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Uniqueness and Eventual Uniqueness of Optimal Designs in Some Time
Series Models, II

By Randall L. Eubank, Patricia L. Smith, and Philips W. Smith
Southern Methodist University and Old Dominion University

Short Title: Optimal Designs in Time Series

Summary. Earlier results on the uniqueness and eventual uniqueness of

optimal designs for certain time series models are extended to a wider

class of processes which includes those with covariance structures such

as that of multiple integrals of Brownian motion and Brownian bridge

processes. The relationship between the problems of regression design

for time series and piecewise polynomial approximation with free break-

points is discussed and, consequently, asymptotic results obtained by

Sacks and Ylvisaker (1970) are seen to hold under weaker assumptions

for these processes.

1. Introduction. Consider the linear regression model in which a

stochastic process, Y, is observed having the form

(1.1) Y(t) = 8f(t) + X(t), t E [0,1]

where a is an unknown parameter, f is a known regression function and X

is a zero mean process with known covariance kernel R. The X process

is assumed to admit exactly k-1 quadratic mean derivatives.

When the Y process is observed, for instance, overall of [0,1], the re-

producing kernel Hilbert space (RKHS) techniques developed by Parzen (1961a,

1961b), may be utilized to obtain a linear unbiased estimator of the unknown

parameter 8. When, instead, the process is to be sampled at only a finite
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number of points the regression design problem has been considered by

Sacks and Ylvisaker (1966, 1968, 1970), Wahba (1971, 1974), and Eubank,

Smith and Smith (1981a, 1981b). Under a variety of assumptions on the

covariance kernel R, and the amount of information available on the Y

process these authors consider the problem of selecting an element, T,

from the set of all n+l point designs

(1.2) D: {(to,tl,...,t n )0 = to < t < .. <t -}
n n1 n

(where := means " is defined as") so as to minimize the variance of the

best linear unbiased estimator (BLUE) of 8 obtained by sampling according

to T.

Of particular importance for this paper is the case when the Y

process as well as its derivatives may be sampled at each of the design

points. Then, for a given T C Dn, one may consider the estimation of

from the observation set

Yk,T:= {Y(JM tIt C T, j - 0, ... ,lk-l}

We denote by Bk,T the BLUE of B based on the observations Yk,T" The

regression design problem, in this setting, may be sunmumarized as follows:

Find T* e D such that
n

A

(1.3) Var(O k,T*) -inf Var(8k,T
TED

n

In general such a T* may not be unique and for this and other reasons may

be quite difficult to construct. The computational difficulties

associated with optimal designs led Sacks and Ylvisaker (1970) and

Wahba (1971, 1974) to develop an asymptotic solution to problem (1.3)

for several types of covariance kernels.

In a previous paper [5] we addressed the question of uniqueness
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for optimal designs. It was found that for covariance kernels of a

certain form and under certain conditions on the regression function,

f, problem (1.3) had a unique solution for each n. In addition, under

weaker assumptions on f, the regression design problem was shown to

eventually (for all n greater than some finite n0 ) have unique optimal

solutions. It is the objective of the present paper to extend these

uniqueness and eventual uniqueness results to a wider class of pro-

cesses. The class of processes considered includes those having co-

variance structures such as that of multiple integrals of Brownian

motion and Brownian bridge processes. It is of interest to note that

* an algorithm for optimal design computation developed by Eubank, Smith

and Smith (1981b) will also now be applicable to this class of processes,

and, consequently, may be utilized along with the unicity results of this

paper to develop a computationally feasible scheme for optimal design

construction.

In Section 2 we discuss the class of processes to be considered

and present our principal results. The proofs of these findings are

provided in Section 3. The techniques utilized in the proofs make it

possible to draw certain conclusions regarding the asymptotic equivalence

of variable breakpoint piecewise polynomial approximation and the regres-

sion design problem considered by Sacks and Ylvisaker (1970). This point

is discussed in Section 4.

2. Results and notation. It is well known (c.f. Parzen (1961a, 1961b))

that the covariance kernel R generates a KHS which is isometrically

isomorphic to the Hilbert space spanned by the X process. We denote this

MMS by H(R) and its associated norm by 1I1"IR. Under the assumption

that f C H (R), the regression design problem may be reformulated as a

. |
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minimum norm approximation problem. Let

(21 Ri IijI~) a RSt

as i t

iiand for T F- D set

(2.2) NkT. span {R (0'j) (6t)It £ T, j=0..k-.

