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SUMMARY

The problem of estimating the order, (p,q), of an ARMA (p,q)

process is considered. An extension of the Gray, Kelley, and

Mclntire (1978) method of estimating (p,q) is proposed and shown

to be particularly useful for processes whose spectra have a

certain form. Simulated data is used to illustrate the use-

fulness of the extension.

1. Introduction and Definitions

Gray, Kelley, and Mclntire (1978) have illustrated how a

certain transform, S n(-), of the autocorrelation function may

be used to estimate p and q from a realization of an ARMA(p,q)

process. Their technique hinges on the following two facts.

If Ok is the autocorrelation function of an ARMA(p,q)

process, then (1)

1k 1 1k-i - p - k-p 0 for k > q



2

Under quite general conditions on the real

sequence (fk 1  (2)

S (f,) - C for a > m0 iff { m} e L(n,A) for m > a0.

These two facts imply that p and q can always be determined if

the autocorrelation sequence of the process is known. This

important "consistency" property is not possessed by the popular

Box-Jenkins (1976) method in the case of the mixed process (i.e.

p > 0 and q > 0).

The Gray, et al method of estimating p and q involves

the examination of an array, known as the S-array, which contains

values of Sn(Pk), where usually
W-k

A (xt-7) (Xt+x)
;k " - N (Xt -Y 2

t-l

A constancy pattern in the S-array consistent with (2) leads

to estimates of p and q. Numerous simulation studies and use

of the S-array method on real data have indicated that this

constancy pattern is sometimes more apparent in an array based

on Snt(-l)kok]. Since {0k} L(p,A) for k > q if and only if

((_l)kPk} )z L(p,A) for k > q, the same theoretical justification

exists for using Sn[(-1) Pk  to estimate p and q as for S (P k)

The differing statistical properties of these two transforms

will be discussed later.

Sn(Ok) and Sn[(-1) kk ] are members of the following class

of transforms of p k:

n O( kok) : 0 < W }.

The properties of these transforms when Pk is the autocorrelation

function of an ARMA(p,q) process, and the estimation of p and q

by means of S n(e2wiwkk), are the subject of the remainder of

this paper.

I.
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Before proceeding to the next section, the following

definitions and notation are given.

A stochastic process {Xt 1, t - 0, + 1, +2,..., is said to

be autoregressive of order p and moving average of order q, or

ARMA(p,q), if

p q
Xt k -i kXt-k + Zt k-i E k Zt-k for aU t,

where the 0k and 8k are constants and {Z t} is a white noise process

with finite variance. If the operator B is defined by BXt -X

then the above may be written as

*(B)Xt - 8(B)Zt, where

O(B) - 1- 1sB - 0 2 B2 -..- pBp

and
2qe(B) - 1- 8l - e2 B  -... - eq B

It is well known that {X } is stationary if and only if
t

all of the roots of O(x) - 0 lie outside the unit circle.

Let m be an integer and f be a complex-valued function of

a real variable. Further, let fm - f(m), ml
fm-n+l frm-n+2 ... fm

n (f ) f f-n+2 f m-n+3 f m+l

.l .. fm+U-1

1 1 ... 1

f m-n+1 f m-n+2 f m+lR n+1(1; fmo)t

f m f m+1 f Ufm fm+l "" r+u-li

... 'I.
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where n is a positive integer. Now define

S (f Rn+1(l; f1 )
n a Hn(f )

and
H n(f M )

(1;f) , n = 2,3,...

R f (fm)

f m

The S-array for the function f is the following array of complex

numbers:

M/n 1 2 ... k

-j S1(f-2) S2(f-2) ... Sk Uj) ..

-2 Sl(f_2) S2(f 2) ... Sk(f 2 ) ...

-1 S (f 1 ) S2 (f 1 ) ... Sk (f1 )  ...

2 s1(fo)S 2 (f2) (f2)...

1 SS 2(f1) ... $(fl)

2 sl(f 2 ) S2 (f 2) .. Sk(f 2 ). .

• . .~ S(j

ji SS2()  k ...

