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SUMMARY
The problem of estimating the order, (p,q), of an ARMA (p,q)
process is considered. An extension of the Gray, Kelley, and
McIntire (1978) method of estimating (p,q) is proposed and shown |‘
to be particularly useful for processes whose spectra have a
certain form. Simulated data is used to illustrate the use~

fulness of the extension.

1. Introduction and Definitions

Gray, Kelley, and McIntire (1978) have illustrated how a
certain transform, Sn(-), of the autocorrelation function may
be used to estimate p and q from a realization of an ARMA(p,q)
process. Their technique hinges on the following two facts.

If o, is the autocorrelation function of an ARMA(p,q)

process, then (1)

- ¢ = 0 for k > q .

[o]
p k-p

Pk " Pk T o




M

Under quite general conditions on the real
sequence {fk} s (2)

§,(£)) = C for m > my iff {f,} € L(n,8) for m > m,.

These two facts imply that p and q can always be determined if
the autocorrelation sequence of the process is kmown. This
important "consistency" property is not possessed by the popular
Box~Jenkins (1976) method in the case of the mixed process (i.e.
p>0and q>0).
The Gray, et al method of estimating p and q involves
the examination of an array, known as the S-array, which contains
values of S_(p,), where usually
nk
N-k _ _
. (X, (X 0D
0. = t=l .
k N -2
T (xt - X)
t=l {
A constancy pattern in the S-array consistent with (2) leads

to estimates of p and q. Numerous simulation studies and use

of the S-array method on real data have indicated that this
constancy pattern is sometimes more apparent in an array based
on Sn[(-l)k;k]. Since {pk} e L(p,A) for k > q if and only if
’{(-l)kpk} ¢ L(p,A) for k > q, the same theoretical justificatiom
exists for using Sn[(-l)k;k] to estimate p and q as for sn(;k).
The differing statistical properties of these two transforms
will be discussed later.

Sn(pk) and Sn[(-l)kpk] are members of the following class

of transforms of Pyt

{s (cz"i”kpk): 0<ws<3t.

n

[ XY o

The properties of these transforms when Py is the autocorrelation
function of an ARMA(p,q) process, and the estimation of p and q
by means of sn(e2’1”k;k), are the subject of the remsinder of

this paper.




Before proceeding to the next section, the following

definitions and notation are given.
A stochastic process {Xt}, t=0, +1, +2,..., is said to

be autoregressive of order p and moving average of order q, or

ARMA(p,q), if

P q
X =% ¢X +2Z ~-L82 for all ¢,
t kel k t=-k t k=l kt-k

where the ¢k and ek are constants and {Zt} is a white noise process

with finite variance. If the operator B is defined by th = Xt_

1)

then the above may be written as
¢(B)Xt = B(B)Zt, where

=1 - - ¢.B2 - _ 4 »P

¢(B) = 1 - ¢,B - ¢,B ¢p3

and

2 q
1B - 8,8 eqs .

6(B) =1 -8
It is well known that {xt} is stationary if and only if
all of the roots of ¢(x) = 0 lie outside the unit circle.

Let m be an integer and f be a complex-valued function of

a real variable. Further, let fm = f(m),

fm-n+1 fm--n+2 o fm
n m . . . ,
fa foe1 0 fenl
1l 1 ces 1
footl  faeme2 0 fon
Hn+1(1; fm) - . . . *
£ £ 't fmemcl




where n is a positive integer. Now define

En+1(1; fm)

sn(fn) - ¢
nn
and
H (£)
n o = 2.3
—B;Tl—;_f;? » n 9330 ce
R (£) =
fﬂ ’ n=1

The S-array for the function f is the following array of complex

numbers:

m/n 1 2 coe k

-3 sl(f-j) Sz(f-j) .e sk(f-j) .

-2’ Sl(f_z) Sz(f_z) . S (f_z) .e
-1 sl(f-l) S (f_ ) voe sk(f-l) .e
0 Sl(fo) S (fo) . Sk(fo) ces
1 Sl(fl) S (fl) ees sk(fl) cee
? Sl(fz) S (fz) cen sk(fZ) .e
3 ,(£,) S;(fj) ék(fj) )

The following recursion relations, due to Pye and Atchison (1973),

are quite helpful in calculating S-arrays.

