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INTRODUCTION 

This report is concerned with the use of variational principles to solve 

a mixed boundary and initial value problem. From a previous paper^ we under- 

stand that the far end conditions are not imposed for solutions in an initial 

value problem. This implies that the boundary value problem can be solved in 

strips of arbitrarily chosen intervals of time. The size of the computation 

can be reduced substantially if the time interval taken is sufficiently large 

and number of strips small. This depends, of course, on the accuracy of the 

method. 

A procedure can be obtained for a recursive relationship in the time 

domain, where the final conditions of first strip can be regarded as initial 

conditions of the second strip.  These recursive solutions can be obtained by 

using variational principles with the aid of the bicubic Hermite polynomial 

spline functions as finite elements. 

ESTIMATION 

A dynamical system can be modeled by the following partial differential 

equation. 

LU) yaU) = -QU) (1) 

with appropriate boundary and initial conditions.  In the above equation L is 

a linear operator, in both spatial and temporal domain, ya is the dependent 

variable, Q is a forcing function and <; represents all independent variables. 

^■Shen, C. N. and Wu, J. J., "A New Variational Method for Initial Value 
Problems Using Piecewise Hermite Polynomial Spline Functions," presented at 
the 1981 Army Numerical Analysis and Computer Conference, Huntsville, AL, 
February 1981. 



both spatial and temporal. 

The inner product < > of an adjoint forcing function Q and the solution 

(ya(0) of Eq. (1) can be used for the purpose of estimation.  This inner 

product is 

GlYal = <Qya> (2) 

The estimate y, which differs from the actual solution ya of Eq. (1) by an 

increment 

6y = y - Ya » (3) 

then becomes 

G[y] = G[ya + 6y] 

= <Q. (ya+6y)> 

= G[ya] + <Q,6y> (4) 

which is in error to first order in 6y and Q. This is undesirable because the 

error depends on the variation 6y which is supposed to be arbitrary. Thus the 

estimate will not be accurate. 

THE VARIATIONAL PRINCIPLE 

A more accurate estimate can be made by constructing a variational 

principle1 for Eq. (2).  By using the adjoint variable y as a Lagrange 

multiplier for Eq. (1) added to G[y] we have 

Jly.yl = G[y] + <y,(Q+Ly)> 

- <Q,y> + <y>Q> + <y,Ly> (5) 

^hen, C. N. and Wu, J. J., "A New Variational Method for Initial Value 
Problems Using Piecewise Hermite Polynomial Spline Functions," presented at 
the 1981 Army Numerical Analysis and Computer Conference, Huntsville, AL, 
February 1981. 



In order that J be a variational principle for G the following requirements 

must be satisfied. 

(a) J is stationary about the function ys which satisfies the relation in 

Eq. (I). 

Lys = -Q (6) 

(b) The stationary value of J deduced from Eqs. (2) through (5) is 

J[y,y] = G[ys] + G[ya] (7) 

Consider first the stationarity of J by taking the variation of Eq. (5) 

6J = <Q,6y> + <6y,Q> + <<Sy,Ly> + <y,L6y> 

= <6y,(Ly+Q)> + <6y,(Ly+Q)> 

- <6y,Ly> + <y,L6y> (8) 

We will make an effort later to impose certain conditions in order that 

the following equality holds: 

<y,LSy> = <6y,Ly> (9) 

where L is the adjoint operator. 

By combining Eqs. (8) and (9) one obtains 

6J = <6y,(Ly+Q)> + <6y,(Ly+Q)> = 0 (10) 

Since the variations 6y and 6y are arbitrary it leads to the requirement that 

the stationary values ys and ys must satisfy 

Lys = -Q (U) 

Lys = -Q (12) 

Equation (11) is the same as Eq. (6), therefore J is stationary about the 

function ys. 



Equation (12) Is the adjoint equation In terms of the adjoint operator L, 

the adjoint variable y, and the adjoint forcing function Q. 

It Is noted that 6J In Eq. (10) vanishes and is independent of the 

arbitrary variations 6y and 6y, in contrast with Eq. (4), where 6G is in error 

to the first order in 6y.  By using 6J Instead of 5G one can claim that the 

estimate is more accurate and free from the arbitrary variations. 

