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1. INTRODUCTION

This paper discusses the use of pattern recognition to automatically
assuss targets detected by the Installation Security Radar (USR)
system.* The ISR is a uhf site-security radar with a 360-degree elec-
tronic step-scan capability. A coherent receiver develops both the in-
phase and quadrature components of the Doppler return. Detection ¶roc-
essing is implemented with a high-speed microprogrammable processor for
1024 cells chosen from the available 8192 range-azimuth cells. Each
cell is 11.5 degrees wide by 15 m deep. Target classification and track
processing are initiated upon target detection.

Radar backscatter from a range-azimuth cell contains information
about the scattering objects within that cell. Target classification as
addressed in this pnper uses this inherent information to assign priori-
ties to possible threat-target tracks and to minimize the formation of
tracks on nuisance targets, such as birds and animals, and false
targets, such as foliage backscatter and system noise. Target clas-
sifiers have been designed and evaluated with a relatively large data
base obtained jointly by Sandia Laboratories (SL) and the Harry Diamond
Laboratories (HDL) at the Department of Energy's PANTEX facility in
Texas. The data were obtained with a Camp Sentinel Radar (CSR) 2 driving
digital recording hardware with software developed at SL.

A'

2. PATTERN RECOGNITION APPROACH

Conceptually, pattern recognition involves the three operations of
feature definition and ranking, feature extraction, and class discrimin- A

ation. In this study the essential target features were determined as
derived parameters of a simple radar-backscatter return model. The ]
Doppler return is Fourier transformed, and the features are extracted In
the spectral domain. Discriminant functions map regions of the N-dimensional feature subspace to regions of the M-dimensional decision
space. In general, various classifier structures and optimality
criteria are available for selecting the class discriminator. In this
paper, class discrimination is based on the value of the conditional a
posteriori probability functions evaluated at estimates of the spectral
features.

*Concept Evaluation Phase of the Installation Security Radar System,
HDL internal report, 24 December 1980 (available from author).

'R. Lewis, PNP-2 Processor Handbook, Stein Associates, Inc., Waltham,MA (March 1978).
2jA Dent, Camp Sentinel Radar III. (U), 18th Tri-Service Radar

Symposium (1972). (CONFIDENTIAL)
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Although numerous distance measures have been suggested for
evaluating feature selection, Kanal 3 suggests that it is best to measure
the probability of error directly. For the ZSR, the a priori probabil-
ity of each target class is not known. Therefore, instead of maximizing
the total probability of error, the present target classifiers were
developed by maximizing the probability of proper classification, while
minimiring the probability of improper classification for each target
class taken separately.

2.1 Target Models

The u•se of physical models to predict the spectral character of
the Doppler return offers at least tihree benefits to the development of
target classifiers. First, a physical model allows efficient use of the
available data base since only the essence of the spectral character-
istics of the return is used to develop the model and hence design the
classifier. Typically, at least one-half of a data base is used during
classifier training (e.g., to obtain the weights, for a linear
classifier). Second, strategies to determine the "best" feature subset
are not necessary, since the ranking of the spectral features occurs
naturally from the development of the target model. Third, the use of
target modeling yields an intuitive relationship between the spectral
features and such physical parameters as target velocity, direction of
travel relative to radial, step size, and step rate. Because of the
structure present in the data, this type of target modeling (as opposed
to less intuitively motivated methods such as principal-component
modeling) seems to be well suited to the problem.

2. 1 Translating Targets

A simple three-point target-backscatter model possesses the
essential spectral character of the uhf return from a translating
target. The modelled return, V, is the vector sum of the contributions
from the target body and its moving appendages:

3 4wri (t)
v = ai(t) Cos . (1)i=I

The ai(t) (i 1 1, 2, 3) represent the variation in cross section of the
ith scattering point as a functio of times r 1 (t) (i h1, 2, 3)
represent the distance between the in scattering point and the radar as
a function of time; and X is the rf wavelength.

3L. Kana), Patterns In Pattern Recognition: 1968-1974, IEEZ Trans.
Inf. Theory, IT-20, 6 (November 1974), 697-722.
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If the first reflector represents the return from the torso,
ri(t) is a monotonic function of time. The second and third reflectors
then represent the return from the moving appendages (e.g., human arms
and legs, bird wings) and thus r2(t) and r3(t) possess both a monotonic
and an oscillatory component. The return from a wheeled vehicle can be
considered a degenerate case with only a single scattering point. For
constant-velocity targets, V can be expressed as

V -a Ct) corn (21f t)

+a 2(t) cos [2,nfTt + *(t)] (2)

+ a (t) Cos [2L t + 2t)

where

fT 9 cos Y

VR - target radial velocity,

y - angle of target travel relative to radial, and

W (t) and * (t) are angle modulation terms caused by the
moving (resonant) appenoages.

The periods of ai(t) (i - 1, 2, 3) and C(t) (J 1, 2) are related to
the appendage resonant frequency (or target natural frequency, fo).

Assuming that 0 (t) = * (t) + w and a (t) - a3(t + 1/fO),
equation (2) can be written In the simplified form: 2  3

a (t) Cos (2-fft) + 2a 2 (t) Cos [27f t + *1(t)J . (3)

A sample of the measured power spectral density function from

a radially inbound human is shown in figure 1. Figure 2 shows an
example of the power spectral density function of a synthetically
generated target signal based on equation (3). The modelled human-
target return (fig. 2) can be seen to possess much of the same spectral
character as the real radar return.

9
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Human return.--The important target attributes that appear to
be obtainable from the Doppler return are (1) target velocity,
(2) target natural frequency, (3) distance traveled in one cycle of limb
motion, (4) limb modulation oharacteristics, (5) indication of target
mass, and (6) relative nine of the target. Some of these attributes can
be estimated direotly from the spectrum of the target return, while
others must be indirectly estimated. Because of shadowing, roughness,
multipath effects, the target's height above ground, etc, the estimate
of relative target mime may be in error by more than an order of
magnitude, For this reason, only the first five attributes will be
considered , A

(1) fT is related to the target radial velocity, V.1 i.e,
2VR

Of considerably more interest is the actual target velocity, VT, end not
just its radial component; i.e.,

VT - VR Sec Y ,

where y is typically unknown. A possible means of estimating y is given

shortly. The highest velocity for a sprinting human is approximately 30
ft/s while a dog's velocity can be twice that high. Thus, although ameasured velocity of greater than 30 ft/s does not inevitably imply a
dog target, it rules out the possibility that the return is due to a
human.

