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RESUME

Nous pr6sentons ici une nouvelle m6thode pour obtenir la fonction
de coherence mutuelle d'une impulsion laser se propageant au milieu
d'a~rosols. A partir d'une 6quation diff£rentielle parabolique, la
fonction de coh6rence mutuelle est d6termin6e A l1'aide d'une transforma-
tion Fourier 'split-step'. Cette approche nous permet d'6viter l'utili-
sation d'approximations non contr8l6es comme ce fut souvent le cas dans
les 6tudes pr6c6dentes. Des algorithmes num6riques sous forme de rela-
tions alg6briques r6cursives permettent d'6tudier le ph6nom6ne de 1'61ar-gissement de 1'impulsion caus6 par la diffusion multiple. (NC)

ABSTRACT

A new method of obtaining the mutual coherence function of a laser
pulse propagating in a particulate medium is described. The treatment,
based on the technique of the split-step Fourier transform, enables us
to avoid the uncontrolled approximations often used to solve the parabo-
lic differential equation of the mutual coherence function. Simple
numerical algorithms in the form of algebraic recurrence relations are
derived for the study of the phenomenon of pulse broadening induced by
multiple scattering. (U)

,j3_f-jjj.1tt Code~sVzAl and/or-
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1.0 INTRODUCTION

In the application of electro-optical systems such as laser

rangers and laser designators, it is important to understand the propa-

gation characteristics of the electromagnetic pulses emitted from the

systems. This is particularly true when the pulses have to traverse

a turbid medium such as the atmosphere under low-visibility conditions

produced by fog, cloud or rain. Apart from energy attenuation, the
pulses also suffer distortion which can make the shape of a received

pulse significantly different from that emitted. In addition, in

atmospheric sensing using a pulsed optical system such as a LIDAR

device, the physical information of the medium has to be extracted from

the analysis of the characteristics of the returned pulses.

In the study of the pulse propagation characteristics in a

medium of randomly distributed scatterers one may consider the evolu-

tion of the mutual coherence function as in the work of Beran (Refs. 1,

2) and Ishimaru et al (Refs. 3-5). Alternatively, the technique of

temporal moments as considered by Liu and Yeh (Refs. 6-8), or the direct

solution of the time dependent radiative transfer equation (Refs.9, 10)

may also be applied.

In the present study, we describe a new method of deriving the

mutual coherence function using the split-step Fourier method (Refs. 11,

12). Under the Markov approximation the mutual coherence function

satisfies a parabolic differential equation (Ref. 13). This equation

formally resembles a time dependent Schroedinger equation with an

imaginary 'potential' iP(P) where P(P) is the Fourier transform of the

scattering phase function. Under various different approximations,

this equation has been solved analytically by Sreenivasiah, Ishimaru,

and Hong (Ref. 5) as well as by Zardecki and Tam (Ref. 14). In

parallel with these efforts, numerical integrations of the parabolic

equations have also been attempted (Refs. 5, 14).
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Exploiting a technique similar to the time evolution operator

expansion used in solving the Schroedinger equation we derive a recur-

rence relation for the mutual coherence function with the aid of the

split-step Fourier method. This treatment enables us to avoid both the

quadratic expansion of P(P) (Ref. 5) or the Glauber approximation in

Ref. 14. In other words, the parabolic differential equation for the

mutual coherence function can now be solved without invoking simplifying

assumptions.

In Section 2.0, the parabolic differential equation of the mutual

coherence function is briefly described. The new method of solving this

equation by means of the evolution operator expansion and the split-step

Fourier scheme is discussed in Section 3.0. In Section 4.0, the problem

of stepwise generation of the mutual coherence function is considered.

Numerical results for laser pulses propagating in fog are presented

in Section 5.0. The work was performed at DREV between December 1979

and July 1980, under PCN M3AlR, Aerosol Studies.

2.0 PARABOLIC EQUATION OF THE MUTUAL COHERENCE FUNCTION

A convenient mathematical quantity for the description of the

electromagnetic radiation emitted from an extended source is the mutual

coherence function (Refs. 1, 15). In a random turbulent medium, the

propagation of the mutual coherence function has been shown to obey a

parabolic equation by Beran (Refs.l, 2). The validity of Beran's

results was confirmed by Brown (Ref. 16) solving a Bethe-Salpeter equa-

tion of the mutual coherence function. For a medium where the scatter-

ing is due to randomly distributed particulate matter, a similar para-

bolic equation applies provided the scattering events are predominantly

in the forward direction (Refs. 3-5).

