 ofe e 283 0 e als o ak e o8 0 ko ek

* BETURNS: *
* RO:SUCCESS CODE *
* R1:SEGMENT # *

* R2:ACCESS ALLOWED *
REWE R R ok R §
ENTRY
sC $MAKE_KNOWN_CALL
RET
END MAKE_KNOWN

READ PROCEDURE
I RRERREERERAR KRR G RER QR ER AR
* PARAMETERS: *
* R1:SEGMENT ¢ *

* R2;INSTANCE .
RRERRERRERERERRERK LR RN KE
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0014
0016
Qo018

0018

rads e

0018
001A
i 001C

001C

001C
001E
0020

0020

a 0020
. 0022
0024

0024

TP06
9E08

7707
9E08

7F08
9E08

7P09
9208

*# RETURNS: .
* RO:SUCCESS CODE *
* RRU:EVENTCOUNT *

*

EREEERREERERBRE KRR EREE EE |

ENTRY
sc #READ_CALL
RET
END READ
SM_SWAP_IN PROCEDURE
§ gt oo s afe o ofe afs sl ol o ot 2 N Ak e K R 2 Ak
* PARAMETERS: *
* R1:SEGMENT # *
RRRR PR EE R ERREE EEEE KRR RE
* RETURNS: »
* 30:SUCCESS CODE *
R R RN BE REE R RE B |
ENTRY
sC $SM_SWAP_IN_CALL
RET

END SM_SWAP_IN

SMN_SWAP_OUT PROCEDURE
IREEEEERFERBIRRRRRRBRRERR

* PARANETERS: *
* R1:SEGMENT ¢ *
Ao s e o o o e ke o e ke ol ok Kk Rk
* RETURNS: *
* RO:SUCCESS CODE *
1 3je 2t 3k 2k ok 2 e ot o a2 e e ik e ek g e ek §
ENTRY
sC #$SM_SWAP_OUT_CALL
RET
END SM_SWAP_OUT
TERMINATE PROCEDURE
1 ek o eafe o ofe e e oot o 2t ok AR AR R oK Rk kR
* PARANETERS: *
* R1:SEGMENT # *
RBEEEEERE BERPERREERREEE RE
* RETURNS: *
* RO:SUCCESS CODE *
e e 93 30028 e e aie e ajeale afe e 38 o kA e e Kok ek §
ENTRY
sC $TERMINATE_CALL
RET
END TERMINATE
TICKET PROCEDURE
§ Aol e o e e ook e ot AR R R Ak Kk o
* DARAMETERS: *
* R1:SEGMENT ¢ »
Ao et e o sfeal o ok e e ole o ot ek o Aol o ek
* RETURNS: *
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0024
0026
0028

0028

0028
002a
002C

0o2c
0o02C
002E
0030

0030

0030
0032
0034

7P0A
9E08

7P0B
9E08

7P0C
9E08

7P0D
9208

* BO:SUCCESS CODE *
* RRU:TICKET VALUE *
RRRRBERERERBBRE R RE N R RS EE
ENTRY

sC $TICKET_CALL

RET
END TICKET

WRITE PROCEDURE
ENTRY

sC $WRITE_CALL

RET
END WRITE

WRITELN PROCEDURE
ENTRY

sC $WRITELN_CALL

BET
END WRITELN

CRLP PROCEDURE
ENTRY

sC $CRLF_CALL

RET
END CRLP
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Appendix B

BOOTSTRAP_LOADER LISTINGS

28000as® 2.02
LocC 0BJ CODE STHMT SOURCE STATEMENT

BOOTSTRAP_LOADER MODULE

$SLISTON S$TTY
CONSTANT

TYPE

! s®xkxx8%x SYSTEM PARAMETERS ®**sex%x |
NR_CPU = 2

NR_VP := NR_CPU*4
NR_AVAIL_VP := NR_CPU*2

MAX_DBR_NR t= 10

STACK_SEG t= 1

STACK_SEG_SIZE := %100

STACK_BLOCK := STACK_SEG_SIZE/256

! *= * OPFSETS IN STACK SEG % * I
STACK_BASE := STACK_SEG_SIZE-%10
STATUS_REG_BLOCK:= STACK_SEG_SIZE~%10
INTERRUPT_PRAME := STACK_BASE-4

INTERRUPT_REG ¢= INTERRUPT_PRAME-34

N_S_P := INTERRUPT_REG-2
P C_W := STACK_SEG_SIZE-%E
{ *&*k%% SYSTEM CONSTANTS *wsess |
oN := XPFPP

OFP :t= 0

READY T

NIL := APPPP

INVALID := SEEEE
KERNEL_FCW := %5000

AVAILABLE t= 0

ALLOCATED := XPP

SC_OPPSET = 12

MESSAGE ARBAY [16  BYTE)
ADDRESS WORD

MM_VP_ID WORD

VP_INDEX INTEGER
MSG_INDEX INTEGER
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|

MSG_TABLE RECORD
uSG
SENDER
NEXT_MSG
PILLER

]

VP_TABLE RECORD
{ DBR ADDBESS
PRI
STATE
IDLE_FLAG
PREENPT

MESSAGE
VP_INDEX
¥SG_INDEX

ABRAY [5, WORD]

WORD
WORD
WORD
WORD

PHYS_PROCESSOR WORD

NRXT_READY_VP
MSG_LIST
BXT_ID
PILLER_1
]
EXTERNAL

GET_DBR_ADDR
CREATE_STACK
LIST_INSERT
ALLOCATE_#NU
UPDATE_NNU_INAGE
MM_ALLOCATE
MM_ENTRY
IDLE_ENTRY
PREENPT_RET
BOOTSTRAP_ENTRY
GATE_KEEPER_ENTR
NEXT_BLOCK
MM_CPU_TBL ARRAY

vPT RECORD
{ LoOCK L}

VP_INDEX
MSG_INDEX

WORD

ARRAY[ 7, WORD]

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
LABEL
LABEL
LABEL
LABEL
Y LABEL
WORD
{ SR_CPU MN_VP_ID])

ORD

BONNING_LIST ARRAY[ NR_CPU WORD]

READY_LIST A
PREE_LIST N
VIRT_INT_VEC A
PILLER_2 |

VP ARRAY [ NR_VP, VP_TABLE]
MSG_Q ARRAY [NR_VP, MSG_TABLE]

BRRAY[ NR_CPU WORD]
SG_INDEX

RRAY[ 1, ADDRESS ]
ORD




EXT_VP_LIST ARRAY( NR_AVAIL_VP WORD]
NEXT_AVAIL_MMU ARRAY[ MAX _DBR_NR BYTE]

PBRDS RECORD
{ PHYS_CPU_ID WORD
LOG_CPU_ID INTEGER
vP_NR WORD
IDLE_VP VP_INDEX]

INTERNAL
$SECTION LOADER_DATA

! NOTE: THESE DECLARATIONS WILL NOT WORK
IN A TRUE MULTIPROCESSOR ENVIRONMENT AS
THEY ARE SUBJECT TO A *"CALL.* THEY NUST
BE DECLARED AS A SHARED GLOBAL DATABASE
WITH “RACE" PROTZCTION (E.G., LOCK). !

0000 NEXT_AVAIL_VP INTEGER
0002 NEXT_EXT_VP INTEGER
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0000

0000
0002
0004

0006
0008
000A

000C
000E
0010
0012
0014
0016
0018
001A
go1C

0C1E

0020
0022

0024
0026

0028

$SECTION LOADER_INT

INTERNAL
BOOTSTRAP PROCEDURE
1S RBEERREREEE R E R R ESEREEEREREE S X
* CREATES KERNEL PROCESSES AND *
¢ INITIALIZES KERNEL DATABASES.*
* INCLUDES INITIALIZATION OP *
® VIRTUAL PROCESSOR TABLE, *
* EXTERNAL VP LIST, AND MMU *
¢ IMAGES. ALLOCATES MMU INAGE *
* AND CREATES KERNEL DOMAIN *
* STACK FOR KERNEL PROCESSES. *
SEREREERR SRV AREE R LB B R EEEREREES X ]
ENTRY
! INITIALIZE PRDS AND MMU POINTER !
{ NOTE: THE FOLLOWING CONSTANTS ARE
ONLY TO BE INITIALIZED ONCE. THIS
WILL OCCUR DURING SYSTEM INITIALIZATION!
4D05 LD PRDS. PHYS_CPU_ID, #%PFPPP
0000% g
PYPF !
! NOTE: LOGICAL CPU NUMBERS ARE ASSIGNED
IN INCREMENTS OF 2 TO PACILITATE INDEXING
(OPPSETS) INTO LISTS SUBSCRIPTED BY
LOGICAL CPU NUMBER. !
4D05 LD PRDS.LOG_CPU_ID, #2
0002+
0002
{ SPECIFY NUMBER OF VIRTUAL PROCESSORS
ASSOCIATED WITH PHYSICAL CPU. !
4D0S LD PRDS.VP_NBR, $2
0004s
0002
4D08 CLR NEXT_BLOCK
0000%
4D08 CLR NEXT_AVAIL_VP
0000°
4D08 CLR NEXT_EXT_VP
0002°
! ESTABLISH GATE KEEPER AS SYSTEM CALL
TRAP HANDLER !
! GET BASE OF PROGRAM STATUS AREA !
15 LDCTL R1, PSAP
{ ADD SYSTEM CALL OFPSET TO PSA BASZ aDDR !
0101 ADD R1, #SC_OPFSET
000C
{ STORE KERNEL PCW IN PSA !
0D15 LD aR1, #KERNEL_PCW
5000
! STORE ADDRESS OF GATE KEEPER IN PROGRAM
STATUS AREA AS SYSTEN TRAP HANDLER !
2911 INC R1, #2
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002A
002C
002E

0030
0032
0034
0036

0038
003A
003C
003E
0040
0042
004y

0046
0048

0042
004cC

004E
0050
0052
0054
00S6
00s8
005A
005C
005E
0060
0062
0064
0066
0068
0062

006C
006E

oD15
0000%
8D18

4C15
0000=
0000
4910

0BO1
000A
SEOE
0044
5208
0oue*
E8PS

2103
0001

5F00
0000*

A121
2103
5000
7604
0000#*
6105
FPFF
7606
0000#*
93P1
030P
ooo8
1ce9
0303
A1F0

S5F00
0000+

LD ®R1, $GATE_KEEPER_ENTRY
CLR R1 ! NEXT_AVAIL_MMU INDEX !
! INITIALIZE ALL MMU IMAGES AS AVAILABLE !
SET_MMU_MAP:

DO

LDB NEXT_AVAIL_MMO(R1), #AVAILABLE

INC R1, #1 J

! CHECK POR END OP TABLE !

cp R1, #MAX_DBR_NR

IF EQ THEN EXIT FROM SET_MMU_MAP FI i
oD
! CREATE MEMORY MANAGER PROCESS !

LD B3, #STACK_BLOCK

! ALLOCATE AND INITIALIZE KERNEL
DOMAIN STACK SEGMENT !

CALL MM_ALLOCATE IR3: # OP BLOCKS
RETUBNS
B2: START ADDR!
LD R1, B2
LD R3, $KERNEL_FCW
LDA R4, MM_ENTRY
LD RS, SFFFP 1NSP!
LDA R6, PREEMPT_RET
PUSH @aR15, R1 ISAVE STACK ADDR!
SUB R15, #8
LDN aR15, R3, #4
LD RO, R15

! NOTE: ARGLIST FOR CREATE_STACK INCLUDES
KERNEL_PCW, INITIAL IC, NSP, AND INITIAL
RETURN POINT. !

CALL CREATE_STACK ! (RO: ABGUMENT PIR

R1: TOP OF STACK
R2-R14: INITIAL
BREG.STATES 1




TN
0070 010P ADD R15, #8 I1OVERLAY ARGUMENTS!
0072 0008
! ALLOCATE MMU_IMAGE !
0074 5r00 caLL ALLOCATE_¥MU  !RETURNS:
0076 0000+
(80: DBR #) !
0078 2101 LD R1, #STACK_SEG ! SEGMENT NO. !
007A 0001
007C 97r2 pop B2, @15 !GET STACK ADDR!
007E 2103 LD R3, #0 1 WRITE ATTRIBUTE !
0080 0000
! SPECIFY NUMBER GP BLOCKS. COUNT STARTS
PROM ZERO. (I.E.,1 BLOCK=0, 2=1, ETC.}!
| 0082 2104 LD R4, #STACK_BLOCK-1
; 0084 0000
! SAVE DBR & !
i 1 0086 93F0 PUSH @815, RO
E ! CREATE MU ENTRY FPOR ¥M STACK SEGMENT !
; 0088 5P00 CALL UPDATE_MMU_IMAGE ! (RO: DBR # |
K 0083 0000¢
- R1: SEGMENT ¢
! B2: SEG ADDRESS
- R3: SEG ATTRIBUTES
B R4: SEG LIMITS) !
; ! RESTORE DBR # |
| 008C 97F0 pop RO, 3R1S
! GET ADDRESS OF MHU INAGE !
008E 5P00 cALL GET_DBR_ADDR ! (RO: DBR #)
0090 0000

RETURNS:
(R1: DBR ADDRESS) !
! PREPARE VP TABLE ENTRIES FOR MM !

0092 2102 LD R2, #2 ! PRIDRITY !
0094 0002

0096 2105 LD RS, $OFF ! PREEMPT ! .
0098 0000 |
009A 2106 LD R6, #$OPP | KERNEL PROCESS ! |
009C 0000

! UPDATE VBT !
009E 5F00 CALL UPDATE_VP_TABLE ! (R1: DBR
00A0 01CA®

R2: PRIORITY
R5: PREEMPT FPLAG
86: EXT_VP PLAG)
RETURNS:
R9: VP_ID !
{ INITTIALIZE MS_CPU_TBL IN DISTRIBUTED MEMORY
4ANAGER WITH VP ID OF MM PROCESS !
! GET LOGICAL CPU # !
00A2 6104 LD R10, PRDS.LOG_CPU_ID
00A4 0002+
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00A6
00aA8

00AA
00AC
00AE
00BO

00B2
00B4
00B6
00ns8
00BA
00BC
00BE
00co
00c2
0ocs
00Cé6
00cs
00Ca
00ccC
00CE

00D0
00D2

00D4
00p6

00D8
ooDa

00DC
0ODE
00E0
00E2
00E4
00E6
00ES8

00EA

00EC
00EE

6PA9
0000*

2103
0001
SFO0
0000#

A121
2103
5000
7604
0000*
2105
FPFP
7606
0000+
93F1
030F
0008
1CF9
0303
A1PO

5P00
0000+

010F
0008

SP00
0000%

2101
0001
97P2
2103
0000
2104
0000

93F0

SPO0
0000#*

LD MM_CPU_TBL (R10) , R9

! CREATE IDLE PROCESS !

LD R3, #STACK_BLOCK

CALL MM_ALLOCATE {R3: # OF BLOCKS
RETURNS
R2: STABT ADDA!

LD R1, R2

LD R3, #KEBNEL_FCH

LDA R4, IDLE_ENTRY

LD BS, $%FFFP !NSP!

LDA R6, PREEMPT_RET

PUSH aR15, R1 1SAVE STACK ADDR!

suB R15, #8

LDX aR15, B3, #4

LD RO, R15

¢ INITIALIZE IDLE STACK VALUES !
CALL CREATE_STACK ! (RO: ARGUMENT PIR

R1: TOP OF STACK

R2-R14: INITIAL

REG. STATES !
ADD R15, #8 !OVERLAY ABRGUMENTS!

1 ALLOCATE MMU IMAGE FOR IDLE PROCESS !
CALL ALLOCATE_MMU ! RETURNS RO:DBR # !

! PREPARE IDLE PROCESS MMU ENTRIES !

LD R1, #STACK_SEG ! SEG # !

pop R2, aR15 $GET STACK ADDR!

LD R3, #0 ] WBITE ATTRIBOUTE !
LD R4, #STACK_BLGCK-1 ! BLOCK LINMITS !

! SAVE DBR ¢ !
PUSH aR15, RO

! CREATE MMU IMAGE ENTRY !
CALL UPDATE_MNMU_IMAGE ! (R1: SEGMENT #

R2: SEG ADDRESS
R3: SEG ATTRIBOTES
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sttt 3 b 2

00F0

00p2
00P4

00FP6
00F8
00FPA
00PC
OOFE
0100

0102
0104

0106
0108

0104
010C
0102
0110
0112
0114
0116
0118

011a
011C

011E
0120
0122
0124
0126
0128

97F0

5P00
0000+

2102
0000
2105
0000
2106
0000

SF00
o1cat

6F09
0006*

2102
0001
2105
PFPF
2106
14344
6100
0004*

SFPO0O
o1ca!

ABOO
0800
0000
SEQE
012¢C*
SEO8

R4: SEG LIMITS ) !

! RESTORE DBR # !

pop RO, aR15

! GET MMU ADDRESS 1!

CALL GET_DBR_ADDR ! (RO: DB& #)
RETURNS

(R1: DBR ADDRESS) !
! PREPARE VPT ENTRIES POR IDLE PROCESS !
LD R2, 40 { PRIOBITY !

LD RS, #OPF { PREENPT !

LD R6, #OPF ! KERMNEL PROC !

! CREATE VPT ENTRIES !
CALL UPDATE_VP_TABLE ! (R1: DBR

R2: PRIORITY
B4: IDLE_PLAG
BS: PREEMPT
86: EXT_VP PLAG)
RETURNS:
R9: VP_ID !

! ENTER VP ID OP IDLE PROCESS IN P&DS !

LD PRDS.IDLE_VP, B9

! INITIALIZE IDLE VP'S !

LD R2, #1 ! PRIORITY !

LD RS, #ON ! PREEMPT |

LD R6, #ON {NON-KERNEL PROC!

LD RO, PRDS.VP_NR

{ INITIALIZE VP VALUES !

Do

CALL UPDATE_VP_TABLE ! (R1: DBR
R2: PRIORITY
R4: IDLE_FLAG
BS: PREEMPT
R6: EXT_VP FLAG)
BETURNS:
R9: VP_ID !

DEC RO, #1

cP RO, #0

IP BQ !ALL VP'S INITIALIZED! THEN
BXIT




012C

012E
0130
0132
0134
: 0136
' 0138
i 013A

013C
i 013E
1 0140

0142
0144
0146

‘—*..-um._,_._ toa-

{ 0148

014
014C
O1u4E
0150
0152
0154
0156
0158
015A
015C
01SE
0160

0162
0164
0166

0168
0164
\ 016C

0170
0172
0174

PI

ESP6 oD
! INITILIZE VPT HEADER !
! GET LOGICAL CPU NUMBER !