(2) fo is the natural frequency of the target. In the case
of a human, fo is equal to one half the step rate, while for a bird itis equal to the wing-beat frequency. The highest expected natural

frequency for a human is approximately 5 Hz, while a duck and a sparrow
have natural frequencies of approximately 9 and 13 Hz, respectively.
Although large birds have wing-beat rates on the order of a human's
natural frequency, most birds have significantly higher natural frequen-
cies. In the case of nonnatural targets such as helicopters, the
propeller rotation rate is significantly higher than most bird wing-beat
rates.

(3) f is proportional to the distance of radial target
travel in one cycle of the target's natural frequency. This distance
measure is given by do, where

"d o " . f T s c y

12
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In the case of a human, do represents the target step size. An estimate
of y is required to fully use the quantity fT/f0.

(4) The nature of the limb modulation is expected to be a
species-dependent characteristic., In addition, it has been empirically
observed that by comparing the relative power in the limb modulation and
torso return fox natural targets, an indication of the angle of target
travel relative to radial may be obtained. This phenomenon has not been
fully explained but may be due to masking of or interference among the
dominant scatterers.

For a human on a radial trajectory, the translation lobe
in the spectral return is somewhat larger than the modulation side-
lobes. As the angle relative to radial increases, the power in the

" .translational lobe relative to the power in the modulation harmonics
diminishes for an outbound target and increases for an inbound target,
as shown in figures 3 and 44 respectively. By using such information,
an estimate can perhaps be made of the direction of target travel rela-

ytie to radial. An estimate ot y could be used by both the '.racking
function for trajectory prediction and in the calculation of target step
size.

(5) The spectral width of the translational component and
modulat..iw sidelobes of the target return may provide additional target
discrimination. As suggested by L. T. James (SL) and R. Chase (HDL),
this spectral wic .h contains information about acceleration of the

r target and its ap-ex'dages. in certain cases the spectral width may be

related to the mat-s of the target.

For an upright walking human, the spectral width of the
target translational component, AfT, generally increases with increasing
target velocity. If AfT is written as some function, go, of the target
velocity, VT, then

ifT-- g() fT
T 2 cos y

Assuming that the inverse of g exists (i.e., g-l()), then an estimate of
y can be obtained as

A .. r [ fmT
= cos- ( (5)

Similarly, since do = (/2)(fT/fO) sec y, if g- 1 () exists, do can be
expressed as

13
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g- I Af )

d "(6)

Once the function g and its inverse are obtained, the estimates of y and
do depend only on the easily measured spectral attributes fT' fo, and
AfT. The two separate estimates of y were made based on (1) the power
in the translational component relative to the modulation sidelobes and
(2) the relative width of the translational component. These single-,
cell estimates of y can be correlated with the observed target trajec-
tory over multiple cells to produce an accurate estimate of angle of
target travel relative to radial.
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with a step size of 2 ft and step rate of 2

steps per second.Bird return.--Birds 
can be expected to present a problem to a

ground-based radar designed to detect humans and vehicles. Vi•e energy
arriving at a target and that scattered back to the radar consists of

both a direct path and a ground-reflected 
wave. A vertical lobe struc-

ture in the radiation pattern results from the interference phenomenon,
as discussed by Skolnik. 4 The observable effect is that the radar
return from a target near the ground falls off as the inverse of range

to the eighth power, instead of the inverse of range to the fourth,power, as with a target in free space.

4. Skolnik, 
Introduction 

to Radar 
Systems, 

McGraw-Hill 
(1980), 

Ch
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For path length differences that are small compared to a
wavelength, it is shown in appendix A that the received power from a
target is proportional to

h4(ha + hJ)
R 8'

where

ha is the antenna height,
aI

ht is the target height, and

I
R is the (direct path) range to the target.

A plot of thp approximate variation in radar return power
expected from a point target as a function of target height is shown in
figure 5. For example, with a 100-ft high radar antenna, the return
from a target on the ground would be approximately 12 dB less than for ,
the same target at a height cf 100 ft.

A considerable xmount of work has been reported in the liter-
ature on radar return from bird targets. Birds with physical extent
somewhat less than one-half *of the rf wavelength appear as Rayleigh
Pcatterers with cross sections exhibiting a )"4 wavelength dependence.
At wavelengths less than the target extent, the cross section is
expected to be proportional to the wavelength. 5 At approximately 3 GHz,
the cross section of all birds, regardless of size, exhibits minimum
spread (resonance). 5  Figure 6 compares the mean cross section of ah_.human to that of several birds in the range of 0.4 to 10 GHz. Table 1

lists available average cross-section measurements at uhf (approximately
400 MHz) for several species of birds. Most sources suggest that the
amplitude of the bird return follows a lognormal probability density 4
function. 6  Cross-section measurements of birds in flight performed
simultaneously at uhf, S, and X band have shown the standard deviation '1
of the return to be of the same order of magnitude as the mean of the
return. 6

The most important discriminant reported in bird return is an
amplitude modulation whose fundamental, fo, is the \ing-beat

5G. Pollon, Distribution of Radar Angels, IEEE Trans. Aerosp.
Electron. Syst., AFS-_8, 6 (November 1972), 721-727.

%. Atlas and K. Hardy, Radar Analysis of the Clear Atmosphere:
Angels, Progress in Radio Science 1963-66, International Scientific
Radio Union, 15th Gtneral Assembly, Munich (5-15 September 1966).

16
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frequency. 7 ' 8  This wing-beat frequency varies approximately inversely
.to the size of the bird;O this has been observed at frequencies from vhf
to X band. Table 2 gives two suggested models for determining the
characteristic wing-beat rate based on the bird wing length.

202

aft.

