
AD-09 528 NAVAL POSTGRADUATE SCHOOL MONTEREY CA PIG 12/1

COMPUTATIONAL ADVANCES IN LARGE-SCALE NONLINEAR OPTIMIZATION.(U)

UNCLASSIFIED N

I UE~hEEEE~2

I fflfflfohfmfllfllf

1.0 S 1.8
.15 112PO

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
COMPUTATIONAL ADVANCES IN LARGE-SCALE

NONLINEAR OPTIMIZATION

by

Dennis Ross Dean

September 1981

Thesis Advisor: G. G. Brown

Approved for public release, distribution unlimited

1820 Ol I i 7

J1'-7

SECumTv CLASsMPICATION 00 TwOs 04ag ("0 E "aoeo

UPON? vOC2MIWTOW P4 _____ _ ___O_____

i xgPoiT OU\J* fa T WIFIg E. a caPTmuu CAT1&.OG mumla

TITLE (80d 8.6.Mo .S. fype 0 NIPORT 60 eglo ico veo

Computational Advances in Large-Scale Master's Thesis
Nonlinear Optimization September 1981

I. puP00amme on. MIECOOT aual"

,. AUrwOfTe, I. COTRACT 00 GRANT NNaWtO6j

Dennis Ross Dean

.r. U106Ig EL,,,l[GIE"N* T. PINJECr."r
A & a . eOtLO ummU a*

Naval Postgraduate School
Monterey, California 93940

I I CnMrTO&.luG OPPIC NAIE AMo AORE6 I&. RBORT DATE

Naval Postgraduate School September 1981
Monterey, California 93940 Is. MURMmRo PAGES

134
14. MONITORUIWG A4GEWV wANE 6 600ISSvea d9teml- p Comm"SM4 096.0 Is. SICGTV ;6&6. (1t of0 e"")

Unclassified

Is. DISTIBUTIONw STITMENT (of at$ Re"

Approved for public release, distribution unlimited.

17. slIoYUIOm STATEmaEjoT o# "ob .e"N anqeed * Iook $. of 1bumme Im edwpq)

Is. supot.MENETAAV mOTES

Wa Womas60 (Cicue &P01ii*9 Sei a so *S0ft0 0ODA inepw oW0 m"

Large-scale nonlinear programming, optimization, large-scale linear
programming, mixed integer programming, algorithm evaluation, nonlinear
test problems.

28h."TOACWr (Cd"me ,@ f e;d It e.w *ArUWSmb

This is a comparison of two state-of-the-art large-scale nonlinear
optimization systems exhibiting unprecedented problem solution capabilities
both in size of problem handled and method of solution. These codes are
MINOS, developed by B. A. Murtagh and M. A. Saunders, and XS, developed by
G. G. Brown and G. W. Graves. The codes are evaluated with respect to
their problem solving capabilities and potential for practical applica-
tion by analysts. Computational results are presented for thirteen

00 1473 ,orro* or I NOV sS' O g,9oL'eg
(Pa g .. .)

664MVIP&TION 00 TWO IS tk #OU s* e mefo.

ACC /

nonlnea an noliner mxedintger estprolem wit frm to t 79

DD Faria 1473 2C9W6**?oO gg0e .l''

Approved for public release, distribution unlimited.

Computational Advances in

Large-Scale Nonlinear Optimization

by

Dennis Ross Dean
Lieutenant Commander, United States Navy

B.S., Purdue Univers-ity, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1981

Author: ___________________

Approved by: BROW

Thesi s-visor

S'Second Reader

Chairman, epartment of Operations Research

Dean of Information and Policy Sciences

3

ABSTRACT

This is a comparison of two state-of-the-art large-scale nonlinear

optimization systems exhibiting unprecedented problem solution capabilities

both in size of problem handled and method of solution. These codes are

MINOS, developed by B. A. Murtagh and M. A. Saunders, and XS, developed by

G. G. Brown and G. W. Graves. The codes are evaluated with respect to

their problem solving capabilities and potential for practical applica-

tion by analysts. Computational results are presented for thirteen

nonlinear and nonlinear mixed integer test problems with from two to 793

variables (12 to 100 integer variables) and one to 401 constraints.

Portions of this work were presented at the CORS/ORSA/TIMS joint meeting

in Toronto, May 1981.

4

TABLE OF CONTENTS

I. INTRODUCTION 11

A. GENERAL PROBLEM STATEMENT 12

B. COMPARISON CRITERIA 13

1. Algorithm Capabilities 14

2. CPU (Compute) Ti'ae 14

3. Number of Iterations 14

4. Number of Function Evaluations 15

5. User Friendliness 15

a. Ease of Setup 15

b. Debug Output 15

c. Failure Mode 16

d. Robustness 16

C. TEST PROBLEMS 16

D. COMPUTER SYSTEM 17

II. DESCRIPTION OF SYSTEMS 19

A. MINOS 19

1. Algorithm 20

a. Linear Constraints 20

b. Nonlinear Constraints 23

2. Code Structure 27

a. Stand-Alone Structure 27

b. Use as a Subroutine 29

5

- - S I

3. Documentation 29

a. MINOS User's Guide 29

b. MINOS/AUGMENTED User's Manual 30

c. MINOS Distribution Documentation 31

4. Implementation 31

a. CALCFG 31

b. CALCON 32

c. SPECS File 32

d. MPS File 32

e. Basis Files 33

f. Machine Dependent Routines 33

5. Output 33

a. Print Level 33

b. Solution File 34

6. Debugging 34

a. Gradient Checks 34

b. Error Statements 35

B. XS 35

1. Algorithm 39

2. Code Structure 42

3. Documentation 44

4. Implementation 44

a. Mode Selection 44

b. PROB 45

c. FGE 45

d. MPS File 46

6

~7TT

e. SCRATCH FILE 46

f. CRASH File 46

g. Machine Dependent Routines 46

5. Output 46

6. Debugging 47

III. EXPERIMENTAL METHOD AND RESULTS 50

A. METHOD 50

B. PROBLEM FORMULATION COMMENTS 51

C. PROBLEM DESCRIPTIONS 53

1. Problem 1 54

2. Problem 2 54

3. Problem 3 55

4. Problem 4 55

5. Problem 5 56

6. Problem 6 56

7. Problem 7 57

8. Problem 8 57

9. Problem 9 58

10. Problem 10 58

11. Problem 11 58

12. Problem 12 59

13. Problem 13 59

D. PROBLEM SUMMARY 59

IV. CONCLUSIONS 66

A. ALGORITHM CAPABILITIES 66

7
4i

AF

1. Type of Problems 66

2. Growth Possibilities 66

B. CPU TIME 66

C. STORAGE REQUIREMENTS 66

D. NUMBER OF ITERATIONS 67

E. NUMBER OF FUNCTION EVALUATIONS 68

F. USER FRIENDLINESS 69

1. Ease of Setup 69

2. Debug Output 69

3. Failure Mode 70

4. Robustness 70

G. SUMMARY 70

APPENDIX A: PROBLEM RESULTS 73

LIST OF REFERENCES 131

INITIAL DISTRIBUTION LIST 134

8
/)

w.

LIST OF FIGURES

1. MINOS Tableau Arrangement 24

2. MINOS Iteration Flowchart 26

3. MINOS Subroutine Structure 28

4. X System Problem Generation in Explicit Mode 38

5. X System Iteration Flowchart 41

6. X System Module Structure 43

7. Transportation Routes for Problem 8 106

9

,/i
-._ .. . _ - • , .. s, Vx ' j " |

ACKNOWLEDGEMENT

I would like to thank Mike Saunders who so graciously provided us

with an "early" version of his code even before all the documentation was

ready and assisted us in getting MINOS running. My thanks also go to

Glenn Graves, who very patiently put up with the use and abuse of his

godchild, the X System. And finally, to Jerry Brown, whose patience,

teaching skill, humor, and insights made this all worthwhile and whose

friendship is even more valuable .

THANK YOU, Jerry!

10

!-e

I. INTRODUCTION

This study is a comparison of two state-of-the-art nonlinear program-

ming codes that are designed to accommodate problems of thousands of

variables and constraints. While there are many codes designed to handle

the general linear programming (LP) problem and its specializations,

there are significantly fewer systems designed to reliably solve the much

more difficult nonlinear programming (NLP) problem. Of these, very few

are capable of solving "large-scale" problems: larger than, say, a

thousand constraints or a thousand variables or more. Most of these

large-scale codes are internal, proprietary systems developed by companies

for the solution of their specific industrially related problems; the

codes used by petroleum refiners for chemical process control provide

singular examples of such contributions.

One of the codes evaluated in this study is MINOS (Modular In-core

Nonlinear Optimization System) developed by B. A. Murtagh, the University

of New South Wales, and M. A. Saunders, Stanford University. The other

is XS (X System) developed by G. G. Brown, Naval Postgraduate School, and

G. W. Graves, University of California at Los Angeles.

This is the first independent comparison of either code and is

intended to serve both as an evaluation of each and as a guide to the

potential user concerned with the applicability of each code to the

individual problem with which he might be faced.

Two caveats should be kept in mind while reading this evaluation.

First, the codes are quite different in intended use. MINOS is intended

11

i. g.

I

9 ii'
- - S

I.

as an academic production code and is designed to be readily distributed

and applied by a wide variety of users. Extensive documentation and

reliable performance have been paramount concerns in the development of

MINOS. On the other hand, XS is used as an advanced experimental testbed

for optimization research. The fully instrumented version used in this

comparison is a prototype designed to be used almost exclusively by its

originators and their co-workers for a wide range of problems, such as

large mixed integer and linear formulations and especially for decomposi-

tion problems. As such, it is in a continual state of flux and varies

considerably in its content (hopefully in an improving direction) from

month to month. All results from XS are from the most recent prototype

system at the time of publication cutoff for this thesis with no special-

ization for nonlinear programming. Academic and industrial production

versions of XS are typically customized to the application at hand and

thoroughly documented for routine use.

Second, although both systems are "large-scale" nonlinear codes which

have been successfully used on many large, real-life problems, because of

their intended day-to-day application, their characteristics are not the

same, nor are they intended to be. Therefore, any differences between

them in speed or capability may be attributable to design intention rather

than relative deficiencies in the algorithms, underlying data structures,

or implementation.

A. GENERAL PROBLEM STATEMENT

The general linear programming (LP) problem can be stated as:

12 UA3I ,2LO? U

minimize cTx (objective function)

subject to r < A x < : (ranged constraints)

b < x < 6 (bounds on variables)

where:

x = variables;

cT = cost coefficients;

A = constraint matrix coefficients;

r, F = upper and lower constraint ranges;

b, 6 = upper and lower variable bounds.

The general non-separable nonlinear (NLP) problem can be stated as:

minimize f(x) (objective function)

subject to r<g(x) < F (ranged constraints)

b < x < 6 (bounds on variables)

where

x = variables;

f(x) = general non-separable, nonlinear function;

g(x) = general non-separable, nonlinear constraint;

r, r = upper and lower constraint ranges;

b, b = upper and lower variable bounds.

B. COMPARISON CRITERIA

In any study of this nature, one of the primary concerns is the

criteria with which the codes are to be objectively compared. In this

case, the guidelines recently published in Operations Research [Ref. 1]

will be used with some modification to prevent comparisons that are not

valid because of the somewhat different nature of the two codes. These

criteria, to be elaborated in Chapter IV, are listed below.

13

1. Algorithm Capabilities

This section contains a general overview of the types and classes

of problems for which each code is designed and comments on the growth

capabilities of each code.

2. CPU (Compute) Time

The CPU times listed are the virtual CPU times required for each

problem running with precompiled load modules for each primary system

code and do not include the linkage editor times. Since the problems

have been run interactively on a virtual memory computer system, these

times will vary somewhat from run to run depending upon computer loading.

Extensive experience on the host computer with these problems indicates

that the listed CPU times are valid within one per cent. Although the

actual "clock," or "response," time (as opposed to CPU time) varies as a

function of system loading; empirical evidence gathered while conducting

this study suggests that a useful rule-of-thumb is that actual clock time

is approximately four times as long as CPU time for the virtual memory

time-sharing system used. This should provide a reasonable estimate of

the response times to be expected for problems of this study.

Because of the region requirements of the FORTRAN compiler used

on the host computer (see Section I.C), one megabyte of default virtual

memory was used for all problems in a single-step procedure. Comments

concerning problem-dependent memory requirements of each system will be

made in Chapter IV.

3. Number of Iterations

The number of major iterations Olinearizations) and pivots

required to reach solution is given for each problem, with the caveat

14

that the nature of an "iteration" varies considerably between the algo-

rithms. The specific nature of these iterations is discussed in

Sections II.A.1 and II.B.I.

4. Number of Function Evaluations

The number of function evaluations to reach solution is listed

for each algorithm. However, since this number includes both objective

function and constraint evaluations, as well as gradient calculations in

the case of MINOS, different amounts of information may be obtained on

each function call and this may, therefore, be a deceptive comparison.

5. User Friendliness

One of the primary goals of this study is to evaluate the ability

of a user familiar with some optimization theory but with little experi-

ence with the individual codes to set up and successfully solve a problem.

Because of the codes' different design motivations, it was expected from

the beginning of the study that MINOS would be far superior in this

regard.

a. Ease of Setup

One measure of the flexibility of a problem-solving system

is the ease with which it can be adapted by the general user to the

particular problem/data structure at hand.

b. Debug Output

During initial debugging of a problem, varying quantities

and types of diagnostic information may be required to isolate a par-

ticular error. The ability of each code to provide a tailored output in

concise, readable form for the user will be evaluated.

15

L.

c. Failure Mode

Since the perfect optimization code has yet to be developed,

one measure of a code's performance is its ability to fail "gracefully,"

leaving the user in a posture from which he can recover without all of

his effort being wasted. The information given to the user when each

code fails is examined to evaluate its usefulness in further problem

exploration.

d. Robustness

As an aid to the inexperienced user, codes should be robust

in their default parameters to minimize the amount of "tuning" that need

be done on most problems. At the same time, the parameters must have

sufficient scope and power to allow the experienced user to exploit the

structure of difficult problems where interaction by the analyst is

required in order to achieve a solution.

C. TEST PROBLEMS

This study has been handicapped, as have other similar efforts, by

the lack of suitable test problems to test the full capabilities of the

codes. In this case, the need has been for large (several hundred

variables or more) real-life problems. The author has been unable to

secure such problems for which publication release is available and for

which the data is in a form that is readily usable by both codes. This

is a continuing and widely recognized problem which has prompted the

development of a number of nonlinear artificial problem generators.

However, although these generators can produce arbitrarily large

problems, it has been the experience of the developers of the X System

that the randomly generated problems produced by the generators are

16

i~t

• /

not realistic tests for optimization codes because they possess none of

the specialized structure that is routinely found in real-life problems

and which, in fact, is the very thing capitalized upon by good codes to

produce their excellent results on large problems.

Therefore, for the purposes of this test, the emphasis has been

placed on real-life, or at least well-known problems, as opposed to

generated problems, at the sacrifice of size. Thirteen problems were

selected for this study, of which at least nine have been previously

published. The variables in the problems range from two to 793 and the

constraints from one to 401. The problems contain a mix of linear,

nonlinear, equality, and inequality constraints. Also included are two

problems with (12 and 100) integer variables which have never before been

formally solved as nonlinear integer and nonlinear mixed integer programs.

D. COMPUTER SYSTEM
All computing has been completed in the W. R. Church Computer Center

of the Naval Postgraduate School, Monterey, California on its installed

IBM 3033 computers using the VM/SP timesharing system. The load modules

for both optimization systems and for each respective problem generation

subroutine were generated with the FORTRAN IV (H Extended) compiler using

the OPTIMIZE (2) option [Ref. 2]. All problems have been solved inter-

actively in real-time on the computer system using precompiled load

modules of the respective optimization systems linked with code and

parameter data for the individual problems. This research has promoted

development of an extensive real-time library of service routines to aid

in the preparation, execution, and interpretation of large optimization

17

problems. Although neither optimization system has a truly interactive

solution algorithm, each can be used with interactive parameter settings

and with real-time monitoring of solution progress, providing a fertile

research environment.

I
: 18

II. DESCRIPTION OF SYSTEMS

A. MINOS

The MINOS version discussed in this study is MINOS/AUGMENTED (alias

MINOS Version 4.0) which has been developed as an extension of an earlier

MINOS vintage which solved problems with nonlinear objective functions,

but with strictly linear constraints. MINOS/AUGMENTED (henceforth called

MINOS) is a generil-purpose nonlinear programing system designed to

solve large-scale optimization problems exhibiting linear and nonlinear

constraints, *tnear and nonlinear variables, and exploiting sparsity

(relatively few ton-null constraint-variable interactions) and exclusive

linearity of some constraints and variables (respectively expressed in no

nonlinear terms). Nonlinear functions in a problem should be continuous

with continuous first derivatives, but need not be separable. Integer

variables are not accommodated. The user specifies nonlinear objective

functions with one FORTRAN subroutine, nonlinear constraint functions with

a second FORTRAN subroutine, while the linear portions of the objective

function and constraints, ranges, bounds, and initial starting point (if

any) are specified in standard "MPS Format" [Ref. 3].

MINOS employs an augmented Lagrangian algorithm to solve problems

with nonlinear constraints. This algorithm uses a sequence of sparse,

linearly constrained subproblems which are solved using a reduced-gradient

algorithm.

MINOS is intended (as cautioned by its developers) as an extension

of (not a replacement for) commercial mathematical programming systems.

19

/

Consequently, MINOS does not possess many of the algorithmic options

(e.g., dual simplex) or data revision and file handling capabilities

common to various commercial optimization systems. A complete descrip-

tion of the code can be found in the support documentation [Ref. 4, 5, 6].