The following recursion relations, due to Pya and Atchison (1973),

are quite helpful in calculating S-arrays. If So(f ) is defined

to be I for all a, then

R~ £ n ~ r. l-

and
and(f~l 2f afml'e(.)

Sn(fm) - sfl.l(frnl)[ :, ]
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where n = 1,2,..., and m is any integer.

A complex-valued sequence {f I will be said to be anm

element of L(n,A) for m > m0 if there exists a smallest integer

n > 0 and a set of c,'s such that

fk + Clfk-l + ... + Cnfk-n 00, m > m0

2. Properties of S n (e2i k

Theorem 1 is now stated in order to given an explicit

form for each of the transforms in {Sh(e 2viwpk): 0 < <

Theorem 1 . Let {ak: k-0, + 1,...I be any sequence of real or

complex numbers. Then for any positive integer n0 and any

integer k0, we have

1 • -2 fit ... e2TiC0

S (e2Wiria)ko) e 21"wno a 1  n+ . a
n0k 0  k 0-n 0+1 k -n 0+2 .. k 0+1

ak -n+2 akOn+3 ... %02

a0 ako+1 ... ak0+n0

R n0 (ak)

Proof: By definition

Hn0+l1;e2wiwkoak

no ko 0 2H i n0 (e 2( ko .ak0

Hn0 e 10
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2wiwko
0 0

a wwkOn+) n+ e2wIw(k o-n2) a kn+2  - a2rw(ko+l)a.

e 2 i m k o ,,0 2) k o- r + 2 e 2ir i cw< k o- n 6+ 3 ) a o u + - " 2 7i w ( k d+ 2 ) a e

0

2wlwAko 21rlw (ko+l) 2wiw(k6+n,) 8kI

expt2iVj 0(u0 -l)/2]}

1 1 ... I1

e 2hite(kfn0o+l) % .. nd+l *21iw(k-n+2 )~ aon+.. 2wiw(k 0 +) ak0+
00

e 2ti~k-nol)% -n+2e wiwkoud2)aIko-o+3 .. 2wiw(k+)~ 6+2

0 2wi~ko-d~l~ko e2rw(k 0 -n6+2) aol . 21iiiw(kd+1) 'o

1 e 2wiw e -2wiwn 0

e 2wiwu(kd+l) a -ne a1 k O-nd+2 .. k+

a k-ne a,-n+3 ... ak6o2

ak+
0k 06+ 00f
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The above follows from simple row and column operations. A

similar set of operations yields
.2riwk^ 21riwnoko (

H (e 1 ako) - e 0OH (a
no 0 0 n0k 0

and the result follows.

From Theorem 1 we see that Sn (e27riwkak) depends on k only

through the sequence fa 1. This fact will be helpful later whenm

we consider {a = {p }.M in

As noted previously, the autocorrelation function of an

ARMA(p,q) process satisfies the following relationship:

Pk - Yk-l - "' - OpPk-p - 0, k > q.

This relationship, however, is equivalent to

e2 1iWk p k- l.k~k-p- 0, k q

or
(e 2riwk pk)_01le27riw (e 2w ,w(k-l) Pk- ) -. _p e2w,, p (e 27,,w (k-p) P k-p).0,

k > q.

In other words, for k > q, fk(W) = e ok , is the solution of a

pth order, homogeneous difference equation with complex constant

coefficients. If (2) holds for complex sequences, then fk(w)eL(p,A)

fork > q allows the complex-valued transforms S (e2 iwk ) < ,

tobe candidates for use in the estimation of p and q. The validity

of (2) for complex sequences is established in the following

theorem.

Theorem 2 Let {fk} be a sequence of complex numbers. Suppose

S n(f ) and R (f) are defined and Isno(fm)I > 0 for m f m).

in n m ~ >0 orm>in0

I'
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Then

fm e L(n0,A) for m > m0 iff

S no(f)i C for m > mO.

Furter = -1)no
Further C = (-i) (l-a1-a2-... -a ) where

0
f - af - a f 0, M > m
m 1lm-1 n 0rn-n 0 ~ 0.