6102 LD R2, PRDS.LOG_CPU_ID

0002+

4D05 LD VPT.LOCK, #OFP

0000¢

0000

4D25 LD VPT.RONNING_LIST(R2), #HIL

0002¢

PPPF

4D25 LD VPT.READY_LIST(R2), #NIL

0006+

FFFP

4D08 CLR VPT.PREE_LIST {HEAD OF MSG LIST!

000a*

{THREAD VP*S BY PRIORITY AND SET STATES TO READY !

8028 CLR R2 !START WITH VP #1!
THREAD:
DO

610D LD R13, PRDS.LOG_CPU_ID

0002¢

76D3 LDA R3,VPT.READY_LIST (R13)

0006+

7604 LDA R4 ,VPT.VP.NEXT_READY_VP

001ce

7605 LDA RS, VPT.VP.PRI

0012#

7606 LDA R6,VPT.VP.STATE

0014+ _

2107 LD B7,4READY

0001

! SAVE 0BJ ID !

93P2 PUSH aR15, B2

5P00 CALL LIST_INSERT !R2: OBJ ID

0000#*
R3: LIST_HEAD_PTR ADDR
R4: NEXT_OBJ PTR
BS: PRIORLTY_PTR
BR6: STATE_PTR
87: STATE !

! RESTORE OBJ ID !

97P2 POP B2, @3B15

0102 ADD R2, #SIZEOF VP_TABLE

0020

0B02 cp B2, #(NR_VP * (SIZEOF VP_TABLE))

0100

SEOE IF EQ THEN EXIT PROM THREAD FI

017a?
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0174

017C

0178
0180
0182
0184

0186
0188
018a
o1l8c
018E
0150
0192
0194
0196
0198
019a
019C
019E
0140
01A2
01A4
0146
01A8

01AA
01AC
O1AE
01B0O
01B2
0184
01B6
01B8
01BaA
01BC

ESE?

8D18

0D

! INITIALIZE VP MESSAGE LIST |

! NOTE: ONLY THE THREAD POR THE MESSAGE
LIST NEED BE CREATED AS ALL MESSAGES
ARE INITIALLY AVAILABLE FOR USE. THE
INITIAL MESSAGEZ VALUES WERE CREATED
POR CLARITY ONLY TO SHOW THAT THE
MESSAGES HAVE NO USABLE INITIAL VALUE!

CLR R1

MSG_LST_INIT:

AN12
A123
0103
0010

4D25
0110%
EEEE
A921
8B32
SEOE
0198
5e08
019a?
E8F6
4D15
0120%
FPFF
A112
0101
0020
0801
0100

SEQE
01BC*
4025
0122+
PFPFF
5E08
01C2¢
5E08
01co?
6P21

! NOTE: R1 REPRESENTS CURRENT ENTRY IN
MSG_LIST, R2 REPRESENTS CURRENT POSITION
IN MSG_LIST ENTRY, AND R3 BEPRESENTS
NEXT ENTRY IN MSG_LIST. !

DO

LD B2, R1

LD B3, R2

ADD B3, $SIZEOF MESSAGE
FILL_MSG:

DO

LD VPT.MSG_Q.M5G(R2) , $INVALID

INC R2, #2

cP R2, R3

IF EQ THEN EXIT FROM FILL_45G FI

oD
LD VPT.NSG_Q.SENDER (R1), #NIL
LD R2, B1

ADD 81, #SIZEOF MSG_TABLE
cp R1, $SIZEOF MSG_TABLE®NR_VP

IF BQ

THEN

LD VPT.MSG_Q.NEXT_MSG (R2), #NIL

BEXIT PRON MSG_LST_INIT
ELSE
LD VPT.MSG_Q.NEXT_MSG(Rz), R1
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O1BE 0122+

01C0 ESDE

J 01C2 610D
; j 01C4 0002+

- 01C6 SE08
4 01C8 0000*
01CA

e o L e e

FI
oD

! GET LOGICAL CPU # FOR USE
BY ITC GETWORK. !
LD R13, PRDS.LOG_CPU_ID

! BOOTSTRAP COMPLETE !

! START SYSTEM EXECUTION AT PREEMPT ENTRY !
! POINT IN ITC GETWORK PROCEDURE !

Je BOQOTSTRAP_ENTRY

END BOOTSTRAP
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01cA

T NS R

01cA
01cc
01CE
| 2100

= 01D2

i 01D4

: 01D6

‘ 0108
01DA

01DC

01DE

01E0

01E2

01EY

01E6

01ES

' 01EA
01EC
01EE
01F0

pas g atng 4

a8 0172
A 01F4

01P6
01F8
01FA
01FC

O1FE
0200
0202
0204

6109
0000°
6FP91
0010*
6F92
0012%
6F96
0016+
6F95
0018»
6107
000G 2=
6F97
00 1A=
4095
001C*
PFFF
4p95
Q01E*
FPFF

0806
FFFP

SEQE
0210°
6108
0002

6P89
0000=
6798
0020+

up
1%%

e

*

L

*
3
-
|
 d
3
-
]
=
b
*

*
EN
!

LD
LD
LD
LD
LD
LD
LD

LD

LD

.

cp

IF EQ !EXTERNAL VP!

T

DATE_VP_TABLE PROCEDURE
ERBRRERRREREERZRR AR KB BR R ERKE & X

INITIALIZES VPT ENTRIES *
BEREERERREBERRRREREERRREEEE K ®®
REGISTER USE: *
PABRAMETERS: *
R1: DBR ADDRESS *
R2: PRIORBRITY *
RS: PREEMPT FLAG *
R6: EXTERNAL VP FLAG *
RETURNS: *
=

®

*

=

®

=

R9: ASSIGNED VP ID
LOCAL VARIABLES:

R7: LOGICAL CPU #

R8: EXT_VP_LIST OFFSET

R9: VPT OFFSET

BERREREERERRERRRR R R EEEE Rk R KR ]

gg; OFFSET IN VPT FOR MEXT ENTRY !
R9, NEXT_AVAIL_VP
VPT.VP.DBR(R9), R1 ]
VPT.VP.PRI(R9), R2
VPT.VP. IDLE_FLAG (R9), B6 ‘
VPT.VP.PREEMPT(R9), RS
87, PRDS.LOG_CPU_ID
VPT.VP. PHYS_PROCESSOR (R9) , B7

VPT.VP.NEXT_READY _VP (R9), #NIL

VPT.VP.MSG_LIST (R9), #NIL

CHECK EXTEBMNAL VP FLAG !
R6, #ON

HEN ! VP IS TC VISIBLE !

LD B8, NEXT_EXT_VP

{ INSERT ENTRY IN EXTERNAL VP LIST !
LD EXT_VP_LIST (88), BRI

LD VPT.VP.EXT_ID(R9), B8

- 328 -

- — - ——




A abia

0206
0208
020a
020C
020E
0210
0212
0214

0216
0218
021a
021
021E
0220
0222

A981
6F08
0002
SE08
0216
4D05
0020+
FPFP

A19a
010A
0020
6F0A
0000
9808

INC
LD

ELSE
LD
FI
LD
ADD
LD

RET

RS, #2
NEXT_EXT_VP, B8

{VP DOUND TO KERNEL PROCESS!

VPT.VP.EXT_ID, #EIL

R10, B9
R10, #SIZEOP VP_TABLE

NEXT_AVAIL_VP, R10

END UPDATE_VP_TABLE
END BOOTSTRAP_LOADER
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3 Appendix P
LIBRARY PUMNCTION LISTINGS

28000Asy 2.02
LocC 0BJ CODE STHMT SOURCE STATEMENT

LIBRARY_PUNCTION MODULE :

i SLISTON $TTY |

5 CONSTANT §
; KERNEL_PCW 1= %5000 i’
_ STACK_SEG_SIZE := %100 |
l STACK BASE := STACK_SEG_SIZE-%10 ;
STATUS_REG_BLOCK:= STACK_SEG_SIZE-%10 !
INTERRUPT_FRAME := STACK_BASE-4 |
- INTERRUPT_REG  := INTERRUPT_PRAME-34
Lt ¥N_S_P := INTERRUPT_REG-2
o NIL 1= XFFPF

!
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0000

0000
0002
0004
0006
0008

000A
000C
Q0OCE
0010
0012
0014
0016

0018
001a
001C
001E
0020
0022
0024
0026
0028
002a
002C
002E

$SECTION LIB_PROC

GLOBAL
LIST_INSERT PROCEDURE
{1 SRR EE R BEERE R R EERE AR LR EEEEEE E
* INSERTS OBJECTS INTO A LIST #
* BY ORDER OPF PRIORITY AND SETS *
* ITS STATE *
RBRBERRR BRRREE R R PR Rk
% BEGISTER USE: *
* PARAMETERS: *
*# R2: OBJECT ID *
* R3: HEAD_OF_LIST_PTR ADDR *
* R4: NEXT_OBJ_PTR ADDR *
* RS: PRIORITY_PTR ADDR *
* R6: STATE_PTR ADDR *
* R7: OBJECT STATE *
* LOCAL VARIABLES: *
* RB: HEAD_OF_LIST_PTR *
* R9: NEXT_OBJ_PTR *
* R10: CURRENT_OBJ PRIORITY *
* R11: NEXT_OBJ PRIORITY *
EEREREREERERERR R R R R KRR RREECE T
ENTRY
! GET PIRST OBJECT IN LIST !

2138 LD B8, @R3

0808 cp RS, #NIL

FPFP

SEOE IF 2Q {LIST IS EMPTY! THEN

0018*

! PLACE OBJ AT HEAD OF LIST !

2P32 LD aR3, R2

7449 LDA R9, B4 (R2)

0200

0D95 LD aR9, #NIL

FPFP

5E08 ELSE

005a°*

! COMPARE OBJ PRI WITH LIST HEAD PRI !

7154 LD R10, BS(R2) 10BJ PRI!

0200

7158 LD R11, RS (R8) 1HEAD PRI!

0800

8BBA cP R10, R11

5802 IP GT !0BJ PRI>HEAD PRI! THEN

0030°*

2P32 LD aR3, B2 PUT AT FRONT!

7348 LD R4 (R2), B8

0200

SE08 ELSE | INSERT IN BODY OF LIST !

005A"*

SEARCH_LIST:
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0034
0036
0038
003a

003C
003E
0040
0042
0044
0046
0048

004A
004cC
004E
0050

0052
0054
0056
0058

00S5A
005C
00SE
0060

SEQE
003cC*
SE08
0052*

715B
0800
8BBA
5E02
004A"
SE08
00s2°*

A189
7148
0900
ESEP

7348
0200
7342
0900

7367
0200
9E08

Do
Ccp R8, #NIL

IF EQ 1END OF LIST! THEN
EXIT FROM SEARCH_LIST

PI
LD R11, RS (R8) !GET MNEXT PRI!
cp R10, B

IF GT ICURRENT PRIDNEXT PRI! THEN

EXIT FROM SEARCH_LIST

FI

! GET KEXT OBJ !

LD B9, RS

LD R8, R4 (R9)

0D ! END SEARCH_LIST !
! INSERT IN LIST !

LD R4 (R2), RS
LD R4 (R9), R2
FI
FI
! SET OBJECT'S STATE !
LD B6 (R2), R7
RET

END LIST_INSERT
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0060

0060
0062
0064
0066
0068
006a

006C
006E
0070
0072
0074
, 0076
) 007aA
- 007cC
QO07E
0080
0082
0084
] 0086
0088
008a
008C

93F0
ADPFO
341F
00CA
1CFP9
010P

A10P
9770
A1FE
A10F
1CF1
0303
341p
00EC
1CF9
0301
341P
oocs
2FP5
030F
0002
2PP6
3418

CREATE_STACK PROCEDURE
IEREERRERRREBEREREXEEEBRBEERREEE &
® INITIALIZES KERNEL STACK *

* SEGMENT FOR PROCESSES *
REEREBEBREREERBABBREESRBE KBRS R K ¥

® REGISTER USE: *
* PARAMETERS: ¥
. RO: ARGUMENT POINTER *
* (INCLUDBS:FCW,IC,NSP, AND *
* RETURN POINT. SEE LOCAL *
* VARIABLES BELOW.) *
& R1: TOP OF STACK *
* R2-R14: INITIAL REGISTER *
* STATES. (NOTE: IN DEMO, NO=®
* SPECIFIC INITIAL REGISTER *
* VALUES ARE SET, EXCEPT R13»
* (USER ID) FOR USER PRO- *
* CESSES.) *
EREXREREREREXEEREERRRERER R RS R LR
* LOCAL VARIABLES *
* (FROM ARGUMENTS STORED ON *
®  STACK.) *
*# R3: FCW *
* R4 : PROCESS ENTRY POINT (IC)*
® RS: NSP *
L R6: PREEMPT RETURN POINT *
ERRERRRREERRREERRERKERRRRRRREE KX
ENTRY

PUSH oR15, RO !SAVE ARGUMENT PTR!
EX RO, R15 ISAVE sSp!

LDA R15, R1(#INTERRUPT_REG)
LD ?R1S, R1, #16 I!INITIAL REG. VALUES!

! NOTE: ONLY REGISTERS R2~-R14 MAY CONTAIN
INITIALIZATION VALUES !

LD R15, R0 IRESTORE SP!

pop RO, @aR15 !BRESTORE ARGUMENT PTR!
LD R14, R15 I{SAVE CALLER RETURN POINT!
LD R15, RO IGET ARGUMENT PTR!

LDM R3, @R15, #4 !LOAD ARGUMENTS!
LDA B15, R1(#INTERRUPT_FRAME)

LDM ?R15, R3, #2 !INIT IRET PRAME!
LDA R15, R1($N_S_P)

LD aR15, BS ISET NSP!

SUB R15, #2

LD ?815, R6 !PREEMPT RET POINT!
LDA B8, R1(#STACK_BASE)
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Ot A IR

008E

0090
0092
0094
0096
0098
009a
009C

00F0
! INITIALIZE STATUS REGISTER BLOCK !

2100 LD RO, #KEBNEL_FCH
5000
1c89 LDH aR8, B1S, #2 !SAVE spP & PCH!
OPO1
A1EF LD R15, R14 I RESTORE RETURN POINT!
9E08 RET

END CREATE_STACK

END LIBRARY_FUNCTION
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Appendix G
INNER TRAPPIC CONTROLLER LISTINGS

28000as8  2.02
LocC OBJ CODE STHT SOURCE STATEMENT

INNER_TRAFFPIC_CONTROL MODULE
$LISTON STTY

i®%1, GETWORK:

A, NORMAL ENTRY DOES NOT SAVE REGISTERS.

( THIS IS A FONCTION OF THE GATEKEEPER ).

B. R14 IS AN INPUT PABAMETER T) GETWORK THAT
SIMULATES INPQ THAT WILL EVENTUALLY BE ON
THE MMU HARDWARE. THIS REGISTER MUST BE
ESTABLISHED AS A DBR BY ANY PROCEDURE
INVOKING GETWORK.

C. THE PREEMPT INTERRUPT ENTRY H2“DLER DOES
NOT USE THE GATEKEEPER AND MUST PERFORN
FUNCTIONS NORMALLY ACCOMPLISHED BY IT
PRIQR TO NORMAL ENTRY AND EXIT.

( SAVE/RESTORE: REGS, NSP; UNLOCK VPT, TEST INT)

2. GENERAL:

A. ALL VIOLATIONS OP VIRTUAL MACHINE INSTRUCTIONS
ARE CONSIDERED ERBOR CONDITIONS AND WILL RETURN
SYSTEM TO THE MONITOR WITH AN EBROR CODE IN RO
AND THE PC VALUE IN R1.

B. ITC PROCEDURES CALLING GETWORK PASS DBR
(REGISTER R14) AND LOGICAL CPU NUMBER
(REGISTER R13) AS INPUT PARAMETERS.

(INCLUDES: SIGNAL, WAIT, SWAP_VDBR,
PHYS _PREEMPT_HANDLER, AND IDLE). !

COMSTANT

{ sxpxkeknsx ERROR CODES *x&khsxhEgx |
§ UNAUTHORIZED LOCK !
MESSAGE LIST EMPTY !
MESSAGE LIST ERROR !
READY LIST EMPTY !
MESSAGE LIST OVERFLOW !
SWAP NOT ALLOWED !
VP INDEX ERBOR !
MMU UNAVAILABLE !

MU EWOIZED
ORI

(SRR F ol ol 2l 2l 2
UL UL
WOt
o =

6% 4% oo g6 €% 00 B0 as

[ I I BN B

wSNONEWN O
S pen S Jem S ben B




c e ——— e

! #3%%x%%s SYSTEM PARAMETERS *%*&ssxs% |

¥R_SDR 1=
NR_CPU :=
NR_VP i=
NR_AVAIL_VP :=
MAX_DBR_NR =
STACK_SEG =
PRDS_SEG 1=
STACK_SEG_SIZE :=

{ sxsxx QPPSETS IN
STACK_BASE =
STATUS_REG_BLOCK:=
INTERRUPT_PRANE :=
INTERRUPT_REG =

64 1LONG WORDS!
2

NR_CPUS4

NR_CPU*2

10° 1PER CPU!