1. Algorithm

A discussion of the MINOS algorithm is logically divided into

two cases:

a. Linear Constraints

Where only linear constraints are present, MINOS is designed

to solve problems of the form:

minimize f(x) + cTx

subject to Ax > b

b<x <

where f(x) is a continuous, continuously differentiable function

with gradient:

V f(x) = (af/axj) = g(x).

In general, the constraint matrix A is assumed to be large and sparse.

The foundation of MINOS is an efficient and reliable imple-

mentation of the revised simplex method for LP [Ref. 7]. This combines

sparse matrix technology [Ref. 8: pp. 213-226] with stable numerical

methods for computing and modifying a triangular LU factorization of the

basis matrix B. A sparse LU factorization of the basis matrix is computed

using the "bump and spike" algorithm of Hellerman and Rarick [Ref. 9:

pp. 67-76], which is updated in a stable manner by the method of Bartels

and Golub [Ref. 10: pp. 266-268].

20

r -"',

In order to extend the simplex method for (LP) to (NLP),

superbasic variables are defined in addition to the usual basic (dependent)

and nonbasic (independent) variables. Both basic and superbasic variables

may possess non-extremal values (between their respective bounds). In

the reduced-gradient technique employed [Ref. 11: pp. 97-131], at a

given iteration there are NS (Number of Superbasic) superbasic variables.

They are free to move in any desirable direction which improves the value

of the objective function, while the basic variables are adjusted to

maintain feasibility with respect to linear constraints. If no

improvement can apparently be made with the current set of superbasics,

one (or more) of the nonbasic variables is selected to become superbasic.

This increases NS and the process is repeated. If, at any time, a

basic or superbasic variable reaches one of its bounds, that variable

becomes nonbasic and NS is reduced by 1. By the usual "pricing" of the

nonbasic columns, Lagrange multipliers for the current active constraints

are obtained, which then indicate which nonbasic variables (if any)

should be released from their bounds. If required, they are moved from

the nonbasic to the superbasic set, rather than from nonbasic to basic as

in the more conventional simplex method.

A stable implementation of a quasi-Newton method is used to

optimize over the superbasic variables. This method uses a triangular

matrix of dimension NS to approximate the reduced Hessian (a suitably

transformed sub-section of the matrix of second derivatives,

(a2 f/axiax)). In large problems (i.e., NS grows as large as 100

or 200), the data region required by the quasi-Newton method becomes

excessive and MINOS automatically substitutes the Fletcher-Reeves

21

Conjugate Gradient Method [Ref. 12: pp. 149-154], which consumes relatively

less memory. The rate of convergence of the algorithm drops significantly,

but must be accepted due to storage limitations.

The linear constraint problem may be re-formulated as:

minimize f(xN) - Sobj

subject to

: CAN AL b I] xL =0, b [XL <

given vf(xN) = g(xN)

where:

xN = the nonlinear variables (those that are directly

involved in the function f(xN));

. XL = the linear variables (the remaining part of x);I P = the right-hand side (RHS) variable, which has upper

and lower bounds of -1.0;

. s = the slack or logical variables (one for each row of A);

T
. Sobj = CLXL + co (linear objective function value);

. A = [AN AL] linear coefficients, partitioned as xN and XL;

. b = right hand side (RHS), composition or r and F, where:

(F ; if ANXN + ALxL >

b= r ; if ANXN + ALXL <

r or F ; otherwise;

. m = the number of rows in A;

. n - the number of columns in A;

22

16-2I

nn = the number of nonlinear variables, the number of terms

in XN1

Ns = the number of superbasic variables.

At any particular stage, the n + I + m columns of CA b I] are

implicitly ordered as shown in Figure 1. The nonlinear variables may end

up anywhere in B,S, or N.

b. Nonlinear Constraints

When a problem contains nonlinear constraints, MINOS does not

necessarily satisfy the nonlinear constraints until an optimal solution

is achieved. Therefore, the nonlinear constraint functions may need to be

defined outside their ranges.

The problem must be expressed for MINOS in the following

standard form:

minimize fO(x) + c Tx + d Ty (nonlinear objective) (1)

subject to f(x) + A1y = b, (nonlinear constraints) (2)

A2x + A3y = b2 (linear constraints) (3)

b([;] ((bounds on variables) (4)

where: f(x)= -fx1

and the functions f(x) should be smooth and have computable gradients.

The components of x are the nonlinear variables and must preceed the

linear variables y in the problem. The constraints (2) are the nonlinear

constraints and must appear in the problem before the linear constraints

(3). The general constraints may contain any type of inequality, and

23

m NS n + 1 - NS

Al I
[Ab1]P I B I S I N I

Basic Superbasic Nonbasic

where: P is a column permutation transformation of F.

Fig. 1. MINOS Tableau Arrangement

ranges may be defined for the constraints. Upper and lower bounds (4)

may (and should!) be specified for all variables.

The solution process [Ref. 13] consists of a sequence of

"major iterations;" at the beginning of each the nonlinear constraints

are linearized at a current point xk, approximated to first-order by:

f(x, xk) = f(xk) + J(xk)(x - Xk)

which can be written as:

f = fk + Jk(x - Xk) (5)

Here, J(x) is the Jacobian matrix whose ijt h element is afi(x)/ax.

The objective function is also modified, producing the following

subproblem:

minimize fO(x) + c Tx + d Ty - xT(f - f)

+ (1/2)o(f - f)T(f - f) (quadratic objective (6)

function)

subject to f + Aly 2 b, (linearized constraints) (7)

A2x + A3y = b2 (linear constraints) (8)

b < [x] < (bounds on variables). (9)

24

, i

The objective function (6) is called an augmented Lagrangian. The

vector xk is an estimate of the Lagrange multipliers for the nonlinear

constraints, and the term involving p is a modified quadratic penalty

function. If desired, the Lagrangian term of the modified objective

function may be set to zero by the user. The penalty parameter p may

also be controlled by the user. The problem (6)-(9) is, of course,

stated in precisely the form required by the linearly constrained MINOS

algorithm.

A flowchart of the MINOS NLP solution process is given

in Figure 2.

If (xk, xk) are the final solution and multiplier estimates

from the kth subproblem, convergence is assumed to have occurred

if the following conditions are true:

x k is an optimal solution to the subproblem;

x k satisfies the nonlinear constraints within a specified

tolerance;

• Ak is not substantially different from xk1;

x k+1 is an optimal solution to its subproblem;

a basis change did not occur during solution of subproblem k + 1;

the reduced gradient did not increase significantly during

solution of that subproblem.

The salient point is that xk is checked for feasibility

and then the final point xk + 1 is checked for optimality. Since

normally very few basis changes occur on the final subproblem (ideally none),

the solutions will be virtually identical and the tests for feasibility

and optimality will have been applied to essentially the same point.

25

-2 , I
- _,. e,. • , = .,,_ _ i . - ,.-, - = -- ,,.. . . _

Start

I~I
'_ ' "General NLP

FesbeOptimal Solution/

no

Major
Iteration Linearized LP

Pivot

yes

Fig. 2. MINOS Iteration Flowchart

26

'

j~i

2. Code Structure

MINOS is intended for use primarily as a "stand-alone" system

which solves a problem or a sequence of problems and then terminates;

however, MINOS can also be called as a subprogram. Figure 3 shows the

subroutine structure of MINOS.

a. Stand-Alone Structure

Some problem description and code tuning are provided to

MINOS by means of a SPECS file which contains a list of keywords and

values to define run-time parameters. Most of the data for a problem

is provided by means of the standard MPS Format file. If the problem

contains a nonlinear objective function, it is specified (as can be its

gradient) by means of a FORTRAN subroutine called CALCFG provided by the

user. If the problem contains nonlinear constraints, they are provided

by the user (along with their gradients) in the form of a FORTRAN sub-

routine called CALCON. The input data is processed in the following

order:

the SPECS file;

the MPS file;

a basis file (allows an initial basis crash);

data read by CALCON on its first entry;

data read by CALCFG on its first entry;

data read by CALCFG on its last entry;

data read by CALCON on its last entry.

The MAIN program provides a single array of storage for the

code. The GO subroutine is a control routine which calls subroutine

MINOS for each problem to be solved in the input stream. This routine

27

MAIN

Acquire
Core

GO

MATGEN MINOS REP WRT

Gener ate Write
SPECS Report

and
MPS

RedDecode Read Solve
ISPECS, SPECSMPro.
Ouptfrom Allocate Save
toISCRcH Storage Basis

Fig. 3. MINOS Subroutine Structure

28

can be modified for individual applications. Subroutine MINOS and its

sub-programs communicate with the input files supplied to the code by the

user (MPS and SPECS) and generate BASIS and SOLUTION files. MINOS also

contains output parameters which define the stopping condition for the

problem, the dimensions of the problem, and the positions in the workspace

array where various subarrays are located.

b. Use as a Subroutine

Because of the modular nature of the code, it is relatively

easy to modify the system for individual applications. Most modifications

to tailor the system would be to the control routine GO; run-time

parameters and constraint information would still be input via the MPS

and SPECS files. The dotted lines in Figure 3 show how a Matrix Generator

and Report Writer could be incorporated into the system to be used in any

manner convenient to the user.

3. Documentation

MINOS documentation consists of three publications [Ref. 4, 5, 6].

They provide such complete coverage of the system that only rarely has

access to the MINOS FORTRAN source code been required.

a. MINOS User's Guide

This document is for the original MINOS system, which did

not accommodate nonlinear constraints. It is quite thorough and provides

some of the mathematical foundations upon which the code is built. It

has one section devoted solely to problems with nonlinear objective

functions. The input data required by the user is also thoroughly docu-

mented with detailed coverage of the options available in the SPECS file

as well as some description of the "MPS Format" used by the MPS file. The

29

various input/output options involving the basis and solution files are

addressed in great detail. A complete breakdown of the iteration log

output is given to allow the user to trace solution trajectory, if

required. There is a good deal of coverage of hardware-dependent matters,

since there are some subroutines that are computer manufacturer or

machine dependent. Example problems are also given with complete imple-

mentation advice.

b. MINOS/AUGMENTED User's Manual

This manual serves as an adjunct to (not a replacement

for) the User's Guide. It is intended primarily to update the User's

Guide for solving problems with nonlinear constraints, but contains

additional information as well. Some mathematical overview is given for

the nonlinear constraint case, as well as the necessary additional

commands in the SPECS file and the additional subroutine (CALCON) required.

There is some alteration of the syntax and keyword meanings and options

from the (previously described) MINOS User's Guide, and the coverage is

not complete; therefore, both documents must be used for nonlinearly

constrained problems. MINOS can most readily be applied by synthesizing

both documents to create a "driver template" (such as those used by the

X System) for input files and function subroutines; this shows the user

most available options, and references those that cannot readily fit

in the "template" format. The MINOS/AUGMENTED Manual also contains

sample problems with complete input and output listings which provide a

useful guide to the new user.

30

c. MINOS Distribution Documentation

This document serves as a cover letter for the distribution

of the code via magnetic tape. It discusses in detail the machine-

specific requirements for successful installation of MINOS on the user's

computer system. MINOS is currently available with machine-dependent

routines tailored for Burroughs, CDC, DEC, Honeywell, IBM, and Univac

computers. The documentation also describes a procedure to run test

problems on the distributed tape which allow a complete check of the

code. Problems 6 and 11 of this study are included as test problems on

the MINOS tape. Some minor changes that have been made to the system

since the publication of the two previous manuals are also presented.

4. Implementation

The first step in problem solution is one of proper problem

formulation. The need for understanding the problem, determining

proper scaling, and establishing sensible ranges and bounds cannot be

overemphasized and will be discussed more fully in Section III. Ignoring

these steps in haste will invariably haunt the analyst in the long

run.

a. CALCFG

Subroutine CALCFG provides MINOS with explicit calculations

of the nonlinear objective function and its gradient. There is an

indicator variable in the calling arguments that indicates the first,

last, or some intermediate call to the subroutine, providing it an

opportunity to make intiial or final calculations if required.

MINOS allows substitution of numerical difference approx-

imation for the analytical gradient of the objective function.

31

iV.

b. CALCON

Subroutine CALCON serves the same purpose for the nonlinear

constraints as does CALCFG for the objective function. However, the

option for differencing of the constraints in lieu of analytic gradients

is not presently available. The gradient functions must be explicitly

provided.

c. SPECS File

The SPECS file consists of 80-column, card-image records

that provide MINOS with the parameters of each problem and allow the user

to set virtually every control parameter within the code. Each of the

card records contains (in free format) a sequence of items that includes a

first "keyword," an optional second "keyword," and a number representing

the value of the parameter identified by the keywords.

d. MPS File

Constraint matrix data and labels for constraints and vari-

ables are provided to MINOS via an MPS file, which (as the name

implies) uses standard "MPS Format" [Ref. 3]. In nonlinear problems, the

only restrictions are that the nonlinear variables must occur in the

left-most columns of the constraint matrix, and the non-linear constraints

must be the top-most rows of the matrix. Additionally, an optional

INITIAL bounds set may be specified which assigns initial values (if

available) to the nonlinear variables in the problem.

The need to state a problem formulation with proper scale for

both functions and variables cannot be overemphasized.

32

e. Basis Files

MINOS provides four different methods for loading or saving

basis representations. These options are invoked by use of records in

the SPECS file and allow the user to save current values/solutions and

reload them at a later time using a number of alternatives. Because of

the relatively small size of the problems in this study, these options

were not extensively used, but appear to be well thought out and of great

potentiAl value in working with large real-life problems.

f. Machine Dependent Routines

MINOS was developed on IBM computer systems, and although

every attempt was made to make the code as portable as possible using

FORTRAN, some machine dependent details must be changed in order to

install the code on other than an IBM machine.

5. Output

MINOS provides a great deal of flexibility in the detail of its

output through several SPECS file options as well as the opportunity for

using a tailored report writer.

a. Print Level

The most direct control of output is via the PRINT LEVEL

option of the SPECS file. This command, which can be thought of as a

five-digit binary variable, allows the user to individually select

any one or all of the following:

• invert statistics;

* the value of nonlinear variables;

• the Lagrange-multiplier estimates for the nonlinear constraints;

33

141

the values of the nonlinear constraint functions;

the Jacobian matrix.

In addition, the LOG FREQUENCY command controls how often

information is printed from the iteration log. This informs the user at

specified intervals of the status of the optimization effort.

b. Solution File

The solution file can be printed on any device (determined by

a SPECS file entry) and is a static preformatted report. It is also

designed to be subsequently read from disk by a self-contained program

which extracts and saves the values required by the user. This allows

the user to make general use of the solution without first tailoring the

entire output file or modifying the basic code with a tailored report

writer.

6. Debugging

In general, MINOS is an easy code to work with as long as the

user can interpret the iteration log and ancillary printouts in the more

complex cases.

a. Gradient Checks

The requirement for explicitly calculating gradients for

the constraints, and preferably for the objective function as well, is a

nuisance at best; but it can prove to be helpful in the early debugging

phase of a complex problem. MINOS checks the analytic gradient, comparing

the function and gradient information provided by the user for consistency.

This check normally uncovers errors of coding and/or calculus, or gives

the user at least some hope that the provided functions and gradients are

correct.

34

, /'*

b. Error Statements

Although the diagnostic statements provided by MINOS are

explicit and normally lead directly to an error, a few are not documented

in the support literature at this time and can lead to some confusion.

Consulting the source code is of some help, since it is very well docu-

mented for the technically qualified reader. However, not even the

source code review has been able to pinpoint the cause of all errors and

has forced the user to occasionally resort to more traditional FORTRAN

error-checking techniques.

B. X SYSTEM

XS has been developed since 1974 [Ref. 14] as a general-purpose

optimization system of advanced design which serves both as a prototype

testbed for research and as the fundamental computational foundation

of many application packages utilizing optimization.

XS is designed to solve large-scale optimization problems, with

special emphasis on mixed integer models. Decomposition features are of

premier importance to XS at an aggregate level of detail. However, the

embedded linear programming module has received the most design effort--

it is the heart of XS and exhibits many singular features including:

hyper-sparse data representation [e.g., Ref. 15];

* complete, constructive degeneracy resolution [e.g., Ref. 16:

pp. 1-34];

* basis factorization [e.g., Ref. 17: pp. 91-110];

* elastic range constraints [Ref. 143.

The nonlinear feature of the X System is designed for use with

large-scale models exhibiting some functional nonlinearity (non-separable,

35

' !

nonlinear objective and constraints are admitted). However, XS is

designed to efficiently solve models for which nonlinearity is relatively

mild, hopefully involving a subset of model variables and constraints.

Large refining models provide an ideal nonlinear paradigm in this context.

Design criteria for XS require that all other features be supported

simultaneously with the nonlinear feature (e.g., see Problem 12 with

generalized upper bound (GUB) factorization and mixed integer (MIP)

variables in addition to nonlinear features). This inflexible rule

derives both from the wide variety of production applications currently

using XS, as well as from the research philosophy of the developers.

The basic nonlinear feature of XS is designed to encourage reliable,

error-free problem input and solution, minimizing the total response time

including problem preparation, debug, tuning, and interpretation of

output. Accordingly, gradient functions are not required, nor are they

even suggested as an attractive option to any but the most skilled user.

Long experience has shown that coordination of gradient functions with

problem functions reliably inflicts more frustration than all other steps

in solving nonlinear models! The X System is designed for robust perfor-

mance with automatic numerical difference approximation for all functions.

Another notable nonlinear feature of XS is the pervasive use of

robust problem-independent algorithm controls, such as a dynamic "trust

region" for approximation of the problem functions, a conservative ray

search, and heuristic internal tolerances to stabilize performance in the

presence of "irregularities" such as function discontinuities (common to

many models, especially those that are new and those that employ spline

approximations [see Section Il1.B] from imprecise data observations).

36

Also, use of the elastic ranges invites elegant formal incorporation of

internal estimates for approximate data, prioritizing of constraints, and

various relaxation methods.

