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Asymptotically Optimal Designs for Some

Time Series Models

By Randall L. Eubank, Patricia L. Smith and Philip W. Smith
Southern Methodist University and 014 Dominion University

Short title: Asymptotically Optimal Designs

Summary . The limiting behaviour (as the sample size increases)
of the BLUE of the regression coefficients is investigated in the
case that derivative information is not available. Using the
results of Barrow and Smith (1979) on the asymptotic properties

of optimal quadrature formulas several results obtained@ by Eubank,
Smith and Smith (1981) are extended to a multiparameter setting
and a wider class of processes which includes multiple integrals
of Brownian motion. The asymptotic behaviour of the variance of
the BLUE is characterized in terms of the density defining the
designs and densities which generate asymptotically optimal design

sequences are provided for several optimality criteria.

1. INTRODUCTION . Consider the linear regression model in

which a stochastic process, Y, is observed having the form

J
(1.1) Y{(e) =L B £, (t) + X(t), te (0,1} ,
ju1 33
where 8-(81,...,BJ)' is a vector of unknown parameters, the fj are

known regression functions and X{(°) is a zero mean process with
known covariance kernel R. The X process is assumed to admit k - 1

quadratic mean derivatives at each point t ¢ [0,1).

—_———— o - . -
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If the Y process is sampled over all of [0,1], the
linear estimation of B may be accomplished through the use of the
reproducing kernel Hilbert space (RKHS) technigques developed by
Parzen (196la, 1961b). We denote this estimator by é angd its
corresponding variance-covariance matrix by A-l. wWhen observations
are taken at only a finite number of distinct design points on {0,1]
the best linear unbiased estimator (BLUE) of B can be constructed
through the use of generalized least squares. Various aspects of
the problem of optimal design selection for the BLUE have been
addressed by %acks and Ylvisaker (1966, 1968, 1970), wahba (1971,
1974), and Eubank, Smith, and Smith (1981).

Denote the set of possible n+l point designs for model (1.1) by

(1.2) D : = {(to. t ,...,tn)[ 0=t <t <...<t =1},

1 1 n

where ":=" means "is defined as". BAlso for T eDn let éq,represent

the BLUE of 8 based on the observation set Y, = {¥(t) |t €T} with
corresponding variance-covariance matrix denoted by A;I. When k = 1, i.e.,

the Y process does not admit derivatives, Sacks and Ylvisaker (1968)

considered the problem of selecting a T*ec Dn so that

(1.3)  ¥(a,) = inf ¥(al))

TeD
n
or, alternately
(1.4) P ( ) = sup Y(A)
AT* TeDn T




i
i

where | is some criterion function which measures the size of A -1 {e.q..,

T
the trace or determinant function). A design which satisfies (1.3) is
termed Yl-optimum whereas a design satisfying (1.4) is termed y2-optimum.
As optimal designs are difficult to construct, Sacks and Ylvisaker
(1968) instead developed approximate solutions to the optimal design
problems (1.3) and (1.4) which entailed the use of design sequences.
The method they used for constructing such sequences was to choose the
elements of the nth design to be the n-tiles of a continuous

density function, h, with support on [0,1]. A design sequence constructed

in this manner is called the regular sequence generated by h. This

relationship is abbreviated'{Tn} is RS(h).

*
A design sequence, {Tn},is said to be asymptotically yl-~optimum if

(1.5 limBnev(aH - v HIvAL) - va bt =1
n-o TeDn n

and is asymptotically y2-optimum if

(1.6)  lim [¥(A) - sup V(A I[V(A) - w(AT,)l'l = 1.
n

n>» TeD
n

Sacks and Ylvisaker (1968) derived densities having the property that
the corresponding regular sequence is asymptotically VY1 or Y2-optimum,
Then if h* is such a density and {T;} is RS {h*), their approximate
solution to the optimal design problem is T;.

For k >2 it has not been possible to characterize the asymptotic

variance behavior or obtain asymptotically optimal design sequences for

N

8 Instead, it has been necessary to use the less natural observation

o
set Yk o= {Y(j)(t)| j=0,...,k=1, t ¢ T} and the corresponding best linear
14

unbiased estimator B Hence, for k >2, most of the available literature

x,T*

pertains to Bk T rather than BT (c.f. Sacks and Ylvisaker {(1970) and
, :

Wwahba (1971, 1974)). This is unfortunate as derivative information on

the Y process will frequently not be available.