Then, Sacks and Ylvisaker (1970) have shown that

Var( O 2

where R k,T denotes the H(R) orthogonal projector for the subspace R kT'

As IIkJR 2 2fI _ 12- kf'R it follows that the optimal

design problem is equivalent to finding a T*.e D such that

(2.3) 11f - RkTfI!R = inf 11f RkTfhtR
TED

n

In general, very little is known about the properties of T* for finite

n. However, for the type of processes studied in this paper several

positive statements can be made.

We now restrict our attention to a specific class of processes

and their corresponding covariance kernels. Let

1 k-ik-i
(2.4) K(s't) = (S-u)+ (t-u)+ du

(k-i)!

and let Z(o) denote the corresponding normal process, i.e., a (k-i)-

fold multiple integral of Brownian motion. Define a new process, W, by

-~t E(Z(t)Iz"1t1), j-k-q,...,k-l], 0 < q : k,

(2.5) W(t)

Z M ,q 0



5

Unless noted to the contrary, i't will be assumed in subsequent dis-

cussions that R is given by

(2.6) R(st) = Cov (W(s) ,W (t))

More specifically, for 0 < q <_ k, R can be shown to have the form

(2.7) R(s,t) = K(s,t) - V(s)'B-V(t)

where V(s) is a vector whose ith component is

(2.8) Vi(s): = K (0,k-q+i)(s'l) f 1 (s-u) - I  (1-u) q-i-ldu, i-0,....q-1,
( (k-l)d i (q-i-i)0li0

and B is a qxq matrix with ijth element

( 2.9) bij: = K (k-q+i,k-q+j) (1,1 )  f ;1 (l-u) q - -  (1-u)q-d-u, i,j = 0,....,q-1.

'! 0 (q-i-l)!' (q-j-l) '

When q = 0, R is the covariance kernel corresponding to a (k-l)-fold

multiple integral of Brownian motion whereas the case q=l corresponds

to a multiple integral of the Brownian bridge process. The case q = k

was considered by Eubank, Smith and Smith (1981a, 1981b).

For processes with covariance kernels of the form (2.7), it is

possible to prove the following theorem regarding the unicity and

eventual unicity of optimal designs for the linear estimation of 8.

2k
Theorem 2.1 . Let k be a fixed positive integer and let f C H(R)kC [0,1]

with f (2k)> 0 on [0,1] and log f(2k) concave on (0,1). Then, for each

positive integer n there exists a unique optimal solution to the regression

design problem (2.3). If, instead, we assume that f £ H(R) with both f (2k)> 0

and f(2+ 3 ) continuous on [0,1] then there is a positive integer no such that

for all n larger than no problem (2.3) has a unique solution.

In addition, it is possible to prove, for general k, a finite sample

analog of an asymptotic result given by Sacks and Ylvisaker (1970) for the

special case of k - 2.

- .
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Theorem 2.2. If k is even and f C H(R) with f(2k) > 0 then if T* C Dn
A A

is an optimal design Var(BklT,) = Var(BkT.

Theorem 2.2 has the consequence that through the use of optimal

designs one can obtain equivalent resolution using (k-1)(n+l) rather

than k(n+l) observations for k even. A result similar to Theorem 2.2

has been given by Wahba (1971) for a certain class of covariance kernels

and specific types of regression functions.

The principal difficulties associated with the use of optimal

j designs have been their possible duplicity and computational infeasi-

bility. However, in some cases it is possible to use an algorithm

developed by Chow (1978) and adapted to the regression design problem

by Eubank, Smith, and Smith (1981b) for optimal design computation.

As a result of our proofs in the next section it follows that this

algorithm is applicable for covariance kernels of the form (2.7). Con-

sequently, through use of this algorithm in conjunction with Theorem

2.1 the utilization of optimal regression designs may now be considered

as a viable estimation technique for the type of processes studied in

this paper. In addition, this entails that Theorem 2.2 has both prac-

tical and theoretical implications for these processes.

3. Proofs of theorems. In this section we analyze the structure

of the optimal design problem for covariance kernels of the form (2.7).

In particular, we prove Theorems 2.1 and 2.2. First, however, it will

be useful to consider certain recent results regarding piecewise poly-

nomial approximation which will be required in the proofs.