If So(fm) is defined

to be 1 for all m, then

s “m-:-l)
R (8D = R (Ey) ["snl'f'm) -1

and

Rn(fm+1)
S = sn—l“uﬂ’[‘ﬂn 20 I




where n = 1,2,..., and m is any integer.
A complex-valued sequence {fm} will be said to be an
element of L(n,A) for m > My i1f there exists a smallest integer

n > 0 and a set of ci's such that

fk + clfk—l + ... + cnfk—n =0, m>m

2nink
p

H -

2. Properties of Sn(e

© f
Theorem 1 is now stated in order to given an explicit

2w1wkp }.

): 0<wc<

LY

form for each of the transforms in {Sn(e X

Theorem 1 . Let {ak: k=0, + 1,...} be any sequence of real or

complex numbers. Then for any positive integer n, and any
integer ko, we have
t
1 e-2ﬂiw . e-2wimno
2rinkg 2riwng
S_ (e ) =e _ _ a
n, ako ako no+1 ako n0+2 .oe k0+l

ako-no+2 -0 +3 ... 3% 42

00 0 .
a
a'ko a'k0+1 ces k0+“0
H (a3 )
np (g
Proof: By definition
B +1“‘°2umkoa'k ]
s (QZwikaak ) = 0 0

no 0 H (e2wiwko‘k )
% 0




6 ,
i
2viwkg ;
H [1;e ]l= !
n°+l ako j
1 1 o 1
2riw (k-n.+1) 2w i (k-0 +2) 2nin (k, +1)
e 00 o2t e 00 o0+ see € 0 ako +1
2riw (k. -n_ +2) 2riw{k -n_+3) 2riw(k +2)
e 00 o~%% +2 00 ako_no +3 e 0 o +2 |
{
: : : n i
]
2riwk 27w (k.+1) 2riw(k,+n.)
e 0 e 0 e 0 0'a
‘ko ako+1. ky*ag
= exp{Znim[no(no-l)/Z]} x 1
1 1 .. 1 f
2riw(k,-n.+1) 2rin(k -no+2) 21r10r(k°+1)
e () e 0 - ces @ 44
: ako-n0+1 ako no"'z 0
271w (k=0 +1) 2rin(k,-n. +2) 2niw (k°+1)
00 e 0 0 - ces © +2
e ako--n()-lﬂ-z a‘ko no+3 ako
2riw(k.-n, +1) e2'|v:lm (ko-n0+2) . e21r1m (k°+1)
e 00 ‘ko ‘ko-u a'k°+n°
1 e-2wiw . o Zwiamo
2niwn, (k,+1) - a
= e 00 llco ny+l ko-n0+2 e ako +1
‘ko-no+2 .ko-no+3 es e .k °+ z
e gl see Megtng




The above follows from simple row and column operatiomns. A

similar set of operations yields :

2mink 2miun
e Oak ) =e
0

Hn (

k
0"0H_ (a, ) , 1
0 ) ako ;

and the result follows.
From Theorem 1 we see that sn(eZ"imkak) depends on k only
through the sequence {am}. This fact will be helpful later when

we consider {a } = {p }.
m m

As noted previously, the autocorrelation function of an

ARMA(p,q) process satisfies the following relationship:
Pr = ¢lpk-1- cee = ¢ppk-p =0, k > q.

This relationship, however, is equivalent to

2rink ;
e [pk-¢lpk-1-...-¢kpk-p] = o’ k > q '
or
2riwk 27w, 2w (k-1) - 2miwp 27w (k~p)
(e )18 T (e Pray) e e 08 (e Py_p)=0>
k > q.
2mriwk
In other words, for k > q, fkﬁn) = e Or is the solution of a

pth order, homogeneous difference equation with complex constant

coefficients. If (2) holds for complex sequences, then fk(w)sL(p,A)

2 k> 1
iw pk)’ 0<w<i ’

fork > q allows the complex-valued transforms Sn(e
tobe candidates for use in the estimation of p and q. The validity
of (2) for complex sequences is established in the following
theorem.

Theorem 2 Let {fk} be a sequence of complex numbers. Suppose

Sno(fm) and Rno(fm) are defined and ISno(fm)l >0 for m > My




Then

fm £ L(nO,A) for m > oy iff

S (f)=Cform>m
n,' m -

Mo
Further C = (-1) (l-al-a

0
2—...—an ) where

0

fm - alfm_1 T e -ay fm—no =0, m>m

0 0

Proof: The proof of this theorem by Gray, Houston, and Morgan
(1978) for real {fk} depends only upon properties of determinants
and systems of linear equations. These properties hold so long
as the elements of {fk} belong to a field. Since the complex
number system satisfies the field properties, the result follows.

