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r •ABSTRACT

S I Dilatancy instability as a possible seismic mechanism
is studied theoretically, numerically, and experimentally
in the laboratory. T'he theoretical study concentrates on
the fundamental nature of mechanical instability.

The numerical portion of the study consists of the
I development of a 1-dimensional model that couples fluid

flow phenomena with a sliding block model. Fluid injection
and withdrawal experiments can be run on the numerical modelI to verify the results of the theoretical study.

The experimental phase of the study concentrated on
measuring dilatancy behavior of intact samples of Weber
Sandstone under triaxial conditions using both a hydraul.ic
system and elect rical resistance strain gages. Results
indicate that the volumetric behavior of the sandstone
samples tested is similar to that reported by other

.I investigators for dense sand.
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1. GENERAL INTRODUCTION

1.1 Dilatancy and its Relation to Discontinuum and Continuum

Behavior

The term dilatancy was originally defined by Osborne

Reynolds (1885) who referred to dilatancy as a property of

granular media. Reynolds states, "I have called this unique

property 'dilatancy', because the property consists in a

definite change of bulk, consequent on a definite change of

shape or distortional strain, any disturbance whatever

causing a change of volume and generally dilation." Frank

(1966) defines the term consistently but more concisely as

"the property possessed by granular masses of expanding in

bulk with change in shape." The concept of a relationship

between bulk behavior (changes in volume) and distortional

behavior (changes in shape) is foreign to linear continuum

theories where bulk hehavior is assumed to be independent of

distortional behavior. Considering dilatancy in terms of

the conservation of mass, it is obvious that the change in

volume of a granular mass that accompanies a change in shape

is possible only by rearrangement of the constituent grains.

This rearrangement of grains alters the pore volume and

hence the porosity of the mass. In a granular medium, an

increase in porosity generally leads to an increase in

permeability.
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Dilatancy is a commonly observed phenomena in soil

mechanics and much literature is available on the topic,

particularly on sand, for example, Finn et. al. (1967),

Lee and Seed (1967), Vesic and Clough '1968), Ko and Scott

(1967) and (1968) and Rowe (1963a and b). Experimental

results on sand indicate that loosely compacted sand will

initially compact and then dilate while densely packed sand

will begin to dilate almost immediately when subjected to a

shearing strain.

The concept of dilatancy has been extended from the

behavior of granular materials to the behavior of jointed

rock masses by Goodman and Dubois (1972). Different types

of joints are classified according to whether they dilate

r or contract when subjected to shearing strain. Again the

volume change is due to relative rigid body motion of one

side of the joint with respect to the other. Pore volume

is either increased or decreased by the motion.

Dilatancy has also been observed by many investigators

on laboratory tests on intact samples of geologic materials.

Bridgeman (1949) reports on volume changes in simple

compression for both rocks and metals. From his experiments,

Bridgeman concludes that the volume increase is a strong

function of stress and that the component of volume increase

is largely reversible and recoverable on release of stress.

iI
I .. 2• --u •
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The volume change during plastic flow is assumed to be due

to the opening or closing of interstices. Whether volume

increases or decreases depends on the number of original

imperfections, their size and their orientation with

respect to the principal stress directions.

More recent experiments on volumetric strains in rock

have been reported by Crouch (1970) who ran deformation

controlled tests on Wombeyan marble, sandstone, norite,

quartzite and aluminum. All of the rocks exhibited an

increase in volume (dilation) beginning at about one-half

the maximum axial stress. Tests on quartzite showed that

confining stresses of up to 5000 lb/in2 did not appreciably

affect the axial stress-axial strain behavior beyond the

peak axial stress, but considerably reduced the amount,

although not necessarily the rate, of volumetric expansion.

Volume changes at strains up to 20 per cent and con-

fining pressure up to 8 Kb have been observed by Edmond and

Patterson (1972) using a dilatometric method. They note

that for Gosford sandstone, compaction can be followed by

dilation as straining continues. An alternate flow para-

meter defined as the total rate of doing work on the specimen

is presented as a better guide in deducing the relative roles

of cataclasti- ,low and intracrystalline plasticity as

mechanisms of aeformation.

r I
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Brace, Paulding and Scholz (1965) reported on dilatancy

in the fracture of crystalline rocks. Volume changes in a

granite, a marble and an aplite were measured under confining

pressure up to 8 Kb. The volume change behavior, as measured

by electrical resistance strain gages, was found to be

similar for the rocks tested. Dilatant behavior began when

the maximum stress was in the range between one-third and

two-thirds of the fracture stress at the prevailing pressure.

The magnitude of the dilatancy ranged from 0.2 to 2.0 times

the elastic volume changes that would have occurred if the

sample were simply linearly elastic. The magnitude of the

dilatancy was not strongly influenced by confinining pres-

sures in the range used. The stress at which dilatancy

began was found to be dependent on the loading rate for the

granite. Dilatancy was found to represent an increase in

porosity due to open cracks which formed parallel to the

direction of maximum stress.

Since dilatant behavior has been observed in tests of

materials in the plastic range, attempts have been made to

incorporate the phenomena in continuum theories of plastic

flow. Drucker and Prager (1952) presented a three-

dimensional generalization of the Mohr-Coulomb failure

hypothesis and demonstrat !d that plastic deformation must be

accompanied by an increase in volume for materials exhibiting



Mohr-Coulomb type behavior. The corresponding yield surface

in three-dimensional stress space is a right circular cone

while experiments conducted at high pressure attest to the

convexity of the failure envelope. Therefore, the model

developed by Drucker and Prager is representative only for

moderate pressures. Nelson, Baron, and Sanrler (1971) discuss

four mathematical models for geologic materials used in wave-

propagation studies. These models have been developed for

use in large computer codes of the finite difference and

finite element type employed in ground shock studies.

It is generally accepted that dilatancy phenomena
whether associated with granular materials, joint movement

or plastic-flow in geologic materials must be accompanied by

an increase in porosity in order that mass is conserved.

Whether or not the dilatancy is accompanied by an increase

in permeability depends on the particular situation under

consideration. For example, the dilatancy of sand is almost

certainly accompanied by an increase in permeability.

Dilation caused by movement along a saw-tooth type joint

may or may not increase permeability depending on the degree

to which the newly created voids are interconnected. The

dilation of rocks due to the opening of interstizes may or

may not change the permeability depending on their size

which, of course, depends on the amount of deformation and

II
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the degree to which they are interconnected which also

probably depends on the amount of deformation.

