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Asymptotically Optimal Designs for Some

Time Series Models

By Randall L. Eubank, Patricia L. Smith and Philip W. Smith
Southern Methodist University and Old Dominion University

Short title: Asymptotically Optimal Designs

Summary. The limiting behaviour (as the sample size increases)

of the BLUE of the regression coefficients is investigated in the

case that derivative information is not available. Using the

results of Barrow and Smith (1979) on the asymptotic properties

of optimal quadrature formulas several results obtained by Eubank,

Smith and Smith (1981) are extended to a multiparameter setting

and a wider class of processes which includes multiple integrals

of Brownian motion. The asymptotic behaviour of the variance of

the BLUE is characterized in terms of the density defining the

designs and densities which generate asymptotically optimal design

sequences are provided for several optimality criteria.

1. INTRODUCTION . Consider the linear regression model in

which a stochastic process, Y, is observed having the form
J

(1.1) Y(t) - Z 8 1f.i(t) + X(t), t E [0,I]1
j.I

where 8-(S81 ... A8) is a vector of unknown parameters, the f are

known regression functions and X) is a zero mean process with

known covariance kernel R. The X process is assumed to admit k - 1

quadratic mean derivatives at each point t E [0,1.

ALI.



2

If the Y process is sampled over all of [0,1], the

linear estimation of 8 may be accomplished through the use of the

reproducing kernel Hilbert space (RKHS) techniques developed by

Parzen (1961a, 1961b). We denote this estimator by 8 and its

corresponding variance-covariance matrix by A-1 . When observations

are taken at only a finite number of distinct design points on [0,1]

the best linear unbiased estimator (BLUE) of 8 can be constructed

through the use of generalized least squares. Various aspects of

the problem of optimal design selection for the BLUE have been

addressed by backs and Ylvisaker (1966, 1968, 1970), Wahba (1971,

1974), and Eubank, Smith, and Smith (1981).

Denote the set of possible n+l point designs for model (1.1) by

•(1.2) D n ( (top t i t .., tn )1 0 = t0 < t I1 < ... < t n in o "n o " n '

where ":=" means "is defined as". Also for T D let Trepresent

the BLUE of B based on the observation set Y = {Y(t) It CT} with
T

corresponding variance-covariance matrix denoted by AT. When k = 1, i.e.,
the Y process does not admit derivatives, Sacks and Ylvisaker (1968)

considered the problem of selecting a T*c D so thatn

(1.3) *(1T) = inf JNA~TcD
n

or, alternately

(1.4) *(AT*) sUP 4J(A T )

TeD T

ni
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where J is some criterion function which measures the size of AT  (e.g.,

the trace or determinant function). A design which satisfies (1.3) is

termed tl-optimum whereas a design satisfying (1.4) is termed *2-optimum.

As optimal designs are difficult to construct, Sacks and Ylvisaker

(1968) instead developed approximate solutions to the optimal design

problems (1.3) and (1.4) which entailed the use of design sequences.

The method they used for constructing such sequences was to choose the

elements of the nth design to be the n-tiles of a continuous

density function, h, with support on [0,11. A design sequence constructed

in this manner is called the regular sequence generated b h. This

relationship is abbreviated {Tn I is RS(h).

A design sequence, {T nis said to be asymptotically pl-optimum if
-l-i( 1  - -l A-Il -

(1.5) lim infiP(A 1 (A7)ip(A*) - (A ) 1T1
n-w TeD n

n

and is asymptotically *2-optimum if

-i

(1.6) lira [W(A) - sup ip(AT)][,P(A) - *(AT.)] = 1.
n- TeD n

n

Sacks and Ylvisaker (1968) derived densities having the property that

the corresponding regular sequence is asymptotically *1 or *2-optimum.