• 0 >
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Let v(r,t)exp(-iw t) be the output field at a receiver located

at r produced by an input field u(t)exp(-iw t) at the transmitter

located at the origin. The input and output fields are related by the

equation (Ref. 17)

r

v(r,t)= dw U(w) H(w + w 0  rt) exp(-iwt) [1]

where H(w, r,t) is the frequency response function of the medium and

U(w) is the Fourier transform of u(t). The two-frequency mutual coher-

" ence function r(wl,W 2,r1,r2,t) is defined as the ensemble average:

4.4.
r(w 1 ,w2,Wr r 2, t) = <H(wlrlt)H*(w2 , 2 ,t)>. [2]

The usefulness of the mutual coherence function lies in the fact that

given an input signal whose intensity is Ii(t) at the transmitter, the

output signal intensity at r can be expressed as a convolution

00

I(r,t) f dt'G(r,t-t')I i ( t') [3]J -"

where the Green's function G(r,t) is related to r(wl,W 2,'r1 r2 t) by the

Fourier transform
'A

dwd +4.SG( ,t) = d r(w 1 + W 2 + Wo'-'r't)exp(-iwdt) [4]

with wd a"l - 2"
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For a plane wave propagating in the z direction, the mutual

coherence function at two points r = (1l,z) and r2 = ( 2 z) on the

same z plane will depend on + = - and z but will be independent

of = - (I + P2). Assuming the medium to be time invariant and the
scatterings to be uncorrelated and predominantly in the forward direction,

it can be shown that (Ref. 17) the mutual coherence function written

now as r(wd ,d,z) satisfies the following parabolic equation

+ - kd 2 - Ak+ a r(wdZ) [5]
2 2 dd0 P' - 5

with the boundary condition

r(od,Pdz = o) = 1 [6]

In eq. 5, k° = w /c, kd = /C, V2 is the two-dimensional Laplacian

with respect to Pd' at is the volume extinction coefficient and P(pd

is the Fourier transform of the scattering phase function p(s):

P( = s fd2 p(s) expC-iko.Od) [7]

with as denoting the volume scattering coefficient. The normalization

condition
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fi 2sp(,s) =1[8]
is assumed.

When the function P( ) is quadratic in p, an analytic solution to

eq. 5 is available (Ref. 5). In the more general case, an analytical

solution has also been obtained using Glauber's eikonal approximation

(Ref..14). Unfortunately, Glauber's approximation does not reproduce

the time asymmetry in the pulse shape introduced by the scattering.

3.0 SPLIT-STEP FOURIER SOLUTION OF THE PARABOLIC EQUATION

Let us introduce a mutual coherence function y(w,p,z) defined by

y(w,,z) = r(w,pz) exp(atz - ikz) [9]

where we have simplified the notation so that P id' P d Equation

5 becomes

z (,,z)= [iaA + P(p)] y(W, ,z) [10]

2 2
with A E Vd, a = k/2k0 and the boundary condition

Y(W,,z= 0) = 1 [11]
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From eqs. 3-4 the function y(w, = O,z) is required in order to

evaluate the output pulse I(r,t).

Consider the expansion

Y(W,P,z + 8z) - Y(W,,z) + . 6z 1 2 (... [12]
9z 21 9z

By means of eq. 10 one can write

y(w,p,z+6z) - exp [8z(-iaA + P(p))] y(w,p,z) [13]

For the operator exp (6z(-iaA + P(p))] we introduce the following

approximation:

exp[6z(-iaA + P(p))] = exp Az p(p)] exp[-ia6zA] exp[L P( )] [14]

12 J 2 J

3
The error in equating the two sides of eq. 14 is of the order (6z)

Let g(*) - g(x,y) be an arbitrary square integrable function

whose Fourier transform is g(T):

g (,PJ] d2 I exp(-itp) g(T) F- -[g()] [i5]
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Since

g() 1 2 d2T (_ 2 ) exp(-it.4 ) g(T) [16]
(27r) 2  f

we have

e fid2) exp [ia6zT 2]exp(-iT) g (T)exp(-ia~z) g() = 27-r 2 1
= F- -1 [expi'a z Ftgrp)]]

Combining eqs. 13, 14 and 17 we obtain the following equation

y(W,,z.i.46z) = exp (2P(P))[F4 [exp~ia6z) F~ep ~ (S~

which is the recurrence relation of y(w,P,z) obtained by applying the

split-step Fourier algorithm (Refs. 11, 12) to eq. 10.

In the case where the function P(P) possessed cylindrical

symmetry about the z axis, the following simplification can be made.