Scholz, Sykes and Aggarwal (1973) nave recently dis-

cussed a physical basis for earthquake prediction. Rock

dilatancy and water diffuh.on are used to explain a large

class of phenomena showni to be consistent with a dilating

model are premonitory changes in the ratio of seismic com-

pressional velocity to seismic shear velocity, changes in

electrical resistivity, rate of water flow (or radon emis-

sion), geodetic measurements and number of seismic events.

An earthquake event is divided into six distinct stages

beginning with the build up of elastic strain energy,

progressinc, to dilatancy, followed by an influx of water,

the earthquake, sudden stress drop and finally aftershocks.

This model originally proposed independently by Nur (1.972)

and Aggarwal et. al. (1973) indicates that longer warning

times should be available for larger magnitude earthquakee.

The model appears to be most applicable to earthquakes

involving a significant component of thrust faulting and

where conditions allow large stresses to develop. The

authors note "that it is possible that stresses along

simple strike-slip faults such as in central California

will not rise high enough to initiate dilatancy; however,

the Danville earthquake, which was preceded by anomalous

.. .ral
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tilts, had a strike-slip mechanism." This writer believes

that it is a mistake to assume that dilatancy will always

be accompanied by high stress levels. Dilatancy in a

fractured medium is basically a geometric rigid body motion

process. Consequently, an already fractured zone may under-

go boundary motion parallel to the fault and dilate with

relatively little stress build-up. Fron this, it would

follow that the existence of a dilating zone may be a

necessary condition for an earthquake mechanism, however it

does not appear to be a sufficient condition. This view is

supported by the fact that the proposed mechanism requires ]
the existence of a pore fluid while dilatancy phenomena can

exist in the dry state.

1.2 Purpose and Scope of This Study

The primary objective of this study is the investigation

of dilatancy related instabilities fiom a theoretical point

of view. This has been accomplished by first considering

the nature and characteristics of mechanically unstable

systems. A computerized numerical model exhibiting many

of the characteristics of fluid induced instabilities has

been developed and tested. Laboratory tests have been

performed to study the spatial variation of dilatancy in

Web-r sandstone and to establish the appropriate form of

the relationship between distortional deformation and volume

AMi
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change.

[e 1.3 The Nature of Instabilities

The purpose of this section is to define a primitive

concept of mechanical instability and to discuss the con-

ditions under which real systems may become unstable. Since

instability is a state opposite of stability or equ.Llibriurm,

we will first consider the total equilibrium of a system.

In order for a system to be in total equilibrium, it must

be in mechanical, thermal, chemical and electrical equili-

briu.. Any perturbation of the equilibrium state may cause

I interaction among the fields. In classical physics, pheno-

mena in each of these categories have often been considered

independently. This uncoupling is usually justified since

in many practical situp.tions, the fields are only weakly

1i Icoupled. For example, the triaxial compression of a solid

I will raise its temperature slightly but this fact is

1 neglected in the classical theory of elasticity and most

thermo-elastic solutions are derived on the assumption that

the temperature field may be computed independently of the

j stress field.

"! I If the fields should be strongly rather than weakly

coupled, a perturbation in one field may create a reaction

I in another field such that the system becomes unstable. An

example of such a coupling that is relevant to seismic

I
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instability is the development of pore pressure by the

dehydration of minerals as discussed by Raleigh and

Patterson (1965). In this situation, the chemical and

mechanical fields are coupled and the resultant increase in

pore pressure could conceivably trigger a release of stored

mechanical strain energy.

An earthquake results from a sudden release of energy

that manifests itself in the form of kinetic energy. Con-I

sequently, the nature of mechanical instabilities is ofA

prime importance in understanding the basic mechanism or

mechanisms. in the discussion that follows, we shall define

a mechanical instability as a significant (or at least non-

trivial) increase in kinetic energy that results when a

system in an equilibrium state is perturbed to an adjacent

state by an infinitesimal input of energy. If the tendency

of the system is to return to its original state of equili-

brium, the system is stable in that state. However, if the

system seeks a new equilibrium state, the original state is

IJ considered to be unstable.

The basic concept of mechanical stability can be

demonstrated by considering the conservative system illus-

trated on Fig. 1.3.1. The three systems shown consist of a

ball free to roll under the influence of gravity without

friction or any other dissipation on the surfaces of various
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V - curvature. In the stable situation, we note that if the

ball is moved to any adjacent kinematically admissible

position, work must be done on the system and the new Fy

position is one of higher potential energy. Since the work

done on the system is assumed to be infinitesimal, the in-

crease in potential energy must also be very small. If the

ball is released from its new position, it will move toward

I its original position and oscillate about that equilibrium

r position with an infinitesimal amplitude. We note that in

the stable position the system has no capacity to do work,

the potential energy is a minimum.

In the unstable case, any kinematically admissible

movement, will result in a decrease in the potential energy.

Since no energy is dissipated by the system the decrease in

potential energy must be taken up by an increase in kinetic

energy such that the change in kinetic energy plus the change

in potential energy is constant. In this case the ball will

never return to its original position which is one of

maximum potential energy.

a. Stable b. Unstable c. Neutral

Fig. 1.3.1 Stability of a conservative system

-1 - 1



In the case of neutral stability, any kinematically

admissible movement will result in no change in the total

potential energy of the system. An infinitesimal amount

of work done on the system will be entirely converted toI kinetic energy.

From the above, we concludei that for mechanicallyI conservative systems a stable equilibrium position exicts

if the total potential energy of the system is a minimum.

An unstable equilibrium exists if the potential energy is a

maximum. This principle has beeni widely used in the analysis

of elastic structures as well as in the basic formation of

the finite element method from variational principles. Thus

the principle that nature seeks states of lower potential

energy is applicable in both rigid body and continuum

mechanics.

All real systems are dissipative in nature and ideal

conservative behavior is only approached in reality. Con-

sequently, we must concern ourselves with the stability of

systems containing dissipative mechanisms and r~tudy the role

of dissipative mechanisms in stabilit-. if we consider the

ball shown on Fig. 1.3.1 to be constrained to elide on a

track with no rolling, the three systems shown become non-

conservative systems since the sliding friction dissipates

mechanical energy into thermal energy.
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In the stable case, any kinemiatically admissible move-

mnent requires work done on the system that is sufficient to

overcome the mechanical energy dissipated by friction and

increase the potential energy. Since the system is per-

turbed only by an infinitesimal work input, we conclude

that the stability of equilibrium of the system is notJ

changed by the presence of a dissipative mechanism.

The situation is not quite so simple for case b, the

an adjacent kinematically admissible state, conservation of

mechanical. energy, as derived in Appendix I, requires that

AK+AE= W+ f W - (1.3.1)AKE+ AE =1 2 +1 W2 .1 W2 J."21 f

where AKE and APE represent changes in kinetic and potential

energy respectively and 1W equals the infinitesimal positive

f
external work done on the ball while =- 1W2  is the

work done by friction which opposes the motion. Since the

mechanical work done by friction is negative, it is written

4. as a minus sign times the absolute value in order to

emphasize the point.

