AR A .
e ¢ 3
.T/ ,
. ‘ i
June 1981 : lEVEL Report No. STAN-CS-81-866

Also numbered:
PVG-19
CSLTR-208

1 Verifying the Absence of Common Runtime Errors

in Computer Programs

BY

ADA10U9433

STEVEN M. GERMAN

T T, A Vot

i

3

.

.

+ N
.
: EPPROVED 200 P I0L,7 0 ROTQA SR
1 } PR e v]

i 1 : .

. K2, T vy L
g ! ?L&,; PISysT s

Department of Computer Science

Stanford University
Stanford, CA 94305

FILE COPY

i
o

Ro“‘o JUN'O@&\
B

A

M ol el e b

e 54

T T

e — g

UNCLASSIFILED
SECURITY CLASSIFICATION OF THIS PAGE (When' Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

A. TITLE (and Subtitle}

Verifying the Absence of Common Runtime Errors
in Computer Programs

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. FECIPIENT'S CATALOG NUMBER
¥ h / ’ LS P
STAN-CS-81-866 X7/ L-’j[} 2

5. TYPE OF REPORT & PERIOD CQOVERED

Thesis

6. PERFORMING ORG., REPORT NUMBER

7. AUTHOR(s)

S. M. German

8. CONTRACT OR GRANT NUMBER(#)

MDA903-80-C-°159

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University (Department of Computer
Sciences), Stanford, Califormnia 94305

CT, TASK
RS

ARPA Order 3423

11, CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE
June 1981

Defense Advanced Research Projects Agency

13, NUMBER OF PAGES
183

400 Wilson _Boulevard
‘_l__ALY.LnE-Con. Vireinia 22209
3. MONITORING AGENCY NAME & ADDRESS(If diflerent from Controlling Office)

N/A

1S. SECURITY CLASS. (of this report)

Unclassified

1Sa, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

N/A

17. DISTRIBUTION STATEMENT (of the absiract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES
N/A

19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

Computers
Runtime Errors
Runcheck
Pascal

20. ABS’TRACT (Continue on reverse side If necesaary and identity by block number)

The Runcheck verifier is 3 trorking prototype system for proving the absence of runtime errors
such as arithmetic overflow, array subscripting out of range, accessing an uninitialited variable,
and dereferencing a null pointer. Such ervors cannot be detscted at compile time by -most
compilers. Runcheck accepts Pascal progrims documented with assertions and proves that the
assertions are consistent with the program and that no runtime errors can occur. |

DD ,7SR%, 1473 Eoimion oF t NOV 8815 0BSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

e A AR AU et e

PO RO MV TR i P LI

r'» i S e e T ———— —— " Ty _M
o R _A—- -

SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)

Runcheck is designed to guarantee the complete absence of runtime errors; in this rzsprit o differs

from the anomaly detection or data flow approach, whith attempts to uncoves runtline ors but]
i cannct guatantee their absence. Another Important distinction from' previous approsiin. i3 that
Runcheck is based on a detalled, rigorous semantic definition of the programming language and its
data types (including pointers). Because the implementation contains a general purpose theorem
prover, proofs can be arbitrarily detalled.

The thesis begins by presenting an axiomatic definition of Pascal for proving the absence of
runtime errors. Qur definition is similar .0 Hoare's axiom system, but it takes into account certain
restrictions which have not been considered in previous axiomatic definitions. The definition is
! based on a special predicate, DEF(x), which is true if x has a properly initialized value. We
1 discuss the problem of introducing uninitialized variables in an axiomatic definition, and construct
models of the data types from nonstandard models of the integers to justify our new apuroach to
uninitialized variables

BT Tl Ll 1

r The thesis contains many examples of verified programs of various levels of difficulty. The
verification of a four page example program is discussed in detail

The final section draws on experience with Runcheck and the Stanford Pascal Verifier to discuss
i some of the major issues concerning verification and software reliability, including how verification
b can contribute to reliability even if absolute correctness cannot be obtained, and which applications
of program verification may be feasible for large programs.

o —— T T —— g ——

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered;

TPV SP VLRI T-5:- W N

A bR AWM 15—t 0 8 m by e 0 D

e

Yerifying the Absence of Co

A thesis presented

by
Steven Mark German

to

The Division of Applied Sciences

in partial fulfiliment of the requirements

Accessiar For

LTIC TAB 0
Unannounced 1]

e ae— —

Di;tribnttqn/

Avail andfoer
pst | Spreisl

A

Cnris cHAxl 3K

-

Justification ..
BY o m - mmrn o e e

Avaitability Cades

for the degree of
Doctor of Philosophy
in the subject of

Applied Mathematics

Harvard University

Cambridge, Massachusetts

June 1981

mmon Runtime Ervars in Computer Programs

DTIC

ELECTER
JANS 1982

D

el 4 et

o et

T R Ve i e ey

Verifying the Absence of Common Runtime Errors
in Computer Programs

Steven M. German

ABSTRACT

The Runcheck verifier is a working prototype ystem for proving the absence of runtime errors
such as arithmetic overflow, array subscripting out of range, accessing an uninitialized variable,
and dereferencing a nuil pointer. Such errors cannot be detected at compile time by -most
compilers. Runcheck accepts Pascal programs documented with assertions and proves that the
assertions are consistent with the program and tnat no runtime errors can occur.

Runcheck is designed to guarantee the complete absence of runtime errors; in this respect it differs
from the anomaly detection or data flow approach, whith attempts to uncover runtime errors but
cannot guarantee their absence. Another important distinction from' previous approaches is that
Runcheck is based on a detailed, rigorous semantic definition of the programming language and its
data types (including pointers). Because the implementation contains a general purpase theorem

prover, proofs can be arbitrarily detailed.

The thesis begins by presenting an axiomatic definition of Pascal for proving the absence of
runtime errors. Qur definition is similar to Hoare's axiom system, but it takes into account certain
restrictions which have not been considersd in previous axiomatic definitions. The definition is
based on a special predicate, DEF(x), which is true if x has a properly initialized value. We
discuss the problem of introducing uninitialized variables in an axiomatic definition, and construct
models of the data types from nonstandard models of the integers to justify our new approach to

uninitialized variables.

The thesis contains many examples of verified programs of various levels of difficulty. The
verification of a four page examgle program is discussed in detail.

The final section draws on experience with Runcheck and the Stanford Pascal Verifier to discuss
some of the ma jor issues concerning verification and software reliability, including how verification
can contribute to reliability even if absolute correctness cannot be obtained, and which applications

of program verification may be feasible for large programs.

Copyright (C) 1881 by Steven M. German

Acknowledgements

F I want to express my special appreciation to David Luckham, who invited me for a
short visit to Stanford University and originally suggested the topic for this thesis.
1

’ Professor Luckham generously offered to supervise my thesis research, and instead of

having a short visit, | remained at Stanford untii the experimental phase of the

research was completed.

The members of my research committee at Harvard, Thomas Cheatham, Edmund

Clarke, and Harry Lewis, gave me many helpful comments after I returned to

Harvard to concentrate on writing and improving the work on formal semantics.

1 also want to thank other people who offered their time to read and comment on
portions of the thesis: Allen Emerson, Joseph Halpern, Dick Karp, Albert Meyer, Wolf

| Polak, and John Ramsdeil.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense under contract MDA903-80-C-0159 and by the Rome Air

I
-~ Y J

Development Center under contract F30602-80-C-0022. ’

L-m:mm‘. pree e Py . |
- - gy g o en, Ty s . Tt TR e n g v
pr S S sl B TR W PO . P 1 WY

S

i
r
I
'
3
H
|
b

Table of Contents

Introduction

Chapter 1. An Extended Semantic Definition of Pascal for Proving the Absence of

Common Runtime Errors

1-1

1. Chapter Outline 1-5

2. Preliminaries 1-6

8. Theory of Definedness: the Predicate DEF 1-12

4. Fundamental Inference Rules 1-21

5. Expression Evaluaiion 1-22

6. Extended Axiomatic Semantics of Pascal 1-82

7. Metatheory of the Extended Definition 1-48

8. Generalizations of the Extended Semantics 1-65

9. Discussion 1-64

Appendix 1-A: Development of the WHILE Rule 1-66

Appendix 1-B: Simultaneous Substitution for Disjoint Variables ... 1-63
Chapter 2. Verification with Variant Records, Unions, and Data Representation

Mappings 2-1

1. Variant Records 2-8

2. Unions 2-12

3. Data Representation Mappings 2-17

Chapter 8. An Example of Verification with Runcheck . 8-1

1. Initial Preparation 3-4

2. A Look at Aliasing 3-6

3. When to Leave a Potential Error 8-10

4. Initial Assignment of Assertions $-12

5. Using Runcheck $-17

Chapter 4. Verification and the Reliability of Computer Programs 4-1

1. Program Specification and Consensus 4-4

2. Concerning False Proofs 4-7

8. Verification and Fault Tolerant Programming 414

4. Verification and Testing 4-15

5. Shallow verifications vs. Deep oroofs 4-17

6. Survey of Large Programs 419

7. Additional Techniques for Larger Programs 4-21

8. Verification’s IMPACt ... e . 4-28

References R-1

A-1

Appendix: Examples

R I]

Lo P N T

e T T e, 7 T ey

TR A —— ey

Introduction

In most programming languages, there are various undefined conditions and illegal
operations such as arithmetic overflow and array subscripting out of range. We call
these conditions runtime errors because they are violations of language or
implementation imposed restrictions on program execution. Current compilers do not
attempt to detect runtime errors during compilation, though they commonly insert
special code to test for certain errors during execution. This approach is costly in
execution time and compiled progra= :iz2, and of course gives no assurance that a

program will run to completion.

The occurrence of a runtime error may depend on the values of data supplied to a
program. For this reason, any technique for assuring the absence of runtime errors
must be based on some method for specifying programs. Showing the absence of

runtime errors is thus a natural problem in program verification.

We have been developing an automatic verifier for proving the absence of runtime
errors in the language Pascal. The Runcheck systemn takes as input a Pascal program
with entry, exit and optional invariant assertions, and proves that the specifications
are consistent with the program and that no runtime errors can occur. Invariant
assertions are not required in many cases because the system is able to generate simple
invariants automatically, but more subtle invariants must be supplied by the user.
The system currently checks for the following kinds of errors: accessing a varizble

that has not been assigned a value, array subscripting out of range, subrange type

ittt

-

v Y o ﬁ—“q‘-' T : o R S
sl W:m-“ S - - ‘ . [P S S S e cama ks Roaka Mﬁmm

e Pt b i eiat

P T,

(P it

Y

¢ re—g -

WY ST e

Introduction

error, dereferencing a NIL pointer, arithmetic overflow, division by zero, control stack

overflow, exceeding heap storage bounds, and UNION type selection errors.

The language accepted by the verifier includes verifiable UNION types instead of
Pascal's variant records. (Chapter 2 discusses the problems of variants and the details
of our UNION typas.) The verifier and our semantic definition uf Pascal de not yet

include REAL or SET types, but pointers are permitted.

This thesis presents an extended axiomatic definition of Pascal, which is the logical
basis of Runcheck. The extended definition is similar to the familiar Hoare axiom
system [HW 73], but it takes into account certain restrictions on the computatior that

have not been considered in previous axiomatic language definitions.

Although the details of our semantic definition refer specifically to Pascal, most of the
ideas are broadly applicable. The runtime errors which exist in Pascal are also
present ir. many other languages, and the ideas in our semantic definition can be
adopted to other languages with additional kinds of errors. ADA [Ic79] is an
especially interesting c.ase; it should be possible to define much of the language by
generalizing our definition of Pascal. For instance, the problem of generalizing our

definition to allow dynamic subrange types is discussed briefly in Chapter 1.

The thesis also discusses our practical experience with proving the absence of runtime
errors, so that the reader can judge both the potential and limitations of this form of
verification. So far, a large number of short but nontrivial programs have been
verified. Chapter 3 explains in detail the complete sequence of steps followed in
¢ 'rying out the verification of an interesting four page program. A list of other

progrums that have been verified is in the Appendix.

Tep——r Y e oy .
e e eeen o A— IR obvioni o — M

T T T s v ey e

-~

T Y Y Sp—— T m—— e

Introduction

Obviously, the notion of rintime error does not include every kind of programming
error. The runtime errors for a language are the conditions under which programs
cannot continue to execute or continued execution would give undetermined resuits.
For a program to be useful, one needs to know more about it than that it does not
have runtime errors. Consider a program which is intended to copy a list mude of
pointers and records; it can have an error which causes it 1o produce the wrong resulit
without any tuntime errors in the sense we are using. Runcheck makes it possible to
verify such a program at several levels of detail. For the least detailed verification,
the program is submitted to Runcheck without additional specifications reluted to list
copying. In this case, Runcheck attempts to prove only that the program is free from
runtime errors. In general, it may be necessary for the user to supply some
specifications and invariants even at this level of detail. For instance, the program
may have a controi stack overflow unless the input is acyclic User supplied
invariants would be needed in case the simple invariants generated automatically by
the system are not sufficier. to prove absence of runtime errors. A more detailed
verification could be obtained by adding specifications saying that tﬁe result of the
program is a copy of the input. An even more de’iiled verification could establish
bounds on the performance of the program, such as the maximum number of times

each statement is executed as a function of the input [LS77].

The purpose of Runcheck is to automate the routine aspects of the least detailed
verifications, while still allowing the user to supply additional information for more
detailed verifications. Thus although Runcheck is primarily used to perform shallow
verifications, it provides a general logical framework for proving detailed properties.
Every program verified by Runcheck is assured to have, as a minimum, the property

that no runtime errors can occur if the entry assertion is satisfied.

——— . i =

[T

e tamdai o S AR oML i e a4 e e e s e it

f
i
b
F

Other Related Work

There has been some previous consideration of proving the absence of runtime errors
in the program verification literature, but to our knowledge all previous approaches
that have resulted in working implementations have been lacking in generality in
comparison with Runcheck. We have both developed a general formalism for
showing the absence of runtime errors and developed a working implementation. In
[Si74], for instance, techniques are presented for proving absence of certain runtime
errors and termination for a class of flowgraph programs, but the techniques have not
been implemented. A special purpose system for checking array subscript bounds in
described in [SI77]. Our system handles a wider class of runtime errors and is more

general in the case of array subscripts. For example, the system described in {SI77]

cannot verify correct subscripting in Example 1 of Chapter 1.

Less closely related to our work is an approach called data flow analysis, which has
been used to detect some kinds of anomolies in programs, as in [FO78], which
describes the use of data flow techniques to detect such errors as references to

uninitialized variables. But there are major differences between data flow analysis

and our verification approach:

1) Runcheck is based on a model of computation which is sufficiently faithful to the
programming language that if the absence of runtime errors can be proven, no errors
wili occur during actual execution. Data flow methods obtain efficiency by using
computation models which are too weak to assure absence of errors in a language as
complex as Pascal. Typical data flow methods do nat incorporate accurate models of

complex data structures. In (FO78], arrays are treated as simple variables:

cm ot ai ey, N 3
R e e D e e L aaa Ly

e i

e e st

.t?
k
|
F
b
)
b

Other Related Work

Static data flow anaiysis systems such as DAVE are incapable of
evaluating subscript expressions and hence cannot determine which
array element is being referenced by a given subscript expression.
Thus, as stated earlier, in DAVE and in many other program analysis
systems arrays are treatec as though they were simple variables.
This avoids the problem of being unable to evaluate subscript
expressions, but often causes a weakening or blurring of analytic
resuits. As an example, consider the program shown in Figure 18
. we see that there are two data flow anomolies present. DAVE,
however, treats R as a simple variable ... and no data flow
anomolies will be detected.!
2) The other side of the coin is that very general systems such as Runcheck cannot
have a gu .ranteed high level of efficiency. Thus it is necessary to investigate the
range of practicality of general approaches by experimenting with working
implementations, as we have done. This subject is discussed further in Chapters 3

and 4.

8) Data flow tecuniques are usually intended to operate on the program alone without
additional specifications or assertions supplied by the user. This mode of operation
minimizes effort required to submit a program to the anaiyzer but limits flexibility
and leads to greater effort and uncertainty in interpreting the results of the automatic
analysis. Automatic analyzers are often unable to show absence of runtime errors
without additional inferination from: the user because i) many programs depend for
their correct functioning on restrictions in their inputs, and ii) the necessary reasoning
about the internal operation of programs if often too subtle without some assistance
such as user supplied inductive assertions. If a program analyzer is unable for either
reason to determine that a program is free from errors, the user must investigate the

program further by himself to determine whether it is actually flawed. Runcheck

L ro7se, p. 327)

s

- T e T T T merm s s s e e B e
25 i e il e arani il . o P T = " vy T T T
y e e e . L. . o e ol i Ent o ‘%
3 ‘V

Other Related Work

e user a choice of either a shallow analysis requiring little user effort or a ‘

TS

.e \horough analysis with more effort.

Althcugh Lhis thesis is not primarily concerned with invariant generation, it may

S e

! clarify th. :elationship between Runcheck and data flow analysis if we point out that
sound but incomplete program analyzers can gather information for later use in a
general logical framework such as the extencded semantics. Data flow techniques can
be used to produce a sound but incomplete analysis of a program. Fer instance,
‘ [CH78] is concerned with the discovery of some of the linear relations among the

scalar variables in a program. Of necessity, any such analysis must be incomplete in

b languages as rich as Pascal, but the results are sufficient in many cases for checking :

‘ errors such as array subscripting. In Runchéck, simple invariants are generated

automatically by a heuristic analyzer called the documenter. This frees the user from
supplying many simple invariants that are needed for proofs. The current
documenter is less thorough than [CH78) for linear relations; on the other hand it
deals with a broader class, producing some nonlinear relations and some assertions
about array initialization. Runcheck’s current heuristics are related to some of the

methods previously developed by the author and described in [GW75]. We plan to

investigate the possible role of data flow techniques in future versions of the

documenter.

Thesis Outline

This thesis is divided into four chapters. Chapter | introduces the extended semantic

A definition of Pascal. Among the topics covered are the problems of developing an

Thesis Outline

=

arcurate logical model of uninitialized variables, a precise definition of expression

evaluation with function calls, and a practical method for verifying programs with

procedural parameters. Chapter | concludes by discussing one of the main potential

YT AP e

problems for the user of a verifier, the need to write detailed and repetitious

[

assertions. We develop some simple logical properties of the extended definition

which are exploited by Runcheck to reduce the need for such detailed assertions. ,

Chapter 2 applies the ideas of the extended semantics to a special problem in data !
, structures: Pascal’s variant records. We find that programs with variants can be
‘ handled in our semantics, but only with an undesirable restriction. At this point the
discussion leaves the narrowly verification oriented point of view of Chapter 1, and |
proceeds to consider a range of language design, application, and implementation
issues. Chapter 2 concludes by proposing new verifiable constructs to replace variants]

and eliminate the undesirable restrictions.)

Chapter 3 presents a detailed case study of the process of verifying a moderate sized
program with Runcheck. The discussion focuses on some of the strengths and
weaknesses of verification as a practical tool, and attempts to convey a sense of the

degree of effort required to verify programs of moderate complexity.

In Chapter 4 we present our general conclusions concerning the usefulness of

verification as a tool for improving the reliability of programs.

R e .

Chapter 1. An Extended Semantic Definition of Pascal for
Proving the Absence of Common Runtime Errors

The extended semantic definition of Pascal which is the logical basis of Runcheck is

! similar to the familiar Hoare axiom system [HW78], but it takes into account certain !
restrictions on the computation that have not been considered in previous axiomatic
language definitions. An earlier approach to formalizing the extended semantics is

- presented in collaboration with D. Luckham and D. Oppen in (GLO]. ;

Our axiomatic definition of Pascal consists of some first order theories plus axioms
and inference rules for reasoning about programs. One of the first order theories
concerns a predicate, DEF(x), which is true of expressions having a well defined
value. The other first order theories are familiar ones such as arithmetic. Runcheck :
is more than a direct implementation of these logical components; practi'cal program
verifier should provide as much assistance as possible, for example, in generating

inductive assertions. All of the example programs discussed in the thesis have been

hanrdied completely automatically by the system.

The theorems in the Hoare axiom system are of the form P{A}Q Intuitively, this

formula states that if P holds before executing a program A, then if and when A

terminates, Q will hold. In [Ho69, HW78] and elsewhere, the relation P{A}Q is taken

to be true if there is a runtime error in executing A. Hoare chose to make the

interpretation that if an error occurred, the effect of the program would be

"undefined,” as if it had failed to terminate.

In our extended semantics, P[AJlQ is defined to mean that if P holds, then A executes

without runtime errors, and if A terminates Q will hold. Since virtually all piograms

are intended to execute without runtime errors, a proof of PAJJQ is much more useful

Dl dae. Ol

T TTTRRI ML TR T omyre e e

Extended Semnantics 1-2

than one of P{A}Q, from a practical point of view.! If it 1s possible to verify the
absence of runtime errors in a program, the implementation can omit the usual
runtime error checking code — an increase of efficiency witnout loss of reliability.
Also, the extended semantics is a convenient system for showing the absence of certain

errors in programs that are not intended to terminate.

As is the case in other partial correctness definitions, we do not consider it an error if
a program fails to terminate. The difference between our definition and cthers is that
PIAIQ can hold for nonterminating A only if A is well behaved, with nothing that
would @ priori be considered a runtime error such as an arithmetic overflow,
subscripting error, or control stack overflow. These specific errors are violations of
the programming language; the fact of nontermination itself is not. Nevertheless, it is
often desirable to be able to prove termination of a program. Proofs of termination
can be carried out in a partial correctness semantics by showing the existence of
bounds on the number of iterations in loops and on the depth of calls. If one wished
to intreduce termination as an optional part of program specifications, it would be
straightforward to formalize the notion of a time bound in our logic. Since proofs of
termination often require much more detail than proofs of the absence of runtime
errors, one would have to decide in each case whether the additional effort to prove

termination was worthwhile.

Our proof system is general purpose in that any partial correctness specification can
be expressed by choosing P and Q. Absence of runtime errors 1s proven together with

other properties. There are other possible formulations; one could develop a proof

1 There are cases where the difficulty of proving absence of all runtime errors outwsighs the
additional benefit. A practical approach in such cases is to leave some errors unchecked; see
Chapter 3.

AT Seaea e aee §ot o tan oo bk, s

e ey e

S e e e e s e e L

——

I VI A

Extended Semantics 1-3

system based on statements of the form SAFE[P, A], meaning that if P holds
beforehand, then A executes without runtime error. The disadvantage of such a
system is that proofs of the absence of runtime errors often require lemmas about

more general properties of the program.

For example, consider a simple program which searches in an array A for an element
equal to KEY. The elements are stored in A[l],... ,A[N-1]. The fast linear search
stores the key in the last position of the array A before searching, so that the search
loop does not have to test whether the index has become greater than N. The result
of the search is returned in the variable I.

Example 1: Fast linear table search.