O ety




In this paper we examine the asymptotic behaviour of the variance
of éT where k is allowed to be any fixed finite positive integer. Using results
pertaining to the approximation of functions by splines subject to boundary
conditions it is possible to extend the asymptotic results of Eubank, Smith
and Smith (1981) to a wider class of processes and multiparameter situations.
The class of processes considered includes the case when the error process

is a multiple integral of Brownian motion whose importance in terms of (1.1)

is well known (c.f. Sacks and Ylvisaker (1970)).
Our results stem from certain asymptotic properties of optimal
quadrature formula derived by Barrow and Smith (1979). The implications
of their work to the approximation of functions by splines under boundary
constraints are explored in Section 3. These results are related to the
optimal design problem in Section 4. As an illustration of the relation-
ship between these two problems consider the instance when X(*) is a (k-1)-
fold multiple integral of Brownian motion. In this case optimal designs i
for the one parameter case (J = 1) are obtained by minimizing

k
1 n 3 R(s,t.) 2
[ (f(k)(s) - A — i )ds
0 i=0 3

with respect to(to,...,tn) and (ao,...,an). It will be seen that

k
) - DRE

X is a spline of order k with a knot at t and that both
9s
f(k) and rék) will satisfy
£ gy = r“é*’)(l) =0

for j = 0,...,k - 1 (except for t = 1 when j = k-1). Consequently, for
this type of process, the optimal design problem is equivalent to a
variable knot spline approximation problem where both the function and

splines must satisfy boundary conditions.




We present asymptotic results in Section 2 for the special case
/ of J = 1 with proofs in Section 4. In Section 5 the case of J > 1
is examined. A theorem is given which allows for the proof of results
analogous to those of Sacks and Ylvisaker (1970) for the multiparameter
setting except without the need for derivative information.

2. The case of one parameter. For the purpose of this section

we will restrict our attention to the case of J = 1. Consequently,

model (1.1) can now be written as
(2.1) Y(t) = B8f(t) + X(t) , t €[0,1]).

! For model (2.1) an optimal n+l point design is a T* ¢ Dn which satisfies

(2.2) Var(BT*) = inf Var(BT)
( ren,

and an asymptotically optimal, design sequence, {T;}, must satisfy

(2.3) lim

nd> «

Var(BT,) - Var(8)
n

L]
[

inf var (éT)-Var(é)

1 TeD
n

The optimal design problem can now be formulated as a nonlinear

minimum norm approximation problem for f£. Let H(R) denote the RKHS

generated by the covariance kernel R which is isometrically isomorphic

f to the Hilbert space spanned by the Y process (c.f. Parzen (196la, 1961b))

and let ||-||R denote the norm in H(R). It has been shown by Sacks and

i Ylvisaker (1966) that

(2.4)

var(g) = |IR ]l

e N Al




l
N

where RT denotes the H(R) orthogonal projector for the subspace
2 2 2,
RT= span{R(-,t) [t €T}. As ||RTf||R = ‘If[ln - |lg - RTEIIR it follows

that T* is an optimal design if and only if

(2.5) [1g - R €]l = inf ||£-R £]|_.
T R TeD T R
n
Consequently, the optimal design problem is equivalent to the problem of
finding (when it exists) the best H(R) approximation to f from the nonlinear

manifold Rn =U RT . Although this latter problem is, in general,
TeD

n

quite difficult to solve, in certain instances, H(R) and Rn consist respec-
tively of functions and splines which satisfy certain boundary conditions.
In this event the problem becomes amenable to analysis as will be shown in

Section 4.

Now and in further discussions we will consider a specific class of Y

processes. Define the covariance kernel

1 k-1 k-1
(2.6) K(s,t): = f (t-u)+ 41%:2)* du
0 (k-1)!

where xt = xk if x > 0 and is zero otherwise. Denote by W(t) the zero
mean, normal process corresponding to X, i.e., the (k-1)=-st multiple
integral of Brownian motion, and let

(1)

wit) -~ Ewedjw (), i = k-q,..., k1], 1 £q <k
(2.7 Z(t): =

w(t) q=0 .

where g is some fixed but arbitrary integer between O and k. We

now take R to be

(2.8) R(s,t): = Cov(Z(s), zZ(t)).