Proof: The proof of this theorem by Gray, Houston, and Morgan

(1978) for real {fk} depends only upon properties of determinants

and systems of linear equations. These properties hold so long

as the elements of {fkI belong to a field. Since the complex

number system satisfies the field properties, the result follows.

The basis for the remainder of this work is established

in Corollary 1 and Theorem 3.

Corollary I. Suppose the time series {X : t - 0,+i,. .. is a

stationary ARMA(p,q) process with autocorrelation Pm . Suppose

S n(f (W) and R o(f ,(w)) are defined, p > 0 and iSno(fm(w))l > O.
Then for some integer m0

S no(fm(W)) - C,' , m > m0 and

Sn0 (f.Mo l(,)) A l -0

if and only if no = p and m0 - q. In addition

C low (-I) P(- 1e2i 2 ae 2-12 el -.. •.- wp .

Proof: Since (fa (W)} e L(p,A) and satisfies the equation

f(o ( 2)rul )f "() -f ( pe 2f"'fP)f mp(w) 0 0, m > q,

the results follow immediately from Theorem 2.

,I
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Theorem 3 below is the analog of Theorem 3 in Gray, Kelley,

and Mclntire (1978). Its validity follows from the fact that,

since pk - a-k, we have

P-k - 10-k+l - " - p-k+p a 0, -k < -q.

Theorem 3 Under the conditions of Theorem 2

S (f (w)) = C2  m < m and

no aS~fm+14)) C2.,,

iff no w p and a, - -q-l. In addition,

_c we2wiwP

C2, -  0
p

Proof: The proof is completely analogous to the proof of

Theorem 3 in Gray, Kelley, and Mclntire (1978). Only trivial

modifications are required to adjust for the fact that S n(f (M))

is complex-valued.

Corollary 1 and Theorem 3 show that there is no

inherent reason for considering only the real valued transforms

Sn(0k) and S n[(-l)kPk] in the estimation of p and q. The question

remains, however, as to which transform from the class {Sn(e2 iOk~k):

SW < is (in some sense) best for estimating p and q. The

best transform must obviously depend on the nature of the process

being observed, and thus some method is required to identify this

transform for a given process. One immediate clue towards the

solution of this problem comes from Corollary 1, which shows

that
Sp~ m( )) (-I P(l l 2 i w- .- 2 i p )

) - -..- e m > q. (3)

pm 1.
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Since the spectrum, sx(-), of an ARMA (p,q) process is such that

- 61 e2 W - - e e21riwq 12 1

x l- e2wi . e 21riwpl2 %

it follows that for m > q, Sp (f (w)) is closely related to

Sx (W). In fact, if q - 0, we have

1

ax(W) - 1 2 m > q.

This relationship will be exploited in the next section when

the problem of choosing an optimal transform Sn (e
2 iwok;k)is

formulated.

3 Formulation of the Optimal Frequency Problem

Estimating p and q by the S-array method involves examining

an array for the presence of a certain constancy pattern. The

data at hand supports the estimates p and q if

Ye 2: k ) -- CIO k > q n
pk ~ q C,

Sp( k k< -q - 1.

For a given process, the transform to be used to estimate p and

q should be the one which, on the average, makes the correct

constancy pattern the most apparent. The ability of S (e21iwk;)

to evidence this constancy depends on two things:

(i) the variability of S p(e ( 2 (k;k) for k > q and k < -q-1,

and

(ii) the magnitude of the two constants being estimated by

S p (a2 k k ) for k > q and k <-q - 1.

These considerations lead to the following definition.

, ! ~ --
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Definition 1 Suppose {X tI is a stationary ARMA (p,q) process.

Then the frequency w0 will be referred to as optimal for the esti-

mation of p and q iff

var[S P (e2 T q var(S (e2iiq)]p 2____22___eipI

[l e 2riw 0 -. -p e wi o i1 -0 1e -1ij ... -O pe .iw 2

I
for all w e [0, -].

In light of (3), our definition of the optimal frequency is

consistent with (i) and (ii) above, although we consider the

variance of only positive lag S-array values. Note that the

quantity considered in the definition is essentially the

squared coefficient of variation of the random variable

S p(e2 0qpq ).