XS completely consists of open FORTRAN subroutines. FORTRAN IV

(H Extended) [Ref. 2] is the implementation dialect and an IBM 3033 the

host computer. XS is installed and operating on other systems with

compatible arithmetic architecture, and the FORTRAN subset actually used

is widely accepted, even by FORTRAN 77 [Ref. 18]. In-core, out-of-core

procedures, if invoked, require the most installation-specific preparation.

Problem input may include any combination of explicit function

definitions, sparse row and/or sparse column generators, and MPS Format.

No tuning parameters, gradients or other problem-specific data are

required other than some adequate (or default) estimate of sheer problem

dimensions (rows and columns). An example of the minimum information

necessary to invoke the algorithm for a sample problem (Problem 9) is

provided in Figure 4.

Input may use any of several standard FORTRAN subroutine "templates".j

which require only rudimentary programming skill. Alternate interface

procedures may exercise XS directly for extremely challenging problems.

All relevant tuning defaults and tolerances are available for user

override via a simple menu in FORTRAN subroutine form.

XS employs an (NLP) technique which generates a sequence of local

linear programs (LP), each from previous solution and gradient estimates.

Each local LP determines a search direction based on a first-order local

approximation of the problem functions and on the dual variable bounds

(elastic range penalties), forming a piecewise linear Lagrangian gradient

37

II

Formulation:

maximize yl Y2

2 2
subject to Yl + Y2 =1

(30)2 (23)2

Y11 Y2 > 0

Implementation:

M = 1 (number of constraints)

N = 2 (number of variables)

G(1) = Y(1)**2/900.ODO + Y(2)**2/529.000 (constraint)

GO = Y(1) * Y(2) (objective function)

Fig. 4. X System Problem Generation in Explicit Mode

and investigating this general search direction with a local, closed-

interval ray search.

XS reliably solves NLP's with excellent efficiency. More important,

XS can be tuned for particular classes of problems to provide unparalleled

solution speed. However, XS employs a first-order descent method, and

one would expect that convergence to more than 3-4 decimal place objective

function tolerance will occasionally require disproportionate effort.

The designers have consciously opted for fast, easy, absolutely reliable

convergence to 3-place precision, a tolerance frequently exceeding

coefficient data resolution. Although much better solution resolution is

8-38

desirable, and routinely achieved for amenable problems, it is not

guaranteed by XS without some experience (tuning).

For those cases in which extreme solution tolerance is demanded,

a second-order variation is available which augments the explicit con-

straints with the first-order stationary conditions. This method has

produced excellent results [Ref. 19], but the additional problem set-up

time is seldom economically justified in lieu of simply running default

first-order XS a bit longer. (This represents a classic paradox in

evaluating algorithms and their actual application.) Given the additional

set-up effort, robust hybrid first- and second-order descent algorithms

are easily implemented by use of the constraint penalties as descent

forcing functions.

1. Algorithm

The X System requires that (NLP) be restated elastically:

(ENLP) minimize g0 (y) = f(y) + za + ir

subject to g(y) + s + a - r = r

o < s < r - r

a, r > 0

or, in an equivalent Lagrangian form:

minimize f(y) + z T(g(y) - r)

subject to b y 6

i ; if gi(y) > r = Fi

with zi -1i ; if gi(y) < r =

0 otherwise.

39

,43A

We see immediately that z, z are interpreted both as constraint penalties

and as linear dual bounds, and that convexity is preserved with z, i > 0.

Given some solution for (ENLP),

b < yo <6,

a local elastic linear program is generated:

(LELP) minimize vgO(yO)Y + zT(vgj(yO)y - r)

subject to b < 4y (f

ii; if Viy04 > r = r1 ~ 0).(

with zi =-1i ; if vgi(y)a4y < r = ri -gi(yO)

(0 ; otherwise
where b, 6 are local bounds derived from b, 6 and enforced as a local

"trust region" over which the functions g are approximated acceptably by

first-order Taylor series and z, 2 are local penalties derived from

z, i (and optionally other artifacts of solution).

The complete algorithm performs a ray search on the piecewise

linear convex (for convex functions g) descent direction ay, updates

0
y , and generates another local elastic program if terminal conditions

are not satisfied (see Figure 5). In particular, descent is assumed

if:

a). The latest improvement in the objective function is

greater than a (specified) tolerance, and

b). The maximum number of (specified) iterations has not been

exceeded.

40

,A/

Initial Solution

General
> I EIll

< Opima ye Solution

nS 1 u

Linearized LELP

Find ay

Ray Search,
Update

y0 *y0+ hyO . yO + 'rAY

Note: Integer detail ommited from NLP solution process for
clarity.

Fig. 5. X System Iteration Flowchart

41

Convergence is assumed if there is no descent for a (specified) number

of iterations.

At each iteration, the local trust region is determined dynam-

ically based upon (specified) minimum and maximum desired step-length (in

y-units). It is increased in size if descent has been achieved, decreased

otherwise. In addition, each local bound is modified by a (specified)

factor if oscillatory behavior is observed..

2. Code Structure

The X System is primarily designed and used as an "open sub-

routine" system, but can be run "stand-alone" for problems of specified

structure. Figure 6 shows the module organization of XS.

Default tuning parameters are defined in the NUCLEUS. For

problems of given structure, a "template" is prepared consisting of

two entry points. PROB initializes problem generators and specifies any

non-default initial parameters; FGE provides function values as required

by the problem generators, and can also dynamically change any parameter.

Standard problem templates include:

Explicit Mode (FGE provides explicit statements of the problem

functions in terms of y);

Sparse Mode (FGE provides first-order function information only

once, and computes nonlinear terms on demand);

• MPS Mode (Sparse Mode with MPS input);

Super-sparse Mode (PROB and FGE communicate directly with internal

XS data structures).

42

MAI N
(NUCLEUS)

(Acquire (e.g.,
Storage) I Decompo sition)i

MAGEN,
M

(etc.) (Allocate REPWRT
Storage, (etc.)
Control)_ _ _J

PROB
(Initialize prob. NL
generators, e.g., (Nonlinear

MPS, etc.) Control)

"Tem plate" --

FGE GSM
(Function (Ray Search, xS
Generator) (RySarh0 (Solve
Generator) update yO) Local MIP)

Fig. 6. X System Module Structure

43

of

3. Documentation

User documentation for XS is terse. A brief summary of the

system and examples of LP, MIP, and NLP formulations, templates, set-ups,

and solutions are given [Ref. 20]. The mathematical foundations are set

forth in [Ref. 21]. Finally, the designers provide an internal mainte-

nance specification and logic manual with full current implementation

details and data structures.

Complete documentation for XS is prepared for particular produc-

tion applications [e.g., Ref. 22, 23]. Also, user-friendly interactive

templates permit "classroom use" of XS in real-time with very little

training. However, full documentation for prototype XS is not likely to

appear until the system stops improving.

4. Implementation

Problem preparation for XS is straight-forward. First, a template

should be selected which matches the requirements of the problem at

hand.

a. Mode Selection

Explicit Mode -- Adequate for small and intermediate-sized

problems, very easy to use, but a bit less efficient than other, more

demanding modes. Efficiency is enhanced if nonlinear constraints and

variables are identified for XS in a contiguous block.

Sparse Mode -- Desirable for large problems and relatively

easy to use. Efficiency is enhanced if non-null coordinates of nonlinear

constraints and variables are identified.

MPS Mode -- Required for problems from outside sources

expressed in MPS Format. This mode also provides one means of introducing

44

PI.

labels for functions and variables using proprietary matrix generators,

identifying non-null coordinates of nonlinear constraints and variables,

and providing a PENALTIES section in an easy format. However, processing

MPS Format files is relatively expensive, and editing requires another

file with revision instructions.

Super-sparse Mode -- Greatest efficiency and risk. Mandated

only by huge problems, complex generators, or other uncommon model

curiosity.

Once the proper template is selected, the following are

assembled, as required.

b. PROB

Subroutine PROB defines initial conditions (connects MPS

files as necessary) and sets up problem generators. Default tuning

parameters may also be redefined.

c. FGE

Subroutine FGE generates function values for a given solution.

The calling discipline provides a single argument which invokes complete

function evaluations, only nonlinear function evaluation, only non-null

coordinate function evaluation, or only non-null nonlinear function

evaluation, depending upon the template adopted. Except for super-sparse

mode, the solution, base (partially evaluated) function values and

complete function values are all available in precisely the organization

(order) specified by the user. In super-sparse mode, basis factorization

and permutation vectors may be exercised directly by the user, as well

(not suggested for the timid!). Tuning parameters may be redefined

dynamically, as may any problem element.

45

/J.

. we'

d. MPS File

This is required only in MPS mode. A PENALTIES section may

be used, as may an associated MPSEDIT file. Both files are in card image

form with 80-character, fixed-length records.

e. SCRATCH Files (problem independent options)

These files are respectively required only for in-core,

out-of-core use, for online storage of incumbent solutions in non-convex

and decomposed problems, and for efficient reinversion of the basis.

Unformatted FORTRAN Input/Output is used with the attendant file defini-

tion requirements.

f. CRASH File (problem independent options)

This is required for basis crash options, for basis save

options, and for efficient reinversion. Unformatted FORTRAN Input/

Output is used.

g. Machine Dependent Routines (problem independent options)

For IBM architecture, XS may use a high-resolution computation

timer, an integer overflow arithmetic hardware interrupt trap, and a

dynamic (GETMAIN) storage allocation. These routines are coded in

assembly language.

5. Output

Standard output includes various (specified) levels of detail,

ranging from absolutely nothing to complete logs of each primitive

operation within each segment of each minor iteration. Frequently useful

reports include:

Input Summary -- by row and column giving labels (if any), basis

factorization status, selection status, non-null element counts, maximum

46! -U

magnitude and range of first-order elements, range and bound status and

scale, and penalty scale.

Set-up Summary -- with tuning parameters, dimension keys, host

environment, XS vintage, and intended problem template.

Major Iteration Log -- with complete time and pivots, solution

value (with and without penalty terms), ray search resolution, local

gain, trust region size, and descent condition.

Minor Iteration Log -- (optional frequency) with linear information

as in Major Iteration Log.

Exception Log -- with basis crash and stability recovery

diagnostics.

Solution Summary -- by row and column giving labels (if any)

and complete elastic primal, or dual solution (or edited selected subsets).

Final Summary -- with total pivots and pivots per iteration,

total function calls and calls per iteration required by ray search,

integer, and differencing operations, respectively, and total compute

time.

Solution File -- for automated real-time solution analysis

[e.g., Ref. 24], or off-line report writing.

In addition, a report writing template is provided for use in

customizing output formats and report content.

6. Debugging

Nonlinear models tail most frequently in just three ways:

programming errors in the problem representation fail to mate it compat-

ibly with calling modules and data structures, or model errors for which

a correctly coded problem representation generates an incorrect model, or

47

solution errors yield undesired stationary points from otherwise correct

models.

Some programming errors are almost completely undetectable by

an open FORTRAN subroutine (e.g., subscript range errors, argument

list omissions, etc.). Provision of standard templates is the best

insurance measure for these perennial annoyances. Symptoms of such

difficulties are usually severe, immediate, and fatal. A change of host

language would ameliorate this situation, but benchmarks of FORTRAN

competitors have not yet revealed a candidate with sufficient execution

efficiency for economic use with XS.

Since XS uses no analytic gradients (a profound advantage in

model debugging), one need usually merely verify that a given solution

y produces function values correctly. The set-up and solution sum-

maries of XS usually diagnose further trouble very quickly--the elastic

range violations reported in any solution focus attention on likely

candidate functions for further inspection.

Of course, XS can minimize an objective function intended for

maximization, and can produce stationary points for completely incorrect

formulations and implementations; however, these are intellectual issues

for the modeller to ponder more than bugs in the classic sense. No

debugging aid can guarantee reliable solution of a model which is not

understood by the user.

Interpretation of terminal solutions sometimes reveals that

a local stationary point has been selected. XS provides an alternate

procedure for problems suspected of such behavior, whereby the objective

function is included with the constraints, and its penalties used to

48

- : . -;- 2 tI _2 , ,- , .. . T
f

enforce successive level set descent at each major iteration (e.g.,

Problem 4 for which XS has found three stationary points). Non-convex

problems usually also require that the ray search be tuned for extra

effort.

Some tuning advice is always a valuable part of solution debugging.

For variables, XS uses a zero level and infinity value which may be

altered. The trust region is used when unruly nonlinear function behavior

(misleading first-order approximation) is predicted, or as an additional

safeguard which costs little. A distortion factor is provided by which

oscillatory behavior detected in successive solutions is damped. (This

is no substitute for conjugate directions or second-order information,

but serves well in practice as an effective heuristic).

A zero tolerance is used for functions, and may be altered.

XS also requires an objective function tolerance for nonlinear convergence

(and for integer convergence), as well as penalties for violation of each

constraint range. Thus, the modeller must express a priori in terms of a

single objective function the consequences of violating feasibility and

optimality.

Default values for all tuning parameters are necessarily scale

dependent and require reasonably well-scaled models for reliable perfor-

mance. In this sense, the X system is rather unforgiving of users who do

not express their models completely and carefully.

49

II

I r~w

III. EXPERIMENTAL METHOD AND RESULTS

A. METHOD

In preparation for this study, a copy of the documentation

[Ref. 4, 5, 6] and code for MINOS were received from Saunders (circa May

1980, via G. Brown from a Vienna meeting with Saunders). The code was

received on magnetic tape which contained the system source code (both

machine dependent and portable), test problem source code, assembler

language source code, object module, and executable load module. The

machine dependent routines, assembler code, and the object modules were

all compatible for the IBM system on which this test was run. The

OPTIMIZE (3) load module from the tape was not used, but replaced with

one compiled at the Naval Postgraduate School with the OPTIMIZE (2)

option [Ref. 2]. (OPTIMIZE (3) is not available at the Naval Postgraduate

School at this writing.)

The X-system was already in place on the Naval Postgraduate School

computer and was used in situ. Its working "documentation" [Ref. 20] was

also available.

Because of the complete MINOS documentaion and the availability of

several test problems already set up for immediate execution, all problems

were initially prepared for MINOS and then converted to XS (except as

noted). This procedure required a greater initial outlay of effort (See

Section II.B) because of MINOS' requirement for gradient information not

required by XS; however, the consistency checks make internally by MINOS

of the function and gradient routines served as a troubleshooting tool to

50

ensure the functions had been correctly coded. As a result, the conver-

sion of each problem from MINOS to XS took less than an hour in most

cases using the computer system file editor, once the problems were

successfully run with MINOS. The converse was not true, however, as the

gradient functions required considerable time and effort to derive and

implement for MINOS.

Both systems are presently being developed, supported, and used

by their authors on IBM 3033's. Therefore, neither system has been given

an advantage by the computer used to support the evaluation.

B. PROBLEM FORMULATION COMMENTS

Although "easy" problems can be solved with brute force by either

system, large or tricky problems require intelligent problem formulation

for either system to be successful. Among the most vital guidelines to

consider are the following.

The analyst must UNDERSTAND THE NONLINEAR PROBLEM in order to success-

fully solve it (or in order to assimilate the answer). This can be a

major hurdle when solving someone else's nonlinear problem formulation or

test problem if inadequate documentation exists to set up the problem in

a format that is compatible with the optimization code being used.

Although true for both optimization systems, in the case of XS this is

absolutely vital. A good deal of the power of XS lies in the use of its

"elastic" penalties on the constraints. If the problem is not fully

understood, these penalties cannot be set intelligently and at best the

power of XS is diminished, because the penalties require formal transfor-

mation by the modeller of infeasibilities to units of the objective

function. At worst, XS may not be able to solve the user-stated problem

51

' {I
V.

at all since it views the elastic formulation as "the problem." This can

be a major hurdle when sol.,ing someone else's nonlinear problem formulation

or test problem if inadequate documentation exists to set up the problem

in a format that is compatible with the optimization code being used.

There is a tendency in many problem formulations to overlook points

within the allowable variable bounds that generate singularities In the

problem functions. By Murphy's Law I and O'Toole's Corollary,2 it is a

virtual certainty that any code will attempt to evaluate the functions at

a singularity if proper precautions are not taken by the analyst.

These precautions may be in the form of restricted bounds on the variables

that were not incl'uded in the original problem specification or in coding

within the function generator.

For example, in the region of a singularity a spline function may

be substituted for the function of interest at some point such that:

Endpoints are satisfied by the composite function;

The composite function is continuous;

The composite function has a continuous derivative;

* The composite function is a "reasonably" close approximation of

the function and its gradient (e.g., a "majorizing function").

In the same vein, reasonable bounds for the variables should be

specified to prevent excessive run times with either system. Even if the

problem has been initially specified with unbounded variables, the intelli-

gent analyst can restrict the problem to reasonable bounds. There are

1If anything can go wrong, it will . . at the worst possible

moment . . . and in the way so as to maximize the damage.

2Murphy was an optimist.

52

few real-life problems for which an infinite value for a variable

makes sense.

Both systems, in fact any useable nonlinear optimization code, are

sensitive to scale and require that the analyst formulate the problem in

a reasonable manner. In general, the data, variables, and functional

values should be as close to 1.0 as possible. Due to efficient

specializations of both algorithms for linear (or nearly linear) con-

straints, it is worth a good deal of effort by the analyst to minimize

the nonlinearities in the problem by appropriate transformations. A

nonlinear objective function is usually preferable to nonlinear constraints

(if a choice exists via problem transformations).

It is mandatory with XS and strongly recommended with MINOS that any

initially specified solution lie within the bounds of the variables.

C. PROBLEM DESCRIPTIONS

The first eight of the test problems had been used for a previous

study [Ref. 25] and were collected from a variety of sources. The first

six problems are listed in Himmelblau [Ref. 26: pp. 395-425] and the

original source author/developer for each is listed. The next two are

adaptations of an inventory model [Ref. 27] and an entropy model [Ref.