VAR N:INTEGER;
TYPE ARR=ARRAY[1:N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);
ENTRY DEF(N) A 1sN A NSMAXINT;
BEGIN
AIN]:=KEY;
Ii=13
WHILE A[Il«KEY DO I:=I+1;
END;
This program depends on the fact that A[N] has the value KEY throughocut execution
of the loop. Otherwise, if the key was not found in A, the loop would continue and
attempt to access A[N+1), causing a subscripting error. It is necessary to prove that

A[N]=KEY is an invariant of the loop, and in our extended semantics, such lemmas

can be proven together in one step with the proof of absence of runtime errors.

The procedure SEARCH is presented to the Runcheck system with an ENTRY

assertion stating that N has a value between 1| and MAXINT, the largest integer.

The system is able in this case to verify absence of subscripting errors, arithmetic

Extended Semantics 1-4

overflow, and uninitialized variable errors (the use of the value of a variable before it

has been assigned a value), actomatically, given only the ENTRY assertion and

N TR TR T T

program text as shown in Example 1. In particular, the necessary loop invariants

; including A[NI=KEY are generated automatically without any effort on the part of

TR rT T T

the user. The reader is warned not to form an opinion of the system’s capabilities on
the basis of this small introductory example? alone; a variety of more interesting
i programs have been handled by the system. Some of them can be found in section

7 of this chapter and in the Appendix at the end of the thesis.

2 Note, however, that none of the three previous implemeantations mentioned in the Introduction,
[FO76, SI77, CH78], is able to show absence of subscripting errors in this example; [CH78] does
not treat relations on subscripted variables, and the implementation in [$177] would be unable
to generste the necessary invariant.

Lol

—
)
Gt

1. Chapter Outline

Chapter 1 is divided into nine sections and two appendices. Section 2 contains
importanit definitions, particularly the definitions of the language and notation of the
extended semantics. Section 8 is concerned with the predicate DEF, which is true
of expressions having a well defined value. Section 4 presents some of the basic
inference rules of the extended semantics. Section 5 presents a precise axiomatic
definition of the evaluation of expressions in Pascal. In section 6, the definition of
expression evaluation is usad as the basis of a definition of Pascal statements,
functions, and procedures. Section 7 develops some properties of the extended
definition that are valuable when verifying actual programs. Section 8 discusses
some generalizations of the extended definition, including a new method of verifying
programs with pracedure parameters. Following this is a discussion of our general
conclusions. Finally, Appendix 1-A gives details of the implementation of the
extended semantics in Runcheck, based on the principles developed in section 7,
and Appendix 1-B discusses the details of a definition of simultaneous substitution

for disjoint Pascal variables.

11
3
i
i
b

1-6
2. Preliminaries
2.1 General definitions
#T reference class (see [LS79]), used to represent the sot of values of a
dereferenced pointer of type IT.
#TcP> value of the variable Pt where P has type tT. Throughout this paper,

first order language terms of the form RcP> will denote Pascal expressions of the form
Pt. Any Pascal expression involving pointers can be translated into this notation,
provided that the types of the pointer variabies have been specified. For further
details, refer to [LS79].

POINTERSTO(#T) set of all pointer vaiues of type 1T.

<A, [1], E> value of the array A after assigning the value E in the Ith position,

<R, .F, B> value of R after R.F:=E.

(#T, cP>, E> value of #T after Pt:=E, where P has type IT.

Functions mapping Pascal axprassions into types:

type(E) the type of an expression E.

indextype(A) value is R if A has type ARRAY[R] OF S.

Phrases used in a special sense:

The phrase simple variable is synonymous with both wvariable identifier and declared
variable. A selected variable is a component of a variable identifier (eg. A[I] is a

selected variable.). A Pascal wvarigble is either a variable identifier or a selected

variable [JW75).

Simultaneous Substitution for Identifiers.

It P(X) is a formula where X = [x1,...,xn] is an ordered set of free variable
identifiers, then P(A), where A = [a1, ... ,an] is an ordered set of terms, stands for
the result of simuitaneously substituting the ai for the xi in P.

If the set X of free variable identifiers of a formula P(X) is partitioned into subsets X1
and X2, then P(X1, X2) stands for P(X), and P(A1, A2). where A1 and A2 are ordered
sets of terms, stands for the result of simultaneously substituting in P the terms in A1
for the variables X1 and the terms in A2 for the variabies X,

- ... —ne. .., - L
- -~ — L] el b e

Preliminaries 1-7

Substitution for a Pascal Variable,

p v where v i3 any tarm denoting a Pascal variable, is defined recursively as foliows.

P : where x is an iduntifier, stands for P with t substituted for x.

vlil v
t PI(v.[l].t)

)

h")

v.f lv
= O
t v, 0

vepo lv
= P
1 {v,cpo,t>

)

2.2 Disjoint Pascal Variables

Intuitively, two Pascal variables are disjoint iff an assignment to one of them cannot
affect the value of the other. It is obvious that in languages with array subscripting
and pointers, disjointness is a dynamic property — it depends on the values of

variables. For instance, A[i] and A(j] are disjoint iff iwj.

If vl,...,vn are disjoint Pascal variables, it is possible to define the simultaneous

substitution
v1 vn

P
t1 tn

of n expressions for n Pascal variables, in terms of the sequential substitutions defined

above in 2.1. This definition arnd the formai definition of disjointness are needed

only for the procedure call rules; details are presented in Appendix 1-B.

——a——

S SO, (TR P

B A ot R i e et e AA

L fe e ey s o

TR
e

Preliminaries 1-8

2.3 Formulas in the extended semantica

e el ity o o thosi iz e

! The syntax of formuias is ordinary, and is included here mainiy for reference. A !

formulal is a pure first order formula. The syntactic category of program statements

———

includes all executable Pascal statements plus some additional statements which are
used only at intermediate steps during proofs. The new staternent types, known as
!' evaluation statements and agssume statements, do not initially appear in programs, but J

can be introduced by certain rules during the course of a proof. Evaluation

e e e e

statements correspond to the action of evaluating an expression or corputing the

location of a variable. Assume statements are used by some of the proof rules to

C record previously justified logical assumptions at points within the body of an

executable program.

Lo Implicitly associated with each formula is a set of declarations of constants, variables,

types, and defined procedures and functions, correspondir.;g to a static scope in a

program. The syntactic distinction between declared and undeclared symbols .s made

L o At et i i

with respet to the scope. It is assumed that all name conflicts in the scope are

remuveu by renaming. Also, for readcbility, we will feel free throughout the thesis to
oiit parentheses whenever the formula can be determi:ied from operator precedence.

{variaple>::= (declared variable> | <undeclared variable>

s

<opd::= {Pascal buiit in function>
| <dwciared function sign>
] <undaclared function sign>

<term>::= <variable> | {constant> | <op> (<termlis*>)
| (<term> <infix arithmetic operator> <{term>)

Ctermlist)::= [Cterm) [, <term>]¥]

{predicate)::= {(declared boolean functioir sign>
| <Pascal built in pradicate (=, 4, <, $)>
| <undacle/ed predicate sign>

D et N AR s SEIEET L S N,
- " OV — v T R . " T s
- R E et .+ - . wn e e ehr e et o s

3 . Preliminaries 1-4

<atomic>::= {predicate> (<termiist>) | True | False

<formulal>::= (<formula1)> <logical connective> <formula1>) | - <formula1>
| ¥ <undeclared variable> ({formula1))
| <atomic>

B i e M

| {statement>::= {Pascal executable statement> ;
| <assume statement> _;
i | <evaiuation statement>
| <statement>; <(statement>

<{assuma statement)>::= ASSUME <formula1i>)

<{avaluation statement>::= Eval {Pascal expression>
| Locate <Pascal variable>

B ———

<subprogram caciaration>::= <Pascal function declaration>
| <Pascal procedure deciaration>

<{formula of unextended definition>::= (formula1> |
| <formula1> {{statement>} <formula1> i
| <formula1> {<subprogram declaration>} <formuia1>

{formula>::= {formulal>
| <formula1> [<statement>™ <formula1>
| <formula1> [<subprogram declaration>]] {formula1>
Throughout the paper, we will distinguish between the type of an expression and its

sort in the many sorted first order language. By the type of an expression, we mean

its Pascal type according to the scope. By the sort of an expression, we mean its sort

in the first order language. Except for subranges, the sort of an expression is the
same as its type. Integer and integer subrange expressions are of sort integer.
Similarly, expressions whose type is a subrange of an enumerated type have the same

sort as the enumeration. A sort will be said to cover both the type with the same

name and all subranges of the type.

To be well formed, a statement must satisfy the syntax and type requirements of the

programming language {JW75]. Because of the correspondence between types and

Lt T

‘ sorts, an expression satisfies the type requirements of the programming language iff it

‘ Preliminaries 1-10

is a well formed term according to the sorts. A formulal is a first order formula

T TS Y TP

which may contain free occurrences of declared and undeclared variables. Each term

b e i el kb s i,

or atomic formula whose outer sign is declared or Pascal predefined, must also satisfy

;
F

| the type requirements of the programming language.

2.4 Notation for the extended semantics ‘

The axioms and inference rules in the extended semantic definition are actually
schemes, or infinite sets of axioms and rules; in this respect, our system is no different
from previous axiomatic definitions. When a scheme is applied, information from the i
program scope must be substituted in certain places. To specify the information that
is to be substituted, we use a meta notation. An expression involving a function or
predicate sign in Bold Italics indicates a term or formula to be substituted. Instances
of the axiom or rule are formed by evaluating the italicized meta expression to
produce a term or formula. For example, the rule for 2ssignment to a whole variable
is:

P [[Eval y]] Inrange(y, type(x)) A Q :

PlIx:=y]lQ !

Consider a typical context:

TYPE s=1..600;
VAR g:s; h:INTEGER;

g := h+4;

Since g is a subrange variable, the assignment statement will cause a subrange error

unless h+4 is in the correct range. Iarange(y, type(x)) is the notatior for a formula

which asserts that the value of y is in the range of the variable x. In the context of

Preliminaries 1-11

the example, the desired instance of t..e rule is:

P [Evai h+4] 1sh+4 A h+4<600 A Q hed

. Plg:=h+a]lQ

? 2.5 Formula Constructing Functions
E
Inrange(<{expression>, <type>)

Inrange is a function mapping <expression> x <type> + <formulai>. The expression
| must be of a sort which covers the type.

if type is a subrange a..b,
’ Inrange(expression, type) - asexpression A expressionsb.

otherwisa,
j Inrange(expression, type) » TRUE.

Disjoint({Pascal variable), {Pascal variable>)

The function Disjoint maps a pair of Pascal variables into a formulal which is true
iff the variables are disjoint. Refer to Appendix 1-B for a detailed definition of
Disjoint.

Disjoint-set(<set of Pascal variables))

For any finite set of Pascal variables, Disjoint-set constructs a formulal which is true

iff all pairs of variables in the set are disjoint.

!}
|
i
1
3
1
1
H
1
4
4
5
K
H
i
;‘.
!‘
i
J

1-12

3. Theory of definedness: the predicate DEF

There are a number of possible ways to include the concept of an uninitialized ‘

variable in a programming language definition. What we need is some way to keep

PR i A Sl

track of which variabies have been assigned well defined values at any point during
execution of a program. For the moment, let us restrict attention to simple integer

program variables. We will be considering the two related questions:

‘ What mathematical model should be used to represent the values of and

: operations on integer variables which can be uninitialized?
What first order axioms will be used to prove statements about the model? i

As an initial model of definedness, it is natural to assume the existence of a single %
undefined value @ not contained in the set of integers Z, and tc let integer program .
variables range over the extended domain Z' = Z u {{1}. In such a model, we can show
that a program never uses the value of an uninitialized variable by showing that
whenever a value is accessed, the value is not equal to {l. Thus we can assign the
predicate DEF(X) its intended meaning, "X has a defined value,” by defining

DEF(X) = X = Q in this model.

A somewhat subtle point, to which we will return later, is that it is not necessary in

the model to assume variables have the initial value @ if we want to prove absence of
uninitialized variable errors. When we develop the semantics of executable
statements, our approach will be to make no assumptions about initial values: a
variable may stat out having any value in the domain. However, we consider a
program free from errors in accessing a variable only if we can prove that in all

executions, the value accessed is not equal to . The only way for a variable to

N - . - - e — C et e o i ul
B T DP R R, TSP P |

Theory of definedness: the predicate DEF 1-18

become restricted to be unequal to Q is for it to be assigned a defined value. Thus we

i

!

E , can prove absence of uninitialized variable errors without making any assumption i
E about the initial values of variables.

A problem arises if we try to formulate a first order theory of the domain Z'. Since

———

arithmetic operations such as + and . must be extended to total functions on Z, we

g

have to choose interpretations for terms such as 0 « Qand 1 +{. It is not hard to see
that no matter what extension is chosen, a domain with only one nonstandard element 1

cannot satisfy the familiar theory of arithmetic on the integers. Letting Q+1 = in

Ll s Rl

7@ the model would invalidate the sentence Yx x+1sx, while if we let +1 = n, for some
integer constant n, it would would follow that I was an integer in Z In fact, it is well

: known that nonstandard models of first order Peano arithmetic must have at least a i
countably infinite number of nonstandard elements (this is discussed in logic texts, for

example, [BM 77, En72]). We can retain a domain with one undefined eiement only

———— e

by adopting an unconventional theory of arithmetic containing sentences such as
¥x (DEF(x) > x+1»x) instead of ¥x x+1wx. Since all integer calculations in such a
theory would be cluttered with references to DEF, we will choose to modify the initial !

approach by using a larger domain to retain the familiar theory. !

Our intended model of definedness for integer variables is now the following: let 3%
be a nonstandard model of arithmetic with domain Z*. Then define DEFB‘(X) to be

[- true for the standard integers and false elsewhere in Z*.

We now turn attention to the first order theories involved. Let LZ be the first order

language of the theory of arithmetic. With no loss of generality, choose L such that

R it el

it does not contain the symbol DEF. (The reason for this choice will become apparent

shortly.) Let £,cLy be some “reasonable” set of axioms for integer arithmetic. Also

by
x
N . . - R -~ s T '1”
oo~ v% Vi Py A AR AN NSRRI EANSIAS S NTRINES L2 DR s e N 4 . Ll PO P

e sy T,

f
f
|
|

g g ==

Theory of definedness: the predicate DEF 1-14

choose standard theories X for enumerated sorts and Epg for the assignment,
selection, and extension operations on complex data structures. We will need the
notion of equality of compound data objects (DS1); other details of a theory of data
structures can be found in [LS79].

DS1a) if x and y are expressions of a record sort, and f1, ... ,fn are the field names,
x=y = (x.f1=y.f1 A ... A x.fn=y.fn).

DS1b) if x and y are expressions of sort ARRAY[a . . b] OF ¢,
x=y = (Vi a<icb > x[iJ=y[il).

DS1c) if s and t are reference classes of the same sort,
s=t = POINTERSTO(8)=POINTERSTO(t) A (YpePOINTERSTO(S) scp> = tcp>)

We now list the axioms Zpep of the theory of DEF.
DEF1) for every constant c, DEF(c) is an axiom.

DEF2) if e is of an enumerated scrt (¢c1,...,cn),
DEF(e) > e=c1v ... ve=cn.

DEF3a) DEF(a)ADEF(b, > DEF(a @ b)
where @ is an operator in {+, -, *, =, », <, <, AND, OR, NOT}

DEF3b) DEF(a)ADEF(b)AbsO > DEF(a/b)ADEF(a DIV b)ADEF(a MOD b)

DEF4a) if x is an expression of sort ARRAY[a .. b] OF t,
DEF(x) = (Vi asiaisb > DEF(x[iJ)).

DEFAb) if r is of a Pascal record sort, and f1, . . . ,fn are the record field names,
DEF(r) s DEF(r.f1)A . . . ADEF(r.fn).

DEFAc) it #t is of a reference class sort,
DEF(#t) = (YpePOINTERSTO(#t) (pNIL 5> DEF(#tcp>)).

The resulting theory of DEF is still not logically complete, e.g. because it does not say
much about the undefined values. But we should not expect to find such details in a
programming language definition. All of the properties needed for proving absence of

errors in programs have been included.

As the final step in introducing DEF, we will look at a many sorted model of each

TP o st e s

Theory of definedness: the predicate DEF 1-15

sort under the combined axioms X = X7 U Xper U Zp U Xpg, and show why the

theories are satisfied in the intended models.

Integers and Integer Subranges. Recall that integers and integer subranges have the
same sort in the first order logic. Therefore, subrange restrictions are not expressed in
the first order logic; they are introduced only in the logic of programs. The model 8%

appiies to both integer and integ r subrange variables.

Because we chose L; not to contain the symbol DEF, the intended interpretation
DEF8* (x) trivially satisfies £;. The other axioms for the integer sort are DEFI,
DEFS3, and in the case of integer components in compound data structures, DEF4 and
Zpg. DEF1 is satisfied because DEF8*(x) is true for standard integers. Observe that
DEF?3 is satisfied because Z is closed under all arithmetic operations. The remaining

cases of pointers and compound data structures are explained in later sections.

Let us now see what could have gone wrong if DEF had been included in L;. We
wanted our treatment of DEF to work with any reasonable Z; this freed us from the
problem of choosing a particular theory of arithmetic. One reasonable component of
I, is an axiom scheme for Peano induction. For simplicity, let us consider a scheme
for induction or the natural numbers; with trivial changes, our comments will apply

to the integers.

$(0) A Vn (B(n) > ¥(n+1)) > VYx &(x). P)

Instances of the axiom scheme are formed by substituting a formula of L; for ®(x) in
P. In particular, if DEF(x) was a formula in L; we would have

DEF(0) A ¥x (DEF(x) > DEF(x+1)) > Yx DEF(x) in X7 From DEF!1 and DEFS, it

Theory of definedness: the predicate DEF 1-16

viould be possible to deduce Yx DEF(x), contradicting the intended interpretation, in
which there are values for which DEF(x) is false. Obviously, the predicate DEF would
be of no use if its only interpretation was true for all values; we avoided this

difficulty by assuring that DEF was not part of the theory of arithmetic.

One final point is that there are many models of the integer sort under the axioms X.
No first order theory uniquely defines the mathematical notion "X is an integer,” and
so no matter what set of axioms we supply, there wili be models in which DEF is true
for nonstandard values. Because the axioms in T do not require DEF to he false
for any value, one nonstandard interpretation is DEF(x) = True. The existence of
nonstandard interpretations does not detract in any way from our use of DEF to
prove absence of runtime errors. Since 8% with Der8” is a model of the integer sort

under I, theorems derived from ¥ are true statements about 8* and DEFS‘.

Enumerated Sorts. Let YYI'E an = (c1, ... ,cn). Then a model & for the sort en can be
defined by ||~ Z* c®=(and DEF%(x)as 1sxsn. The standard operations and
relations on en are defined in the obvious way. A point of caution is that we must
not have x=c1 v ...v x= .ain the theory of an enumerated sort — this would lead to
the problem with DEF(x) = True. Instead, we have axiom DEF2, which permits values

which are not DEF. Note that the same model is used for a subrange of en.

Pointers. A model of pointers must deal with two kinds of ob jects: pointer values and
reference classes or sets of dynamic variables. In this section we assume familiarity
with pointer semantics as presented in [LS79]; our purpose is to show how to model

the defined and undefircd values in a way which satisfies ¥ppr and reasunable

choices of Zpg.

Theory of definedness: the predicate DEF 1-17

For pointer sorts without the pt operation, the only interpreted symbols are NIL and
DEF. For any pointer sort we wiil assign the structure B = (|8, NIL®, DEF®) with
') = z*, NIL® = 0 and DEF® = DEF3®. Note that we use a single construction even for
recursive pointer types. Now consider an arbitrary pointer definition TYPE ptr = tt
Using B and the preceeding se.uons, there is a model for the sort t under the
corbined axioms X if t is a simple sort. Let us assume for the moment that given
sorts t1,...,tn, a many sorted nodel Zi of T for each ti, and i scalar type s, that we
can form a many sorted model %[s; Ti] for the sort ARRAY [s] OF ti, and a model
Rit1-...;fn; T15. .. ; Tnl for the sort RECORD f1:t1; . .. ; fn:tn END. Therefore, let
us assume in general that there is a many sorted model ¥ of the sort t Then by
constructing the reference class, we can form a many sorted model for all of the

operations on sort ptr. .

In our model, a reference class consists of two components, a function mapping Z* into
], and an integer indicating the number of dynamic variables which have been
created. To insure that equality between reference classes depends only on the values
of the currently existing dynamic variables, we assign a single value 10 ¢ |T| to all

members of the reference class outside of the currently existing variables.

More formally, a reference class is an ordered pair (m: Z* - ||, ne Z) such that n20

and ¥x ((x<1 v x>n) > m(x) = {0).

We now assign interpretations to the predicates and functions on pointers and

reference classes. Let r = (m,n) be a reference class and p a pointer.

PR ORI I TN TR1 v

e e M a0 ki L

i
|
i
i
i
]
y

Theory of definedness: the predicate DEF 1-18

P1) tcp2 & m(p)
P2) POINTERSTO(r) e {i| Oslsn)

P3) <r,cp>,8> & (m',n)
where m'(p) = e and m'(q) = m(q) for gep.

P4a) ru{q} e (m, n+1)
provided q « n+1.

P5) DEF(r) e Vi (1sisn > DEF(m(i)))

Notes: P2) POINTERSTO(r) is the set of all pointers to dynamic variables which have
been allocated in reference class r. P4) The extension operator ru {q} represents the
result of allocating a new dynamic variable in r; q is a new pointer of type ptr which

points to the new dynamic variable. Later in this chapter we will use extension to

define the Pascal NEW procedure.

The reader can easily check that this interpretation satisfies the standard properties of

pointers and reference classes and that DS1 and Zpgr are also satisfied.

Remark: the theory of reference classes in [LS79] is weak; it does not include an
induction principle for reasoning about non-constant sequences of pointer oper:tions.
If we had a stronger theory of data structures, Lpg, 2 Epg, how would the
interpretations of reference classes and DEF be affected? To answer this question, we
have to delimit the class of reasonable theories of data structures. If we omit the
interpretation of DEF for reference classes and consider the intended interpretations
of data structures, axiom DEF4c will define the relation DEF on reference classes of
variables of sort t to be DEF(r) s Vx (1sxsn > DEF(m(x))) where r=(m,n). A
definition of this form is consistent in a reasonable choice of Xpg, even with
induction; furthermore, DEF on reference classes of variables of sort t will be the

trivially true relation iff DEF is trivially true on sort t As long as Xpg, is chosen so

IR N A ST AN

i a _‘___.“ e . iR it i B e e e e
. . —— e - e e e e ey A—%

RS N

e e el bl el s e st

T ey

o TRy —" !

A T

PO i WONES= -

Theory of definedness: the predicate DEF 1-19

that 1} it is satisfied by the intended interpretation of the theory of data structures
without DEF, and 2) DEF is not trivially true for sort t in the intended interpretation,
then the complete axiom system will have a model in which DEF has the desired

meaning on reference classes.

Arrays and Records. The construction of a domain of array values for the theory of
sort ARRAY [a .. b] OF t is analogous to the construction of the set of reference classes
of dynamic variables of sort t The array values are triples
(m: Z* + |T], nt «Z, n2 ¢ Z) where nl and n2 are integer values corresponding to the
index bounds a and b. Record values in the model are elements of the direct product
of the domains corresponding to each of the record components. Selection is

interpreted in the obvious way.