Since the criterion for mechanical stability has been

stated in te~rms of changes in kinetic energy, Eq. 1.3.1 may

be rewritten as

*~AKE 1 W 2+ W - APE(132

Three situations are now possible, if APE 1 W 2we have

AKE 1 W (1.3.3)
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where

O<I<<,[

This is essentially the case of neatral stability since

the work of perturbation is assumed to be negligibly small.
f f

If '= A PE - 1Wf>0, which implies that IAPEI<I 1W 1,
If 2 2

(since both terms are less than zero)in this case, then

Eq. 1.3.2 becomes

AKE = - 6>0 (1.3.4)

where we require that AKE is greater than or equal to zero

since KE1 = 0 which implies that

AKE = KE = 0 (1.3.5)2 2

The situation implied by Eq. 1.3.4 is clearly impossible

since e is negligibly small and 6 was postulated as being

greater than zero, but not necessarily small. Stated in

words, the postulated situation requires that more energy

be dissipated than is available from the change in po-ential i

energy plus the infinitesimal external work done on the ball.

It follows then that an inherently unstable state in the

absence of a dissipative mechanism can become stable in the

presence of a sufficient dissipative mechanism.

fA third situation exists if W = f - APE>0. Then

Eq. 1.3.2 becomes

AKE = e + • > 0 (1.3.6)

Since both e and a are always greater than zero, the sit-

uation always results in a nontrivial increase in kinetic

energy and we have an inherently unstable state. We conclude

that the presence of a dissipative mechanism is not suffi-

!! I
4. ... *;.
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cient to always insure stability.

The equals sign shown in both Eq. 1.3.4 and 1.3.5

coincide with the case of Eq. 1.3.3 which is essentially

neutral stability. This implies that the neutrally stable

situation exists as a transition between inherently stable

and unstable states.

To summarize the stability analysis, we may write

>IW = f Impossible, state 1 stableff(AP.--1W2) =1 -2IW2j, Neutral

<IW2f = -IWf1, Unstable (1.3.7)1 2 2IwI
which holds even if the reversible work done between 1 and

2 is nontrivial. It should be noted that Eq. 1.3.7 holds

also for the conservative case previously discussed where

f =IW 0. Eq. 1.3.7 can be further generalized to

<11D21, Stable

JAPE-W 2 j = 1 D2 j, Neutral

>I1D2i, Unstable (1.3.8)

where ID 2 represents total mechanical energy dissipated by

all mechanisms is the transition of the system from state

1 to state 2.

The mechanical energy dissipation term, D, is often

more easily expressed as a time rate, for example: when

the mechanism is viscous in nature, or the coefficient of

friction is time dependent as suggested by Dieterich (1972).

The appropriate form of Eq. 1.3.8 then becomes
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K1Stable
E *Neutral

IDI, Unstable (1.3.9)

where f, PE, and b are respectively the time derivatives of

reversible work, potential energy and the dissipation

function. I
So far we have considered only tne conservation of""

mechanical energy which is simply the first integral of the

conservation of linear momentum and must always be satisfied.

The other conservation laws of physics must also be satis-

fied and provide further insight into the general nature of

instabilities. Conservation of mass has already been

mentioned in connection with dilation caused by rigid body

motion between grains or blocks. Conservation of total

energy, essentially the first law of thermodynamics, provides

us with the means to link the mechanical, thermal,chemical

and electrical fields. It further allows the computation

of these associated fields when the appropriate consitutive

equations and equations of state are specified. Our primary

interest in the dssociated fields is the possibility that

a change in one or more of these coupled fields could

precipitate a mechanical instability resulting in the sudden

release of a substantial amounr of energy in the torm of

kinetic energy. Any such interaction between fields must

satisfy the first law of thermodynamics in its most general

form.

The second law of thermodynamics requires that the

I
A



16

S-- change in entropy (for the system plus its surroundings)

between two states must be greater than or equal to zero.

The change in entropy of the system plus its surroundings

can only approach zero for real systems since a zero change

in entropy implies a conservative process. The second law

of thermodynamics places restrictions on processes which

insure that they are actually physically possible. This

can be an important point in the design of numerical models

of processes such as seismic instability.II
The role of the laws of thermodynamics can be clarified

by again considering the problem shown on Fig. 1.3.1 where

the ball is constrained to slide and there is dissipation

of mechanical energy due to friction. Conservation of

mechanical energy of the ball may be written in differential

form as
ff

d(KE+PE)=dw+dwf=dw-Idw f (1.3.10)

The appropriate form of the first law of thermodynamics for

a system of ball plus track may be expressed as

d(U+KE+PE)=dw-dwf+dQ=dw+;dwf I+dQ (1.3.11)

where U is the internal energy function and dQ is the dif-

ferential heat transferrej into the system through the
tI boundaries as the ball slides. The work term, dW, in both

Eqs. 1.3.10 and 1.3.11 is presumed to be reversible work

4 3 fI that is not dependent on the path taken while dW is

differential frictional work and is dependent on the path.

Note that Eq. 1.3.10 considers only the ball as the system.

If we subtract Eq. 1.3.10 from 1.3.11, we have

A

'[ . . . .. l l I:- :'- -. .... .. . .. i•
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dU - -2dWf + dQ (1.3.12)

For a reversible process, dWf--O and dS = dQ/T where

S .s entropy ana T is the absolute temperature. Substituting

these relations into the first law of thermodynamics yields

TdS+dWud (U+KE+PE) (1.3.13)

which must hold for both reversible and irreversible pro-

cesses since the equation is entirely in terms of properties

of the system and the • versible work, dW, done on the system.

Substituting Eq. 1.1.12 into 1.3.13 gives

TdS4 JW=2)dWf+Q+d (KE+PE) (1.3.14)

If we now substitute for d(KE+PE) from Eq. 1.3.10, we have

TdS dQ - dWf f dQ + IdWf 1 (1.3.15)

But

dS dQ + do (1.3.16)T "d0

which states that the differential change in entropy of the

system equals differential entropy transported into the

system by heat lus the differential entropy generated with-

in the system, d0. The differential entropy generated

within the system must be greater than or equal to zero,

hence

d0 >0 (1.3.17)

If we eliminate dS from Eqs. 1.3.15 and 1.3.16, we have

do -dWf =dwfj >0 (1.3.18)

Now the differential work done by friction is

dwf = -VNdý (1.3.19)

where p= coefficient of friction, N is the normal force,

Sis a position coordinate, and motion is assumed to be in

i 4
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the positive C direction (dF>O). If we substitute into

Eq. (1.3.17),

do = pNdC>0 (1.3.20)

Since N and dC are postulated to be >0, we must have

PO (1.3.21)

in order not to violate the second law of thermodynamics.