28] which were specifically designed to illustrate real-world problems

with few constraints but many independent variables, albeit with a

relatively small number of variables compared with the capabilities of

the two codes under test. The ninth problem was developed by the author

during course work at the Naval Postgraduate School.

Appendix A provides the mathematical problem statement, problem

data, starting points, and an initial and final solution from each code

53

for all problems except Problem 11: the formulation of ETAMACRO provided

as a test problem for MINOS by its developers did not exactly match the

description of [Ref. 29]. Time considerations precluded resolution of

the discrepancies, and although the MINOS test problem formulation was

used, neither formulation is presented here.

The remaining four problems were not solved by both codes either due to

sheer time constraints, or in the case of Problems 12 and 13, because integer

variables cannot be accommodated by MINOS.

The alternate starting points for problems 1-8 were taken from Waterman

[Ref. 25: pp. 56-91].

1. Problem 1 (Himmelblau 6)

This problem [Ref. 303] is an example of determining the chemical

composition of a complex mixture under conditions of chemical equilibrium.

It contains 45 independent variables and 16 linear equality constraints.

MINOS returned a solution very quickly, although the solution from the

second alternate starting point differed from the first two starting

points. XS took a bit longer to reach a solution from all three

starting points; however, the objective value was improved over the MINOS

solutions and the three solutions agreed with only minor variations.

2. Problem 2 (Himmelblau 4A)

This is also a chemical equilibrium problem which had been

redefined in the Himmelblau study from a problem originally formulated

and solved by Dantzig, Johnson, and White [Ref. 31: pp. 751-755] and

discussed by Bracken and McCormick [Ref. 32: pp. 46-49]. It contains 10

independent variables and 3 nonlinear equality constraints. Both codes

3Reference not viewed by author.

54

obtained essentially identical solutions from all three starting points

in about the same amount of time.

3. Problem 3 (Himmelblau 18)

This problem was formulated by the Shell Development Company

for the original Colville study [Ref. 33: p. 22] and consisted of 15

independent variables and 5 nonlinear inequality constraints. MINOS

returned a slightly better solution, though both codes returned solutions

from all three starting points in approximately the same amount of

time.

4. Problem 4 (Himmelblau 16)

This problem [Ref. 34 4] maximizes the area of a hexagon in

which the maximum diameter is unity. There are nine independent vari-

ables, 13 nonlinear inequality constraints, and a lower bound of zero on

one variable. This problem contains many local stationary points and its

solution difficulty is not reflected in the problem summary in Section D

of this chapter. Both codes required a little tuning in order to avoid

local minima. To verify both MINOS and XS solutions, an XS option was

invoked which uses an alternate formulation of the problem using the

original objective function as a constraint, replacing it with an implicit

objective function. (Recall that XS implicitly uses penalties in its

objective function.) This constraint value then provides the actual

objective function value in the final solution. Although the final

results achieved for XS using the original formulation exceeded the

alternate method in speed, alternate formulation appears to be very

4Reference not viewed by author.

55

robust and seems to be a useful tool with much to recommend it for

XS used on problems containing multiple local starting points.

5. Problem 5 (Himmelblau 20)

This problem [Ref. 355] contains a linear objective function, 24

independent variables, 12 nonlinear equality, two linear equality, and

six nonlinear equality constraints. The independent variables also are

bounded to positive values. Both codes returned identical solutions from

all three starting points, however, XS required more time to reach the

solution.

6. Problem 6 (Himmelblau 23--continuous relaxation)

This is a weapon assignment problem formulated by Mylander [Ref.

36 5] and presented by Bracken and McCormick [Ref. 32: pp. 22-26]

with 100 independent variables, a nonlinear objective function, 12 linear

constraints and zero lower bounds for all variables. This problem was

formulated for XS using the GUB option. Both codes returned approximately

equal objective function values from all three starting points, however,

the returned variable values were quite diverse, which comfirmed previously

reported results [Ref. 25, 26]. XS required somewhat longer to reach the

solution.

Since it was suspected that the variability in reported results

might be due to the integer nature of the variables in the original

formulation which had been approximated with continuous variables by all

previous solution attempts, the problem was reformulated with integer

(binary) variables using XS and solved again as Problem 12 below.

5Reference not viewed by author.

56

'.

7. Problem 7 (Waterman 7)

This problem was adapted by Waterman [Ref. 25] from an inventory

model created by Choe and Schrady [Ref. 27: pp. 451-463]. The first 50

variables represent the reorder quantity for 50 inventory items and the

next 50 variables represent the reorder points for the same 50 items.

The problem contains one linear and one nonlinear inequality constraint

and 50 lower bounds on the variables. This was the most difficult

problem solved by both codes. MINOS returned approximately the same

solutions from all three starting points, however much more time was

required from the alternate starting points. MINOS could not achieve a

solution from the second starting point with the conjugate gradient

option, but achieved much quicker solutions from the remaining two

points. XS did not return as good a solution from any of the starting

points and also required more time to solve the problem.

8. Problem 8 (Waterman 8)

This problem was adapted from an entropy model proposed by

Scott [Ref. 28: pp. 204-211]. The nodes depict 46 population centers

connected by a transportation network, represented by the connecting

arcs. Using a congestion cost function, the model yields an equilibrium

solution that identifies node populations as entropic functions of the

total cost of transportation to a central place of work. The problem has

46 independent variables, one nonlinear inequality and one linear equality

constraint, and 46 lower bounds on the variables. MINOS returned the

same solutions from all three starting points. Solution times for both

systems changed significantly with starting points.

57

*A

9. Problem 9 (Dean 9--Game)

This is an example of a small problem developed from a classroom

exercise to serve as an example of how quickly problems of a very basic

nature can be solved using the codes as time-saving tools. The problem

has one nonlinear equality constraint and two independent variables.

Both codes found the solution from all three starting points in comparable

amounts of time. It took less than an hour (clock time) from start of

initial problem formulation until solutions were available from both

codes.

10. Problem 10 (Dean--Sortie)

This problem is from current work being done by the U.S. Air

Force based on a model done by Clasen, Graves, and Lu [Ref. 37]. It

contains 81 linear constraints and 793 independent variables. Because of

time constraints and an unsuitable data format for direct input to MINOS,

the problem was only solved using XS. The GUB feature of XS was also

used on this problem. The results are given to provide a measure of

comparison of this relatively large problem with the other smaller test

problems. Also, the run time for this problem on the host computer

using the Air Force's present, but dated, solution algorithm is 321

seconds.

11. Problem 11 (Dean--ETAMACRO)

This is Manne's energy problem ETAMACRO [Ref. 29: pp. 1-45] and

is included on the MINOS distribution tape as a test problem. It contains

401 linear constraints and 688 independent variables. Because the model

was formulated in close conjunction with the developers of MINOS, the

formulation is very compatible with that code's structure. However, it

58

was not suitably formulated to exploit the elastic features of XS and

although the problem was solved in its linear form by XS, time constraints

precluded a complete reformulation which would have been necessary in

order to solve the problem efficiently on XS. It is presented here because

of its relatively large size in comparison to the other test problems, in

order to give some indication of MINOS' performance on large problems.

12. Problem 12 (Himmelblau 23--Integer Nonlinear)

This is a reformulation of Problem 6 with integer (binary)

variables instead of the continuous approximations used in Problem 6.

XS's GUB option was also exercised on this problem. Because of the

integer nature of the variables, the problem was only run on XS. this

problem has never before been solved as a nonlinear integer model.

13. Problem 13 (Dean--Integer Nonlinear)

This problem [Ref. 38: pp. 519-536] was submitted by Schmit

to Graves and is an example of a current engineering design problem that

is highly nonlinear and contains integer variables. It has 48 nonlinear

inequality and three linear inequality constraints and 12 independent

variables, of which 8 are integer (binary). Because of the integer

variables, the problem was solved only with XS, but is listed as an

example of a nonlinear integer problem solution by XS.

D. PROBLEM SUMMARY

This problem summary lists results for MINOS using the default

(on small problems) quasi-Newton method as well as the conjugate gradient

option normally used only for large problems. This is done to present

a complete comparison of the two codes using their respective large-scale

algorithms. XS does not provide an automatic second-order descent method

59

- ~ _______________

option (although [Ref. 19] presents the groundwork for such an option

without the "elastic" framework) since it would be of little use with the

large problems for which XS is designed.

Primary Alternate Alternate
Solution Solution Solution

Problem 1 (Himmelblau 6)

MINOS
(quasi-Newton)

Obj. Fn. -1895.4 -1895.9 -1906.5
Linearizations 1 1 1
Pivots 49 50 49
Fn. Evals. 16 15 15
CPU time 0.07 0.06 0.06

(Conj. Grad.)
Obj. Fn. -1895.4 -1895.9 -1906.5
Linearizations 1 1 1
Pivots 49 50 49
Fn. Evals. 16 15 15
CPU time 0.09 0.07 0.07

XS (compact template)

Obj. Fn. -1910.0 -1910.0 -1910.0
Linearizations 3 3 3
Pivots 154 130 145
Fn. Evals. 151 150 150
CPU time 0.39 0.36 0.41

60

Primary Alternate Alternate
Solution Solution Solution

Problem 2 (Himmelblau 4A)

MINOS
(quasi-Newton)

Obj. Fn. -47.761 -47.761 -47.761
Linearizations 16 14 24
Pivots 208 126 267
Fn. Evals. 1016 608 1132
CPU time 1.11 0.67 1.31

(Conj. Grad.)
Obj. Fn. -47.761 -47.761 -47.761
Linearizations 16 14 24
Pivots 501 281 496
Fn. Evals. 3110 1620 3194
CPU time 2.68 1.46 2.70

XS (compact template)

Obj. Fn. -47.766 -47.762 -47.761
Linearizations 41 54 45
Pivots 397 469 456
Fn. Evals. 642 816 716
CPU time 0.80 0.98 0.82

Problem 3 (Himmelblau 18)

MINOS
(quasi-Newton)

Obj. Fn. -32.349 -32.349 -32.349
Linearizations 7 8 9
Pivots 76 61 93
Fn. Evals. 329 264 403
CPU time 0.32 0.29 0.43

(Conj. Grad.)
Obj. Fn. -32.349 -32.349 -32.349
Linearizations 8 12 9
Pivots 121 346 444
Fn. Evals. 626 2110 2525
CPU time 0.51 1.60 1.93

XS (compact template)

Obj. Fn. -34.228 -38.651 -33.546
Linearizations 7 9 18
Pivots 100 102 177
Fn. Evals. 153 191 393
CPU time 0.17 0.20 0.37

61

Primary Alternate Alternate

Solution Solution Solution

Problem 4 (Himmelblau 16)

MINOS
(quasi-Newton)

Obj. Fn. -0.86603 -0.86603 -0.86603
Linearizations 7 9 20
Pivots 52 87 168
Fn. Evals. 207 317 688
CPU time 0.29 0.42 0.96

(Conj. Grad.)
Obj. Fn. -0.86603 -0.86603 -0.86603
Linearizations 7 9 20
Pivots 78 120 324
Fn. Evals. 370 551 1698
CPU time 0.39 0.55 1.67

XS (compact template)

Obj. Fn. -0.86606 -0.86605 -0.86606
Linearizations 28 32 29
Pivots 356 340 356
Fn. Evals. 413 551 427
CPU time 0.40 0.51 0.41

Problem 5 (Himmelblau 20)

MINOS
(quasi-Newton)

Obj. Fn. 0.05566 0.05566 0.05566
Linearizations 6 11 7
Pivots 52 104 62
Fn. Evals. 48 129 85
CPU time 0.63 1.28 0.91

(Conj. Grad.)
Obj. Fn. 0.05566 0.05566 0.05566
Linearizations 6 11 7
Pivots 56 122 88
Fn. Evals. 61 185 149
CPU time 0.76 1.57 1.32

XS (compact template)

Obj. Fn. 0.05566 0.05566 0.05566
Linearizations 8 13 11
Pivots 476 628 514
Fn. Evals. 444 686 591
CPU time 1.61 2.45 1.78

62

/

Primary Alternate Alternate

Solution Solution Solution

Problem 6 (Himmelblau 23--continuous relaxation)

MINOS
(quasi-Newton)

Obj. Fn. -1735.6 -1735.6 -1735.6
Linearizations 1 1 1
Pivots 145 159 159
Fn. Evals. 311 343 343
CPU time 1.75 1.96 1.96

(Conj. Grad.)
Obj. Fn. -1735.6 -1735.6 -1735.6
Linearizations 1 1 1
Pivots 243 297 297
Fr. Evals. 630 742 742
CPU time 2.67 3.21 3.22

XS (compact template)

Obj. Fn. -1734.5 -1735.0 -1734.6
Linearizations 38 31 33
Pivots 2424 2194 2390
Fn. Evals. 4068 3333 3542
CPU time 3.85 3.22 3.51

Problem 7 (Waterman 7)

MINOS
(quasi-Newton)

Obj. Fn. 80.744 80.727 80.727
Linearizations 11 33 21
Pivots 373 1227 784
Fn. Evals. 2087 6927 4231
CPU time 28.03 70.55 54.67

(Coni. Grad.)
Obj. Fn. 80.744 80.727
Linearizations 19 No 15
Pivots 662 Solution 507
Fn. Evals. 4657 4041
CPU time 14.64 12.53

XS (compact template)

Obj. Fn. 85.231 80.726 90.604
Linearizations 54 144 117
Pivots 4489 14088 9207
Fn. Evals. 5915 15283 12798
CPU time 26.31 67.68 57.32

63

/

Primary Alternate Alternate

Solution Solution Solution

Problem 8 (Waterman 8)

MINOS
quasi-Newton)

Obj. Fn. -3.4685 -3.4685 -3.4685
Linearizations 6 9 8
Pivots 148 231 146
Fn. Evals. 718 1163 715
CPU time 4.09 6.41 4.06

(Conj. Grad.)
Obj. Fn. -3.4685 -3.4685 -3.4685
Linearizations 6 8 5
Pivots 163 240 142
Fn. Evals. 991 1417 884
CPU time 2.79 4.04 2.48

XS (compact template)

Obj. Fn. -3.4519 -3.4689 -3.4643
Linearizations 13 40 12
Pivots 787 1842 676
Fn. Evals. 1225 3871 1174
CPU time 3.03 8.02 2.57

Problem 9 (Dean 9--Game)

MINOS
(quasi-Newton)

Obj. Fn. 345.00 345.00 345.00
Linearizations 6 5 5
Pivots 12 8 6
Fn. Evall. 52 39 37
CUtime 0.05 0.03 0.03

(Conj. Grad.)
Obj. Fn. 345.00 345.00 345.00
Linearizations 6 5 5
Pivots 12 8 6
Fni. Evals. 52 39 37
CPU time 0.04 0.03 0.02

XS (compact template)

Obj. Fn. 344.94 342.59 345.01
Linearizations 33 3 10
Pivots 63 3 14
Fni. Evals. 293 44 87
CPU time 0.15 64 0.01 0.05

Primary

Solution

Problem 10 (Dean 10--Sortie)

XS (super-sparse)

Obj. Fn. 2.0087D+6
Linearizations 3
Pivots 977
Fn. Evals. 2393
CPU time 8.60

Problem 11 (Dean 11--ETAMACRO)

MINOS
(quasi-Newton)
Obj. Fn. 1337.7
Linearizations I
Pivots 1331
Fn. Evals. 1926
CPU time 41.36

(Conj. Grad.)
Obj. Fn. 1337.7
Linearizations 1
Pivots 32640
Fn. Evals. 68868
CPU time 1028.05

Problem 12 (Himmelblau 23--Integer Nonlinear)

XS (compact template)

Obj. Fn. -1734.2
Linearizations 30
Integer Linear. 3
Pivots 285
Fn. Evals. 211
CPU time 4.41

Problem 13 (Dean 13-- Integer Nonlinear)

XS (compact template)

Obj. Fn. 0.12000
Linearizations 6
Integer Linear. 3
Pivots 63
Fn. Evals. 145
CPU time 0.55

65

Ii
' I.V. ' '

IV. CONCLUSIONS

A. ALGORITHM CAPABILITIES

1. Type of Problems

MINOS is capable of reliably solving both the general (LP) and

(NLP) problems with any combination of linear and nonlinear constraints,

but cannot accommodate integer variables.

XS has the same capabilities as MINOS with the addition of the

use of integer variables. XS can also employ decomposition and basis

factorization.

2. Growth Possibilities

There is no inherent maximum problem size for either MINOS

or XS. For sheer capacity, they are both limited by the computer memory

requirements for their working arrays. However, as noted in Section

II.A.1 for MINOS, in large problems (when the number of superbasic

variables exceeds 100 or 200) the shift to the conjugate gradient algo-

rithm, which consumes less memory, results in a significant decrease in

the theoretical rate of convegence of the algorithm [Ref. 5: p. 10].

B. CPU TIME

MINOS was a bit quicker in solving many of the problems of this

study. While XS yields 2-3 decimal place precision in the objective

function faster than MINOS, MINOS usually prevails in 3-5 place efficiency

(even when using first-order conjugate gradient options).

66

/V

C. STORAGE RE.C',REMENTS

For linear programs containing m general constraints, roughly

100(m)-bytes of memory are required for workspace by MINOS. If there are

many nonlinear variables, additional memory may be required. This

workspace size may be adjusted by changing the size of one array in the

main program for MINOS or by a non-FORTRAN routine that allocates storage

at run-time. The choice of method is machine-dependent and guidelines

are provided to the user in the documentation [Ref. 4].

XS, used strictly in-core, requires a region of approximately

56(MN) + 8(NR) + 200K-bytes where MN is the total rows + cols, and NR is

the size of the distinct real value pool. Storage requirements for

nonlinear problems known to this writer are not a significant considera-

tion for XS, or for MINOS.