1

0

%100

STACK SEG *#kss |
STACK_SEG_SIZE-%10
STACK_SBG_SIZE~%10
STACK_BASE-4

INTERRUPT_PRAME-34

N_S_P := INTERRUPT_REG-2
P_C_W := STACK_SEG_SIZE-%E
oN := XFPPP

OFF 1= 0

RUNNING := 0

READY  := 1

WAITING := 2

NIL := {PPPP

INVALID := XEEEE

MONITOR := %4900 { HBUG ENTRY !
KERNEL_PCW¥ := %5000

AVAILABLE =0
ALLOCATED = AFP

TYPE
MESSAGE ARRAY [ 16  BYTE]
ADDRESS WORD
vP_INDEX INTEGER
MSG_INDEX INTEGER

SEG_DESC_REG RECORD

BASE ADDBESS
ATTRIBUTES BYTE
L1MITS BYTE
]
NMU ARBAY({ NR_SDR SEG_DESC_RZG]
MSG_TABLE RECORD
[ MSG MESSAGE
SENDER VP_INDEX
NEXT_MSG MSG_INDEX
FILLER ARBAY [6, WORD]
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A

0000

0210

0000

0AQQ
0AQA

VP_TABLE RECORD
{ "DBR  ADDRESS

PRI WORD
STATE WORD
IDLE_FLAG WORD
PREEMPT WORD

PHYS_PROCESSOR WORD
NEXT_READY_VP VP_INDEX

MSG_LIST MSG_INDEX
EXT_ID WORD
PILLER_1 ABRAY{ 7, WOBD ]
1
EXTERNAL
LIST_INSERT PROCEDURE

GLOBAL
BOOTSTRAP_ENTRY LABEL

$SECTION ITC_DATA

veT RECORD
{ LOCK WORD
RONNING_LIST ARRAY[ NR_CPU WORD]
READY_LIST ARRAY[NR_CPU WORD)
PREE_LIST MSG_INDEX
VIRT_INT_VEC ARRAY[1, ADDRESS])

PILLER_2 WORD
vp ARRAY [NR_VP, VP_TABLE])
MSG_Q ABRRAY [ NR_VP, MSG_TABLE ]

]
EXT_VP_LIST ARRAY[NR_AVAIL_VP WORD ]
$SECTION MMU_DATA
MMU_IMAGE RECORD

MMU_STRUCTURE ABRAY([ MAX_DBR_UR
]
NEXT_AVAIL_¥MU ARRAY[ MAX_DBR_NR BYTE)
PRDS RECORD
(PHYS_CPU_ID WORD
LOG_CPU_ID INTEGER
VP_NR WORD
IDLE_VP VP_INDEX ]

- 337 -

MNO ]




b — ‘F"35=EII--.-.-.I...l!l-IlIIIII-IIIIIIIIIIIIIII-II--------!‘!

0000

0000
0002
0004
0006

0008

000A
000C
000E

0010
0012

0014
0016
0c18
001
001C
001E
0020
0022
0024
0026
0028
002A

31E4
0004
3445
00F0

2FSF
7D32

3343
00F2

BOOTSTRAP_ENTRY:

61D1
0006"

4pn
0016°?
PFPP
SEQE
0030Q°
4p11
0018¢
FFFP
S5EQE
oo2acCe
SEQ8
003c*

$SECTION ITC_INT_PROC
INTERNAL
GETWORK PROCEDURE
1R EERERERERERERE LR R E LR R BEEE R EE
* SWAPS VIRTUAL PROCESSORS .
* ON PHYSICAL PROCESSOR. .
ARBREREEREBEEE RER BB R RR BB BEE e
# PARAMETERS:

R13: LOGICAL CPU #

* REGISTER USE:

* STATUS REGISTERS

* R14: DBR (SIMULATION)

* R15: STACK_POINTER

* LOCAL VARIABLES:

* R1: READY_VP (NEW)

*®

*

»

3

#*

R2: CURRENT_VP (OLD)

R3: PLAG CONTROL WORD

R4: STACK_SEG BASE ADDR

RS: STATUS_REG_BLOCK ADDR
* R6: NORMAL STACK POINTER
RRERREEREEERERERERERBRBREEEREEE ¢

ENTRY

RRRERERERTREERER

! GET STACK BASE !

LD R4, R14 ($STACK_SEG*4)
LDA RS, R4 (#STATUS_REG_BLOCK)
{ * ® SAVE SP = * |

LD @RS, R15

! * %= SAVE PCW * * !

LDCTL R3, FCW

LD RU ($P_C_W), B3

! GLOBAL LABEL

! GET READY_VP LIST !
LD R1, VPT.READY_LIST (R13)

SELECT_VP:
DO ! UNTIL ELGIBLE READY_VP FOUND
CP VPT.VP.IDLE_FLAG (R1), #ON

IFEQ ! VP IS IDLE ! THEN

CP VPT.VP.PREEMPT(R1), #0ON

IP EQ | PREEMPT INTERRUPT IS ON
EXIT PROM SELECT_VP
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002C
002E
0030
0032

0034
0036
0038
003a

003C
003E
0040
0042
couy

0046
0048

004aA
004cC
DO4E
0050
0052

0054
0056
0058
005A
005¢C

SE08
0034+
5E08
003c¢!

6113
oo1C*
A131
EBEC

4D15
0014°*
0000
6FD1
o002

611E
0010

31E4
0004
3445
00F0
215F

3143
00F2
7D3A
9e08

FI
ELSE t VP NOT IDLE !

EXIT FROM SELECT_VP

PI
{ GET NEXT READY_VP !
LD R3, VPT.VP.NEXT_READY_VP(R1)

LD R1, R3
oD

! NOTE: THE READY_LIST WILL NEVER BE EMPTY SINCE
THE IDLE VP, WHICH IS THE LOWEST PRI VP,
WILL NEVER BE REMOVED FBOM THE LIST.

IT WILL RUN ONLY IF ALL OTHER READY VP*'S ARE
IDLING OR IF THERE ARE NO OTHER VP'S ON

THE READY_LIST. ONCE SCHEDULED, IT

WILL RUN UNTIL RECEIVING A HDWE INTERBRUPT. !

! NOTE: R14 IS USED AS DBR HERE. WHEN MMU
IS AVAILABLE THIS SERIES OF SAVE AND LOAD
INSTRUCTIONS WILL BE REPLACED BY SPECIAL I/0
INSTRUCTIONS TO THE MMU. !

! PLACE NEW_VP IN RUNNING STATE !

LD VPT.VP.STATE (R1), #$RUNNING

LD VPT.RUNNING_LIST(R13), R1
! ® * SYAP DBR * = !

LD R14, VPT.VP.DBR(RT)

! LOAD NEW_VP SP !

LD R4, R14 ($STACK_SEG*u)

LDA R5, R4 (#STATUS_REG_BLOCK)
LD R15, @RS

! * & LOAD NEW FCW * * |
LD R3, R4 (#P_C_W)

LDCTL PCW, R3

BRET
END GETWORK
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005C

005¢C
00SE

0060
0062

0064
0066
0068
006A
006C
006E
0070
0072
0074
0076

0078
007a
Go7cC
007E

0080
¢o82
0084
0086
0088
008a
008cC
008E

61D2
0002*

6103
000aA*

0BO3
FPFP
SEQE
0078°*
7601
0os6C?
2100
0004
SFO0
A900

6134
0122¢
6F04
000A°

763A
0110°
2107
0010
BA81
07a0
6FP32
0120°

ENTER_MSG_LIST PROCEDURE
I RRRRERERRREER BRSNS EREEEERE RS
* INSERTS POINTER TO MESSAGE .
* PROM CURRENT_VP TO SIGNALED_VP*
* IN PIPO MSG_LIST .
EERRERREERERRE R R R RE KR REERSEEEE S
* REGISTER USE: *
PARAMETERS: .
R8 (R9) :MSG (INPUT) .
R1: SIGNALED_VP (INPUT) .
R13: LOGICAL CPU NUMBER *
LOCAL VABRIABLES: *
R2: CURRENT_VP .
R3: PIRST_FREE_MSG *
R4: NEXT_PREE_NSG .
RS: NEXT_Q_MSG .
R6: PRESENT_Q_MSG .
RERRRERR R KRB RERREE SRR R E e |
ENTRY

LD R2, VPT.RUNNING_LIST (R13)

LR 2K JK SR 3R K IR 3R K

f GET PIRST MSG FROM FREE_LIST !
LD R3, VPT.FREE_LIST

{ = x = « DEBUG * = * *» |

CP R3, #NIL

IF EQ THEN
LDA R1, §

LD RO, #M_L_0O! MESSAGE LIST OVERFLOW !
CALL MONITOR

PI
! * * * END DEBUG * * * |

LD R4, VPT.MSG_Q.NEIT_MSG(R3)
LD VPT.FREE_LIST, RY

! INSERT MESSAGE LIST INFORMATION !

LDA R10,VPT.HS5G_Q.MSG (R3)
Ld R7,#SIZEQOF MESSAGE
LDIRB ®R10,3R8,R7

LD VPT.MSG_Q.SENDER (R3), R2
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0090
0092

. 0094
i 0096

0098
" 009

009cC
009E

00a0
00A2

00A4
00A6
00A8
00aA
Qoac
00AE

00BO
00B2
00BY
00B6

00B8
Q0BA

00BC
00BE
00CoO

6115
001E?

0BOS
PPFF
5EQE
00a4*

6F13
001E*

SE08
00BC®*

0BOS
PFFF
S5EQE
00BO*
SEQ8
00B8*

A156
6165
0122°
ESP6

6P63
0122+

6F35
0122¢
9E08

END ENTER_MSG_LIST

! INSERT MSG IN MSG_LIST !
LD RS, VPT.VP.MSG_LIST(R1)

CP RS, #NIL
IF EQ ! MSG LIST IS EMPTY ! THEN

! INSERT MSG AT TOP OF LIST !
LD VPT.VP.MSG_LIST(R1), R3

ELSE ! INSERT uSG IN LIST !

MSG_Q_SEARCH:

DO ! WHILE NOT END OF LIST !
cP RS, #NIL

IF BEQ ! END OF LIST ! THEN

EXIT PROM MSG_Q_SEARCH

PI
! GET NEXT LINK !

LD R6, BS

LD RS, VPT.MSG_Q.MEXT_MSG (B6)
oD

! INSERT MSG IN LIST !
LD VPT.MSG_Q.NEXT_MSG (BR6), R3
FI
LD VPT.MSG_Q.NEXT_MSG (B3) , RS
RET
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1

ey oA

g

00cC2

0o0c2
00C4

00cCe
0ocCs

00CA
oocc
00CE
00D0
00D2
00D4
00D6
ooD8
00DA
00DC

O0DE
00EO
00E2
00B4

00E6
00ES
00EA
00EC
OOEE
11} 4]

00P2
00P4

N O DNBAR S T AN« N Vi L

61D2
0002°

6123
001E*

0B03
PFFFP
SEQE
00DE*
2100
0001
7601
00Dé6°*
S5r00
4900

6134
0122¢
6P24
001E*

6105
000a*
0B0OS
PPFP
SEQOE
0100°*

6F03
000A"*

GET_PIRST_MSG PROCEDURE
(1R AR R EEREEE R EEEREEEE RS RS

* REMOVES MSG FROM MSG_LIST .

* AND PLACES ON PREE LIST. .
* RETURNS SENDER'S MSG AND .
* yp_ID .

SREERESRER SRR SRR R R SRR eSS e kS
*REGISTER USE: .
* DARAMETERS: .
* RB(R9): MSG POINTER (INPUT) .
* R13: LOGICAL CPU NUMBER (INPUT)*
* R1: SENDER VP (RETURNED) .
* LOCAL VARIABLES .
* R2: CURRENT_VP .
* R3: PIRST_MSG .
* R4: NEXT_ASG .
* RBS: NEXT_PREE_MSG .
* R6: PRESENT_PREE_MNSG .
SR RRERERERRERREE SR BEEEEBEEREEE R kR E |
ENTRY

LD R2, VPT.ROUNNING_LIST (R13)

! REMOVE PIRST MSG FROM MSG_LIST !
LD B3, VPT.VP.MSG_LIST(R2)

{ * % % * DEBUG *= & & = |
CP R3, #NIL

IF EQ THEN

LD RO, #M_L_EM 1§ MSG LIST EMPTY !
LDA BR1, §

CALL MONITOR

FI
! ® & * END DEBUG * + = |
LD R4, VPT.MSG_Q.NEXT_MSG (R3)
LD VPT.VP.NSG _LIST(R2), R4
! INSERT MESSAGE IN FREE_LIST !
LD RS, VPT.FREE_LIST
cp RS, #NIL

IF BQ ! FREE_LIST IS EMPTY ! THEN

{ INSERT AT TOP OF LIST !
LD VPT.PFREE_LIST, R3
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00F6
O0F8
00FA
00FC
OOPE

0100
0102
0104
0106
0108
010A

010C
010E
0110
0112

0114
0116
0118
011a

v11C
0V1E
0120
0122
0124
0126
0128
012a
c12C
012E

4D35
01220
PFPP
S5EO08
011C?

0BOS
FFFF
SEOE
010C?
5EQ8
0114

A156
6165
0122¢
E8P6

6P63
0122
6F35
0122

6131
0120°
763A
0110
2107
0010
BAA1
0780
9E08

LD

ELSE

VPT.MSG_Q.NEXT_HUSG (R3), #NIL

{ INSERT IN LIST !

FREE_Q_SEARCH:

DO
ce

RS, #NIL

IP BQ ! END OP LIST ! THEN

BXIT FRON FREE_Q_SEARCH

FI

! GET NEXT MSG !

LD
LD

oD

86, RS
RS, VPT.MSG_Q.NEXT_NSG (R6)

!t INSERT IN LIST !

LD
LD

FI

VPT.MSG_Q. NEXT_NSG (R6) , R3

VPT.MSG_Q.NEXT_NSG (R3) , RS

! GET ME“SAGE INPORMATION:
(RETURNS R1: SENDING_VE) !

LD
LDA
LD

LDIRB

RET
END GET_FIRST_MSG

R1, VPT.MSG_Q.SENDER(R3)
R10,VPT.MSG_Q.HSG (R3)
R7,#SILEOF MESSAGE
aR8,aR10,R7




0000

Fra—

0000
0002

0004
0006
0008
000a

1900
0002

6F12
oooc*
9E08

f ® & INNER TRAFFIC CONTROL ENTRY POIHTS ¥ & !

! NOTE: ALL INTERRUPTS MUST BE MASKED WHENEVER

THE VPT IS LOCKED. THIS IS TO PREVENT AN
EMBRACE FROM OCCURRING SHOULD AN INTERRUPT

OCCUR WHILE THE VPT IS LOCKED. !

GLOBAL
$SECTION ITC_GLB_PROC

PREENPT_RET LABEL

KERNEL_EXIT LABEL
CREATE_INT_VEC PROCEDURE

1 2R BERERRRRERBAES SR LB R EBEEEESE &

* CREATES ENTRY IN VIRTUAL INT-*
* ERRUPT VECTOR WITH ADDRESS .
* OF THE VIRTOUAL INTERRUPT HAN-#

* DLER. .
SRS REERERRRRRESEB SRR EEREBEREEEE
* PARAMETERS: *
* R1: VIRTUAL INTERRUPT # .

* R2: INTERRUPT HANDLER ADDR ¢
SRRREEERRXRRRRRRERRREERREREEERES |

ENTRY
! COMPUTE OPFSET IN VIRTUAL
INTERRUPT VECTOR !
BULT RRQ, #SIZEOP ADDRESS

! SAVE ADDRESS OF VIRTUAL INTERRUPT
HANDLER IN INTERRUPT VECTOR !
LD VPT.VIRT_INT_VEC(R1), R2

RET

END CREATE_INT_VEC
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000A 7601
000C 0000°*

000E 8101
0010 9E08
0012

GET_DBR_ADDE PROCEDURE
| X2 RERBERAEEERRBREERE XN RERBRE R K §

* CALCULATES DBR ADDRESS PROM #

* DBR NUMBER .
RS EEEERERREEE RS SRS L SRR RE KSR &
* REGISTER USP: .
* PARAMETERS: *
= RO: DBR # *
* RETURNS: *
= R1: DBR ADDBRESS *
SEEREERRURRXREEEEERRRESE B LR LR R R |
ENTRY

! GET BASE ADDRESS OP MMU IMAGE !

LDA R1, MMU_IMAGE

! ADD DBR HANDLE (OPFSET) TO MNU BASE
ADDRESS TO OBTAIN DBR ADDRESS 1!
ADD B1, RO
RET
END GET_DBR_ADDR




0012 ALLOCATE_NnU PROCEDURE
(S ERERREEREERE BN ERRE B R B RS KGRk

* ALLOCATES NBXT AVAILABLE MHMU ¢

* IMAGE AND CREATES PRDS ENTRY #

RERBRERR BB LR ER PSR RS RERERE R & &

* REGISTER USE: *

RETUORNS: &
RO: DBR # .
LOCAL VARIABLES: s
R1: SEGMENT # *
R2: PRDS ADDRESS *
*

L

L g

R3: PRD3S ATTRIBUTES
R4: PRDS LINMITS

* %R NRRN

Il M it e
—— e

EERREE R RREREEEBEERRE LRSS RP R ERE

i !
1 ENTRY

! GET MNEXT AVAILABLE DBR # !
0012 8D0O8 CLR RO
0014 8D18 CLR R1

i NOTEB: THE POLLOWING IS A SAFE SEQUENCE
AS NEXT_AVAIL_MMU AND MMU ARE CPU LOCAL!

GBT_DBR:
Do
0016 4C11 CPB NEXT_AVAIL_MMU (R1), #AVAILABLE
0018 0A00°*
001A 0000
IF BQ !MMU ENTRY IS AVAILABLE!
001C SEOB THEN
001E 0Q2E*
0020 4c15 LDB NEXT_AVAIL_MNMU(R1), #ALLOCATED
0022 0a00°*
0024 PPFF
0026 SEO08 EXIT FROM GET_DBR
0028 Q0uA?
0022 SROS ELSE ICOURRENT ENTRY IS ALLOCATED!
002C 0048
002E A910 IEC R1, #1
0030 0100 ADD RO, #SIZEOF MMU
0032 0100
{ =« % # DEBUG * = & % |
0034 0BO1 CP R1, #MAX_DBR_NB
0036 000A
0038 SEOE IF BEQ THEN
003a 0048!?
003Cc 2100 LD RO, #M_U (MNU UNAVAILABLE!
003E 0007
0040 7601 LDA R1, §
Q042 0040
0044 SPOO CALL MONITOR
0046 A900

FI
{ * = = BND DBBUG * * * |




——— e —

0o4a
oouc
0O04E
0050
0052
0054
0056
00ss8

005a
005C

00SE
0060

2101 LD R1, #PRDS_SEG i SEGMENT NO. !
0000
7602 LDA R2, PRDS § PRDS ADDR !
OAOA*
2103 LD B3, #1 1 READ ATIR !
0001
2104 LD R4, #((SIZEOF PRDS)-1) /256
0000
! PRDS LIMITS 1!
! CREATE PRDS ENTRY IN MMU IMAGE !
S5r00 CALL UPDATE _MMU_IMAGE ! (R1: SEGMENT ¢
0060°
R2: SEG ADDRESS
R3: ATTRIBUTES
B4: SEG LIMITS)!
9E08 BET
END ALLOCATE_NMD
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0060 UPDATE_NMU_INAGE PROCEDURE i
(| RRERR R B EEREREREE R ERRE CBEE B RER S

* CREATES SEGHENT DESCRIPTOR *

* ENTRY IN NNU IMAGE . !