Using the relationship in Eq. (11) the stationary value of J from Eq. (5) 

is 

J[ys.ysl - <Q.ys> + <ys.Q> + <ys.Lys> = G[ys] (13) 

Since J is stationary and 6J > 0, then 

Glys] *  G[ya] (14) 

which is the requirement given in Eq. (7). 

It is noted that Eq. (10) contains no boundary terms to be satisfied. 

This bears an important point in the future discussion. 

BILINEAR CONCOMITANT 

We will find out the conditions for the assumed equality in Eq. (9) to be 

true.  Let us consider the following bilinear concomitant:2 

D = <y,Ly> - <y,Ly> (15) 

The above expression can be integrated in two different ways and can also 

be written in terms of boundary conditions and initial conditions.  It is 

assumed that these boundary conditions are assigned in such a manner that the 

2Stacey, W. M., Jr, Variatlonal Methods in Nuclear Reactor Physics, Academic 

Press, 1974. 



above bilinear concomitant is identically zero for all independent variables, 

i.e., 

D =  0 (16) 

Then the first variations of D also vanish. 

6D = 6D(<5y) + 6D(6y) = 0 (17) 

Since 6y and 6y are independent of each other, then 

6D(6y) = <6y,Ly> - <y,L5y> = 0 (18) 

<5D(6y) = <y>L6y> - <6y,Ly> = 0 (19) 

Equation (19) is identical to Eq. (9), which is the assumed equality 

previously.  The implication is that if Eq. (16) is true then Eq. (9) or (19) 

is automatically true. 

Since Eq. (15) can be expressed in terras of some integrals involving 

boundary conditions, Eq. (16) can be true if these boundary conditions are 

satisfied.  The next section will discuss integral of bilinear expression and 

its boundary conditions. 

INTEGRAL OF BILINEAR EXPRESSION 

The integral of a bilinear expression for a two-dimensional second order 

problem in space-time can be written as 

xb tb 
1=/   /  iKy(x,t),y(x,t)]dt dx (20) 

xo  to 

where ^[y,y] is a given bilinear expression in the form 

*[y,y] = oytyt + ^ytY + Tyyt + ^xYx + Myxy + vyyx + eyy   (21) 

The subscripts t and x indicate the partial derivatives of the function y and 

y. 



Equation (20) can be integrated by parts.  Two different forms of inte- 

gration and end conditions can be obtained.  The first form of the integral is 

xb  tb _ 
xb        _ tb      tb xb 

I = -/  /  yLydtdx + /  (oyt+Yy)y|  dx + J  Uyx+vy)y|  dt  (22) 
X0  t0 X0 t0 t0 XQ 

which is obtained by integrating by parts on the adjoint variable.  On the 

other hand, we can perform integration on the original variables to give 

xb  tb  __       xb  _  _  tb      tb  _  _  xb 
I = -/  /  yLydtdx + /  (ayt+By)y|   dx + J   («.yx+My)y|   dt  (23) 

x0 t0 '        x0 t0      t0 x0 

where 

Ly = (ayt)t - 3yt + (Yy)t + ^Vx^  " Wx + (vy)x - ey     (24) 

and 

Ly = (ayt)t + (^y)t - Yyt + (Ayx)x + (wy)x - vyx - ey    (25) 

For a two-dimensional second order system in space-time domain, Eq. (15) 

becomes 
xb tb _ xb  tb  __ 

D = / /  yLydtdx - J   J   yLydtdx (26) 
xo t:o xo ^o 

By equating Eqs. (22) and (23) and solving for D in Eq. (26), we are convert- 

ing the double integral into two simple integrals in terms of the boundary 

conditions. 