Then if h* is such a density and {T*} is RS (h*), their approximate
n

solution to the optimal design problem is Tn

For k > 2 it has not been possible to characterize the asymptotic

variance behavior or obtain asymptotically optimal design sequences for

T instead, it has been necessary to use the less natural observation

s {Y(J) (t) I j=O,... ,k-l, t eT1 and the corresponding best linear
Yk,T

unbiased estimator , Hence, for k >2, most of the available literature
kT

pertains to , rather than T (c.f. Sacks and Ylvisaker (1970) and
kT T

Wahba (1971, 1974)). This is unfortunate as derivative information on

the Y process will frequently not be available.

I*
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In this paper we examine the asymptotic behaviour of the variance

of T where k is allowed to be any fixed finite positive integer. Using results6T

pertaining to the approximation of functions by splines subject to boundary

conditions it is possible to extend the asymptotic results of Eubank, Smith

and Smith (1981) to a wider class of processes and multiparameter situations.

The class of processes considered includes the case when the error process

is a multiple integral of Brownian motion whose importance in terms of (1.1)

is well known (c.f. Sacks and Ylvisaker (1970)).

Our results stem from certain asymptotic properties of optimal

quadrature formula derived by Barrow and Smith (1979). The implications

of their work to the approximation of functions by splines under boundary

constraints are explored in Section 3. These results are related to the

optimal design problem in Section 4. As an illustration of the relation-

ship between these two problems consider the instance when X(-) is a (k-1)-

fold multiple integral of Brownian motion. In this case optimal designs

for the one parameter case (J = 1) are obtained by minimizing

n akR(s,t) __2

-f (k) (s) Z a ds0 i=O i

with respect to(t0,...,t) and (a ,...,a). It will be seen that

n ~0 n

(IS) akR(st) is a spline of order k with a knot at t and that both

f (k) and r ( k ) will satisfy

f(k+j) (1) = r(k+j) (1) = 0
t

for j - 0,...,k - 1 (except for t = 1 when j = k-1). Consequently, for

this type of process, the optimal design problem is equivalent to a

variable knot spline approximation problem where both the function and

splines must satisfy boundary conditions.

L &... 7



We present asymptotic results in Section 2 for the special case

of J -1 with proofs in Section 4. In Section 5 the case of J > 1

is examined. A theorem is given which allows for the proof of results

analogous to those of Sacks and Ylvisaker (1970) for the multiparameter

setting except without the need for derivative information.

2. The case of one parameter. For the purpose of this section

we will restrict our attention to the case of J = 1. Consequently,

model (1.1) can now be written as

(2.1) Y(t) - Sf(t) + X(t) , t E [0,1].

For model (2.1) an optimal n+l point design is a T* c D which satisfiesn

(2.2) Var(%T,) = inf Var(ST )
TeD T

n

and an asymptotically optimal, design sequence, {T*}, must satisfy
n

(2.3) lim Var(B ) - Var(e)

inf Var (B )-Var(O)

TeD T
n

The optimal design problem can now be formulated as a nonlinear

minimum norm approximation problem for f. Let H(R) denote the RKHS

generated by the covariance kernel R which is isometrically isomorphic

to the Hilbert space spanned by the Y process (c.f. Parzen (1961a, 1961b))

and let 11 I1IR denote the norm in H(R). It has been shown by Sacks and

Ylvisaker (1966) that

-2(2.4) Var(BT) H1RTfl1 R

.........................................
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where R Tdenotes the H(R) orthogonal projector for the subspace

R= spanIRttT. As f 1f 2 - 11f - Rf112 it follows

that T* is an optimal design if and only if

(2.5) 11f - RT*ft R = inf 1lf - RTf1R

TeD
n

Consequently, the optimal design problem is equivalent to the problem of

finding (when it exists) the best H(R) approximation to f from the nonlinear

manifold R = U R . Although this latter problem is, in general,
TeD

n
quite difficult to solve, in certain instances, H(R) and R consist respec-

n

tively of functions and splines which satisfy certain boundary conditions.

In this event the problem becomes amenable to analysis as will be shown in

Section 4.