The basis for the remainder of this work is established

~ inCorollary 1 and Theorem 3.

Corollary 1.  Suppose the time series {Xc: t =0,+1,...} is a
stationary ARMA(p,q) process with autocorrelation Pme Suppose
Sno(fm(m)) and Rno(fm(m)) are defined, p > 0 and ISno(fm(u))l > 0.

Then for some integer m,

Sno(fm(u)) = °1,u » ™2 my and

Sno(fmo_l(w)) * cl,m

if and only if By =P and my = q. In addition

- Pr- _ 2riw_ | 4wiw . 2wiwp
Cl,m V¥ ¢1e ¢2e cee ¢pe ).

Proof: Since'{fmon)} ¢ L(p,A) and satisfies the equation
27w - - 2riwp -
fm(ﬂ)"(¢1e )fm_l(“) ces (‘p‘ )fm_p(W) O, m > q,

the results follow immediately from Theorem 2.




1

Theorem 3 below is the analog of Theorem 3 in Gray, Kelley,
and McIntire (1978). Tts validity follows from the fact that,

since pk = p_k, we have

p"k - ¢lp-k+1 = see ™= ¢pp_k+p = 0! -k < -q.

Theorem 3 Under the conditions of Theorem 2

Snéfm(m)) =C, BXm and

Sulfa 1) # €y,

iff oy, =P and m, = -q-1. 1In addition,
= e2w1wp

Proof: The proof is completely analogous to the proof of
Theorem 3 in Gray, Kelley, and McIntire (1978). Only trivial
modifications are required to adjust for the fact that Sn(fm(m))

is complex-valued.

Corollary 1 and Theorem 3 show that there is no
inherent reason for considering only the real valued transforms

Sn(ok) and Sn[(-l)kpk] in the estimation of p and q. The question

2niwk”
)

remaing, however, as to which transform from the class {Sn(e ):

k

iji%}m(msmeuuabuthruumumpan.ﬂé
best transform must obviously depend on the nature of the process
being observed, and thus some method is required to identify this
transform for a given process. One immediate clue towards the
solution of this problem comes from Corollary 1, which shows
that

S, (£,@)) = (-DP(L-g 3™ o o2TP), > g, (3
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Since the spectrum, sx(-). of an ARMA (p,q) process is such that
ll -8 e21riu - equ'n'iwaz

1 cen .
,1 - ¢1e21l’iu) - - ¢pe2"i‘“P[2 0 <nw ii ),

s, (w) =

it follows that for m > q, Sp(fm(w)) is closely related to

sx(w). In fact, 1f q = 0, we have

1

-] (ﬁl) * = >
X 2
ISp(fm(w)) |

m > q.

This relationship will be exploited in the next section when

Zﬂimok‘

the problem of choosing an optimal transform Sn(e Dk) is

formulated.

3 Formulation of the Optimal Frequency Problem

Estimating p and q by the S-array method involves examining
an array for the presence of a certain comstancy pattern. The

data at hand supports the estimates p and q if

s;(ezwﬂ°kpk) = C» k > q and
ap 2niwk” -
Sp(e P =Cp k<-qg-1.

For a given process, the transform to be used to estimate p and

q should be the one which, on the average, makes the correct

constancy pattern the most apparent., The ability of Sn(eZ“iwk;k)

to evidence this constancy depends on two things:

Zricky ) for k > q and k < ~q-1,

(1) the variability of Sp(e
and
(11) the magnitude of the two constants being estimated by

Sp(ezwiukpk) for k > q and k < -q - 1,

These considerations lead to the following definition.




Definition 1 Suppose {Xc} is a stationary ARMA (p,q) process.

Then the frequency wg will be referred to as optimal for the esti-
mation of p and q 1ff

2mivgq” 2riwg”
98] oJ]

var[sp(e var[Sp(e

Zﬂim_

<

Zniwo_. eZﬂimop‘Z eZHimpIZ

|1-¢,e Loty [1-¢.e L=t

for all w ¢ [0,-%].

In light of (3), our definition of the optimal frequency is
consistent with (1) and (ii) above, although we consider the
variance of only positive lag S-array values. Note that the
quantity considered in the definition is essentially the
squared coefficient of variation of the random variable

s (e7T0% ).