We can express the quantity D as the sura of two parts D^ and D2 as 

D = Dx + D2 



The terms in D^ involve the initial conditions of y and y as 

xb       _ - - - 
Di = /  (ab(ytbyb-ytbyb) - ao(ytoyo-ytoyo) 

xo 

+ (Yb-3b)ybyb - (Yo-3o)yoyo>dx (27>- 

The   terras   in T>2  involve  the boundary conditions  of  y and y  as 

tb _    - -    - 
D2 = /     Ub(yxbyb-yxbyb) - Vyxoyo-yxoyo) 

to 

+ (vb-iib)ybyb - (^o-^yoyo^t (28) 

In order that D = 0 in Eq. (16), it requires that 

Di = 0 (29a) 
and 

D2 =  0 (29b) 

END CONDITIONS FOR THE ADJOINT SYSTEMS 

We may take four different cases in discussing the end conditions for the 

adjoint systems in order to satisfy the requirements in Eqs. (29a) and (29b) 

(a).  The Wave Equation:  In this case Eq. (24) becomes 

Ly = (oiyt)t + (^yx)x - 0 (30) 

and the coefficients are 

Yb = 3b,  Yo = 3o,  vb = Mb,  v0 = u0 

ab ^ 0, a0 ^ 0, ih  *  0, and ^o * 0 (31) 



Let us assume that the adjoint variables are 

yb = kyo.   yo = kyb 02) 

ytb ■  -Ob'^kyto,     yto = -OQ-iobkytb (33) 

yxb = -Ab~lAokyxo   and   yxo = -^o'^h^vKh (34) 

where k. is constant. 

The above boundary values satisfy the requiremeat that D! = D2 = 0 in 

Eqs. (27) and (28).  Thus it also satisfies Eq. (16) that 

D 5 0 

(b).  Heat Equation:  In this case Eq. (24) is 

Ly = -6yt + (Yy)t + Uyx)x = 0 (35) 

and the coefficients are 

vb = Ub.  vo = Mo.  % = 0,  OQ = 0 

^b *  ^b,  To *  So.  ^b * 0, i0   * 0 (36) 

Let the adjoint variables be 

yb = (Yo-3o)kyo,  yo = (Yb-3b)kyb (37) 

yxb = -^r^oCYb-Pb^yxo.  yxo = -V1^b(Yo-Bo)kyxb       (38) 

We also have D^ = D2 = 0 and D = 0. 

(c).  First order partials of x in Eq. (24) are missing, i.e., 

vb ■ ^b.  vo = Mo,  Yb * 3b,  Yo *  3o (39) 

Let 

yb ■  (Yo-3o)ky0,     y0 =  (Yb-3b)ky0 (40) 

ytb = -ab"lao(Yb-3b)kyto,     yto = -ao_1%( Yo-3o)kytb (41) 

yxb " -^b"1^o(Yb-3b)kyxo,     yxo = -^o"1VYo-3o)kyxb (42) 



We also have D^ = D2 =  0 and D  = 0. 

(d).     First  order  partials  of   t  in Eq.   (24)   are missing. 

Tb =   ^b.     To =   ^o.     vb   *  Vb*     vo   *  ^o 

Ofa * 0.     ao  ^ 0.     Sib  + 0,  and  i0  + 0 (43) 

Let 

yb = (^0-^0)^0.   yo = (\»b-yb)kyb (44) 

Ytb - -^b'^oC^-^b)^^.    fto ■ -ao""lab(vo-Wo)kytb (45) 

Yxb - -V^o^b-^yxo.   yxo = -V1^b(vo-Mo)kyxb (46) 

We also have D^ = D2 = 0, and D s 0. 

From the expression D = 0 in Eq. (15) we can conclude that 6D = 0 in Eq. 

(19) and Eq. (9) hold,  which leads to the condition in Eq. (10) that 

6J = 0 

for all arbitrary variations 6y and 6y. 

FIRST VARIATION 

Since the variations 6y and 6y are independent of each other, the part of 

6J in Eq. (10) with variation 6y can be expressed as 

xb  tb  -        xb  tb  - 
6j(6y) = /   /  SyLydtdx + J   J   6yQdtdx =0 (47) 

x0  t0 x0  t0 

where Ly is given in Eq. (24) and contains second order partial differentials 

in y.  It is intended to include only first order partial differentials and 

the function y itself in 6J(6y).  This can be achieved by considering the 

variation of the bilinear expression I in Eqs. (20) and (21) which gives 

51 = 6l(6y) + 6l(6y) (48) 



where 
xb     tb _ _ - 

6l(6y)   =  /       /       [(ayt+Ty)6yt + (3yt+eyfyyx)6y + Uyx+vy)6yx]dtdx       (49) 
xo     to 