As in the case of reference classes, DEF is assured to have the desired meaning if Zpg

contains a reasonable inductive theory.

3.1 The relationship between DEF and Inrange

In Pascal, every subrange type is bounded by two constants, a .. b. Thus according
to the definition of Inrange, Inrange(x, s) implies DEF(x), if s is a subrange. This
follows from the properties of the < ordering of the integers. For example, it is a
theorem in the theories of integer ordering and DEF that Vx ((1sx A xs4) > DEF(x)),
because the standard properties of integer ordering imply that

¥Yx ((1sx A x$4) > (x=1 v x=2 v x=3 v x=4)) '

3 Mors flexible languages are discussed in section 8.

A it e+ e

- — . N s e _ . cwe - L .
© Bmamvime s e . ——— e et et TR i WAL, LY. e

Theory of definedness: the predicate DEF 1-20

and each of these constants is DEF. Note, however, that i
?

VxVy¥2 (DEF(x) A DEF(2) A xsy A ysz) o DEF(y) (3.1)

is not a theorem in the combined axiom system; it cannot be proven by induction or
the integers because Xy does not contain any instances involving DEF. In fact, there

are nonstandard irterpretations of the theories of DEF and integers for whicl

formula 8.1 is not satisfied.

Also note that i® is not necessary for a variable to be Inrange if it is DEF: under the
axioms of DEF, there can be a variable of a declared subrange type, whose value is

both DEF and not Inrange. In the definition of P [[A]] Q, no program is permitted to

assign a value to a subrange variable unless the value is Inrange. If P [AT 10lds, a

subrange variabie can be out of bounds only before it has been assigned a e
i

T T R SR

1-21

4. Fundamental inference rules.

The following two rules are included in both the unextended and extended

definiuu ..
Concatenation of programs. (CONCAT)
P {A}Q, Q{B}R PIAI @, a[BIR
P {A;B}R P[[A; B]R
Consequence rule. (CONSEQ)
P2Q, Q (A} R, R>S P>Q, Q[A]l R, RS
P {A} S P Al S

These rules will be used implicitly, beginning in the next section on the semantics of

expression evaluation. Later, after P [A]] @ has been defined, we will develop its

logical relationship to P {A} Q in more detail.

6. Expression Evaluation.

This section introduces and defines svaluation statements. Evaluation statements have

the forms

Eval {Pascal expression>
Locate {Pascal variable>

and in the extended semantics, they can be combined with Pascal statements and
assertion statements to form the general statements which appear inside brackets in a
formula P[A]Q Evaluation statements will be used in section 6 to define the

conditions for error free execution of Pascal statements containing expressions and

variables.

The statement Eval E corresponds to the action of evaluating the expression E, which
may not have side effects. P [Eval E] Q is defined t~ mean that if P holds then E
evaluates without runtime error, and if E terminates then Q will hold. Since E does

. not have side effects, P and Q) refer to states with the same values for variables. By
having two assertions, it is possible to make partial correctness statements about
function calls. For instance, if f is a (strictly) partial function,

P(x) [Eval t(x)] Q(x, f(x))

may be a provably true statement about the evaluation of f(x), while the pure first

order statement

P(x) = Q(x, f(x))
would not be true since it does not account for divergence of f(x).

The other form of evaluation statement, Locate V, corresponds to the action of

computing the location of a variable. The difference between thic and evaluating a

Mt i,

o o an o

1 e e ——— T B -
e — T

§ ’ Expression Evaluation. 1-28

variable is that to compute a location, all of the subscripts must be evaluated and all

[dereferenced pointers must be evaluated, but the variable itself need not have a value. l

For instance, to execute the assignment statement A[jl=e, the subscript j must have a
: value in the correct range, but the left hand side A[j] is not required to have a value.
. The definition of A[jl=e is expressed in terms of Locate A[j], and Eval e, since the
{r right hand side must yield a value. The formula P [[Locate V]] Q is defined to mean
: that if P is true, then the location of V can be computed without execution errors, and

: if the computation terminates, Q will hold.

The exact meaning of expression evaluation is often a point of confusion in
programming languages and definitions. The definitions presented here assume that
sufficient restrictions are used to prevent side effects. Pascal [JW75] assumes a fixed
order of evaluation within statements and expressions, so the final value of an
expression is well determined even in the presence of side effects. It is a simple
matter to replace a function definition which has side effects by an equivalent
procedure definition, by adding a new VAR parameter to return the function value.

Thus it is possible to rewrite a Pascal program in which functions have side effects

into an equivalent program in which function calls are replaced by procedure calls
and all expressions are free of side effects. This transformation would convert the
evaluation of an expression with side effects into a sequence of procedure calls
involving some new variables to store temporary values. Sincc this transformation

can be easily mechanized, our Pascal semantics are indirectly applicable even to

prograins with function side effects.

If runtime errors are not being considered, as in the original Hoare axiom system,

R L —

function calls without side effects can be defined by the follcwing rule,

~v—-

Ty —r

Expression Evaluation. 1-24

Ig(X1, . .. Xn,G) {Function f(X1:t1; ... ;Xn:tn):ty; B} Og(X1, ... ,Xn,G),

P (Eval A1; ... ;Eval An} [((A1, ... ,An,G) A (Og(A1, ... ,An,G) 2 Q)
--------- (F1)

P {Eval f(A1, ... ,An)} Q

which states that evaluation of f(Al,...,An) can be reduced to the evaluation of
Al,...,An in order, followed by the application of f, if I¢ and Og are shown to be

valid entry and exit assertions for f. G is the set of read only global variables, and B

is the body of the function f.

A fine point to be considered at the practical level is that some compilers change the
order of evaluation within expressions if there are no side effects. If the evaluation
of an expression terminates, it terminates with the same result under all orderings.
Since the truth of P {Eval E} Q depends only on whether evaluation of E terminates
and the value of each subexpression, all orders of evaluation are equivalent with
respect to P {Eval E} Q@ The truth of P {Eval E} Q can be determined by choosing any
possible ordering and considering whether it is true for that ordering. Rule F1 above,

depends on choosing one ordering. Thus F1 is correct even if there is reordering.

The situation is different when proving absence of runtims errors. Then, different
possible orders of evaluation must be considered separately. For instance, an
expression such as f(x)+ali] might have a runtime error if i is out of range. If f(x) is
evaluated first and does not terminate, the error cannot occur. But if the order is
changed and ali] is evaluated first, the error could occur. Since different orders of
evaluation can give different results, we define P [Eval E]] Q to be true iff every order

of execution is error free and Q will hold after every terminating execution.

Another complication is the possibility of short circuit evaluation in Boolean

expressions. In evaluating an expression such as r AND s, when the value of r is False,

e R SR QLT Y S SRR

T . At A <

Expression Evaluation. 1-25

Pascal permits compilers to omit the evaluation of s. The expression rAND s is

assumed to have the value False because r is False. Observe that if s does not

terminate or if it has a runtime error, the short circuit has a different partial

P correctness semantics from full evaluation. For example,

P [Eval r AND s]] False

may be true for full evaluation but not for short circuit. Short circuit evaluation is
really a form of branching within expressions. The axiomatic definition assumes that |
full evaluation is used. Some ianguages, such as ADA, permit short circuit evaluation

in certain contexts but require the user to explicitly request it. This seems to be a

. cleaner approach, and we show below (rule ESS) how it can be formalized in the |

extended semantics.

v In summary, our detailed semantic definition of Pascal statements will be based on
partial correctness assertions about evaluation of expressions and variables. It is
argued that even in the absence of side effects, the definition of expression evaluation
should as a practical matter account for possible variations in the order of evaluation.

We will give an axiomatic definition that does not assume any fixed ordering. On

the other hand, function call rule Fl can be used if evaluation order is fixed, or if

runtime errors are not considered.

The rules defining P [Eval e]] Q are as follows:

Expression evaluation,

P [Locate V] DEF(V) A Q
------ (E1)

P [Eval V]I Q
(V is any Pascal variable.)

- . - - ~- B e T

. P
2 ba. L e ...M‘ &

i ———

Expression Evaluation. 1-26

P [Eval A] Q
——— fE2)

p [Eval (; Al a
(where ® is one of the monadic operators, +, -, NOT)
The following rule for evaluation of an operator expression contains three conditions.
The first two assert that A and B evaluate without runtime error if P holds. These
conditions make the rule independent of any fixed order of evaluation, by requiring
either operand to evaluate correctly if evaluated first. The third condition states that
after both operands have been evaluated, Q must hold. Since there are no side effects
and the first two conditions have established that the operands evaluate without
errors, the order in the third condition is not significant. Notice, though, that the first
condition is redundant because the third one also requires A to evaluate safely. In

stating the rest of the rules, we will omit redundant conditions such as this.

P [Evai A]] True,
P [Eval B]] True,
P [Eval A; Eval B Q
=== (E3)
P [Eval A®B]] Q
{(where ® is a relation sign or boviean connactive.)

Rule E3S formalizes evaluation of ADA conditions. In ADA, the boolean conditions for
controlling IF and WHILE statements etc. can have one of the forms

<expression> AND THEN <expression>

<{exprassion> OR ELSE <expression>
which indicate that the left hand expression is to be evaluated first, after which the
right hand expression will be evaluated only if its value is needed to determine the
value of the condition. The following rule for evaluation of A AND THEN B states that
it must always be possible to evaluate A, and that 1) if A is false, Q must hold, and 2)

if A is true, it must be possible to evaluate B, after which Q must hold.

e ———— e gL

g~

1
1

) o U °
R T Y ;an@J

TRy

e

T——r

Expression Evaluation. 1-27

P [Eval A -A> 0,
P [Eval A; ASSUME A; Eval B] Q
(E3S)

P [[Eval A AND THEN B]l Q

Maxint is an undeclared integer variable representing the range on which integer
arithmetic operators do not overflow. The axiomatic definition makes no assumption
about the values of Maxint. In order to prove absence of overflow, the user must
supply assertions relating Maxint to the computations in the program.

P [Eval B]] True,
P [[Eval A; Eval B]] -MAXINT<A®B<MAXINT A Q

- == (E4)
P [Eval A®B]] Q
(where @ is one of the arithmetic operators, +, -, *)
P [Eval B]] True,
P [Eval A; Eval B] B=0 A Q '
e L (ES)

P [Evail A®B] Q
(where & is DIV, MOD, or /)

Maxint can have any value such that integer arithmetic does not overflow in the
range -Maxint .. Maxint. Note that many computers use twos complement arithmetic,
in which the smallest negative integer has an absolute value one greater than the
largest positive integer. This situation (and other possible number systems with
asymme.rical ranges) can be mor~ accurately modeled by introducing a separate
variable Minint to stand for the smallest integer, and making the obvious changes in

rules E2, E4, and Eb.

The following rule defines the evaluation of a function call f(A1, ... ,An), where each
of the Al is a value parameter and G is a list of read only global variables. For error
free evaluation of the function call, each of the Ai must evaluate and yield a value in
the proper range. The second the third premises of the rule state that if I¢ and O¢

are valia entry and exit assertions for {, then they can be used to show P[[Eval f(A)llQ

R bR R A A

——

Expression Evaluation. 1-28

If the parameters A and G satisfy the entry condition I¢, then Of will hold on exit.
Also, f(A,G) will be DEF and Inrange -- these properties are assured by the

declaration rule.

for i=1, . ..,n, P [[Eval Ai]] Inrange(Ai, ti),
Le(X1, ... Xn,G) {Function f(X1:ti; . . . ;Xn:tn):tg; B} O¢(X1, ... ,Xn,G),
P [Eval A1; . .. ;Eval An]l I{A,G) A (Og(A,G) A DEF(f(A,Q)) A Inrange(f(A,G), t¢) > Q)
(EB)
P [Eval f(A1, ... ,An)] Q
Location Validity.
P [Locate V] P (R))
(this is an axiom for any declared variable identifier V)
P [Locate R] G
---------------- L2)
P [Locate R.F]] Q
(whare R is of a record type with a .F field)
P [Eval Z] Z=NIL A Q
(L3)
P [Locate ZT] Q
(where Z is of a pointer type)
P [Eval I True,
P [Locate A; Eval I} Inrange(l, indertype(A)) A Q
(La)

P [[Locate A[IT]] @
{where A is of an array type)
Example 2: Show Q [Eval alil+pt]] True, where
Q = DEF(i) A 0si<100 A DEF(ali]l) A Osalils25 A DEF(p) A p=NIL A p1=6 A 1000sMAXINT
with the variable declarations
VAR a: ARRAY[0:100] OF INTEGER;
VAR i: INTEGER;
VAR p: TINTEGER;

By applying the inference rules in reverse, we can find simpler sufficient conditions

for the formula to be true. We will continue to work backwards until we reach

T n s o Lt ne

Expression Evaluation. 1-29

sufficient conditions that are obviously true. At this -oint, the formula will be
proven, because it will be possible to construct a forma' proof by starting with the

final conditions and applying the inference rules until the original formula is deduced.

: The first step is tu use rule E{ in reverse, reducing the problem of proving a 1

1 statement about Eval alil+p?* to proving statements about Eval ali] and Eval pt.

Q [Eval pt]} True, (6.1)
and Q [[Eval ali]; Eval pt]] ~-MAXINT < alil+pt s MAXINT, (6.2)

% Before finishing the example, we pause to mention a fact about the extended

semantics which is helpful in removing redundancy from proofs. Since expressions do

not have side effects, we can assume in proofs that the state does not change when an

expression is evaluated. The following lemma states this fact in a useful form.

Lemma. I P [[Eval e]] Trua, iff - P [Eval e]] P.
I- P [Locate e]) True, iff - P [Locate e]} P.

Another point about redundancy is that when applying the inference rules directly to
prove P [[Eval E] Q, the proof of error free execution of some subexpressions may ‘
appear many times. A mechanical evaluator of the preconditions can =asily take the

rigetition into account and only verify each subexpression once.

Continuing the example, show 5.1:

Q [Eval pt]] True

Q [[Locate pt]] DEF(pt) (by E1)

t

Q [Eval p]] p=NIL A DEF(pt) (by L3)

t

Q [Locate p]] DEF(p) A p=NIL A DEF(p1) (by E1)

t

Q > (DEF(p) A puNIL A DEF(pt)) (by L1 and CONSEQ)

t

True. (by definition of Q)

t

Expression Evaluation. 1-30
Next, show Q [[Eval alil]] True

+ Q[Locate ali]]] DEF(ali]) (by E1)

~ Q{[Eval i DEF(alil),
and Q[Locate A; Eval i]] 0<is100 A DEF(ali]) (by L)

These last two formulas are trivially provable, sirice the assertion Q implies that i has
a value, and the whole variable A is always a valid location by L1. Having shown
that both ali] and p? evaluate without any errors, we can use the CONCAT rule to
infer that one can be evaluated after the other, ie.

Q {Eval ali]; Evai pt} True (by CONCAT). (5.3)
It only remains to show that there is no overflow, formuia 5.2.
Q {Eval ali}; Eval pt} ~MAXINT < alil+pt < MAXINT

« Q o -MAXINT < ali]+pt < MAXINT
(by CONSEQ and lemma applied to 5.3) '

« True.

Example 3: User defined partial functions in expressions.

VAR x: INTEGER;
VAR a: ARRAY[0:100] OF BOOLEAN;

FUNCTION sqrt{(n: INTEGER): INTEGER;
ENTRY True;
EXIT Ossqrt<n

BEGIN
% if n < 0, then loop foraver without execution errors;

otherwise, set sqrt ~ integer part of square root n.
%

END;

Suppose the function sqrt has been defined to correctiy raturn the integer square

root of n unless n is negative, in which case it loops forever without runtime errors.

- ——

SPRPUVRIN. RO oy

e

e

Expression Evaluation. 1-31

Using the function deciaration rule which will be given in section 6.3, it |s possible to

prove

True [[Function sqrt(n:INTEGER):INTEGER; body]] Ossqrt(n)sn. (6.4)

The entry and exit specifications of sqrt can then be used to show that if sqrt is

called with an argument x whose value is less than 100, the. location of the variable
alsqrt(x)] can be computed without runtime error.
DEF(x) A x$100 [[Locate alsqrt(x)I]] True

« DEF(X) A x$100 [[Eval sqrt(x)]] True, (6.8)

and DEF(x) A xs100 [Locate a; Eval sqrt(x)]] Ossqrt(x)s100 (by L4) (5.8)
Using the function call ruie EB, the first part £.5 reduces to

DEF(x) A xs100 [[Evai sqrt(x)]] True
« DEF(x) A xs100 [[Eval x]} True,
and True [[Function sqrt(n:INTEGER): INTEGER; body]] Ossqrt(x)sx,

and DEF(x) A xs100 [[Eval x]] True A (Ossgrt(x)sx A DEF(sqrt(x}) > True)

which are all true.
The second part 5.8 can be simplified
DEF(x) A xs100 [[Locate a; Eval sqrt(x)]] O<sqrt(x)s100
~ DEF(x) A x5100 [[Eval sqrt(x)]] 0<sqrt(x)<100 (by L1 and CONCAT)

~ DEF(x) A x<100 [[Eval x]] (0<sqrt(x)sx A DEF(sqrt(x)) > Ossqrt(x)s100Q)
(by EB)
« DEF(x) A x$100
[Locate x]] DEF(x) A (Ossqrt(x)sx A DEF(sqrt(x)) > Ossqrt(x)s100)
(by E1)

~ DEF(x) A X100 > DEF(x) A (Ossqrt(x)sx A DEF(sqrt(x)) > Ossqrt(x)s100)
(by L1 and CONSEQ)

« True

1-82

8. Extended axiomatic semantics of Pascal

: 6.1 Assume statements

R

g e en

assertion at a catain point in a program. Assume statements do not initially appear

in programs, but can be introduced during the course of a proof. to record logical

- s e e

assumptions which hold at poir:is within a program. For instance, the rule for IF

staternents reduces a formula involving IF L THEN S1 ELSE S2 to two formulas for the

i - — — .. T [T TR gt e e e e R
r I — e L T e e L A
,!
b, 1

The meaning of th2 statement ASSUME L is that L can be assumed to be a true ’

two cases of the condition L. In one formuila, the statement ASSUME L records the |

e

assumption that L was true, and in the other formula, ASSUME -L records the
assumption that L was false.

(PAL) > Q

(ASSUME)
P [ASSUME L] @ .|

6.2 Executable statements
Assignment statements

The following rule applies to all assignment statements.

P [[Eval e] True,

P [[Locate pv; Eval €] Inrange(e, type(pv)) A Q PV
£ (ASSIGN)

Pllpv:i=e]lQ

S

where pv is any Pascal variable

In order for P[[pv:=e]] Q to hold, it is necessary for the assignment to execute

b without any runtime errors, and for Q to be true in the updated state. The rule 9

r B e e LT e SRR SR RIS T, T 1

Extended axiomatic semantics of Pascal 1- 88

2
' requires the right hand side, e, to evaluate without runtime error and to yield an

initialized value; the lccation calculation for left hand side pv is also required to be

' free from errors. If pv is a subrange variable, the Inrange clause requires the value

: of e to be in the correct range. The updated formula Q is formed by substituting e

for the Pascal variable pv, using the definition of substitution given in section 2.1.

i IF statements

P [Evai L; ASSUME L; S11 Q,
S P [Eval L; ASSUME -L; S2]j Q

S e (IfF)
' P [[IF L THEN S1 ELSE S2]] 0
CASE statements
for i=1,...,n, P [[Eval X; ASSUME X=Cj; le Q,
P [Eval X]| Xe{Cq, ... ,Cn}
- (CASE)

e P [[CASE X OF C4:S1; . .. ;C:S,] Q

The C; are lists of constants for each branch of the CASE statement. The second

condition requires the CASE expression X to evaluate to one of the constants in one

of the Cl

g

Extended axiomatic semantics of Pascal 1-34

NEW proceduce

The following axiom states that the effect of the Pascal statement NEW(x), where x is
a variable identifier of a pointer type, is to change the value of x to a new pointer
value xo, and to add the new value xo to the reference class.

~(x0 ¢ POINTERSTO(#T)) A DEF(x0) » xOwNIL > <:a|';TT o {x0} ’:(o INEWGT GINEW)

where x is an identifier of type 1T (pointer to abject of type T),
x0 is a fresh identifier not appearing in Q,
#7 is the reference class for typs T,

#T u {x0} stands for the reference class after adding an object pointed to by xO.
The antecedents on the left side of the rule state that 1) the value x0 generated by
NEW is a new pointer, not a pointer to the reference class #T, 2) x0 has an initialized
value, and 8) x0 is not the pointer NIL. The term #T u {x0)} represents the new
reference class after the dynamic variable x0T has been allocated. A more complete

discussion of POINTERSTO and the operation of adding new elements to a reference

class can be found in [L§79).

1'ne following rule reduces a NEW statement involving a selected variable to a NEW
statement with an argument which is an identifier.

P [NEW(SO0); S:=s80]] Q

(NEW2)
P INEW(S)] Q

where SO is a new identifier not appearing in the scope, P, or Q.
the . ration VAR SO: type(S) is added to the scope.

Extended axiomatic semantics of Pascal 1-35

WHILE statements

Pol,
IEEVQI B; ASSUME B; Sﬁ I,
I1[[Eval B]-B>Q
- (WHILE1)

P [[INVARIANT 1 WHILE B DO S] @

In this rule, the invariant is chosen to be true before each evaluation of the While test

B. The rule can be rearranged to correspond to other choices of invariants.

6.3 Functions and procedures

68.3.1 Function declaration

With the function declaration rule, one can infer that I and O are valid entry exit
specifications for a function f, if for inputs satisfying I, the body of the function
executes without runtime errors and assigns a final value to the function which

satisfies the exit assertion O.

I(X1,Xn,G) A DEF(X1)A .. . ADEF(Xn) A Inrange(X1,t1)A . . . Alnrange(Xn,tn}

8] o(f,x1, . . . ,Xn,G) A DEF(f) A Inrange(f, t¢)
(FD)

I(X1, . ..,Xn,G) [Function f(X1:t1; ... ;Xn:tn):te B O(F(X1, ... ,Xn),X1,...,Xn,G)

where { has the function declaration
FUNCTION f(X1:t1; ... ;Xn:tn):tg
GLOBAL G;
ENTRY I(X1, ... ,Xn,G);
EXIT O(f,X1, . .. ,An,G);
B;

The rule requires that the function have only value parameters X1,...,Xn and a set
of read only globals G. The rule assumes that each of the value parameters has an

initialized value in the correct range; this assumption is justified by the call rule,

PO U

TR, Y T e TR T T T

F
.
L
!
|

Extended axion itic cemantics of Pascal 1-36

which checks the actual parameters. If global variables are accessed, the entry

assertion must assert that they have been initialized.

In the exit assertion O(f, X1, . ..,Xn), the variable f stands for the value returned by
the function. The rule checks that the body assigns f a value in the correct range. As
we will see in section 7.4, the condition Inrange(f, t;) appearing after execution of
the body is redundant. Because the declaration rule requires f to be DEF after

execution of the body, it is not necessary to require f to be Inrange.

