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Weighted L2 Quantile Distance Estimators

For Randomly Censored Data
by
R. L. Eubank and V. N. LaRiccia
Southern Methodist University and University of Nebraska-Lincoln

Short Title: Estimators for Censored Data

Summary: \The asymptotic properties of a family of minimum quantile
function distance estimators for randomly censored data sets are con-~
sidered. These procedures produce an estimator of the parameter

vector that minimizes a weighted L%‘distance measure between the

Kaplan-Meier quantile function and an assumed parametric family of

quantile functions. Regularity conditions are provided which insure

that these estimators are consistent and asymptotically normal. An
optimal weight function is derived for single parameter families,
which, for location/scale families, results in censored sample analogs
of estimators such as those suggested by Parzen (1979a, 1979b), and
Weiss and Wolfowitz (1970).

1. Introduction. In this paper we consider the problem of

parameter estimation from randomly censored data sets. A general

method of estimation is presented for cases when the data i{s assumed

to be from a known parametric family. The technique is based on the
minimization of a weighted L2 distance measure between the Kaplan- ~~w~;;74:;

Meier empirical quantile function and the assumed parametric family

of quantile functions and is applicable to most common distributionms. “j;

Let xl,...,xn denote the true survival times of n individuals
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which are assumed to be a random sample from the distribution function
(d.f.) F(x;g?) where g? is a fixed, possibly unknown element of a known
set or region 9(:18. Further let Yl,...,Yn denote n independent

identically distributed censoring random variables with common distri-

bution function R that are also assumed to be independent of the Xi's.

In the random censoring model one observes not the X,'s but, instead,

i

the pairs of random variables (Zi,éi) where Zi = min (xi’Yi) and

8 with I denoting the indicator function. The d.f.

=1
1 X <Y}

of the Zi's, F*,is then given by the relation

(1.1)  1-F* (x;8°) = [1-F(x38°) ] [1-H(x)].

An important problem associated with this model is the estimation of
the parameter vector, g?, from the observed data.

Let Fn(x) denote the Kaplan-Meier estimator of the d.f. F(x;g?)
(Kaplan and Meier (1958)) with associated empirical quantile function

defined by

(1.2) Q (u) = inf{F (x) > u} .
x

Estimation problems pertaining to specific forms for the vector g? have
been addressed by Sander (1975a, 1975b, 1975¢) and Susarla and Van
Ryzin (1980) and Reid (1981) using estimators based, explicity, on
both Fn and Qn' In contrast, we develop an estimation procedure
applicable to general 2? under the assumption that the fungtional

form of F 1s known. Thus when, for instance, gf consists of only

a location and scale parameter, the model we assume is the censored

sample analog of the classical location and scale parameter model.




Minimum distance estimation procedures based on the d.f., the
probability density function, the characteristic function, and the
quantile function have been proposed and both their large and small
sample properties, for non-randomly censored data sets, have been
extensively investigated. Specific minimum distance procedures
have been shown to possess excellent robustness properties, to be
consistent, asymptotically normal, and in some cases fully efficient.
While a detailed discussion of these points is beyond the scope of
this paper, the interested reader is referred to Beran (1977), Parr
and Schucany (1980), and Millar (1981) for discussions of techniques
which utilize the d.f.. Estimation procedures formulated in the
quantile function domain may be found, for the case of location
and/or scale parameter estimation, in Parzen (1979a) and Eubank (1981)
and, for more general parametrizations, in LaRiccia and Wehrly (1981)
and LaRiccia (1981). We note that certain results presented in sub-
sequent sections may be regarded as censored sample analogs of tech-
niques developed in Parzen (1979a) and LaRiccia (1981) and are obtained
through the use of work by Sander (1975a, 1975b) and Reid (1981) on
the convergence of the empirical quantile function and linear functions
of order statistics for randomly censored data,

In Section 2 we define our estimator and present our principal
results regarding its asymptotic properties. The proofs are provided
in Section 3. Finally, in Section 4, we discuss the estimator's
efficiency and robustness properties and provide an optimal weight
function for single parameter families,

2. A family of minimum quantile function distance estimators.

For each 8 € © define the quantile function associated with F(x;8)




by
(2.1) Q(u38) = inf{x:F(x;8) > u} .