A. different  version of   the above variation can be obtained  from Eq.   (22)   as 

- xb     _ xb tb 

6l(6y)   = -/       6yLydtdx +  /       iSy( ayt+yy) |        dx 
xo xo ^-o 

tb  - xb 
+ /   5y(£yx+vy)|   dt (50) 

to xo 

Equating Eqs. (49) and (50), solving for the terra containing integral for 6yLy 

and substituting into Eq. (47) we have 

_ xb _  tb tb _ xb 

6J(Sy)   =  /       (ayt+Ty)Sy|       dx +  /       (£yx+vy)6y|        dt 
x0 t0 t0 x0 

xb     tb     - 
+   J        J        6yQdtdx 

xo     t-o 

xb     tb - - - 
- /     /     [ayt+TyHyt + (eyt+ey+yyx)«y + (£yx+vy)6yx]dtdx = o     (51) 

xo  to 

This is the key equation which uses variational principle in solving a 

mixed initial and boundary value problem.  The above equation contains only 

bft   Syti and 6yx and none of the variations of higher derivatives.  The 

dependent variable contains only y, yt, and yx and no higher partials. 

TRANSFORMATION OF COORDINATES 

The integral signs in Eq. (51) can be converted into summation signs if 

discrete intervals for integration are used. We may take some scale factors 

to nondimensionalize the problem by giving 

10 



to = 0, tb = 1    0 < t < 1 (52) 

x0 = 0, xb = 1    0 < x < 1 (53) 

Moreover, Eq. (51) can be dlscretlzed by letting 

C - Ht - i+1    0 < 5 < 1    i = 1,2,...,H (54) 

n = Kx - j + 1    0 < n < 1    j = 1,2,...,K (55)' 

where H and K are number of intervals for t and x respectively. 

Thus the partial derivatives are 

3y    3y 
yt = -- = H -- = Hy, (56) 

9y    3y 

3x    3ri 

Use of  Eqs.   (52)   through Eq.   (57)   then  leads   to 

" K       1 - tb  1 
fiJ(6y) -    I    j    [otHy^i.J) + Yy(i.J)]6y(i.J)|       ^ dn 

j-1     0 to K 

1 XV,    1 

+    I     I     [AKyn(i.J)  +  vy(i,j)]6y(i.j)|       - dC 
1-1     0 x0  H 

K       1       H       ! l l 

+    I     L   il     j     Sy(i>J)Q -  d^}  - dn 
j-1     0    i=1     0 H K 

K      1      H      j 
-     I     I     i  1     j    [(aHyr(i.J)  + yy^1'J))H6y£(i.J) 

j-1    0    1-1    0 '= 

+  (3Hy?(i.J)  +  ey(i,j)  +  pKy^1.:))) 6y(i J ) 

+  (^Kyn(i.J)  +  vy(l,J))K6yn(i.J)]   - dO  - dn (58) 
H H 

11 



GRID SYSTEMS 

The (16x1) vector Y^1*^ has a grid of four (4x1) vectors Y^i>J^ through 

Y4^i>J), thus 

YCi»J) = {[Y^i.^lT [Y2(i.J)]T [Yg^.^jT [Y4(i.J)]T      (59) 

Each of the (4x1) vectors has four components, consisting of the function, its 

first partials in both directions, and its mixed partial. 

Y^LJ) = 

yUi.nj) 

y^Ui.n-j) 

yn^i.nj) 

ycTi^i»nj) 

^3 (i,j) = 

yUi,nj+i) 

y^CSi.nj+i) 

y^n^i'^+l) 

Y2 Ci.j) = 

y(Ci+i,Tij) 

ysCSi+i.nj) 

Yn^i+l.^j) 

y^n^i+l*^) 

Y4 (i.j) = 

y(Ci+1,rij+i) 

y^Ui+l.lj+i) 

yri^i+l»nj+l) 

y^n^i+l'^+l^ 
(60) 

If we increase the row index from i to i+1, then the grid point shifts down by 

one step and the following holds 

YjCl+l.j) = Y2(i'J)    Y3(i+1.3) = Y^i.J) (61) 

If we increase the column index from j to j+1 then the grid point shifts to 

the right by one step and one obtains 

YjCl.J+l) = YaCi.J)    Y2(i'J+1) = Y4(i.J) (62) 

12 



The following diagram shows the relationship of the grid system. 