This is hardly a startling result but is typical of the

restrictions placed on processes by the second law of thermo-

dynamics. The second law essentially prohibits the existence

of perpetual motion machines and is a statement of common

experience. In more -omplex models, restrictions are not

always so obvious and the second law provides a formal way

to analyze a given process.

Stability investigations are sometimes made by employing

Gibb's free energy (referred to as free enthalpy). Murrell

and Digby (1972) consider the thermodynamics of brittle

fracture initiation under triaxial stress conditions by using

Gibb's free energy. Gibb's free energy also provides us

with a link to the stability of interacting processes

involving mechanical, chemical, thermal and electrical fields.

Gibb's free energy is a thermodynamic potential function

defined in terms of state variables as

G = H - ST (1.3.22)

where H is the enthalpy of the system, S is the entropy and

T is the absolute temperature. In Eq. 1.3.22 the enthalpy,

in the most general case, is defined as the internal energy

minus the summation of the product of the thermodynamic

..
•i:.
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teni ions and their conjugate substate variables. The

thermodynamic tensions and conjugate substate variables

may have mechanical or electromagnetic dimensions as

discussed in Malvern (1969). Chemical potentials also are

related to Gibb's free energy as discussed in Denbigh (1968).

There iF3 much information available on the thermo-

dynamics of continuum processes as summarized by Malvern

(1969) where the original references may be found. Since

a dilatancy related instability is not necessarily a con-

tinuum process, we have chosen to work from first principles

in investigating the basic nature of instability. The

results of this phase of the investigation may be summarized

as follows:

1) The primary criterion for mechanical instability is

a non-trivial increase in kinetic energy resulting when an

equilibrium state is perturbed by an energy input of

negligible magnitude.

2) In a consezrttive system, a stable equilibrium

configuration is characterized by minimum total potential

energy.

3) An equilibrium state of other than minimum total

potential energy can be stable in the presence of a dissi-

pative mechanism such that JAPEJ<D2j Ifor an infinitesimal,
kinematically admissible perturbation from state 1 to

state 2.

4) The presence of a dissipative mechanism alone does

not insure the mechanical stability of an inherently

, t
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unstable system. For stability, the dissipation must be

of the magnitude such that the inegquality stated in 3 above

is satisfied.

5) Any real, physically possible process must result

in an increase in entropy of the system plus its surroundings,

i.e., states of higher entropy are preferred by nature.

6) Mechanical, thermal, chemical and electrical (electro-

magnetic) fields are coupled by the most general statement

of conservation of energy. A perturbation in any one of

these fields may cause a system with some potential energy

to become mechanically unstable. In this situation, it may

be convenient to use a stability criterion involving Gibb's

free energy.

1.4 Frank's Model-Dilatancy Instability

Frank (1965) proposed a seismic instability model

involving dilatancy of a system of non-uniform, rigid body

grains and frictional dissipation of mechanical energy.

The relationship between volume change and shearing dis-

placement was assumed to be that shown of Fig. 1.4.1 for a

well-packed but only statistically regular system of non-

uniform grains. Stated in words, the criterion used by

Frank for instability is

Work done Work doneon te -by te >Energy dissipated
on the - by the > by frictionsystem system

In equation form, we have

Tdy -(P-Pi)mdy>t fdy (1.4.1)

where T is the overall shear stress, dy is the differential

- tz
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movement, P is the total pressure, Pi is the pressure in

the interstitial fluid which is assumed to be in communi-

cation with a reservoir, m is the slope of the volume change

versus displacement curve shown on Fig. 1.4.1, and Tf is the

frictional stress. Assuming that the frictional stress is

proportional to (P-Pi) gives!1

T f = n(P-Pi) (1.4.2)

where n is an appropriate coefficient of friction. Com-

bining Eqs. 1.4.1 and 1.4.2 gives

T>(P-Pi) (m+n) (1.4.3)
1

as the criterion for further slip. The point at which slij,

is imminent is

(P-Pi)c = T/(m+n) (1.4.4)

where the subscript c has been added to indicate that this

is the critical state. If (P-P.) becomes leis than (P-Pi)c

slip will occur. Consequently, as long as dm/dy is greater

than zero, the situation is essentially stable since any

movement dy will increase m and decrease the right hand side

of Eq. 1.4.4. If y increases beyond the inflection point

shown on Fig. 1.4.1, dm/dy becomes negative and any further

increase in displacement leads to a decrease in m which in-

creases the right hand side of Eq. 1.4.4, thus requiring

a larger value of (P-P to maintain stability.

1.5 Comments on Frank's Model

From the above discussion of Frank's model, it is

evident that the point of inflection of the volume change

versus displacement curve is critical to the existence of

.' ... '.~. . .'.
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the mechanism. Experimental results reported by Brace,

Paulding and Scholz (1966) do not indicate such an

inflection point for the rocks studied. Results presented

in section 3 of the present report indicate that a change

in curvature is possible at least at some point on a test

thtOrowan (1966) discussed Frank's model and concluded

thattheimplcitassumption that the coefficient of friction

remine cnstntduring the movement was impossible. Further-

more, Orowan concluded that the instability attributed to

dilatancy i~s a familiar general property of compacted

granular masses independent of whether or not the mass

dilates. Orowan states, "the deformation of a consolidated

granular mass is mechanically unstable; this circumstance

is a dominating fact of soil mechanics, responsible for most

L. slope failures and landslides and some avalanches." Orowan

also states that, 'Dilatancy, if present, influences only

the effective pressure (P-P. but does not create any

specific instability."

Neither Frank nor Orowan discusses the possibility

that the total pressure, P, may also depend on the dis-

1 .. placement, y. This situation would appear to be likely

when an existing fault zone is undergoing a shearing dis-

placement and hence subject to dilation. As a first

approximation, we may assume that the pressure, P. is

related to the shearing displacement in an idealized

situation as shown on Fig. 1.5.1. In this case, the
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asperities are assumed to be rigid but on the face of an

elastic mass. The motion is presumed to be dominately

rigid body in nature. The effect indicated would probably

r not be important in slope failures or any problems where

there is insufficient constraint to develop the increased

pressure. On the other hand, if the pressure is large

enough that the frictional force between the faces exceeds

the shearing strength of the asperities, new fractures may

develop and the shear zone may become larger. It is inter-

esting to note that this mechanism reinforces dilatancy

hardening since, in the idealized cases shown, the peak total

pressures coincide with the maximum increase in pore volume

and consequent decrease in P1.* Both mechanisms act to increasej

the effective stress, (P-P.)