10-

ha,4 ANTENNA HEIGHT

0 h 2h

TARGET HEIGHT
Figure 5. Approximate signal level increase (relative to
return at zero height) as a function of target height above
grounds

7E. Reedy and T. Cutler, The HOWLS Radar Sky-Clutter Environment,
Engineering Experiment Station, Georgia Institute of Technology, ESD-TR-

!; 1 75-319 (15 September 1975).e •. Flock and J. Green, The Detection and Identification of Birds inFlight, Using Coherent and Noncoherent Radars, Proc. IEEE, 62, 6 (June

1974), 745-753.
9. Konrad, J. Hicks, and E. Dobson, Radar Characteristics of Birds

in Flight, Science, 159, 3812 (January 1968), 274-280.
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Wing-beat frequencies of between 11 and 15 beats per second
were measured for a number of flights of a small pheasant at the PANTEX
facility, The results aqree reasonably well with the published results
for comparable-size birds shown in table 3,

TABLE 1. UHF BIRD PADAR CROSS SECTION (ref 7)

Radar
Target cross section Source

(dsam)

Pigeon -30 Technoloqy Service Corp.'
-32 Condon b

Grackle -42 Technology Service Corp.

-44 Condon

sparrow -55 Technology Service Corp.
.-57 Technology Service Corp.

4A Clutter Model for Artillery and Mortar Locatiiv

Radar, Technology Service Corp., TSC-PD-041-1, prepared
for Mitre Curp. and USAXCOM (7 July 1969).

bE. J. Condon, Scientific Study of Unidentified
Flying Objects, Now York Times, Bantam Bcoks (1968),
655-716.

TABLE 2. SUGGESTED MODELS RELATING
WING LENGTH AND CHARACTERISTIC
WING-BEAT RATE (ref 9)

Modela Source

fo A 1.15 3540 Greenewltb

f0 A 9.827 = 572 Houqhton'

af 0 is the wingbeat rate (Hz) and I is the

lenth of the wing (cm).
C. H. Greenewalt, Hummingbirds, Doubleday

and Co., Inc., Garden City, MY (1960).
CE. W. Houghton, The Effect of Changes in

Target Trajectory on the Wingbeat Modulation
Pattern, Royal Radar Establishment, RRE Memo-
randum No. 2456, Malvern, Worcs., England (1969).

1
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Since individual birds or TABLE 3. TYPICAL WING-BEAT
flocks of birds could prý,aent serious RATES (ref 7)
false-alarm problems to a security radar -

system (especially at times of high
activity such am the early morning, late species Pate (beats/s),
evening, and migration seasons), consid- (
erably more backmcatter return from bird Sparrow 13
targets need. to be obtained and

analyzed in the future., Depending on Duck 9
the size of the bird and whether it is
taking off, landing, flying level, or Crow 3 to 4
soaring, various wing-beat rates can be
expected. Birds generally change direc- Stork 2
tion more often and have a higher trans-
lations) velocity (fig. 7) and a higher Pelican 1.1
natural frequency (table 3) than a human

targetl thus, by monitoring the change Hummingbird 10 to 80
in fT' fT , and fT/f0 along a target
trajectory (through one or more range-azimuth cells), reliable
algorithms can perhaps be developed to classify those tracks caused by
birds.

Animal return.--Target models similar tr the human-target
model need to be developed for each animal specie. that is expected to

cause nuisance alarms at a given radar site% Since the uhf return from
a biped can apparently be adequately modelled as an angle-modulated
return with varying intensity depending on the step rate, quadrupeds
should produce an intensity and angle modulation with a fundamental that
corresponds to on,-half or one-fourth the animal's step rate.

Vehicle and aircraft return.--Wheeled vehicles such as cars
and small trucks appear to give an essentially monotone return, whereas
tracked vehicles may produce return that contains certain modulation
harmonics. Helicopters and propeller-driven aircraft are expected
produce return with modulation harmonics related to the propeller rota-
tion rate.

Insect return.--Swarms of flying insects have long been
suspected as one of the causes of radar angels (echoes observed from
apparently clear, targetless regions). Attempts to measure individual
insect radar cross sections and spectral characteristics of their return
have been generally carried out at relatively short wavelengths.
However, at least one set of cross-section measurements was performed at
both uhf and L band. 1 0  Table 4 gives empirically determined target

10K Glover, R. Hardy, T. Konrad, W. N. Sullivan, and A. Michaels,
Radar Observations of Insects in Free Flight, Science, 154, 3752 (25
November 1966), 967-972.

20
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cross sections of three common insects at L band, while at uhf (inter-
estingly enough at 435 Miuz--approximately the same frequency as the CiR)
the target cross sections were below the minimum detectable cross
section. For wavelengths greater than 10 cm, an upper bound on the
insect cross section is established by a A-3 relationship. 10 The insect
cross sections appearing in table 4 would be diminished by at least an
order of magnitude at 435 MHs.

CARRION CROW
ROOK . -A

: .... ....... ..... . . . . . . . . . . .]
MACKOAW t:!
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WOOD PIGEON

DOMESTIC PIGEON

., . I I ..

10 20 30 40 50 (KNOTS)
16.9 33.8 50.7 67.6 84.5 (ft/s)

SPEED
Figure 7. Range of bird velocities (abstracted from ref 7).

| K* Glcger, R. Hardy, T. Konrad, W. N. Sullivan, and A. Michaels,
Radar Observationm of Insects in Free Flight, Science, 154, 3752 (25
November 1966), 967-972.
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TABLE 4, L-BAND RADAR CROSS SECTION r'
THREE INSECTS MEASURED != .,EE
FLIGHT (ref 10)

L-band radarInsect target cross section (dBsm)

Wingless Hawkmoth -60

Honeybee -63

Dragonfly -67

Since no studies have been made to determine the statistics
of insect return, 7 there is little means of determining whether high
enough insect densities will be found at a given geographical location
to cause a detection and subsequent track formation.

Because there is motion of the insects within a swarm, the
spectral return may not provide a good measure of the swarm's
velocity. However, if the fundamental of the wing-beat rate is
observed, it could be used to discriminate bird from insect return since
insect wing-beat rates arc aenerally higher than bird wing-beat rates.
For example, locust wing-beat frequencies range from 14 to 20 Hz,
butterflies from 20 to 30 Hz, and crows from only 3 to 4 Hz.