In order to obtain an expression for vartS (e2 M.
p q

recall that, by Theorem 1

- 2 ~ -2.p1 e -2rwe-2iw

Pq-p+l 0q-p+2 ... Pq+l

q-p+2 "q-p+3 q+2

S(e 2riwq;q e 27riwP•

pq Pq+l ... q+p

H p(q )

By performing appropriate row and column operations and expanding

the numerator by cofactors of the first row, we have
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Sp (e 1q) e 0 p e

where (.(lq (p2q f* , . is the solution of

q ~ q-1 .. q-p+l Pq+l

~q+1 q .. q-p+2 Pq+2

Pq+p-1P q+p-2  P q Pq+p

By the definition of variance of a complex valued random variable

(i.e., var(X + MY - var(X) + var(Y))we thus have

vrS 27iiwq; p ^ (p,q) 2 2Va[ a q rvarCOk )[Cos 2lwwk + sin 21rwk]

+ 2 UZ {Ccos2wwjcos2rwik + sin2wwjsin2rwk)
j -Ck

^(p, q)' k(~

+4 2 Z*o[w~kjlo (P'q), ;Cp,q))
J<k Ok

P-1
*+ 2 Z $k cos 2nwk ,(4)

k-i
p-k (q) (p)

where Dk - I c0v(,(f~ i IO(p,q) Ck 0 ,1,...,P-l).

Therefore, the frequency which is optimal for the

estimation of p and q is the value of w which minimizes
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p-i
0 + 2 E * k cos2nwk

C(W) * k-l (5)

Interestingly, the above expression shows that our criterion for

identifying w0 is essentially equivalent to the problem of finding

the frequency at which the spectrum of an ARMA (p,p-l) process

has its minimum.

The above considerations illustrate that for many processes

1 , 2 "oiwk0I h
there exists w 0 r0, - for which Sn ( k is optimal for the

estimation of p and q. We have not, however, addressed the pro-

blem of identifying 0 given a record of finite length from an

ARMA process. A less than optimal, but useful, solution to this

problem will be discussed in the next section.

4. Estimating the Optimal Frequency w0

The dependence of ( 5 ) upon p makes the estimation of w

difficult. Suppose for the moment, however, that for the process

under consideration q - 0. Then the quantity C(c) is proportional

to
p-1

C*(W) - Sx(W) (*0+2kI1kcos2-k).

Experience has shown that for most processes the minimum of C*(w)

occurs at about the same frequency as does the minimum of s xC)"
p-1

This is because 0 + 2 Z *kcos 2 rwk is almost flat in relation to
k-I

Sx (w). Stated another way, if {Sp (eik )I is viewed as a

stochastic process with

S21riwk^ 2iriwl
k) Sp ( k p,k(),

- ~I.
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then the errors ep,k( ) are essentially homoscedastic.

In order to partially substantiate the previous claim,

an approximation to tn(NC(w)) has been calculated for two

different autoregressive processes and plotted (see Figures 1

and 2) for comparison with

1-e2wiw -  -p 21riwap 12

The approximation of tn(NC(w)) uses the Box and Jenkins (1976)

approximation for the variance-covariance matrix of

A 1 '2 ' p
Assuming that the noise process {at I is composed of independent

and identically distributed N(O,a ) random variables, it can be

shown that

var(j) .-

where

.-9' -(Pl1,02,...,0) _ ' = V2 (4,,.,p)

1 Pi  P2 .. Op-1

P P1 1 pI  .. p_2

P2 Pl 1 ... p- 3

p-l ;p-2 ;p- 3 ... 1

and N is the sample size.

The processes associated with Figures 1 and 2 are,

respectively,
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(1-.6OB)(l-l.O607B+.5625B 2) (l+.4944B+.64B2)Xt  Z t  (6)

and

(1-.95B)(l+.95B)(l-l.3435B+.9025B 2)X" - Z. (7)

As was conjectured, tn(NC(w)) and -2tnJl-0le2 ..- tei

are minimized at the same value of w for process (6) and at

approximately the same value for process (7).