Eq. 1.4.1 implies that all the energy input into theI

system must be diAssipated by friction if the system is to

be stable. In reality, some of the net work done on the

system may be stored as potential energy probably in the

form of strain energy. It is this stored potential energy

that is generally thought of as the source of the kinetic

energy released during an earthquake.

I4

IA
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2. NUMERICAL STUDY OF DILATANCY RELATED INSTABILITY

2.1 Introduction

The primary objectives of the numerical phase of this

study is to illustrate with a one-dimensional, (l-D), lumped*1 parameter model the possible coupling between the pore Uf id

and solid regimes may take place through 1) the effective

stress concept and 2) the relationship between dilatancy and

pore fluid pressure. External fluid injection or withdrawal

is directly related to pore pressure and consequently

effective stress as demonstrated by the Rangely experiments.

The relative importance of dilatancy coupling in a fluid

"J injection situation may be smaller than in a situation where

the fault zone is loaded by plate motion. The 1-D model

developed below incorporates both types of coupling.

A second objective of the numerical study is to demon-

strate that the response of the fault zone may take the

form of stable sliding (creep) or wave propagation (an

earthquake event) depending on the rate of energy input to

the system and the dissipative characteristics of the system.

The model also demonstrates the diffusion of locally high

pore pressures through the system.

The third objective of the numerical study is to relate

instability in the model to the energy rate criterion

developed in Section 1.

2.2 Development of a Model

A one-dimensional model has been chosen 1) for ease

in formulation, 2) for the relatively small amount of

Q W.........
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computer time required, and 3) since it exhibits qualita-

tively the characteristics of more complex and expensive

models. The one-dimensional model has the disadvantage

that it is difficult or impossible to obtain meaningful

quantitative results or even to assign relatively consistent

values to the parameters. It does, however, represent a

first step in modeling a very complex coupled mechanical-

fluid system.

Previous work has been done on lumped parameter, one-

H dimensional models of fault zones by Burridge and Knopoff

(1967) and Dieterich (1972). Both of these models are

comprised of a system of rigid blocks interconnected by

springs, and sliding with friction on a surface. The model

developed here places each rigid mass in a container with

fluid.j

The basic element is shown on Fig. '2.2.1 where detail of

frictional surface is shown.
This basic element is similar to that used by Dieterich

except for the assumptions that

1) Each mass is in a container that will hold fluid

and the containers are connected by pseudo "pipes" with

characteristics that can vary between elements.

2) The asperities on the frictional surface cause the

pore volume to change when the mass moves thus causing the

pore pressure to fluctuate. This pressure fluctuation,

along with effective stress, couples the fluid motion with

the block motion.
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. 3) Fluid may be injected or withdrawn from any

[ element so that Rangely type experiments can be conducted.

4) The rigid bar at top of lief springs is not

moving with constant velocity as in Dieterich's model but

Lhe "op anchor on any lief spring may be displaced to pre-

load the model.

Three types of equations are required to describe

the motion of the system. These equations are a) a momentum

equation for each block mass, b) a momentum equation for

the fluid in each "pipe" and c) a continuity (conservation

of fluid mass) equation at each block. The momentum

equation for a typical block may be written as

dVi 1 [O;V.=O and IF. I<IF.fI
dt M 1 F ie 2Fif; otheiise r (2.2.1)

where

V. = the velocity of block "i"

t = time

M. = mass of block "i"

F. = the elastic force exerted on block "i" by the coil

and lief springs, o.:

F. j=i+l 1 w• Fiej= - K- Kij Xj+K.iX. where

K..= force on block "i" due to a unit displacement at

j with all other displacements equal to 0.

X. = displacement of block "j"

X? = original displacement of top anchor of lief sprin,,

at "f"li

= stiffness of the lief spring at block "i"

----------------------
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SSgn(Fie) [Ci+psi (Pi-yhi)iJ WviO
Fif- Sgn(Vi) ýdi(Pi-yh) ;riCO

where Sgn(y) -"+i; y>O
y-0

; y<O

Ci= cohesion at block "i"

11si and p = respectively static and dynamic coefficients

.of friction

Pi = pressure on block "i"

y = specific weight of the fluid

h. = fluid head in container "i"'

The displacement of block "i" may be calculated from

the relationship

dXi
dt = V (2.2.2)

It should be noted that the velocity and displacement of

1 block "i" are coupled with the motions of all of the other

blocks in the system through the stiffness matrix Kij. Also,,

I the motion of block "i" is coupled with the fluid motion in

the system through the fluid head term that occurs in the

effective stress.

I The fluid motion in the "pseudo pipes" is assumed to

be "plug" flow, i.e., the fluid mass in a pipe is assumed

3 to be incompressible and to move as a unit or plug. The

momentum equation governing the fluid motion in pipe "i"l

may be written as

--g(hi-h /Li-X.U. Ui (2.2.3)

_ _
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where
U. = mean velocity of the fluid "plug" in pipe "i"

g = acceleration of gravity

Li = length of pipe "i"

X. = a friction factor term for fluid flow in pipe "i"

Eq. (2.2.3) represents the fluid motion in a pipe in

the simplest manner possible that still exhibits coupling

with the block motions through the head terms and energy

dissipation (damping) through the pipe friction term. The

fluid model chosen is capable of representing oscillatory
motions if \i = 0, damped oscillatory motions if X. is

1 1

relatively small and diffusion with no oscillation if X. is

relatively large.

The fluid motions in the pipes are related to each

other by the conservation of fluid mass in each container.

For a typical container "i", conse:rvation of mass may be

expressed as

Mass Flow Rate In - Mass Flow Rate Out = Mass Stored

per Unit Time or
dhi

Q. + A.U. -Ai i -i dhi (2.2.4)
1P 11 i+]Y i+l 'i dt

where

Qi. = volume flow rate injected into container "i" by

an external pump plus the rate of change of fluid

volume stored due to dilation. If fluid is

pumped out of the container, Q. is negative.
ip

A = cross-sectional area of pipe "i"ll

1L = cross-sectional area of container "l

1

S... - • • - I • • r , ,•. • =•- ,• • :
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The pipes at both ends of the model are assumed to be

connected to a reservoir that remains at a constant head

throughout the motion of the models.

If the number of masses is Nm, we have

mmN m momentum equations for blocks

Nm displacement-velocity equations for blocks

Nm+l fluid momentum equations in the pipes

Nm conservation of fluid mass equations in the containers

4N M+1 = total number of first order, oedinary, differen-

tial equations.