Now and in further discussions we will consider a specific class of Y

processes. Define the covariance kernel

I (t_u)k-i k-i

(2.6) K(s,t): = f (s-U)+ du
0 (k-l) 2

k k
where xk = x if x > 0 and is zero otherwise. Denote by W(t) the zero

mean, normal process corresponding to K, i.e., the (k-l)-st multiple

integral of Brownian motion, and let

(W(t) - E[W(t) lW(i)(1), i = k-q,...,k-1], 1 < q < k

(2.7) ZW (t "
w M) q 0

where q is some fixed but arbitrary integer between 0 and k. We

now take R to be

(2.8) R(s,t): Cov(Z(s), Z(t)).
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More specifically, let
i+j

(i~j)K(s,t)K i ' ) (s,t): =

s i ti

Then, for q > 1

(2.9) R(s,t) = K(s,t) - V(s)B- v(t)

(0,k-q) (0,k-1) th

where v(s) = (K (s,l),..., K (s,l))' and the ij element

of the matrix B is K (i j ) (1,1), i, j = k-q,..., k-1. One consequence

of this choice for R is that the class of processes to be considered

includes those which have covariance structures like that of (k-l)-fold

integrated Brownian motion (q = 0) and (k-l)-fold integrated Brownian

( bridge (q = 1) processes.

We now state two theorems regarding the behaviour of 8T for which

the proofs will be presented in Section 4.

Theorem 2.1 Let fcH(R) c 2k[ 0,1]. If h is a continuous density

on [0,1] and {T n is RS(h) then

2 2  1(f (2 k) 2x)d
(2.10) lim n2ki If - RT f = k h(f (x)) dx]n-)wT RC f h 2k (x)I

where 2 = IB2kl/ 2 k! and B is the 2k-th Bernoulli number.
Ck 2k

In view of (2.4) and (2.5) it is clear that equation (2.10)

characterizes the asymptotic behaviour of the variance of 8T in terms

of the density defining the designs. The next theorem concerns the

limiting behaviour of inf Var (8 T) and provides a density which generates
TeD

n
an asymptotically optimal design sequence.
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Theorem 2.1. Let f c C2k o,13i H(R) and define

(2.11) h(x): 2/2k+1
f If(k (t) j dt

0

Then, if {T I is RS(h)
n

2k 2k
(2.12) limn fvar(8T )-Var(s)I=lim n {inf Var(ST ) - Var(S) I =

n- n nl4 TeDn

2/11(f(2k) (x2/2k+l 2k+1Ck f (x)) dx ) • Var 2 (B)

It is important to note that when k > 2 the bound inf Var(i ) may
TeD

n

not be obtainable without the use of derivative information. This point

(will arise as a result of the proof of Theorem 2.2 and has been discussed

by Sacks and Ylvisaker (1966). However, by sampling according to the

density (2.11) an approximate solution, Tn, to the optimal design problem

can be obtained which, for large n, will behave like an optimal design

with regards to the corresponding variance of the BLUE. It is also of

interest to note that the limit in (2.12) was not previously known to

exist although certain results given by Sacks and Ylvisaker (1970.)

2khad the consequence of bounding lim n {Var(T ) - Var(B)} between two
n-ow n

numbers. The case of q = k was considered in Eubank, Smith and Smith (1978).

3. Variable knot spline approximation with boundary conditions. In

this section we develop certain mathematical preliminaries which will be

used in latter sections. For TeD let S denote the linear manifold of piece-
n T

wise polynomials of order k (degree < k) on [0,1] in Ck -2 with breakpoints at

t k is usually called the set of splines of order k with knots

at T. Also define the nonlir ar manifold of all splines with n - 1
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k k
distinct knots by S U S Since the results which follow involven T

TeDn
approximation in the L2 [0,1] norm we adopt the notation

(f 0 f2 dt)1/2

2 2
Given f e L (0,1] and a fixed set of knots, T, the best L r0,1]

approximation to f by the corresponding splines of order k is the

k k
projection Of f onto ST denoted STf. If the knots are allowed to vary

the best approximation problem becomes nonlinear as one is attempting

k
to find the best approximation to f from S . Thus, in this latter case,n

* Sk
one is attempting to find s c S so that

n n

(3.1) Ilf-s-11 = inf {1If-sIlI S 18 S } k

s

Finding s* in (3.1) is a variable knot spline approximation problem
n

and is, in general, quite difficult to solve. However, when f E C k[ 0,],

Barrow and Smith (1978) have been able to describe the asymptotic behaviour

of ilf - S*jj and suggest a scheme for knot selection which is asymptotically

optimal.