The above considerations suggest that, for autoregressive

processes, a reasonable estimate of w would be the value w for

which a window spectral estimate s (w) is minimum. It should be

pointed out, though, that since w0 is of interest only because

of its utility in estimating p and q, it is actually not

important to have a precise estimate of this parameter. If the

array associated with w0 indicates obvious estimates of p and q,

then w has performed its intended function.

The purpose of our discussion to this point has been

twofold:

(i) to illustrate theoretically the possible value

of complex-valued S-arrays in the estimation

f of p and q

(ii) to address the problem of estimating a frequency

wo for which Sn (e2 i k k is optimal for the

estimation of p and q.

Still open for research is a complete solution to the problem

in (ii). For the present, however, it is suggested to initially

examine the S-array associated with woo unless w0 occurs at a

sharp dip in the estimate of the spectrm. Such a sharp dip
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is evidence of a near noninvertible moving average factor, and

thus is not indicative of a small value of

1
e -*z2w -...-  P e 2v wpi 2

If WO occurs at a sharp dip, then the S-array associated with

the next smallest local minimum should be examined initially.

Additional S-arrays may be examined if estimates for p and q

are not apparent in the first array. Such an examination of

several different arrays may seem prohibitive in terms of

computing time, but this is actually not the case due to the

recursive algorithm defined in Section 1.

5. Examples

The results of Section 4 imply _that S-arrays based on
<1

frequencies satisfying 0 < w < will be the most valuable for

processes whose spectra have relatively large power at w - 0
1

and wd -. Therefore, since the purpose of this section is

to illustrate the practical importance of complex-valued S-arrays,

the two examples which follow will involve such processes.

In each of the two examples to be considered, five indepen-

dent realizations of an autoregressive process were generated.

The process in Example 1 (whose log-spectrum appears in Figure

3) is

(1 - .953)(1 + .95B)X= a Z t  (8)

and the process in Example 2 is process (7). Realizations of

length N - 75 and N2 - 50, respectively, were generated from

I'.
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(8) and (7). In each case the values of the noise process

{Zt I were obtained by generating random samples from the N(0,1)

distribution using ThSL subroutine CGNPH.

For each of the ten realizations an estimate of the

spectrum was calculated. The estimates in each case utilized

a Parzen window based in Examples I and 2, respectively, on 11

ant 8 values of the estimated autocorrelation function. The

following empirical measures of constancy in the S-array were

v~en computed for each realization in Example J:

5 1

T I e27riwlc - - W 2

cj 6 P k- p
c 1 (46)(w) 12

where pl 2, P2 4, Sp () = --6kOZ Sp (ke

and w - 0, -1, and wo, the frequency at which the estimated

spectrum is minimized. Note that c (w) is a sample analog of

the quantity C(m).

Table 1 contains the average value of c (0), c1

and j(WO ) over the five realizations of Example j (j - 1,2).

In addition, Tables 2 and 3 show the S-arrays associated

with o - 0, 1 and w0 for typical realizations in the two

examples.

In each example, the average value of cj(W 0) is seen to

be smaller than the average of either cj (0) or cj ( ) and

further, c (a0) was the smallest of the three values for all

five realizations in both examples. The numerical evidence

in Table 1 favoring S-arrays based on w0 is presented visually

[r
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TABLE 1

AVERAGE VALUES OF cl (w) and c2(w)

IN EXAMPLES 1 AND 2

:3c(0) Cj (wO) c

.0878126 .0005025 .0361297

2 3.1317649 .1238482 .2255245
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in Tables 2 and 3. Although constancy is apparent in all

three arrays in both examples, it is most apparent (for

Example J) in the array based on w0 due to the magnitude of

the quantities being estimated in column p

6. Summary

A refinement of the S-array method of modeling APRKA

processes has been introduced in this chapter. In so doing,

the theory of complex-valued S-arrays was developed, and the

problem of identifying a frequency whose associated S-array

is optimal for estimating the order of an ARA process was

formulated. Additionally, two examples involving simulated

data were considered in which S-arrays based on estimated

optimal frequencies gave clearer determinations of the order

of the underlying processes than did real-valued S-arrays.