D. NUMBER OF ITERATIONS

Each major iteration of MINOS creates a local linearization of

the nonlinear program, and then solves it after addition of a quadratic

(augmented Lagrangian) objective function. XS simply solves local

linearizations (with augmentation of the linear penalty function and

local trust region). MINOS usually requires less of its iterations than

does XS, but evidently works harder on each.

Pivots (minor iterations) for MINOS represent classical basis exchanges

(a superbasic variable becomes basic, replacing a basic variable which

becomes nonbasic). XS pivots are counted in several varieties, including

logical cases in which no basis change or objective function improvement

takes place but the logical composition of the solution changes. XS

67

* Iv

usually requires more of its pivots than does MINOS, but apparently

executes each of them faster.

Iteration counts do not appear to be adeuate general measures of

efficiency for dissimilar optimization algorithms, or even alternate

implementations of the same algorithm.

E. NUMBER OF FUNCTION EVALUATIONS

For the objective vunction precision specified in these tests,

MINOS has generally required less function (/gradient) calls than XS.

This difference can be crucial for problems in which function generation

requires the vast majority of computing effort. However, a paradox is

apparent in that such problems often have no closed-firm derivatives:

desirable for (quasi-Newton) second-order algorithms. 6 In most cases,

XS provides 2-3 decimal place precision in the objective function value

with less function evaluations than MINOS, but MINOS produces 3-5 place

precision with less function calls than XS. MINOS usually requires more

function evaluations than XS to yield a feasible solution.

For most classes of functions (polynomial, exponential, etc.), the

gradient is of the same class as the function; the function calls (and

therefore the required CPU time) to determine gradient information are

approximately the same for both analytic and numerical methods.

A conversation late in this research with Professor G. Vanderplatz,

Dept. of Mechanical Engineering, Naval Postgraduage School, revealed
that his widely used optimization codes for engineering design problems
have been evaluated using the number of function calls as the exclusive
gauge of efficiency, that closed-form gradients are rarely available for
such problems, and that empirical engineering data resolution may often
be as poor as + 20 percent.

68

j,

F. USER FRIENDLINESS

Because of its documentation and intended use, it was expected from

the start of the study that MINOS would be the system most amenable to

the user and the results bear this out.

1. Ease of Setup

This was one area in which MINOS was not necessarily better.

The requirements for providing analytic gradients proved to be very time

consuming, notwithstanding their aforementioned use as a trouble-shooting

aid. In addition, the need to refer to a number of documents for construc-

ting the SPECS and MPS files (until "templates" were constructed) was a

handicap to the new user. Once the programming aids were in place, construc-

tion of a new problem became quite straightforward with a minimum of

outside reference required.

Although relatively little was required of the user for initial

setup on XS, becoming familiar with the techniques of using "pointer"

variables required time; especially with the dearth of documentation.

Interestingly, as the user becomes more experienced with both

systems, MINOS becomes easier to use with the exception of the gradient

functions, while in some ways XS becomes more difficult as the profound

tuning capability of the system becomes apparent and places more demands

on the talents of the user/analyst (i.e., appropriate problem formulation).

2. Debug Output

Both systems are capable of producing voluminous debug listings

to assist the user, and the only limitation is the knowledge and patience

of the user in their interpretation.

69

,I

3. Failure Mode

Both codes give comprehensive output to indicate why they

fal. As long as the user is sophisticated enough in system use to

understand the diagnostics, he can usually intuit the cause.

4. Robustness

Default values exist for all parameters in the SPECS file for

MINOS and experience has shown these values to be very robust with little

tuning required other than specifying the problem-specific size parameters.

Although the explicit statement of the objective function gradient is

recommended for MINOS CRef 6: p. 18], experimentation with the objective

function differencing option has revealed no significant change in

solution values or CPU time between the explicit gradient and the numerical

differencing representation.

Many of the XS tuning parameters are dependent on the scaling of

the problem, and their robustness is in direct proportion with the user's

ability to provide a well-scaled problem. This just requires reasonable

care in the original problem formulation, but for complex test problems

presented in completed form, reformulation and scaling can be vexing.

G. SUMMARY

After 15 months of intensive use of both codes, it is apparent

that both systems have achieved what their designers intended. MINOS is

a well-documented, easy-to-use code that reliably achieves excellent

results on the general (NLP) problem while demanding only moderate skill

of the user. Its default parameters are robust and require minimal

tuning to achieve satisfactory results. Although its input files can be

somewhat cumbersome to manage, they are straightforward and unlikely to

70

cause a confidence crisis for the inexperienced user. Constraint gradi-

ents, on the other hand, can be arduous to prepare and debug, even for

simple test problems. MINOS does not have some of the more sophisticated

file editing and solution options, but its developers candidly admit that

this was not a design goal. MINOS is not capable of handling integer

variables, but again, was not intended to do so. MINOS appears to be a

significant improvement over other contemporary codes, and a most useful

tool for the modeller/analyst.

XS, is also exactly what it is claimed to be: an experimental

testbed for state-of-the-art optimization research. It is very easy to

use, but is not intended primarily for the casual, inexperienced user.

Nor is XS specifically designed for nonlinear models. XS provides many

flexible file editing, problem representation, solution, and report

options, but is designed for efficient custom applications to particular

classes of models. The default nonlinear feature of XS, operating with

one of the problem representation "templates," provides a quick-turnaround

modelling enviornment.

XS is designed to accommodate problems with no analytic gradients,

poor data resolution, approximated functions, and all the attendant

difficulties of real-life optimization at large-scale. Problems should

be formulated for XS with realistic range intervals and meaningful

penalties associated with constraints. Accordingly, XS can encounter

difficulties with artificial test problems presented in strictest equality

form with default (rather than modelled) penalties.

The large-scale nonlinear integer capability of XS, combined with

basis factorization (e.g., GUB), decomposition facilities, etc., make it

71

/
s . .

truly unique in the field of large-scale optimization. It is capable of

solving problems that no other system in the world known to the author

can attempt. By achieving this, XS has more than fulfilled the goals of

its developers.

7

72

. " / . . ~ - ...- tp

APPENDIX A

TEST PROBLEMS AND RESULTS

Problem 1 (Himmelblau 6)

Source: [Ref. 30)

No. of variables: 45

No. of constraints: 16 linear equality constraints

Objective function:

k=1x j=jk;
Minimize: f(x) = k Xj(jk + In .E E jkI Xj nk

j =1

Constraints:

7 nk

gi(x) = Eijkxijk - b i 0 i l....,16

k=1 j=1

jXjk> 0 = l,...,nk k =,...,7

73

..'I . ..": __I,

b.'s and for Problem 1

bj k Cjk j k Cjk

1 0.6529581 1 1 0.0 6 3 0.0

2 0.281941 2 1 -7.69 7 3 2.2435

3 3.705233 3 1 -11.52 8 3 0.0

4 47.00022 4 1 -36.60 9 3 -39.39

5 47.02972 1 2 -10.94 10 3 -21.49

6 0.08005 2 2 0.0 11 3 -32.84

7 0.08813 3 2 0.0 12 3 6.12

8 0.04829 4 2 0.0 13 3 0.0

9 0.0155 5 2 0.0 14 3 0.0

10 0.0211275 6 2 0.0 15 3 -1.9028

11 0.0022725 7 2 0.0 16 3 -2.8889

12 0.0 8 2 2.5966 17 3 -3.3622

13 0.0 9 2 -39.39 18 3 -7.4854

14 0.0 10 . 2- -21.35 1 4 -15.639

15 0.0 11 2 -32.84 2 4 0.0

16 0.0 12 2 6.26 3 4 21.81

13 2 0.0 1 5 -16.79

1 3 10.45 2 5 0.0

2 3 0.0 3 5 18.9779

3 3 -0.50 1 6 0.0

4 3 0.0 2 6 11.959

5 3 0.0 1 7 0.0

2 7 12.899

74

/
S U. , ,.,. ."

Eik Data for Problem 1

ix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

21"21 1

"31 1

"41

12

x22
"32 1

INI

"42
1 -1

"52 -1

x62 1
x72

1 821i

x8292 I1

110,2 1 1
-1

11,2 1 1 1

"12,2 1 -1 -2

x13,2
"13

"23 1

y33 1

x43

x53

x63
[1

83
"93i

"10,3 1 1

,121,3

x13,3

75

, sip

Xjk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -4
x 14,3 1 -4

x1513 1 1 -3 -1

'16,3 2 1 -2 -2

x17,3 3 1 -1 -3

x 4 1 -4

x14 1

x 24 1

x134 1 -4

x15 1 1

x25 1

x135 1 -4

x16 1

x 26-1 1

x17 1

x27 -1

Alternate Initial Points:

a) Xjk = 0.01 j=1 ,...,nk k=,...,7

b) Xjk = 1.0 jl,...,nk

76

S I

Results for Problem I

Initial MINOS XS

f(x) -30.958 -1895.4 -1910.0

x 0.1 0.64387 0.0

x21 0.1 0.0 0.25803

X31 0.1 3.7052 3.7052

x41 0.1 0.0 0.32129

x12 0.1 0.0 0.64736

x22 0.1 0.0 0.0

x32 0.1 0.0 0.0

x4 2 0.1 0.0 0.0

x52 0.1 0.72630D-01 0.0

x62 0.1 0.0 0.172790-01

x72 0.1 0.881300-01 0.362700-01

x82 0.1 0.0 0.0

x092 0.1 46.675 33.231

x10,2 0.1 0.0 0.0

x1 1 ,2 0.1 0.0 0.0

x12,2 0.1 0.0 0.0

x13,2 0.1 0.155000-01 0.155000-01

x13 0.1 0.0 0.0

x2 3 0.1 0.0 0.0

x33 0.1 0.0 0.0

x4 3 0.1 0.0 0.0

x53 0.1 0.0 0.0

x063 0.1 0.80050D-01 0.627710-01

x073 0.1 0.0 0.51860D-01

x083 0.1 0.482900-01 0.482900-02

x93 0.1 0.30577 13.476

x10,3 0.1 0.0 0.151700-02

xl1,3 0.1 0.0 0.0

x12 ,3 0.1 0.28194 0.0

x13,3 0.1 0.21127D-01 0.21127D-01

X14 ,3 0.1 0.0 0.116820-03
77

,I'

Initial MINOS XS

x015,3 0.1 0.0 0.10080D-02

x 0.1 0.0 0.0

x,7,3 0.1 0.0 0.0

x 18,3 0.1 0.22725D-02 0.11477D-02

x 0.1 0.0 0.0

x24 0.1 0.0 0.0

x034 0.1 0.90900D-02 0.55987D-02

x15 0.1 0.0 0.0
x25 0.1 0.0 0.0

x35 0.1 0.0 0.0

x16 0.1 0.3636D-01 0.0

x26 0.1 0.0 0.22395D-01

x17 0.1 0.0 0.0

x27 0.1 0.0 0.0

gl(x) 0.647 0.65296 0.65296

0.818 0.28194 0.28194
g3(x) -3.405 3.7052 3.7052
g4(x) -46.70 47.000 47.000

g5 (x) -45.93 47.030 47.030

g6 (x) 0.12 0.80050D-01 0.80050D-01

g7 (x) 0.112 0.881300-01 0.88130D-01

g8 (x) 0.152 0.482900-01 0.482900-01

g9 (x) 0.085 0.15500D-01 0.15500D-01

g10 (x) 0.079 0.211270-01 0.21127D-01

g11 (x) 0.498 0.22725D-02 0.22725D-02

g1 2 (x) -1.3 0.0 0.0

g13 (x) -0.7 0.0 0.0

g14 (x) 0.3 0.0 0.0

g15 (x) -0.2 0.0 0.0

g16 (x) -0.2 0.0 0.0

78

Problem 2 (Himmelblau 4A)

Source: [Ref. 31, 32]

No. of independent variables: 10

No. of constraints: 3 nonlinear equality constraints

Objective function:

10 -10

Minimize: f(x) e xi c i + xi In exi

= . i i=1

Constraints:

gl(x) = e 1 + 2ex2 + 2eX3 + ex6 + e×10 2 = 0

92(x) = e + 2ex5 + ex6 + ex7 _ = 0

g3(x) = eX3 + eX7 + ex8 + 2ex9 + exlO - 1 = 0

where cI = -6.089 c2 = -17.164 c3 = -34.054 c4 = -5.914

c5 = -24.721 c6 = -14.986 c7 = -24.1000

c8 = -10.708 c9 = -26.662 c10 -22.179

79

A-~~L.,

Results for Problem 2

Initial MINOS XS

f(x) -21.015 -47.761 -48.113

x-2.3 -3.2023 -3.3543

x2-2.3 -1.9124 -1.9456

x3-2.3 -0.24443 -0.22381

x4-2.3 -6.5612 -7.5599

x5-2.3 0.72310 -0.72055

x6-2.3 -7.2742 -7.1958

x7-2.3 -3.5973 -3.5789

x8-2.3 -4.0203 -5.1213

x9-2.3 -3.2884 -3.0806

x 0-2.3 -2.3344 -2.4085

g x -1.298 0.0 0.103830-01

92(x) -0.499 0.0 0.214300-02

93(x) -0.398 0.0 0.151530-01

Alternate Initial Points:

a) x 1 = 2.0 i=1,...,10

b) xi = -5.0 i=1,...,10

80

Problem 3 (Himmelblau 18)

Source: [Ref. 33]

No. of variables: 15

No. of constraints: 5 nonlinear inequality constraints

15 bounds on independent variables

Objective function:

10 5 5 5

Maximize: f(x) bix i - E E yz - 2 E djz 3

i=I j=1 i=1 j=1

where y = cijx(lo+i)

and z a X(lO+i)

Constraints:

2 10

2 y + 3djz2 + eJ aijxi 0 j 1,...,5

xi > 0 i 1,...,15

81

Data for Problem 3

J1 2 3 4 5

e -15 -27 -36 -18 -12

C 30 -20 -10 32 -10

c2i -20 39 -6 -31 32

c -10 -6 10 -6 -10

c4j 32 -31 -6 39 -20

c5i -10 32 -10 -20 30

d 4 8 10 6 2

alj -16 2 0 1 0

a2i 0 -2 0 0.4 2

a3j -3.5 0 2 0 0

a4j 0 -2 0 -4 -1

a5i 0 -9 -2 1 -2.8

a6i 2 0 -4 0 0

a7, -1 -1 -1 -1 -1

a8i -1 -2 -3 -2 -1

a9 1 2 3 4 5

a1Oj 1 1 1 1 1

b1 b2 b3 b4 b5 b6 b7 b8 b9 blo

-40 -2 -.25 -4 -4 -1 -40 -60 5 1

Alternate Initial Points:

a) xi x 5.0 i-1,...,15

b) xi - 15.0

82

Results for Problem 3

Initial MINOS XS

f(x) 2400.1 -32.349 -34.228

1 .OD-04 0.0 0.0

x 2 1.00-04 0.0 0.0

x31.00-04 5.1740 6.3781

x41.00-04 0.0 0.19670

x 5 1.00-04 3.0611 3.6463

x61.00-04 11.840 12.886

x 7 6.00-01 0.0 0.0

x1.00-04 0.0 0.0
1.08 .09 .

x1.00-04 0.10 0.0

X11 1.00-04 0.30000 0.20177D-01

1, .00-04 0.33347 0.0

x31.OD-04 0.40000 0.0

x14 1.00-04 0.42831 0.36088

x 51.00-04 0.22396 0.26740

gjx) 4.50-01 0.0 0.51426

92(x) 3.3D-01 0.0 0.14235

93(x) 2.40-01 0.0 0.0

94(xW 4.20-01 0.0 0.22845

g()4.8D-01 0.0 0.40583D-01

83

L-AI.

i
Problem 4 (Himmelblau 16)

Source: [Ref. 34]

No. of variables: 9

No. of constraints: 13 nonlinear inequality constraints

1 upper bound

Objective function:

maximize:

f(x) = O.5(xlx 4 - x2x3 + x3x9 - x5x9 + xX8 - x6x7)

Constraints:

1 - X2 - x2 > 03 4
1-x 2 > 0

9 o

1 -x 2 x 2 > 05 6

1 2 - 2

1 (xl - x5)2 _ (x2 - x6)2 > 0

1 (xI - x7)2 (x2 - x8)2 > 0
1 (x3 -X) - x2 - 0

1- (x3 - x7)2 - (x4 - x8)2> 0
1- - 2xxg

(x8 -x 9) >0

x1X4 - x2x 3 > 0

x 3x9 > 0

x5x8 - 6x~7>
-x > 0

9-

84

Results for Problem 4

Initial MINOS XS

f(x) 0.0 -0.86603 -0.86581

xI 1.0 -0.78028D-01 0.93171

x2 1.0 -0.67479 0.36276

x3 1.0 0.82437 0.16281

x4 1.0 -0.56605 0.98669

x5 1.0 -0.780280-01 0.93573

x6 1.0 -0.99695 0.35193

x7 1.0 0.82437 0.15144

x8 1.0 -0.24388 0.98818

x9 1.0 0.32216 0.0

91(x) -1.0 0.0 -0.730550-04

g2(x) 0.0 0.89621 1.0000

93(x) -1.0 0.0 0.557340-03

g4 (x) 0.0 0.0 0.32201D-03

95 (x) 1.0 0.89621 0.99987

96(x) 1.0 0.0 0.311160-04

97(x) 1.0 0.0 -0.318580-03

g8(x) 1.0 0.89621 0.99987

gg (x) 0.0 0.0 0.57312D-03

glo(x) 0.0 0.60044 0.86025

g11(x) 1.0 0.26558 0.0

g12(x) -1.0 0.251380-01 0.0

913(~ 0.0 0.84089 0.87137

Alternative Initial Points:

a) xi = 1.0 i=1,...,8 X9 = 0.0

b) xi = 5.0 i-1,...,9

85

L

Problem 5 (Himielblau 20)

