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Weighted L2 Quantile Distance Estimators

For Randomly Censored Data

by

R. L. Eubank and V. N. LaRiccia
Southern Methodist University and University of Nebraska-Lincoln

Short Title: Estimators for Censored Data

Summary: The asymptotic properties of a family of minimum quantile

function distance estimators for randomly censored data sets are con-

sidered. These procedures produce an estimator of the parameter

vector that minimizes a weighted L.distance measure between the

Kaplan-Meier quantile function and an assumed parametric family of

quantile functions. Regularity conditions are provided which insure

that these estimators are consistent and asymptotically normal. An

optimal weight function is derived for single parameter families,

which, for location/scale families, results in censored sample analogs

of estimators such as those suggested by Parzen (1979a, 1979b), and

Weiss and Wolfowitz (1970).-

1. Introduction. In this paper we consider the problem of

parameter estimation from randomly censored data sets. A general

method of estimation is presented for cases when the data is assumed

to be from a known parametric family. The technique is based on the

minimization of a weighted L2 distance measure between the Kaplan-

Meier empirical quantile function and the assumed parametric family

of quantile functions and is applicable to most common distributions.

Let X 1...,X denote the true survival times of n individuals

* .--- * 'I' ... ... " -
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which are assumed to be a random sample from the distribution function

(d.f.) F(x;80 ) where 80 is a fixed, possibly unknown element of a known

set or region OCG s . Further let Y 1,...,Yn denote n independent

identically distributed censoring random variables with common distri-

bution function H that are also assumed to be independent of the Xi's.

In the random censoring model one observes not the Xi's but, instead,

the pairs of random variables (Zipi) where Zi = min (XiY i) and

6,- I{Xi  yi with I denoting the indicator function. The d.f.

of the Z i's, F*,is then given by the relation

(1.1) l-F* (x;90) - [l-F(x;8°)]Il-H(x)].

An important problem associated with this model is the estimation of

00

Sthe parameter vector, efrom the observed data.

Let F (x) denote the Kaplan-Meier estimator of the d.f. F(x;8_)n

(Kaplan and Meier (1958)) with associated empirical quantile function

defined by

(1.2) Q (u) - inf{F (x) > u)
x

Estimation problems pertaining to specific forms for the vector 80 have

been addressed by Sander (1975a, 1975b, 1975c) and Susarla and Van

Ryzin (1980) and Reid (1981) using estimators based, explicity, on

both Fn and Q n In contrast, we develop an estimation procedure

applicable to general 0 under the assumption that the functional

form of F is known. Thus when, for instance, 80 consists of only

a location and scale parameter, the model we assume is the censored

sample analog of the classical location and scale parameter model.

- . ... "w .. . . ... -. .. - " - - -. .
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Minimum distance estimation procedures based on the d.f., the

probability density function, the characteristic function, and the

quantile function have been proposed and both their large and small

sample properties, for non-randomly censored data sets, have been

extensively investigated. Specific minimum distance procedures

have been shown to possess excellent robustness properties, to be

consistent, asymptotically normal, and in some cases fully efficient.

While a detailed discussion of these points is beyond the scope of

this paper, the interested reader is referred to Beran (1977), Parr

and Schucany (1980), and Millar (1981) for discussions of techniques

which utilize the d.f.. Estimation procedures formulated in the

quantile function domain may be found, for the case of location

and/or scale parameter estimation, in Parzen (1979a) and Eubank (1981)

and, for more general parametrizations, in LaRiccia and Wehrly (1981)

and LaRiccia (1981). We note that certain results presented in sub-

sequent sections may be regarded as censored sample analogs of tech-

niques developed in Parzen (1979a) and LaRiccia (1981) and are obtained

through the use of work by Sander (1975a, 1975b) and Reid (1981) on

the convergence of the empirical quantile function and linear functions

of order statistics for randomly censored data.

In Section 2 we define our estimator and present our principal

results regarding its asymptotic properties. The proofs are provided

in Section 3. Finally, in Section 4, we discuss the estimator's

efficiency and robustness properties and provide an optimal weight

function for single parameter families.