The true usefulness of the method discussed in this

chapter cannot be ascertained until it has been utilized on

real data. Constancy patterns in the S-arrays of simulated

data tend to appear quite good at all frequencies, and thus

the potential worth of complex-valued S-arrays may have been

understated in the examples of the previous section. The

possibility exists that for certain data, constancy which is

virtually hidden in the two real-valued S-arrays is readily

apparent in some complex-valued array.

An aspect of the S-array method which has not been

discussed here is the information it contains about the
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TABLE 2

S-ARRAYS FOR A TYPICAL REALIZATION IN EXAMPLE 1

w- 0

m/n 1 2 3 4

-6 -.507 0.000 -.145 0.000 .491 0.000 -.393 0.000
-5 1.286 0.000 -.125 0.000 .046 0.000 .015 0.000
-4 -.510 0.000 -.112 0.000 -.042 0.000 -.094 0.000
-3 1.261 0.000 -.100 0.000 .148 0.000 -.106 0.000
-2 -.524 0.000 -.105 0.000 .533 0.000 1.318 0.000
-1 1.346 0.000 -.084 0.000 -.658 0.000 -1.608 0.000

0 -.574 0.000 .074 0.000 -.083 0.000 .079 0.000
1 1.100 0.000 .093 0.000 -.111 0.000 .222 0.000
2 -.558 0.000 .089 0.000 -.312 0.000 -.078 0.000
3 1.039 0.000 .102 0.000 -.030 0.000 -.053 0.000
4 -.563 0.000 .111 0.000 .077 0.000 .044 0.000
5 1.030 0.000 .131 0.000 -.176 0.000 .199 0.000

- .50

M/n 1 2 3 4

-6 -1.493 .000 -.069 .000 -.044 .000 -.198 .000
-5 -3.286 .000 -.130 .000 .168 -.000 -.162 .000
-4 -1.490 .000 -.098 .000 .260 -.000 .236 -.000
-3 -3.261 .000 -.135 .000 .093 -.000 .162 -.000
-2 -1.476 .000 -.151 .000 -.431 .000 -.737 .000
-1 -3.346 .000 -.210 .000 1.271 -.000 -3.103 .000

0 -1.426 .000 .183 .000 -.160 -.000 .152 .000
1 -3.100 .000 .134 .000 -.090 -.000 -.124 -.000
2 -1.442 .000 .121 .000 .197 .000 .118 .000
3 -3.039 .000 .089 .000 -.186 -.000 .133 .000
4 -1.437 .000 .116 .000 -.280 -.000 -.465 -.000
5 -3.030 .000 .062 .000 -.016 -.000 .101 .000

aI
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TABLE 2 (can't)

wI - .298

un1 2 3 4

-6 -1.145 .471 1.927 .586 .906 -4.841 -. 543 -1.883
-5 -1.672 2.185 1.932 .636 -2.540 .265 3.085 .021
-4 -1.144 .469 1.916 .615 -3.373 1.439 1.912 5.973
-3 -1.665 2.161 1.919 .645 -1.426 -1.353 1.803 4.932
-2 -1.140 .455 1.926 .656 3.149 -7.722 18.318 -4.375
-1 -1.690 2.242 1.930 .705 -10.334 10.906 -17.091 -33.340

0 -1.125 .407 1.737 .438 -1.873 -. 258 1.828 .177
1 -1.617 2.007 1.739 .479 -1.517 -. 845 .450 3.139
2 -1.130 .423 1.745 .488 .563 -4.110 3.831 -.102
3 -1.600 1.949 1.746 .514 -2.530 .706 3.538 -. 238
4 -1.129 .418 1.734 .496 -3.593 2.311 3.315 8.209
5 -1.597 1.941 1.737 .541 -1.339 -1.152 .990 -. 095
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possible nonstationarity of the observed time series (see Gray,

Kelley, and Mclntire (1978)). An analog of this important

feature of the S-array method is not possessed by automatic

order selection techniques such as the AIC criterion of

Akaike (1969). The behavior of complex-valued S-arrays under

an assumption of nonstationarity is an area for future research.

Some unforseen application of these arrays to the nonstationary

problem may well exist.

iI

:1 Y"i
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