2.1.2 Nontranslating "Target" Return

The power spectral density function of the complex (quad-
rature) return due to windblown objects such as foliage, power lines,
etc, that make no net progress toward the radar, consists of approxi-
mately equal positive-frequency and negative-frequency power% In most
cases the power spectral density function of the return is nearly sym-
metrical about 0 Hz.

An empirically determined model that predicts the long-term
average power spectral density function for uhf and L-band windblown-
foliage backscatter return was previously developed at HDL. 1 1 A simple
exponential was found to describe the data for wind conditions between 2
and 20 mi/hr. The expression for the power spectral density, P(f), is

7E. Reedy and T. Cutler, the HOWLS Radar Sky-Clutter Environment,
Engineering Experiment Station, Georgia Institute of Technology, ESD-TR-
75-319 (15 September 1975).

"AiR. Antony, C. Roberts, and S. Peperone, An Investigation of Radar
Backscatter from Foliage, 18th Tri-Service Radar Symposium (1972).

22

F

i .4 .....



So0 IfI < fP(f) -(7)
s - 07) I It > f0

where So = S1 exp(-B0A!)# s8 in an empirically determined constant, and
B as a function of wind speed is given in figure 8.
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Figure 8. Spectral model parameter S versus average wind
spee&: (a) UHF, (b) L band (excerpted from ref 11).
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2*.2 Target Features

The important %arget characteristics apparent from the trans-
lation target model are the measured radial frequency, fT' and the
class-characteristic amplitude modulation, ai(t), and angle modulation,

(t)* The following six features have been derived from equation (3)
a~d were discussed in the last section as applicable to the various
target modelst

(a) fT a target radial translational frequency

(b) ft - target natural frequency (e.g., half the step rate,
R0, of a human: wing-beat rate of a bird)

(c) dO - (XfT/4fo) sac y (e.g., step size of human, distance
of travel in one wing beat of a bird)

(d) ns - number of harmonics of fo observed in the power
spectral density function of the return within
specified power-level and signal-to-noise ratio
constraints

(a) UT - spectral width of the target translational
frequency

(f) Af0- spectral width of the fundamental of the target
resonant frequency

The feature nS accounts for the gross nature of the class-characteristic
amplitude and angle modulation observed in the return. The feature AfT
is related to the rate of change of the target translational velocity
for straight-line motion. Target acceleration is generally greater for
a low-mev target such as a bird than for a relatively high-mass target
such as a human. The spectral spreading of the target resonant
frequency tends to be a class-dependent characteristic that is useful in
high signal-to-noise ratio return.

The values of features are estimated by algorithms that
associate the features with the 20 largest distinct peaks of the power
spectral density function of the return. Proper classifier performance
depends on the correct determination of fT and f0. Since a target can
be incoming or outgoing, the spectral character of the nontranslating
part of the target return is biased by the radial translational
frequency so that most, but not all, of the return consists of either
positive or negative frequency components. Since the limb motion occurs
forward and backward of the torso, the return should have nearly equal
power in both the upper and lower sidebands of the translational lobe.
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"This criterion has been used effectively to select the proper value of
fT even in cases where some spectral sidelobes are an order of maqnitude
larger then the translational lobe.

The target velocity depends on the product of the target step
size, do, and the target step rate, Ro. Assuming that the target step
size is directly proportional to the target step rate (the faster one
walks, the larger the step size), then a "consistency uriterion" can be
developed to associate the most likely spectral peak with the spectral
feature fo.

2.3 Target Discrimination

Target discrimination as addressed in this paper is based on
the classical likelihood ratio for composite hypotheses (parameters that
are random variables)t

I p(YI,.Ii) P(rI "i) doI3 P(Y" jHj) p(GIHI) dO ' (8)

where 0 is a vector random variable representing the set of target
features as discussed in section 2.2, and Hi designates target class
i. When an estimate of the feature vector, 0, has been made, the like-
lihood ratio reduces to

Au " P(•IG.Hj) P(G6H ")

Applying Bayes' rule, equation (9) can be rewritten in the form

P(6jy,Hi) p(yHij)
p (61 Y,.Hj) P(Yt(j,0)

-p(ely,Hi) Auj(y 1 40)

where Ai (yle) is the simple hypothesis (fixed parameter) likelihood
ratio an p(IOly,Hi) is the a posteriori probability density function
(pdf) of the parameter vector conditioned on the target class, evaluated
at the estimates of the target features.
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Si ~I

T 7-

IIThe objective is to develop the a posteriori pdf to be
evaluated at 0 0,~ The elements of 0 are defined as the set of
spectral features described in the last seotiont

0 (fefesfef)

For tractability, the joint a posteriori pdf will be approximated by

p(Gly,Hi) - p(Oly,Hi) p(ealy,Hi) p(os3Y,i9i) (12)

where

01 (fTf ,n.),

F 02. (fTAeT),

03 (fo,afo), and

p(oily,Hi) "P('1THI) p(iolH) P(SOIHj) p(l SIi) P(ýmnlHi)

The univariate a priori pdf's of the features were developed based on
physical constraints, published data, and empirical measurements* The a
priori probability p(doIHi) explicitly expresses the dependency between
target velocity (i.e., fT) and target resonant frequency (i.e., f 0 ).
The pdf p(PsnHi ) relates to the confidence in the spectral feature
estimates based on the measured signal-to-noise ratio of the return.

In a similar manner,

Af,

and

p(Os y,Hi) " -THi)

As an example, the probability functions of the seven univar-
iate feature density functions for a human target are presented in
figure 9. Similar conditional pdf's apply to all other translating
target return.