2. A family of minimum quantile function distance estimators.

For each e e 0 define the quantile function associated with F(x;l)
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by

(2.1) Q(u;e) - inf{x:F(x;e) >_ u)

For a given weight function W(u;_t) mapping (0,1) x 9 - I and associated

real valued functions W (e) and W8 (0),the minimum quantile function
1 2 0

distance estimator of the true parameter, 0 , is any vector which

minimizes
822

(2.2) R(Q ne) = f W(u;e)[Qn(u) - Q(u;_)]2 du
81

+ W (e) [0%(8 1 ) - Q(01; e) 2 + W8 ()[Qn( 2)- Q(8 2 ;e)] 2

over all e e 0 where B1 and 82 are fixed real numbers satisfying

0 < 81 < 82 < 1 but are otherwise arbitrary. Since individual members

of this family of estimators are distinguished by their specific weight

function we adopt the notation e(Q ,W) for this estimator. For

notational convenience it will be useful to have an expression which

incorporates all three of the functions N, W I and W 2. Therefore,

for any function Z(u;6_) we define

(2.3) f 2W*(u;2_)Z(u;e)du - jO1W(u;e)Z(u;e)du
81 82

2
+ I W8 (e)Z(Bi;_)

and (2.2) may now be written as

(2.4) R(;._) - 0 W*(u;.)[Qn(u) - Q(u;.)]2 du
B1

Weight function selection strategies will be discussed in Section 4.

*4 * - --- - -*.. a ... ... " .
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In general, the computation of e(%,W) can be accomplished using

standard iterative techniques. Estimator computation is particularly

simple for location and scale parameter families when the weight

function is independent of 6 as, in this instance, the estimator

is readily seen to have a closed form.

One advantage of the minimum distance estimation technique is

that R(Q n,(Q n,W)) provides a measure of the goodness-of-fit of the

assumed parametric family. In addition, the quantile function

approach has the consequence that the estimation procedure is

directly related to Q-Q plotting techniques. Therefore, the esti-

mators can be easily incorporated into a statistical package which

(not only estimates the parameters but also provides checks for the

appropriateness of the assumed parametric family and graphs which

can be employed to, perhaps, suggest a more suitable family of

distributions.

The asymptotic behaviour and distribution theory for (Q nW)

is the subject of Theorem 1. To prove these results we require

certain restrictions on both W and Q. Therefore, let G denote the

class of left continuous functions on (0,I) that are of bounded
1

variation on (y,l-y) for all 0 < y <1 and, for h, g e G define

d(g,h) - suplh(x)-g(x) i

Also for any function Z(u;6) let Z i(u;) ae

ija2 Z~;)a~~) ai
z1 8Z(u;) Z' (u;) au;) and Z6  Z(.;Q)zaJu;) aee " u_"
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The following assunptions are then required for Theorem 1:

(1) d(QnQeo) ->,, where -p denotes convergence in

probability.

(2) n d(Q%,Qeo) O(l), where 0 denotes probability order.

(3) Let V denote the vector having ith component

V;(fB2W*(u;eo)Qi(u;eo)(Q (u)-Q (u ;_)du}
B n

where the integral is defined as in (2.2). Then V--n

converges in law to the Ns (0,A) distribution, denoted

V LNs(0,A), where the ijth element of A is

(2.s aij f8 2f8 2 *u_°)* _~
° Q (u;O°)Oi(v;6°)

(2.5) a-ij W*(u;e)W*(v;e0) - - K(u,v)dudv
81 81 fQ(u;- 0 )fQ(v;- 0 )

~with
wi hmin(u,v) 2 0 -1

(2.6) K(u,v) - (l-u)(l-v)f [(l-s) (1-HQ(s;_ ))] ds
0

HQ(u;e) - H(Q(u;e)), and fQ(u;90 ) - F'(Q(u;e); e )

is the density-quantile function corresponding to F (c.f.

Parzen (1979a)).

(4) For fixed 2, the functions W(u;2_), Wt (u;2), Wij(u;e), Q (u;_)

and QiJ(u;e_) are continuous on [31,12] and, for fixed u, in

in 9.

(5) The functions W (U;2_), W(u;_Qi (u; ), Wi (u;!, Wi(u;P),

QJ(u;2 and W(u;)QiJ(u;D are bounded by integrable functions

uniformly for all 8 in the neighborhood of 0.

".........................................-- --- ,;-- '. . .. ..........
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(6) The sxs matrix B(Qo,.6) having ij t h element
(2.7) bij - 8 W*(u;O°)Qi(u;°)Qj(u;0)du

is positive definite.

Theorem 1 Under the regularity conditions (1) - (6)

(i) As n- there exists, with probability tending to one, a

unique function, ;(Q ,W), which locally minimizes (2.1),

(ii) O(Q nW) is a consistent estimator of _
°

(iii) rn(i(QnW) - 6o) -I N s(O,C) where

(2.8) C = (B(Q% oG _)]-l A [B ( Q 8o ,. _
) ] -1

with A and B as defined in (2.5) and (2.7).