27iwq”

In order to obtain an expression for var[Sp(e pq)],
recall that, by Theorem 1
1 e~2ni» . e-Zﬂﬂnp
pq-p+1 pq—p+2 ‘e pq+l
Oq_p+2 pq_p+3 .. Dq+2
Sp(ezwimqoq) - eZwimp ; é N
q q+l e qtp
. -
p(pq)

By performing appropriate row and column operations and expanding

the numerator by cofactors of the first row, we have

hat It W9

NN

A ; bt o i TP%, . iy i i ot s e a . .
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s (e2™wdj y o (-1)P(l_¢{p,q)e2wiw__“_¢(p.q)e21rimp)
P q P
where (¢{p,q)’ ;ép,q),‘__’;;p.q{) is the solution of %
P p__ cee D __ -
Aq .q 1 q-p+l pq+1
P J cee Po_ N
q+l q q-p+2 P2 j
. . . = . : 1
P P see P [}
q+p-1  qip-2 1 W’J
- d .
By the definition of variance of a complex valued random variable
(i.e., var(X + 1Y) = var(X) + var(Y))we thus have
- P -
var[S (e2wimqp )] = ¢ vat(¢(p’q))[cos22ﬂmk + sinzzwmk] !
P 1 k=1 k
+ 2 LI {(cos2muwjcos2nmuk + sin2mwjsin2muwk)
i<k
“(p>q) ;(p,q)
x ccnr(d»j » O )}
4 *(p,q)
= I var(e, )
k=1
+ 2 Ezcos[Zwm(k-j)]cov(;(p’q), ;(p,q))
i k
i<k
p-1
=y . + 2L ¢ cos2nruwk , (4)
0 k=l k
P-k ~( -
- p,q)  .(p,q) -
where wk 351QOV(¢3 ’ ¢j+k ), (k= 0,1,...,p~1).

Therefore, the frequency which is optimal for the

estimation of p and q is the value of w which minimizes
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p~-1
wo +2: wk cos2ruwk
k=l
Clw) = . (5)
|1_¢1e2vim_ e21rimpl2

...-¢p

Interestingly, the above expression shows that our criterion for
identifying wg is essentially equivalent to the problem of finding

the frequency at which the spectrum of an ARMA (p,p-l) process

has its minimum.
The above considerations illustrate that for many processes

2Mmokpk) is optimal for the

there exists wg # 0,-% for which Sn(e
estimation of p and q. We have not, however, addressed the pro-
blem of identifying Wy given a record of finite length from an

ARMA process. A less than optimal, but useful, solution to this

problem will be discussed in the next section.

4, Estimating the Optimal Frequency mo

The dependence of ( 5 ) upon p makes the estimation of ©y

difficult. Suppose for the moment, however, that for the process
under consideration q = 0. Then the quantity C(w) is proportional

to
p~-1
C*(p) = sxﬁn)(wo+2k£1wkgosank).

Experience has shown that for most processes the minimum of C*uw)

occurs at about the same frequency as does the minimum of sx(w).
p-1
This is because wo +2¢ wkCOSZNNk is almost flat in relation to

k=1 2wk *
sxﬁn). Stated another way, if {Sp(e Tiw °k)} is viewed as a

stochastic process with

SP(eZwimko - SP(GZwiwk

Dk) + ep,k(m) ’

K
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"then the errors ep’k(m) are essentially homoscedastic.,

In order to partially substantiate the previous claim,
an approximation to £n(NC(w)) has been calculated for two
different autoregressive processes and plotted (see Figures 1
and 2) for comparison with

2n 1

Il_¢1e2w1m_..._¢pe2nimpl2 :

The approximation of £n(NC(s)) uses the Box and Jenkins (1976)
approximation for the variance-covariance matrix of

T - “(p,0) $(p,0) ~(p,0®

(] (¢1 s 02 .---,¢p ).
Assuming that the noise process {at} is composed of independent

and identically distributed N(O,cz) random variables, it can be

shown that
" 1,. t iyt
var(g) = g1 - p'$)P ",
where
2,' - (91992,---.0p)’ i' - (¢1’°znloo,¢p)’
1 pl 02 eoe Dp_l
P= Py 1 pl . pp_z ,
pz pl 1 LS pp_3
op-l pp_2 pp_3... 1
s d

and N is the sample size.