8.3.2 Note onn Global Variables

Runcheck requires the user to declare lists of all global variables that could potentially
be accessed or altered by each subprogram. The system checks the lists by a syntactic
examination of the subprogram body. For instance, a global variable g which is used
in an assignment statement g := e, must be declared read write. Also, if the body of p

contains calls to q, then all globals listed for ¢ must be listed for p.

Reference classes are a special case of global variabl:s which are implicitly accessed or
altered although they do not appear explicitly in the executable program text. If a
subprogram evaluates pf, this is considered an implicit access to a reference class. An
assignment pt := @ is considered an implicit write to the reference class. The system
requires ail reference classes which are used as globals of a subprogram to be

explicitly listed by the user as global parameters.

The presence of a pointer formal parameter does not necessarily imply that a
reference class wili be accessed or altered by a subprogram. For instance, a procedure

p with a VAR formal parameter x which is a pointer to an integer,

1
|
|
i
!

T I PP Py

Extended axiomatic semantics of Pascal 1-37

TYPE ptr = TINTEGER;

PROCEDURE p(VAR x: ptr);

BEGIN x := NIL END;
may assigr: to X without altering the reference class #INTEGER. No globals would be
listed for this procedure, since it changes only the pointer x and not any of the integer

variables pointed to.

On the other hand, in a procedure p2 which assigns to xT, it would be necessary to
list the reference class #INTEGER as a read write global,

TYPE ptr = 1INTEGER;

PROCEDURE p2(VAR x: ptr);

GLOBAL (VAR #INTEGQER);
BEGIN xt := O END;

because an integer variable accessed by a pointer is changed.

Observe that depending on the actual argument, a call to the procedure p above could
have the effect of changing a reference class, as in the call

TYPE ptr = TINTEGER;

ptr2 = tptr;
VAR y: ptr2;
p(yt); % changes #ptr %

which changes the reference class #ptr of variables of type ptr which are accessed by
pointers. In this case #ptr is not considered a giobal, although the call rules do
account for the fact that part of #ptr is altered by being passed as a VAR parameter.

Which reference class is altered in this example depends on the call, not on the

definition of p. For example, in the call

.

s

Extended axiomatic semantics of Pascal 1-38

TYPE ptr = tTINTEGER;
ptrarray = ARRAY[1..100] OF ptr;
ptrptrarray = tptrarray;

VAR 2: ptrptrarray:

p(21150]);

Z is a pointer to variables of type ptrarray, zT is an array of pointer variables, and
21[(50] is a pointer to an integer, and hence the correct type to be an argument to i
procedure p. The variable which p changes in this case is an element of an array |

accessed by a pointer, and this causes a change to the reference class #ptrarray.

The ability of a procedure with a VAR pointer parameter to change different
reference classes depending on the actual parzmeter, is exactly analogous to the ability
of a procedure with a VAR integer parameter to change components of different
integer arrays.

PROCEDURE q(VAR x: INTEGER);

BEGIN x:= O END; % no giobals %
The first call in

TYPE arr = ARRAYL1..5CC] CF INTEGER;
VAR v1, v2: arr;

q(v1[60]1);
q(v2[501);

alters part of v1, but the second one alters part of v2.

T T = i o r———

R e

Extended axiomatic semantics of Pascal

68.3.3 Procedure declaration

I(X,Y,G) A DEF(X1)A ... ADEF(Xm) A Inrange(X1,t1)A . . . Alnrange(Xm,tm)
8] o(x,Y,G)

(PD)

-

I(X,Y,G) [Procedure p(X1:t1; ... ;Xm:tm; VAR Y1:u1;...; VAR Yn:un); B] O(X,Y,G)
where p has the procadure deciaration

PROCEDURE p(X1:t1; ... ;Xm:tm; VAR Y1:u1; ... ; VAR Yn:un);

GLOBAL GR, VAR GW;

ENTRY 1(X,Y,G);

EXIT O(X,Y,G);

B;

GR are the readonly global variabies,

GW are the read write global variables,

G stands for the set of all giobal variables, GR u GW.
Like the function declaration rule, the procedure declaration rula assumes that the
value parameters are initialized by each call with values in the correct range. On the
other hand, there is nothing unusual about procedures that work correctly with
uninitialized VAR parameters. Consider a simple procedure p which is called with an
integer j and two array variables, X and y, and assigns x[j] the value y[jl.

TYPE s = 1..100;
TYPE arr = ARRAY[s] OF INTEGER;

OROCEDURE p(j: s; VAR x, y: arr);
BEGIN
xLjl := y(jl;

END;
Since the procedure does not test the range of j before executing the assignment, a call
to p will procuce a subscripting error v 'ess j is between 1 and 100. Also, the actual
variable supplied for y[j] must have been assigned a value before the call to p. No
other restrictions are needed to assure error free execution. In particular, p will work

regardless of whether x has been initialized, and regardless of whether portions of y

other than y[j] have been initialized. For instance, the following sequence executes

without errors.

Extended axiomatic semantics of Pascal 1-40

VAR a, b: arr;
VAR k: INTEGER;

BEGIN
k := §0;
blk] := 1000; 1
p(k, &, b); ;
% now a[50] = 1000 % {

TR T T T gy "
/

| END;

.

The behavior of p can be specified by providing it with entry and exit assertions.

rem s i

TYPE s = 1..100,
TYPE arr = ARRAY[s] OF INTEGER;

PROCEDURE p(j: s; VAR x, y: arr);
INITIAL y = yO;
ENTRY DEF(y[}]);
EXITy =y0 A x[j]=yl[jl;
BEGIN
xLjJ := yLj2;
END;

e itn Ad——i

The entry assertion states that y[j] has a value when p is called. Note that since j is
a value parameter with a subrange type, the declaration rule assumes that it will be

supplied with a value in the correct range — this will be checked by the call rule.

e it i e . . e b i

The Initial statement simply introduces a new name y0 to stand for the initial value
of y at the time of entry to the procedure. The exit assertion states that the value of

y is unchanged, and that x[j] is equal to y[j].

To summarize the point of this example, all of the rules for subprograms assume that
value parameters must be supplied with initialized values in the correct range. This
is our interpretation of what it means to correctly call a subprogram with a value
parameter. No such assumption can be made for VAR parameters, and so it is

necessary to describe the behavior of each one by means of entry and exit assertipns.

It is of course possible for there to be implementations of Pascal, in which calls with

PR SPREUP PO SECLRIRE S S

t
A
1
13
!

Extended axiomatic semantics of Pascal 1-41

value parameters will produce the desired results in some cases even if the actual
parameter is not fully initialized. This is merely an artifact of certain possible
implementation techniques. Our definition attempts to capture what is meant by the
language itself, and is intended to be sufficiently restrictive to be consistent with all

possible implementations.

As was mentioned earlier, the initial value of local variables is not specified by the
function or procedure declaration rules. Another approach, which seems reasonable at
first glance, is to assert that every local is initially undefined. This is not needed in
the extended semantics, '-xcause for P [A] Q to be valid, every variable must be

assigned a value which is DEF before its value is used.

The deciaration rules could be modified to specify an initial value for locals, but this
would unnecessarily complicate the definition and lead to confusion in applying the
extended semantics. It would be possible to introduce a new constant Cg4 for each sort
to stand for the initial value. The axioms would be changed to state that for each of
these constants, ~DEF(Cg), and also ~DEF(t) for terms t formed by selecting components
of Cg. For each local L, L=C4 would be added as a premisc in the declaration rule.
But this is an unnecessary complication. Also, it does not accurately model the
implementation of Pascal, in which initial values are left unspecified to reduce
overhead. For this reason, it would give confusing results in practice. If a program,
A, never used two variables of the same sort, x and y, and otherwise executed without

errors, it would be possible to prove that the variables were equal after the program,

P {A} x=y.

Such a result differs from the implementation and probably conceals a programming

error.

———— o

Extended axiomatic semantics of Pascal 1-42

6.3.4 Procedure call

The procedure call rule requires each value parameter to evaluate without runtime

error, yielding a value in the correct range, and each VAR parameter to yield a

location without runtime error.

for I=1, . . . ,m, P [[Eval Ai]l Inrange(Ai, ti),

tor i=1, . . . ,n, P [Locate Vi] True,

I(X,Y,G) [Procedure p(X1:t1; ... ;Xm:tm; VAR Y1:ul; . ..; VAR Yn:un); B] o(X,Y,G),

P [Eval A1; ... :Eval Am; Locate V1; ... ;Locate Vn]] Disjoint-set(V u G) A I(AV,G)

vn GW1 GWk

V1

A VZ,GB (O(A,Z,GR,GB):Q')
Z1 Zn GB1 GBK

3B 3 (PC1)

P [p(AY, ... A0V, ... V]l Q@

Each of the actual VAR parameters, Vi, must be a distinct Pascal variable not in GW.

Note that this definition depends on the definition of substitution when Vi is not an

identifier.

- = e

. PRIV INS WY NPT ¥ 11

e | 5

et e T I
A b

o - - R A . ARl & il vt
-— . e e [— - P s R —— i RN

1-43

7. Metatheory cf the extended definition

In this section, we discuss some properties of the extended definition which are

helpful in reducing the complexity of program specifications and the length of proofs.

By itself, the extended semantics is not a complete solution to the problem of verifying
the absence of common errors. In practice, there are two main kinds of difficulty in
doing actual verifications. These practical difficulties were carefully considered in the

design of the Runcheck system.

The problem of redundancy in proofs is solved in Runcheck by a special simplifier

which efficiently eliminates redundant verification conditions.

A more serious problem is the need for lengthly, detailed specifications and inductive
assertions in programs. Several distinct approaches are needed to deal with this
problem. In Appendix 1-A, we discuss the derived WHILE rule, wh'ich shows how
the extended definition reduces the need for detailed documentation. The derived
WHILE rule and other rules are logically justified by certain simple properties of the
theory of the extended definition, which are presented in the remainder of this

section.

7.1 Ordinary Semantics Lemma

Any specification for an executable statement A which is provable in the extended
definition is also provable in the ordinary definition (this does not apply if A is a

subprogram declaration).

Lemma 7.1 If - P [[A]] Q, then |- P {A} Q.

ML e et e+ aies e o n

VN

ke amn a7

. —

t
b
f

Metatheory of the extended definition 1-44

The significance of this lemma is that all specifications, even those involving DEF,
are theorems of the ordinary system.? The extended definition only places more

restrictions on the allowable computations. Consistency of the extended definition is a

direct consequence of this lemma.

7.2 Specification lemma

When proving complicated specifications for a program, it is sometimes helpful to
prove the specifications without considering possible runtime errors, and then prove
separately that no errors occur. In this way, the details about runtime errors can be
isolated in the proof. The next lemma says that proofs in the extended definition can
always be factored in this manner.

Lemma 7.2 If - P {A} Q, and + P1 [[A]l Q1, then PAP1 [A] QrQ1.

The reason for this is that if both P {A} Q and P1[A]l Q1 can be proven separately,

then it is always oossible to combine the procfs to show PAP1 [A] QAG1.

The design of the automatic Docimenter in Runcheck is based on this lemma The
documenter constructs inductive assertions® that are valid in the ordinary semantics.
The assertions can ther: be assumed true in proofs in the extended semantics. Thus

the documenter does not have to consider possible runtime errors while constructing

the invariants.

% In the case of built in procedures, it is necessary to choose slightly nonstandard definitions if
the resulting systam ie to be complete with respect to specifications invoiving DEF. The
"orainarv” system that we have in mind has axioms stating that the results of buiit in

procedures such as READ and NEW are DEF.

5 Refer to [Ge78] for details of the documenter

.

el e M ot e - —

g s

Metatheory of the extended definition 1-45

7.3 LESSDEF lemma

One of the basic properties of the extended definition is that if P [S] Q holds, S

cannot assign an uninitialized value to any variable. Over any sequence of

statements that executes without runtime error, the extent of variable initialization

cannot decrease.

LESSDEF(x, y), a predicate for two terms of the same sort, is defined to be true if y is
% at least as completely initialized as x.

: LD1) if x and y are of the same simple sort,
| LESSDEF(x, y) = DEF(x)>DEF(y).

LD2) if x and y are of the same record sort, and the field names are f1, ... ,fn,
LESSDEF(x, y) = LESSDEF(x.f1, y.f1)A ... ALESSDEF(x.fn, y.fn).

LD3) if x and y are of sort ARRAY[a..b] OF t,
LESSDEF(x, y) = (V] a<jsb o LESSDEF(x[j], y(j1)).

LD4) if x and y are of sort REFCLASS(t) for some t,
LESSDEF(x, y) = (YpePOINTERSTO(x) LESSDEF(xcp>, ycp>)).

1 The LESSDEF lemma says that for any variable in a program that executes without

errors, the final value will be at least as fully initialized as the initial value.

Lemma 7.3 If | P [A]l True, and v is a declared variable idantifier then,
I P A v'=v [A]] LESSDEF(V', v)

where V' is a new idantifiar not appearing in P, A, or the scupe.

In Runcheck, the lemma is used to reduce the need for detailed assertions on loops

and procedures. If a variable is known to be DEF before entering a loop, it is not

necessary to state in the invariant that it continues to be DEF. Similar assertions

about VAR parameters can be omitted from procedure specifications.

Metatheory of the extended definition 1-46
|
{ Example 4: Merging two sorted arrays i
|
!

- This example shows how Runcheck uses the Lessdef lemma to reduce the need for

repetitious, detailed assertions. The program takes as input previously sorted arrays
; A and B of length 100 and merges their content: into the array C, which has length
200. The user has supplied only an ENTRY assertion saying that A and B are fully !

b initialized, and an EXIT assertion saying that C is fully initialized. The interesting if

aspect of this example is that the initialization of C takes place in two loops. The

first lcop partially initializes C, merging elements from A and B until either A or B

e i e

has been completely transferred. Then the initialization of C continues in either the
second loop or the third loop.

TYPE INARR=ARRAY[1:100] OF INTEGER;
TYPE OUTARR=ARRAY[1:200] OF INTEGER;
VAR I,J,N:INTEGER;
VAR A,B:INARR; C:OUTARR;
ENTRY DEF(A)ADEF(B); k
EXIT DEF(C);
BEGIN
N:=100;
I:=1;
Ji=1;
INVARIANT DEFRANGE(1, 1+J-2, C)
ATSIAISN+T A 1£J A JEN+1
WHILE (I<N) AND (J<N) DO
BEGIN
IF A[11<B[J] THEN BEGIN C[I+J-11:=A[I]; I:=I+1 END
ELSE BEGIN CL[I+J-11:=8LJ]; J:=J+1 END;
END;
Pel;
INVARIANT DEFRANGE(I'+N, I+N-1,C) A I'SI A ISN+1
WHILE I<N DO BEGIM C[I+N]:=All]; I:=I+1 END;
J'ed;
INMVARIANT DEFRANGE(J'+N, J¥N=1,C) A J'SJ A JSN+1
WHILE J<N DO BEGIN C[J+N1:=B[J]; J:=J+1 END;
END

The system will verify

] DEF(A) A DEF(8) [body]] DEF(C)

g

P

i,
]
|

Metatheory of the extendei definition

i.e, that the program does not ha e any execution errors and that ro elements of C
are missed. All of the other variables are initialized before the first ioop. Still, it is
necessary to prove that they are DEF each time they are accessed. In the case of a
variable such as I, Runcheck uses the Lessdef lemma to infer that it has a value
everywhere in the program after the assignnient I:'=1. Even though I is changed on

the first loop, it is not necessary to write DEF(I) (or A, B, J, N) as an invariant.

In many array programs, the arrays are either supplied as fully initialized parameters,
or are initialized at the beginning. Without tiie Lessdef lemma, it would be necessary
to have invariants repeating the fact that an array or other data structure is DEF at

various points within a prog . =m.

Consider now the more complicated case of praoving DEF(C). The system
automatically generates the statements shown in bo/d italics. By examining the first
loop, one can see that at any time, values have been assigned to the positions
Cl1),... ClI+J-2). This fact is discovered by the system and is expressed in the
invariant as

DEFRANGE(1, 1+4-2, C).

DEFRANGE :s a special predicate used to express that a subrange of an array is
DEF. Its definition is

DEFRANGE(x,y,a) r (Vi xsisy > DEF(aLil)).

The invariant for the second loop states that C[I'+N], ... ,C[I+N-1] are DEF, where I
stands for the value of I before entering the second loop. Similarly, the assertion for
the third loop states that C[J+NJ], ... ,C[j+N-1] have been assigned values. The

system alsc produces the arithmetic inequalities shown on each loop.

PR AN PRRURST RS 9 TS R T %

Metatheory of the extended definition 1-48

w

To be able to prove the exit assertion, DEF(C), 1t 1 necessary to show that all of
i
C[1]),...,C[200] have values after the third loop. Notice that each invariant only !

describes the initializations done by its own loop. For instance, the third invariant

o ¥

only deals with the last part of C, and does no' repeat the fact that the first part of C

T TR TR - BT T T T e

\ is initialized by the first loop. Runcheck uses the Lessdef lemma to infer that the first
part of C continues ta be DEF, even though that fact is not included in the later
invariants. Thus the invariants shown are sufficient to prove that C is fully

P initailized on exit. The documenter's assertions are also sufficient to show that the

L program executes safely.

7.4 Inrange lemma {

The Inrange lemma says that a program for which P [[A] True holds cannot caus: the

1
value of a subrange variable to become out of range (when started in a state which -
satisfies P). If a subrange variable is known to always be DEF at some point in a !

program that executes without errors, then the variable must be Inrange at that point.

To begin, we define Inrangex, a formula constructor similar to Inrange. The

—

* difference between the two 1s that Inrange asserts that a subrange variable is in the

correct range and is always true for other types, while Inrangex asserts that every

subrange variable contained as a component of its argument is in the correct range.

Definition. Inrangex* is a mapping <pascal variable> x {type> - <formula>. For simple
types, Inranges*(v, t) is true if Inrange(v, t) is. Inrangesx(v, t) is true for a compound
type if Inrangex(c, type(c)) is true for every component c of v.

The idea of the Inrange lemma is a characterization of the possible sets of states of .

programs that always execute without runtime errors. Any actual execution must

begin in the outermost block with all variables uninitialized. Data needed by the

Metatheory of the extended definition 1-49 i

EL a0

program is cbtained by a READ procedure which always returns values that are DEF

and Inrange. Given that the program always runs without errors, what do we know

about the set of all possible states if it terminates? Variables that the program assigns
to every tirae it is run will always be DEF and Inrangex at the end. Variables that
; are never touched by the program will be completely unspecified at the end.
Variables assigned to on some runs but not on others can be -DEF at the end, or can
have a value dependent on the values of the other variables. If the value is
dependent on the other variables, it must be an Inrangex value. The essential point
is: If a program determines the value of a variable, the value must be Inrangex. If a

variable is always DEF at the end of a program, then it must always be Inrangex.

Definition. Let X be the set of simple componants of the declared variables. For :
instance if v is declared

VAR v: ARRAY [1..2] OF RECORD f:INTEGER; g:BOOLEAN END;

then X will contain the variables v[11.f, v[2].f, v[1].g, v[2].g. Note that X is a set of |

variables, not a set of the values the variables. A state of & program is an
assignment of velues to each of the elements of X. To refer conveniantly to the value
of a given variable yeX and the overall staie, we will use the notation that the)’_'.ﬁ’.'.'l‘
of a state is a pair <2,Z>, where z stands for the value of y, and Z stands for the

values of the variables in X-{y}.

A set S of states is DEF-convex for the variable v, iff

for all Z,
(¥z <z,Z>€S > DEF(2)) implies (Yw <w,Z>eS,, > Inrange(w, typea(y))).

1 wheare Sy is the set of states in S, represented in y-form.

A set of states of X is DEF-convex iff it is DEF-convex for every variable in X. A

- RN - S e e ey o pempe e
wem ac 3 e i e ear ,‘QIL‘II‘_'A!L&M

Metatheory of the extended definition 1-50

formula containing free occurrences of declared variables is DEF-convex iff it Is
satisfied by a DEF-convex set of states.

Examples: zs>ume the declared variables are
VAR x: INTEGER;

VAR y: 1..10;

(7.1) Tiue, False both DEF-convex
(7.2) y=2 DEF-convex
(7.3) y=40 not DEF-convex
(7.4) ymao DEF-convex
(7.5) DEF(y) not DEF-convex
(7.8) x=1>y=2 DEF-convex
(7.7) x=1>y=40 not DEF-convex

If S is the set of final states of a program that does not have runtime errors, then S is
DEF—onvex. In the examples, a program can set y to 2, so 7.2 is DEF~convex, but 7.3
cannot be DEF-convex because 40 is out of range. Although y#40 is DEF-convex, it
is not a possible set of final states — the DEF-convex sets include more than final
states sets. To attempt to characterize only final states would require much more
detail than we need here. Note that 7.5 is too weak to be a final set of states because

it includes both 7.2 (a possible set) and 7.3 (an impossible set).

Lemma 7.4a If a projram is started in a DEF-convex set of states and always

exeacutes without runtima error, then the final set of states will be DEF-convex.

It follows that if a program always leaves a variable DEF when it halts, the variable

must be Inrangex at the end.

Lemma 7.4b If B is a Pascal statement, pv is a Pascal variable, P Is a DEF-convex

predicate, and + P [[B] DEF(pv), then P [B]] Inrangex(pv, type(pv)).

The restriction on P in this lemma is necessary. Recall that extended semantics does

not specify the initial values of variables, and that subrange type variables have the

? L
;

Metatheory of the extended definition 1-51

' same sort as the base type of the subrange. Consequently, there is nothing that says a ;

subrange variable cannot be out of range if its value is not assigned by the program.

i
S
i
"

- The following formula is a a theorem, even if the variable S declared with a
subrange of only 1..100.

| + S=500 [empty] DEF(S) A S=500.

Of course, the extended definition checks that any program that uses the value of $

first assigns it a value in the proper range.

Runcheck makes use of a restriction that the entry assertion for the outermost block of
a program must be DEF-convex.® With this assumption, Runcheck can infer bounds
on the value of a subrange variable if it is known to be DEF. In some cases, this can

permit lengthly assertions to be omitted. For instance, if a complex data structure

contains subrange variables and the entire data structure is DEF, bounds for the
subrange variables can be deduced without any additional assertions. By induction

on the depth of procedure calls, the lemma can also be applied to formal parameters

entry, Inrange*(v,t) must be true initially. Variable parameters do not have to be
DEF on entry, but if the value is used somewhere in a procedure body it must be
possible to prove that the variable is DEF and the Inrange lemma applies at that

when reasoning about a procedure body. Since a value parameter v must be DEF on i
point. i
"
|
!

6 In an actual Pascal program, no assumptions can be made about the initial values of variables i
declared in an outermost block. To be strictly realistic, the verifier should not permit sntry ;
assertions there. They are permitted as a small convenience; a main block with an entry
assertion is considerad tc be a shorthand for a procedure with globals. The significance of this
is that the truth of the entry assertion must be assured by some calling program ie. it is
possible to declare a procedure with an entry assertion that is not DEF-convex, but its actual
set of entry states is then a DEF-convex restriction of the declared entry candition.

et o Ll Ao

—

v

F
E
|

Metatheory of the exterided definition 1-52
Example 8: Constructing a Spanning Tree.