RERERREERER R XL RBEEEERBE L REE EE R & '

* REGISTER USE: *

PARANETERS: .
RO: DBR # .
R1: SEGMENT # *
R2: SEGHMENT ADDRESS .
B3: SEGMENT ATTRIBUTES .
R4: SEGMENT LINMITS .
*

*

L

]

LOCAL VARIABLES:

R10: MNU BASE ADDRESS

R13: OPPSET VARIABLE
BEEEREBREREEEE RRENEEERR RRBE R EE &
ENTRY

i 0060 210A LD R10, #MMU_IMAGE ! MMU BASE ADDRESS !

u 0062 0000°*

0064 810A ADD R10, RO

0066 210D LD R13, #SIZEOF SEG_DESC_REG ,

0068 0004 !

006A 991C MULT BR12, B1 { CONPUTE SEG_DESC OFFSET !

; 006C 81DA ADD R10, R13 !ADD OFPSET TO BASE ADDRESS!

; ! INSEBRT DESCRIPTOR DATA !

006B 2PA2 LD @R10, R2

0070 A9A1 INC R10, #2

0072 0DaA8 CLR @R10

0074 2EAC LDB 2810, BL4

0076 A920 INC R10, #1

0078 20AC LDB RL4, 3R10 !

007A 0AOB CPB BRL3, #%(2)00001000 ! EXECUTE ! :

007C 0808

007E SEOE IP EQ THEW

0080 008A*

0082 060C ANDB RL4, #%(2) 11110111 § EXECUTE MASK !

0084 F7P7

0086 5E08 ELSE

0088 008E*

008A 060C ANDB RL4, #%(2) 11111110 ! READ MASK ! j

008C FEPE

L2 2R 2R 2% 2K 2% N N 2

] i

g e
e e b~ e

e v—— e —

PI
008E 84BC OBRB RL4, BL3

- 0090 2BEAC  LDB aR10, BLG
: 0092 9208  RET
& 0094 END UPDATE_NNU_IMAGE
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0094

0094

0096
0098
009a
009cC

009E
00A0

00A2

00as4
00a6
00a8
00aA

00aC
00AE
00BO
00B2
00B4

00B6
00B8
00BA
00BC
00BE
00co
ooc2
00cCy
00C6
0ocs

7C01

7604
0G00*
SFO00
0282*

SFP00
o2cs*

AV1D

61D2
0002°
6123
o01C?

4D21
001E?
FFFF
SEOE
00EA*

0BO3
FPFPF
SEOE
00CA!
2100
0003
7601
00c2*
SrP00
4900

WAIT PROCEDURE
I RRBEREXBEREREERER RERE XS EREE R R RKE § kN
* INTRA_KERNEL SYNC/COM PRIMATIVE *
* INVOKED BY KERNEL PROCESSES b
RRERRREERRRBEREEEBERERE SRR AR R E & 2
PARANMETERS *
R8 (R9) : MSG POINTER (INPUT) *
R1: SENDING_VP (RETURN) *
GLOBAL VARIABLES *
R14: DBR (PARAM TO GETWORK) *
LOCAL VARIABLES *
R2: CURRENT_VP (RUNNING) *
R3: NEXT_READY_VP .
R4: LOCK_ADDRESS *
R13: LOGICAL CPU NUMBER *
FREXRERREEERERRERBREE SR ERRE XK RS & £ X0
ENTRY

! MASK INTERRUPTS !

DI VI

! LOCK VPT !

LDA R4, VPT.LOCK

LA 2K 28 3 K B AR 3E AN

CALL SPIN_LOCK ! (B4:-~VPT.LOCK) !

! NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP !
! GET CPU NUMBER !

CALL GET_CPU_NO (RETURNS:
R1:CPU #
: R2: 4 VP*S!
LD R13, R1
LD R2, YPT.RUNNING_LIST (R13)
LD B3, VPT.VP.NEXT_READY_VP(R2)
cp VPT.VP.MSG_LIST(R2), #NIL

IF BQ ! CURRENT VP'S NSG LIST IS EMPTY ! THEN
! REMOVE CURRENT_VP PROM READY_LIST !
{ # # &% % DEBUG * * & * |
cp R3, #NIL
IF EQ THEN
LD RO, #R_L_E ! READY LIST EMPTY !
LDA R1, §

CALL MONITOR
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00Ca
00cCC
00CE
00D0
00D2

00D4
00D6
oops

00DA
00DC

0O0DE
00EO

00BE2
00E4

QO0E6
00E8

00EA
00EC

00ER
00F0

oor2

00Py
00P6

6FD3
0006°
4p25
oo1cC*
FPFF

4n25
00 14°*
0002

612E
0010°*

93Fr8
93FD

5F00
0000°

97FD
97P8

5F00
Qoc2*

4D08
0000°*

7C05

9B08

FI
1 » = x END DEBUG * * * |

LD VPT.READY_LIST(R13), B3

LD VPT.VP.NEXT_READY_VP (R2), #NIL

{ PUT IT IN WAITING STATE ¢
LD VPT.VP.STATE(R2), #WAITING

{ SET DBR !
LD R14, VPT.VP.DBR(R2)

! SCHEDULE FIRST ELGIBLE READY VP !
PUSH aR15,R8
! SAVE LOGICAL CPU # !
PUSH aR15, R13
CALL GETWORK (R13:CPU #

R14:DBR!
! RESTORE CPU # !
POP R13, aR1S
POP R8,3R15
FI

! GET PIRST MSG ON CURBRENT VP'S MSG LIST !
CALL GET_PFIRST_NSG ! COPIES MSG IN MSG ARRAY!

! R13: LOGICAL CPU # !
{RETURNS R1:SENDER_VP !

! UNLOCK VPT !
CLR VPT.LOCKX

! UNMASK VECTORED INTERRUPTS !
EX VI

! RETURN: R1:SENDER_VP !
RET
END WAIT




00P6

00F6
OOF8

00FaA
00FC
OOFE
0100

0102
0104

0106
0108

010A
010C

010E
0110
0112
0114
0116

0118
011a
011C
011E
0120

93F1
7C01

7604
0000°*
5F00
0282¢

5r00
02cs8?

A11D
97P1

5P00
00scC*

4p11
0014
0002
SEQOE
o148’

A112
76D3
0006°
7.
oL ..

SIGNAL PROCEDURE
{RBRRER R RBEEEEE RN AR B R RS R EEE Rk RS
* INTRA_KERNEL SYNC /COM PRIMATIVE ¢
* INVOKED BY KERNEL PROCESSES *
ABEREERERRBEL S SRR EERERR R EEEEER GRS kR &
REGISTER USE: .
PARAETERS: *
R8 (R9) : MSG POINTER (INPUT) .
R1: SIGNALED VP_ID (INPUT) .
GLOBAL VARIABLES *
R13: CPU ¢ (PARAM TO GETWORK) *
R14: DBR (PARAM TO GETWORK) .
LOCAL VARIABLES: *
R1: SIGNALED VP .
R2: CURRENT_VP *
R4: VPT.LOCK ADDRESS .
BRERRERREEREKREBRBE SR PR R R EREE Rk kpEREE
ENTRY
! SAVE VP ID !
PUSH aR15, BR1
! MASK INTERRUPTS !

L IR & BE K 3 B R 2R K 2

e

DI VI

! LOCK VPT !

LDA R4, VPT.LOCK

CALL SPIN_LOCK ! (B4:~VPT.LOCK) !

INOTE: RETURNS WHEN VPT IS LOCKED BY THIS ¥VP.
! GET LOGICAL CPU ¢ !

CALL GET_CPU_NO !RETURNS:
BR1:CPU #
R2:#4 VP'S!

LD BR13, R1

! RESTORE VP ID !

POP R1, aR15

! PLACE NMSG IN SIGNALED_VP*S MSG_LIST !

CALL ENTER_MSG_LIST ! (R8:MSG POINTER
R1:SIGNALED_VP
R13:LOGICAL CPU #) ¢

cp VPT.VP.STATE (R1) , #WAITING

IP EQ ! SIGNALED_VP IS WAITING ! THEN

! WAKE IT UP AND MAKE IT READY !

LD R2, R1
LDA R3, VPT.READY_LIST (R13)
JA R4, VPT.VP.NEXT_READY_VP
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0122
0124
0126
0128
012a
012C

012E
0130
0132

0134

0136
0138
013a
013C
013E

0140
042

0tlu4
0146

0148
014a

0 14cC

014E
0150

W 2 A

7605
0012+
7606
0014
2107
0001

93FPD
5P00
0000+#

97FD

61D2
0002
4D25
0014
0001

612E
0010

5F00
0000

4pos8
0000°

7¢€05
9E08

LDA RS, VPT.VP.PRI
LDA R6, VPT.VP.STATE
LD R7, #READY

! SAVE LOGICAL CPU # !
PUSH @R15, R13
CALL LIST_INSERT $¢R2: OBJ ID

B3: LIST_PTR ADDR
R4: NEXT_OBJ_PTR
BS: PRIORITY_PTR
R6: STATE_PTR
R7: STATE !

! RESTORE LOGICAL CPU # !

POP R13, aR1S

! PUT CURRENT_VP IN READY_STATE 1!
LD R2, VPT.RUNNING_LIST (R13)
LD VPT.VP.STATE (R2) , #READY
! SET DBR !
LD R14, VPT.VP.DBR(R2)

! SCHEDULE FIRST ELGIBLE READY VP !
CALL GETWOBRK !R13:LOGICAL CPU #

R14:DBR !
FI

! UNLOCK VPT ¢
CLR VPT.LOCK

! UNMASK VECTORED INTBRROUPTS !

EX VI
RET
END SIGNAL
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0150 SET_PREEMPT PROCEDURE
!#‘#*‘ty***t*###*#‘##‘t“#‘.‘
* SETS PREEMPT INTERRUPT ON®
* TARGET_VP. CALLED BY TC_ *

s
1 * ADVANCE. »
A 2R R RS EREEEREEREEESE B R EEE &
‘ * REGISTER USE: .
1 * DARNMETERS: *
* R1:TARGET_VP_ID (INPUT) *
* LOCAL VARIABLES .
: * R1z VP_INDEX *
j ‘*t*‘p"‘.#****‘*.#“*##“"!
ENTRY

| ! NOrE: DESIGNED AS SAFE SEQUENCE SO VPT NEED
; N BE LOCKED. !

1 ! CONVERT VP_ID TO VP_INDEX !

0150 6112 LD R2, EXT_VP_LIST(R1)
0152 0210
X ! ruﬁn ON TGT_VP PREEMPT FLAG !
| 0154 4D25 LD VET.VP.PREEMPT (B2) , #0N
! 0156 0018°
! 0158 FFFF

L ! *%; IF TARGET VP NOT LOCAL

‘ { NOT BOUND TO THIS CPU )

(IE,} IFP <<CPU_SEG>>CPU_IDK>VPT.VP.PHYS_CPU(R1) ]

THEN} SEND HARDWARE PREEMPT INTERRUPT TO
VPL.VP.CPU(RT) . ** !

0154 9E08 RET
015C END SEY_PREEMPT
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015C

015C

0174
0176
0178
017a
017¢C
017E

0180
0182
0184

0186
0188
018A

018C
018E

0190
0192

0194

0196
0198

SF00

6103
0A 10"
6135
0010°
6F25
0010°

4Dp25
0016
FPFF

4D25
0014
0001

5F00
0000°

4p08
0000°

7C05
9208

IDLE PROCEDURE

1SR EREREREERBEEEBEE REEE S

* LOADS IDLE DBR ON pe

* CURRENT VP. CALLED BY *

* TC_GETWORK. *

RRREE LS R RE R g KERRRER R g R

* REGISTER USE *

* GLOBAL VARIABLE *

* R13: LOG CPU # *

* R14: DBR *

* LOCAL VARIABLES: *

* R2: CURRENT_VP *

* R3: TENP VAR *

* R4: VPT.LOCK ADDR *

* RS: TENP *

EEEEREBEEZRR BB ERREE R Bg @ |

ENTRY
! GET LOGICAL CPU # !
CALL GET_CPU_NO !RETURNS:
! LOAD IDLE DBR ON CURRENT VP !
LD R3, PRDS.IDLE_VP
LD RS, VPT.VP.DBR (R3)
LD VPT.VP.DBR (R2) , RS

{ TURN ON CURRENT VP*S IDLE FLAG !
LD VPT.VP.IDLE_FLAG (R2), #ON

! SET VP TO READY STATE !
LD VPT.VP.STATE (R2) , #READY

! SCHEDULE FIRST ELIGIBLE READY VP |
CALL GETWORK !R13:LOGICAL CPU #

R14:DBR !

! UNLOCK VPT !
CLR VPT.LOCK

! UNMASK VECTORED INTERRUPIS !
EI VI

RET
END IDLE




0198

0198
019A

019¢C
019E
01A0
01aA2

0tay
0146

01A8

01aA
01AC

01AE
01B0
01B2
01B4
01B6
01B8
01BA
01BC
01BE
01C0
o1c2

01Cy
01C6

93P1
7C01

7604
0000
5F00
0282

5rP00
02cC8*

Atl1D

61D2
0002°

4D21
001E?®
FPFP
5E06
01C4!
2100
0005
7601
01BC*
5F00
A900

612E
0010

SWAP_VDBR PROCEDURE
SRk o s wa ko ks ok R Rk
* LOADS NEW DBR ON »
* CURRENT VP, CALLED BY *

* TC_GETWORK. *
ERRERE R R ERERRBEREEEEREERR

* REGISTER USE *
PARAMETERS *
R1: NEW_DBR (INPUT) *
GLOBAL VARIABLES *
R13: LOGICAL CPU # =
R14: DBR *
LOCAL VARIABLES *
R2: CURRENT_VP »
R4: VPT.LOCK ADDR *
MR i R e sk ok ok gk kg
ENTRY

! SAVE NEW DBR !

PUSH ar15, R1

! MASK INTERRUPTS !

DI VI

! LOCK VPT !

LDA R4, VPT.LOCK

* % RN R RERR

L

CALL SPIN_LOCK ! (R4:-VPT.LOCK) !

{ NQTE: RBTUBKS WHEN VPT IS LOCKED BY THIS VP.!
! GET CPU # !

CALL GET_CPU_NO ! RETURNS:
R1: CPU #
R2:# VP*'S!
$AY R13, R1
!t GET CURRENT VP !
LD R2, VPT.RUNNING_LIST (R13)

f *# = x DEBUG * * % !
CP VPT.VP.MSG_LIST (R2), #NIL
IF NE ¢ MSG WAITING ! THEN

LD RO, #S_N_A ! SWAP NOT ALLOWED !
LDA BR1, § 1PC!

CALL MONITOR

PI

! & % END DEBUG * * !
! SET DBR |
LD R14, VPT.VP.DBR(R2)

! RESTORE NEW DBR !
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01cs
01Ca
01ccC

01CE
01D0

01D2
01D4
01D6

01p8
01DaA
01DC

01DE
01E0

01E2
01E4

01E6

01E8
O1EA

97P0
SFO0
000aA°

6F21
00to?

4D25
0016
0000

4p25
0014
0001

5F00
0000°

4pos
0000°*

7C05
9E08

pop RO,
CALL GET

@B 15
_DBR_ADDR ! (RO: DBR #)

BETURNS
(R1: DBR ADDR) !

! LOAD NEW DBR ON CURRENT VP !

LD VPt

{ TURN OFF ID
LD vVeT

{ SET VP TO B

.VP.DBR (BR2) , R1

LE PLAG !
«VP.IDLE_FLAG (R2), $OFF

EADY STATE !

LD VPT.VP.STATE (R2) , #READY

! SCHEDULE PI

RST ELGIBLE READY VP !

CALL GETWORK $R13:LOGICAL CPU #

! UNLOCK VPT
CLR VPT.LOCK

! UNMASK VECT
EX VI

RET
END SWAP_VDBR

R14:DBR ¢

ORED INTERRUPTS ¢

- 356 -




01EA PHYS_PREEMPT_HANDLER PROCEDURE
I RRE AR EERERRRBERRREKEEREE RRBEEEEE &
HARDWARE PREEMPT INTERRUPT L
HANDLER. ALSO TESTS FOR
VIRTUAL PREEMPT INTERRUPT
PLAG AND INVOKES INTERRUPT
HANDLER IF PLAG IS SBT.
INVOKED UPON EVERY EXIT FROM
KERNEL. KERNEL FPCW MASKS
NVI INTERRUPTS TO PREVENT
SIMULTANEOUS PREEMPT INTERR.

*
™
®
™
®
*

. L

;) HANDLING. *

% ! RERBEREREERRRERREEBRE R R E R

| ]
]
®
®
[ 3
L ]
L
®

[ 3 3K K 3K 3 BE BB BB 2K )

{ * REGISTER USE

* LOCAL VARIABLES

*# R1: PREEMPT_INT_FLAG
* R2: CURRENT_VP

* GLOBAL VARIABLES

* R13:LOGICAL CPU #

*  R14:DBR

*»

RRERREERRREBRE RFRERRRREREBEREEEE K]

! ENTRY
i ! * % PREEMPT_HANDLER * * !

- ! SAVE ALL REGISTERS |
01EA 030F SUB R15, #32

01EC 0020

01EE 1CP9 LDH @R1S, R, #16
0170 010F

! SAVE NORMAL STACK POINTER (¥SP) !
01F2 7D67 LDCTL R6, NSP
01F4 93F6 PUSH aR15, R6

! GET CPU # !
01F6 SPO0O CALL GET_CPU_NO !RETURNS:

01P8 02C8°
: B1: CPU #
. B2:# VP'S!
j: 01PA A11D LD R13, R1
F- o ! MASK INTERRUPTS !

E, . 01PC 701 DI VI
- ! LOCK VPT !
O1PE 7604  LDA R4, VPT.LOCK

. 0200 0000
‘ 0202 SPOO CALL SPIN_LOCK
0204 0282°
{RETURNS WHEN VPT IS LOCKED!
! SET DBR !
! 0206 61D2 LD R2, VPT.RUNNING_LIST(R13)
0208 0002°
020A 612E LD R14, VPT.VP.DBR(R2)

[ 020C 0010°
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! PUT CURRENT PROCESS IN READY STATE !