The class-discriminator decision rule is, then, assign the
return as due to that class Hi with the largest value of p(GOy,Hi). Ingeneral, this represents a nonunique assignment to a target class, since
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, could be the same for more than one class. An advantage of
this decision rule is that it quantifies the likelihood of proper clas-
sification and indentifies other target classes possessing nonzero-A

* . probabli ties.
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I "• Figure 9. Univariate probability density functions for a human
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1< 3. CLASSIFICATION RESULTS

F 3.1 Single-Cell Assessment

F The extent of the relatively high signal-to-interference ratio
target data base used for classifier design and testing is summarized in
table 5. The approximately 330 files of human-target return include
data for both single and multiple humans. The single-human return
includes walking, jogging, and running targets with various step sizes,
step rates, and aspect angles. The multiple-human return includes
targets walking in step and out of step, with some carrying M416
rifles. A medium-sized dog (40 lb) was used to obtain the only animal
data presently available. A pigeon-sized pheasant was released from
within a range-azimuth cell to obtaina the bird backscatter data.

Examples of the power spectral density functions of the target
return from a radially inbound walking and running human are shown in
figures 10 and 11, respectively. An example of an inbound hum~an walking
at an angle of 45 degrees relative to radial is shown in figure 1 2. The
power spectral density functions for .three inbound humans, an inbound
dog, and an inbound vehicle are shown in figures 13 through 15,
respectively. Finally, an example of the power spectral density
function of the backacatter from wind-blown power lines is shown in
figure 16.

TABLE 5. SUMMARY OF ORIGINAL DATA BASE

TargetNumber of
Targetexperiments

Single man 306
(walking, jogging, running)

multiple man 23
(walking, running)

Dog 26

Small pheasant 9

Clutter 5

Vehicles 19
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Figure 10. Radar backscatter return from an inbound walking human and
corresponding power spectral density function; return was classified as
due to a human with probability 1.0.

The performanc~e of a classifier can be expressed in terms of
the matrix [P(HilHI)], where p(HilHj) is the probability of choosing

i hypothesis Hi, given that H. is true. If this matrix is diagonal, the
classification would be ideal. The results of the single-cell
assessment using the current target classifiers for the present data
base are shown in table 6. For the compilation of these data, the
return was classified as due to that target class, Hi, whose probability
assessment, p(ely,H0), was greater than or equal to 0.5.
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Figure 11. Radar backscatter from an inbound 'unning human and
corresponding power spectral density function; return was classified as
due to a human with probability 1.0.
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Figure 13. Radar backscatter return from three inbound humans and

corresponding power spectral density function; return was correctly

classified as due to a human with probability 1.0.
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Figure 14. Radar backscatter from a 40-1b dog and correspondiig power
spectral density function; return was classified as due to an animal
with probability 1.0 and as a human with probability 0.01.
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Figure 15. Radar backscatter from an inbound car and corresponding
power spectral density function; retu2rn was classified as a vehicle
with probability 1.0.
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Figure 16. Radar backscatter from windblown power lines and
corresponding power spectral density function, return was classified as
due to nontranslating target with probability 1.0.
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TABLE 6. SINGLE-CELL CLASSIFIER PERFORMANCE SUMMARY

Classification
Actual
taeget Clutter Vehicle Human Animal Bird

Clutter 1.0 0 0 0 0

Vehicle 0 0.95 0 0.05 0

Single man 0 0 0.92 0.08 0

Multiple man 0 0 O. 78 0 0

Dog 0 0 0.04 0.88 0.11

Pheasant 0 0 0 0.11 0.89

For the available data, no nontranslating 4ýtarget" return was
misclassified, nor was any translating target return classified as due
to nontranslating return. The probability of a human-target return
being properly classified was approximately 92 percent; most of the
remaining 8 percent of the human-target return that was not properly
classified was from jogging, sprinting, and crouching targets. Approx-
imately 4 percent of the dog return was improperly classified as due to
a human. One pheasant return was improperly classified as due to an
animal. Nearly 89 percent of the dog return was classified as due to an
animal. About 5 percent of the vehicle return and 8 percent of the
human return was improperly classified as due to an animal.

3.2 Multiple-Cell Assessment

Although single-cell target classification may not be entirely
adequate, as shown in table 6, track classification based on the full
track history offers a means of reducing the probcbility of incorrect
tai'get classification.

One possible approach to designing a track classifier is to
assume that the single-cell assessments are independent from cell to
cell within the track. The statistics collected for the single-cell
assessment inviolve the same targets making repeated passes through a
single range gate. The extension from multiple passes through a single
cell to a single pass through multiple cells is thus not entirely unrea-
sonable.
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Assuming independence from cell to cell, table 7 tabulates the
probability of at least L classifications an a human target for a track
of length K cells. For instance, approximately 4 percent of the dog
return was classified as due to a human target; however, the probability
that a target will be classified as a human at learnt 2 out of 3 trnes is
98 percent if the target in, in fact, a human and esse~ntially zero if

Fthe target is a dog. Similar multiple-call assessments for classifi-
cation as an animal or a bird are given in tables 8 and 94 Thus, based
on the results of the current classifiers operating on the present data

base, high-reliability taT.Jet assessment for tracks as short as 3 or 4ii contiguous cells may be possible*
TABLE 7. PROBABILITY OF AT LEAST L CLASSI-

FICATIONS AS HUMAN, GIVEN K TOTAL

CELLS ASSESSED

Actual L =1 L - I L- 2
target K a 1 K -2 K -3

*Human 0.92 0.99 0.98i

Dog 0.04 0.08 0.000

TABLE 8. PROBABILITY OF .T LEAST L CLASSI-
FICATIONS AS ANIMAL, GIVEN K TOTAL
CELLS ASSESSED

Actual L - 1 L = L-
target K'a 1 K = 2 K - 3A

Dog 0.88 0.92 0.96

Pheasant 0.11 0.01 0.001

Human 0.08 0.00 0.00

vehicle 0.05 0.00 0.001
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TABLE 9. PROBABILITY OF AT LEAST L CLASSIFICATIONS
AS BIRD, GIVEN K TOTAL CELLS ASSESSED

Actual L a I L - 1 L - 2 L a 3
target KX 0 K - 2 K a 3 K a 4

Bird 0.89 0.99 0.96 0.94

Dog 0.11 0.21 0.03 0.00

A single target may be detected in multiple range-azimuth cells
because of range sidelobes, partially overlapping azimuthal antenna
patterns, or multipath effects. Although operations such as simple
centroiding can be used to reduce these multiple detections to a single
range-azimuth cell to be added to the track vector, signature analysis -

of the return can be used for this purpose. Since the suggested sig-
nature processing isolates the target radial velocity component in the
spectrum of the return, the probable target location can be assigned to
that cell with the largest radial translational component. In addition,
the separation of multiple targets with different radial velocities and
return with clearly different spectral character is possible before
simple centroiding reduces multiple alarming calls to a single alarm.