The following program is a simple algorithm [Se70] for finding a spanning tree of
an undirected loop~free graph with E edges and V vertices. If the graph is
disconnected, it grows a spanning forest. The graph is entered as a table of edges in
the arrays IA and JA, so that the vertices of the k!N edge are IA[k] and JAlk). Tte
program stores the indices of the spanning tree's edges in T(1],... ,T[V-P), where P

is set to the number of trees in the spanning forest.

This example illustrates the use of subranges and the inrange lemma to strengthen the
entry assertion of a procedure. Since A and JA are tables of vertices, they have been
declared as arrays of subrange values 1:V. It is typical in graph manipulating
programs to use a value stored in one array to compute an index into another array.
Here, the variable I is set to IA[K] and then VA([I] is accessed. For the latter access to
be in the subscript range 1:V of VA on every iteration, all elements of IA must have
been in the range initially. Because IA and JA are value parameters, their initial
values must be DEF, and by the inrange lemma, Runcheck can infer that the elements

are in the correct range. Similar reasoning is required for other array accesses.

2 .
e mambmde L bl an At dehan s 4 J T

Metatheory of the extended definition 1.-63
VAR E,V:iINTEGER;
: - PROCEDURE SPANNING(IA,JA: ARRAY[1:E] OF 1:V;
T VAR P: INTEGER;
P VAR T: ARRAY[1:V-1] OF INTEGER);
o ENTRY DEF(E) A DEF(V) A 1sE A 25V;
! EXIT TRUE;
| VAR 1,JK,C,N,R: INTEGER;
VAR VA: ARRAY[1:V] OF INTEGER;
, BEGIN
. C:=0;
! N:=0;
FOR K:=1 TO V INVARIANT 1<K » KSV+1 A DEFRANGE(1,K-1,VA)
DO VA[K]:=0; i
FOR K:=1 TOE '
INVARIANT 1K A KSE+T A OKN A QSC A NSK=T A CEK~1 A KSV+N~1
DO BEGIN i
IF K-N=V~1 THEN GOTO 1; !
I--iAIK);
J:=JALK]; 3
‘ IF VA[I]=0 THEN :
BEGIN |
TIK-N]1:=K; i
. IF VA[J]-0 THEN BEGIN
‘ C:=C+1; J
VA[J1:=C;
VALI):=C;
END 3
ELSE VA(T1:=VALJT;
END
ELSE IF VA[J]=0 THEN
BEGIN
TLK-N):=K; VALJ):=VA[I];
END
ELSE IF VAlII=VA[J] THEN
BEGIN
TIK-N1:2K; 1:=VA[1]; J:=VALJI;
FOR R:=1 TO V INVARIANT 1<R A RSV+1
DO IF VA[R]=J THEN VA[R]:=I;
END
ELSE N:=N+1
END;
1: P:=V-E+N;
END;

Note that IA and JA could have been declared as arrays of INTEGER, and the

restriction on the values could have been part of the entry assertion. Expressing the

4
g Metatheory of the extended definition 1-54 ’
restriction would involve a quantified assertion such as .
Yx (15xsE > 1sIALx1sV). !
B !
P This is both more difficult to write than the subrange type specification, and it causes i
| i
L difficulty in theorem proving.
\: i
E i
:
.;
) i
; |
‘» ;
; i
’ i
|]
1
, |
; K
P i
-
|
i *ﬁ
*
h
|
i
%
g

F‘ R . T 7 o . R it o b Ehadas “Tillaiis el s et L S Ry v— T T SE——

155 — A T T e .mnﬁ
-

;

) 1-65

f 8. Generalizations of the extended semantics j
| |
. |
F ‘ 8.1 Dynamic subranges ‘
;o

Lo There are programming languages more flexible than Pascal, which allow declaration

of dynamic subranges. ADA, in particular, has flexible dynamic type declarations. A
reasonable extension to Pascal is to permit subrange declarations involving

expressions, e.g.

L e L —

[TYPE s = 1.24x;

‘ The expressions for the bounds are evaluated each time the scope is entered, and the
range of s is fixed for the duration. Dynamic arrays can be obtained by using a

dynamic subrange as the index type for an array etc. j

The extended semantics can be adopted to handle dynamic subranges by defining
E‘ Inrange(e, s) to refer to the values obtained when the expressions for the bounds on s

are evaluated. T'he declaration rules for functions and procedures would be changed

to check for crror free evaluation of the expressions in the type declarations. Also,

depending on the restrictions in the programming language, renaming would be

[

needed to distinguish between the initial values of the variables appearing in the type

declarztion and the values assigned after the dynamic declaration was evaluated.

8.2 Bounds on depth of recursion and dynamic variable allocation

Like the bound for arithmetic overflow, bounds on recursion and heap storage are
implementation dependent. In critical applications, the actual bounds may be set in

advance, and one might want to verify that the available storage will be sufficient. In

. e . feee
. - n -
SR AN WLIN 3 PURRIRP LW W o0 F BT L1 i

Generalizations of the extended semantics 1-56

other cases, the particular bound is not important, but it might be useful to verify that

a program does not attempt unlimited recursion etc.

To describe bounds on depth of calls, two new undeclared integer variables are
introduced in the procedure call rule. The variable Stksize represents the maximum
depth of calling; Stkptr represents the current depth. The procedure call rule is
modified to enforce a restriction that Stkptr<Stksize. Neither variable can be
assigned to by the program. Stkptr is O on entry to a main program, and each level of
function or procedure calling increases it by 1. With these additions, the procedure
call rule is

fori=1,...,m, P [[Eval Ai]l Inrange(Ai, %),

for i=1,...,n, P [locate ViJ]] True,

I(X,Y,G,S) [Procedure p(X1:t1; ... ;Xm:tm; VAR Y1:u1; ... ; VAR Yn:un); B]] 0(X,Y,G,S);
P [[Eval A1; ... ;Eval Am; Locate V1; ... ;Locate Vn]] Disjoint=set(V u G)

A I{AV,G,Stkptr+1,Stksize)

A ¥Z,GB (O(A,Z,GR,GB,Stkptr+1,Stksize)
\'J vn GW1 GWk

2Q NN N)
Z1 Zn GB1 GBk
A Stkptr+1<sStksize
- S S S (PC2)
P Ip(A1,....Am¥1, ... vR)] Q

where S stands for the set of variables {Stkptr, Stksize}. Note that in practical
applications, it might be important to use some measure of the actual amount of stack
space used by a program instead of just the depth of recursion. It would be simple to
define a different function that depended eg., on the number and types of variables
in the procedure, for incrementing Stackptr. To measure the heap storage used,

counters can be added to the rules for NEW statements.

'
)

B T T AT S S T A

T

Generalizations of the extencied semantics

Example 6: Recursive Tree Traversal.

Type PTR is detined o be a pointer to a record with .A and .B fields of type PTP.
The recursive procedure WALK simply does a depth first walk on a tree P. To
avoid stack overflow, P must not lead to any cyclic list structure and there must be
enough room on the stack for DEPTH(P, #REC) procedure calls, so Stacksize must be
greater than or egual to Stackptr+DEPTH(P, #REC). Stackptr and Stacksize are
declared as VIRTUAL variables to indicate that they may appear in assertions, but may
not be used in executable parts of the program. ACYCLIC and DEPTH are user defined
symbols for documenting programs that operate on trees. The assertion DEF(#REC)
states that every allocated record in the heap of type REC is fully initialized. This

assures that WALK will not encounter uninitialized dynamic variables.

TYPE PTR=tREC;
REC=RECORD A:PTR; B:PTR END;

VIRTUAL VAR Stackptr, Stacksize: INTEGER;
PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P, #REC) A DEF(#REC) A Stacksize > Stackptr+DEPTH(P, #REC);
EXIT TRUE;
BEGIN
IF P=NIL THEN BEGIN WALK(P1.A); WALK(P1.B) END;
END;
The proof depends on two lemmas about acyclic list structure. If p is a pointer to
acyclic list structure in the reference class »r, then pt.f points to acyclic list structure.
If p points to acyclic list structure, then the depth of pt.f is less than the depth of p.
ACYCLIC(p, #r) A pwNIL o ACYCLIC(p1.f, #r)
ACYCLIC(p, #r) A pwNIL > DEPTH(pt.f, #r) < DEPTH(p, #r)-1 3
(where .f is .A or .B) ‘

The lermmas are provided by the user to the system in the form of inference rules

[SVG79] to be used by the theorem prover. j

Generalizations of the extended semantics 1-58

8.3 Procedure Valued Parameters

Procedure (and function) valued fermal parameters in Pascal have the weakness that
the arguments of formal procedures are not declared. It is not possible to deiermine
syntactically whether a procedure valued formal parameter is called with the right
number and type of arguments. It is a simple matter to tighten the language by
introducing more detailed declarations; if this is done, the usual syntactic checks can
be performed for procedure valued parameters, and they can be included in the
axiomatic definition.” As an example of a program using more detailed declarations,
Sum(a,b,f) computes the sum of f(x) when x ranges from a to b.
FUNCTION Sum(a,b:INTEGER; f:FUNCTION(INTEGER):INTEGER): INTEGER;
VAR {,s:INTEGER;
BEGIN

s:=0;

FOR i:=a TO b DO s:=s+f(i);

Sum:=s
END;
Clarke [C179] shows that any sound and complete axiomatic definition of procedure
valued parameters in a language with recursion, static scoping, read write global
variables, and internal procedure declarations, must depend on some method of
making assertions about the state of the runtime stack of local variables. Such an
approach would greatly complicate both the semantic definition and the process of
specifying and verifying programs. Instead, we will make the restriction that

functions or procedures with globals may not be passed as parameters. With this

restriction, procedure valuec parameters can be introduced in a natural manner.

7 This section discusses extensions planned but not yet implemented in the verifier. A
treatment of the consistency and completeness of our axiom system for procedure valued
parameters without global variabies is in preparation.

e

;
i

———

Generalizations of the extended semantics 1-E9

The specification method will be to declare an Entry and Exit assertion for each
fortnal parameter; these will be used in the ordinary call rules when the formal is
called. When a procedure parameter is passed, the ca!l rules will check that the actual

satisfies the declared specifications of the formal.

Nesting of procedure parameters is permitted to any finite depth. Thus a procedure
can have a procedure parameter which takes anoth2r procedure as one of its
parameters, but self application of procedures is not possible. The various
possibilities are illustrated in the example below: a procedure p has value parameters
U, variable parameters V, a function paraineter s, and a procedure parameter q. The

procedure q takes a furiction parameter r.

The main specification given for p is a set of entry-exit assertions, Ip and Op. An
occurrence in the assertions of the formal function parameter s as a functien sign
stands for the value of the functional parameter, and not for a constant function. The
assertions may be thought of as first order schemes, which the procedure call rule
adopts to particular calls by substituting the actual function sign for the formal s. To

distinguish this kind of substitution from sustitution for free variables, the following

notation will be used.

Notation: QLf1(X) is a formula containing the function sign f and free variables X.
After a particular formula Q[f](X) has been introduced, we will write QLg](Y) to stand
for the result of replacing the function sign f by g and substituting Y for X in Q.

Each formal procedure parameter has a declaration 1n p of its entry-exit assertions.
The declarations are like ordinary procedure declarations, except that the reserved
word FORMAL is used in place of the procedure body. Sirice the formal parameter q

takes a function r as an argument, the declaration of q has a declaration for r nested

inside it.

S e i RSt S s e oW

I B € B e S A t-S

Generalizations of the extended semantics 1-60

Declarations with procedure and function formals,

PROCEDURE p(U; VAR V;
FUNCTION s(Y):t;
PROCEDURE q(W; Function r(Y):t));

FUNCTION s(Y):t; % specifications of formal parameter s %
ENTRY Is{Y);

EXIT Os[s1(Y,s);

FORMAL;

PROCEDURE q(W; Function r(Y):t); % specifications of q %
Function r(Y):t; % specifications of formal parameter of q %
ENTRY Ir(Y);
EXIT OrLrl(Y,r);
FORMAL;
ENTRY IqLrl(W);
EXIT Oqlr}{W);
FORMAL;
GLOBAL GR, VAR GW;
ENTRY Ip(s1(U,V,G); A
EXIT Op[s1(U,V,G); % specifications of p %

BEGIN pbody END; % executable statement= of p %

In this example, the Entry and Exit specifications for p state that the value
parameters U,' variable parametsrs V, function parameter s, and global parameters G,
must satisfy Ip[s}(U,V,G) on entry to p, and Op(s)(U,V,G) on exit. Furthermore, the
actual parameter supplied for s must have the property that if Is(Y) holds for the
value parameters Y to 5, then Os will hold for the result of S. The specifications for
q are similar, but have further specifications for r nested within them in the same
way that the specificatinns for s are nested in p.

Notation: In the following rules, entry-exit assertions enclosed in brackets, €1,0»,
are included in the procedure headers as an abbreviation for the full procedure
declarations as shown above.

The idea of the declaration rule is to use the declared entry exit specifications of the

formal parameters, in this case s and q, to prove the specifications for p. Then for

JRDTR SR IY

b
[
B
13
1

Generalizations of the extended semantics 1-61

calls to p, the call rule will check that the actual function and procedure parameters

satisfy the specifications declared for s and q.

The following example of the declaration rule states that we can infer that Ip and Op
are valid entry exit specifications for p if it is possible to prove that Ip and Op are
valid for the body of p (8.3), under the assumptions (8.1 and 82) that s has

specifications €Is,Os» and q has specifications €Iq,0q>».

Example Procedure declaration.

{1s(Y) [Function s(Y):t; FORMAL] Os[s1(Y,s), (8.1)

1qLrJ(W) [Procedure q(W; r:€Ir,0r»); FORMAL] OqlrI(W)} (8.2)

I Ip[s1(U,V,G) A DEF(U) A Inrange(Ui,ti) [pbody] Opls1(U,V,G) (8.3)
Ipls1(UV,G)

[Procedure p(VU; V; s:€'s,08%; q(W; r:Ir,0ry):€1q,0q3); pbady]] Op[s)(U,V,G)

If s and q were actual defined subprograms (instead of formals), any properties of
them needed for proving p could be deduced from their definitions by the declaration
rule. But the actual bodies corresponding to s and q are not fixed. The declaration
rule for p compensates for this by allowing us to introduce assumptions about s and q
into the proof of p. These assumptions must then be justified for the actual

parameters whenever p is called; this is done in the call rule.

Ll LTI

S e T—————

Generalizations of the extended semantics 1-62

Example Procedure call.

f i=1,...,m, P[Eval Ai]l Inrange(Al, ti), (8.4) ‘
- for i=1,...,n, P [[Locate Bi]] True, (8.5)
; Ip(s1(UV,G)
; [Procedure p(U; V; s:€Is,083; q(W; r:&Ir,0r»):€Iq,09»); pbody]] Opls1(U,V,G),
; Is(Y) [Function c(Y):t; cbody(Y)]} Oslc1(Y,c), Egg;

Ialrl(X) [Procedure d(X; r:€Ir,0r»); dbody(X,r)] Oqlri(X), (8.8)

P [[Eval A1; ... ;Eval Am; Locate B1; . .. ;Locate Bn]] Disjoint-set(B u G)

A Iplcl(A,B,G) W
81 Bn GW1 GWk

. N .9
A ¥Z,GB (Op[cl(A,Z,GR,GB) > Q 71 Zn__ GBI G@'.(_) (8.9)

P [p(AB,c,d)] Q ;

For the procedure call, conditions 8.4, 8.5 and 8.6 are as before. Condition 8.7 checks ,
that the actual function parameter c satisfies the specifications of s; 8.8 checks the ;
entry-exit assertions for the actual procedure d. In 8.7, cbody(Y) stands for the body |
cf the actual parameter c, if ¢ is a declared function in the context of the call. In case i
¢ happens to be a formal parameter of another procedure, say q, cbody(Y) is taken to
be the reserved word FORMAL, and 8.7 zan be justified by the assumption about c

in the declaration rule for q.

Crucial to these two rules are the type declarations, which syriactically enforce the

et it e e Tk a1 < k0 e

requirement that each subprogram parameter accept only a fixed type and hence only

a fixed depth of nesting of formal parameters. In the example, s has no procedural

parameters; let us call this depth zero. Then the depth of q is one, and of p two.

PO

Because of the type declarations, each actual parameter to a subprogram must have
the same depth as the corresponding formal. Observe that this prevents self
application of procedures, which could lead to circuiar proofs such as would occur if

an assumption about p was used to deduce a property of p in the declaration rule.

; . oL e g
. o w———"‘ ~ R . D ST .
rywe oo, SRR AT ORI P N eI 2 Y I AT S SN U P SRS PR L AR5 - . P

Generalizations of the extended semantics 1-63

The rules are justified by the fact that each assumption introduced for a formal
parameter in the declaration rule is verified for the corresponding actual in the call
rule. Note that in any execution, the actual value of each formal parameter must be

traceable back to a declared {nor. formal) subprogram with the same depth.

It can be easily seen that tne two new rules are only a means of transferring and

rebinding entry exit specifications which must eventuaily be justified using the

original rules without procedure parameters. Consider the case of a procedure p
which has a formal parameter s declared as FUNCTION s(Y):t, so that p's depth of

nesting of formals is one. The actual value supplied for s may be passed to p through

many levels of procedure calls, but ultimately any specifications for s must be proven
with the ordinary declaration rule. Thus any specifications that can be proven for p
are ultimately based on the ordinary function declaration rule. Similarly, the
specifications of a procedure q of depth two are based on specifications of procedures

of depth less than two. In this way, all deductions with the two new rules can be

traced back to the ordinary rules. What has been added is the ability to transfer
specifications, corresponding to the added capability in the language for transferring

declared procedures by parameter passing.

1-64

9. Discussion

Our definition of Pascal describes some important aspects of the language that have
not been included in previous axiomatic definitions. We began by recalling that a
proof of P {A} Q does not give any assurance that a program will be free from
runtime errors, and argued that a stronger relation, P [A] Q, is a better indicator of
program reliability. As part of our presentation of Pascal semantics, we have
developed a precise and comprehensive definition of the evaluation of expressions
and Pascal variables, using partial correctness statements to account for function calls
within expressions. Previous axiomatic definitions have not dealt fully with the
semantics of function calls within expressions. We then used the definition of
evaluation to define Pascal statements, procedures and functions. The complete
definition is very concise, although it captures many complicated details of the
language. One of the crucial advantages of our axiomatic technique is its simplicity;
absent are the clouds of obscuring notation commonly found in denotational
definitions. The clarity and simplicity of our approach are of greatest importance
when the definition is actually used to verify programs; because program
specifications and the proofs are also simple and understandable, the user is free to

concentrate on the real issues surrounding a program and its correctness.

Our axiomatic definition has been part of a development with the goal of building a
useful automatic verifier. This has influenced the definition in several ways. One
important requirement for useful verification is to have convenient methods for
specifying programs. In Runcheck, specifications are greatly simplified by having a
single prec:cate, DEF, as the basis of all predicates referring to variable initialization.
The Lessdef and Inrange lenmas also eliminate the need for certain kinds of detail in

specifications. Although the idea of derived inference rules is by no means new, this

e ——————— e RS — il ‘M
* B s o suiifionsy phasant

T T L T VIS

ST T TR, ETTr s T T T T e e e

Discussion 1-8bH

technique is more useful in practice than has been previously realized.

¢

oo - e
RPRPUINTIR DIUVTIPRRRIPS WPRILY SR YO NOT 1 1. TS

N

’ " g MG I h dealt tns ry s e e b i 1 n
T — it A it ot e ir O ISMEA G doviatiuiaital ‘a‘)-m”._..fi'-‘...-.,.m
— I sty oo+ A LNARSA e . . 2

e i e e maenked hte ot n o o b

S ¢ s e =

Appendix 1-A: Development of the WHILE Rule

This section explains the actual While rule used in Runcheck. The rule of section
section 6.2,
P>,

I [Eval B; ASSUME B; ST 1,
1[EvaiB] B> Q

(WHILE1)
P [INVARIANT I WHILE B DO s] Q

does not help to reduce the need for detailed invariants and is not convenient to use

in practice. The implemented rule has four additional features:

1) It adds an invariant referring to the evaluation of the While test, B. B is
¢valuated ence on each iteration, and so it must be an invariant of the loop that B

cun evaluate safely.

2) It makes it unnecessary for the invariant to refer to variables which cannot be

changed in the loop. This has been previously called a frame axiom [ILL75, Su78].

3) It applies the Lessdet lemma, adding to the invariant the information that variables

changed on the loop cannot become less fully initialized.

4) Runcheck’s automatic documenter generates invariants which are valid in the
unextended semantics. Because proofs in the extended semantics can be separated,
with part done in the ordinary semantics (Specification lemma), the extended While

rule can assume the validity of documenter invariant:. 7ithout reproving them.
We now discuss the implementation of these changes.

1) From the definition of P [Eval e]] Q, one can write down a sufficient precondition

e i e

hE

s s e P A) i . T

Appendix 1-A: Development of the WHILE Rule 1-67

for e to evaluate without error. This formula will be called PRE[Eval @; Truel As an

e

example, if the test of a While loop is f(a)+t:<0 and f has the declaration

U W

- FUNCTION f(x: INTEGER): c:d;
'. ENTRY I(x);
! EXIT O(x); .

then the condition

PRE[Eval f(a)+bs0; True]
s DEF(a) A DEF(b) A I(a)
A (O(a) A DEF(f(a)) A csf(a)sd > -MAXINTsf(a)+bsMAXINT) :

is added as an invariant of the loop.

2) The variable 1dentificrs are divided into a subset X which are not changed in the
body of the loop and a subset Y which may be changed. A set of new unique

variables, Y, is introduced. The extended form of the frame rule is

P(X,Y) = I(X,Y),
P(X,Y)AI(X,Y") [Eval B(X,Y'); Assuma B(X,Y"); S(X,Y")] I{X,Y"),
P(X,Y)AI(X,Y") [Eval B(X,Y")] -B(X,Y') > Q(X,Y*)

P(X,Y? [Invariant I(X,Y) While B(X,Y) Do S(X,Y)] Q(X,Y)

where the Y variables stand for the values of variables before the loop and the Y’

variables stand for the values of variables during or after ti:e loop.

8) For each variable, y, which can be changed in the body, Lessdef(y, y') can be

assumed to be a valid invariant.

4) Documenter invariants D(X,Y,Y’) can be assumed valid.

The final rule is:

Appendix 1-A: Development of the WHILE Rule 1-68

P(X,Y; > I(X,Y)APRE, ﬁ

!
3
b P(X,Y)AI(X,Y')APREALessdef(Y,Y')
C AD(X,Y,Y") [Eval B(X,Y"); Assume B(X,Y"); S(X,Y")] I(X,Y")APRE,
t
‘ P(X,Y)AI(X,Y')APREALassdef(Y,Y")
| AD(X,Y,Y') [Eval B(X,Y")] ~B(X,Y') > Q(X,Y") |
(WHILE2) {
P(X,Y) [Invariant I(X,Y) While B(X,Y) Do S(X,Y)]] Q(X,Y) 0
i

where PRE is PRE[Eval B; TRUE1

i D ..ot il | Rl i s i il

AT W RTINS YT e s P s e vy -
i R AR St car Ao St T TATY L)
AT~ TR T - kb

—_— - ¢ sy« ot e - e e s — ‘E:n—_.r'.—-’ -

i :
1-69 !