7

For 1 < q < k denote the set of polynomials of order q (degree < q)

by P and for a given T - (t It...,t ) C D let represent the set
q 0 1 n n Pk,T

of piecewise polynomials on [0,1] with breakpoints at . ... Ftn_ 1  Also,

denote by Pk,n: = U P the set of all piecewise polynomials of order k
TED k,T

n
with n-l distinct breakpoints in [0,11. As most of the work which follows

will involve approximation in the L [0,1] norm we make the identifications2

for f, g c L [0,11,
2

<f4g>= ;lf(x)g(x)dx

and

11Ifll f S1  2dx
0

Given f C L 2[0,1] it is frequently of interest to consider finding

a best approximation to f from P ."Thus, one attempts to find a T* E D
n n

such that

(3.1) 1f - Pk,T*fil = inflIf- Pk,Tfl
n TED

n

where P k,T denotes the L2[0,1] orthogonal projector for P k,T Several

recent results due to Barrow, et al. (1978), Barrow and Smith (1978) and

Chow (1978) are available regarding the properties of T*. These results
n

were discussed in Eubank, Smith and Smith (1981) and are stated again here

for completeness.

Theorem 3.1. Let f ck [0,1] with f(k) > 0 on [0,1] and log f(k)concave

on (0,1). Then, for each positive integer h, T* in (3.1) is unique. If,
n

instead, it is assumed that f C k+3(0,1] with f (k)> 0 on [0,1] then there

is a particular integer, no, such that for all n •n. Tn is unique.



(k) etL[~]apoiaint
Proposition. Let f > 0 and let p* be a best L2[0,1] approximation to f
from P Then, if k is even, p* e C[0,1].

k,n'

We now consider the structure of the optimal design problem for co-

variance kernels of the form (2.7). For fixed values of k and q, H(R) is

seen to consist of functions with k-l absolutely continuous derivatives and

is given by

(3.2) (((R) =
( {flf ( j ) (0)=o, j = 0,...,k-l,f k) e [Ol], C=O.

where the norm for f e H(R) is

(3.3) Ilflls -- Ilf (k) l •1

Now let r t.(s) = R k '3) (s,t), j = 0,...,k-l, and define the corresponding

(L2 [0,1]) subspace

(3.4) k spanO (k  (.,t) = 0,...,k-l1

span{rt'jit cT, j = 0,...,k-l}

Then, in view of (3.3) , we have

(3.5) I lf - RkTfI'R - 1f(k)(RkTf) (k) l = j f(k)- RkTf (k)II
kk

where R T is the L2[0,1] orthogonal projector for RT" Consequently,

the optimal design problem is equivalent to finding the best L2[0,1]
(k) k

approximation to f (k from the functions in kT

The preceding discussion serves to motivate further study of the
k

form of PZ,T. Therefore, let K(s,t), vi(s) and bij be as given in Section 2

and for 0 < J < k let

(3.6) V Is) I

0 q-1.
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k
Then, the elements of kT are

r (s (k1 j) (k) - 1 (j(3.7) j(s )  K (s,t) - (s)'B (t), 0 < j < k - 1

Now set
i-i

it (t-s)+i=l,.k,
(3.8) p (s)= (-,):

with
i (l-s)

(3.9) p (s):= Pt(s) = (l---i'

and note that this implies that

(k i) k-j
(3.10) K 'J s,t) = Pt cs) , j = ,...,k-1,

and
(3.11) V)(SC) = pq-is), 0,....q-l

1

Upon observing that

(3.12) -jt) = <Pt qi> i 0,...,q-1 j 0,....,k-

and

(3.13) bij - <Pi pq-i> , i,j = 0,...,q-1,

it is readily seen that rt'j is the error function resulting from the

L[0,1] approximation of p from P . Using P to denote the orthogonal
q q

projector for P , the basis elements for k,T are succinctly summarized in

the following array.

to = 0 ti ... tn- 1  t n =

r ,0 0k _.k k k k pk
0 P11 Pt n-1 tn-i

r q+l q+1 . q+ p q+l pq+l p q+l
(3.14) tirk-q-l 0 Pt1 - tI  -- Pt n-1  qtn_ -- q l

r 0 pq p q ... p q P q 0iokqt 1 4t 1 t n_1  qptn-i

r 0 .1 _ 1 1 _ 0

t•k-1 1 • 1 ... ..... .n-i
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The zeros in (3.14) which occur at to = 0 and t = 1 arise from the fact
n

pj pk-j
that p(s) vanishes identically and that p E P for j = k-q,...,k-1.