.44
F xpdz .+ (,)+WPZ

00. [ 1 9 ]

= 27r dXX exp (Z P(P) y(W,P,z) J0 XP)
f 

2• 0
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where J Cx) is the Bessel function of order zero. Equation 18 now

becomes

'(APZ6') = ex A- P( fd x~a z) XJ O(xp)
2 0

0f (2)
I [20]

-exp ( LZp(~) dpIp I exp (P I (~,z) [0
2 ) o2

II
f dXX exp(iaX26z) J (Xp) J o(xp')

0

With the aid of the formulas (Ref. 18)

dX cs (aX2 6z ) oCX.) Joc x.':

= .
[21]

2az \ 4akz J 2afz)

Eq. 21 can be reduced to

;biJ
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y(w,p,z+6z) = exp (sPzP dp'p' exp P(p') y(W,p',z)
#0

- exp -iJ[22]2a6z 4a6z °

*a ' [t P(P)+P(P') exp - -
'ep4a6z

In the case of a laser beam passing through fog, cloud or rain

the single scattering law can be modelled by a Gaussian scattering

phase function (Refs. 19, 20)

p(s) = - exp(-4 2) [23]

4.
where ; is the projection of s on the x-y plane. Corresponding to this,

the function P(P) defined by eq. 7 can be written as

2 -2P(') = s exp (-k 0 p /4a) [24]

00

To simplify our notation let us introduce a length 0° and an angular

frequency w0 defined by

(4L )1/2 w0 = 8cas [25]

0 k2
L0
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and introduce 6T = as 6z. In terms of these quantities, we can easily

obtain

6zP(p) = 6z o s exp o = 6Ts exp --2 6 s 26]
4a PO

and

k 
2

a6z d )6z ffi 6z = 2 = XP [27]
oI 2 4a o

000

In eqs. 26 and 27 we have set -= P/po0 and x = w/w 0o . When the

scattering phase function can be represented by eq. 23, the mutual

coherence function y(W,',T s ) will satisfy the equation

y(W,P,r +ST S) f d±.. e)[-6Ts ex P2 )+exp(.$*lt2)
2X6T s  2

exp _[ P 2P 21 Jo0 Y(W#p#T5

6r - exp(-p 2) exp(--p' 2 '[8
- i1. dP'~ exp -

0 I. 2  U

exp -iu (p + 52 (2Uj ,) y(w, -T



UNCLASSIFIED

11

with u (4XST s

Choosing the step size 6Ts to be sufficiently small, one can use the

approximation

exp [T jexp(P ) + exp(-p2 + 229
- = 1 +~- ex(-p)ep- '

2 2

in eq. 28 such that

.!a
Y(W,r* ) +6 =2iV f dp' p 1 + 2~ S expC-P 2)+exp(-p' )

0 [30]

e iv[P-i 2p + W12)] J0 (2u ') y(w,p,T )

Equation 30 is the relation which enables us to generate y(wp, T )

from y(w,p,Ts).
s

At this point, it may be worthwhile to comment on the approxi-

mation in eq. 29 in comparison to the quadratic approximation

P(p) n, as [1 - k2p2/4a] used in Refs. 5, 17. In eq. 29 it is evident
2that the error involved is of the order ST and this can be controlled

07 by a judicious choice of the step size. The basis of using the quadratic
4i approximation, on the other hand, has not been clarified. In fact, the

use of the quadratic approximation in the present treatment will lead

to incorrect results.

44
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4.0 STEPWISE GENERATION OF THE MUTUAL COHERENCE FUNCTION

Based on eq. 30 derived in the previous section, a simple alge-

braic relation can be obtained for the generation of the mutual coher-

ence function. Symbolically we can express eq. 30 as

y(w, ,T ) = [G1 + G2] y(w,,sT) [31]

in which the integral transformation operators G1, G2 are defined as the

following:

G [Y(W,p,rs) ] = 2iuf dp-#P' exp-iu(P 2+P-2 A Jo (2u)P')y(wP1,s)

0
[32]

and

6s -2 2
GT = 2iU - d1'p' [exp(-p) + exp(-p'2)]

2 .

0
[33]

-2 - 2
Sexp iU(P+?2)] jo0(2p p') y(,p',T S)

We note that Gly and G2y are of the zeroth and first orders of 6Ts

respectively.

Consider the effects of applying the operators G1 and G2 to the1-2
function C exp (-nIp ). It can be seen that
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-2 -2 -- - LP2
G1[Cexp(-p2)] f dp"p" exp[-i (P2+'2 ]Jo (2u -I)Cexp(-c-,1

o [34]

iuC exp 
+ i

(ctii) [ i(

Equation 34 can also be expressed as

-2 -2GI[Cexp(-QP)] = C'exp(-Mi'P " ) [35]

where

C M -- 2 + iu [36]
cl+iu + iu

Separating C' and a' into real and imaginary parts such that

C' = C'r + iC! and a' = a' + ia! , one getsr r

r M 2 [37a]
r 02 + 2 01 + U)

r  i

C! =-- carC + (ai4i)Ci] [37b]

r

P

- I
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2

2_ [37c]
2 +  )2

2
1= -[37d]

rr 2- 2

Similarly, we can write

G2 [Cexp(-ap)] = C'exp(-c"vp ) [38]

where

1 \ - [(ai +)Cr - (l+ar)Ci] [39a]
c r  2= (+ r) 2  + ( 1 i[+)

6T = u[(l+cr )Cr + (ai+U)C]b
!(l+cr) 2 + (+)39b]

22 (l+a r)

Uc2 '= 1+ r)
r (l+cr )2+ (1i ) 2

4 2(4i.)