I 

Y^i.J) Y3(1.J)   = Yi^.J+D Y3(i.J + l) 

[Y^i.J)] [YCi.J+D] 

YoC1'^ YA^'J)   =       Y^1'^1) YA^.J + O 

Y^i+U) i-jU+U)  = ij(i+l,j + l) ild+l.j + l) 

[Y(1+1.J)] [YCi+l.J+O] 

Y2(i+l.J) Y4(i+l.J)   =  Y2(i+1'J+1) Y4(i+1.J+l) 

SPLINE FUNCTION 

We may express the variables yC^jJ) and 6y(i»J) in Eq. (58) in terms of 

the (1x16) spline function aT(5,n) and the (16x1) node point function Y^'J) 

as follows. 

y^'^U.n) = aT(5,T1)Y(i.J) (63) 

where 

aTa,n) = ([a^Cn)]1, [a2(5,n)]T [a3a,n)]T [a,+ (C,Ti)]T     (64) 

and 

6y(i.J)(5,n) = aT(C)n)6Y(i.J) (65) 

A typical term for a product can be written as 

6y(i,j)y(i,j) = [6Y(i.J)]Ta(5,n)aT(5,Ti)Y(i.J) (66) 

13 



BICUBIC HERMITE POLYNOMIAL SPLINES 

With the aid of Eq. (59), Eq. (63) may be expressed as 

y^j)a,n) = [aHe.T,)]^^1.^ + [a2U,Ti)]TY2(i'J) 

+ [a^CTl)]^1*^ + [a^^n)!^1^) (67) 

The bicubic Hemite polynomial spline is continuous in the functional value, 

its first partials in two directions, and its mixed first partial in both 

directions.  The bicubic Hemite polynomial spline gives 

a^S.n) = 

HO <Kn) 

*[5) <Kn) 

<t>(c) Kn) 

^(5) ^(n) 

a3(5,n) = 

K5) p(n) 

HO p(n) 

(|>(5) w(n) 

where 

a2(^,n) = 

<t)(0 

P(5) 

pa) (Kn) 

w(5) *(TI) 

P(5) *(n) 

u)(c) ^(n) 

= 1 - 352 + 253 

= 5 - 2CZ + 5; 

3i2 -  253 

= -52 + V 

aH^.n) = 

p(5) P(n) 

uCC) p(n) 

P(5) u)(n) 

01(5) a)(n) 

^(5) = -65 + 65/ 

^(O = 1-45 + 3?' 

p5(5) = 65 - 65
2 

a)5(5) = -25 + 35
2 

(68) 

(69) 

14 



At grid points (nodes) the value of 5 or n takes the value of 0 or 1.  Thus we 

have 

(t>(0) = 1    KO) - 0    <Kl) = 0 iKl) = 0 

4.5(0) = 0   ^(0) = 1   (1)?(1) = 0 1^(1) = 0 

p(0) = 0    CJ(0) - 0    p(l) = 1 u(l) = 0 

p5(0) = 0   0)^(0) = 0   pc(l) = 0 OJ5(1) = 1        (/o) 

It is noted that the diagonal elements of the matrix are unity and the off 

diagonal terras are zeroes. Similar expressions are held for (j)(ri), etc. in 

terras of n.  For example 

Kn) = l - 3n2 + 2n3 , etc. (71) 

CONSISTENCY AT NODES 

To show that Eqs. (67) through (69) are consistent at the node points, we 

will check only the following cases. 

(1) For the case C = 0 and n = 0, from Eqs. (68) and (70) we have 

a2(0,0) = a3(0,0) = a1+(0,0) = [0000] 

a^O.O) = [1000] (72) 

(a) y(i.j)(5,n) 5-0 = [^(C^lVo Y^i.J) 
n-0 n=0 

[10 0 0]Y1(
i.J) = y(i.J)(0,0) (73) 

15 



(b) 

(c) 

y^i^U.n) 5=0 = [a^U.TOlVo Yi^.J) 
n=0 n=0 

$5(5) <)>(n) 
T 

■ 

yCi.JHo.O) 

^(S) Kn) y^i.^CO.O) 