020E 4D25 LD VYPT.VP.STATE(R2), $READY
0210 0014
0212 0001
0214 5F00 CALL GETWOBK IR13:L0G CPU #
0216 00Q0°*
B14:DBR !
PREEMPT_RET:
_ ! UNLOCK VPT !¢
k . 0218 4DoO8 CLR VPT.LOCK
E ! 021A 0000°
! UNMASK VECTORED INTERRUPTIS !

f 021C 7¢05 EI VI

i KERNEL_EXIT:

| ! *&% UNMASK VIRTUAL PREEMPTS ®#x !

! { *« NOTE: SAPE SEQUENCE AND DOES NOT REQUIRE
VPT TO BE LOCKED. *#* 1|

i § GET CURRENT_VP !
- 021E 610D LD R13, PRDS.LOG_CPU_ID

0220 0A0C*
0222 6102 LD R2, VPT.RUNNING_LIST(R13)
0224 0002° |
! TEST PREEMPT INTERRUPT FLAG ! j
0226 4D21  CP VPT.VP.PREEMPT (B2) , #0M |
0228 0018° |
022A FPPP |
022C SE0E  IF BQ ! PREEMPT FLAG IS ON ! THEN |
022E 0240° ;
! RESET PREEMPT FLAG ! !
0230 4D25 LD  VPT.VP.PREEMPT (R2), #$OFF f
0232 0018¢ i
0234 0000 |
! SIMULATE VIRTUAL PREEMPT INTERRUPT !
0236 2101 LD R, #0 j
0238 0000 :
023a 6112 LD  R2, VPT.VIRT_INT_VEC(R1)
023C 000C* ;
023E 1E28 JP  aR2 j

INOTE: THIS JUMP TO TRAFFIC_CONTROL
IS USED ONLY IN THE CASE OF A PREEMPT INTERROPT,
AND SIMULATES A HARDWARE INTERRUPT. ** !

! #%x% END VIRTUAL PREEMPT HANDLER #**x |
FI

| ! NOTE: SINCE A HDWE INTERRUPT DOES NOT EXIT

; THROUGH THE GATE, THOSE FUNCIIONS PROVIDED i
C BY A GATE EXIT TO HANDLE PREEMPTS MUST BE 4
PROVIDED HERE ALSO. !
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0240
0242

0244
o246
0248
0244
024C

024E

97P6
706F

1CP1
0107
otwor
0020

7800

! RESTORE NSP !
POP R6, AR15S

LDCTL NSP, R6

! RESTORE ALL REGSTERS 1
LD R1, aR15, #16
ADD R15, #32

{ EXECUTE HARDWARE INTERRUPT RETURN !
IRET

END PHRYS_PREEMPT_HANDLER
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0248

024E

0250
0252
0254
0256

0258
0254

025¢C
025E
0260

0262
0264

0266
0268
026A
026C
026E
0270
0272
0274
0276
0278

027a
027¢C

027E
0280
0282

7cC01

7604
0000°
5P00
0282°

5F00
02ca!

A113
6132
Q002

6121
0020°*

0B01
PPFP
SEQE
027A*
2100
0006
7601
0272
5P00
14900

4D08
0000°*

7C05
9E08

RUNNING_VP PROCEDURE
{ 2SR ERSRE RS REEE S SR RE SR EEESEHEE S &
* CALLED BY TRAFPIC CONTROL. .
* RETORNS VP_ID. RESULT IS VALID®
* ONLY WHILE APT IS LOCKED. .
SRR RS RERREE SRS EE SR EERE SR EEE ¢
® REGISTER USE .
PARAMETERS .
* R1: EXT_VP_ID (RETURNED) ¢
* R3: LOG CPU # (RETURNED) .
® LOCAL VARIABLES *

*

L ]

L 4

* R2: VP INDEX

EERBEE BB R SRR RSB ER R EREESEESRE K& §

ENTRY

! MASK INTERRUPTS !

DI VI

! LOCK VPT !

LDA R4, VPT.LOCK

CALL SPIN_LOCK ! (B4:-~VPT.LOCK) !

! NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP !
! GET LOGICAL CPU ¢ !

CALL GET_CPU_NO [IRETU&NS:
R1: CPU #
B2: ¢ VP*S!

LD R3, R1

LD R2, VPT.BRUNNING_LIST(R3)

! CONVERT VP_INDEX TO VP_ID !
LD R1, VPT.VP.EXT_ID(R2)

! ®# % x DEBUG * * * |
CP BR1, #NIL

IP EQ { KERNEL PROC ! THEN

LD RO, $V_I_E { VP INDEX ERROR !
LDA R1, §

CALL HONITOR
PFI

!t « = END DEBUG * * |
{ ONLOCK VPT !

CLR VPT.LOCK

! UNMASK VECTORED INTERRUPIS !
EI VI

RET

END RUNNING_VP
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0282

0282
0284
0286
0288
028A
028C
028E
0290
0292
0294

0296
0298

0292
029C

0D41
0000
SE06
0296°
2100
0000
7601
028E"
5rP00
4900

0D46
ESFPE

9E08

SPIN_LOCK PROCEDURE

1 ERERE NP R REREE R R EEEE S

* USES SPIN_LOCK MECH. *

* LOCKS UNLOCKED DATA *

* STRUCTURE (POINTED TO *

* BY INPUT PARAMETER). *

RELEEBRBEEE REE S EE AR B EEE S

*REGISTER USE .

* PARAMBTERS .

* R4: LOCK ADDR (INPUT)*

BERE R RERERE R EREERE B EEEES |

ENTRY

! NOTE: SINCE ONLY ONE PROCESSOR CURRENTLY
IN SYSTEM, LOCK NOT NECESSARY. *#% |

! = & % DEBUG * * % |
CP @R4, #OFP

IP NE ! NOT UNLOCKED ! THEN

LD RO, #0U_L { UNAUTHORIZED LOCK !
LDA R1, §

CALL MONITOR

FI
t # ¢ END DEBUG & ¢ !
TBST_LOCK:
{ DO WHILE STRUCTURE LOCKED !
TSET IRy
JR MI, TEST_LOCK
! *% NOTE SEE PLZ/ASM MANUAL
POR RESTRICTIONS ON
USE OF TSET. ** |
RET

END SPIN_LOCK
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029cC

029cC
029E

0210
0242
024
0246

02a8
0242

02AC

02AE
0280
02B2
0284
02B6

0288
02BaA

028BC
02BE
02C0
02cC2
02C4

02C6
02c8

93r
7C01

7604
0000°*
SFO0
0282°*

S5F00
02cs8*

A11D

97P1
6102
0002°*
6123
0010°*

4008
0000°

7C05
1900
0004
7130
0100

9808

ITC_GET_SEG_PTR PROCEDURE

I SRS AR R REERES SR EEBEEE XS EEEE S

* GETS BASE ADDRESS OF SEGMENT #
* INDICATED. .
EBEBERBERERE S EER RS EE EEEEREE RS
* REGISTER USE: *
* RO:SEG BASE ADDRESS (RET) .
* R1:SEG NR (INPUT) *
* R2:RUNNING_VP (LOCAL) .
* R3:DBR_VALUE (LOCAL) .
* RU:VPT.LOCK *
* R13:LOGICAL CPU # .
SEEPEP AR BERENE RS EE R EBEE RN EE®
ENTRY

! SAVE SEGMENT # !

PUSH 4’15, R1

! MASK ISTERRUPTS !

)8 VI
! LOCX VPT !
DA R4 ,VPT.LOCK

CALL SPIN_LOCK !R4:-VPT.LOCK!

! GET CPU # !
CALL GET_CPU_¥NO IRETURNS:

81: CPU #
R2:# VP*S!
LD R13, R1
! RESTORE SEGMENT # !
POP R1, dR15
LD R2,VPT.RUNNING_LIST (B13)
LD R3,VPT.VP.DBR(R2)

! UNLOCK VPT !
CLR VPT.LOCK

! UNMASK VECTORED INTERRUPTS !
EX VI
HMULT RRO, #4

LD RO, R3 (R1)

RET

END ITC_GET_SEG_PTR
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02cs

02C8
02Ca
02cc
02CE
0200
02D2

02D2

02p2
0204
0206
0208

o208

0208
02DA
020C

6101
oaoce
6102
OAQE®
9208

GET_CPU_NO PROCEDURE
3ol e o ol o e e ke ok e 2 R R e R ok
* FIND CURRENT CPU_NO *
* CALLED BY DIST HMHGR *

* AND MM *
BELBEEERRRERRERRE RESREE RS

* RETURNS *

* R1: CPU_NO *

* R2: # OF VP'S *
ook s ae ot o e asage s o ARl K ok ol ek K e §
ENTRY

LD R1, PRDS.LOG_CPU_ID
LD B2, PRDS.VP_NR

RET

END GET_CPU_NO

K_LOCK PROCEDURE

1 XEEXER R ARERE RRE KL R e RE kY
* STUB POR WAIT LOCK *
RESRRERRRRREBRRERBERERE R K

* R4:~LOCK (INPUT) *
RERRREERRREREE KRR RR Rk Rk KX |

ENTRY
5P00 CALL SPIN_LOCK
0282°
9208 RET
END K_LOCK
K_UNLOCK PROCEDURE
§ Mt e o ks e sk ot Ak e A 2k 2 AR K 2k 2 Ok R
* STUB POR WAIT UNLOCK *
0 a0t e g ok o o ot oot ot o s 2ol Rk ot a8
* R4:-LOCK (INPUT) *
WP AR e e ap 2 o o o oo §
ENTRY
0Du48 CLR aR4
9208 RET

END K_UNLOCK

END INNER_TRAPPIC_CONTROL
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; SEGNENT MANAGER LISTINGS
Z8000ASH 2.02
LOC  OBJ CODE STMT SOURCE STATEMENT
, SLISTON S$TTY
.
E SEG_MGR MODULE
|
; CONSTANT
NULL_SEG 1= -1 <
| NULL_ACCESS = 4
SAX_SEG_NO 1= 64
MAX_NO_KST_ENTRIES := S4
MAX_SEG_SIZE :x 128
KST_SEG_NO 1= 2
NR_OP_KSEGS = 10
TRUE =1
PALSE 1= 0
READ 1= 1
WRITE = 0
! #x#x  SUCCESS_CODES sxae | i
SUCCEEDED i= 2
MENTOR_SEG_NOT_KNOWN := 22
ACCESS_CLASS_NOT_EQ := 33
NOT_CONPATIBLE 1= 24
SEGMENT_TOO_LARGE := 25
NO_SEG_AVAIL 1= 27
SEGMENT_NOT_KNOWN := 28 i
SEGMENT_IN_CORE i= 29
KERNEL_SEGMENT := 30
INVALID_SEGHENT_NO := 31
NO_ACCESS_PERMITTED := 32
LEAP_SEG_EXISTS = 10
NO_LEAP_EXISTS = 11
ALIAS_DOES_NOT_BXIST := 23
NO_CHILD_TO_DELETE := 20
G_AST_PULL i= 12
L_AST_FULL 1= 13

PROC_CLASS_NOT_GE_SEG_CLASS := 41
LOCAL_MEMORY_PULL i= 16
GLOBAL_MEMORY_PULL := 17
SEC_STOR_PFULL = 21
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MONITOR := %0592

TYPE
H_ARRAY ARRAY { 3  WORD ]
KST_REC RECORD
{ MM_HANDLE H_ARRAY
SIZE WORD
ACCESS_MODE BYTE
: IN_CORE BYTE
E CLASS LONG
‘ B_SEG_NO SHORT_INTEGER
[ ENTRY_NUMBER  SHORT_INTEGER
; ]
] ADDRESS WORD

SEG_ARRAY ARRAY [ MAX_SEG_SIZE BYTE]

! INTERNAL

$SECTION SM_KST_DCL
! NOTE: THIS SECTION IS AN "OVERLAY"
OR “PRAME" USED TO DEFINE THE
PORMAT OF THE KST. NO STORAGE
IS ASSIGNED BUT BATHER THE KST IS
STORED IN A SEPARATELY OBTAINED
AREA (A SEGMENT SET ASIDE POR IT) !
$A3S 0
0000  KST ARBAY MAX_NO_KST_ENTRIES KST_REC

EXTERNAL
CLASS_EQ PROCEDURE
CLASS_GE PROCEDURE
M8_CREATE_ENTRY PROCEDURE
MM_DELETE_ENTRY PROCEDURE
M4_ACTIVATE PROCEDURE
MM_DEACTIVATE PROCEDURE
¥M_SWAP_IN PROCEDURE
MM_SWAP_OUT PROCEDURE
PROCBSS_CLASS PROCEDURE

ITC_GET_SEG_PTR PROCEDURE
GET_DBR_NUMBER PROCEDURE
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0000

0000
0002
0004
0006
0008
000a
000C
Q00E
0010

0012
0014
0016
0018
001A
0o01cC
001E

0020
0022
0024
0026
0028
002a

002cC

$SECTION SN_PROC
GLOBAL
CREATE_SEG PROCEDURE
I EREARBRRREREEEERBRERE BB RRRREREE |
! CHECKS VALIDITY OF CREATE !
! REQUEST AND )
! CALLS MM_CREATE IF VALID. {
{EERRRERRERERRRRERBEERBERE R RS R §
! REGISTER USE: |
! PARAMETERS 1
! BR1: MENTOR_SEG_NO (INPUT) [}
! R2: ENTRY_NO(INPUT) !
! R3: SIZE (INPUT) !
{ BRY4: CLASS (INPUT) L]
! BO: SUCCESS_CODE (RETURNED) !
! LOCAL USE !
! R9: KST REC INDEX ]
! R6,R7 VARIOUS USES !
! BR13: ~KST !
ISEERRERRERRR KRR RRR R RE ERRRER RN |
ENTRY
0BO3 CP R3,#MAX_SEG_SIZE
0080
5802 IF GT THEN
Q010°*
2100 LD RO,#SEGMENT_TOO_LARGE
0019
SEQ8 ELSE
00aA2*
030F SUB R15,#10 !STACK AREA FOR
INPUT REGS!
000A
1CF9 LDM ?R15,R 1,45
0104
2101 LD R1,#KST_SEG_NO
0002
5°P00 CALL ITC_GET_SEG_PTR IR1: KST_SEG_NO{
0000*
{RET:RO: ~KST!
A10D LD R13,R0 IKST BASE ADDRESS
(IE ~KST)!
1CF1 LDM R1,3R15,4#5 |IRESTORE NEEDED REGS!
0104
A119 LD R9,R1 {COPY OF MENTOR_SEG_NO!
0309 SUB R9,#NR_OF_KSEGS ICONVERT
MENTOR_SEG_NO
000A
KST_REC INDEX!
1908 MULT RR8,#SIZEOF KST_REC

1OFFSET TO KST_REC!
- 366 -

.l




0030

0032
0034
0036
0038
003a
003C
Q03E
gouo
0042
004y
0046
0048
0042
0o0u4cC
O04E
0050
0052
0054
0056

0058
005A

005C
00SE
0060
0062
0064
0066
0068
006A
006C
Q06E
0070
0072
0074
0076
0078
0072

007¢C
007E
0080
0082
0084
0086
ooses
008a

819D

2106
FPFP
4ADE
000E
SEOE
0046°*
2100
0016
S5E08
009E"
93PD
SPOO
0000%
97FD
54D4
000A
93FD
S5P00
0000+

97FD
A116

1cP1
0104
0BO6
0000
SEQE
0070°*
2100
0021
5E08
00Q9E"*
93FD
9442
54D4
000a
5FP00
0000%

97FD
0BO1
0000
1CP1
0104
SEOE
0092*
2100

ADD R13,R9 !ADD OFFSET TO KST
BASE ADDBESS!

LD R6, $NULL_SEG

CPB  RL6,KST.M_SEG_NO (R13)

IF EQ
LD

ELSE
PV?“
POP
LDL

PUSH
CALL

PoOpP
LD

LDN

cp

THEN !MENTOR SEG NOT KNOWN!

RO, #MENTOR_SEG_NOT _KNOWN

?R15,R13
PROCESS_CLASS 1BR2:PROC_CLASS!

R13,aR15
RR4,KST.CLASS (R13)

dR15,R13
CLASS_EQ !RR2: PROC_CLASS!

!RR4: MENTOR SEG CLASS!
{R1: (RET) CONDITION_CODE!

R13,aR15
R6,R1

R1,3R15,#5 !RESTORE INPUT REGS!

R6,#FALSE

IF EQ THEN

LD
ELSE

RO, #ACCESS_CLASS_NOT_EQ

PUSH AdR1S5,R13 ISAVE -~KST!

LDL
LDL

RR2,RR4 !CLASS!
RR4,KST.CLASS (R13)

CALL CLASS_GE ({RR2:CLASS!

pop
ce

LDN
IP

!RRY4: MENTOR CLASS!
!RET:R1:COND_CODE!
R13,3R15 IRESTORE PTR!

R1,#FALSE

R1,2R15,45
EQ THEN

LD RO, #NOT_COMNPATIBLE
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008cC
008E
0090
0092
0094
0096
0098

009A
009c

0098
0040

00a2
ooa4

0018
SEO8
009E"
7601
0000
SF00
0000+

5F00
0428

o10p
000A

9E08

ELSE
LDA  R1,KST.MM_HANDLE (R13)
CALL MM_CREATE_ENTRY

{R1:PTR TO MM_HANDLE!
1R2:ENTRY_NO!

1R3:SIZE!

1RR4:CLASS!

{RO: (RETURNED) SUCCESS_CODE!
CALL CONPINEMENT_ CHECK

! (RO :SUCCESS_CODE) !
PI
PI
PI
ADD  R15,#10

PI
RET
END CREATE_SEG
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00A4

00A4
00A6
00a8
00AA
00AC
00AB
00B0
00B2
00BY
00B6

00B8
00BA

00BC
00BE

00co
00cC2
ooCu
00C6
00cCs

ooca
00ccC
00CE
00D0
00D2
00D4
0006
00D8
00opaA
0o0DncC

00DE
00E0

93r1
93F2
2101
0002
SFO0
0000*
A10D
97F2
97P1
0301

000A
1900

0010
811D

2106
FFPFP
UADE
000E
SEQBE

00Dy
2100
0016
5E08
010B*
93P1
93F2
93FD
5FP00
0000+

97FD
S54D4

DELETE_SEG PROCEDURE
{1 XA RBEBEEERERREE RREERRE KK REER K]
! CHECKS VALIDITY OF DELETE !
! REQUEST AND 1
! CALLS MM_DELETE IF VALID. !
(1B EEAR AR EEEEREEREEERREREREEE |
! REGISTER USE: !
! PARAMETERS !
! R1:MENTOR_SEG_NO (INPUT) !
! R2: ENTRY_NO (INPUT) !
t RO:SUCCESS_CODE (RET) !
{ LOCAL USE !
{ R6: VARIOUS LOCAL USES !
I EERRREERERERREEREEEEREBRRERRE &K |

ENTRY

PUSH aR15,R1 ISAVE NEEDED REGS!
PUSH aR15,R2

LD R1,#KST_SEG_NO

CALL ITC_GET_SEG_PTR IR1:KST_SEG_NO!