1!i = -2 [39d]

(l+) 2 +(aC+u) 2

r .
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For an optical path of thickness s= n6Ts' the mutual coherence

function y(W,F,rs) can be generated from the relationi5

y(W,PTs) = [G1 + G2]n Y(w,P,0) (40]

with the boundary condition y(w, ,0) = 1. As the operators G1, G2 do

not commute, the expansion of [G1 + G2 
n gives rise to 2n monomials in

G1 and G2. From eqs. 35 and 38, each of these monomials will contribute

a term of the form C exp(-mp 2) to Y(W,,Ts ) and all the intermediate

results are of the same functional form. The evaluation of these terms

can now be carried out by means of the simple algebraic relations in

eqs. 35-39. It may also be noted that in the expansion of [G1 + G2]n

there are nCm terms of the m-th order in 6r . The point at which thems

finite series can be terminated in practical computation is effectively

controlled by the quantity nC m (6T m

For large values of n the quantity nCm increases rapidly with m

before it attains its maximum value. For example, if n = 30, m = 3 we

have 4060 terms in the expansion of [G1 + G2] 0 which are of the order

(6T S)5. We have found that an efficient and accurate computational

device can be used. This consists of randomly selecting a subset of

the set of nC terms of the same order in 6T for m>3, and calculating
m s

the mean value of their contributions to y(w,-p = 0, Ts). The total

contribution of all the terms of order (Ts )m is then approximated by
nCm times the mean value of the random set.

k-m

4 di
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5.0 PULSE PROPAGATION IN RADIATIONAL FOG

In this section we apply the previous results to the propagation

of a laser pulse with a wavelength equal to 1.06 um in radiational fog.

It has been shown (Refs. 19, 20) that for a radiational fog with 0.1 g/m3

liquid water content, the scattering phase function can be represented

by a Gaussian function

p(e) =x(a 2 with a - 795.2 rd2, cis = 21.775km1

and 0 denoting the scattering angle. Neglecting the small absorptance,
Figs.-3 show the results for the mutual coherence functions

Y(wpo = O s) with Ts = 2, 4 and 6 respectively as a function of the

frequency X = w/wo . The step size used in 6Ts was 0.2.

Assuming an input pulse to be of the form

ii(t ) = (,--2--T-)-I expt 2 /2T2 )  (411

it can be readily seen that the output pulse is given by

-T 2 2

7- = dw exp CYR Cos wt + yI sin wt] [42]

where YR and yI are the real and imaginary parts of y(w,p = 0, TS = asz).

Figures 4-6 show the output pulses for the cases where T = 20 ns, 2 ns and

0.2 ns with all the pulses normalized in such a way that max I(t) = 1.

As one would expect, an increase in the optical depth results in an

increase in the pulse distortion. For a given optical depth, on the

other hand, the shape distortion in shorter pulses is more severe.



UNCLASSIFIED
17

'L

Rel
I-T

c,1 a

.m3 ImI)-

MGM x

-' I0. io-' So-' i00 go'

FIGURE 2 - Mutual coherence function y versus frequency X for T f 4
'i



/N
UNCLASSIFIED

18

4

20-

"- A~

,, iRo l Ix

/ ,

! . . . . ..~- _-.. . . . . . . _ _ ___ . . . . .

FIGURE 3 - Mutual coherence function y versus frequency y for s= 6

'I \~\ \

0.

U 4 O u -- t "

'i FIGURE 4 - Output pulse intensity for *s 2



UNCLASSIFIED
19

2 T1

'/ 146WmO T

FIGURE 5 -Output pulse intensity for Ts 4

T 2..

___ ___ ___ ___ ___ ___ _T 2--

<'i/'~~ MO..~?;e

intnsiy fr



UNCLASSIFIED
20

6.0 CONCLUSION

We have discussed a new method of solving the parabolic differen-

tial equation of the mutual coherence function based on the split-step

Fourier method. The principal result is a set of simple algebraic

recurrence relations from which the mutual coherence function can be

generated for an arbitrary optical depth. Compared to previous work,

the present treatment does not require any additional assumption to

solve the parabolic equation. The results are applicable to turbid

media provided the typical scatterer dimension is comparable or larger

than the pulse wavelength.
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