For a given weight function W(u;f) mapping (0,1) x @ + R and associated

real valued functions Wg (8) and We (6),the minimum quantile function
1 2
distance estimator of the true parameter, g°, is any vector which

minimizes
B2
(2.2) RQ,® = [ W(w;@)lQ () - ou;0)] a

By

2 2
+ W (D1 (B)) - QD" + Wy OV1Q,(B) - Q(8yi0)]

over all § ¢ © where 81 and 82 are fixed real numbers satisfying

0 < B8) < B, <1 but are otherwise arbitrary. Since individual members
of this family of estimators are distinguished by their specific weight
function we adopt the notation é(Qn,w) for this estimator. For
notational convenience it will be useful to have an expression which

incorporates all three of the functions W, WB and WB .
1 2

Therefore,

for any function Z(u;8) we define

8
(2.3) [ W*(u;8)Z(u38)du = jBlw(u;g)z(u;g)du
8 8
1 2

2
+ ) wBi(g)z(si;g)
i=1
and (2.2) may now be written as

8
(2.4)  R(Q38) = [ 2 Wh(u;0)[Q (w) - Q(u;0)]1%du .
W - [ %
1

Weight function selection strategies will be discussed in Section 4.
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In general, the computation of éan,W) can be accomplished using
standard iterative techniques. Estimator computation is particularly
simple for location and scale parameter families when the weight
function is independent of 8 as, in this imstance, the estimator
is readily seen to have a closed form.

One advantage of the minimum distance estimation technique is
that R(anﬁ(Qn»W)) provides a measure of the goodness-of-fit of the
assumed parametric family. In addition, the quantile function
approach has the consequence that the estimation procedure is
directly related to Q-Q plotting techniques. Therefore, the esti-
mators can be easily incorporated into a statistical package which
not only estimates the parameters but also provides checks for the
appropriateness of the assumed parametric family and graphs which
can be employed to, perhaps, suggest a more suitable family of
distributions.

The asymptotic behaviour and distribution theory for é(Qn,W)
is the subject of Theorem 1. To prove these results we require
certain restrictions on both W and Q. Therefore, let G denote the
class of left continuous functions on (0,1) that are of bounded

variation on (y,1-Y) for all 0 < y < %-and, for h, g ¢ G define

d(g,h) = sup|h(x)-g(x)| .

xe[8,,8,)
Also for any function Z(u;8) 1let Zi(u;g) = 2%%2322__’
i
2
1} 372(u38) 32(u;0)
;e [, R - S . PrRind ek .
27" (u;8) 391363 » 2'(u;38) o™ and %2 w Z2(+;8) .




The following assumptions are then required for Theorem 1:

(1) d(Qn’QGO) +?0, where +? denotes convergence in

—

probability.

P
(3) Let v, denote the vector having ith component

(2) /;-d(Qn,Qeo) = OP(l), where O, denotes probability order.

Bzw onndl, o 0
alf W*(u;8°)Q" (usg )(Q_ (u)-Q(u387))du}
By
where the integral is defined as in (2.2). Then !n
converges in law to the Ns(g,A) distribution, denoted

v, +LNS(Q,A), where the 1jth element of A is

8, B 1u;6%)09 (v;6°
(2.5) ay = f zf 2 W*(u;g?)w*(v;gf) Q (w2 )07 vif) K(u,v)dudv
8y 81 £Q(u;6°) £Q(v;6°)
with
min(u,v) 2 on. =1
(2.6) R(u,v) = (1—u>(1—v)f0 [(1-s)“(1-HQ(s;87))] "ds ,

HQ(u;Q?) = H(Q(U;QF)). and fQ(u;g?) = F'(Q(u;g?); g?)
is the density-quantile function corresponding to F (c.f.
Parzen (1979a)).

(4) For fixed 8, the functions W(u;8), Wr(u;8), wi(u;0), o*cu;e)

and Qij(u;g) are continuous on [81,82] and, for fixed u, in
i

a neighborhood of Q?. WB
|3

9, wéj(g), k = 1,2, are continuous
k
in 0.
(5) The functions Wi(u;g), W(u;g)Qi(u;g), Wij(u;g), wi(u;g),

Qj(u;g) and W(u;g)Qij(u;g) are bounded by integrable functions

uniformly for all 6§ in the neighborhood of g?.




(6) The sxs matrix B(Qeo,gé) having ijth element

)
(2.7) b, ={
ij 8
1
is positive definite.

"1*(11;30)Q1(u;3°)Qj (u;8°)du

Theorem 1 Under the regularity conditions (1) -~ (6)
(1) As n there exists, with probability tending to one, a
unique function, é(Qn,W), which locally minimizes (2.1),
(i1) é(Qn,W) is a consistent estimator of g?,

(111) va(8(q ,W) - 8°) + N_(0,0) where

(2.8)  C = [B(Qyo,8") 1 A[B(Qy,,8% 17}
with A and B as defined in (2.5) and (2.7).