The processes associated with Figures 1 and 2 are,

regpectively,




ey e s el

b v ————
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(1-.60B) (1-1.0607B+.56258 ) (1+.49448+.648D)X_ = Z, 6)
and

(1-.95B) (1+.95B) (1-1.34358+.90258)X] = 2. (M
As was conjectured, £n(NC(w)) and -2£nd1-¢1e2ﬁim-...-¢pe2"iwp|)

are minimized at the same value of w for process (6) and at
approximately the same value for process (7).
The above consideratioms suggest that, for autoregressive

a

processes, a reasonable estimate of wo would be the value ®g for
which a window spectral estimate ;x(m) is minimum. It should be
pointed out, though, that since wg is of interest only because
of its utility in estimating p and q, it is actually not
important to have a precise estimate of this parameter. 1If the
array associated with ;0 indigates obvious estimates of p and q,
then ;0 has performed its intended function.
The purpose of our discussion to this point has been
twofold:
(i) to 1llustrate theoretically the possible value
of complex-valued S-arrays in the estimation
of p and q
(11) to address the problem of estimating a frequency

Zwiwok‘

for which Sn(e pk) is optimal for the

“0
estimation of p and q.
Still open for research is a complete solution to the problem
ia (11). For the present, however, it is suggested to initially
examine the S-array associated with Wys unless &, occurs at a

0
sharp dip in the estimate of the spectrum. Such a sharp dip
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i1s evideance of a near noninvertible moving average factor, and
thus is not indicative of a small value of

1

2wiw 2riwp 2 :
1 - T ess™
11 - 9pe 0,2

1f ;O occurs at a sharp dip, then the S-array associated with
the next smallest local minimum should be examined initially.
Additional S~arrays may be examined if estimates for p and q
are not apparent in the first array. Such an examination of
several different arrays may seem prohibitive in terms of

computing time, but this is actually not the case due to the

recursive algorithm defined in Sectiomn 1.

5. Exavples

The results of Section ﬁ,1mplz;§5§§<sf§ftayé'baseg‘pp‘t
frequencies satisfying 0 <w < '% will be the most valuable for
prbcesses whose spectra have relatively large power at w = 0
and -~%. Therefore, since the purpose of this section is
to illustrate the practical importance of complex-valued S-arrays,
the two examples which follow will involve such processes.

In each of the two examples to be comnsidered, five indepen-
dent realizations of an autoregressive process were generated,.
The process in Example 1 (whose log-spectrum appears in Figure
3) is

(1 - .95B)(1 + .QSB)Xt =z, (8)

and the process in Example 2 is process (7). Realizations of

length N1 = 75 and NZ = 50, respectively, were generated from
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(8) and (7). In each case the values of the noise process
{Zt} were obtained by generating random samples from the N(0,1)
distribution using IMSL subroutine GGNPM.

For each of the ten realizations an estimate of the
spectrum was calculated. The estimates in each case utilized
a Parzen window based in Examples 1 and 2, respectively, on 11
ang 8 values of the estimated autocorrelation function. The

following empirical measures of constancy in the S-array were

taen computed for each realizatfon in Example j§:

5 -~ —
3T ls (™ -3 (W)
k=0 P4 Py
cj(.) = -— 2 ]
IS (m)I
Py
- 1 3 &~ 2riuwk
where P, = 2, P " 4, Spj(w) - Ekiospj (pke ), (

and 0w =0, %—, and Wy the frequency at which the estimated

spectrum is minimized. Note that ¢, (W) is a sample analog of

3
the quantity C(w).
Table 1 contains the average value of c j <0), ¢ f (-2]=),
and ¢ (;o) over the five realizations of Example j (j = 1,2).

In addition, Tables 2 and 3 show the S-arrays associlated

with e = 0, -;—', and o, for typical realizations in the two

0
examples.
In each example, the average value of ¢ 1 (t:O) is geen to
be smaller than the average of either ¢ 5 (0) or ¢ j (%), and

further, cj(;o) was the smallest of the three values for all

five realizations in both examples. The numerical evidence

in Table 1 favoring S-arrays based on wg is presented visually




TABLE 1

AVERAGE VALUES OF cl(w) and cz(u)

IN EXAMPLES 1 AND 2

CI(O) clzwo)
.0878126 .0005025
3.1317649 .1238482

cl(.S)

.0361297

.2255245




in Tables 2 and 3. Although constancy is apparent in all
three arrays ian both examples, it is most apparent (for
Example j) in the array based on g due to the magnitude of

the quantities being estimated in column pj.