In the next section results will be needed regarding variable knot

spline approximation when both f and s* are required to satisfy certain
n

boundary conditions. For 0 < q < k let

ck ,1,] = TfC Ck [0,1]IfJ(1) = 0, j = q,...,k-lI

and aiven TED define a corresponding spline spacen

5k,q _ {S-S k Is j ( 1 ) 
= 0, j = c,....,k-l.

T T
k~k k k,k k

When q=k we make the identification C kk[0,1] = Ck(0,1] and ST - ST .

A variable knot spline approximation problem in this setting would entail

finding a best approximation to f from U Skq . As it is not clear that
TD T

n
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such a best approximation exists we circumvent this difficulty by instead

considering the best approximation to f from the closure of this set

S'k q =TU Sk q . So the objective, in this case, is to find Snc S kq

n TcD T q,n n
n

so that

(3.2) If-S ,n1 = inf{llf-sl! s sk 'e }

The spline s* may have knot multiplicities and, consequently, may not have
qn

the maximum number of continuity constraints.

We now present certain results regarding the asymptotic behaviour of

s, and f, where S is the orthogonal projector for S 'q . The proofs

of the following theorems are a consequence of results pertaining to the

asymptotic properties of optimal quadrature formulas given by Barrow and

Smith (1979) and are therefore omitted.

Theorem 3.1. Let f c Ckcko,1]. Then,if {T n is RS(h)

(3.3) lim nk Tf' l =Ck{f (f(k)()J2 dx}I/2

n- n 0 h (x)

where Ck = IB2kI/2k) and B2k is the 2k-th Bernoulli number.

Theorem 3.1 characterizes the asymptotic behaviour of the error in

k,q
approximating f from ST in terms of the density defining the knot

sequence {T }. The next theorem is concerned with the free knot casen

and provides an optimal density for knot selection.

Theorem 3.2. Let f E ck' 0 ,1 and define the density
ff(k) (x) 12/2k+l

(3.4) h(x) = 2/2k+l

f1 If (t) dt
0
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Then,if T is RS(h)n

k,~ ~ ~ ~~~~~o If.kqII kSkqf C( fW(2/2k+i )2k+1/2
(3.5) lim n k flim n inf llf T k  Ifk ) /kx  l 2k/n- w n n-- TeD

Theorem 3.2 has the implication that the sequence of fixed knot

approximations to f,{S f, generated by h in (3.4) works as well,

asymptotically, as the corresponding sequence of best free knot approxi-

mations. This suggests the use of Sk'qf as an approximate solution to
T
n

problem (3.2). It is worthwhile to note that both Theorems 3.1 and 3.2

deal exclusively with boundary constraints which arise as a result of

the particular design problem being considered and are readily extended

to other situations.

4. Proof of theorems. in this section we explore the connection

between the results of Section 3 and the optimal design problem

discussed in Section 2. In particular,proofs are given for Theorems 2.1

and 2.2.

Fix k and q and let R have the form (2.8). It is readily shown that

(-1) kR(s,t) is the Green's function for the boundary value problem

D2k h

(4.1) g(J) (0) 0 j 0,...,k-1

g(J) (1) = 0 j = k-q,...,k-l,k+q,... 2k-l.

Thus it follows from this property (or directly from (2.9)) that rt (s):R(S,t)

when considered as a function of s for fixed t is a spline of order 2k and

continuity class C2k - 2 with a knot at t. Consequently,Rn is, in this case,

a nonlinear spline manifold and the optimal design problem (2.5) is in

ALJ -, ° . . ... . . '
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fact a variable knot spline approximation problem.