LD R13,R0 !-~KST!

POP R2,3R15 IRESTORE INPUT REGS!

POP  R1,2R15

SUB  R1,#NR_OFP_K>EGS !CONVERT
MENTOR_SEG_NO TO

KST REC INDEX!
MULT RRO,#SIZEOF KST_REC !OFPSET
TO DESIRED REC!

ADD R13,R1 !ADD OPPSET TO KST BASE
ADDRESS!
LD B6 , #NULL_SEG

CPB  RL6,KST.M_SEG_NO(R13)

IP EQ THEN {MENTOR SEGMENT
NOT KNOWN!

LD RO, #MENTOR_SEG_NOT_KNOWN

ELSE

PUSH d@R15,R1 ISAVE NEEDED REGS!
PUSH aR15,R2

PUSH @R15,R13

CALL PROCESS_CLASS

! (RETORNS RB2:PROC_CLASS)!
POP R13,3R15
LDL RR4 ,KST.CLASS (R13) {MENTOR
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00E2
00E4
00Eé6
00ES8

O00EA
00EC
OOEE
00F0
oor2
00Py
00F6
OOF8
00FA
00FPC
00FE
0100
0102
0104
0106
0108

010a
010C

010E
0110

000A
93FD
SP00
0000*

A116
97FD
97FP2
97F1
0BO6
0000
5EQE
0102°
2100
0021
SE08
010E*
76D1
0000
SF00
0000+*

5F00
0u28°

9E08

SEG CLASS!

PUSH @R15,R13
CALL CLASS_EQ 1RR2:PROCESS CLASS!

{RR4:MENTOR SEG CLASS!
1R1: (RET) CONDITION_CODE!
LD R6,R1
POP B13,3R15
POP R2,3R15 IRESTORE MEEDED REGS!
POP R1,aR15
cPp R6, $PALSE

IP BQ THEN
LD RO, #ACCESS_CLASS_NOT_EQ
ELSE
LDA  R1,KST.MM_HANDLE(R13)
CALL MM_DELETE_ENTRY
1R1:~MM_HANDLE!
1 R2: ENTRY_NO!
{RO: (RET) SUCCESS_CODE!
CALL CONPINEMENT_CHECK

! (RO:SUCCESS_CODE) !
FI

FI
RET
END DELETE_SEG
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0110 MAKE_KNOWN PROCEDURE
(REEREREEREREEERBEREERRERE R EEE R K $ |

CHECKS VALIDITY OF MAKE KNOWN !

REQUEST AND CALLS MM_ACTIVATE !

IF VALID. ASSIGNS SEG !

NUMBER AND UPDATES KST. !

IR BRBEREE RN EER SRS RE R RS & k& |

REGISTER USE:

PARAMETERS:
R1:MENTOR_SEG_NO (INPUT)
R2:ENTRY_NO(INPUT)
R3:ACCESS_DESIRED (INPUT)
RO :SUCCESS_CODE (RET)
R1:SEGMENT_NO (RET)
R2:ACCESS_ALLOWED (RET)

LOCAL USE
IDENTIFIED AT POINT OP USAGE !

| { R EREXREEREAEEES R ERBEBEEE PR R ERE Rk $ |
‘ ENTRY

0110 93F1 PUSH aR15,R1 $SAVE INPUT REGS!

0112 91F2 PUSHL aR15,RR2

K o114 2101 LD R1,#KST_SEG_NO
: 0116 0002
! 0118 5FQ0 CALL ITC_GET_SEG_PTR ! (R1:KST_SEG_NO,
; RET:R0:z-~KST) !

l 011a 0000+*

: 011C A10D LD R13,R0 ¢-KST!

011E 95F2 PoPL RR2,2R15

0120 97P1 pop R1,aR15

0122 At115 LD B5,R1 !COPY OF MENTOR_SEG_NO!

0124 0305 suB R5,#NR_OF_KSEGS !COMVERT T0

S Bub 04 0B S 4wt gus @ Sen o
O 0w Pt S s S S Om

T T

INDEX!
0126 000A
0128 1904 MULT RRU,#SIZEOFP KST_REC !KST OFPFSET
I0 SEG REC!
01242 0010

012C 815D ADD R13,R5 {ADD OPPSET TO -KST!
012E 2104 LD R4, #NULL_SEG

0130 PPFP

0132 4apcC CPB RL4 ,KST.M_SEG_NO(R13)

0134 000E

0136 SEOQE IF EQ THEN

0138 0144A°

0132 2100 LD RO, #MENTOR_SEG_NOT_KNOWN
013C 0016

013E 2101 LD R1, $NULL_SEG

0140 PPFP

0142 2102 LD R2, $NOLL_ACCESS

0144 0004

0146 SEO8 ELSE

0148 02cC8?

014a 2107 LD R7,#%#0 1KST INDEX!

014C 0000
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0 14E
0150
0152
0154
0156

0158
015A
015C
01SE
0160
0162
0164
0166
0168
0162
016C
016E
0170
0172
0174
0176

0178
017a

017C

017E
0180
0182
0184
0186
o188
018aA
018cC

018E
0190

0192
0194

0196
0198
0192
¢19C
019E

2108
PFPP
4109
2104
FFPF

4a99
000E
SEOE
017¢C*
4a9A
000F
SEQE
017¢C*
2100
0002
0107
000A
A1
609a
0008
A11A

5208
01a6°*

4A9C

000E
SEOE
0192¢
0BO8
PFFP
5EOE
0192°*
A178

0108
000a

2970
0109

0010
0807
0036
5E02
01A4°

LD R8, #NULL_SEG {AVAIL SEG INDEX!

LD R9,R0 !-KST!

LD BR10,#NULL_SEG !SEG KNOWN INDICATOR!

SEE_IP_KNOWN:
DO
CPB  RL1,KST.M_SEG_NO (B9)
IF EQ THEN
CPB  RL2,KST.ENTRY_MNUMBER (R9)
IF BQ THEN ICASE: SEG KNOWN!
LD RO, #SUCCEBEDED
ADD  R7,#¥B_OP_KSEGS

LD 81,87 (SEG#!
LDB RL2,KST.ACCESS_MODE (R9)

LD R10,R1 !SET SEG KNOWN
INDICATOR!
EXIT FROM SEE_IP_KNOWN

PI
PI

CcPB RL4 ,KST.4_SEG_NO (R9)
ISEE IF SEG # AVAIL!

IP EQ THEN
cp BS,#NULL_SEG
IP EQ THEW
LD R8,R7 !SAVE PIBRST
AVAIL SEG INDEX!
ADD RS, #NB_OP_KSEGS
ICONVERT TO SEG #!
FI
FI
INC  R7
ADD  R9, #SIZEOP KST_REC
{INCREMENT ONE REC!
CP R7, #MAX_NO_KST_ENTRIES

IF GT THEN
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0120 SE08 EXIT FROM SEE_IF_KNOWN
0142 01aA6°
FI
01A4 EB8D9 oD
ISEE_IP_KNOWN!
01A6 0BOA CP R10,#NULL_SEG

01a8 FFFP
01AA SEOE IP BQ THEN !SEG KNOWN
INDICATOR NOT SET!
01AC 02C8*
01AE 0BO8 cp RS, #NULL_SEG
0180 FPFP
01B2 SE06 IF ME THEN !CASE:SEG UNKNOWN
AND SEG# AVAIL!
0184 02BC*
0186 91P0 PUSHL @R15,BR0 !~KST AND
MENTOR_SEG_NO!
0188 91F2 PUSHL @R15,BRR2 {ENTRY_NO
6ACCESS_DESIRED!
01BA 93F8 PUSH aRB15,88 !AVAIL SEG
INDEX IN KST!
01BC 93FD PUSH aR15,R13 IMENTOR SEG REC PTR!
01BE 5F00 CALL GET_DBR_NUMBER
! (RET:RL1:DBR_NO) !
01C0 0000%
01C2 Af1A LD R10,R1 !DBR_NO!
01C4 97FD POP R13,aR15
01C6 97F8 POP R8,aR15
01c8 95P2 POPL RR2,aB15
01CA 95F0 POPL BRRO,aR15
1MUST REARRANGE REGS POR PASSING AND
RETURN CONSISTENCY OF LOCATION!
01cC a135 000D
047C SEOE LD RS,R3 {ACCESS_DESIRED!
01CE A123 LD R3,R2 1ENTRY_NOf
01D0 76D2 LDA  R2,KST.MM_HANDLE (R13) !HPTR!
01D2 0000
01D4 A116 LD R6,R1 IMENTOR_SEG_NO!
01D6 A181 LD R1,88 (SEGMENT_NO (SAVE)!
01D8 A184 LD R4,R8 ISEGMENT_NO
(PASSING ARG)!
01DA A109 LD R9,R0 I~KST!
01DC 030F SUB  R15,#20
01DE 0014
01E0 1CF9 LDN @R15,R1,#10 ISAVE REGS 1~10!
01E2 0109
01E4 A1A1 LD R1,R10 !DBR_HO PASSED
I¥ R1!
01E6 A18B LD R11, R8
L 01E8 030B SUB R11, #NR_OP_KSEGS
L 01EA 000A
3 01EC 1904 MULT RR10, #SIZEOP KST_REC
: 01EE 0010
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01P0
01F2
01P4
01Pe6

01F8

O1FA
01FC
01PE
0200
0202
0204
0206
0208
020a

020cC
020E
0210
0212
0214
0216
0218
021a
021C
021E
0220
0222
0224
0226

0228
022a
022C
022E
0230
0232
0234
0236

0238
023a
023C
023E
0240
0242

0244

A1BC LD R12, R11
819¢C ADD B12, R9
5P00 CALL MM_ACTIVATE
0000+

{ (Rt:DBR_NO,R2: HPTR,R3:ENTRY_NO,
R4 :SEGNENT_NO,R12:RET_HPTR) !
! (RET:RO:SUCCESS_CODE, RR2:CLASS,
R4 :SIZE) !
5P00 CALL COMNPINEMENT_CHECK
! (RO:SUCCESS_CODE) ¢

0428¢
942A LDL RR10,RR2 {CLASS!
A14C LD R12,R4 1SIZE!
1CP1 LDN R1,aR15,#9 IRESTORE REGS 1-91
0108
2187 LD R7,B8 ISEG #!
0307 SUB  R7,#NR_OP_KSEGS
000A
1906 MULT RR6,#SIZEOF KST_REC
1OFPSET TO REC!
0010
A17D LD R13,R7
819D ADD R13,B9 IADD ~KST TO OFFSET!
SDDA LDL KST.CLASS (R13) ,BR10 {CLASS!
000a
6FDC LD KST.SIZE(R13) ,R12 ISIZE!
0006
0A08 CPB  RLO,#SUCCEEDED
0202
SEOE IP EQ THEN
02AC*
93PD PUSH aR15,R13
SFO0 CALL PROCESS_CLASS
0000
! (RET:RR2: PROC_CLASS) !
97PD POP  R13,aR15
5404 LDL  BR4,KST.CLASS (R13)
0004
93FD PUSHE aR15,R13
91P2 PUSHL aR15,RR2
91P4 PUSHL 2R15,RR4
SPO0 CALL CLASS_GE
0000+
! (RR2: PROC_CLASS, RR4:SEG CLASS, RET:
R1:CONDITION_CODE) !
95P4 POPL RR4,dR15
95P2 POPL RR2,aR15
97FD POP  R13,aR15
0801 cp R1, #PALSE
0000
SEOE IF EQ THEN INO ACCESS
POSSIBLE--DEACT.!
0266"
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0246 1CP1 LDM R1,8815,810 !

0248 0109 i
026A A1A1 LD R1,R10 $DBE_NO!
024C 76D2 LDA R2,KST.HN_HANDLE (R13) *
1HPTR!
024E 0000
0250 SF0O CALL MM_DEACTIVATE
{RET:R0:S_CODE!
0252 0000#
0254 SF00 CALL CONPINEMEMNT _CHECK
1B0:S_CODE!
0256 0428°
0258 21P1 LD B1,3R15 ISEG #!
0254 2102 LD R2, $NULL_ACCESS
025C 0004
025E 2100 LD RO,
$PROC_CLASS_NOT _GE_3BG_CLASS
0260 0029
0262 SE08 ELSE
0264 02A8*
0266 93PD PUSH aR1S5,R13
0268 S5F00 CALL CLASS_EQ !(BR2:PROC_CLASS,
0264 0000%
RR4:SEG CLASS, j
RET:B1:CONDITION_CODE)! ;
026C 97FD POP  R13,3R15
026E 4130 LD RO,R1 §1CONDITION_CODE!
0270 1CP1 LDM  R1,3R15,#9 |
0272 0108
0274 0BOO cp RO, #TRUE
0276 0001
0278 SEOE IP EQ THEN
0274 0290°
027C 0BOS cP RS, $4RITE
027E 0000
0280 SEOE IF EBQ THEN
0282 028A°*
0284 CA00 LDB  RL2,#WRITE
0286 SE08 ELSE
0288 028C*
0284 CAO1 LDB  RL2,#BEAD
PI
028C 5E08 ELSE
028E 0292'
0290 CAO1 LDB  BL2,#READ
PI
0292 4CDS LDB KST.IN_COBE(R13),#FALSE
0294 0009
0296 0000
0298 6EDE LDB  KST.M_SEG_NO (R13) ,RL6
0294 000E
029C 6EDB LDB  KST.ENTRY_NUMBER (R13) ,RL3
029E 000P
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02A0
02A2
0224

0216

02A8
02aA
02AC
02AE
02B0
02B2

02B4
02B6
0288
02BA
02BC
02BE
02C0
02c2
02C4
02cé6

c2cs
02cA

6EDA
0008
2100

0002

5E08
02B4?
2101
FFFP
2102
0004

01QF
0014
SE08
02cs*
2100
0018
2101
PPPF
2102
0004

9E08

LDB KST.ACCESS_MODE (R13) ,RL2

LD RO, $SUCCEEDED
§1SUCCESS _CODE!

FI1
BLSE

LD R1,#NULL_SEG
LD R2, $NULL_ACCESS

PI
ADD R15, #20

BLSE
LD RO, #N¥O_SEG_AVAIL
LD R1,#NULL_SEG
LD B2, #NULL_ACCESS
PI
PI
PI

RET
END MAKE_KNOWN




02CaA TERMINATE PROCEDURE

IERRRRRNRERRBR R SRR RRRKSESRRRES |
! CHECKS VALIDITY OF TERMINATE !

; ! REQUEST AND CALLS !

j { MM_DEACTIVATE IF VALID !

I RB R ERERERXRE SR RN SR B EEE ek |

I ! REGISTER USE 1

{ PARAMETERS 1

! RV1:SEGMENT_NO (INPUT) !

! RO:SUCCESS_CODE (RET) !

; ! LOCAL USE [

i ! BR3:KST REC INDEX !

i ! R6:CONSTANT STORAGE [

' H R13:~KST !

I I EERRRERAREXREREERRBERERR R RRE RS
1

ENTRY
02CA A113 LD R3,R1 1COPY OF SEG #!
02CcC 0303 SUB  R3,#NR_OF_KSEGS
ICONVERT SEG# TO KST INDEX!
02CE 000A
02D0 1902 MOULT RR2,#SIZEOF KST_REC
02D2 0010
02D4 93P1 PUSH aR15,R1
02D6 93F3 PUSH aR15,R3
02D8 2101 LD R1, #KST_SEG_NO
02DA 0002
02DC SP00 CALL ITC_GET_SEG_PTR
1 (RT:KST_SEG_NO) !

02DE 0000*

] ! (RETURNS:RO: KST_SEG_PTR) !
3 02E0 A10D. LD R13,R0
\ 02E2 97F3 POP  R3,aR15
: 02B4 97F1 POP  R1,3R15
02E6 813D ADD R13,R3 {ADD OFFSET IO -~KST!
02E8 2106 LD  R6,#NULL_SEG
02EA FPPF
02EC 4ADE CPB  RL6,KST.M_SEG_NO(R13)
02EE 000E
02P0 SEOE IF EQ  THEN
02F2 02FC*
02P4 2100 LD RO, #SEGMENT_NOT _KNOWN
02F6 001C
02P8 S5E08  ELSE
02PA 0346°
02FC 2106 LD  R6,#TRUE
02PE 0001
0300 4ADE CPB  RL6,KST.IN_CORE(R13)
0302 0009
' 0304 SEOE IFP EBEQ  THEN

0306 0310°

0308 2100 LD RO, #SEGMENT_IN_CORE
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030a
030C
0302
0310
0312
0314
0316
0318
0312
031C
031E
0320
0322
0324

0326
0328
032a
032C
032E
0330

0332
0334

0336
0338
033a
033C
033E
0340
0342
0344

0346
0348

001D
5E08
0346"
0801
000A
SE09
0320°
2100
001E
SE08
0346°
937D
5F00
0000+

97FD
76D2
0000
93FD
SF00
0000+

SF00
0428

97FD
0A08
0202
SEOE
0346
4Cps
000E
FPFP

SE08

ELSE
cP R1,#NR_OP_KSEGS
Ip LT THEN
LD RO, $KERNEL_SEGMENT
ELSE

PUSH aR15,R13
CALL GET_DBR_NUMBER

! (RETURNS:RL1:DBR_NO) !
POP R13,aR1S
LDA R2,KST.M8_HANDLE (R13)

PUSH aR15,R13
CALL MM_DEACTIVATE ! (R1:DBR_XO)!