More specifically, let
i+j
, 3 K(s,t)
K(i'J)(s,t): = i
3s BtJ .

Then, for g >1

(2.9)  R(s,t) = K(s,t) - v(s}B Iu(t)

(O'k'Q) (olk-l)

where v(s) = (K (s,1),..., K (s,1))' and the ijth element

of the matrix B is K(i'j)(l,l), i, 3 = x-q,..., k-1. One consequence
of this choice for R is that the class of processes to be considered
includes those which have covariance structures like that of (k-1l)-fold
integrated Brownian motion (g = 0) and (k-1l)-fold integrated Brownian
bridge (g = 1) processes.

We now state two theorems regarding the behaviour of BT for which

the proofs will be presented in Section 4.

Theorem 2.1 Let sz(R)f\CZk[o,ll. If h is a continuous density

on [0,1] and {Tn} is RS(h) then

1l (2k) 2
(2.100  LmnX||g-Rg]]2a 2 |f L) a
e 0 h" (x)
where Ci = lBZk'/Zk! and Box is the 2k -th Bernoulli number.

In view of (2.4) and (2.5) it is clear that equation (2.10)
characterizes the asymptotic behaviour of the variance of BT in terms
of the density defining the designs. The next theorem concerns the

limiting behaviour of inf Var (8
TEDn

T) and provides a density which generates

an asymptotically optimal design sequence.




Theorem 2.1. Let £ sCZk[O,l] NH(R) and define

2/2k+1
If(Zk) (x) |

(2.11) h(x):= VTS .

/ 1£¢2%) (¢) at
0

Then, if {Tn} is RS (h)

(2.12) limxazk{Var(éT )-Var(é)}=lim nzk{inf Var(BT) - var(g) } =

n¥® n n- TeDn
1l 2/2k+1\2k+1
2 (2k) ~
x (I (f ("’) dx ) var?(g) .
0

It is important to note that when k > 2 the bound inf Var(BT) may
TeD
n

not be obtainable without the use of derivative information. This point
will arise as a result of the proof of Theorem 2.2 and has been discussed
by Sacks and Ylvisaker (1966). However, by sampling according to the
density (2.11) an approximate solution, Tn' to the optimal design problem
can be obtained which, for large n, will behave like an optimal design
with regards to the corresponding variance of the BLUE. It is also of
interest to note that the limit in (2.12) was not previously known to
exist although certain results given by Sacks and Ylvisaker (1970}

had the consequence of bounding lim n2k{Var(BT ) - var(R)} between two
n>o n

numbers. The case of q = k was considered in Eubank, Smith and Smith (1978).

3. Variable knot spline approximation with boundary conditions. 1In

this section we develop certain mathematical preliminaries which will be
used in latter sections. For TsDn let s: denote the linear manifold of piece~
wise polynomials of order k (degree < k) on [0,1]) in Ck.2 with breakpoints at

tl""'t . sz is usually called the set of splines of order k with knots

n-1
at T. Also define the nonlir :ar manifold of all splines with n ~ 1




distinct knots by Sﬁ =U Sk Since the results which follow involve

TeD T
L
approximation in the L~ [0,1] norm we adopt the notation

1

2 1/2
£l1: = f £ wrat) /2
. . 2
Given f ¢ L2 (0,11 and a fixed set of knots, T, the best L[ 0,1}

approximation to £ by the corresponding splines of order k is the

k
projection of £ onto S

denoted Sif. If the knots are allowed to varv
the best approximation problem becomes nonlinear as one is attempting

. . . k R .
to find the best approximation to f from sn . Thus, in this latter case,

*
\ one is attempting to find s, € s: so that

(3.1 | |£-s*|| = inf {]|£-s|] |s ¢ sy .
n s n
k ‘ Finding s; in (3.1) is a variable knot spline approximation problem

and is, in general, quite difficult to solve. However, when f ¢ Ck[0,1],
Barrow and Smith (1978) have been able to describe the asymptotic behaviour
of |!f - s;II and suggest a scheme for knot selection which is asymptotically
optimal.