Appendix 1-B: Simultaneous Substitution for Disjoint Variables

> In this section, we present the definitions of disjointness for Pascal variables and

simultaneous substitution for disjoint Pascal variables. To begin, we need to define

\ the translation of a Pascal variable into a standard representation as a sequence
consisting of a main variable identifier followed by zero or more selectors. In the

following, <el, denotes a sequence of n terms, and the operator & stands for

concatenanan of finit2 sequences.

T e e e i

The function Seq(v): <Pascal variable> -» {term sequence is defined as follows:

Seq(id) = <id> if id is an idenrtifier
Seq(v.f) = Seg(v) ¢ <.>

‘ Seq(v{i]) = Seq(v) ¢ <I>
Seq(vl) = {#t. v> where #t is the reference class

Definitior. of Disjoint(v, w)

Let v and w be Pascal variables and Seq(v) = <v0O, ... ,vn>, Saq{w) = <W0, ... ,wm),

and assume msn. Then Disjoint(v, w) is the following formula:
if vO and wO are distinct identifiers, then Disjoint(v, w) - True; i

otherwise, Disjoint’'v, w) - (Visw1v ... v vmewm) |

The current implementation of Runcheck uses 2 much more restrictive defiuition oi
disjointness (it only compares vC and wQ); this restriction is not essential and will be

removed in a later version.

l
»
3
)

e e

Simultaneous Satstitation

We can now define a sirnultaneous substitution of n terms el,... en for disjoint

L RN W A

Appendix 1-B: Simultaneous Substitution for Disjoint Variables 1-70

vl,...,vn. Let Seq(vi) = <vig, . .. ,Vig;> for i = 1,...,n. Lettl,... tn and dij for

i=1,....n j=1,...,mi be new identifiers not appearing in P, the vi or the ei.

Define Unseq: <term sequence> - <Pascal variable> to be the inverse of Seq;

Unseq(Seq(v)) = v.

Then we can define

"'Iw vn

el " en

plunsoq(<v1 o0d11sendTpe2) lunsoq((vno,dn1 seenrdipn)
t1 tn

SO T AL T L D

vl Vi vny Viipn

Example B.1: Simultaneously swapping ali] with a[j] and changing i.

alil aljl i

P(a,l,J)l all] ali] v

ald1] la[d2]i |t1 t2 t3 d1 ldz

- P“"’”'n t2 t3 la[j] lali] li+t 11 1y

P(<<4q, [j], alily, [i], aljI>, i+1, J)

Note that <<a, [j), ali]>, [i], aljl> stands for the value of the array a after first

assigning the value a[i] to the jth position, and assigning a[j] to tne ith position.

%M‘ IRINT SA SR T U

Oh Shalior L

Appendix 1-B: Simultaneous Substitution for Disjoint Variables 1-7

Example B.2: Swapping two variables accessed by pointers.

Consider the effect of simultaneously interchanging xT and yT, where x and y are
pointer variables.

TYPE ptr = tINTEGER;
VAR x, v: PTR;

#INTEGERcx> #INTEGERcy-

Px v, ¥INTEGER)| 4 1NTEGERCy> #INTEGERcx>

= P(x, y, <{#INTEGER, cy>, #INTEGERcxX>), cx>, #INTEGERcy>>)

The final value of the reference class #INTEGER is exactly analogous to the final value

of the array a in example B.1.

B SR AP e - — e

Chapter 2. Verification with Variant Records, Unions, and
Data Representation Mappings.

The challenge in programming language design comes from the interplay between
conflicting concerns of generality, efficiency, reliability and elegance. In this chapter,
we apply the idea of the error checking axiomatic semantics to Pascal variant records.
The main rationale for providing variant records was to enable programs to use less
space than would be used with ordinary records. It is well known that there is an
apparent flaw in the design of variants in Pascal: they can be used as a loophole to
violate the type restraints of the language. In most situations, enforcement of typing
contributes to reliability by preventing simple programming errors. We will see,
though, that a loophole in typing can be used in ways wi..h contribute to the

efficiency and generality of the language.

Section | of this chapter introduces Pascal variants and their applications. Variants
can be added to our error checking semantics if we prohibit type violations. We will
define a new error, variant access error, which occurs when the value of a variant
record is used in a way which would violate typing. It will then be possible to prove

in the extended semantics that no type violations occur.

This would be the end of the story if reliability was the only concern; however, we
will see that there are also implementation problems related to variants and we woulid

like to preserve the benefits of intentional use of the loophole.

Thus we propose to replace variants by two new language features. Union data types,
to be discussed in section 2, nermit a variable to have different formats at different
times without permitting type violations and without the other implementation
problems of variants. In section 3 we will consider a separate mechanism for

intentional conversion between values of different types. Interconversion between two

2-1

E
;

2-2 |

different types will be permitted under controlled conditions to prevent the

construction of invalid values. The combination of these two new mechanisms retains

the generality of variants while offering a higher level of reliability.

' 1. Variant Records

; Although the discussion refers to variants as they appear in Pascal, all of our remarks
‘l will apply to other languages with a similar notion of data type. Types in Pascal are
quite conventional, there are a number of prirmitive types (eg. BOOLEAN, INTEGER,
g’- CHARACTER, REAL), and then defined types:

r ; Enumerated - E = (¢1, ..., cn);

’ Subranga - S=2c¢1.. c2;

Array - A = ARRAY [s] OF t;]
Racord - R = RECORD id1:t1;. . .; idn:tn END

Pointer - P = It;

Another important assumption in the discussion is that variable declarations are

strongly typed. This will be understood to mean that the range of values of a

variable is restricted to permit efficient compilation. In Pascal, for instance, strong

typing means that every variable or expression has a single Pascal type which can be

determined statically from thie type and variable declarations. A compiler takes
advantage of strong typing by generating code that is efficient for the expected range

of values, and which may not even have the correct function outside of the range.

At e e e b e s n

In Pascal, variant record definitions have the form:

Variant Records 2-4
V= RECORD
f:1;
f:t;
CASE tagid:e OF
cl: (f:t; ... f:t);
cn: (f:t; ... f:t);
END;

where e is an enumerated type or subrange, and the ci are constants of type e. The

CASE clause is called the variant part. The variable tagid is of type e, and is optional.

A variant record provides a singie type having several different formats. Each case
in the variant part is a possible format. All the fields preceding the variant part are

always present. In the variant part, one of the cases can be selected at any time, and

only the fields for that case are present.

The various cases are represented in storage as overlapping variables. Thus when

the fields for one case are used, the fielus for the other cases may get overwritten with

meaningless data.

For example, compare the type R, an ordinary record type with three components,
with V, a variant record type:

R = RECORD A:t1; B:t2; C;t3 END;

V = RECORD A:t1; CASE BOC_EAN OF TRUE:(B:t2); FALSE:(C:t3) END;

The variant record always has an A field, and depending on which case is current,
has either a .B field or a .C field. In this example, there is no tag field. It is not
possible to tell from the variable itself which case is being represented. Even if a tag

fie.d is used, Pascal does not guarantee that the tag will have the correct value. It is

s Akttt . i

Variant Records 2-5 i

up to the user to set the tag, and there is nothing to prevent access to one of the non-

R T

current fields.

PP

v e

| 1.1 Uses of Variants

The most common use of variants is to allow uniform access to records with different |

structures. Because of strong typing, it is not ordinarily possible for one variable to

| b e

range over records with different structures. Variants provide a single type that

satisfies the requirements of strong typing. In the previous example, type V includes

s it et

records with either A and .B or .A and .C. This is useful in data processing
applications, for instance, to create a file of records in which different details are
stored depending on the individual. An ordinary record with three fields can always

be used in place of the variant in this application, but it would take more space.

There are other impartant uses of variants, but they are less respectable. For various
reasons, one sometimes wants to violate typing by taking a value of one type and
interpreting it as another type. in Pascal, variants are a loophole for such violations,

[because it is possible to select a field from the wrong case. 3

—

3 As an example, consider how variants can be used to convert between pointers and

integer values. . {

TYPE ptr = tt;

TYPE v = RECORD CASE tag:BOOLEAN OF
TRUE:(f:ptr);
FALSE:(g:INTEGER)

END;

VAR p:ptr; x:v; n:INTEGER;

BEGIN
NEW(p);
x.tag:=TR' 7; i
x.f:=p; :
x.tag:=FALSE;

coa e 0 Las o b

Variant Records 2-6

Since Pascal does not define input or output operations for pointer values, a user with
knowledge of the language implementation might use variants to convert between ptr
and integer values. This fragment might be used under the assumption that variables
of types ptr and integer occiipy the same amount of space. A pointer variable p is
initialized by a NEW statement, and then because x.f and x.g overlap in storage, the

pointer value can be stored in the integer variable n.

In general, a varignt access error will be said to occur when accessing the value of a
field which has been changed by an assignmerit to an overlapping variable in another

case. The access error can illegaily "convert” between any two types.

Obviously, conversions of this kind are very dangerous and to use them without
sufficient precaution is poor programming practice. Pascal can be criticized for
permitting insecure conversions. In the next section, we introduce a union construct
that does not have this problem. On the other hand, occasionally there is a legitimate
need for conversions that are not defined in Pascal. One could argue that Pascal’s
success as a Systems programming language is in part due to its flexibility —

permitting the type violations in a few critical places.

The type violations are needed infrequently, but when they are needed they can be a
major factor in the efficiency or generality of a program. For instance, on machines
without floating arithmetic hardware, certain operations on reals can be done more
efficiently by special purpose bit operations than by the general floating point
routines. The bits of real variable can be directly accessed in most Pascal
implementations by illegally converting to type SET 1.. n OF BOOLEAN, where n is the
word size. This trick depends on the fact that sets are represented as packed bit

vectors.

- ——— - m e wa am a o

e

Variant Records 2-7

Insecure conversions for the sake of generality are sometimes needed in systems

programming. In an operating system written in a high level language, such as
Brinch Hansen's SOLO written in Concurrent Pascal [BH77], there may be low level

' operations on storage that are applicable to all types. A procedure for transferring a

{
page to a disk can use any block of the right size, regardless of the type of the

variables stored there. Concurrent I cal has a special provision for this kind of

conversion: a formal parameter can be declared UNIV, meaning the actual must match

in internal size, but not in type.

This line of thought suggests that unions alone are not a complete replacement ror

variants. Naturally, permitting insecure conversions raises a number of language

design issues. How should the muaning of the conversion be defined? What

restrictions are needed, and how can they be enforced? An approach to these issues

will be discussed in section 3, where we introduce further language extensions for

ey i, caretadn o,

uniform access to arbitrary types. These cperations sometimes have complex

preconditions that are expensive to test at runtime. Since they are used in few places

in a program, it is reasonable to verify correct useage.

Much of verification's impact on language design has been to suggest restrictions that

make verification more practical. But verification can also lead to the removal of
restrictions: the programmer can be given certain kinds of freedom that are not

usually present in high level languages, with a verifier to check that the new

i operations are used safely.

Al s St st St

1.2 Assignment and selection on variant records

This section presents the axiomatic definition of the assignment and selection

operations for oirdinary records and then considers the differences with variant

. records. Variint access error is defined. Some of the properties of standard records

.
LA_, |
' I
T TR LT T hy h
TT T e T A e St o e~
. . " - w4

o b bk bt

Bt e .

i
i

Variant Records 2-8

_do not hold for varianis. The variant selection error results in an undefinable state,

making it necessary to restrict program executions.

The basic operatiovs associated with record variables are selection and assignment of

components. The value of a record variable is determined by the values of its

components. This was expressed by the axiom EQa:

EQa) =y s (x.f1=y.f1 A ... A X.Tn=y.fn)
where f1, ... fn are the field names for record type t.

The notation <r, f, e> stands for the record r after assig..ng r.fi=e. In this notation,
assignment to a component is defined by:

P(<a, .f, e>) {a.f := e} P(a).

For non-variant records, the assignment operator has the following property:

RECY) <a, .f,8>.g = IF .fa.g THEN e ELSE a.g

and the following familiar properties which are consequences of REC] and the
definition of equality:

REC2) <a,.f,af’ =a

REC3) <Xa, .f,e>, .f,g> = <a, .f,g>

REC4) .fw.g » <<a, .f, @, .9, h> = <<a,.g, h>, f, a>

(In writing a field selector .f, f is understood to be a variable

ranging ovar identifiers, and .f=.g it f and g are the same identifier.)

We will now try to adopt the record axioms to variants by making restrictions which
leave undefined certain operations on overlapping fields. For convenience, assume
that we are considering a variant type having ordinary fields f1, ... fn, and that each
varianc case has only one field from among cl,... cn. To begin, we must define

selection and equality on a variant field.

e et 8 ekt ot e

rims ke

——

Variant Records 2-9

VREC1) <a,.c,e>c=e
{a, .f, @>.c = a.c

<a, .c,e>f=a.f

The first line leaves undefined the result of selecting a variant field other than the
one which has been most recently been assigned. The second and third parts state

that ordinary fields are disjoint from the variant fields.

We could either define equality in the same way as for ordinary records, or say that
two variant records are equal if all of the ordinary fields are equal and the same
variant was last assigned in both records and to the same value. Note that Pascal's
equality operator does not apply to compound types, so it is irrelevant that the second
definition would be expensive if implemented. In fact, the definition of equality used
for ordinary records would not be very useful for variants because with the definition
of variant selection, there is no way to reason about the value of a variant field after
another variant field has been assigned to. The result is that equality would not be

provable in most cases.

Consequences REC2 and RECS continue to apply without change, but REC4 does not
apply to variants. It states that the order of assignments to different fields does not

affect the final value of a record, which is not true if fields overlap.

Thus far we have a first order theory of variants corresponding to the theory of
ordinary records without error checking. We can now generalize the error checking
semantics to include variants if we can do three things: dzfine what it means for a
variant record to be DEF, and give inference rules for Eval v.c and Locate v.c. We
have previously defined the semantics of Pascal statements in terms of Eval and
Locate, so that once we have the proper definitions of DEF, Eval, and Locate, the
semantics will generalize to programs with variants. Recall that a variant access error
occurs when a program attempts to use the value of the wrong field; we can prove

absence of the errors by giving a sufficiently restricted definition of Eval v.c.

e — T T T T e ‘ M
|

i

1

€

Variant Records 2-10 |
j'
A variant record will be DEF if one of its variant fields is DEF. i

DEF3d) DEF(v) = DEF(v.f1) A ... A DEF(v.fn) A (DEF(v.c1)v ... v DEF(v.cm))

With this definition, we will be able to use inference rules E1 and L2 without change

for variants. They are repeated below in the case of v.c: ;

P [[Locate v.c]] DEF(v.c) A Q
------------------------------ (E1)

P [Eval v.c] Q

P [[Locate v]] Q
- (L2)

P [Locate v.c] Q

Observe that variant access error is prohibited because there is no way to show
DEF(<a,.cle>.c)) if ci is different from cj. In conclusion, the concept of DEF is

sufficient to guarantee safe accessing of variant records. i

1.3 Practical problems with variants.

The inclusion of variants in Pascal is a design flaw that makes it impossible to

implement garbage collection for dynamic variables. In a type such as | (

Type v=RECORD CASE BOOLEAN OF
TRUE:(f:INTEGER);
FALSE:(g:1t)

END;

it is not possible to determine at runtime whether to trace the .g field of a variable
during garbage collection marking. Another factor that prevents garbage collection is

that pointer variables do not have an initial value.

A speial feature of Pascal's NEW statement permits the case of a dynamic variant

variable to be permanently set when the variable is allocated. The minimum amount

e em B P PN TRE T s - PR

‘ Variant Records 2-11

of storage needed for the particular case can be allocated. This is less than the space
- for the variant record, which is the maximum space for all cases. The restrictions
needed to prevent disasterous errors involving this feature are difficult to enforce at

f runtime.

TYPE rec = RECORD CASE tag: e OF a: (...); b: (...) END;
ptr = t rec;

VAR p, q: ptr;

!

|
]
]
|
; NEW(q); aliocate variable of type rec

' NEW(p, a); allocate variable with variant fixed to a.

Since pT may be a variable which occupies less space than qT, assignments to pT must

il

be executed carefully or adjacent variables will be overwritten. In particular,
assignments pt:=v should be permitted only if v is case a, and pT.b:=v should not be
permitted. Note that if pt is passed as a VAR parameter, the restrictions must be
observed inside the called procedure. To implement this, it would be necessary to

associate extra information with all variant variables so that the restrictions could be

e .o DL

detected at runtime.

o

In principle, it is possible to treat these restrictions as runtime errors and verify their

absence. To do so, it is necessary to change the model of data structures. The
restrictions are a function of the location of a variable, not its value as percieved at
the user level. The increased complexity that would be needed in the model would
not be justified by this feature alone, although formalization of locations in the

urderlying logic would have other benefits such as a practical basis for verifying

programs with aliasing.

i . ATARN SR . mat s,

.. i g Y
[T i b oo ».n.mn.'.:,M..

{
i
3
i
b
i

2-12

2. Unions.

This section introduces the Union data type. The combination of unions and
necessary restrictions on aliasing gives a language in which access errors can be
readily detected at runtime, and without the other practical problems associated with

variant records.

A UNION type declaration has the form

TYPE untype = UNION a1: t1; ... ; an: tn END;

where the ti are types and the ai are constants of an enumerated type or integer
subrange. If the ai are of an enumerated typ<, the type must have been declared

previously, and each of its elements must appear once in the UNION declaration.

Assuming that u and ul are variables of a union type untype above and x is a

variable of one of the ti types, then the following operations are defined:

VAR u, ul: untype;
x: ti;

SELECTION u:ai raeturns the ai component of u.

At any time, only one of the components of u exits. Selection of u:ai is an error if the
tag of u is not ai. The error can be detected at runtime because the tay always has

the correct value,
TAG function TAG(u) returns one of the constents ai, the current tag.

CONSTRUCTORS untype:ai{x) returns a value of untype with tag al.

As a consequence of the declaration of untype, separate constructor functions are
defined fer each of the ai. The constructor untype:ai takes values of type ti and

converts them into values of the union type.

Unions. 2-1%

ASSIGNMENTS

u:=ut;

|

u:ai := X; valid only if TAG(u)=ai
u := untype:ai(x);

U= X; implicitly applies construction)

Assignment to a union variable of a value of the same type is always permitted. An
assignment to a component of a union variable, as in the second statement, is
é , permitted only if that component currently exists in u. In the third statament, u is set 4
to the union value constructed from the value of x. The fourth statement is
e'quivalent to the third one: it is possible to determine from the mismatch between the

types of u and x, that the constructor untype:ai must applied.

Example The data structure and basic operations of LISP as defined in Pascal with

union types.

o thoniact,

TYPE TAGS = (A,D,N);
LISP = tU;
DTPR = RECORD
CAR: LISP;
CDR: LISP]
END; E
ATOM = RECORD
VALUE: LISP;
PLIST: LISP
END;
U = UNION
D: DTPR;
A: ATOM;
N: INTEGER
“ END;

* PROCEDURE CONS(X,Y: LISP; VAR RESULT: LISP);
' GLOBAL (VAR U);
EXIT TAG(RESULT?)=D A RESULTt:D.CAR=X A RESULTt:D.CDR=Y;
, VAR CELL: DTPR;
/ BEGIN

o — T e R T T T TR T TR
v ahen ~Hawl o o A o0 QISR T 3 -) NN AUV At PR U SV e~y . [VSRS P

B T

¢
v
1
w

Unions. 2

NEW(RESULT);

CELL.CAR:=X;

CELL.CDR:=Y;

RESULT?:2U:D(CELL)
END;

FUNCTION CAR(X: LISP): LISP;
GLOBAL (U);
ENTRY TAG(X1)=D;
EXIT TRUE;
BEGIN
CAR:=X1:D.CAR
END;

PROCED JRE PLUS(X,Y: LISP; VAR RESULT: LISP);
GLOBAL(VAR U);
ENTRY TAG(X1)=N A TAG(Y1)=N;
EXIT TAG(RESULT1)=N A RESULTT:N=X1:N+Y1:N;
BEGIN

NEW(RESULT):

RESULTt:=XT:N+YT:N;

% note implicit application of U:N(, to
convert INTEGER to type U %

END;

2.1 Aliasing Restriction for Unions

If aliasing is permitted, it is possible to subvert runtime tag checking in the language

implementation by binding one case of a union variable and then changing the case

with a global assignment.

e - R - - ——)

: - oee il g
B SV SRR SUUPU WOV S BRI, | 1P v

b
1
B

T et

e sl Sl

Unions. 2-15

TYPE intorchar: UNION 1:INTEGER; 2:CHAR END;
VAR u: Intorchar;

PROCEDURE p(VAR x:INTEGER);
GLOBAL(VAR u)
YAR c:CHAR;
u:=u:2(c) % changes global value of tagto 2 % .
% but, note x is still bound to u:1 %

BEGIN % in main procedure %

u:=512; % sets u to INTEGER case, TAG(u) = 1 %
plu:1);

END

This example achieves an iliegal overlap between types INTEGER and CHAR,
because after the assignment in procedure p, the integer parameter x will overlap with
the CHAR case of intorchar.

2.2 Axiomatic definition of Unions.

The value of a union variable u is a function of the tag and the current component.

U1) TAG(u) =t > u = untype:t(u:t)

Constructors and the tag function have the additional properties:
U2) (untype:t(x)):t = x

U3) TAG(untype:t(x)) = t

Assignment to a union component u:t is defined only if the tag of u is already equal
to t before the assignment. The tag remains unchanged after an assignment to ut. To

change the tag, it is necessary to replace the entire union variabfe.

T DT = e _.._____—.m“q

T —

Unions. 2-16

U4) TAG(u) =t o <u,t,e>:t = untype:t(e)

UB) TAG(<u,:t,e>) = TAG(u).

Some consequences of the definition of assignment are:
{u,te>:t=e
<u,:t,u:td = u

Lu,:t,e0,:8,> = <u,:t, 1>
The restrictions on unions in programs are expressed as for variants, by defining
DEF, Eval, and Locate.

DEF3e) DEF(x) » DEF(untype:t(x))

P [Locate u:t]] DEF(u:t) A Q

P [Evai u:t] @

(E1)

P [Locate u]] TAG(u)=t A Q

P [Locate u:t] Q

(L2)

R T A — - —
. e e e e M IR o ivrs. vt snd *mﬁﬁ
Y

.
i i N e o e 1t ecan,

IR Sp— T,

3. Data Representation Mappings

This section develops the idea that it is sometimes useful to have an efficient
mapping between arbitrary types. Specifically, we propose two new operators:
LOWER:(x), a one to one mapping of Pascal values of type t into boolean arrays of
sufficient size, and LIFT:t(y), the inverse mapping. The particular mapping used will
be implementation dependent. The length of the array in the result of LOWER:t(x)
will be given in each implementation by the expression SIZE(t). Scrne programs using
LIFT and LOWER can be written with knowledge of the sizes of the types but
without any dependence un the particular mapping used. For instance, conversion of
an arbitrary type to boolean arrays of a fixed size could be used in a way similar to
Concurrent Pascal’s universal parameters, for implementing read and wrrite procedures
in operating systems. Other applications may depend on detailed knowledge of the
mapping; such programs will not be portable, but we will have techniques for

showing that they are free from runtime errors.