1 (R2:~M8_HANDLE) !
! (RET:RO:SUCCESS_CODE) !
CALL CONPINEMENT_CHECK

! (R0:SUCCESS_CODE) !
POP R13,3B15
CPB  RLO,#SUCCEEDED

IP EQ THEN !UPDATE KST!
LDB  KST.M_SEG_NO(R13),

$NULL_SEG
FI
P
FI
PI
RET
END TERMINATE
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A
L) n.;u.m-fle-“ A .

0348

0348
034a

034C
O034E

0350
0352
0354
0356
0358
0352
035¢C
035E
0360
0362
0364
0366
0368
0364
036C
036E
0370
0372
0374
0376
0378
037a
037¢C
037E
0380
0382
0384
0386

A1
0307

000a
1906

0010
93F1
93r7
2101
0002
SFO0
0000#
A10D
9727
97P1
817D
2106
FFFP
4ADE
000E
SEOQE
037
2100
001C
5E08
03p8!*
2106
0001
4ADE
0009
S5EQE
038E*
2100

SM_SHWAP_IN PROCEDURE

1RSSR RERXBEBRAEEBER SRR KBS EEE |
! CHECKS VALIDITY OF SWAP IN !

! REQUEST AND CALLS !
! MM_SWAP_IN IF VALID !
1B RERERERE R RS R EEEE S L ERE §
! REGISTER USE !
! PARAMETERS !
! R1:SEGMENT_NO (INPUT) !
! RO:SUCCESS_CODE (RET) !
! LOCAL USE 1
! BR7:KST REC INDEX !
! R3:ACCESS_MODE !
! R6:CONSTANT STORAGE !
! R13:~KST !
128 EERREERRERREERREEE SRRk RxRE |

ENTRY

LD BR7,R1 !COPY OF SEG #!
suB R7 ,#NR_OP_KSEGS
1CONVERT SEG# TO KST INDEX!

MOLT RR6,#SIZEOF KST_REC
!OPFSET TO KST_REC!

PUSHE 3R1S,R1 ¢SAVE SEGMENT#!
PUSH a@R15,R7
LD R1, #KST_SEG_NO

CALL ITC_GET_SEG_PTR !{R1:KST_SEG_NO!

LD R13,R0 !-KST!
POP R7,3R15
POP R1,3R15 !RETRIEVE SEGMENT#!

ADD R13,R7 !ADD OFPPFSET TO KST BASE ADDR!

LD R6 , #NULL_SEG
CPB  BL6,KST.M_SEG_NO(R13)
IF EQ  THEN

LD RO, $SEGMENT_NOT_KNOWN
ELSE

LD R6, #TRUE

CPB  RL6,KST.IN_CORE (R13)

IP BQ THEN

LD RO, # SUCCEEDED
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; 038A 5EO08 ELSE

038C 03B8*
038E 93PD PUSH aR15,B13 ISAVE KST REC ADDR!
03990 SPOO CALL GET_DBR_NUMBER !R1: (RET)DBR_NO!
0392 0000+
0394 97PD pop R13,aR15
0396 76D2 LDA R2,KST.MM_HANDLE(R13)
0398 0000
039 60DB LDB RL3,KST.ACCESS_MODE (R13)
; 039C 0008
! 039E 93PD PUSH @R15,R13 ISAVE SBG KST REC ADDR!
i 0340 SPFOO CALL MM_SWAP_IN (R1:DBR_NO !
- 0322 0000*

' 1R2: ~MM_HANDLE!
1 1R3: ACCESS_MODE!
‘ !RO: (RET) SUCCESS_CODE!
03a4 SPOO CALL CONPINEMENT_CHECK
! (RO :SUCCESS_CODE) !

i 0326 0428°
2 0348 97FD POP  R13,3RB15
p 03AA 0108 CPB  RLO, #SUCCEEDED
! 03ac 0202
| 03AE SEOE IF EQ  THEN
i 0380 03B8*
' 03B2 4CD5 LDB  KST.IN_CORE (R13),#TRUE

03B4 0009

0386 0101

PI
FI
FI
0388 9E08  RET
03Ba END SM_SWAP_IN

1 - 380 -




<ol w oA - o - . I [ .

03Ba SM_SWAP_OQUT PROCEDURE

TRRREEERARRRERERRERBRRERERRREK |
! CHECKS VALIDITY OF SWAP OUT !

- ! REQUEST AND CALLS !
L ! MM_SWAP_OUT IF VALID !
' ' 1 RRRE SRR ERREEEREEEERERE R RS |
- ! RESISTER USE !

! PARANETERS

! R1:SEGMENT_NO

! RO :SUCCESS_CODE (RET)
! LOCAL USE

[ ]

! R6:CONSTANT STORAGE
1

[ ]

R13:-~KST
R a2k e ol e el e o gk e sk Ak P K kK X

!
!
!
!
R7:KST REC INDEX !
!
1
!
ENTRY
03BA A117 LD R7,R1 1COPY OF SEG #!
03BC 0307 SUB  R7,#NR_OP_KSEGS
' ICONVERT SEG# TO KST INDEX!
K 03BE 0004
: 03C0 1906 MULT RR6,$SIZEOF KST_REC
? {OPPSET TO KST_REC!
. 03C2 0010
: 03C4 93F1 PUSH @R15,R1 ISAVE SEGMENT#!
: 03C6 93P7 PUSH @R15,R7
03c8 2101 LD R1, $KST_SEG_NO
03CA 0002
03CC 5P00 CALL ITC_GET_SEG_PTR !R1:KST_SEG_NO!
03CE 0000+
03D0 410D LD R13,R0 !-~KST!
03D2 97F7 POP  R7,aR15
03p4 97P1 POP R1,2R15 IRETRIEVE SEGMENT#!
0306 817D ADD RB13,R7 !ADD OFFSET TO KST

BASE ADDR!
03p8 2106 LD R6, #NULL_SEG
03DA PPPP
03DC 4ADE CPB  RBL6,KST.M_SEG_NO(R13)
03DE 000E
03E0 5E0E IF EQ  THEN
] 03EB2 03EC!
A 03E4 2100 LD RO, #SEGMENT_NOT_KNOWN
, 03E6 001C
03E8 SE08 ELSE
03EA 0426°
03EC 2106 LD R6, #FALSE
03EE 0000
03P0 4ADE CPB RL6,KST.IN_CORE(R13)
03F2 0009
03P4 SEOQE IP EQ THEN
! 03P6 0400
03P8 2100 LD RO, #SUCCEEDED

- 381 -

R AR T e 3 - TP



ELSE

PUSH @R15,R13 ISAVE KST REC ADDR!
CALL GET_DBR_NUMBER IR1: (RET)DBR_NO!

POP R13,dR1S
LDA R2,KST. 4M_HANDLE(R13)

040C 93FD PUSH aR15,R13 ISAVE SEG KST REC ADDR!

04OE SPOO CALL MM_SWAP_OUT 1R1:DBR_NO!
; 0410 0000%
{ 1R2:~MM_HANDLE!
, {RO: (RET) SUCCESS_CODE!
Y 0412 S5P00 CALL CONPINEMENT_CHECK l
i { (RO :SUCCESS_CODE) !

0414 0428°

0416 97FD POP R13,aR15

0418 0A08 CPB  RLO, $SUCCEEDED

041a 0202
i 041C SEOE IF EQ THEN
: 041E 0426° i
; 0420 4CDS LDB KST.IY_CORE (R13),#FALSE |
: 0422 0009
! 0424 0000 1

PI
PI i
PI
0426 9E08  RET
0428 END SM_SWAP_OUT
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0u28

0428

042a
042cC
042E
0439
0432
0434

0436
0438
043a
043c
043E
0440
Qu42
Ouug

Ouue
Quug
Quya
dda4c
OuyE
0450
0452
0454

0use
0458
045a
0usc
045E
0460
ou62
0464

0u66
0468
0u46a

0B00O

000a
S5EQE
0438
SPQ0
0592
5208

04B4*
0800
0008
SEQE
o448
5r00
0582
SE08

OuBy?
0800
0017
SEOR
0458
5rQ0
0594
SE08

0484
0800
0014
SBOE
0468°
5r00
059a
SE08

04B4*
0800

000cC

CONFINENENT_CHECK PROCEDURE
1 tnuuntttttttptt##tattuttutattt{

! SERVICE ROUTINE TO VERIFY H
! CONPINEMENT IS NOT VIOLATED !
! WHEN MEN MGR SUCCESS_CODE 1Is !
! RETURNED TO SUPERVISOR. L
SR L2 L] 1L 2T “*#*‘*t‘**l‘*‘##.‘t**“ {
! REGISTER USE: !
! PARAMETERS !

! RO:SUCCESS_CODE g
t t‘#**t*tl*t#**#“‘t*t****t*‘*“##!

ENTRY
IF RO
CASE #LEAF_SEG_RXISTS THEN
CALL YONITOR

CASE #NO_LEAFP_EXISTS THEN
CALL MONITOR

CASE #ALIAS_DOES_NOT_EXIST THEN
CALL MONITOR

CASE $NO_CHILD_TO_DELETE THEN
CALL MONITOR

CASE #G_AST_PULL THEN
CALL MONITOR
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' 046C
3 04 6B
‘ 0470
0472
ou74

0476
0478
0472
, 047C
Q47E
0480
ou82
ousy

R T

- c— — i

0486
ouss
ous8a
048C
Ou8E
0490
0492
= ou9u

0496
0498
049A
049C
Qu49E
04a0
0sa2
Ou4as

oua6
o4A8
O4aAA
04acC
O4AR
04B0
QuB2

OuBY
0uB6

S5EQOE
ou78?
SF00
059a
5E08

04B4*
0800
000D
SEQE
0u88?
5r00
059a
5B08

0uBYy?
0800
0010
SEOB
0498°*
SF00
059a
SE08

04B4"
0BOO
0011
SEQE
04a8?
5F00
0594
SEO8

ouBy"
0B0O
go15
SEOE
ou4B4?
SF00
059a

9E08

CASE #L_AST_FULL THEN
CALL HONITOR

CASE #LOCAL_MEMORY_PULL THEN
CALL SONITOR

CASE #GLOBAL_MEMORY_FULL THEN
CALL MONITOR

CASE #SEC_STOR_FULL THEN
CALL BONITOR

FI
RET
END CONFINEMENT_CHECK

END SEG_NGR
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} | Appendix I
- NON-DISCRETIOMARY SECURITY LISTINGS

D
g . [

Z8000AsM 2.02

§ i LoC 0BJ CODE STMT SOURCE STATEMENT
E $LISTON $TTY
;. ¥DS MODULE
-
; CONSTANT
: TRUE :=1
| PALSE +=0
; INTERNAL
. $SECTION ACC_CLASS_DCL !NOTE: IS AN OVERLAY,
| TIE NO ALLOCATION
OF MEMORY!
$ABS 0
‘ 0000 ACCESS_CLASS RECORD ( LEVEL INTEGER
b CAT INTEGER]
. GLOBAL
E $SECTION NDS_PROC
0000 CLASS_EQ PROCEDURE

(ERREEEREEREERXEERRREEE AR EEEC & |
! PASSED PARAMETERS !
{ BRR2 = CLASS1 !
! BRRY = CLASS2 !
! RETURNED !
! R1 = CONDITION_CODE {
1 ERXRRRRERERERARERREE XL SRR SRERR |

ENTRY
0000 9042 CPL RR2,RR4
0002 5EQE IF EQ THEN
00Q4 0Q0QE?
0006 2101 LD R1,#TRUE
0008 0001
000A SEO8 ELSE
000C Q012°¢
000E 2101 LD R1,#FPALSE
0010 0000
FI
0012 9EO08 RET
0014 END CLASS_EQ
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0014

0014

0016
0018
001A
001C

00 1E
0020

0022
0024

0026
0028
002aA
002C

002E

0030
0032
0034
0036
0038
003A
003C
003E
0040
0042

0044
0046
0048
004A

004cC
004E
0050
0052

91F2

A1FD

91P4
ATFE
31E7

0002
4507

0002
4BD?7

0002
SEQE
0048*
61D6

0000

4BE6
0000
SEO
00uQ*
2101
0001
5E08
oouu*
2101
0000

5E08
oouc:*
2101
0000

95P4
95r2
9208

END NDS

CLASS_GBE

PROCEDURE

! CRERAERSE XS SEBERRB SRS XSS S & 1

{ PASSED PARAMETERS

! BRR2 = CLASS1

! RR4 = CLASS2

{ RETURNED PARAMETER

{ BY = CONDITION_CODE

(SRR RS ERERRERABRERERRE SR ERRK kK

ENTRY
PUSHL 9

LD R
PUSHL a

LD R
LD R

OR R

cp R

IFPEQT
LD

1 C
cP
IF

ELSE

PI
ELSE

LD

FI
POPL
POPL
RET

BND CLAS

up MR Sep S» s O

BR15,RR2 !PUSH CLASS1 ON STACK-
-REFER BY ADDR!
t3,R15 ! CLASS!1 ADDR !
R15,RR4
14,R15 ! CLASS2 ADDR !
7,814 (#ACCESS_CLASS.CAT)
§ CAT2 IN R7 !

7 ,ACCESS_CLASS.CAT (R13)
{CAT1 OR CATZ2, R7!

7,ACCESS_CLASS.CAT (R13)
ICAT1=(CAT1 OR CATZ2) 2!

R6 ,ACCESS_CLASS.LEVEL (R13)
{LEVEL1!

OMPARE LEVEL1 WITH LEVEL2 !
R6 ,ACCESS_CLASS.LEVEL (R14)

GE THEN !LEVEL1 GE LEVEL2!

LD R1,$TRUE

LD R1,#FALSE

R1,#FALSE

RR4,aR15
RR2,@815 IRESTORE STACK!

S_GE




res

Appendix J

MEMORY HAMNAGER LISTINGS

Z8000asM 2.02
LOC 0BJ CODE

SLISTON $7TTY
¥M_PROCESS

! VERS. 1.9 !

CONSTANT

MODULE

RETURN_TO_MONITOR := %A902

COUNT := 10
TIME := 500

NR_OP_HOSTS
G_AST_LIMIT
G_AST_PULL
FREE_ENTRY
TRUE

PALSE

SPACE

DASH

IO_MGR
PILE_MGR
MEM_MGR

PM_ENTRY
IO_ENTRY

2

10

12
AEEEEEEEE
%BBBB
%CCCC

%20

%2D

:=%60

s= %40
s= %00
= RUA00
:= R4EQQ

CREATE_ENTRY_CODE
INVALID_MMGR_CODE
DELETE_ENTRY_CODE
ACTIVATE_SEG_CODE

s= 50
:= 60
:= 51
52

DEACTIVATE_SEG_CODE:= 53
SWAP_IN_SEG_CODE := 54
SWAP_OUT_SEG_CODE := 55
SUCCEEDED 1= 2
STK_SIZE i= 1
TOP_SECRET = 4
SECRET := 3
CONPIDENTIAL 1= 2
UNCLASS 1= 1
EMPTY 1= 0
CRYPTO 1= 1
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NATO HL ]
NUCLEAR = 4
TYPE
ADDRRSS NORD
B_ARRAY ARRAY(3 WORD]
G_AST_REC RECORD
[ UNIQUE_ID LONG

GLOBAL_ADDR  ADDRESS
P_L_ASTE_NG  WORD
PLAG_BITS WORD
G_ASTE_PAR WORD
NO_ACT_IN_MENM WORD
NO_ACT_DEP BYTE
SIZE1 BYTE
PG_TBL_LOC ADDRESS
ALIAS_TBL_LOC ADDRESS

SEQUENCER LONG
EVENT1 LONG
EVENT2 LONG
]
EXTERNAL
SIGNAL PROCEDURE
WAIT PROCEDURE
TC_INIT PROCEDURE
GET_CPU_NO PROCEDURE
CREATE_PROCESS PROCEDURE
SHDCHR PROCEDURE
SNDMSG PROCEDURE
SNDCRLP PROCEDURE
G_AST_LOCK WORD

G_AST ARRAY(G_AST_LIMIT G_AST_REC]
GLOBAL
$SECTION MM_DATA
MM_ENTRY LABEL




- e

et

0000
0002
0004
0006
0008
0009
000B
000D
oo0F
0011
0012

0014
0016
0018
001A
001C
001E
0020
0022
0024
0025

0027
0029
0028
002D
002F
0031
0033
0035
0036

0038
0032
003C
003E
0040
0042
0044
0046

INTERNAL

28
4F
20
4P

1 # & ®x & MESSAGES * * % & |
I0 ARRAY (* BYTE] := *%08(FOR I0)°*

4. ARBAY (* BYTE] := *%08(FOR FH)°*

MM_MSG_1
ARBAY [* BYTE] := *%12KERNEL = SIGNALLER®

CREATE_MSG
ARBRAY [* BYTE]:= *%10MM: CREATE_ENTRY'®

DELETE_MSG
ARRAY (* BYTE] := *%10MM: DELETE_ENTRY'




0047 0C 4D ACTIVATE_MSG
ARBAY [#* BYTE] := *%0CHM: ACTIVATE!
0049 4D 3a
004B 20 41
004D 43 54
004P 49 56
f 0051 41 St
{ 0053 45
0054 OE 4D DBACTIVATE_NSG

X ARBAY (% BYTE] := *%OEMM: DEACTIVATE'
0056 4D 3a

; 0058 20 44

| 00SA 45 41

| 005C 43 54 i
L 00SE 49 56 :
3 i

|

T

0060 41 Su

0062 45

0063 OB 4D SWAP_IN_NSG
ARRAY (* BYTE] :

‘ LR 11):I.1.H SHAP_IN?
4 0065 4D 32
0067 20 53
0069 57 41
006B 50 SF
006D 49 4E
006P O0C 4D SWAP_OUT_MSG
ARRAY [* BYTE] := *%0CNM: SWAP_OUT®

0071 4D 3A

0073 20 53

0075 57 41

0077 S50 5P

0079 4P 55

007B 54

007C 0C 49  ERROB_MSG

ARRAY [* BYTE]

= 9 X0CINVALID CODE*

007E 4E 56

0080 41 4C

0082 49 44

0084 20 43

0086 4F 44

0088 45

0089 02 00 RET_VALUES
ARBAY (* B'TE] :

{2,0,0,0,0,16,0,17,0,3,0,
0088 00 00
008D 00 10
008F 00 11
0091 00 03
0093 00 01
0995 00 30
0097 00 00

1,0,48,0,0]
- 099a MM_MSG_ARRAY ARRAY [ 8 WORD ]
00AA SENDER WORD

- 390 -

' RS e e . -
.