In the next section results will be needed regarding variable knot

spline approximation when both f and s; are required to satisfy certain
boundary conditions. For 0 < g < k let

: &% o,11 = {ge Fro,11]5 ) =0, 3

q,..-.k-1}

and given TeDn define a corresponding spline space

k, 3 I
So T o fees®|sT() =0, § = q.... k1) . ‘
T
’ k
when g=k we make the identification ck'k[o,l] = Ck[o,l] and S; K . ST'
A variable knot spline approximation problem in this setting would entail g

k,q

finding a best approximation to £ from U S As it is not clear that

' TeD T
n
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such a best approximation exists we circumvent this difficulty by instead

considering the best approximation to f from the closure of this set

k
Sn'q =u sk*? | so the objective, in this case, is to find g* _¢ sk,q

T q.n n

TeD .
n
so that
. k,q

-k = - v

(3.2) ||£ sq'nH us\f{Hf s|| | ses } .

The spline s* n may have knot multiplicities and, consequently, may not have

q.

the maximum number of continuity constraints.

We now present certain results regarding the asymptotic behaviour of

k,q

s; n and S;'qf, where Sg'q is the orthogonal projector for Sep

’

The proofs
of the following theorems are a consequence of results pertaining to the
asymptotic properties of optimal quadrature formulas given by Barrow and

Smith (1979) and are therefore omitted.

Theorem 3.1.  Let £ ¢ C-'%0,1]. Then,if {T_} is RS(h)

1l (f(k)(x))z

0 h2k(x)

172

(3.3 lim n°|]e-55'%] | = ¢ {f ax}
n

n->eo

1/2
where Ck = (‘BZkI/Zk!) and BZR is the 2k-th Bernoulli number.

Theorem 3.1 characterizes the asymptotic behaviour of the error in
approximating f from S;'q in terms of the density defining the knot
sequence {Tn}. The next theorem is concerned with the free knot case
and provides an optimal density for knot selection.

Theorem 3.2. Let £ sck'q[o,ll and define the density
+
If(k)(x)|2/2k 1

(3.4) h(x) = 3/ 7K+ 1 .

J’l ]f(k) (t) | at
0

- = A FU LAY e
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Then,if 'I‘n is RS (h)

2k+1/2

X X, 1 2/2k+1
(3.5) 1im n*||£-Sy’ T£l| =1im o* ing [|£ - S;" %4l =c (f £ ()| e
e n ne TEDn 0

Theorem 3.2 has the implication that the sequence of fixed knot
N . k'qf} :
approximations to f,{ST . generated by h in (3.4) works as well,
asymptotically, as the corresponding sequence of best free knot approxi-
mations. This suggests the use of S;'qf as an approximate solution to
n

problem (3.2). It is worthwhile to note that both Theorems 3.1 and 3.2
deal exclusively with boundary constraints which arise as a result of

the particular design problem being considered and are readily extended

to other situations.

4. Proof of theorems. In this section we explore the connection

between the results of Section 3 and the optimal design problem
discussed in Section 2. In particular,proofs are given for Theorems 2.1
and 2.2.

Fix k and q and let R have the form (2.8). It is readily shown that

(-l)kR(s,t) is the Green's function for the boundary value problem

D g=nh
(4.1) g(j)(m =0 j=0,...,k=1
g3y =0 5 = Keq, ... k-1,k4q,...2k-1.

Thus it follows from this property {(or directly from (2.9)) that rt(S):=R(S,t)

when considered as a function of s for fixed t is a spline of order 2k and

continuity class Czk_2 with a knot at t. Consequently.Rn is, in this case,

a nonlinear spline manifold and the optimal design problem (2.5) is in




fact a variable knot spline approximation problem.
The RKHS generated by R is seen to consist of functions with k-1

absolutely continuous derivatives and is given by

{£1£9 (o) =0 j=0,...,k—1,f(j)(1)=0,j=k-q,...k—l,f(k)eLZFO,I]},ligiy

(4.2) H(R) =
(k)

L}
(=]

1£]£9 0y=0, j = 0,...,x-1, £%e 12 (0,11} . q

The inner product for £ ang g in H(R) is given by
N b, k)
4.3 <o\ = [ £ g™ (ax
0
2
For T eDn define the L {0,1] subspace
k {k}
(4.4) R : = spanir, [rt € R} .