The RKHS generated by R is seen to consist of functions with k-i

absolutely continuous derivatives and is given by

(fi M(j) 0=) j=0...,k-l,f M (1)=0,j=k-q .... k-l,f(k) cL2[O,1]1,lfq<k

(4.2) H(R)

{ff(JM(0)=O, j = 0,...,k-l, f(k) E L [0,1 , q = 0.

The inner product for f ang g in H(R) is given by

(4.3) <fg> = f (k)(x)g(k)(x)dx

0

For TED define the L 2[0,1] subspace
n

k sa{(k) RT
(4.4) a span{ rt c RTI

In view of (4.3) we have

(4.5) JJf-R fJJ- f(k)- ( fk = 1lf(k) -k f(k)fl

k 2 k
where RT is the L [0,1] orthogonal projector for RT- Consequently, the

optimal design problem is equivalent to finding (when it exists) the best

L 2[0,1] approximation to f W from the splines in U R k

TED Tn

To prove Theorems 2.1 and 2.2 we will show that the optimal design

problem is nearly the equivalent of a variable knot spline approximation

k,qproblem for Skn . This might be expected as it is apparent from then
boundary conditions (4.1) that rt  S kD fo

(k T rtCT{,1 ~. o

t E {t t... ,tnl). Hence, we are in a situation similar to that consi-

dered in Section 3. The problem preventing the immediate proof of Theorems

2.1 and 2.2 is the disparity between the dimensions and elements of the

sets Skq and R. It is readily seen that S Tq has dimension n + q - I

is A't.
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and it will be shown subsequently that R. has dimension n with r 1 i ST

(for q <k). To clarify and resolve these difficulties it will be helpful to

further analyze the properties of 
r(k)
t

Now consider the form of R given in (2.9). For q > 0 let

V(s) = (0 (S) q..... (s))'

where
V.(s)= K (0,k-q+i) (s'l)

1

for i = 0,...,q-1. Using (2.6) we have that

(46 __k___ k-l(k
(4.6) K(s,t) = (t-s)+ K (k) (s)

ask  (k-l) t

and

(4.7) V(k) (S) ( )q-i
1 (q-i-l).

In view of (4.3), r (s) is now recognized as the error function resulting
e (rt

from the L 2[0,1] approximation of K Wk(s) from the subspacet

P :=span{l,q

This fact has several consequences which are of interest. First it is seen

that -Lk P (in L2 norm). It also follows that, for q < k, r (s) is a
T q 1 a

(2k-l) (k)
polynomial of degree k-l which satisfies r 1  (s) = 1 and, therefore, r1

,(k) (k)
is not contained in S T . When q= k, K1 (S) C Pk so r1(s) willT 1 k willvanish

identically. Finally, as K (s) is zero on [0,I], r(k) must vanish as well
0 0

kwhich implies that, for q < k, the dimension of R is n (the vanishiag

of r (k ) entails that observations taken at zero provide no information about
0

a fact deduced more directly from (2.1) and (4.2)).

* - -.-- - --- ~i
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For T C D define the "design" T' by deleting the point t = 1 from T.

For designs of this form we have T, C Skq Approximations from , and SkTq

are related by the following lemma.

k f(k) 2
Lemma. If f C H(R) and T E D then RT f is the best L [0,1] approximation

(kc) k,q
to f from ST

Proof. For 0 < q < k the dimension of k' is n-l. Since, for q > 0, RTp,  q

- q

in L2nr)adk k,qwehv

Pq k

In addition, through use of the boundary conditions in (4.2) and integration

by parts, it is seen that if g E H(R) and p e P then
q

S(gk) (x)p(x)dx = 00

As f - R f is in H(R) it follows that f - R_.,f is orthogonal to P and
TO q

kc (k) f.k(k) Sk,q
RT,. Consequently, f _ 'f is orthogonal to S for 0 < q < k. For

TO T

q = 0 the lemma is verified through noting that in this case 
Rk = Sk,O
T' T

To complete the proof of Theorems 2.1 and 2.2 the difficulty associated

with an observation taken at 1 must be resolved. This is accomplished through

noting that

4.) lf... fl s  l( k ) _ k,q W1k1.1 _>1f~k)_Rk (k)l Wll k W I
(4.8) 1f- =Tf1 -1 T f I Tf(Ic)1..Rkf(I T f