A historical assessment of the spectral features of the full
track history may also provide additional discrimination. A case in
point would be for a bird target. While a bird may soar through any
given range-azimuth cell on a path nearly tangential to the radar, it
may subsequently change to a more radial path and begin beating its
wings. Thus, although the initial assessment of the spectrum of the
return would yield a poor estimate of the target's actual velocity and
no apparent modulation at the species' characteristic wing-beat rate,
subsequently the return might be completely characteristic of bird
return.

Thus, the overall track assessment could be based on the inde-
pendent classification assessments from cell to cell within the track
and on the statistics of the measured spectral features.
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The track assessment, Ptrack' for K total cells assessed might
be of the form

SOWm K N
Ptrack(m) ----- S.•m ÷I (M) p,(n'm) ,

(13)

+ g(m) p,(n,m)

where
m is the target class (M total classes)l

pk(m) is the probability assessment of the kth cell within the
track (k - 1, 0..,, K)

p () is the probability assessment for the mean of the nth

spectral feature for each target class (n - 1,--. ., N)i

p() is the probability assessment for the standard deviation

"of the nth spectral feature for each target classi and

$0, O, J are constants that depend on the target class me

The track is classified as that target class m with the largest value of

Ptrack(m)h

For a bird target under track, although several pk(bird) might
be nearly zero if the bird were soaring through these cells, a high
standard deviation for the spectral feature fo for the entire track, for
instance, would be assigned a high value of p (bird). The track would
be classified as due to a bird target if

Ptrack(bird) ý Ptrack(m)

for all m with associated confidence ptrafk(bird)i it would be clas-
sified as an unknown target if all p;track < min' where Pmin is ap -

constant. Additional feature statistics such as the minimum and the
maximum of a given feature over the entire track history may provide

H, further target discrimination.

An example of the power spectral density function of the return
from a wild duck flying through three consecutive range-azimuth cells is
shown in figure 17. The bird beats its wings while in range cell No. I
flying at a radial speed of 42 ft/s, sets its wings in range cell No. 2,
and changes direction and soars out of range cell No. 3. This pattern
is apparent from both the time series and power spectral density
function of the returns. On a single-cell basis, the bird was correctly
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classified in range cell No. I, mi•sclassified as a vehicle in cell Not 2 A

(because of the lack of a wing-beat modulation), and classified as an
unknown target in cell No. 3, Though on a single-cell basis-, the return 1 4
is misclassified in range cells No% 2 and 3, the target track might
still be properly classified since such a pattern is characteristic of
birds in flight.
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Figure 17. Radar backscatter from a bird passing through three

contiguous range-azimuth cells! (a) return was c'.assiflad as due to a

bird in cell 1. 
:

40 40

Vi ,-50;.00+ 
•••"++.



25.00

I CLASSIFIER OUTPUT:

250'PROS VEHICLE =1.00
.. TIME ()PROS ANIMAL * 0.00

0...................... P...........OS..........

t SPECTRAL FEATURES:

I 38.27

1`0 - 0.0

~~d .2.01 4.

S-40.00a

-50,00'
-20.0180.00 -80.00 0. 80.00 160.00 240.00

t_ FREQUENCY (Hz)

Figure 17 (b). Return was classified as due to a vehicle because of
lack of wing-beat harmonics in cell 2.
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Figure 17 (c). Return was classified as due to an unknown translating j!target in cell 3.

42

-40.00 -

0•



I

4. INTEGRATED DETECTION/CLASSIFICATION SYSTEM SIMULATION

A digital simulation of the detection processor has been developed
that allows the processing of real radar return on a generei-purpose
computer. This permits the development of data handling and processing
software which will not interfere with the radar hardware. A block
diagram of the system interaction is shown in figure 18. The outputs at
all stages of processing can be monitored on a graphics display.

RADAR ALARMS

Q PROCESSOR

A TARGET
STRACKERESIATE( /(.UMAN

BIRD
PANIMAL h

VEHICLE
____TARGET •NONTRANSLATING/

DUFFER STORAGE T LASSRFIE

Figure 18. Block diagram of proposed radar system.

When a cell alarm occurs, the raw Doppler return from that cell is
collected for the estimated time the target will remain within the

Srange-azimuth cell. An estimate of this interval, Tis selected as

• ., 2aAR .

(14)

where AR I s the range cell depth, fR is the estimated radial trans-
lational frequency, the parameter a is a dimensionless quantity that
depends on the signal-to-noise ratio and various processor parameters,

and A is the rf wavelength. An estimate of fR is obtained from the fast
Fourier transform of the first 128 samples of the collected data.

Once t seconds of raw Doppler from an alarming range-azimuth cell
have been collected, the data are weighted with a Kaiser-Bessel window
and a 512-point discrete Fou;rier transform (DFT) is computed. The
magnitudes of the complex spectral coefficients are calculated and the
20 largest distinct peaks of the resulting estimated power spectral
density function are determined. The spectral lobes are then associated
with the various spectral features and the target classifiers produce
probability assessments for each of the five target classes.
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An example of the processor output for a dog passing through a
single range-azimuth cell is shown in figure 19. In this case, 5 of the4
12 balanced processor channels were monitored. The fixed threshold

level was purposely set high so that no threshold crossing occurred.

3 ................................. . ............ ..... . ...... .............. ..,.,..... ... .. ... .. ..

2 . ........................................... .... ..... ... ........IuIII..................... ....