This system of differential equations may be solved J
numerically by a number of different methods. The fourth

order Runge-Kutta-Simpson method was chosen here due to its

availability and simplicity. No attempt was made to solve

the equations analytically due to the nonlinear character

of Eq. (2.2.3).

2.3 Characteristics of the Model

The ch~racteristics of the model may be demonstrated

by the three block system shown un Fig. 2.3.1. Potential

energy is initially stored in the system by setting the

0
values of x. to non-zero values, thus preloading the lief

springs. This preload is kept small enough so that no

block will initially break loose and begin to move, i.e.,

the blocks are initially at rest.

Each container is assumed to have a head of fluid

equal to the reservoir head. The fluid is assumed to be

at rest.



Fig. 2 .3. 1 Three block system
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with the above initial conditions, the system is

I: initially in equilibrium. Due to the presence of the non-

zero potential energy, however, the system may not be

stable. The potential energy in the lief springs is

analogous to the strain energy stored in the elastic region

surrounding a fault zone.

The system, is now perturbed by injecting fluid into

the center container as a function of time as shown on

Fig. 2.3.2.

Q)
-P

I_
oa

tim

the prametrs chTimen

a)~ Fg 2.3. Flui injcie tes ections hufiistory hg

inaslo the fludks, injecteid winto simple cente crontainer

cetherfudhanti container bgn to risetrcotinr and it the

reservoir. If the pipe friction is sufficiently high, the

response will be simply a diffusion of the fluid pressure



I - - 34 a

ý4:

'0

0'

Ij. 0

.1. ri

H 0
""-4c

C-Q)
04 Q) 4-

0.4 4-

0.4 04

083H
ipv* 6w ox



• ,,S',-., " • - '' - ... ...... • ..... •'"•......... . ..• . .. ... ..... . .... i

35.

along the model and no oscillation of the fluid pressure

will result.., If the pipe friction factors are lower, the

fluid motions :may .be of th6 damped oscillatory type but the

blocks will. remain at rest. in either case,, the fluidIi velocities will approach zero after the injection ceases

due to the dissipation of energy in pipe friction. These

.j cases are illustr~ted on Fig. 2.3.3. Fig. 2.3.4 illustrates

the diffusion of the head from the center to the outer

container. The difference in the time of the peak heads

in the containers depen'ds on the pipe characteristics

V .chosen.

b) If the increased fluid pressure in the center

container reduces the effective stress to a sufficiently

low level, the center block may break loose and begin to

slide. The movement of the center block loads its leading

and trailing coil springs and may cause (along with the

increase in fluid pressure) one or both of the outer blocks

to begin to slide depending on the strength parameters

chosen. If the sliding block friction is high enough, the

block(s) may simply slide slowly to a new equilibrium

position with no oscillation. This is interpreLed as a

creep event since the dissipation of energy is relatively

slow. Dilatancy hardening may occur since block motions

may cause the fluid pressure to drop.

If the block friction is relatively lower, one or more

of the blocks may begin to oscillate. The rapid oscillation

of a mass is interpreted as an earthquake event. Both

L g
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creep and earthquake events are illustrated on Fig. 2.3.5.

Due to the one-dimensional character of the model, an

Ii oscillating block can radiate energy only along the model

and not in all directions as would occur in the earth.

Another limitation of the present model is that the end

blocks are connected by coil springs to fixed boundaries,

thus, reflections will occur. Dieterich (1972) made his

. I model circular in nature so that the boundary reflections

could not occur. This feature could be incorporated into
the present model.

Although not illustrated by the three block example,

the model does allow for the possibility after shocks. A

block that has come to rest after an event may again break

loose and begin to oscillate.

2.4 Summary of Model Capabilities

The present model may be used to study systems having

a maximum of 50 blocks with 51 pseudo pipes all having

different characteristics. Coupling of the fluid and block

motions due to an increase in pore pressure which reduces

the frictional resistance to block movement or block movement

that changes the fluid pressure due to dilatancy can be

I demonstrated by the model. The block response may be either

creep or vibration while the fluid response may be oscillatory,

damped oscillatory or critically damped (diffusion).
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3. LABORATORY INVESTIGATION

3.1 Introduction

The primary purpose of the laboratory tests performed

was to study the spatial variation of dilatancy in Weber

sandstone and to establish the appropriate form of the

relationship between distortional deformation and volume

change. Previous investigators, Brace, Paulding and Scholz

(1965) and Crouch (1970) , have used experimental methodsI

that assumed a uniform distribution of dilation throughout

I ~the rock core being tested. Brace, Paulding and Scholz (1965) I
used four electrical resistance strain gages, two parallel

-.1and two transverse, to the axis of the sample. The ratio of

gage length to sample length approached unity. It is well

known that for small strains,

AV. + + (3.1.1)
V v t r0

where V0  original sample volume, AV change in volume,

j ~and ev are respectively the components of normal

strain in the vertical. tangential and radial directions.

IAssuming that the sample deforms as a right circular cylin-

I der,
£r =s~(3.1.2)

K1  and Eq. (3.1.3) becomes

c + 2e (3.1.3)
jV v t

if extension is taken as positive, the vertical strain is

Inegative while the tangential strain is positive for uniaxial
and triaxial tests. Thus calculation of the volumetric4

-- --- --
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strain involves taking the difference between the magnitude

of the vertical strain and twice the magnitude of the*1 horizontal strain, a process that can lead to erroneous re-
suits unless the strains are measured to a sufficient

number of significant digits.

if a linear elastic material model is chosen as a

first approximation,

Et= Ve(3.1.4)

jwhere v is Poisson's ratio and

LV

Since v is always less than or equal to 0.5 for a linear

elastic material, we expect that the volume of the sample

should decrease as long as the linear elastic model is

approximately correct since e v is negative. As shown later,

an initial decrease in volume was observed in all samples

tested.

Crouch (1970) used a hydraulic system to measure volume

4 changes of samples. Again it is assumed that the volume

change occurs uniformly throughout the sample, i.e., the

shape of the sample remains a right circular cylinder that

is shorter in length and larger in diameter.

~. j If we assume that failure will develop on a plane

inclined at some angle with the maximum principal stress

direction, then it follows that the components of strain

in the neighborhood of the failure plane will differ from

the average strain in the sample as failure is approached.
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Stated ;.tnother way, as failure is approached, the strain

I field is expected to become inhomogeneous. This leads us

to the assumption that much of the observed total increase

in volume may in fact be concentrated in the failure zone.I In order to study this possible effect experimentally,

a "whole field" method of deformation measurement appears

I to be the obvious choice. However, to the writer's know-

ledge, no such measurement technique is readily available

Ifor studying deformation in the triaxial test. Consequently,A

it was decided to attempt to study the distribution of strain

I by using a number of smaller electrical resistance strain

gages to sample the strain field at a number of points onA

the specimen. In addition, a hydraulic system has been used

to measure the average volume change of sample. This

combination of techniques allows us to determine when the

deformation at any given point deviates from the average.