6. Summary

A refinement of the S-array method of modeling ARMA
processes has been introduced in this chapter. 1In so doing,
the theory of complex-valued S-arrays was developed, and the
problem of identifying a frequency whose associated S-array
1s optimal for estimating the order of an ARMA process was
formulated. Additionally, two examples involving simulated
data were considered in which S-arrays based on estimated
optimal frequencies gave clearer determinations of the order
of the underlying processes than did real-valued S~arrays.

The true usefulness of the method discussed in this
chapter cannot be ascertained until it has been utilized on
real data. Constancy patterns in the S-arrays of simulated
data tend to appear quite good at all frequencies, and thus
the potential worth of complex-valued S-arrays may have been
underatated in the examples of the previous section. The
posaibility exists that for certain data, comstancy which is
virtually hidden in the two real-valued S-arrays is readily
apparent in some complex-valued array.

An aspect of the S~array method which has not been

discussed here is the information it contains about the
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TABLE 2

S~ARRAYS FOR A TYPICAL REALIZATION IN EXAMPLE 1

w=0
m/n 1 2 3 4
-6 =,5Q07 0.000 -.145 0.000 491 0.000 -.393 0.000
-5 1.286 0.000 -.125 0.000 .046 0.000 .015 0.000
-4 -.510 0.000 -.112 0.000 -.042 0.000 -.094 0.000
-3 1.261 0.000 -.100 0.000 .148 0.000 -.106 0.000
-2  =~,52% 0.000 -.105 0.000 .533 0.000 1.318 0.000
-1 1.346 0.000 -.084 0.000 -.658 0.000 -1.608 0.000
0 -.574 0.000 074 0.000 -~.083 0.000 079 0.000
1 1.100 0.000 .093 0.000 -.111 0.000 .222 0.000
2 ~.558 0.000 .089 0.000 -.312 0.000 -.078 0.000
3 1.039 0.000 .102 0.000 -~.030 0.000 -.053 0.000
4 -.563 0.000 111 0.000 .077 0.000 044 0.000
5 1.030 0.000 .131 0.000 ~.176 0.000 .199 0.000
w= _50
m/n 2 3 4
-6 -1.493 .000 -.069 .000 ~-.044 .000 -.198 .000
-5 -3.286 .000 -.130 .000 .168 ~.000 -.162 .000
-4 -=1.490 .000 -.098 .000 .260 ~.000 .236 =-.000
-3 =3.261 .000 -,135 .000 .093 -.000 .162 -.000
-2 ~-1.476 000 =-,151 000 -.431 .000 -.737 .000
-1 =3.346 000 -.210 .000 1.271 -.000 -3.103 .000
0 -1.426 .000 .183 .000 -.160 -.000 .152 000
1 -=3.100 .000 .134 000 -.090 -.000 -.124 -.000
2 =1.442 .000 121 .000 .197 .G00 .118 .000
3 -3.039 .000 .089 000 -.186 -.000 .133 .000
4 =1.437 .000 .116 000 -.280 -.000 ~.465 -.000
5 =3.030 .000 .062 .,000 -.016 -.000 .101 .000
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TABLE 2 (con't)
w = 298

n/n 2 3

-6 -1.145 471 1.927 .586 .906 -4.841 ~.543 -1.883
-5 =1.672 2.185 1.932 .636 -2,540 .265 3.085 .021
~4 =1.144 469 1.916 615 -3.373 1.439 1.912 5.973
~3 -1.665 2.161 1.919 845 -1,426 =1.353 1.803 4.932
-2 <1.140 455 1.926 656 3,149 ~7.722 18.318 -4.375
-1 «1.650 2.242 1.930 .705 -10.334 10.906 ~17.091 -33.340
0 -1.125 .407 1.737 .438 -1.,873 -.258 1.828 177
1 -1.617 2.007 1.739 479  -1.517 -.845 450 3.139
2 -=1.130 423 1.745 .488 .563 ~4.110 3.831 -.102
3 =1.600 1.949 1.746 514 =2.530 .706 3.538 -.238
4 =1.129 418 1.734 .496 -3,593 2,311 3.315 8.209
5 =1.597 1.941 1.737 .541 -1.339 -1.152 .990 -.095

o , .
el it e e o aachan
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possible nonstationarity of the observed time series (see Gray,
Kelley, and McIntire (1978)). An analog of this important
feature of the S-array method is not possessed by automatic
order selection techniques such as the AIC criteriom of

Akaike (1969). The behavior of complex-valued S-arrays under
an assumption of nonstationarity is an area for future research.
Some unforseen application of these arrays to the nonstationary

problem may well exist.
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