In view of (4.3) we have

_ (x) (k) (k) k _(k)
4.5y |}e-Rg]]p = 1]£7 - R.H) o= 10e - Re £

where R: is the L2[0,1] orthogonal projector for Rk Consequently, the

e
optimal design problem is equivalent to finding {when it exists) the best

{kx)

c . k
L2[0,1] approximation to f from the splines in U RT .

TeD
n
To prove Theorems 2.1 and 2.2 we will show that the optimal design

problem is nearly the equivalent of a variable knot spline approximation

problem for st'q . This might be expected as it is apparent from the

(k)

boundary conditions (4.1) that x,

€ s:'q for t € T™\{0,1}, i.e., for
t e {tl,...,tn_l}. Hence, we are in a situation similar to that consi-
dered in Section 3. The problem preventing the immediate proof of Theorems

2.1 and 2.2 is the disparity between the dimensions and elements of the

k,q k
setsg ST

and RT' It is readily seen that sk'q has dimension n + g - 1

T

- - - - -

e :
i ettt i NP Y 99 VA
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. k k,
and it will be shown subsequently that R; has dimension n with r{ ) ['4 ST q

(for g <k). To clarify and resolve these difficulties it will be helpful to

further analyze the properties of rék)

Now consider the form of R given in (2.9). For q > 0 let

v(s) (vo(s) ....,vq_l(s))'

where

g (0,k=g+1)

vi(s) = {(s,1)

for i = 0,...,3-1. Using (2.6) we have that

(4.6) (s, t) . -5t
= —_ - = Kt (s)
s® (k-1)!
and
_eyd-i-1
a.77  v® (g = 118
(g-i-1)! .

(k)

In view of (4.3), r (s) is now recognized as the error function resulting

t
from the L2[0,1] approximation of K(:)(s) from the subspace
g-1
.= - Q-s)
Pq.-span{l, (1 s)""'(q-l)! .

This fact has several consequences which are of interest. First it is seen

that k_L.P (in L2 norm). It also follows that, for q < k, r(k)(s) is a
q 1

polynomial of degree k-1 which satisfies r (2k-1)(s) = 1 and, therefore, r{k)

1

k,q (k) (k)
is not contained in ST . When q = k, Kl (s) € Pk -Te) rl(s) will vanish
(k)

identically. Finally, as K (s) is zero on [0,1], rék)

must vanish as well

which implies that, for g < k, the dimension of R: is n (the vanishiag

(x)

of ro entails that observations taken at zero provide no information about

B a fact deduced more directly from (2.1) and (4.2)).
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For T € Dn define the "design" T' by deleting the point tn = 1 from T.
. R k k,q . . k k,q
For designs of this form we have RT. c ST . Approximations from RT, and ST
are related by the following lemma.

(k)

Lemma. If £ € H(R) and T € D then Rl;,f is the best L2[0,1] approximation

k k
to £ from ST'q .

. , k . R k
Proof. For 0 < q £ k the dimension of RT' is n-1. Since, for q > O, RT"J' Pq

in 12 norm) and R],;, C Sl,;'q, we have

k,q

T = pq@gl;, .

In addition, through use of the boundary conditions in (4.2) and integration

by parts, it is seen that if g € H(R) and p € Pq then

1
g(k)(x)p(x)dx =0 .
< s . (k) k (k) .
as £ - RT,f is in H(R) it follows that £ - RT,f is orthogonal to Pq and
R;,. Consequently, f(k) - Rz,f(k) is orthogonal to Sﬁ'q for 0 < g < k. For
g = 0 the lemma is verified through noting that in this case Rz, = s:'o.