-^^CC) *(n) y^i.^CO.O) 

^(C) Kn ) 
5=0 
n=0 

yCn(i.J)(0,0) 

=   [010  OlY^1^) 

=  y5(i.J)(0,0) 

y5n(i>:i)^,n) 

^(5) <l>n(n) 

5=0 = ta^n^.iDlVo Y^i.J) 
ri=0 n=0 

yti.J^O.O) 

y^i'JHo.O) 

yn^'JUo.O) 

y5n(i,j)(0,0) 
5=0 
n=0 

(74) 

= [000 UY^i'J) 

= y^i'JHo.O) (75) 

The above expressioas show that the function, its first partial in one 

direction, and its mixed partial are consistent and continuous at the node 

point 5=0 and n = 0. 
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(2)  For the case 5 = 1 and n - 1, from Eqs. (68) and (70) we have 

a^l.l) = a2(l,l) = a3(l,l) = [0000] 

a^d.l)  =  [1000] (76) 

(a)   Thus 

y^.^U.n)  5=! =  [a^U.rOlVl Y4(i.J) 
n=l n=l 

=  [100 0]Y4(i'J)  = yCi.^Cl.l) 

(b) y^i»J)(C,n) 5=1 =  [alt5(5,n)]T
?=i Y4 

n=l ri=l 

(i.j) 

(77) 

(c) 

P5(5) P(n) 

w^(5) p(n) 

P5(5) w(n) 

5=1 
n-l 

y(i.j)(l,l) 

yc(M)(l,l) 

yn^'^Cl.l) 

y?n(i,j)(l,l) 

=[010 0]Y4(i.J) = yc<i»J)(l,l) 

y?n(
i.J)(5,T1) 5=! =  [a^U.TOlVl Y4Ci.J) 

n=i n-l 

(78) 

P^(5) pn(n) 

w^CS) Pn(n) 

P5(5)  wn(ri) 

u|(5) wn(n) 
C=l 
n-l 

yCi,J)(l,l) 

y5(i.J)(l,l) 

yn<i»J)(l,l) 

=   [000  l]Y4(i.3)  = y^^i'J^d.l) (79) 
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It can be proved that all the 16 elements at four corners of the grid are 

consistent.  It can also be proved that the function, its two directional 

first derivatives and its mixed partial are continuous at all grid points. 

WAVE EQUATION 

Let us take a special care for further study of the mixed initial and 

boundary value problems.  We choose the wave equation where the parameters in 

Eq. (24) are 

3=Y=y=v=e=0 (80) 

and a = const ^0 (81) 

I  = const *  0 (82) 

Then Eq. (24) becomes 

Ly = aytt + £yxx = -Q (83) 

Eq. (58) is simplified to 

- 1£      aH    1    - t^ 
6j(6y)   'l       —  j     5y(l,J)yEU.J)dnl 

j = l     K       0 to 

H       OTf     i     _ XH 

+    I       ™ I1   6y(i.J)yri(i.J)d5| 
1=1     H       0 XQ 

K      H      !       11- 
+    I       I      —  j     j     6y(i,J)Qd5dn 

j-!   !=!     HK    0     0 

K       H y     i     ^    _ 
+    I       I       /     /     [-   6y?(l.J)y5(i.J) 

j-1   1=1 0     0    K 

UK    — 
+ — 6yn(i.J)yT1(i.J)]d5dn = 0 (84) 

H 

18 



Differentiating Eqs. (63) and (65), and substituting into Eq. (84) we 

have 

K  aH   -,4 .. T.l ,tb  f4   A\ 
6J(6y) = I    —  [6Y(i.J)] / aU,n)acU,Ti)dri|  Y^.J) 

j=l K 0 t0 

+ I       —  [SY^'V]   j    aU,n)anU,n)d?|  Y^
1.^ 

1=1  HO x0 

K  H i   _     Til 
+  V   V __ [SY^.J)] J  / a(C,ri)Q(C,n)d5dn 

jil 1=1 HK J0 J0 

+ Y   l    -- [fiY^.J)]1/  J aKC,T1)ar
T(5,n)dWT1 Y^.J) 

j-l 1=1 H J0  0  ^     ^ 

K  H  o x  -     Til / , . \ 
+ |   I    ^ [6Y{±,2)]   j     j    a^^^a^^^d^dn Y(i.j) = 0  (85) 

j=l 1=1 H 0  0 

Eq. (85) may be written into a different form as 

- K   -      T 
6J(6y) =  I  [SYCtb.J)] P0?(tb)Y^tb.J) 

j = l 

- I  [6Y(to.J)]
Tp05(to)Y(to.J) 