(Conditions (1) - (6) can be replaced by many different sets of

restrictions. In particular conditions which imply (1) and (2) can

be derived from the results of Sander (1975a) whereas restrictions

implying (3) can be found in Sander (1975b) and Reid (1981). As an

illustration of alternative conditions we present the following

corollary.

Corollary . Let assumptions (4) - (6) be satisfied and further assume

that

(1) 0 < 81 < a2 < 1 and H is a continuous function satisfying

HQ(8 2 ; 0 ) < 1,

(ii) F is a strictly increasing function with F(0;_ °) - 0

(iii) W(u;6O)Qi (u;0 ) is differentiable.

Then, the conclusions of Theorem 1 hold.

I.
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Before proving Theorem 1 in the next section we note that an

alternative approach to our method of proof could be taken wherein

8(QnW) is treated as a functional on the metric space (Gd). Thus,

assumptions similar to those in Beran (1977) on the differentiability

of the functional (Qn,W) could be used to replace conditions (4)-(6)

although the present conditions seem easier to verify in practice.

However, if W(u;e_) > 0 for all u e [01,021 it is usually easier to

check the condition E aiQ (u;e_) 0 0 for all a - (a1,...,a,) 0
i-l

which, in this case, is equivalent to (6). We note that this latter

condition is an assumption on the identifiability of the parameters.
aR(%,e)

3. Proofs. We now prove Theorem 1. Let D(Q ,) -

a2R(Qn,e) th
and J(Qn,0) = . Then, D is the s x 1 vector with i

element

Ri(Qn;_0) . f 2{(n(u)Q(u;_t))2*i (u;_) - 2W * (u;t)Qi(u;) (Qn(U-Q(u;O))du
81

where the W*i notation and the integrals are defined in a manner analogous

to (2.2). Similarly, J is the s x s Jacobian matrix with ijth element

R j (Q n;et) 82 2W*ij (u;)-2 n(u)-Q(u;0)) [w*i(u_)Qi (u;_
0 1

**

+ W*j (u;.)Qi(u;6)+W*(u;8)Qi (u;6)]+2W (u;o)Q i(u;e!)Q (u;e) du

Now, employing the compactness of [81,82] and conditions (4) - (5) tedious

but straightforward calculations give the following three results:

(A) In an open neighborhood of (Q8o,8_
0), Ri(%,.) and Rij (%,.)

are continuous functions with respect to the metric p, defined

for g, h¢G and ,ace by

p[(h,8),(ga)J - max{d(gh), 1e1-u11,...,1es-G s }

- - -
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(B) Q 2 n(u)-Q(u;eo)) 2W*i (u;o) du -% 0 and
$1

ij A 0 0.

(C) R1 (Q,_e) Rij(Qo,e ) if e p 0

Since D(Q6 o,0e) = 0 and J(Qoo,0) is positive definite it follows,

using (A), that the conditions of the implicit function theorem are

satisfied. Consequently, there exists an open neighborhood of (QOe
O

and a unique continuous mapping, (QnW), of an open ball, B, containing
s- 0

Qo, into I such that d(Qn, (Q ,nW)) - 0 and O(Q~o,W) 0. Further, as

a result of (1), with probability tending to one, Qn is in B so that

there exists, also with probability tending to one, a unique point

e(Q nW) such that D(Q o(Q W))- 0. To see that 6(Q ,W) minimizes R(Q ,6)

note that, using (A), J(Q,6(Qn,W)) -*pB(Qoo, 60) which is positive

definite by assumption (6). Thus, result (i) has been shown. Result

(ii), the consistency of (Q ,W), is an immediate consequence of the
a0

continuity of ;(-,W) and the fact that _(Qo°,W) - a0.

By the mean value theorem

D(QnnO°) - D(Q, O(Q n,W)) + .(Qn,')q - O(QnW))

where e - e' + A(9° -(Q nW)) for some sxs diagonal matrix, A,

with all elements between 0 and 1. Since D(Q ,0(QnW)) - 0,
w--a)- - , 0

i'r6( 9W.6 -J(Qn ,8) vnD (Qn,6

Result (iii) now follows using (B), (C), assumption (3) and a

Slutsky type argument.