Additional applications in systems programming involve the need to convert between
addresses and pointers, for instance, in a storage allocator written in a high level
language, or in a linking loader for a system in which a program is represented as a
pointer to code. To relocate code, it may necessary to convert between a format used
for storage, such as arrays of integers, and the machine dependent instruction format.
This can be done efficiently if one has knowledge of the mapping implemented by
LIFT and LOWER. There are many additional applications involving instruction
formats in operating systems. For instance, it is common for hardware input-output
devices to depend on control words which must be constructed dynamically. These

have formats with integer or character valued fields, for example.

A straightforward extension of our presentation of LIFT and LOWER wouid be to
allow the programmer to declare certain properties of the mapping to be used. For

instance, in mapping a record with two fields onto bit arrays of size n, one might

Data Representation Mappings 2-18

specify that the first field should be mapped into bits 1:m and the second field intc
m+l:n. These specifications would be represented in the axiomatic definition as
additional entry-exit assumptions for the functions LIFT and LOWER.
Alternatively, if the mapping is fixed by a language implementation, the details could

be formalized and used to give a verification valid for just that implementation.

Some system programming languages such as C [KR78] and BLISS [BLISS] aliow
unrestricted mapping between different types. In contrast, our approach is intended
control access between types to prevent the construction of invalid values. Since all
values to be converted must pass through the operators LIFT and LOWER, we can

prevent two kinds of conversion errors which are undetectable in less restricted

languges:

1) Errors involving an improper storage location. Each implementation of LIFT and
LOWER will assure that conversion results are returned in a storage location of the
proper size and alignment. Proper alignment is especially important when lifting to

produce a pointer result or an integer more than one byte long.

2) Construction of an invalid value in a proper storage location. This error is
roughly equivalent to the construction of an uninitialized value which can then be
accessed. Our approach is to specify sufficient preconditions for LIFT to assure that
the result is always DEF and Inrangex. It will be possible to use the preconditions to

verify that programs using LIFT and LOWER are free from runtime errors.

3.1 Axiomatic Theory of LIFT and LOWER

The operators LIFT and LOWER can be added to the error checking semantics by
adding some first order axioms. As usual, conditions for error free use of the
operators will be expressed by asserting the conditions under which their results are

DEF.

o B = -

[P N VN SV SR WP R U "RIER TR

et vmm e -+ ¢

i Data Representation Mappings 2-19
LL1) Any value can be lowered, ylelding a well defined vaiue.
) DEF(x) > DEF(LOWER:t(x))

. LL2) The function LOWER is one to one.
‘ LOWER:t(x)=sLOWER:t(y) > xay

LL3) If LOWER:t and then LIFT:t are applied to a well defined valua, the result is the
same value.
DEF(x) A Inrangex(x,t) > LIFT:t(LOWER:t(x))=x

Because LIFT and LOWER are added to the language as functions, they cannot be

T ——— v g o Ty =

‘ used to assign an invalid value to a vanawie. It is syntactically illegal to use a

function application in a place where a variable is required, such as on the left side of

an assignment. Example:

LOWER:t(x)[n] := TRUE; -- unsyntactic.

The permitted manipulations involving a type t must at some point use LIFT:t, whose

precondition ensures that the values are meaningful.

barray := LOWER:t(x);
barray[n] := TRUE; |
x :x LIFT:t(barray); -- checks vaiue of barray. '

3.2 Universal Value Parameter

Since all types having the same internal size can be lowered to a common boolean
array type, an array parameter in a routine can be used as a universal value

parameter.

|

T LT S SV X Y 13

—

e S

|

Data Representation Mappings 2-20

Example: Universal WRITE procedure.

CONSTn= ...
PROCEDURE WRITE(x: ARRAY[1:n] OF BOOLEAN);

TYPEt= .
VAR x: t;
BEGIN WRITE(LOWER:t(x)); .

Note that the usual compile time type checking will require that SIZE(t) be equal to n.

3.3 An example of direct access to pointers.

There is a well known programming technique for representing doubly linked circular

lists, using space for only one pointer in each record. Consider a sequence of records
R;, and for each record Ry set

Ry.link = address(Ry _4) XOR address(Ry, 1),

where XOR is bitwise exclusive or.

Now if we are accessing Ry and have the address of Ry_j, we can compute the

address of Ry, | by XORing the two addresses, and similarly, from Ry and Ry .y, it is
possible to get back to Ry _;.

The following program fragment illustrates the use of LIFT and LOWER to
implement this XORed pointer representation. A record type REC is declared having
a LINK field of type BITS, an array of boocleans large enough to store the result of
loweriny a pointer. XOR is defined to operate on the boolean arrays. Its definition

is not shown here. but its specifications are used in verifying the program fragment.

Y I .‘..10‘1.1: Lﬂm

Data Representation Mappings 2-21

In the program, the variables pl, p2, and p3, are first set to point .0 new records.

Then each record is linked to the other two creating a circular list. Finally, LIFT is !

usad to move left from pl giving p3 and right from pl giving p2. A final assertion
in the program states that the new pointers created wnile moving have the correct

values. The program and final assertion can be verified using axioms LL1-8.

TYPE
ptratrec;
bits=ARRAY[1:SIZE(ptr)] OF BOOLEAN;
rec=RECORD info:t; link:bits END; 1

VAR p1,p2,p3,l,r:ptr;

FUNCTION xor(a,b:bits):bits; external;

% specifications of xor: i
xor(a,b)=xor(b,a)

xor(a,xor(a,b))sb %

BEGIN !
NEW(p1); % allocate 3 RECs %
NEW(p2);

NEW(p3); |

% set up circular list %

p1.link := xor(LOWER(p3), LOWER(p2});
p2.ink := x. '(LOWER(p1), LOWER(p3));
pd.link := xor(LOWER(p2), LOWER(p1));

% set ! to left link of p1 %
| := LIFT:ptr{xor(p11.link, LOWER(p2)));

% set r to right link of p1 %
r := LIFT:ptr(xor(LOWER(p3), p11t.link));

% check links %

ASSERT I=p3 A rap2;
END;

The critical part of this program is verifying that the arguments to LIFT are in the

image of type ptr. In a language implementation without automatic garbage
collection, a pointer value created by a NEW statement remains an element of the type
unless it is explicitly deallocated. Thus after the three NEW statements, the values pl,

p2 and p8 are all DEF. Using the specifications of xor, it can be shown that the

g

! Data Representation Mappings 2-22
L arguments given to LIFT are equal to LOWER(pS) and LOWER(p2). This satisfies
' the precondition for definediness of LIFT:ptr in LLS.

o

b

Chapter 3. An Example of Verification with Runcheck

This chapter illustrates the actual process of verifying a program of moderate size
with Runcheck. The program plays the game of Kalah with the computer acting as
board and scorekeeper. Because the program was written for actual use instead of for
purposes of illustration, it initially presented various difficulties for verification. We
will discuss some small modifications that were made to simplify the verification, and
the actual sequence that was followed of assigning assertions, using the verifier, and
gradually filliig in and correcting the assertions until the absence of runtime errors

was verified for the entire program.

The full process of verifying the program will be emphasized instead of simply
presenting thé final result, for two reasons. Fir: , the exampfe conveys a sense of the
amount cf effort required to verify shallow properties of moderate sized programs.
We would also like to show that verification should not be considered a totally
separate activity to be undertaken only after a final version of the program has been
written. Attempting to specify and verify a program often leads to a clearer
understanding of its structure. Discovering that there are difficulties in specifying or
verifying part of a program can help a programmer to improve the clarity of the

program.

Here is a sample run of the program (inputs typed by the user are underlined):

.RUN KALAH
KALAH - TYPE 'H' FOR HELP
3 3 3 3 3 3
3 3 3 3 3 3
TCP PLAYS H
KALAH - AN ANCIENT GAME OF AFRICA AND THE MIDDLE EAST.

s

R T ey Y YR

An Example of Verification with Runcheck 3-2

5 #RS CHOOSE WHO IS TO GO FIRST. THE FIRST PLAYER 15

C; .o .OP AND THE SECOND IS CALLED BOTTOM. EACH PLAYER HAS 6

t AI'D A KALAH. THE INTEGER ASSOCIATED WITH EACH PIT TELLS

THZ ,"UNBER OF STONES IT CONTAINS. EACE PLAYER IN TURN CHOOSES A
FJT }Y ENTTRING THE NUMBER OF THE PIT GIVEN BELOW. THE STONES IN ;
THE P.T *v: DISTRIBUTED TO EACH PIT IN A COUNTER-CLOCKWISE :
DIRECTiJN, IF THERE ARE ENOUGH STONES TO GO BEYOND YOUR KALAH, i
THEY ARE T 'STRIBUTED TO YOUR OPPONENT'S PITS. IF THE LAST STONE ‘
LANDS IN (GUR KALAH, YOU GET ANOTHER TURN. IF THE LAST STONE

LANDS IN AN EMPTY PIT ON YOUR SIDE, YOU CAPTURE ALL OF THE

OPPONENT'S STONES IN THE OPFOSITE FIT AND ALL STONES INVOLVED

ARE PLACED IN YOUR KALAH.

i THE GAME ENDS WHEN ALL THE PITS ON ONE SIDE ARE EMPTY. THE :
S OTHER PLAYER ANDS THE REMAINING STONES TO HIS KALAH. THE :
WINNER HAS THE GREATEST NUMBER OF STONES AND IS AWARDED THE "
DIFFERENCE BETWEEN HIS STONES AND HIS OPPONENT'S TOWARDS A ROUND.
! 1 THE FIRST PLAYER TO GET 18 WINS THE ROUND. THE LOSER CHOOSES
WHO GOES FIRST IN THE NEXT GAME.

; T = TOP; B = BOTTOM; K = KALAH
1T 2T 3T 4T 5T 6T
KT KB
6B 5B 4B 3B 2B 1B
3 3 3 3 3 3

;o 3 3 3 3 3 3 .

‘
[P TR

P A T AT

Ak a et km oh bt < v e

Top plays first, mcving 3 so that the last stone lands in his kalah, giving him another

turn. He then plays 6, capturing the stones in bottom’s third pit.

TOP PLAYS 3
& 4

6 3 3 3
1 0 1
3 3 3 3 3 3
TOP PLAYS 6 ;
4S8 0 4 4 0 ‘
5 0

3 3 o0 3 3 3

Bottom then plays 2, dropping a stone in his kalah and wrapping around to leave the

last stone in top's 6. i

{ BOTTOM PLAYS 2

| 4 4°0 4 4 1

5 1
3 3 0 3 0 4

An Examole of Verification with Runcheck 3-3

TOP PLAYS 3
T = TOP; B = BOTTOM; K = KALAH
1T 2T 3T 4T ST 6T
68 SB 4B 3B 2B 1B
4 4 0 4 4 1
33 0 3 o0 4

KT

Top then mistakenly enters 8, an illegal move because it is an empty pit, and the
program reminds him of the positions. The game continues until all of top’s pits a.e
empty, and then the program prints out the score.

SCORE - TOP 14 BOTTOM 22 - BOTTOM WINS BY 8
EXIT

oy

|
f
i
L
3

3-4

1. Initial preparation

The first step in verifying the program was to read it through, lcoking for syntax
changes needed for it to be accepted by the verifier. The program had been w -itten
in standard PDP-10 Pascal, and the language accepted by the verifier [SVG79] has a
number of additional restrictions. For instance, type checking is very strict in the
READ and WRITE procedures. In the verifier version of the program, device TTY was
declared to be a file of integers, and a large number of WRITE statements for printing
strings (such as the program’s help instructions) had to be removed. It is also
necessary in the current verifier to list explicitly, for each procedure, the readonly or

read-write global variables.

Some of the restriction: in the verifier are present to insure that the complete effect of
every program can be captured within the VCG semantics. In some cases t' s may
have made the verifier too restrictive. The alternatives to the current situation are
either to develop full semantic definitions for some azspects of Pascal not now
permitted, or to use intentionally weak semantics, permitting some operations such as

terminal output to appear in programs without fully defining their effects.

At this point, two other small changes were made in the program text to simplify
verification. Cne of the changes was to remove aliased variables from a procedure
call — the procedure call rules in the verifier do not permit aliasing, although in
principle more general rules could be developed. Depending on whether or not one
allows aliasing, there may be a trade off between the conciseness and efficiency of
programs, and the complexity of specification and verification. The example which
we will consider shows that aliasing can add difficulty to understanding and verifying
a program even if it is permitted by the procedure call rule. In the process of
studying the effect of aliasing, a cleaner way of organizing part of the program was

discovered.

[P

Rt £ a il

ST O T TR TR T e TN AT

e TR T
¥

Initial preparation 8-5

Ancther change was made in the program only to simplify the verification. The
original program would have been acceptable, but in order to show absence of
runtime errors in one statement, it would have been necessary to perform more
detailed verifications of other large portions of the program. It is frequently the case
that the correctness of some small portion of a program is dependent cn the
preservation of a global property by many other portions. In such cases it is often
better, hoth from the standpoint of verification and that of gond programming

practice, to consider modifying the program to eliminate the unnecessary dependency.

1
|
1
!
|

e ——— _— . e JERRPIRDNPYSIVEL AU IS I U Ve It

P

14

3-6

2. A look at Aliasing

In the program, each player’s row of pits is represented as a variable of type
SI1UE = ARRAY [0 . . PITCOUNT] OF INTEGER, where PITCOUNT is the number of pits for
each player, and the zero position is the Kalah. The state of the game is maintained

in the global variables TOP and BOTTOM of type SIDE:

CONST
PITCOUNT = 6; % NUMBER OF PITS FOR EACH PLAYER. (NORMALLY 6) %
STONES = 3; % STARTING NUMBER OF STONES PER PIT. (NORMALLY PITCOUN./2) %

TYPE
POSITION = O:PITCOUNT;
SIDE = ARRAY [POSITION] OF INTEGER;

VAR
TOP, BOTTOM: SIDE;

A procedure PRINTBOARD is called to print out the current state of the board. Note
that TOP and BOTTOM are referenced as read-only globals.

PROCEDURE PRINTBOARD;
VAR
PIT: POSITION;
BEGIN
WRITE(TTY,' ');
FOR PIT :z 1 TO PITCOUNT DO
WRITE(TTY,TOPLPIT]): 4);
WRITELN(TTY);
WRITE(TTY,TOP[O]: 4);
FOR PIT := 1 TO PITCOUNT DO
WRITE(TTY,! ')
WRITELN(TTY,BOTTOMLO]: 4);
WRITECTTY,' ');
FOR PIT := PITCOUNT DOWNTO 1 DO
WRITE(TTY,BOTTOMLPIT]: 4);
WRITELN(TTY);
WRITELN(TTY)
END; % PRINTBOARD %

Dividing the board up into TOP and BOTTOM poses a problem when it comes to

writing the part of the program for moving the stones. Moves that wrap around the

oot

A look at Aliasing 8-7

end or capture stones require access to both sides of the board. It is inconvenient to
refer to the sides as TOP and BOTTOM in these parts of the program; one wants instead
to refer to the sides as the side making the current play and the opposite side. In the
program, this is accomplished by calling a procedure PLAY to rebind the two sides to

the variables US (whichever side is currently moving) and THEM (the other side).

PROCEDURE PLAY(VAR US, THEM: SIDE; TOPPLAY: BOOLEAN);
% CALLED FOR EACH PLAY. RETURNS FALSE WHEN ONE PLAYERS TURN ENDS. %

Ideally, in this plan for the program, the procedure PLAY should te symmetric between
the two sides, referring to them only by the names US and THEM. The effect of calling
PLAY would then depend only on the values of the arguments, and not on their names.
This plan was not carried out fully. PRINTBOARD is called within PLAY, and since TOP
and BOTTOM are globals of PRINTBOARD, they are globals of PLAY. In the procedure
calls PLAY(TOP,BOTTOM,TRUE) and PLAY(BOTTOM,TC! FALSE), TOP and BOTTOM became
aliases with US and THEM.

The ability to refer to a variable by different names leads to programs that are
concise and efficient, but difficult to understand and specify.! It is often the case that
a procedure which will be called with aliasing cannot be understood from its text
alone — one is forced to look outside to the caller. In reading and understanding the
text of a procedure, aliasing is an exceptional case; one tends to think of each
identifier as a distinct variable. Aliasing lends itself to misunderstanding not so much
because it introduces complexity, but because (at least in current programming

languages) the complexity is concealed.

Here is an outline of the necti~~ of variable and procedure declarations in which the

aliasing occurs:

1 EQUIVALENCE statements in FORTRAN are an extreme example.

Man® it e

—

A look at Aliasing 3-8

A VAR TOP, BOTTOM:SIDE;

PROCEDURE FRINTBOARD;
b BEGIN . . . END; % (refers to TOP and BOTTOM) %

PROCEDURE PLAY(VAR US, THEM:SIDE; TOPPLAY:BOOLEAN);

PROCEDURE READMOVE
REPEAT 1
PRINTBOARD;

IF TOPPLAY THEN WRITE(TTY, ‘TOP PLAYS ');
ELSE WRITE(TTY, 'BOTTOM PLAYS ');

END;
END;
BEGIN % Main Routine %

. PLAY(TOP,BOTTOM,TRUE); . . . PLAY(BOTTOM,TOP,FALSE); . ..
END;

The nrst thing to notice is that because TOP and BOTTOM are always passed as

globals, there is no direct indication in the text that they are referenced in PLAY. One

can discover that the variables are used only by noting the call on PRINTBOARD and
referring back to its definition. The next point of difficulty in understanding that is
likely to occur while reading the text of PLAY is that one may notice that TOP and
BOTTOM are referenced as globals but not changed, and mistakenly infer that the
values of TOP and BOTTOM seen by PRINTBOARD are th. initial values from the time
when PLAY is entered. Of course thic is not the case, but to understand, one would

have to read the main routine and see the aliasing procedure cail. The combination

of global variables and aliasing encourages the construction of programs in which

{ local details cannot be understood unless one has thoroughly examined the entire i

program.

If we change PRINTBOARD to take the two sides as parameters instead of as globals, the

> aliasing in PLAY can be eliminated by making the call on PRINTBOARD conditional.

BRIV SERNRTI PO S WP TR Ty goe

A look at Aliasing $-9

Notation: in this chapter, the original program is displayed in upper case, all changes

and additions for verification are shown in lower case.

| IF TOPPLAY THEN
begin printboard(us, them); WRITE(TTY, 'TOP PLAYS ') end
eise begin printboard(them, us); WRITE(TTY, 'B0TTOM PLAYS ') end;

‘f

| The conditionality was implicit before in the pattern of aliasing; this veriion of the
k program makes it explicit. Some of the complexity of the program has been
| transferred from variable bindings to an explicit test, with a small cost in execution

time.

The new version can be more readily understood and since it performs the same
function, its specifications should be no more complicated than the original’s. In order
to specify the original program, it would have been necessary to describe in some way
the functional dependence on the names of the parameters achieved by aliasing. The
new version has the advantage that it can be described independently of the names of

the actual parameters.

Explicitly writing out the arguments to PRINTBOARD calls attenticn to the functional

messiness of PLAY and READMOVE. The program could be further improved by
teparating the operations of printing the board and announcing the current player
from the operations of reading a move and changing the board. The printing
operations are based on the identification of the sides as TOP and BOTTOM, while the
reading and moving operations are symmetric and the procedures for them are clearer

: are more fficient without references to TOP and BOTTOM.

]
:
»
|
i
g

i
1

3-10

E—

3. When to leave a potential exror

A procedure NOROCKS is called after each move to tast whether all of the pits on one
side have become empty, indicating that the game is finished. The WHILE loop in the
procedure NOROCKS presents a typical difficulty: the index PIT can become negative,
giving a subscripting error, if the parameter US is an array of all ceros. The actual
parameters supplied to NOROCKS are always one of the sides, TOP and BOTTOM. Since
the zero position 1n a side is the Kalah, it is not possible for all the entries in US to be |
zero: the rules of the game as enforced by the program make it impossible for one f
player to capture all of the stones, and so if all of the pits on a side are ernpty, there

must be stones :n the Kalah.

PROCEDURE NOROCKS(VAR US: SIDE);
% TESTS FOR THE TERMINATION CONDITION OF THE GAME. %
VAR
PIT: POSITION;
BEGIN
PIT := PITLCOUNT;
WHILE /JS[PIT]=0) DO
PIT .= PIT - 1;
IF #IT = 0 THEN BEGIN
TURNDONE := TRUE;
GAMEOVER := TRUE
END
END; % ROCKS %

In order to verify the necessary entry condition on US, it woulcd be necessary to invent
an invariant for the sides, and show that it is maintained throughout the program
whenever one of the sides is changed. This verification is quite feasible, but requires

much more detail than usual. There are a number of alternatives; the question

becomes whether the detailed verification is worthwhile. This in turn depends on

one's reason for verifying the program. For this illustration, we chose to assume that

the verification was mainly intended to assure absence anomalies that could produce

runtime errors. Given this limited purpose, a reasonable way to proceed was to

modify the test of the WHILE loop to assure absence of runtime errors locally,

. e

When to leave a potential error $-11

regardless of the value of US, while maintaining functional equivalence under the

assumption that US would always have a non-zero element.

WHILE (US[PIT]=0) and (pit>0) DO PIT := PIT - 1;

Changing the program is consistent with the belief that verification of shallow
properties is not intended to give an absolute guarantee of correctness, but rather to
extend the range of mechanical checking performed on a pregram. The program must
not be regarded as a sacred, immutable text carved in stone, to be verified and then
pronounced infallible. The verifier is a tool for programming; it wili be used to the
extent that it helps to reduce the total amount of effort needed to produce high
quality programs. Since we are not attempting to verify the detailed properties of the
Kalah program the programmer must still attempt to make it work correctly by the
usual methods. Using a minimum of effort, Runcheck will show the absence of a
potentially large number of common problems which cannot be detected during

compilation.

If one ic unsure that the assumption about US will be maintained, it may be better to
test the assumption at runtime and abort the program if an error is detected. Failure
of the assnmpticn indicates a riajor fiaw in the operation of the program, which
could be masked by strengthening the WHILE test. This approach explicitly leaves
open the possibility of an error in one statement. Verification is still of great value
with this approach, because all of the othex: poss.ole runtime errors have been

climina’ed, and (be cemaining one can be tested 2* runtime at a small cost.

WHILE (US[PIT)=0) CO
begin
testassertion pit>0;
PIT := PIT - 1;
and;

312

4. Initial assignment of assertions

e
s

After modifying the program, each procedure was examined and a trial set of entry

| and exit assertions was written. It is not necessary (or usually possible) for the
! assertions to be exactly right at this stage. From experience, it seems best to assign i

assertions fairly quickly and then use the verifier as a guide for filling in whatever is

. 7 T ———r

missing.