Z 3 .................. . ...... ...... ..... . .... .. ... ..... iiI~~.... .... .... ........ . H E OL
LLVU

0. 1.5 2.29 3.44 4.59 5.73 6.'88 8.03 9.19

TIME is)

Figure 19. Five of first seven simulated high-velocity filter outputs
for a dog target, passing outbound through a single range-azimuth cell;
fixed threshold was set so that a threshold crossing would not occur.

in figure 20, the same c'ata are processed using an adaptive constant
false-alarm rate threshold level. In this case, detection occurs and
the incoming data begin filling a tempoaybfe. A1-ontFTi

calculated and a refined estimate Of T is computed. Af ter T seconds of
W the Doppler return has been collected, the target classification

algoritilms are initiated. Figure 21 shows the Doppler waveform of
length T seconds, the corresponding estimate of its power spectral
density function, and the classification results. In this case, the
detection was assessed as due to an animal target that is outbound with
a radial translational frequency of 22.34 Hz and a target natural
frequency of 3.27 Hz.
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cI' iI I I

sIIIi.peI.II1.e~eI~I~*I. If~~~e~jII.N1Iqa~~l~ITHRESHOLD

0. 1.15 2.29 :0.44 459 5.3 3i .03 9.13

TIME (a)

Figure 20. Simulated high-velocity filter outputs for a dog target,
passing outbound through a single range-azimuth cell; adaptive
threshold was used.

Similar results for both human and bird targets are shown in figures
22 to 26. In all cases, the target classifiers correctly assessed the
cause of the processor alarms.II Finally, the processor output for the return from a range-azimuth
cell containing no target ia shown in figure 27. in this case, the
binary integrator output does not cross thr 1.hreshold and consequently
no target detection occurs.
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.20.00 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~W ________________________ POHUVAH 000
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0. 0.40 0.30 1.20 1.60 2.00 2.40

I •0. ............... 0 ......... ..... ..... ........- ... ..... : ...............

b000

illi
-50.00 ........ ................. ........

- 50.000 . 50.0 100.00 150.00

FREQUENCY (Ha)

Figure 21. Radar backscatter return from a running dog, collected
following target detection indi.'. I in fig. 209 estimated duration of
target in ranqe-.izimuth cell, ýt, • calculated to be cpproximately
1.8 S.

T"NRISHOLD LEVEL +-

0. 181:35 36'.70 55.I011 73.40 61.76 "110.11 12i.4"61 41 '44.811= +

TIME $19

Figure 22. Simulated low-velocity filter outputs for a human passing
outbound through a single range-azimuth cell; fixed threshold wias not !
so that a threshold crossing would not occur. •
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CLASIPwuU OUTPUTSI~PRO CLUlIMA . 0 00 2.00 4.00 6.00 8.00 10.00 1w.00 P*Mvtpm

Time III PHIMAML '4000
.... .......... ...... .r mROaMIND -000

...00 ..... .... ..... .... ......... . 4

......... . ............. d .

1 -20.00 II~
-2 .0 1...... . ..." . ........ ..... ' ............ " .............. . .................. .................. Io,

I t .......... .........

II I

IS-00.
-40.00 -20.00 0. 20.00 40i.00 G0.00 30.00

FREQUENCY Ha)I
Figure 23. Radar backacatter return from a lauman target, collected
following target detection indicated in fig. 221 estimated duration of
target in range-azimuth cell was calculated to be approximately a a.

4 ... ..... ...... ..... ..... ......... ... . ...... . .........•. .. ...... .. ... ....• , .

II |

2 i~ljL ,3,l ... .. ... ........... ,,
......... ......... .....................1!1

0. 1.18 2.13 3.44 4.,69 .73 6.94 3.03 6.13

Figure 24. Simulated high-velocity filter outputs for a pheasant flying
inbound through a single range-asimuth cell, fixed threshold was net so

that a threshold crossing would not occur.
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Figure 25. Simulated high-velocity filter outputs for a pheasant flying
inbound through a single range-azimuth cell, adaptive threshold was
used.
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Figure 26. Radar backscatter return from a pheasant, collected
following target detection indicated in fig. 251 estimated duration of
target in range-azimuth cell was calculated to be approximately 0.9 a.
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Figure 27. Simulated high-velocity filter outputs for return from a
range-azimuth cell not containing any target.

5. SUGGESTIONS FOR FUTURE STUDY

This paper outlines an initial study of a pattern-recognition
approach that has rather broad applicability. This section suggests
possible extensions of the work that has been discussed here.

Target identification by track classification is essentially a
sequential decision problem. As experience is gained with both sig-
nature classification and tracking, the current procedures will be
refined so that targets can be identified in a minimum time from first
detection. Ultimately, the current signature-classification structure
may evolve into a sequential classifier where the various features are
obtained using recursive estimators. This approach might reduce both
the computational and storage requirements of a real-time system.
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A fundamental limitation of track classification involves a form of
information overload that cannot be circumvented by increased computer
speed or memory nice. A simple example will suggest the nature of the
problem. Let one large bird (large enough to be detected) be released
and constrained to fly within a grid of 10 adjacent range cells by 10
adjacent azimuthal cells (100 range-azimuth cells altogether). Even
without problems owing to range and azimuthal target spillover, every
cell in this grid is likely to alarm within this relatively short
period.

Assigning meaningful tracks in this "high target-density environ-
ment" (which could certainly be worse) is clearly fraught with
problems, quite independent of computer capabilities. Thus, the objec-
tive of track assessment must be to eliminate nuisance targets from
consideration as rapidly as possible so that a potentially hostile
target passing through this grid of cells will be correctly classified
and tracked.

Certainly, the classification algorithms should operate efficiently
with regard to memory and computational power requirements (eog., cycle
time, paLallelism). At least in theory, the estimated spectral features
for each cell within a track preserve the essence of the entire track
history. Thus, the set of spectral features (or possibly only the
recursive feature statistics) and the history of the physical track
movement (e.g., closing on a high-value asset) provide a minimal set of
data th-t completely summarizes the track history and yet is efficient
in both required memory storage and computational power.