Source: [Ref. 35]

No. of variables: 24

No. of constraints: 12 nonlinear equality constraints

2 linear equality constraints

6 nonlinear inequality constraints

24 bounds on independent variables

Objective function:

24

minimize: f(x) = ix.

i =1

Constraints:

x(i+1 2) cixi

b(i+12) E x 40bi E 0)

j=13 j=1

24

93(x) =x i -1=0

86

. /
__L •

12 24

*14 4L + f -x1
-i 1.671 0 0

i=1 i=13

14.7

where f = (0.7302) (530)
14.7

" xi + x(i+12) + ei.>0 i = 1,2,3

-(i+14 2

Z xj
j=l

" x(i 3) + X(i+ 1 5) + e, > 0 i : 4,5,6
g2i+4 (x -

Z
xj

j=1

X, 0 i i,...,24

87

Data for Problem 5

ai b ci d e

1 0.0693 44.094 123.7 31.244 0.1

2 0.0577 58.12 31.7 36.12 0.3

3 0.05 58.12 45.7 34.784 0.4

4 0.20 137.4 14.7 92.7 0.3

5 0.26 120.9 84.7 82.7 0.6

6 0.55 170.9 27.7 91.6 0.3

7 0.06 62.501 49.7 56.708

8 0.10 84.94 7.1 82.7

9 0.12 133.425 2.1 80.8

10 0.18 82.507 17.7 64.517

11 0.10 46.07 0.85 49.4

12 0.09 60.097 0.64 49.1

13 0.0693 44.094

14 0.0577 58.12

15 0.05 58.12

16 0.20 137.4

17 0.26 120.9

18 0.55 170.9

19 0.06 62.501

20 0.10 84.94

21 0.12 133.425

22 0.18 82.507

23 0.10 46.07

24 0.09 60.097

88

T/

Results for Problem 5

Initial MINOS XS

f(x) 0.14696 0.55658D-01 0.55658D-01

xI 0.04 0.0 0.27513D-08

x2 0.04 0.10725 0.10725

×3 0.04 0.11139 0.11139

x4 0.04 0.40506D-14 0.24201D-09

x5 0.04 0.11591D-13 0.28816D-08

x6 0.04 0.22064D-14 0,13956D-10

x7 0.04 0.75541D-01 0.75541D-01

x8 0.04 0.0 0.150940-09

x9 0.04 0.0 0.80735D-08

x10 0.04 -0.174190-13 0.598600-09

x11 0.04 0.0 0.17049D-07

x12 0.04 0.11195D-01 0.11195D-01

x13 0.04 -0.10753D-16 0.55220D-07

x14 0.04 0.19275 0.19275

x15 0.04 0.28861 0.28861

x16 0.04 0.0 0.622720-09

x17 0.04 0.0 0.39282D-07

x18 0.04 0.0 0.23459D-10

x19 0.04 0.21286 0.21286

X20 0.04 0.94396D-20 0.14615D-09

x21 0.04 0.14441D-14 0.29088D-08

x22 0.04 0.0 0.14346D-08

x23 0.04 0.45547D-15 0.380280-08

x24 0.04 0.40622D-03 0.40622D-03

g1(x) -2.9D-01 0.0 0.69666D-07

2.2D-02 0.0 -0.12910D-07

92(x)

89

d6

Sg3 x) -1.5D-02 0.0 -0,812460-06

94(x) 2.80-02 0.0 0.26202D-09

94(x) -5.6D-02 0.0 0.179960-07

g6(x) 1.10-02 0.0 0.0

97(x) -2.4D-02 0.0 0.82383D-06

g8(x) 5.9D-02 0.0 0.85965D-10

g9(x) 4.30-02 0.0 0.124820-08

g1 (x) 4.10-02 0.0 0.86423D-09

(X)1.3D-01 0.0 0.55334D-0891-0.14175D-07

912(x) 1.OD-02 0.0 -0.14175D-07912W 0.0

-4.0D-02 0.0 0.0
g14 (X) -7.30-01 0.0 0.0
914(x) 1.60-02 0.10000 0.10000

915(x) 2.2D-01 0.0 0.643650-06

916(x) 3.2D-01 0.0 0.748070-06

g18(X) 2.20-01 0.11601D-01 0.11600D-01

g19(x) 5.20-01 0.60000 0.60000

920(x) 2.20-01 0.30000 0.30000

Alternative Initial Points:

a) xi 0.08

b) xi 0.02

90L 90 -

-

Problem 6 and Problem 12 (Himmelblau 23)

Source: [Ref. 32, 36]

No. of independent variables: 100

No. of constraints: 12 linear constraints

100 lower bounds on the variables

Objective function:

minimize: f(x) j:1)Ja11
Constraints:

SXij b j = 1,6,10,14,15,16,20

i:I

20

E x ij > -c i i= .,

jMi

x 0 i , , 1,...,5 20

xij c [integer] --- Problem 12 only

91

/

Data from Problem 6

ai is bits uj s

ij 1 2 3 4 5

1 1 .84 .96 1 .92 30 60

2 .95 .83 .95 1 .94 50

3 1 .85 .96 1 .92 50

4 1 .84 .96 1 .95 75

5 1 .85 .96 1 .95 40

6 .85 .81 .90 1 .98 100 60

7 .90 .81 .92 1 .98 35

8 .85 .82 .91 1 1 30

9 .80 .80 .92 1 1 25

10 1 .86 .95 .96 .90 40 150

11 1 1 .99 .91 .95 30

12 1 .98 .98 .92 .96 45

13 1 1 .99 .91 .91 125

14 1 .88 .98 .92 .98 50 200

15 1 .87 .97 .98 .99 70 200

16 1 .88 .98 .93 .99 35 130

17 1 .85 .95 1 1 100

18 .95 .84 .92 1 1 100

19 1 .85 .93 1 1 100

20 1 .85 .92 1 1 10 150

c1 200 100 300 150 250

92

L a

Results for Problem 6

Initial MINOS XS XS Integer

x() 100.0 ---- (see next page)

f(x) -1755.0 -1735.6 -1734.5 -1734.5

g1(x) -1770.0 50.815 50.236 50.0

92(x) -1800.0 100.00 100.0 100.0

g3(x) -1660.0 51.132 51.133 51.0

g4(x) -1800.0 58.824 52.928 52.0

g5(x) -1680.0 70.000 70.0 70.0

g6 (x) 505.0 41.281 48.139 53.0

g7 (X) 410.0 62.414 60.401 61.0

g8 (x) 260.0 -200.00 -200.0 -200.0

gg (x) 350.0 -100.00 -100.0 -100.0

9lo(X) 130.0 -300.00 -300.0 -300.0

gll(x) 315.0 -150.00 -150.0 -150.0

912(x) 240.0 -250.00 -250.0 -250.0

Alternative Initial Points:

a) x j = 1 0.0 X2j = 5.0 x3i % 15.0

x = 7.5 x = 12.5 j 1,...920

b) xij 1 10 i 1 1,...,5 j 1,...,20

93

i i

Weapon Type i

Target
j2 3 4 5 Total

-50.8- -50.8-
(50.2) (50.2)
50.0 50.0

2 -13.5- -1.4- -45.4- -60.3-
(33.3) (8.5) (7.9) (49.7)
40.0 7.0 5.0 2.0 54.0)

3 -48.6- -48.6-
(48.2) (48.2)
48.0 48.0

4 -23.5- -23.5-
(17.7) (15.9) (33.6)
20.0 1.0 11.0 32.0

5 -20.9- -20.9-
(13.3) (22.6) (35.9)
12.0 16.0 16.0 44.0

6 -100.0- -100.0-
(66.3) (33.7) (100.0)
76.0 24.0 100.0

7 -39.1- -39.1-
(38.7) (38.7)
38.0 38.0

8 -27.1- -27.1-
(27.0) (27.0)
26.0 26.0

9 -20.3- -20.3-
(20.3) (20.3)
20.0 20.0

10 -51.1- -51.1-
(51.1) (51.1)
51.0 51.0

- denotes MINOS variables

() denotes XS variables

No brackets denotes XS integer variables for Problem 12.

94

/ -A7 g5A NVLPSGAUT COLMNEE AFG1/
CO-A0928 AIOAL GADACESHO I NERECA NOLIEA 12/1ZTIN.U
SEOPUTAS I0NAR DANCE NLRESAENNIEROTMZTO.U

UNLASSIIED N

I ENDmommmn

Lm2~

PIP

2! 5-

ll~IQ2.0
11111_L.25

Target
j 3 4 5 Total

11 -33.2- -33.2-

(32.2) (1.5) (33.7)
22.0 18.0 40.0

12 -40.9- -40.9-
(40.5) (40.5)
40.0 40.0

13 -54.0- -54.0-
(52.4) (52.4)
54.0 54.0

14 -58.8- -58.8-
(9.6) (43.3) (52.9)
10.0 42.0 42.0

15 -26.2- -43.8- -70.0-
(26.5) (43.5) (70.0)
26.0 44.0 44.0

16 -24.2- -17.0- -41.2-
(14.1) (34.0) (48.1)
7.0 46.0 46.0

17 -3.8- -72.0- -75.8-
(10.1) (52.1) (62.2)
18.0 27.0 27.0

18 -57.6- -57.6-
(14.4) (46.0) (60.4)

58.0 58.0

19 -64.2- -64.2-
(63.3) (64.3)
64.0 64.0

20 -62.4- -62.4-
(60.4) (60.4)
61.0 61.0

Totals -200- -100- -300- -150- -250-
(200) (100) (300) (150) (250)
200 100 300 150 250

- - denotes MINOS variables

() denotes XS variables

No brackets denotes XS integer variables for Problem 12.

95

Problem 7 (Waterman 7)

Source: (Ref. 27]

No. of variables: 100

No. of constraints: 1 linear constraint

1 nonlinear constraint

50 lower bounds on the variables

Objective function:

50S B.(x. + 50)

minimize: f(x) =
xi+

i=1

where

450) 1 ~ (s 2 + d 2)~[si d i o dy]

and

di X (i + 50) " mi

-x
2

1 e /2

J (x)dx

I

96

Constraints:

50 x

E c1 =~- +X4(i+ 5 0) -m ~

01

K* 200,000

K2= 300 '

1 97

Data from Problem 7

Li's ci s mi's si s

1 1000 1 100 100

2 1500 10 200 100

3 2000 20 300 200

4 1100 17 200 100

5 1900 23 100 100

6 700 8 200 200

7 400 12 200 200

8 1200 19 300 100

9 2000 2 500 200

10 1300 5 300 100

11 1900 21 100 100

12 900 16 200 200

13 1400 13 400 200

14 1500 19 500 300

15 2200 7 400 100

16 1700 4 300 100

17 1800 12 200 200

18 800 5 100 100

19 700 18 100 100

20 1100 16 100 100

21 1000 14 200 100

22 1800 21 200 200

23 1500 6 400 300

24 2100 6 500 100

25 1600 14 100 100

98

Li's cis m 's s. s

26 700 2 100 100

27 2000 12 200 200

28 1800 3 500 300

29 1700 1 200 200

30 700 18 300 200

31 1200 19 100 100

32 1100 12 100 100

33 1700 9 500 100

34 600 8 300 100

35 400 1 200 100

36 1000 3 100 100

37 1900 17 400 300

38 1500 15 200 200

39 1400 18 400 300

40 1200 16 500 300

41 1300 5 100 100

42 1900 12 200 100

43 2000 15 300 200

44 2200 20 400 200

45 800 23 100 100

46 1900 17 200 200

47 2100 16 500 200

48 2000 4 500 300

49 500 8 100 100

50 900 12 100 100

99

/
! 'V

Results for Problem 7

Initial MINOS XS

f(x) 2008.2 80.744 86.215

x 300.0 440.22 353.95

x2 300.0 202.72 183.778

x3 300.0 235.98 221.42

x4 300.0 153.51 143.77

x5 300.0 169.57 151.49

x6 300.0 213.66 201.95

x7 300.0 180.91 259.13

x8 300.0 153.31 224.45

x9 300.0 479.48 464.12

x10 300.0 248.16 259.13

x11 300.0 174.01 157.05

x12 300.0 203.71 210.64

x13 300.0 232.75 222.45

x14 300.0 286.23 464.12

x15 300.0 270.84 237.75

x16 300.0 304.74 272.13

x17 300.0 253.87 259.13

x18 300.0 203.51 182.61

x19 300.0 131.70 224.16

x20 300.0 156.08 142.31

x21 300.0 156.98 143.74

x22 300.0 228.41 220.12

x23 300.0 336.01 464.12

x24 300.0 282.50 252.25

x25 300.0 185.38 166.27

x26 300.0 276.92 246.86

x27 300.0 261.94 259.13

100

I[

Initial MINOS XS

x28 300.0 432.01 602.37

x29 300.0 500.00 462.028

x30 300.0 192.82 187.38

x 300.0 153.31 139.08

x32 300.0 169.95 153.28

x 300.0 221.19 211.62

x34 300.0 155.56 146.33

x35 300.0 290.95 258.89

x36 300.0 272.94 242.92
x 37 300.0 300.04 464.12

x38 300.0 230.70 220.40

x39 300.0 283.96 464.12

X40 300.0 279.00 464.12

x41 300.0 248.16 222.23

x42 300.0 208.39 186.85

x43 300.0 249.02 233.13

x44 300.0 241.68 228.57

x45 300.0 130.00 118.90

x46 300.0 239.61 242.71

x47 300.0 249.04 464.12

x48 300.0 409.47 602.37

x49 300.0 146.09 132.06

x50 300.0 158.39 144.48

x51 300.0 297.80 304.94

x52 300.0 334.36 337.09

x53 300.0 554.47 556.60

x54 300.0 322.41 323.76

x55 300.0 202.27 208.06

x56 300.0 543.68 544.60

101

Initial MINOS XS

x 300.0 523.86 488.01

x58 300.0 417.05 393.27

x59 300.0 889.14 887.20

x60 300.0 456.24 451.26

x61 300.0 205.63 210.34

x62 300.0 488.59 480.47

x 300.0 695.20 694.72

x 300.0 918.47 844.03

x65 300.0 537.44 543.22
66300.0 457.00 462.07

x67 300.0 494.59 486.77

x68 300.0 264.64 269.03
69300.0 227.02 227.42

x 300.0 224.53 227.08

x71 300.0 330.59 332.73
72300.0 452.93 451.28

x73 300.0 944.49 898.59

x74 300.0 642.53 646.69
75300.0 222.58 227.31

x76 300.0 289.05 292.90

x77 300.0 491.82 486.77
K78 300.0 1095.5 1051.1

x79 300.0 636.80 640.93

x80 300.0 582.94 581.52
81300.0 217.05 221.75

x82 300.0 234.08 237.51

x83 300.0 635.20 633.51

102

/ I- '~ A

Initial MINOS XS

x84 300.0 456.12 456.43

x85 300.0 413.00 416.54
x86 300.0 273.58 278.46

x 300.0 827.17 759.29

x88 300.0 483.20 483.11

x 300.0 826.89 748.54

190 300.0 945.00 867.96

K91 300.0 256.24 261.13
x92 300.0 324.47 328.27

x93 300.0 576.26 577.86

x94 300.0 652.20 653.19

x95 300.0 215.75 219.24

x96 300.0 468.28 462.97

x97 300.0 770.32 704.44

x98 300.0 1068.8 1016.5

x 300.0 258.80 262.13

X100 300.0 237.33 240.31

g1 80650.0 0.348400+06 0.20000+06

92 300.0 300.0 300.00

Alternate Initial Points:

a) xi = 10 i = 1,...,100

b) xi 1000 i = 1,...,100

103

L - , _ -li

Problem 8 (Waterman 8)

Source: [Ref. 28]

No. of variables: 46

No. of constraints: 1 nonlinear inequality constraint

1 linear equality constraint

46 lower bounds on the variables

Objective function: x)
minimize: f(x) = 46In

i=1

Constraints:

i=i
| 46

46 b
ciYi + ad iy i < S

i=1

where Yi = x + x

j c A(i)

A(i) consists of all arcs (in Figure 7) that converge directly

and indirectly upon node i.

xi > 0 i =19-46

104

- - S

Data from Problem 8

a = 0.05 T = 500

b = 1.50 S = 10000

CI = 5.0 C2 = 4.0 C3 = 5.0

c4 = 7.0 c5 = 7.0 c6 = 8.0

C7 = 6.0 C8 = 4.0 c9 = 3.0

C1O = 12.0 C11 = 14.0 c12 = 10.0

C13 = 21.0 c14 = 23.0 c15 = 8.0

c16 = 9.0 C17 = 10.0 c18 = 13.0

c19 = 20.0 c2 0 = 5.0 c2 1 = 8.0

C22 6.0 c23 = 3.0 C24 = 8.0

c25 = 11.0 c26 = 6.0 c27 = 18.0

c28 = 15.0 C29 ' 10.0 C30 = 8.0

C31 = 8.0 c32 = 14.0 c33= 11.0

c34= 12.0 c35 = 14.0 c36 = 18.0

c37 - 16.0 c38 = 9.0 c39 = 2.0

c40 = 8.0 c41 = 11.0 c42 12.0

43= 11.044 = 18.0 45= 20.0

c46= 13.0

di = c i 1,...,46

105

- ,,, , , . ._ V.