D R L P A W ey N R ———




>
— . —ai o a—

0000

0000

0000

$ABS 0
{NO MEMORY ALLOCATED; USED
POR PARAMETER TEMPLATE ONLY!

ACTIVATE_ARG RECORD

CODE
DBR
HANDLE
ENTRY_NO
SEG_NO

$ABs 0

WORD
WoRD
H_ARRAY
BYTE
BYTE

INO MEMORY ALLOCATED; USED

FOR PARAMETER TEMPLATE ONLY!

RET_VAL
CODE1
PILLER
MM_HANDLE
CLASS
SIZE
PILLER1

$ABS 0
ARG_LIST
REG
IC
CPU_ID
SAC
PRI
USR_STK
KER_STK

RECORD

BYTE
BYTE
H_ARRAY
LONG
WORD
WORD

RECORD
ARRAY[{ 13 WORD]
WORD
WORD
LONG
WORD
WORD
WORD
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$SECTION NM_PROC

0000 MM_MAIN PROCEDURE
ENTRY
MM_ENTRY:
! INITIALIZE G_AST !
0000 4D08 CLR G_AST_LOCK
0002 0000%
~ 0004 2102 LD R2, #1
1 0006 0001
0008 2101 LD R1, #0
000A 0000
000C 1404 LDL RR4, #PREE_ENTRY
000E EEEE
0010 EEEE

Do

0012 5D14 LDL G_AST.UNIQUE_ID(R1), RR4
0014 0000

0016 A920 INC R2, #1

0018 0B02 CP R2, #G_AST_LINIT

} 001 000A

: 001C SE02 IF GT !END OF G_AST! THEN
’ 001E 0024°

0020 5E08 EXIT PI

0022 002A°

0024 0101 ADD R1, #SIZEOP G_AST_REC
0026 0020

0028 EBF4  OD

Jo—

g

! RESERVE FIRST ENTRY IN
G_AST POR ROOT !
002a 2101 LD R1, #0 1
002C 0000
002E 1404 LDL RRY4, #-1
0030 FPPP
0032 FFPP
0034 SD14 LDL G_AST.UNIQUE_ID(R1), RR&
0036 0000+
0038 SP00 CALL GET_CPU_NO !RETURNS:
003 0000*
R1: CPU ¢
R2: # VP'Sl
003C 93P1 PUSH aR15, R1 ISAVE CPU #!
003E 5FQ0 CALL TC_INIT
0040 0000+

! USER/HOST # !

- e

! 0042 210D LD R13, #0
0044 0000 {
f INITIALIZE USERS !
DO
' 0046 A9DO INC R13, #1
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- 00u8
004A

; 004C
004E
! j 0050

i 0052

0054
0056
00s8

005a
005¢C
] 00SE

0060
| 0062
| 0064
0066
0068
0064
006C
006E
0070
0072
0074
0076
0078
0074
007C
007E
0080
0082
0084
0086
0088
008a
008C
008E
0090
0092
0094
0096

oo L R T

0BOD
0002

S5E02
0054
SE08
00B8*

21F0
030°F
0028

AR
6F10
001C

5C19
020C
0000
2102
4400
6F12
001a
2102
0003
8D38
0503
0001
5D12
001E
4D15
0022
0002
4D15
0024
0001
4D 15
0026
0001
AN11E
93PD
5FP00
0000*
977D

cp

IF GT

THEN

FI

R13, #NB_OP_HOSTS

$ALL HOSTS INITIALIZED!
EXIT

! CREATE FM PROCESS !

LD
SUB

RO, @R15 IRESTORE CPU #!
R15, #SIZEOF ARG_LIST

1SETS ARGUMENT LIST IN STACK!

LD
LD

R1, B1S
ARG_LIST.CPU_ID(R1), RO

tLOAD INITIAL REGISTER PARAMEIERS

FOR

R13
LDN
LD
LD
LD

CLR
OR

LDL
LD

LD

LD

LD
PUSH
CALL

POP

PM PROCESS (SIMULATED)
DENOTES USER # !
ARG_LIST.REG (R1) , B2, #13
R2, #PM_ENTRY
ARG_LIST.IC(R1), R2

R2, #SECRET

R3
R3, #CRYPTO

ARG_LIST.SAC(R1), RR2
ARG_LIST.PRI (R1), #2

ARG_LIST.USR_STK(R1), #SIK_SIZE

ARG_LIST.KBR_STK (R1) , #SIK_SIZE

R14, R1
aR15, R13
CREATE_PROCESS !R14: ARG PTR!

R13, 3R15

! CREATE IO PROCESS !
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0098

009a
009C
009E
0040
00a2
00A4
00a6
0028
00aA
00AC
00AE
00BO
00B2
00B4
00B6

0088

00BaA
00BC
00BE
00CoO
0oc2
00Cy
00cCé
00cs
00CA
oo0cc
00CE
00D0
00D2
00D4
00D6
oops

00DA
oonc
QODE
00EO
00E2
00B4
00E6
00ES
Q0EA

AR

5C19
020C
0000
2102
4E00
6FP12
001aA
AN1E
93FD
5F00
0000%
97FD
010F
0028
E8C7

97F0

7608
oo9ar
5F00
0000*
6F01
00AA*
2103
0032
5r00
030cC*
2102
0c12°*
SF00
0000+*
6101
00aA*

0BO1
0060
SEOE
O0EE’
2102
0000°
5r00
0000*
5808

LD
'LO
FO
R1
LDn
LD
LD
LD
PUSH
CALL

POP
ADD

oD

{ REMO

pop

DO Ix*
LDA
CALL
LD
LD
CALL
LD
CALL
LD

IF
(o |

CA

BR1, R15 IRESTORE ARGUMENT PTR!
AD INITIAL REGISTER PARAMETERS
R IO PROCESS (SIMULATED)

3 DENOTES USER # !

ARG_LIST.REG (R1) , B2, #13

R2, #IO_ENTRY

ARG_LIST.IC(R1), B2

R14, R1

aR15, R13

CREATE_PROCESS !R14: ARG PTR!

BR13, aR1S

R15, #SIZEOF ARG_LIST

VE CPU # FROM STACK !
RO, aR1S
DO POREBVER #*i
R8,MM_MSG_ARRAY 0
WAIT
SENDER, R1 !SAVE SIGNALING PROC #!
R3,450
MM_PRINT_BLANKS
R2, #48_NSG_1
SNDMSG
R1,SENDER

®1
SE #IQO_MGR THEN LD R2,#I0

CALL SNDMSG

SE #PILE_NMGR THEN LD R2,#FH4
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00F4 OQOPE*
00P6 2102
00F8 0009°
: 00FA 5F00 CALL SNDMSG
] 00FC 0000* ,
PI *
% 00PE 5FP00 CALL  MM_DELAY

| 0107 02D8°
0102 5P00 CALL  SNDCRLF
1 0104 0000*
0106 2103 LD R3,#50
0108 0032
010A 5P00 CALL MM_PRINT_BLANKS
010c 030cC*
010E 6101 LD R1,MM_MSG_ARRAY 0
0110 009A°

|
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0112
0114
0116
0118
011
011C
011E
0120
0122
0124
0126
0128
012A
012C
012E
0130
0132
0134
0136
0138
013A
013C
013E
0140
0142
0144
0146
0148
014
014cC
O14E
0150
0152
0154
0156
0158
0152
015¢C
015E
0160
0162
0164
0166
0168
016A
016C
016E
0170
0172
0174

0BO1
0032
SEOBE
0122°
S5P00
019E?
SE08
0176°*
0B01
0033
SEOE
0t32¢
SF00
01ace
5E08
0176
0B01
0034
SEQOE
0142°
SF00
01BA*
5E08
0176
0BO1
0035
SEOE
0152¢
SPOO
029E*
5E08
0176
0801
0036
SEOE
0162°
5P00
02aC*
SE08
0176
0BO1
0037
SEOE
0172¢
5Fr00
02CaA*
SEQ8
0176
2102
007c?

IF B1
CASE #CREATE_ENTRY_CODE THEN

CALL CREATE_ENTRY
CASE #DELETE_ENTRY_CODE THEN

CALL DELETE_ENTRY
CASE #ACTIVATE_SEG_CODE THEN

CALL ACTIVATE

CASE #DEACTIVATE_SEG_CODE THEWN

CALL DEACTIVATE
CASE #SWAP_IN_SEG_CODE THEN

CALL SWAP_IN
CASE #SWAP_OUT_SEG_CODE THEN

CALL SWAP_OUT
ELSE

LD B2, $ERROR_NSG
PI
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0176
0178
017A
017cC
017e
0180
0182
0184
0186
ot8s
o18a
018cC

018E
0190
0192
0194
0196
0198
019a
019cC
019E

019E

019E
0140
01a2
01A4
01A6
01a8
01aa
01aC

01AC

D1AC
01aE
0180
01B2
01B4
01B6
01B8
01BA

5P00
0000
SF00
0208
SF00
0000#
2103
004B
SP00
Q2FPy?
SP00
0000#

6101
00aA?
7608
009a°
5700
0000*
E88P
9808

7608
009a°
0cas
0202
2102
0025
9E08

7608
009a°*
ocas
0202
2102
0036°*
9E08

CALL
CALL
CALL
LD

CALL
CALL

1 &%
LD

LDA

CALL

SNDMSG
MM_DELAY
SNDCRLP
R3,#75
MM_PRINT_LINE
SNDCRLP

SIGNAL (SENDER,
R1, SENDER

BR8,MM_MSG_ARR

SIGNAL

OD ! *» REPEAT FOREVER

RET
END MM_

CREATE_

ENTRY
LDA

LDB
LD

RET
END CRE

DELETE_

ENTRY
LDA

MAIN
ENTRY

R8,MM_MSG_ARRAY 0O
?R8,#SUCCEEDED

R2,#CREATE_NSG

ATE_ENTRY
ENTRY

R8,MM_MSG_ARRAY 0

LDB @R8,#SUCCEEDED

LD
RET

R2,#DELETE_MSG

END DELETE_ENTRY
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01BA

01BA
0 1BC
01BE

01C0o
01c2
01Cy
01Ceé
01c8
01CA
01cC
01CE
01D0
01D2
01D4
01Dé6
01D8

01DA
01DC
01DE
01E0
01E2
01E4
01E6
01E8

012a
01EC
O1EE
01F0
0o1r2
01P4
01P6

o1r8
01FA
01rC

O1FE
0200

0202
0204
0206
0208
020a

7608
009A°
6182

0008
8p38
608B
000A
03¢0r
0010
APS8
2100
cccc
2101
0000
2104
0001

5012
0000*
S5E0E
01EA’
2100
BBBB
5E08
OIFE’

A940
0BO4
000A
5E02
o1irs*
S5E08
otpe’

0101
0020
ESEE

0B00
ccce

SEOE
0266
2100
0001
2101

ACTIVATE PROCEDURE
! R8: ABGUMENT PTR !

ENTRY
LDA RS, MM_MSG_ARRAY 0

LD R2, ACTIVATE_ARG.HANDLE 2 (BS8)
1ONIQUE ID!

CLR R3
LDB BL3, ACTIVATE_ARG.ENTRY_NO (RS)

syB R15, #SIZEOP RET_VAL

LD R8, R15
LD RO, #PALSE

LD R1, #0 !1G_AST INDEX!
LD R4, #1 INR OF ENTRIES SEARCHED!
SEARCH_G_AST:
Do
CPL RR2, G_AST.UNIQUE_ID(R1)
IP BQ !SEGMENT IS ACTIVE! THEN
LD RO, #TRUE
EXIT PROM SEABCH_G_AST
PI
INC R4, #1
CP R4, #G_AST_LINIT
IP GT IEXD OF G_AST! THEN
EXIT PROM SEARCH_G_AST

PI
ADD RB1, #SIZEOF G_AST_REC

oD
CP RO, #FALSE

IP EQ !SEGMENT NOT ACTIVE!

THEN
LD RO, #1
LD R1, #0
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020C

0208
0210
0212
0214
0216
0218
0212
021C
021E

0220
0222
0224
0226
0228
022a
022¢C

022E
0230
0232

0234
0236

0238
0232
023C
023E

0240
0242
Q2uu4
0246
0248
0244
024C
024E
0250
0252
0254
0256

0258
025A
025C
0252
0260

0262

0000

1404
EEEE
EEEE
5014
0000+
SEOE
0220°
SE08
0234

A900
0BOO
000a
5E02
022E*
5E08
02341

0101
0020
ESED

0B0O
000A

SEOA
025c¢!
5D12
0000*

1404
0000
0000
SD14
0014+
5D14
0018+
5D14
001C*
4css
0000
0202

SE08
0262
4Cc8s
0000
0coc

5EQ8

PIND_PREE_ENTRY:
DO

LDL RRU, $FREE_BNTRY

CPL RR4, G_AST.UNIQUE_ID(R1)

IF EQ !ENTRY IS AVAILABLE! THEN
EXIT PRON FIND_PREE_ENTRY

PI

INC RO, #1

CP RO, #G_AST_LIMIT

IF GT !END OF G_AST! THEN
EXIT FROM FIND_PREE_ENTRY

PI
ADD R1, #SIZEOF G_AST_REC

oD
cP BO, #G_AST_LIMIT

IF LE !FOUND FREE ENTRY!
THEN

LDL G_AST.UNIQUE_ID(R1), RR2

! ZERO ALL EVENT DATA ENTRIES !
LDL RR4, #0

LDL G_AST.SEQUENCER (R1), RR4
LDL G_AST.EVENT1(R1), BRRY
LDL G_AST.EVENT2(R1), RR4

LDB RET_VAL.CODE1 (R8), #SUCCEEDED

ELSE

LDB RET_VAL.CODE1(R8), #G_AST_FULL

| 3+
ELSE !SEGMENT ACTIVBE!
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0264
0266
0268
026A

026C
026E
0270
0272
0274
0276
0278
027a
027¢C
027E
0280
0282
0284
0286
0288
028a
028C
028E
0290
0292
0294
0296
0298
029a
029C
029E

026C*

4cs8s LDB RET_VAL.CODE1(R8) , #SUCCEEDED

0000
0202
PI

5p82 LDL RET_VAL.MM_HANDLE O (R8), BR2

0002

6P81 LD RET_VAL.MM_HANDLE 2 (BR8), R

0006
104 LDL RR4, #%3000?
0003
0001
5084 LDL  RET_VAL.CLASS (R8), BB
0008
4p85 LD BRET_VAL.SIZE(RS), #1
000C
0001
7689 LDA R9, RET_VAL (R9)
0000
7608 LDA RS, MM_MSG_ARRAY 0
009a°
2102 LD R2, #16
0010
BA91 LDIRB aR8, aR9, R2
0280
2102 LD R2, #ACTIVATE_NSG
0047
010F ADD R1S, #SIZEOF RET_VAL
0010
9208  RET
END ACTIVATE
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A

029E

029E
02a0
02a2
02a4
02aA6
02a8
02AA
02AC

02AC

02AC
02AE
0280
02B2
02B4
02B6
0288
02BA
02BC
02BE
02cCo
02C2
02C4
02Cé
02Cs
02CA

DEACTIVATE PROCEDURE

ENTRY
7608 LDA R8 ,MN_MNSG_ARRAY 0
009A*
0C85 LDB a88,#SUCCEEDED
0202
2102 LD B2, #DEACTIVATE_NSG
0054°
9B08 RET

END DEACTIVATE
SWAP_IN PROCEDURE
ENTRY

2102 LD B2, #%FP30

FP30

3826 OUT %PPD2, R2

FFD2

7608 LDA R8, MM_NSG_ARRAY

009a*

5P00 CALL WAIT {R8:MSG ARRAY!

0000*

7608 LDA R8 ,MM_MS5G_ARRAY 0
009a*

0c8s LDB @R8,#SUCCEEDED

0202
2102 LD R2,#SWAP_IN_MSG
0063
9808  RET
END SWAP_IN
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02CA

g2Ca
02cc
02Ce
0200
02p2
02p4
0206
0208

0208

0208
02Da
02DC
02DE

02E0
02E2
02E4
02E6
02ES8
02EA
02EC
02EE
02Fr0
02r2
02F4

SéAP_0QUT PROCEDURE

ENTRY
7608 LDA  R8,MM_MSG_ARRAY 0
009A°
0c85 LDB  aR8,$SUCCEEDED

0202

2102 LD  R2,#SWAP_OUT_XNSG

006F*

9808  RET
END SWAP_OUT
MM_DELAY PROCEDURE
(I BB EE R RBERERERE SRR S REe gk & ]
! PRODUCES 2 SEC DELAY !
{BEBRRERRRRSRRRERRBEEREERE R RS & |
ENTRY

2102 LD R2, #COUNT

000a

2101 LD R1, #TINE

01F4

DO

0802 cp R2, #0

0000

SEOE IP B¢ THEN BXIT PI

02EC*

5E08

02P2°

AB20 DEC R2

781D MREQ  R1

E8P7T 0D

9808  RET

END MM_DELAY
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02ry

02P4

02F6
o2rs
02FA
02FrC
02FE
0300
0302
0304
0306
0308
030a
030C

030C

030C

030E
0310
0312
0314
0316
0318
031A
031C
031E
0320
0322
0324

MM_PRINT_LINE PROCEDURE
| SRR EBEREEEREERERBEBEERSEEES S S |
{ PRINTS LINE LENGTH !
! SPEC IN R3. !
| SR 2RES LR SERREEREE R RABERBSESEEE S |
ENTRY
c8z2p  LDB RLO, #DASH
DO
0803 cp R3, #0
0000
SEQE IF EQ THEN EXIT PI
0302
S5E08
030a°
SF00 CALL SNDCHR
0000+
AB30 DEC B3
E8P6 oD
9E08 RET
END MM_PRINT_LINE
MM_PRINT_BLANKS PROCEDURE
1 ERRRREEER REERBERRREREEERERBKEERE S |
! PRINTS NUMBER OF {
! BLANKS SPEC IN R3. {
[ RRARRERRARBEERR KRR R RRREBRERRERES §
ENTRY
c820 LDB RLO, #SPACE
Do
0803 cp R3, #0
0000
SEQE IF BEQ THEN EXIT PI
031a¢
SE08
0322
S5F00 CALL SNDCHR
0000+*
AB30 DEC R3
E8P6 oD
9E08 RET
END MM_PRINT_BLANKS

END MM_PROCESS
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