Conditions (1) - (6) can be replaced by many different sets of
restrictions. In particular conditions which imply (1) and (2) can
be derived from the results of Sander (1975a) whereas restrictions
implying (3) can be found in Sander (1975b) gnd Reid (1981). As an
illustration of alternative conditions we present the following

corollary.

Corollary . Let assumptions (4) - (6) be satisfied and further assume
that
(1) 0 < Bl < 62 < 1 and H is a continuous function satisfying
'HQ(8,38%) < 1,
(i1) F is a strictly increasing function with F(O;g?) =0,

(111) w(u;g?)Qi(u;g?) is differentiable.

Then, the conclusions of Theorem 1 hold.
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Before proving Theorem 1 in the next section we note that an
alternative approach to our method of proof could be taken wherein
éﬁqn,W) is treated as a functional on the metric space (G,d). Thus,
assumptions similar to those in Beran (1977) on the differentiability
of the functionallé(Qn,W) could be used to replace conditions (4)-(6)
although the present conditions seem easier to verify im practice.

However, if W(u;Q?) > 0 for all u e [8 ] it is usually easier to

1782

s

check the condition I aiQi(u;g?) ¥ 0 for all a = (al,...,as)t $¥0
i=1

which, in this case, is equivalent to (6). We note that this latter

condition is an assumption on the identifiability of the parameters.

aR(Qn, )
3. Proofs. We now prove Theorem 1. Let D(Qn,g) = 3
o TGI) o
{ and J(Qn,g) = — . Then, D is the s x 1 vector with i
96

element

R,

REQ;0) = [ 200Q, (w-0u;00) W™ (us0) - 29" (u38)Q" (w38) (@ (w)-Q(u39))
B
1

*
where the W i notation and the integrals are defined in a manner analogous
to (2.2). Similarly, J is the s x s Jacobian matrix with 1jth element

B
R (q ;0) = / 21(q (w)-0(u;8) 3™ (u;8)-2(q_ (w-Q(u3®)) 1w (u3 )0 us0)
1

: * * %

- + W u;0)Q0 (s 04" (030001 (050 1420" (03000 (w300 (u30) Fau
Now, employing the compactness of [81,82] and conditions (4) - (5) tedious
but straightforward calculations give the following three results:

(A) In an open neighborhood of (Qeo,gf), Ri(Qn,g) and Rij(Qn,g)
are continuous functions with respect to the metric p, defined

for g, heG and 6,aed by

p[(h,8),(g,a)] = max{d(g,h), |6;-a |, ..., |0 -a [},




8

®) /af 2(q_(w)-a(u;8°) %" (038 du +,0 and
8
1

© &g ,8) » (g 0,8% 1£ 8 +

o
p &

Since D(Qeo,gf) = 0 and J(Qeo,g?) is positive definite it follows,

using (A), that the conditions of the implicit function theorem are

!

satisfied. Consequently, there exists an open neighborhood of (Qeo,g?)
and a unique continuous mapping, éﬁQn,W), of an open ball, B, con:;ining
Qeo, into 2° such that d(Qn’ é(Qn,W)) = 0 and é(Qeo,w) = g?. Further, as
a result of (1), with probability tending to one,—.Qn is in B so that
there exists, also with probability tending to one, a unique point
éﬂQn,W) such that D(Qnaé(Qn’W))' 0. To see that éﬁQn,W) minimizes R(Qn,g)
{ note that, using (A), J(Qn,éan,W)) #PB(Qeo, g?) which 1s positive

definite by assumption (6). Thus, result (i) has been shown. Result

(i1), the consistency of.g(Qn,W), is an immediate consequence of the

continuity of 8(+,W) and the fact that 8(Qgo,W) = 9°.

By the mean value theorem

o A = (a®_ a
D(Qny_e_ ) = D(Qn:Q(Qn.W)) + J(Qn’ﬁ) (9_ - Q(Qn,w))
} where 6 = g? + A(Q? -é}Qn,W)) for some sxs diagonal matrix, A,
with all elements between 0 and 1. Since D(Qn,éﬁQn,W)) =0,
a 0 -1 o
/a[8(Q ,W)-6"] = ~3(Q_,8) " /nD(q,,8") -

Result (i1ii) now follows using (B), (C), assumption (3) and a
Slutsky type argument.