3.2 Rock Characteristics

The principal rock chosen for the testing program was3

Pennsylvanian age Weber Sandstone collected from outcrops

in Sheep Creek Canyon just west of the Manila Quadrangle

near Utah State Highway 44. Hansen and Bonilla (1956)

I mapped the Manila quadrangle and described the Weber Sand-

stone as being a pale, yellowish-gray, fine-to, medium-

grained, very thickly bedded to massive cross-bedded sand-

stone that is well cemented. Some of the Weber Sandstone

outcropping in Sheep Creek Canyon is weathered to the point

where hand specimens can be readily disintegrated. An

N-
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1 attempt was made to collect only relatively unweathered

blocks.

The Weber Sandstone was initially chosen since the

experiments at Rangely were conducted in this rock. A

visual comparison of the samples collected with core cut

at Rangely indicated that the core was better cemented and

probably less permeable than the sandstone from the outcrop.

A limited number of tests were also run on a Cambrian

age sandstone from the Deadwood formation in the Black Hills.

Blocks of this rock were collected from an abandoned mine

in the west central part of the Black Hills near Ditch Creek.

The material is referred to as Ditch Creek Sandstone and is

a yellowish-gray, medium-grained sandstone with angular

to suh-?,. -ular grains. Representative mechanical properties

of both the sandstones tested are shown on Table 3.2.1.

Table 3.2.1 Representative Mechanical Properties

Rock Young's Modulus Poisson's Co. To y Porosity
PSI Ratio PSI PSI PSI

Weber SS 1.5 x 106 0.3 4380 242 -

Ditcn Cieek . u.96 x 106 0.3 5430 523 134 16.8

3.3 Equipment and Procedures

The equipr-,vr used in carrying out the experimentalI :1 program consis>_ of a modified, Bureau of Reclamation type

triaxial cell, a Soil Test volume change indicator, a

Tinius-Olsen 400,000 pound capacity testing machine, a

I Sanborn six-channel recorder, and miscellaneous other

laboratory equipment. A schematic diagram of the test set-

I up is shown on Fig. 3.3.1. Tests were run on dry samples

Si hwn331
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at confining pressures ranging from approximately lOU psi

to 400 psi.

Confining pressures were held essentially constant

during each test by applying the pressure through a large

75,000 cc) chamber containing nitrogen. Since the maximum

volume change recorded was of the order of 5 cc, confining

L pressures were held constant to within 0.007%. No change

in confining pressure could be detected with the pressure

gages used. Confining pressure magnitudes were limited by

the pressure capacity of the Soil Test volume change

L indicator which consisted of a plexiglass cylinder contain-

ing a graduated tube. A blue dye was added to the confining

fluid to facilitate reading volume changes.

Samples tested were approximately 2 in. diameter with

length to diameter ratios from 2 to 2.5. Sample ends were

finished with a surface grinder to insure that ends were

smooth and parallel to within .001 inches.

Six strain gages of 1/4 inch grid length were placed

on each sample. Strain gage lead wires were brought out of

the triaxial chamber through a hole in the ram. Strains

were recorded on the Sanborn 6-channel recorder or by hand

using standard laboratory strain gage equipment.

i One sample was prepared with 40 strain gages (20 verti-

cal and 20 horizontal) in 2-gage pairs. Strain gage lead

wires were taken from the triaxial cell through a specially

fabricated hollow piston. Since we desired to read all 40

j ~gages essentially simultaneously, a multiplexing unitj
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was required to multiplex the data onto magnetic tape.

No commercial multiplexinkg unit was available to us.

Furthermore, no funds were available for the purchase of a

multiplexer. Therefore, an attempt was made to fabricate

a switching bridge type multiplexer. This attempt failed

primarily due to the magnitude of transients involved in

the switching. In the spring of 1976, a multiplexer was

~ j assembled using MOS chips and another attempt was made to

collect the data. Unfortunately, the common lead for all

the strain gages shorted out just as the test was started.

The test has been delayed until the shorted lead can be

repaired and the tape recorder again becomes available.

3.4 Discussion of Results

Typical results from the triaxial tests on four samples

of Weber Sandstone are shown on Figures 3.4.1 through 3.4.5.

For each sample the dilatometer (volume change indicator)

readings versus vertical strain are compared with 2V Et

versus vertical strain where V0 is the original volume of

the sample and Eis the tangential strain measured by

electrical resistance strain gages. Vertical stress versus

vertical strain points are plotted on the same figures for

1 A reference.

Neglecting the deformation of the apparatus and

assuming that the sample deforms as a right circular cylin-

Kder, the dilatometer data should coincide with the 2V o et data.
This may be seen as follows. After deformation, the radius

r 0 r (1+c (3.4.1)
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where r is the original radius. Similarly the length0

after deformation is

L = L (l+ev) (3.4.2)
0 V1 where L is the original length. Neglecting second order

terms, the cross-sectional area, A, becomes

A = Trr (1+2) = (1+2c (3.4.3)

Neglecting the deformation of the stiffer steel ram andj
hemispherical seat in the triaxial cell., the hydraulic

volume change indicator (dilatometer) should read a change

in volume, AVlat, equal to the annular area increase of the

sample times the length. Thus,

LVlat = (A-Ao)L=(Ao(1+2Er)-A IL )l+Ev) (3.4.4)
lat 0 r 0 0 V

which after neglecting second order effects becomes

lat 2roL = 2Vor 2Vot (3.4-5)

since V = A L and z =e for a sample deforming as a right

circular cylinder.

Experimental results indicate good agreement between

the dilatometer readings and 2 Vo te Value of 2VoFt typical-

ly fall below the dilatometer readings particul!irly for

lower values of axial strain. This discrepancy is probably

due to the fact that the dilatometer measures the total

increase in lateral volume including that of the ram-and

the hemispherical seat while these effects are neglected

in calculating the AVlat from 2 Voet. With a sufficient

number of tests, it may be possible to calibrate the

apparatus to account for the additional change in volume

registered on the volume change indicator and thus improve

.F ....
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the agreement between the two methods. No attempt was

k- .. made in this study to calibrate the dilatometer for this

effect.