J-l 

H   _      T 
+ I     [SY^^b)] P0n(xb)Y(i.xb) 

1=1 

H   _      T 
- I     [SYC1.^)] Pon(xo)Y(

1.xo) 
1=1 

K  H   _     x 

j-l 1=1 

K  H   -     x      .   . 
-  ^  J [fiY^.J)] pCi.^YCi.J) = 0 (86) 

j-l 1-1 
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It is noted that the first two terras involve initial values, the next two 

terras involve boundary values, and the last two terras involve interior 

quantities within the region. 

Equation (86) uses the following notations 

ctH     1 
POE(tb)  = —  /    aU,n)a5Ta,n)dn| (87) u^ K      0 t=tb 

aH   ,1 

aH UK 
p ■ r p«+ rFm 

and 

(88) 

&K     1 T 
P0n(xb)  = "  /    aU,n)an  (5,n)d?| (89) 

' K       0 x=xb 

&K     1 
POnW = " /    aU,n)an

TU,n)d5| (90) 1 K      0 x=x0 

(91) 

PEE = J1  / ar(C,n)arT(5,n)dCdn (92) 

Pnn = J1  Z1 an(5,Ti)anT(5,n)d5dn (93) 

q(i,j) = L J     /    a(5>n)Q(?,n)d5dn (94) 
HK    0    0 

For a given spline function, such as bicubic Herraite polynomials, a(5,n) 

is given in Eqs. (64), (68), and (69).  For a given grid the number of node 

points are known, so are H and K.  Thus Eqs. (87) through (93) can be 

determined and stored in advance.  For any given forcing function Q(C,n), Eq. 

(94) can also be evaluated. 

20 
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The (16x1) vector Y^'J) in Eq. (86) was defined in Eq, (59).  Its 

components can be overlapped as given in Eqs. (61) and (62).  We have found 

previously that the first terra in Eq. (86) can be dropped because it can 

automatically satisfy the final conditions for an initial value problem.  In 

the second terra the function Y^O'J) is known because the coefficients are the 

initial values.  Although sorae of the boundary values Y^^b) amd Y^^o) are 

given, most of these terras are to be determined.  The entire problem is to 

solve for Y^'J) by setting to zero the assembly coefficients of the 

individual elements of 6Y^>J). 

It is a tedious task to assemble these coefficients.  These will be 

performed in the future as a separate report. 

CONCLUSION 

A bilinear form of the original and adjoint variable is employed in 

determining the coefficients of the variations of the functions and their 

first derivatives.  There is no term involving the variations of any higher 

derivatives.  A bicubic Hermite polynomial is used which gives continuity in 

the functions and first partial derivatives in space or time, together with 

the mixed first partial derivative in space and time.  In solving mixed 

boundary and initial value problems of a second order partial differential 

equation using spline functions, the computation may be simplified 

considerably if the variable in time can be truncated into arbitrary sections. 

The entire problem is divided into several strips of distinct time intervals, 

each strip containing mostly the boundary value problem. 

21 



The variational principle for spatial and temporal problems with boundary 

and Initial conditions has been investigated.  This variational principle is 

very general in scope and can be applied to many linear partial differential 

equations.  The principle is applicable if the bilinear concomitant is 

identically zero.  This leads to the requirement that a set of end conditions 

for the adjoint systems must be found to satisfy this condition.  Otherwise 

the variational principle as stated may not be applicable. 

Both the wave equation and the heat equation (with one dimensional 

spatial direction) satisfy these variational principles.  For future work the 

analytic solution of these equations using the finite element method will be 

studied.  The assembly of the elements of the matrices involved in the 

formulation will be demonstrated.  The stability problem in numerical 

solutions on these equations will also be investigated.  This lays the 

foundation for the gun dynamics problem to be studied in the future. 
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