To verify the corollary we first note that it is shown in

Sander (1975a, Corollary 1) that /;TQn(u)-Q(u;QF)]converges weakly
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to (-1/£Q(u;6))X(u) on [81,82] where X(+) is a zero mean Gaussian
process with covariance kernel (2.5). Thus, it can be readily
shown that assumptions (1) and (2) are satisfied. This fact also
implies that, for i=l,...,s,

2
i
L Wg (8707 (8,38 (Q (8)) - QlB58°M > n(0,0D)

k=1 "k

where
2. f f w, 0%)qtce,.0%w, (8%ak(8, ;6% (£aC8, ;8% £a(8, ;8% 1R (8, ,8, )
R T2 By — k= LA L

Since W(u;ﬁ?)Qi(u;g?) is differentiable on [81,82] the results of
Example 3 of Reid (1981) have the consequence that
8Zw o, .1 o o 2
[ (w3830 (u38”) (Q_(w)-Q(u38°))du +, §(0,03)
8
1l

where

2

8, 8
2= 1 2 (w290t (vie®W ;8% a (038 [£QCv; 8% £Q(u;8%) 1 IR (v, whdveu .

81 F1
Then, an argument similar to that used in Shorack (1972) gives (3) and

o

the conditions of Theorem (2.1) are satisfied.

4, Robustness and efficiency. In this section we discuss

the robustness and efficiency properties of the estimator‘é(Qn,W).
Using an approach similar to that of Parzen (1979a) an optimél weight
function is provided for estimation in single parameter families.
In the case of location or scale families with no censoring (H=0) the
resulting estimators agree with estimators proposed by Parzen (1979a, 1979b)
and, consequently, are similar to those given by Weiss and Wolfowitz (1970).
The results in this section, therefore, provide an extension to randomly
censored samples of the work of these authors.

It follows from the proof of Theorem 1 that, asymptotically,

Q(Qn,W) is a weighted sum of s linear functions of the order statistics.

B IR e ——e
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Thus the influence curve for these estimators can be determined using
the techniques developed in Reid (1981). For a given parametric family
of distributions, weight functions with specific properties or which
provide specific types of protection can then be derived. 1Imn parti-
cular, by proper selection of W(u;8) an estimator which is locally
robust or one that has specified efficiency properties can be obtained.
The remainder of this section is devoted to the problem of weight
function selection. To obtain an optimal weight function we first
i note, as in Parzen (1979a), that the covariance kernel, K, in (2.6)
generates a reproducing kernel Hilbert space, H(K), which provides us
with a natural measure of information on [81,82]. The properties of

H(K) that impact on our present objective will now be briefly dis-

cussed. The reader is referred to Aronszajn (1950) and Parzen (1961la,
1961b) for a more detailed presentation of, respectively, the theory
of reproducing kernels and their role in inference for stochastic
processes.

Assuming that H admits a continuous density, h, it follows from
Sacks and Ylvisaker (1966) that H(K) consists of continuous functions

- on [81,82] having finite H(K) norm where, for geH(K), the norm is

given by

]
lel12 = ! 21" (w1 2[1-HQ(u;8) 1du

1
(4.1) 82 [gw ] 1hQ(u;8)
. u u3
] e 6«
. 8
1 1-HQ(8, :8)
+ (8 ))? - 1
K(BI’BI) h 81
2
3(82)

+ [1-HQ( By38)] .




The inner product in H(K) will be denoted by <-,->K. When considered
as a function of s (for fixed t)K(s,t) possess the so called reproducing

property that for geH(K)

(4.2)  <g, K(+,£)>, = g(v).

We now, and in subsequent discussions, impose the regularity
condition that fQ(u;Q)Qi(u;g) e H(K) and define the information
measure

.3 16 = |leaCsetcso 12 .

To justify this definition we first note that the densities corre-

sponding to the censored and uncensored observations are, respectively,
£9(x;8) = [1-F(x;8) Ih(x)

and

£9(x;8) = [1-H(x)1£(x;9) .