Theorems 2.1 and 2.2 now follow, through use of the lemna and equation (4.8),

from Theorems 3.1 and 3.2 respectively. It is important to note that in the

free knot case our results necessarily pertain to the best H(R) approximation

to f from the closed set R rather than R and, hence, derivative information
n n

may be required to obtain the bound inf Var(B ) for any particular n. However,
TED

n

. ' - ' - -. . . .. . . ."
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when it is not possible to sample derivatives of the Y process an

approximate solution may be obtained through sampling according to the

density (2.11).

5. The case of many parameters. We now consider the general case of

model (1.1) with J > 1. Assume that 4, the criterion function, is a

continuous real-valued function on the non-negative matrices which satisfies

4(0) = 0 and *(B) > 4(C) if B-C is a non-negative matrix. Given a

particular criterion * we wish to construct asymptotically i1 or

42 optimum design sequences. To do so it will suffice to prove an

analog of Sacks' and Ylvisaker's (1968) Theorem 3.2 for covariance

kernels of the form (2.8)

Theorem 5.1. Let f EC2k[0,1]()H(R), j=l,...,J, and let aI,...,aj be

a set of positive constants. Then,for any design sequence {T n^/ 1 " "k" _/2k+l 2k+l
(5.1) lim inf n Z a H1f --R T f R\- Ck/2k+ \2kW

n- j a  i Tn R  K 0 t. .1 j (X ) I

= X (say).

If {T n  is RS(h) where

(2k) /2k+l

(5.2) )x)
h(x) ( (2k) )2)1/ 2 +d

then

(5.3) lim n2k r a j I f A Tnfil
J-ij jJR1

.... ... n Rl llH.. . .. ~' I. . .. . . . . . . .
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Proof. First note that since (5.3) is an immediate consequence of

Theorem 2.1 it will suffice to prove (5.1). The latter result can be

obtained through modification of work by Barrow and Smith (1978). We

highlight the differences here and refer the reader to their paper for

more details.

Through use of the lemma in Section 4 and the fact that, for

g C L 2 [0,1] , llg-sk'qgll > Ig-SkTg1 it is seen that (5.1) will be

proven when it can be shown that for gi C k[0,1], j = 1 ..... J,

J gjsk 2  2 (IW 2 l/2k+l 2k+l
(5.4) a 0 W) ) / ,

j i T gJSnJ il -1> Ck (0 (j =laj (gJ()()) d

The proof of (5.4) now proceeds in a step-wise manner similar to the

proof of Theorem 2 of Barrow and Smith (1978). The inequality (5.4) is

first shown to hold when gi(t) = C t /k! , where C. is a constant, and

then when g. £ ck[0,1] with E a.g (k) (t)2 > 6 > 0 before finally consi-
j=1 k

dering the general case of gi C C [0,i]. The details involved in the

vertification of each of these cases may be deduced from Barrow and

Smith (1978).

Theorem 5.1 provides the crucial result for obtaining asymptotically

optimal design sequences in the multi-parameter case. It is now possible

to obtain analogs of the theorems given in Section 4 of Sacks and Ylvisaker

(1968) using similar methods of proof. Examples of these results are

provided by the following two theorems which deal with the trace (tr)

and determinant (det) criteria.

Theorem 5.2 Let J(B) - tr(BM) where M is a non-negative J x J matrix

and define the density

(s~s) h(x). M , [ (x ' (x) )]I/2k+ 1

fl ° I/2k+l

0 (t) 'M (t) dt
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where

(5.6) x): ( (2k) (x) ( (2k)(x)

Then the design sequence fT } which is RS(h) is asymptoticallyn

i2-optimum.

Theorem 5.3. Let P(B) - det(B) and define the density

[€' (x)A- 1 (t) ]i/2k+l

(5.7) h(x): = 1 1 l/2k+
f tAl t dt

0

Then the design sequence {T n which is RS(h) is asymptoticallyn

2-optimum.
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