45
44

46

43
29

30

42 22

31
32

33

21
20

28 23

34

24
3

8

25
19 35

7
36

27
18 2

9

17 6 10

16 15 4 41 37

5

14 11 26
38

G

40

39
12

Fig. 7 Transportation Routes for Problem 8

106

IL

Results for Problem 8

Initial MINOS XS

f(x) -3.249 -3.4685 -3.4519

x 40.000 38.690 33.766

x2 26.667 44.648 38.106

x3 86.667 36.171 57.241

x4 10.000 19.468 18.032

x5 13.333 19.357 17.223

x6 13.333 17.140 15.654

x7 13.333 20.084 17.869

K 8 23.333 23.498 20.499

x9 23.333 31.411 28.061

S10 3.333 7.2334 7.5175

3.333 6.2199 6.4508

x12 3.333 8.3944 9.0758

x13 3.333 3.7182 3.7996

x14 3.333 3.2273 3.3423

3.333 8.7613 9.3672

x16 3.333 8.0998 8.2227

x17 3.333 7.4944 6.9622

x18 6.667 6.7670 6.4252

x19 3.333 4.1300 4.5276

x20 46.667 20.064 25.446

x21 6.667 9.9835 9.2984

x22 26.667 11.205 12.408

x23 10.000 15.057 13.727

x24 10.000 11.270 10.197

x25 10.000 8.9236 8.4804

X26 20.000 16.456 15.948

3.333 1.7413 2.0711

K 2 8 3.333 3.1113 3.2189

10.000 4.8377 4.8102

107

.7i

Initial MINOS XS

'30 13.333 5.6615 5.9154

x31 3.333 7.7517 7.3860

x32 3.333 4.9097 4.6200

x33 3.333 4.6872 4.4888

x34 3.333 4.3489 4.7025

x35 3.333 3.0116 3.2189

3.333 2.2564 2.3751

x 3.333 4.5998 4.3212

x3, 3.333 7.7970 7.7524

x39 3.333 13.802 13.059

x40 3.333 8.4329 9.0575

x41 3.333 6.6818 6.2221

x42 3.333 1.9479 2.0307

x43 3.333 2.0952 2.0711

x44 3.333 1.4707 1.4787

x45 3.333 1.2772 1.4787

x46 3.333 2.1051 2.0711

gl(x) -10080.33 10000.0 9999.9

g2(x) -500.00 500.00 500.0

Alternate Initial Points:

a) xi = 10.87 i = 1,...,46

b) xi = 85.0 i = 1,2,3

xi * 10.0 i = 4,...,23

xi = 3.26 i = 24,...,46

108

Problem 9 (Dean 9--Game)

Source: Author

No. of independent variables: 2

No. of constraints: 1 nonlinear equality constraint

Objective function:

maximize: x1 0 x2

Constraints:

2 2

(30)' (23)2

x1, x2 > 0

Results for Problem 9

Initial MINOS XS

f(x) 0.0 345.00 344.94

i 0.0 21.213 21.091

X 2 40.0 16.263 16.355

g1(x) 3.0246 1.0000 0.99989

109

Problem 10 (Dean--Sortie)

Source: [Ref. 37]

No. of independent variables: 793

No. of constraints: 81 linear inequality constraints

Objective function:

J

E V (Kj - Dj)

j=1

where:(

Kj = L l -exp - J J + P

Constraints:

J

xij < Si, =

j=1

Tj C T
I- log (1 " - j <_ .a Pi7ij <- log (1 Cj)-=

j

110

....
.........

xij Si, for all i and j

i > i n = 1,2,..., no. of side constraints

j n

Z xj OmSit m n= 1,2,..., no. of side constraints

J CJm

nn en

1 1 31 0.02

2 7 32 0.02

3 7 1,6,7,11,13 0.02
16,19,20,27

4 11 23,24,25,26 0.02

5 12 23,24,25,26 0.02

m im m

1 2 30,47,51 0.15
53,60,61

2 8 30,47,51 0.25
53,60,61

111

___ /

Problem Data

P ij i ==2 i = 3 i = 4

j =] 0.0 0.1268 0.3477 0.6705
J = 0.0 0.0164 0.0344 0.0676
j = 3 0.0 0.0361 0.2877 0.4399
j= 4 0.0 0.0318 0.2948 0.4482

= 5 0.0 0.0 0.4693 0.5089
j = 6 0.0 0.0616 0.0616 0.0616
j = 7 0.0 0.0369 0.1101 0.1983
j = 8 0.0 0.0406 0.0406 0.0639
j = 9 0.0 0.0530 0.0557 0.0931
j = 10 0.0 0.4104 0.6140 0.7569
j= 11 0.0 0.0132 0.0530 0.0827
3 = 12 0.0 0.3559 0.3559 0.3559
j = 13 0.0 0.0236 0.0403 0.0658
j = 14 0.0 0.0507 0.3782 0.5373
j = 15 0.0 0.0 0.1537 0.2514
3 = 16 0.0 0.0510 0.1281 0.2072
j = 17 0.0 0.0988 0.1079 0.1930
j = 18 0.0 0.0157 0.0537 0.0997
J = 19 0.0 0.6347 0.6347 0.6347

= 20 0.0 0.0984 0.1170 0.2149
j = 21 0.0 0.0024 0.0024 0.0039

= 22 0.0 0.2226 0.7555 0.5080
- 23 0.0 0.0044 0.0058 0.0100

J = 24 0.0 0.0052 0.0121 0.0221
J- 25 0.0 0.0052 0.0121 0.0221
3 = 26 0.0 0.0034 0.0083 0.0152
j = 27 0.0 0.1404 0.2191 0.3602
j - 28 0.0 0.0877 0.0928 0.1122
j - 29 0.8082 0.0053 0.0053 0.0053
j = 30 0.2530 0.1785 0.1662 0.3307
j - 31 0.1185 0.1401 0.1401 0.1401
j - 32 0.2837 0.3033 0.3033 0.3033
j - 33 0.3310 0.786 0.1799 0.3378
j - 34 0.3409 0.0988 0.1550 0.2810
j - 35 1.3416 0.5810 1.3693 0.9057
j - 36 0.0 0.0 0.2872 0.2872
j - 37 0.0 0.0 0.0 0.0
j -38 0.0 0.0 0.0 0.0
j - 39 0.0 0.0 0.0 0.0
j a 40 0.0 0.9123 0.9123 0.9123
j - 41 0.0 0.3888 0.3888 0.3888
j - 42 0.0 0.0 0.0 0.0
j - 43 0.0 0.0 0.0 0.0
j a 44 0.2997 0.1771 0.1898 0.2126
j - 45 0.2806 0.3491 0.3491 0.3491

112

* . .~., al/

Pi i=5 i=6 i=7

j = 1 0.1286 0.0 0.1861
j = 2 0.1104 0.0 0.1050
j = 3 0.0361 0.0 0.0564
j = 4 0.0318 0.0 0.0507
j = 5 0.0080 0.0 0.0160
j = 6 0.0616 0.0 0.0784
j = 7 0.0369 0.0 0.0610
j = 8 0.0406 0.0 0.0507
= 9 0.0530 0.0 0.0599
= 10 0.4104 0.0 0.4493
= 11 0.0132 0.0 0.0132

j = 12 0.3559 0.0 0.4527
j = 13 0.0236 0.0 0.0362
= 14 0.0507 0.0 0.0921
= 15 0.0030 0.0 0.0030
= 16 0.0510 0.0 0.0759
= 17 0.2039 0.0 0.1904

3 = 18 0.0157 0.0 0.0207
j = 19 1.1287 0.6 0.8565
j = 20 0.3248 0.0 0.3184
j = 21 0.0024 0.0 0.0024
j = 22 1.4122 0.0 1.3749
j = 23 0.0044 0.0 0.0036
i = 24 0.0052 0.0 0.0052
j = 25 0.0052 0.0 0.0052
j = 26 0.0034 0.0 0.0034
j = 27 0.1404 0.0 0.1509

= 28 0.0877 0.0 0.1056
= 29 0.8078 0.0 0.8078

j = 30 0.2472 0.0 0.2464
j = 31 0.1401 0.0 0.1413
j = 32 0.3033 0.0 0.2591
j = 33 0.3202 0.0 0.3044
j = 34 0.3273 0.0 0.3000
j = 35 0.8938 0.0 0.7301
j - 36 0.2872 0.0 0.4931
j = 37 0.0 0.1988 0.0
i = 38 0.0 0.6822 0.0
j - 39 0.0 0.6702 0.0
j - 40 0.9123 0.0 1.0000
j - 41 0.3888 0.0 0.6217
j - 42 0.0 0.5679 0.0
j - 43 0.0 0.7527 0.0
j = 44 0.2177 0.0 0.2656
j - 45 0.3491 0.0 0.4574

113

P. i 8 i =9 i=10

j = 1 0.1797 0.6223 0.1818
= 2 0.0244 0.0644 0.1036
= 3 0.0723 0.4157 0.0727
= 4 0.0686 0.4240 0.0690
= 5 0.0212 0.4546 0.0222
= 6 0.0617 0.0617 0.0629
= 7 0.0716 0.1835 0.0733
= 8 0.0486 0.0622 0.0511
= 9 0.0590 0.0888 0.0613
= 10 0.4330 0.7112 0.4467

j = 11 0.0132 0.0903 0.0132
. = 12 0.4285 0.4285 0.4385
J = 13 0.0285 0.0647 0.0296
j = 14 0.1133 0.5443 0.1160
j = 15 0.0040 0.2511 0.0100
j = 16 0.0574 0.2185 0.0585
j = 17 0.0648 0.1727 0.1795
j = 18 0.0203 0.0883 0.0209
j = 19 0.6087 0.6087 0.7022
J = 20 0.1076 0.2049 0.3107
J = 21 0.0024 0.0037 0.0024
j 2 22 0.3077 1.4168 1.2910
J = 23 0.0036 0.0088 0.0036
-= 24 0.0052 0.0205 0.0052
= 25 0.0052 0.0205 0.0052
= 26 0.0028 0.0139 0.0028
= 27 0.1511 0.3435 0.1570

J = 28 0.1061 0.1151 0.1099
J = 29 0.0047 0.0047 0.8096

= 30 0.1314 0.3280 0.2557
= 31 0.0660 0.0660 0.0660
x = 32 0.2521 0.2521 0.2521

j a 33 0.0610 0.3290 0.3067
4 = 34 0.0704 0.2658 0.3091
j = 35 0.6724 0.8096 0.6919
j = 36 0.2858 0.2858 0.2953
4 = 37 0.0 0.0 0.0
=38 0.0 00 0.0
-- 39 0.0 0.0 0.0
= 40 0.8753 0.8753 0.9032

j = 41 0.4618 0.4618 0.4761
j =42 0.0 0.0 0.0
4 = 43 0.0 0.0 0.0
4 = 44 0.1248 0.1763 0.2322
J = 45 0.2935 0.2935 0.2954

114

/=
.. - w, , - L -.,. ,,,.. . #u/

P=11 i=12 1=13Pu

j = 1 0.5609 0.0360 0.0
j 2 0.1145 0.0070 0.0
j = 3 0.3825 0.0070 0.0
z 4 0.3900 0.0060 0.0

j = 5 0.4765 0.0110 0.0
= 6 O.120 0.0760 0.0

j = 7 0.1750 0.0260 0.0
= 8 0.0942 0.0650 0.0

3 9 0.1011 0.0430 0.0
= i0 0.7068 0.1800 0.0
= 11 0.0397 0.0080 0.0

j = 12 0.4818 0.1970 0.0
3 = 13 0.0552 0.0350 0.0
j= 14 0.5091 0.0390 0.0
j = 15 0.2284 0.0 0.0
j = lb 0.1434 0.0390 0.0
j = 17 0.1706 0.1210 0.0

= 18 0.0815 0.0110 0.0
j = 19 0.7362 0.4230 0.0

= 20 0.3022 0.1570 0.0
= 21 0.0030 0.0020 0.0

j 22 1.3606 0.0920 0.0
j= 23 0.0079 0.0040 0.0
= 24 0.0172 0.0050 0.0
= 25 0.0172 0.0050 0.0
= 26 0.0117 0.0040 0.0
= 27 0.3190 0.0870 0.0
= 28 0.2051 0.0610 0.0

j = 29 0.8081 0.0020 0.3483
j = 30 0.2593 0.0498 0.1053
= 31 0.1358 0.1150 0.1782

j = 32 0.3910 0.1540 0.1782
j = 33 0.2816 0.0500 0.0
j = 34 0.1974 0.0490 0.3483
j = 35 1.0607 0.0220 0.0
j = 36 0.3951 0.2390 0.0
x 37 0.0 0.0 0.0
z38 0.0 O0 0.0

j = 39 0.0 0.0 0.0j - 40 1.0000 0.0 0.0
j - 41 0.5639 0.0 0.0

j = 42 0.0 0.0 0.0J - 43 0.0 0.0 0.0
j- 44 0.2330 0.0460 0.0J m 45 0.4726 0.1530 0.1782

115 !

/w

Pij i= i =2 i =3 i =4

J 46 0.3137 0.1527 0.1856 0.3533
i = 47 0.0876 0.2337 0.2337 0.2337
j = 48 0.0819 0.0593 0.0471 0.0932
J = 49 0.0 0.0 0.1641 0.1641
-= 50 0.8139 0.1934 0.1934 0.1934
= 51 0.2565 0.4606 0.1504 0.2945
= 52 0.8162 0.4058 0.4058 0.4058

J = 53 0.2569 0.6677 0.1804 0.3529
j = 54 1.3428 0.5631 0.7030 0.7030
i= 55 1.3680 0.5612 0.5612 1.2562
j = 56 0.0 0.0 0.0 0.0
j = 57 0.4781 0.5573 0.5573 0.5573
j = 58 0.0805 0.0277 0.0457 0.0919
= 59 0.8097 0.0637 0.0637 0.0637

. = 60 0.2510 0.2293 0.1421 0.2830
j = 61 0.0772 0.1120 0.1120 0.1120

t

Pij i=5 i=6 i=7

j = 46 0.2707 0.0 0.2683
j 47 0.2337 0.0 0.2421

=48 0.0819 0.0 0.0823
j=49 0.5366 0.0 0.2176

j = 50 0.8148 0.0 0.8171
J= 51 0.4076 0.0 0.4276
j= 52 0.8176 0.0 0.8207
-= 53 0.6316 0.0 0.6551

j = 54 1.2897 0.0 0.7351
j= 55 1.2234 0.0 0.7924
j 56 0.0 0.7353 0.0
= 57 0.5573 0.0 0.6876
= 58 0.0798 0.0 0.0799

j - 59 0.0895 0.0 0.8100
j - 60 0.2466 0.0 0.2469
j - 61 0.1120 0.0 0.1162

116

Pi 1 = 8 i = 9 i = 10

j 46 0.1324 0.3446 0.2868
j 47 0.1263 0.1263 0.1322
j 48 0.0284 0.0920 0.0844
j 49 0.1443 0.1443 0.4848
j 50 0.1803 0.1803 0.8204

= 51 0.3479 0.2922 0.2678
j 52 0.3806 0.3806 0.8244
j = 53 0.5443 0.3496 0.4842

3 54 0.6039 1.4349 0.7827
j 55 0.5474 1.3944 1.0718
= 56 0.0 0.0 0.0

3 - 57 0.5145 0.5145 0.5287
3= 58 0.0132 0.0911 0.0815
j = 59 0.0565 0.0565 0.8122
3 = 60 0.1643 0.2804 0.2553

= 61 0.0608 0.0697 0.0646

Pij i = i = 12 i = 13

j 46 0.2465 0.1620 0.1782
3 = 47 0.2641 0.0640 0.0745
j = 48 0.0842 0.0344 0.0745
j 49 0.4547 0.1790 0.0
j = 50 0.8714 0.2243 0.7630
3 51 0.5516 0.1415 0.2308
J = 52 0.8387 0.1518 0.7630
j = 53 0.7057 0.2870 0.2308
- 54 0.8392 0.1900 0.0
= 55 0.6240 0.1460 0.0

j= 56 0.0 0.0 0.0
3 3 57 0.7425 0.2220 0.3896
j a 58 0.0827 0.0178 0.0340
j = 59 0.8134 0.0245 0.3483
j a 60 0.2914 0.0772 0.1053
j = 61 0.1245 0.0348 0.0340

117

'1/

Problem Data

T. D. 1. C. V.

j = 1 500.0000 0.0 0.0 0.1000 20.0000
j = 2 500.0000 0.0 0.0 0.2500 1.0000
j = 3 500.0000 0.0 0.0 0.1500 1.0000
j = 4 500.0000 0.0 0.0 0.1500 1.0000
j = 5 500.0000 0.0 0.0 0.2000 1.0000
j = 6 500.0000 0.0 0.0 0.2000 1.0000
j = 7 500.0000 0.0 0.0 0.1000 1.0000
j = 8 500.0000 0.0 0.0 0.1500 1.0000
j = 9 500.0000 0.0 0.0 0.1000 10.0000
j = 10 300.0000 0.0 0.0 0.1000 10.0000
j = 11 300.0000 0.0 0.0 0.1000 10.0000
j = 12 300.0000 0.0 0.0 0.1000 1.0000
j = 13 300.0000 0.0 0.0 0.1000 1.0000
j = 14 300.0000 0.0 0.0 0.5000 15.0000
j = 15 300.0000 0.0 0.0 0.5000 1.0000
j = 16 300.0000 0.0 0.0 0.1000 10.0000
j = 17 300.0000 0.0 0.0 0.2000 10.0000
j = 18 500.0000 0.0 0.0 0.2000 20.0000
j = 19 500.0000 0.0 0.0 0.5000 20.0000
j = 20 500.0000 0.0 0.0 0.4500 20.0000
j = 21 500.0000 0.0 0.0 0.5000 12.0000
j = 22 500.0000 0.0 0,0 0.1500 12.0000
j = 23 500.0000 0.0 0.0 0.5500 20.0000
j = 24 900.0000 0.0 0.0 0.5000 10.0000