Then by making the change of variable X = Q(u;6) it can be shown that,

for instance, when Bl = 0 and 82 =1, I(ei) becomes

© i 2
£ (x30) u
1(8,) = : .
(4.4) g £ [ f(x_-—;_g_)] £%(x;8) dx

+ f’[ F (’"e)] £%(x;0) dx

1-F(x;0)

This is now recognized as the Fisher information corresponding to the

parameter 6, upon examination of the form of the likelihood for the

i

Zi's given in, for example, Kalbfleisch and Prentice (1980). Similarly,

1(61) can be seen to provide a measure of information in the Fisher

sense when 0 < Bl < 82 < 1.
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Now suppose that there is only one unknown parameter, 91 = 9,

and let

u 1
G(u38) = (1-u)f 5
0 (1-w) " [1-HQ(w;8)]

dw

Under the assumption that fQ(u;e)Ql(u;e) is twice continuously

differentiable define

(4.5) 6(u;8) = - [£Q(u;6)Q (u;6)1"[1-HQ(u;6)]

1 1
£,Q,(u;8)Q (u;8) Q(u;
- [ = ] (1-u) ?Qfﬁfgi

1-u

for B, < u < Bz with

1

, (£Q(8,38)Q" (85076 (8,38) - G(B,30) (£0-Q1) ' (8 ;0) }[1-HQ(8,30)]
{ (4.6) 4, (8) =
1 G(8,:®)

and

.0)0l(s.: - olyr¢a.: - .

“.D |, (o) = {£Q(8,30)Q7(8,38) + (1-8,) (£Q-Q") '(8,36) }[1-HQ(B,;6)]
B

2 1-8

2

where (fQ'Ql)'(Bk;e) - [fQ(u;e)Ql(u;e)]' « Then, using results
u=8
k

from Sacks and Ylvisaker (1966) it follows that fQ(u;O)Ql(u;e) admits §

the representation

82 2
9(s;9)K(s,u)du + T ¢ _(8)K(B, ,u)
k=1 B k

PrYe _

(4.8) £Q(u;8)Q*(u30) = f
By

for u e [81.82]. By using (4.8) in conjuction with the reproducing

property for K it 1is possible to verify the two important identities
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1 2 B2 1
[1£aC+50)Q7 (30 || = | £Q(u;0)Q7(u;0) ¢(u;0)du
8
2
(4.9) + ) 6, (8)£Q(8,30)01(8, 50)
k
k=1
and
1 2 828y
Hea-s00Q (-3 || = [ “ “6(u;0)6(v;0)K(u,v)dudv
By &
(4.10) 2 8,
+2) b (6)/f ¢(u;0)K(B ,u)du
k B
k=l 1
P 3
+ o, (8)6, (OIK(B, ,B) .
k=1 =1 Pk By L3

Now define the weight function

(6.1)  w(ue) = HWRQWH g oy cg
Q (u;9)
wieh 35 (9)EQ(B,;0)
4.12) W, (o) = kl , k=1,2.
k Q (Bk;e)

Using this weight function in (2.4) and (2.6) and applying the

identities (4.9) - (4.10) it can be concluded, from Theorem 1, that
/a(8(Q W) - 6°) > N(0,1/1(8%))

and hence, the weight function (4.11) -~ (4.12) is optimal for the
estimation of 8°.

The presence of 1-HQ(u;@) in the weight function has the con-
sequence that the weight function depends on the censoring distribution
which may not be known. Although the details are beyond the scope
of this paper, such difficulties can be avoided by using strongly

consistent estimators of H and h in W and W, , k = 1,2,

By
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To provide further insight into the properties of this weight
function consider the special case when 8 is a scale parameter and

there is no censoring, i.e., H = 0, In this case, we have

F(x;8) = F(x/9)
£(x;0) = GE(x/0)
Q(u;8) = 6Q(u)
' £Q(u;0) =~ % £Q(u)

and
1
Q (u;8) = Q(u)

where F(x), Q(u) and fQ(u) are all specified functions. Equations

(4.5) - (4.7) now become

' (4.13) ¢(u) = -{fQ(uw)Q(u)}"

1 '
(4.14) ¢Bl = -é-l- fQ(Sl)Q(Bl)-(fQ Q (81)
and

1 '
(4.15) %2 = FB—Z- fQ(Bz)Q(BZ) + (£Q+Q) (82)

g so that W is independent of 8. Consequently, e(Qn,W) may be expressed

in the closed form B89 2
. [, $()EQ(u)Q (u)du + I 45 £Q(B)Q (B)
, (4.16) 8(Q ,W) = Bl otk .
[? s Ea(wawau + I 6, £(B,IQ(B,)
By k=1 "k

This is precisely the fully efficient estimator of © considered by

Parzen (1979a,1979b). Identical results hold for location parameter
estimation as well, Parzen has noted that these estimators are

similar to those presented in Weiss (1964) and Weiss and Wolfowitz (1970).
Consequently, the minimum quantile function distance procedures developed

in this paper, when incorporated with the weight functions derived in this

AU S S
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section may be viewed as providing for location/scale models, censored

gample analogs of these type of estimators.
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