0 q

* This may be interpreted as indicating that observations taken on the
corresponding derivatives of the Y process at these points will provide

ji no information about B. This, of course, is otherwise clear from the

boundary conditions that functions in H(R) must satisfy.

k
It follows from (3.14) that, for T c D n ' RkTCPk,T* Thus, in view

of (3.5), it is now apparent that the problem of optimal design unicity

is similar to the problem addressed by Theorem 3.1. The only obstacle

preventing the immediate proof of Theorem 2.1 is that kT is properly

contained in P To resolve this difficulty we prove the following
k,T

lemma.

Lemma. Let f e H(R) and T E D . Then the best L2 [0,1] approximation ton

f(k) from Pk,T is kTf(k ).

Proof. From (3.14), we may write

Pk,T Pq G k

Using the boundary conditions in (3.2) and integration by parts it can also

be shown that for any g £ H(R) and p E P qq

JIg(k) (x)p(x)dx = 0

0

In particular, as f - R k,Tf is in H(R), this entails that f(k) - ,T f(k)

is orthogonal in L2 to both kT and P . Hence f (k)_ f(k) is orthogonal
q ,T

to Pk,T and the lemma is proved.

Theorem 2.1 now follows directly, through use of the lemma, from

(k)
Theorem 3.1 upon replacing f by fk. To obtain Theorem 2.2 we use the

Proposition to see that when k is even and T* is an optimal design



11

R fk f, fT*r[0,l ] = { It e T*, j =0,...,k-2

4. Piecewise polynomials and regression design. Sacks and Ylvisaker

(1970) have considered the asymptotic behaviour of optimal regression

designs for a particular class of covariance kernels. Under the assump-

tion that Q is a covariance kernel satisfying certain assumptions (see

Assumptions A, B and C in Section 2 of Sacks and Ylvisaker (1968)) R is

assumed to have the form k-i k-I

(4.1) R(s,t) = (s-u)+ (t-v)+ Q(uv)dudv' ~ ~~~ ~~0 0(k),2Quvud.

It is then shown that for this type of covariance kernel when f admits

the representation
1

(4.2) f(t) = f0 (s)R(s,t)ds

for some c £ C[0,1] then

2 2 1 2k+1
(4.3) lim n2k inf 1f - ,TfII (2k) (2k+l)! if0 (x )2/2k+ld x

n- TED R
n

The technique utilized in the proof of this result was to first show that

(4.3) held in the special case when Q has the form Qo(st) = min(s,t) and

then extend this outcome to general Q through the use of a mapping from

H(Q) onto H(Q) .

Results similar to (4.3) have been obtained by several authors for

the asymptotic behaviour of the error from the best L 210,1] approximation

of a function from P k," For instance, Burchard and Hale (1975) have

shown that if f e Lk[0,1], where

(4.4) Lk(0,1] = {fIf(J absolutelycontinuous, j=0,... ,k-l,flI'f(klx)ldx<.,
0

then
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1 2/2k+l 2k+l.;PTl2 J 'lf k  x)d

(4.5) lia n2kinf if - P (2k)!(2k+l) f()) dx
fl40 TeD k0T

n

We now indicate the connection between these two bodies of theory.

The case of Q(s,t) = min(s,t) corresponds to the event when R is

* Ik (2k)
given by (2.4) and * = (-1)kf(  . As this entails q = 0 in our work it

now follows from (3.14) that in this case RkT = Pk,T and, therefore, in

*this instance, the optimal design problem corresponds precisely to the

problem of best approximating f(k) from Pk,n" This clearly indicates the

I reasons underlying the similarity between the asymptotic behaviour of best

piecewise polynomial approximations and optimal designs (for other remarks

on this relationship see, e.g. McClure (1975)). We now utilize the duality

between these two areas of study and note that, for the processes considered

in this paper, the work of Burchard and Hale (1975) has the consequence

that (4.3) still holds under the weaker assumption that f (k) Lk[0,1J.

Randall L. Eubank Patricia L. Smith and Philip W. Smith
Department of Statistics Department of Mathematical Sciences
Southern Methodist University Old Dominion University
Dallas, Texas 75275 Norfolk, Virginia 23508
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