= 25 900.0000 0.0 0.0 0.5000 10.0000
j = 26 900.0000 0.0 0.0 0.5000 9.0000
j = 27 900.0000 0.0 0.0 0.1000 10.0000
j = 28 900.0000 0.0 0.0 0.1000 6.0000
j = 29 900.0000 0.0 0.0 0.3000 10.0000
j 30 900.0000 0.0 0.0 0.2500 10.0000

j = 31 900.0000 0.0 0.0 0.5000 1.0000
j = 32 1500.0000 0.0 0.0 0.3000 1.0000
j = 33 1500.0000 0.0 0.0 0.4000 1.0000
j = 34 500.0000 0.0 0.0 0.4000 15.0000
j = 35 500.0000 0.0 0.0 0.4000 1.0000
j = 36 500.0000 0.0 0.0 0.4000 1.0000
j - 37 500.0000 0.0 0.0 0.4000 15.0000
j = 38 500.0000 0.0 0.0 0.4000 15.0000
j = 39 700.0000 0.0 0.0 0.4000 12.0000
j w 40 700.0000 0.0 0.0 0.2500 5.0000
j - 41 700.0000 0.0 0.0 0.2500 5.0000
j - 42 700.0000 0.0 0.0 0.4000 15.0000
j - 43 700.0000 0.0 0.0 0.4000 15.0000
j = 44 700.0000 0.0 0.0 0.2000 10.0000
j u 45 400.0000 0.0 0.0 0.2000 10.0000

118

T. D. 1. C. V.

= 46 400.0000 0.0 0.0 0.2000 10.0000
j = 47 400.0000 0.0 0.0 0.2000 2.0000
J= 48 400.0000 0.0 0.0 0.2000 0.0000

= 49 400.0000 0.0 0.0 0.4000 10.0000
= 50 400.0000 0.0 0.0 0.2500 20.0000

J = 51 400.0000 0.0 0.0 0.2500 20.0000
= 52 5000.0000 0.0 0.0 0.3500 2.0000
- 53 500.0000 0.0 0.0 0.3000 2.0000

j = 54 500.0000 0.0 0.0 0.4500 10.0000
= 55 500.0000 0.0 0.0 0.4500 10.0000

J = 56 500.0000 0.0 0.0 0.4500 10.0000
j = 57 900.0000 0.0 0.0 0.2500 10.0000
J = 58 900.0000 0.0 0.0 0.4000 10.0000
j = 59 900.0000 0.0 0.0 0.2000 2.0000
j = 60 300.0000 0.0 0.0 0.2000 2.0000
j = 61 300.0000 0.0 0.0 0.4000 2.0000

119

T/
iV

Results for Problem 10: (XS)

(only non-zero values of final solution shown)

f(x) -0.20087D+06
x1,29 720.33)3,54 570.49

Xl,31 95.000 x3, 55 685.66

x1,44 2388.6 x3, 57 21.444

Xl,46 819.53 x4 ,1 487.50

X1,50 11.342 x4 ,18 1708.3

x1,52 7.1002 x4 ,27 1414.3

K1,54 33.031 X4,30 1009.1

X1,55 159.98 x4,46 130.84

x1,58 106.53 x5, 17 163.12

x1,59 408.59 x5 ,20 857.98

x2,19 359.81 x5, 22 122.16

x2,40 538.20 x5,29 125.73

x2,4 5 1215.4 x5,48 113.00

x2, 51 449.35 x5,49 574.18

x2,53 263.15 x5, 50 186.12

x2,55 87.235 x5,52 1814.3

x2, 57 1836.9 x5, 53 43.287

x3,1 75.840 x5,54 169.69

x3,10 51..79 x5, 55 9.5330

x3, 14 1099.7 x5, 58 456.53

x3 ,19 111.06 x5159 114.33

x3 ,22 252.46 x6,38 935.99

x3,27 598.34 x6, 39 962.27

x335 466.32 x6,42 1084.8

x3 ,40 290.90 x6,43 1187.7

x3,45 63.036 x6,56 579.31

120

6L..... V
t

"

X7,20 268.36 '11,27 149.05

7,2129.81 X1,83666.1

X 7 ,2 9 436.42 X11,51 111.91

x ,295.000 X12,17 2491.4

7,1111.42 X1,9932.12

245.28 x607.74

x74 804.67 95.000

x ,136.377 X1,6623.77

x ,22316.2 X1,41833.3

7,359.708 X1,8112.45

7,9246.82 X1,0392.41

x891197.7 x1,22411.9

x ,8748.63 914750.0

x ,056.122 924750.0

x ,11594.3 934750.0

x ,1506.04 944750.0

x647.25 g5 4750.0

x91278.91 964750.0
x ,15.3503 9747,5K.".)

x ,61446.6 984750.0

x ,7757.37 994750.0

9,02140.1 104750.0
9,6121.65 914750.0

x1,0658.93 912 4750.0

41.692 4750.0

1120.5 526.80

X1,9418.16 922 144.25

x1,21120.5 93316.08

921.35 g 4 0.48313

X1,9468.90 927 415.893

X .9727.91 99316.08

X1,431.299 90334.72

x1,563.701 931 170.31

121

g32 693.15 970 1035.7

933 664.26 971 120.10

g35 541.73 972 1004.1

936 0.38000 975 712.50

937 0.53835 976 1153.3

938 1.0957 977 95.000

940 948.24 978 95.000

941 831.35 979 268.36

942 1070.0 980 95.000

943 1035.7 981 95.000

944 11.257

g4 5 24.614

947 638.53

g48 638.53

951 638.53

952 644.92

953 805.51

954 805.51

955 616.04

956 893.94

957 781.00

958 446.29

959 446.29

961 178.42

g62 510.83

963 460.29

964 460.29

965 6154.0

966 594.46

967 664.26

968 664.26

969 425.97

122

7 j!

Problem 11

See Section III.C.1l.

Problem 12

See Problem 6.

123

Problem 13 (Dean--Integer Nonlinear)

Source: [Ref. 38]

No. of independent variables: 12 (8 binary)

No. of constraints: 48 nonlinear equality constraint

3 linear equality constraint

Objective function:

I

minimize: E oi(2aini)

1=1

Constraints:

eL.

Li

£2i k < ,..I k 1,.,k

"2ik < ,..I k 19

Y12i k < =1..,; k 1,..k

YLT

Yl2ik < k, i9 .. 9k;.I;k

~LT

124

Wad"

Z (c22 (26 n) AM'

I

o < e.s go.0, i = 1,..

where:

01 =i ,

n j x~ j+2' (j=3(i-1)I)

1 2 c m 2 c + m y
lik - ixk +miyk i xyk

m2 c 12 -m
'21k mi xk +1i 'xk -i iyxyk

1 2ik = 2milc~ + 2m.1., + (2 m2

1ix 11iyk (1 i 1 xyk

and where:

cxk 1

yk z02

"xyk D3

125

and where:

D0= Al(A 22A66 -A26) - A12(A12A66 - A26A16) + A16(A12A26 - A22A16)

D1 z Nxk(A22A66 -A26)- A12(NykA66 - A26Nxyk) + A16(NykA 26 - A22Nxyk)

D2 = A11(NykA66 - A26Nxyk) - Nxk(A12A66 - A26A16) + A16 (A12Nxyk - NykA16)

D3 - All(A 22Nxyk - NykA 26) - A12 (A12Nxyk - NykA16) + Nxk(A 12A26 - A22A16)

and where:

Ars (Cs)i(2ini), r,s = 1,2,6

and where:

'4 2 2 4 22
(C1l)i =(C 11)ili + 2(C12)ilimi + (C22)imi + 4(C66)i 1i

(C'2)i 22 4 4 (2 2 m2 4(C6 2 2
imi (C12)i(mi i 22)ili i 6iimi

(C16)i = (Cll)il-mi + (C12)i(m'li " mi) (C22)imi

+ 2(C66)i(m i - m i i)

(C22) =(C)imi + 2(C12)imil + (C)1 4 + 4(C)m 12

(C26) = (C11)im4li + (C12)i(lIm 1 - ml i - (C22)mi1 3

+ 2(C66)i(mii i - MN)

2(C m212 2 2 2 2 2 2)2
(Ci6)1 2(C1)1 m1 + (C22)imili + (C66)i(li " i

126

} 'I

and where:
ELi(C =) - VlLTi"TUi}

ViT~i ELi LTiTi

(C12)i = - VLTiVTLi) T- vTLi

(C 22)i E TiT LTiTLi)

(C66)i = GLTi

and where:

VLTi LT1

Problem data:

I = 4; K -3

A'-0.75006

A(')- o.50DO622

A(')- 0.50o06
66
. = 0.005, i ,

*t 1 , j 1,.. .,4

ELi 20.0006, i - I,...,4

ETi " 1.3006, - I,...,4

6LT i a 0.
65 06 , 1...4

v 0.304, 1 ..,.,4

127

' .J

= 8.25D-03, i =

C -5.75D-03, j =

Ti 6.15D-03, i =

c = 2.306D-02 i = 1,...

Li = "LTi = 2.460-02 i = 1,...,4

Nx1= 4000.0

N yl= 1000.0

Nxy 1 = 2000.0

Nx2 = -3000.0

Ny2 = 1000.0

Nxy2 = -2000.0

NO =2000.0

N y3 =1000.0

Nxy3 3000.0

12
128p

T - /

Results for Problem 13:

(only final solution shown)

f(x) 0.12000

nI 5.4978 921 0.45455

n2 5.8905 922 -0.12123

n3 6.7285 923 -0.26403

n 7.1540 924 -0.26403
11 6.0000 g25 0.23177

12 0.0 926 -0.33254

21 6.0000 927 -0.19951

22 0.0 928 0.53207D-01

e31 6.0000 929 -0.45748

32 0.0 930 -0.45748

*41 6.0000 931 -0.24848

42 0.0 g32 0.35651

91 -0.701220-02 933 -0.63711

g2 0.10061D-01 934 0.16992

93 0.20118 935 -0.45286

94 -0.536550-01 g36 -0.45286

95 0.23862 937 -0.61069

96 0.23862 938 0.87621

97 0.25052 939 -0.71607

98 -0.35944 940 0.19097

99 0.55526 941 0.24063

g10 -0.14809 942 0.24063

gl1 0.28885 943 -0.20712

g12 0.28805 944 0.29717

913 0.60751 945 -0.58747

914 -0.87164 946 0.15667

915 0.56892 947 0.48192

916 -0.15173 948 0.48192

917 -0.787050-01 949 -0.20411

918 -0.78705D-01 950 0.29286

g19 0.44638 951 0.42399

920 -0.64045 952 -0.11308

129

129 '
-. iV

953 0.67886D-01

954 0.67886D-01

955 -0.561980-01

g56 0.806330-01

957 0.47633

958 -0.12703

959 0.21884

960 0.21884

961 0.47443
g62 -0.68071

963 -0.196330-01

964 0.523600-02

965 0.991560-01

966 0.99156D-01

967 0.49857

968 -0.71534

969 -0.13880

970 0.370170-01

971 -0.10797

972 -0.10797

973 1.1737

g74 0.51938

975 0.50936

130

LIST OF REFERENCES

1. Pierskalla, W., and Ratliff, H. D., "Reporting Computational
Experiences in Operations Research," Operations Research, v. 29,
pp. xi-xiv, March-April 1981.

2. International Business Machines Report SC28-6852-2, IBM OS FORTRAN
IV (H Extended) Compiler Programmer's Guide, November 1974.

3. International Business Machines Report SH20-0968-1, Mathematical
Programming System-Extended (MPSX), and Generalized Upper Bounding,
IBM Corporation, New York, 1974.

4. Systems Optimization Laboratory, Department of Operations Research,
Stanford University Technical Report SOL 80-100, MINOS Distribution
Documentation, by M. A. Saunders, September 1980.

5. Systems Optimization Laboratory, Department of Operations Research,
Stanford University Technical Report SOL 77-9, MINOS User's Guide,
by B. A. Murtagh and M. A. Saunders, February 1977.

6. Systems Optimization Laboratory, Department of Operations Research,
Stanford University Technical Report SOL 80-14, MINOS/Augmented
User's Manual, by B. A. Murtagh and M. A. Saunders, June 1980.

7. Dantzig, G. B., Linear Programming and Extensions, Princeton
University Press, 1963.

8. Saunders, M. A., "A Fast, Stable Implementation of the Simplex
Method Using Bartels-Golub Updating," in: Sparse Matrix Computa-
tions, edited by J. R. Bunch and D. J. Rose, Academic Press, 1976.

9. Hellerman, E. and Rarick, D. C., "The Partitioned Preassigned
Pivot Procedure," in: Sparse Matrices and their Applications,
edited by 0. J. Rose and R. A. Willoughby, Plenum Press, 1972.

10. Bartels, R. H. and Golub, G. H., "The Simplex Method of Linear
Programming Using LU Decomposition, Communications of the ACM,
May 1969.

11. Wolfe, P., "Methods of Nonlinear Programming," in: Nonlinear
Programming, edited by J. Abadie, North-Holland, 1967.

12. Fletcher, R. and Reeves, C. M., "Function Minimization by Con-
jugate Gradients," Computer Journal, July 1964.

131

13. Systems Optimization Laboratory, Department of Operations Research,
Stanford University Technical Report SOL 80-1, The Implementation
of a Lagrangian-based Algorithm for Sparse Nonlinear Constraints,
by B. A. Murtagh and M. A. Saunders, May 1980.

14. Brown, G. G. and Graves, G. W., "Elastic Programing: A New Approach
to Large-Scale Mixed-Integer Optimization," Mixed Integer Program-
ming, paper presented at the ORSA/TIMS meeting, Las Vegas, Nevada,
TNovember, 1975.

15. Brown, G. G., "Issues in Basic Manipulation: Factorization/Decompo-
sition," The New Generation of L.P. Codes, paper presented at the
ORSA/TIMS meeting, Miami, Florida, 5 November, 1976.

16. Graves, G. W., "A Complete Constructive Algorithm for the General
Mixed Linear Programming Problem," Naval Research Logistics Quarterly,
March, 1965.

17. Graves, G. W., and McBride, R. D.,, "The Factorization Approach
to Large-Scale Linear Programming," Mathematical Programming,
February 1976.

18. American National Standard Institute (ANSI), Standard Publication
X3.9, (commonly known as FORTRAN 77), 1978.

19. Graves, G. W. and Whinston, A. B., "The Application of a Nonlinear
Programming Algorithm to a Second Order Representation of the
Problem," Cahiers du Centre D'Etudes de Recherche Operationnelle,
v. 11, n. 2, 1969.

20. Brown, G. and Graves, G., XS Mathematical Programming System,
perpetual working paper, (c. May 1980).

21. Graves. G. W., Mathematical Programminq, unpublished monograph
(available only from the author), (c. 1981).

22. Insight, Inc., ODS-Optimization for Distribution Systems: Systems
Manual, 1978.

23. Insight, Inc., ODS-Optimization for Distribution Systems: User's
Guide, 1978.

24. Naval Postgraduate School Technical Report NPS52-80-006, ATHENA:
User's Manual for Interactive Analysis of Large-Scale Optimization
Models, by G. H. Bradley, G. G. Brown, and P. I. Galatas, April

25. Waterman, R. J., An Evaluation and Comparison of Three Nonlinear
Programmin Codes, Master's Thesis, Naval Postgraduate School,
March 1976.

132

,I

26. Hinmelblau, D. M., Applied Nonlinear Programing, McGraw-Hill,
1972.

27. Choe, U. C. and Schrady, 0. A., "Models for Multi-item Continuous
Review Inventory Policies Subject to Constraints," Naval Research
Logistics Quarterly, v. 18, n. 4, December 1971.

28. Scott, A. J., "A Model of Nodal Entropy in a Transportation Network
with Congestion Costs," Transportation Science, May 1971.

29. Manne, A. S., ETA-MACRO: A Model of Energy-Economy Interactions,
in Modeling Energy-Economy Interactions, edited by C. J. Hitch,
Resources for the Future, Washington, D.C., 1977.

30. Research Analysis Corporation Report RAC-TP-272, The Chemical
Equilibrium Problem: An Application of SUMT, by A. P. Jonesi
1967.

31. Dantzig, G. B., Johnson, S. M., and White, W. B., "Chemical Equi-
librium in Complex Mixtures," Journal of Chemical Physics, May
1958.

32. Bracken, J. and McCormick, G. P., Selected Applications of Nonlinear
Programming, John Wiley & Sons, Inc., 1968.

33. International Business Machines New York Technical Center Technical
Report 320-2949, A Comparative Study on Nonlinear Programming Codes,
by A. R. Colville, June 1968.

34. Research Analysis Corporation Report RAC-TP-302, On Variable Metric
Methods of Minimization, by J. D. Pearson, May 1968.

35. Paviani, D. A., A New Method for the Solution of the General
Nonlinear Programming Problem, Ph.D. dissertation, University of
Texas, Austin, 1969.

36. Mylander, W. C. III, "Applied Mathematical Programming," Proceedings
of the U.S. Army Operations Research Symposium, Part I, March 1965.

37. Rand Corporation Report R-1411-DDPAE, Sortie Allocation by a
Nonlinear Programmin9 Model for Determining a Munitions Mix, by
R. J. Clasen, G. W. Graves, and J. Y. Lu, March 1974.

38. Farshi, B. and Schmit, L. A., "Optimum Laminate Design for Strength
and Stiffness," International Journal for Numerical Methods in
Engineering, v. 7, N. 4, 1973.

39. Brown, G. G., Dean, D. R., and Graves, G. W., "Computational
Experiments with Large-Scale Nonlinear Optimization," Large-Scale
Nonlinear Programming, presented at CORS/ORSA/TIMS meeting,
Toronto, Canada, 5 May 1981.

133

t
-... - /.

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 55 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

4. Professor Gerald G. Brown, Code 55bw 65
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

5. LCDR Dennis R. Dean, USN 1
Pre-Commissioning Unit
USS Ticonderoga ('CG-47)
FPO New York, New York 09501

134