An expression for the change in volume divided by the

original volume (AV/V) may be derived as follows. From

Eqs. (3.4.2) and (3.4.3), the volume after deformation is

V = AL ={A (14-2cr)Ld(l+Ev) (3.4.6)1 0
After neglecting second order effects and noting that Vwehv0

AOLo we have

V = V (l+ev+2er) (3.4.7)

Then the change in volume becomes

AV = V-V° V (e +2) (3.4.8)o 0 v r

and

AV/V = 2 +2 = (3.49)v r v t

where e =E for axially symmetric deformation. The right
r

hand side of Eq. (3.4.9) represents the trace (first invarient)

of the linear strain tensor for axially symmetric defor-

mation and is a familiar result from continuum mecharics.

This derivation is presented here to emphasize that AV/V

depends only on changes in geometry and is independent of

any material model.

Using Eq. (3.4.9), we can calculate AV/V for each two-
0

gage rosette consisting of one vertical and one tangential

strain gage. Experimental results are presented for each

ir sample by plotting AV/V versus the maximum shearing strain
0

emax = C-v Each of these curves exhibits an initial

negative slope which then flattens out and finally increases

lI_
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rapidly as failure is approached indicating dilation and

emphasizing the relationship between volumetric deformation

and shear deformation in the post elastic range. Each of

these curves has the same general shape that has been

observed by many soil mechanics investigators during triaxial

tests on dense sands.

It should be noted that as long as the sample remains
linearly elastic, the AV/V should decrease as Ymax increases

0ma

since in this case

Et = -Vev (3.4.10)

Then

AV/Vo = v (l-2v) (3.4.11)

and

Ymax = t- 5v = -v (I+V) (3.4.12)

The slope of the curve in the elastic range should then be

Slope = -(i-2v)/(i+v) (3.4.13)

For Poisson's ratio v = 0.25, the slope in the elastic

region should be -0.4. As the inelastic region is approached

the apparent Poisson's ratio tends to increase and the Slope

approaches zero as v approaches 0.5. The Slope becomes

positive as the negative ratio of tangential to vertical

strain exceeds 0.5. Conservation of mass precludes this

ratio from exceeding 0.5 for a continuous material. Thus,

we conclude that microcracks must be opening in the sample.

These microcracks could account for the relatively high

tangential strains and the corresponding dilation of the

sample.

- ..-. i



It is interesting to compare the experimental AVIV0

versus yma curves with the curve assumed by Frank (1965).

Since Frank neglected elastic deformation, his curve would

start at the point where the slope of our experimental curve

is zero and the sample is beginning to dilate. The curves

agree then in shape although the experimental curves do

not indicate the change in curvature assumed by Frank. This

may be due to the fact that the strain gages used are not

capable of measuring large strains and suggests that another

I technique should be developed to measure large deformations

particularly in the failure zone.
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4. CONCLUSIONS

The objectives of this study include a theoretical

study of the nature of mechanical instabilities, a

numerical study to illustrate the behavior predicted by the

theoretical study, and a laboratory study of basic dilata-

tional response of one sandstone under triaxial test

conditions. Mechanical instability is defined as a non-

trivial increase in kinetic energy resulting when an

equi'librium state is perturbed by an energy input of negli-

gible magnitude.

From the theoretical study, we conclude that an equil-

ibrium state of other than minimum total potential energy

can exist in the presence of a sufficient dissipative

mechanism. However, the presence of a dissipative mechanism

does not insure the stability of an inherently unstable

system. The importance of the rate of energy dissipation

is emphasized by Eq. (1.3.9). Further importance is given

to the rates of energy input and dissipation in the numeri-

cal study where if fluid is pumped into the system at a

slow enough rate compared to the dissipative characteristics

of the system, the fluid head simply decays after pumping

stops and the blocks remain stable.

The numerical model also illustrates the coupling

1* between the spring-mass part of the system and the fluid

flow system. This one-dimensional model allows numerical

fluid injection experiments to be run. By varying para-

meters in the model, both wave propagation and diffusion
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results can be obtained in the fluid while the block

masses may remain fixed or show either creep or earthquake

events.

Relative to the control of earthquakes, this study

suggests that potential energy be reduced by controlled

smaller earthquakes and creep events. Furthermore, the

rate of external work done on a fault zone by fluid injection

Smay provide a means of controlling the size of the induced

event. The model also suggests that earthquake control

might be accomplished by increasing the capacity for energy

dissipation in the fault zone. This may be possible by

injecting a special fluid at a very low rate. This fluid

would have to be miscibile with the pore fluid and have a

viscosity that increases with time and/or temperature.

From the results of the laboratory study we conclude

that the samples of Weber Sandstone do dilate under triaxial

conditions with confining pressures in the 100 to 400 psi

range. The shape of the dilatancy curves is similar to that

reported for dense sands. Dilatancy of laboratory samples

can be measured either hydraulically or by using electrical

resistance strain gages. However, both techniques assume

A that the sample deforms as a right circular cylinder. An

attempt has been made to study the spatial distribution of

* j dilatancy by placing 40 strain gages on a single sample.

Initial attempts have failed due to lack of appropriate

1 equipment. This work is continuing on an unsponsored basis

SI and results will be reported when they are obtained. More

work is recommended on the spatial distributiQn of dilatancy.

SI
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APPENDIX I: CONSERVATION OF MECHANICAL ENERGY

Eq. (1.3.1) is a statement of the conservation of

mechanical energy and may be derived from tne first integral

of the equation of motion. The equation of motion may be

written for a mass as

SMdvi J) l

1dt

k
where Fi is a component of force k in the direction of "ill

while M is the mass, vi is the component of velocity in the
1

direction "i" and t is time. The summation is over all

forces acting on the mass. If we now multiply Eq. (A.1) by

vidt and integrate from point 1 to 2, we have

jf v idtfM--•vidt (A. 2)

where summation from i=l to 3 is indicated by the repeated
subscript. Noting that vi=dXi/dt where Xi is the displace-

ment component in direction "i," Eq. (A.2) may be written as

F-dX1 id(½my 2 ) = 1 d(KE) (A.3)

k.
By definition, the work done by F in going from point 1 to

point 2 is

2 =f2FkdX (A.4)

Then Eq. (A.3) becomes

1 = (KE )2 -(KE)l AK(E (A.5)

If a gravitational field is present, one value of k represents

the work done by gravity in going from point 1 to point 2.

By definition,

1 2 = - (PE 2 -PEI) = -APE (A.6)

""1 2 2



A ~ Then Eq. (A. 5) becomes

k AKE+APE(A. 7)

where the left side now excludes the work done by gravity.

if we now writes

12 MW+ (A.8)

Eq. (A.7) becom'es

AKE+6pE W+(A.9)

which is exactly Eq. (1.3.1).4
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