The feature-estimation algorithm discussed in this report invclves
the use of the DFT in developing the power spectral density function of
the target backscatter. An alternative approach that, in general,
achieves higher frequency resolution than the DFT method and does not
produce the data-weighting function bias inherent in this method is the
autoregressive or maximum entropy method. In using this approach, the
assumption is that the signal is generated by a finite dimensional
process so that the signal spectrum can be expressed by a rational

*• polynomial model. 12

Because the target return appears to be adequately modelled by a
finite-dimensional system as discussed in section 2, any return from the
signal classes of interest may lend itself to high-resolution spectral
analysis. One of the important aspects of this approach is in obtaining
relatively high resolution from short-length records. Bird return tends
to become more nonstationary (in the statistical sense) as the record
length increases. Thus, more reliable classification of bird targets
may be possible using autoregressive spectral estimation of short-length
returns.

"0Proceedings of the RADC Spectrum Estimation Workshop, Rome Air
Development Center (May 1978). t
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Other areas that need to be addressed in detail during future

studies include

(1) splitting and merging tracks and one track overtaking another

()correct association of targets for crossing trajectories,I,(3) "intelligent" centroiding of multiple, adjacent-cell detections
involving spatial and frequency-domain assessment of return,

(4) ongdwell time required by resting targets,I(5) evasive target tactics,

(6) radar masking,

(7) assignment of track priority,

L(8) choice of an operating mode in the event of data or computation4

overload, and

(9) determination of optimal tracker memory so that initial target

classifications at the limit of detection range do notI
adversely bias future assessments.

The following was excerpted from an article by Laveen Kanal 3 to
provide the proper perspective on the admittedly high-risk objective of
reliable target classification based on radar backacatter:

"For the most part, however, technique development has occurred4
without much feedback from experiments, since meaningful experimentation
in pattern recognition often requires that significant resources be
spent on collection, verification and handling of large data bases
In many application areas, effective use of the data requires close
interaction with persons knowledgeable about the processes that generate
the data. Also required is a sustained effort devoted to the particular
application."3

Although a sustained effort is still required to expand the present
data base, refine the current target classifiers, and explore the limi-
tations of the approach, very encouraging results have been obtained to
date. This program has had the benefit of a relatively large, high-
quality data base, excellent computer and graphics facilities, and close
interaction between experimentation and algorithm development.

3L. Kanal, Patterns in Pattern Recognition: 1968-1974, IEEE Trans.
Inf. Theory, 1T-20, 6 (November 1974), 697-722.
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6. SUMMARY AND CONCLUSIONS

Target-classificaton algorithms have been developed using target
modeling in conjunction with a large data base of labeled radaz
return. At the present time, target classifiers for walking humans,
vehicles, dogs, birds, and nontranslating targets have been developed
and tested; results have been reported here.

The structural pattern-recognition approach to classifier design
seems to be tailored to the nature of radar backscatter from the classes
of moving targets considered. No classifier training in the usual sense
is required, and thus the entire data base can be used for testing
classifier performance. Large computing power is not required for
feature selection and ranking. The method results in a very simple
classifier implementation involving the fast Fourier transform, simple
logic, and arithmetic computations. Additionally, the classifiers can
be easily refined as future data become available.

A digital simulation of the radar processor that develops range-
azimuth cell alarms was implemented on a general-purpose digital
computer. Based on this simulation, a software interface was developed
between the detection and target-classification processing. The current
results of this study show that relatively simple algorithms appear to
be adequate for automating target classification on a single-cell
basis. The target tracker would use the single-cell classification
assessment for each cell within a target track and the measured feature
statistics in assigning an overall track classification.

On a single range-azimuth cell basis, it appears possible to provide
reasonably reliable identification of threatening (human and vehicle)
targets and nonthreatening (animal, bird, nontranslating) targets. By
using track as opposed to single-cell assessment, rather high-
confidence-level classification appears to be possible for tracks as
short as three or four range-azimuth cells.
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APPENDIX A.--RADAA XQUMTION FOR PROPAGATIONIa OVER A PERFECTY L
REFLECTING GROUND PLANS

In this appendix the radar equation for propagation over a perfectlyA
reflecting ground plane in derived. This analysis follows the work of
Skolnik i but is adapted to the ease of ground surveillainces A

The presence of the ground causes a ground-reflected wave that inter-
cepts the target with a different phase than the direct path wave as
shown in figure A-1. The radar in assured to be horisontally polariaedl
the ground in assumed to be a flat, perfectly reflecting surfael with a

The difference in path length between the direct wave and the

refle;. ji wave; ; may be easily determined by noting two equalities inI
the geometrical construction of figure A-1, i.e.,

:]:.•Direct path length -AT -COT R >> ha ,(-)t

Reflected path length - AGT a let *

AA
R• DIRECT WAVE

A

hei C

Figure A-i. Geometrical construction for determining phase •

differential between direct and ground-reflected waves for
a target above a perfectly reflecting ground plane.

S4Figu Skolnrk, Introdut-on e t o Radar Stu temsi f cGraw-Hill (1980), Cn

12.
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APPEN1DIX A

A-

. = AGY - AT BGT - CGT = 2ha sin • . (A-2)

Now, since (-

GT AG

R AT , (A-4)

and

sin h (A-5)

it then follows that

ht + ha
sin h .R h (A-6)

or ht + ha

R

for small . Therefore,

+ ha
2= (A-7)

The phase difference, *d, between the ground-reflected and dixect waves
is then 4d = 276/X the total phase difference, q, between the two paths
is i

At the target, the resultant power of two signals with unit amplitude
but with phase difference * is

2(1 + cos ')=4 sin 2 N
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Defining 8 as the field strength at the target in the presence of a
ground plane relative to the field strength at the target in free space,
the power reradiated back to the radar via the direct and reflected
paths is proportional to

4= 16 sin4 ±d

27rha(ht + ha)]S16 sin4 L r

The radar equation is then scaled by 04, the propagation factor,
thus:

pR G2 2C2 ct
PT (4r) 3 R4

(A-i 0)

16G2 A2 0t F2tha(ht +

(40)3R0 sin4 L AR

When *d is small, the radar equation becomes jj
PR 47YG 2 Lt

-= H , (A-11)
PT X2R8  j

where

H h4( +ht )4
H t +ha A

Ohe presence of the ground plane causes the elevation coverage to
break up into the lobed pattern given by equation (A-10).

The first maximum of the antenna pattern occurs when

ha(ht + a)

This first lobe will occur closer to the ground if the antenna height,
ha, is made larger.
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