To verify the corollary we first note that it is shown in

Sander (1975a, Corollary 1) that n[Q n(u)-Q(u;t0)]converges weakly

S . -
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to (-i/fQ(u;e))X(u) on [l,821 where X(.) is a zero mean Gaussian

process with covariance kernel (2.5). Thus, it can be readily

shown that assumptions (1) and (2) are satisfied. This fact also

implies that, for i=1,...,s,
2 oi 0)( 8 -) 2

k 1l k -B) ok; ( n (k)-Qs;e -- L N(0,a I

where

_ I W O i(W $,0)W A(0°)Q'(k;e)[fQ(B ; 0 )fO(k ;0O)-(8,)
1 =i k=l I - )k - k- i - k Ik

Since W(u;e°)Qi(u;e ) is differentiable on [01.820 the results of

Example 3 of Reid (1981) have the consequence that

fB2W(u;e)Qi(u;eo)(Q (u)-Q(u;e°))du L 2

B1 n- N(O'12)

where

2 f 2f 8 (v; OQi(v;O)W(u;eo)Qi(u;eO)[fQ(v;eO)fQ(u;eO)l-l(v,u)dvdu
81 81

Then, an argument similar to that used in Shorack (1972) gives (3) and

the conditions of Theorem (2.1) are satisfied.

4. Robustness and efficiency. In this section we discuss

the robustness and efficiency properties of the estimator _(Q nW).

Using an approach similar to that of Parzen (1979a) an optimal weight

function is provided for estimation in single parameter families.

In the case of location or scale families with no censoring (H-0) the

resulting estimators agree with estimators proposed by Parzen (1979a, 1979b)

and, consequently, are similar to those given by Weiss and Wolfowitz (1970).

The results in this section, therefore, provide an extension to randomly

censored samples of the work of these authors.

It follows from the proof of Theorem 1 that, asymptotically,

1(QnW) is a weighted sum of s linear functions of the order statistics.fucin o re



Thus the influence curve for these estimators can be determined using

the techniques developed in Reid (1981). For a given parametric family

of distributions, weight functions with specific properties or which

provide specific types of protection can then be derived. In parti-

cular, by proper selection of W(u;8) an estimator which is locally

robust or one that has specified efficiency properties can be obtained.

The remainder of this section is devoted to the problem of weight

function selection. To obtain an optimal weight function we first

note, as in Parzen (1979a), that the covariance kernel, K, in (2.6)

generates a reproducing kernel Hilbert space, f(K), which provides us

with a natural measure of information on [81,82]. The properties of

(H(K) that impact on our present objective will now be briefly dis-

cussed. The reader is referred to Aronszajn (1950) and Parzen (1961a,

1961b) for a more detailed presentation of, respectively, the theory

of reproducing kernels and their role in inference for stochastic

processes.

Assuming that H admits a continuous density, h, it follows from

Sacks and Ylvisaker (1966) that H(K) consists of continuous functions

on tI,. 21 having finite H(K) norm where, for gEH(K), the norm is

given by

11g,12 I 2[g'(u)]2 [1-HQ(u;6) ]du

K 8

(4.1) + 2 [A(u)]2 (-u) hQ(u;O) du
+ l -u  fQ(u;6)

+ g ) -.Q 1;6)[K(B1,81) 1 - 81

+ g_02 [1-HQ(B2 ;)] .

.. +~~~1- 2 ' 2" .. .. . .
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The inner product in H(K) will be denoted by <>K' When considered

as a function of s (for fixed t)K(s,t) possess the so called reproducing

property that for gc(K)

(4.2) <g, K(',t)>K - g(t).

We now, and in subsequent discussions, impose the regularity

condition that fQ(u;8)Q i(u;e) e H(K) and define the information

measure

(4.3) 1(i) llfQ(;)Qi(.;o)ll
2

To justify this definition we first note that the densities corre-

sponding to the censored and uncensored observations are, respectively,

fC(x;8_) [ [l-F(x;8_)lh(x)

and

fu(x;_t) [1-H(x)]f(x;_e)

Then by making the change of variable X - Q(u;6_) it can be shown that,

for instance, when 81 0 0 and 82 - 1, I(ei) becomes

Ffi(e)12f _f f(x. _ (x;6t) dx
(4.4) -- --)

F (x; ) f ;