To complete the proof of Theorems 2.1 and 2.2 the difficulty associated

’ with an observation taken at 1 must be resolved. This is accomplished through

noting that

k K, k k k k
.0 |1g - Ryellg = g™ - spr3 e @) 2 e 2 (15 MY

Theorems 2.1 and 2.2 now follow, .through use of the lemma and equation (4.8),
from Theorems 3.1 and 3.2 respectively. It is important to note that in the

free knot case our results necessarily pertain to the best H(R) approximation

to £ from the closed set i; rather than Rh and, hence, derivative information

may be required to obtain the bound inf Var(B
TeED
n

T) for any particular n. However,




15

when it is not possible to sample derivatives of the Y process an
approximate solution may be obtained through sampling according to the

density (2.11).

5. The case of many parameters. We now consider the general case of

model (1.1) with J > 1. Assume that y, the criterion function, is a

continuous real-valued function on the non-negative matrices which satisfies

Y(0) = 0 and ¥(B) > V(C) if B-C is a non-negative matrix. Given a
particular criterion y we wish to construct asymptotically vyl or

Y2 optimum design sequences. To do so it will suffice to prove an
analog of Sacks' and Ylvisaker's (1968) Theorem 3.2 for covariance

kernels of the form (2.8)

Theorem 5.1, Let fjeCZkIO.llnH(R), 3=1,...,3, and let Byrec00dy be
a set of positive constants. Then, for anv design sequence {T } :
i J 1/2k+1 2k+1
: (5.1) lim inf n°*: a,Hfj—R 3 112> ( 3(f‘z‘" )2) ;
e j=1 3 0 1
= )\ (say). !
3 if {Tn} is RS(h) where {
J 1/2k+1 i
(5.2) 3 aj(f.(Zk) (x))2 |
hix) = —a=i JMJ !
J (2k) 2 1/2k+1
' = a)(f. (s» ds
o\j=1 N

then

J
2k 2

. Ta,llE.R, £, =1 .
(5.3) lim n aJlI jtz,rn JIIR

n-$o =1

- e -y
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——

Proof. First note that since (5.3) is an immediate consequence of
Theorem 2.1 it will suffice to prove (5.1). The latter result can be
obtained through modification of work by Barrow and Smith (1978). We
highlight the differences here and refer the reader to their paper for
more details.

Through use of the lemma in Section 4 and the fact that, for
g€ 1.2 [0.1] . ||g-S:'qgl| z.llg-S;gll it is seen that (5.1) will be
proven when it can be shown that for g; € Ck(o,l], j=1,....3,

(x) l/2k+1 2k+1

J Sk 2 > 1 J
4 I oalle.~St a.]l¢ > . .
(5.4) ajllgj Tngjll 2 ¢ (IO (jglaj(g x))°) )

3=1
The proof of (5.4) now proceeds in a step~wise manner similar to the

proof of Theorem 2 of Barrow and Smith (1978). The inequality (5.4) is

first shown to hold when g.(t) = c.tk/k! , where Ci is a constant, and

J

then when g, € cX[0,1] with £ ajqj(k)(t)2 > § > 0 before finally consi-
i=1

dering the general case of gi € C [o, 1] The details involved in the

vertification of each of these cases may be deduced from Barrow and
smith (1978).
Theorem 5.1 provides the crucial result for obtaining asymptotically

optimal design sequences in the multi-parameter case. It is now possible

to obtain analogs of the theorems given in Section 4 of Sacks and Ylvisaker
(1968) using similar methods of proof. Examples of these results are

provided by the following two theorems which deal with the trace (tr)

and determinant (det) criteria.

Theorem 5.2 Let Y(B) = tr(BM) where M is a non-negative J x J matrix

~ and define the density

(5.5) [9(x)'M¢(x)]l/2k+1

hi(x): =

“¥/2k+1
0 [¢(t) Mp(t)] at
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where

k (2k)

)
(x},. . ., fJ

2
(5.6) d{x): = (fi (x))'.

Then the design sequence {Tn} which is RS(h) is asymptotically

Y2-optimum.

Theorem 5.3. Let Y(B) = det(B) and define the density

(6" () g (£) 11/

1 -1 1/2k+1
J 1o ()A 6 (20 at
o]

(5.7 h(x): =

Then the design sequence {Tn} which is RS(h) is asymptotically

Y2-optimum.
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