+ - fc(;)d

This is now recognlized as the Fisher information corresponding to the

parameter Oi upon examination of the form of the likelihood for the

ziIs given in, for example, Kalbfleisch and Prentice (1980). Similarly,

I(8) can be seen to provide a measure of information in the Fisher

sense when 0 < 01 < 82 < 1.
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Now suppose that there is only one unknown parameter, e - e,1

and let

G(u;e) - (l-u)fu 1 d .
0 (1-W) 11-HQ(w;6)]

Under the assumption that fQ(u;e)Q (u;e) is twice continuously

differentiable define

(4.5) *(u;e) = - [fQ(u;e)Q l(u;e)]"[l-HQ(u;O)]

-foQO(u;e)Q l(u;e) 1 u hQ(u;e)

1lu - fQ(u;B)

for 81 < u < 2 with

{fQ(8I;e)Q 1(81 ;e)G'(8 1 ;e) - G(O1 ;e)(fQ.QI)'(81 ;9)}1[-HQ(81 ;8)1(4.6) 0 l(8) - G 0

and

(4.7) {fQ( 2;)Q (B2;e) + (1-B2)(fQQ
1)'(02;0)}[l-HQ(B 2 ;6)]S(e)

02 ( - 82

where (fQ.QI)'(O k;) - [fQ(u;e)Q1 (u;e)]'J . Then, using results

from Sacks and Ylvisaker (1966) it follows that fQ(u;e)Ql(u;e) admits

the representation

( Q 2(6) 2 2
(4.8) fQ(u;e)Qlu~) - (s;O)K(s,u)du + E 0*(e)K(Ok,u)

O1 kul

for u [81,82]. By using (4.8) in conjuction with the reproducing

property for K it is possible to verify the two important identities
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I IfQ(.;e)Q(0)112 - jfQ(u;e)Q (u;O)O(u;e)du

(4.9) 21
+ 1 0 k (e)fQ(Sk;e)Ql(a08)

k-ik

and

IlfQ(;0)QI(.;o)IIK 2f 2*(u;e) (v;e)K(u,v)dudv
81 

81

(4.10) 28a2
+ 2 2 08 (O)f 2(u;O)K($k,u)du

k-i k 1

2 2
+ , ' (0)s8 (e)K(8k,8 )

k-i i=i k R

Now define the weight function

(4.11) W(u;e) = *(u;8)fQ(u;0) 9 < u <
Q (u;e)

with 8k (e)fQ(sk;6)

(4.12) W(Sk() Q 1l(ak;e) , k 1,2.

Using this weight function in (2.4) and (2.6) and applying the

identities (4.9) - (4.10) it can be concluded, from Theorem 1, that[ n(8(Qns,) - 60) L N(O,1I/(eO))

and hence, the weight function (4.11) - (4.12) is optimal for the

estimation of 00.

The presence of 1-HQ(u;e) in the weight function has the con-

sequence that the weight function depends on the censoring distribution

which may not be known. Although the details are beyond the scope

of this paper, such difficulties can be avoided by using strongly

consistent estimators of H and h in W and W, k - 1,2.

Au
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To provide further insight into the properties of this weight

function consider the special case when 8 is a scale parameter and

there is no censoring, i.e., H - 0. In this case, we have

F(x;e) - F(x/e)

f(x;O) = if(xlO)

Q(u;e) e 8Q(u)
1

fQ(u;8) - fQ(u)

and

Q (u;e) Q(u)

where F(x), Q(u) and fQ(u) are all specified functions. Equations

(4.5) - (4.7) now become

(4.13) 0(u) -{fQ(u)Q(u)}"

(4.14) - 1 fQ()Q(1)(fQ.Q)(8)
01 1

and
1

(4.15) €a2 1_ 2 fQ(B 2)Q( 2) + (fQ*Q)'(B 2)

so that W is independent of e. Consequently, O(Qn,W) may be expressed

in the closed form 82 2

f' *(u)fQ(u)Qn(u)du + Z afQe K)qn(8k )

(4.16) O(Q ,W) 1 2 kai k

f 2 *(u)fQ(u)Q(u)du + E 0 afQ(1k)Q(1k )
01  k-l k

This is precisely the fully efficient estimator of e considered by

Parzen (1979a,1979b). Identical results hold for location parameter

estimation as well. Parzen has noted that these estimators are

similar to those presented in Weiss (1964) and Weiss and Wolfowitz (1970).

Consequently, the minimum quantile function distance procedures developed

in this paper, when incorporated with the weight functions derived in this

. ...-.-- - -o,--- -.. .
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section may be viewed as providing,for location/scale models, censored

sample analogs of these type of estimators.

p

ir
-[
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