% KALAH - AN ANCIENT GAME OF AFRICA ANGC THE MIDDLE EAST. %
s % JOHN RAMSDELL DEC 1979 %

f CONST
PITCOUNT = 8; % NUMBER OF PITS FOR EACH PLAYER. (NORMALLY 8) %
STONES = 3; % STARTING NUMBER OF STONES PER PIT. (NORMALLY PITCOUNT/2) %
% A MORE INTERESTING GAME FOR EXPERTS RESULTS BY SETTING STONES %
% TO A VALUE BETWEEN PITCOUNT/2+1 AND PITCOUNT. % Bk
TYPE i
POSITION = O:PITCOUNT;
SIDE = ARRAY [POSITION] OF INTEGER; o
VAR
tty: file of intager; ;
PIT: POSITION;
TOP, BOTTOM: SIDE;
GAMEOVER: BOOLEAN;

|
!
i
5
!

PROCEDURE PRINTBOARD(top,bottom:side);
globai(var tty);
entry def(top)adef(bottom)adef(pitcount);
oxit true;
VAR
PIT: POSITION; i
BEGIN ‘
% WRITE(TTY, ‘'); % '
FOR PIT := 1 TO PITCOUNT invariant true DO
WRITE(TTY,TOPLPIT]);
% WRITELN(TTY); %
WRITE(TTY,TOP[0]);
% FORPIT := 1 TO PITCOUNT DO
\ WRITE(TTY,! ');%
! WRITE(TTY,BOTTOM[0]); !
} % WRITE(TTY,! '):% ‘
i FOR PIT := PITCOUNT DOWNTO 1 invariant true DO ’
‘ WRITE(TTY,BOTTOMIPIT]);
% WRITELN(TTY); %

w,___,.__

Initial assignment of assertions 3-13

% WRITELN(TTY);%
END; % PRINTBOARD %

PRGCEDURE HELP;
exit true;

; BEGIN
% (prints instructions shown in the sample protozol) %

END; % HELP %

Y s e~ e

PROCEDURE HELPMOVE;
global(var tty);
antry def(gitcount);
axit true;
‘ VAR
; PIT: POSITION;
b BEGIN
% WRITELN(TTY):%
% WRITELN(TTY,'T = TCP; B = BOTTOM; K = KALAH'):%
% WRITELR(TTY); %
% WRITE(TTY.! ');%
FOR °IT := 1 TO PITCOUNT invariant true DO
WRITE(TTY,PIT %, 'T'%);
% WRITELN(TTY);%
% WRITE(TTY,' KT');%
FOR PIT :x 1 TO PITCOUNT invariant true DO
WRITE(TTY, 0 %' '%);
% WRITELN(TTY,' KB');%
% WRITE(TTY,! ‘)%
FOR PIT := PITCOUNT DOWNTO 1 invariant true DO
WFITE(TTY,PIT %, 'B'%);
% WERITELN(TTY); %
% WRITELN(TTY)%
END; 4 HELPMOVE %

T ————

PROCEDURE PLAY(VAR US, THEM: SIDE; TOPPLAY: BOOLEAN);
‘% CALLED FOR EACH PLAY. RETURNS FALSE WHEN ONE PLAYERS TURN EMDS. %

global(var tty,gameover);
entry def(us)adef(them)adef(pitcount);
exit def(us)adef{them)adef(gameover);
VAR
PIT: POSITION;
LASTPIT, STONES: INTEGER;
TURNDONE: BOOLEAN;

f’ PROCEDURE READMOVE(VAR PIT: POSITION);

global(us,them,topplay;var tty);
entry def(us)adef(them)adef(topplay)adef(pitcount)aO<pitcount;

axit def(pit)AO<pitapit<{=pitcount;

" . N N .
\ . P o
V) m -L! i -I!- - RS . . .
Rkt Y POUGRREPS S R ~ - b B e R Y ML PR

¢ g

Haacimen . .

e e T T g T

Initial assignment of -ssertions

VAR
GOODMOVE: BOOLEAN;
NUM: INTEGER;
BEGIN
GOUVMOVE := FALSF;
REPEAT
IF TOPPLAY THEN
begin
printboard(us,them);
WRITE(TTY,O0 %'TOP PLAYS %)
end
ELSE
begin
printboard(them,us);
WRITE(TTY,1 %'BOTTOM PLAYS '%);
end;
READ(TTY,NUM);
IF NUM > PITCOUNT THEN
HELP
ELSE IF NUM > O THEN
IF USINUM] <> O THEN BEGIN
PIT := NUM;
GOODMOVE := TRUE
END;
IF NOT GOODMOVE THEN
HELPMOVE
UNTIL GOODMOVE invariant true
END; % READMOVE %

FUNCTION MODULUS(NUMBER, BASE: INTEGER): INTEGER;
entry base=>1;
exit 0<zmodulus A modulus<zbase-1;
BEGIN
IF NUMBER => 0 THEN
MODULUS := NUMBER MOD BASE
ELSE BEGIN
REPEAT
NUMBER := NUMBER + BASE;
UNTIL NUMBER =» 0
invariant number(=base-1;
MODULUS := NUMBER
END
END; % MODULUS %

PROCEDURE MOVE(VAR US, THEM: SIDE; PIT: POSITION);
global(var stones);

entry def(stones)a1 sstonesndef(pitcount)rdef(us)adef(them)
ndef(pit)AO<=pitapitspitcount;

3-14

1
i
!
]

Initial assignment of assertions 3-15

axit def(us)andef(them)adef(stones);
VAR ‘
INDEX: POSITION; J
SMALL: INTEGER;
BEGIN % DISTRIBUTES STONES TO THE PITS. % ']
STONES :»= STONES - PIT - 1; H
SMALL := -STONES;
, IF SMALL < O THEN
SMALL := O; o
FOR INDEX := PIT DOWNTO SMALL invariant true DO ;
USLINDEX] := US[INDEX] + 1; i
IF STONES > O THEN
MOVE(THEM, US, PITCOUNT)
END; % MOVE %

PROCEDURE NOROCKS(VAR US: SIDE);
% TESTS FOR THE TERMINATION CONDITION OF THE GAME. %
global(var turr.Cone;var gameover);
entry def(us)adef(pitcount)adef(turndone’irdef(gameovaer); !
exit def(us)adef(turndone)adet(gamaover); i
VAR -
PIT: POSITION;
BEGIN
PIT := PITCOUNT;
Invariant O0<=pitapit<zpitcount
WHILE {US[PIT]=0) and (pit>C) DO
PIT := PIT - 1;
IF PIT = O THEN '3t "N
TURNDONE := 7 lUc;
GAMEOVER := TRUE
r END
k END; % ROCKS %

BEGIN % PLAY %
REPEAT ‘
READMOVE (PIT); :
% THE STONE THAT MOVED THE FURTHEST ENDS UP IN LASTPIT. %
LASTPIT := MODULUS(PIT - US[PIT], 2 » PITCOUNT + 2);
STONES := US[PIT];
USCPIT] := 0;
MOVE(US, THEM, PIT - 1); % MOVE STONES TO NEW PITS. %
TURNDONE := TRUE;
IF LASTPIT = O THEN
TURNDONE :x FALSE % REPLAY IF LAST STONE ENDS IN KALAH. %
ELSE IF LASTPIT <= PITCOUNT THEN
IF USTLASTPIT] = 1 THEN
IF THEM[PITCOUNT + 1 - LASTPIT] <> O THEN BEGIN
% CAPTURE OPPONENTS STONES. %

e T —

STy T T T TITIIRTT T TR Wy YT v e < o
T . Ty TR T ——

] Initial assignm =t of assertions 3-16

US[0] := US[0] + THEM[PITCOUNT + 1 - LASTPIT] + 1; J
THEMLPITCOUNT + 1 - LASTPIT] := O;
US[LASTPIT] := 0 .
END;

% TEST FOR END OF GAME. % ;
NOROCKS(US); ?

NOROCKS(THEM)
UNTIL TURNDONE invar.ant true ;
END; % PLAY %

i antry true; |
: exit true;
BEGIN % KALAH % j

GAMEOVER := FALSE; ,

}
! TOPLO] := 0; % INITALIZE GAME. %
d BOTTOMILO] := 0;
i FOR PIT := 1 TO PITCOUNT Invariant true DO BEGIN
TOPIPIT] := STONES;
BOTTOMIPIT] := STONES
END;
% WRITELN(TTY);%
. % WRITELN(TTY,'KALAH - TYPE "“H" FOR HELP');%
' % WRITELN(TTY); %
‘ REPEAT % PLAY GAME. %
PLAY(TOP, BOTTOM, TRUE);
IF NOT GAMEOVER THEN
PLAY(BOTTOM, TOP, FALSE)
UNTIL GAMEOVER invariant true;
% GAME OVER - PRINT FINAL SCORE. %
FOR PIT := 1 TO PITCOUNT invariant true DO BEGIN
TOP[O] := TOP[O] + TOPLPIT];
BOTTOM[0] := BOTTOML[O] + BOTTOMIPIT]
END;
% WRITEA(TTY); %
% WRITE(TTY,'SCORE -~ TOP', TOP[O]: 4, BOTTOM' BOTTOMIO): 4,' - '); '»
% IF TOP[O] > BOTTOM[O] THEN
WRITELN(TTY,'TOP WINS BY!, TOP[0] - BOTTOM[O]: 4)
ELSE IF TOP[0] < BOTTOM{O] THEN
WRITELN(TTY,'BOTTOM WINS BY', BOTTOMIO] - TOP[0]: 4)
ELSE
WRITELN(TTY,'NO WINNER?')
%
END.

- -
s)

i S T "OUER VRIS RNV S YOI QP S 1P IR SR ISP

—— =

6. Using Runcheck

6.1 Verifying the program

Initially, several tries were needed before the program with assertions passed all of the
verifier's syntax checks. Eventually, the program was accepted, and the verifier
produced some additional loop invariants and generated the verification conditions.

A large number of the conditions did not simplify to True.

1. The Exit condition for MODULUS was not provable, because the verifier has no
built in knowledge of the function MOD, and no inference rules had been given. The

following axioms were added for the next try:

0sx A 0<y > 0s(x MOD y)<y,
DEF(x) A DEF(y) > DEF(x MOD y)

2. In the procedure PLAY, there were a large number of unproven conditions of the
form O<KUS[PIT] It was not immediately clear what had caused this problem, so

further consideration was postponed.

8. There were also unproven conditions of the form DEF(GAMEOVER) for PLAY.
Looking back at the program listing, it was recailed that the variable GAMEOVER is set
to TRUE by the procedure NOROCKS to signal the end of the game. GAMEOVER is
initially set to FALSE in the main procedure, and is tested there after each call to the
procedure PLAY. In the first assignment of assertions, DEF(GAMEOVER) had been used
as an entry and exit assertion for NOROCKS, and as an exit assertion in PLAY, but not
as an entry assertion. The unprrvable conditions for PLAY resulted from the missing
entry condition, which was added for the next try. Since GAMEOVER is assigned to in
NOROCKS but never referenced there or in PLAY, it would also have been possible to
delete all of the entry and exit assertions for GAMEOVER frem the two procedures.

The verifier would still be able to prove DEF(GAMEOVER) at the points where it is

v e e ke S et i ettt L

i
1
.
,
'i
»
?
,
,
:
:

Using Runcheck 3-18

referenced in the main procedure, because GAMEOVER is initialized to FALSE and, by

the Lessdef lemma, cannot later become uninitialized.

4. For the procedure READMOVE, there were unproven conditions DEF(PIT) and
1sPITsB8. These resulted from the exit assertion, which was not provable when
leaving the main REPEAT loop, because the invariant had initially been simply set to
TRUE. Note that since PITCOUNT was declared a constant, the verifier substituted the
value 6 wherever it originally occurred in an assertion. The loop in READMOVE reads
numbers from the terminal until a legal move is entered, and then sets PIT to the
number read, which must be between 1 and PITCOUNT, and sets GOODMOVE to TRUE.

For the next try, the invariant was set to

GOODMOVE=TRUE > (DEF(PIT) A 1<PIT A PITSPITCOUNT).

It is interesting to note in passing that the invariant for PIT cannot be expressed as a
conjunction of linear inequalities, because of the dependence on the variable
GOODMOVE. Specialized methods for automatically generating linear loop invariants
have been studied by some researchers; our experience indicates that non-convex
assertions are required with sufficient frequency that a verifier based solely on
automatically gen-rated convex assertions, without user assistance, would be of very
limited usefulness even for verifying shallow properties such as absence of runtime

errors.

After making the changes mentioned above, the verifier was run again, and only the
conditions OCUSLPIT] in PLAY remained unproven. Looking at the body of PLAY, it
was observed that the variable STONES is assigned the value US[PIT] and then the
procedure MOVE is called with an entry assertion containing 1<STONES. This is how

O<USIPIT] appeared in the VC for PLAY.

On entry to MOVE, STONES is set to the number to stones to be distributed, which

must Ce greater than 0. The entry condition 1<STONES is always satisfied when

Using Runcheck $-19

MOVE is called, but looking at the program, it was realized that the assertion should
not be needed for proving absence of runtime errors in MOVE. The condition was

deleted from the entry assertion, and when the verifier was used a third time, all of

the VCs were completely proven.

It would have also been possible to establish the truth of O<US[PIT] in PLAY by
strengthening the exit assertion of the procedure READMOVE, which always sets PIT to

a value such that C<US[PIT] is true.

5.2 Generalizing the verification

Once an initiai verification has been obtained, it is sometimes worthwhile to
experiment further to see what will happen if some of the initial assumptions are
lifted. In the Kalah program, PITCOUNT and STONES are declared as integer constants
with values 6 and 3, but a comment in the program suggests using other values for a
more interesting game. In order to check for absence of runtime errors for all possible
settings, PITCOUNT and STONES were redeclared to be variables in the outermost block.

The entire program was t*2n reverified with only the initial assumptions

DEF(PITCOUNT) A 1SPITCOUNT A DEF(STONES),

showing that PITCOUNT could be any positive constant and STONES could have any

value. The effect of this generalization is difficult to achieve by ordinary means such

as program testing.

T O it _ T T a TR

Lamiee

Chapter 4. Verification and the Reliability of Computer
Programs

! The principles of program verification ar: :ow well understood, but what can we say
s of the practice? That at present we are able to specify and verify small and often
very intricate programs. That a few large programs have been specified and verified
with a great deal of effort. And that in addition to increasing : : confidence in

correct programs, experience with the verifier shows it to be extremely helpful for

finding error: (n programs.

Can verification become a practical tool for increasing the reliability of larger
programs? Among the myths which have hindered realistic understanding ot this
question is the belief that verification can or should somehow attempt to eliminate all
programming errors. Verification is expensive and cannot guarantee correctness in
any absolute sense. As a practical tool, verification will be used only to the extent

that i* is a cost competitive way of obtaining a desired degree of reliability.

We say that something is reliable if we can put our trust in it. To decide whether
something is reliable, we have to know the ways in which it is likely to fail. For
physical objects such as bridges and integrated circuits, reliability can be easily
observed and measured: simply use something and wait for it to stop working. For
instance, if we wanted to measure the reliability of an integrated circuit, we could

operate it under a variety of conditions of voltage, temperature, and vibration, and see

how well it performed its intended function. When we speak of the reliability of

computer programs, we mean something that is different in an important sense.
Computer programs are pure function without materials or assembly which can

behave in unpredictable ways. The failure of a program is a failure of functional

design; the question of reliability for programs is more ciosely analogous to the

~uestion of whether a circuit performs the proper function under ideal conditions

4-1

t
]
Lzr'm. pE — .
s ' ’
R R U e e et e IS vy e . T T e T T s
- 0 . Fhatd ce . mANt o 3

r ——

4-2

than the question of reliability of circuits. Correctness of function is much more of an
issue for programs than for circuits or bridges because the functions can be so
coriplex. Reliability is a subtle issue for programs because the intended function is

often incompletely or incorrectly understood.

One of the remarkable unities in physical science is the applicability of half a
handful of probability distributions to a broad range of phenomena. Social scientists
have also made use of simple probabilistic assumptions in their models, perhaps with
less justification. But we can see no justification for treatments that attempt to apply
to software the modeis of reliability that have been developed for various areas of
engineering. Ideas which help us to understand the failures of physical systems such

as circuits or bridges will teil us little about design errors in programs.

Because individuals often have incorrect or incomplete ideas about the intended
functions of a program, programs used by many people are unlikely to be reliable
unless different users can reach a precise agreement that a program fulfills its
intended function. In our view, the value of verification is that it helps people to
reach very strong and precise agreements about programs. The nature of such an
agreement, which we will simply call a consensus, can be best appreciated through a

detailed, pragmatic examination of the verification process.

In the remainder of this chapter we will draw on experience with Runcheck and the

Stanford Pascal Verifier to clarify several practical issues:

1) How verification contributes to reliability even in the absence of
absolute correctness.

2) What kinds of applications of program verification appear to be
feasible for large programs.

8) How verification can be combined with other methods such as testing.

A e A Co el L e

] 4-3

While knowledge of the theory underlying the formal operations of verification is
now widespread, the human aspects of verification, such as the amount of labor
{ required and the effects of human errors, have been rarely discussed. We hope that
the observations in this chapter will contribute to more realistic understanding of

verification.

Throughout this chapter we will be developing a new view of the meaning of
program verification. The classical view has been that verification sought to

assimilate programming into formal mathematics, thereby elevating it above

uncertainty. Our new view emphasizes the use of mathematical methods to reach a

consensus, or strong agreement armnong users about the correctness of a program. Of
course, there are many methads, including testing and informal design reviews, which
can give some degree of confidence in programs. But we view verification as a tool i

¢ which can be used to form a stronger consensus than would be otherwise passible.

[P PSIPGNE W W T

4-4

1. Program Specification and Consensus

Implicit in the notion of reliability is the view that it is not sufficient for a program
to faithfully perform some function unless that function can be well understood by
users. It is essential for the creators of a reliable program to communicate its function

through precise and understandable documentation.

One of the most frequently raised criticisms of program verification is that the true
objectives of a program are usually known only informally to the programmer, while
to apply program verification, it is neccessary to develop formal program
specifications. Since these specifications may be in error, or may inaccurstely or
incompletely reflect the programmer’s informal intentions, program verification canrs
give absolute assurance that intentions will be fulfilled. In our view, there is ¢
validity to this criticism: the problems of formalizing specifications _.e not to o
trivialized and no mathematical procedure can demcnstrate the consistency of
informal ideas. But it would be naive to infer directly from this argument, as some
critics have, that program verification is doomed to be unable to increase our

confidence in and the reliability of programs.

If there is one thing that is common to all of science and engineering, it is use of
formal rathematical methods to investigate informal intuitions and intentions.
Science and engineering derive their power from transitions of informal i1deas to
precise mathematical descriptions. Until formalized, a theory can never be sub jected
to critical scientific analysis. Similarly, the effort to make sure that computer
programs accomplish a desired objective must be based on precise, understandable
descriptions of the purpose. If we are truly unable to make a precise, understandable
statement or the purpose of program, how likely is it that the program can ever be

reliable?

When can we say that a computer application performs the desired function? If just

T g A NP T

¢ . o Al et

e - _ e

Program Specification and Consensus 4-5

one person conceives the function, his mental concept may be incomplete or not in
agreement with other people. So it is best to say that a number of people should
agree that the function is the right one. Given a set of specifications, different people
can study it and attempt to reach agreement that it corresponds to the informal
notions each of them holds. Without precise specifications, what methods are there to
reach such an agreement? To have a number of different people attempt to review a
very large program without precise specifications is impractical and unlikely to give
strong assurance. (Although review of a program may be a he'pful step in
formulating precise specifications.) In programs, it is difficult to suppress details which
distract from readability. More important, specifications can be structured for ease of

understanding instead of effective, efficient execution.

We do not mean do suggest that it is possible in every case for the purpose of a
program to be stated precisely. On the contrary, there may “e programs which, for
instance, attempt to compose music or amusing anecdotes, for which no precise
statement of purpose can exist. Different people, by testing such a program very
thoroughly, could come to some agreement among themselves that on the examples
they have seen, the program does accomplish an informally stated purpose. In such a
case, the testers might in fairness reach a concensus that the program is artistically
talented. But even if such an agreement has been reached, a program of this type
cannot be said to belong to the category of reliable software, because by testing alone
against an ill defined set of criteria, we can develop no strong assurance that the next
composition generated by the program will not be found to be unmusical or
unamusing. The point of this example is that there are limits to the notion of reliable
software, that some programs can be useful without being reliable. But if the purpose
of a program cannot be stated with sufficient precision for people to reach a

consensus, it is hard to see how it can be reliable,

What about informal specifications? They are certainly useful for many purposes.

Specifications can be shortened in two ways: by referring to definitions that are

T Y PP AR CR U P ,1;_;4«.:.1’...;;.*;1.&;&.:‘ i

et ottt e

Program Specification and Consensus 4-6

generally known, trusting each reader to have the same understanding, or by
becoming less precise. To the extent that “informal” means “imprecise,” informal

specifications will be unable to contribute to reliability.

Finally, we have to say a few words about a second myth of verification: that
specifications should always describe the program completely. There is a common
criticism of verification which goes, "There are things in many programs which are
hard to specify independently and completely. Therefore verification cannot
contribute to reliability.” Runcheck is based on the idea of verifying very incomplete
specifications — only enough to show absence of rurtime errors. We fee! that,
contrary to myth, many other important applications of verification will depend on

partial specifications which can be written and checked relatively easily.

i

—_

. T

o D

4-7
2. Concerning False Proofs

One of the central arguments against the effectivenes: of program verification is that
individual verifications are unlikely to command the attention of a large critical
audience, and therefore errcrs in proofs are unlikely to be detected [DLP79]. In our
view, there can be no absolute assurance of the validity of proofs. However, a close
look at the theory and construction of a verifier (Stanford Pascal Verifier or
Runcheck) will show that it has the potential to be at least as reliable as any other
stable, widely used piece of software. Whatever errors may happen to be in a verifier
are very likely to be detected as it is used, resulting in a stable, reliable system even in

the absence of a verification of the verifier.

One may ask what the value of verification is if the reliability of the verifier is not
of a fundamentally different nature than that of other reliable programs. Over the
course of time, a verifier concentrates the experience of its designers and users and the
users of verified programs. Faults which are discovered can be corrected, and so will

not affect later users.

A verifier is the center of a consensus between people who propose verification
methods, implementors of the verifier, its users, and the users of verified programs.
Any fault in the verifier is cbservable by one or more groups (more about this later),
and can then be corrected. The process we are describing is a familiar one:
verificaticn is the application of the scientific method to the field of programming.
The ultimate source of the verifier’s reliability is not some set of absolute truths, but
rather the process by which scientific theories are validated. At any time, a proof
producad by the verifier should represent our best thinking about what constitutes a

valid proof. New users are spared from repeating old mistakes.

The advantage given by the verifier is that the experience concentrated in it can be

applied in one shot to new programs. If a new program is heavily used and carefully

“
e 4 aaes 0 bl sl lovcadsentodd,

1
{
i
4

Concerning False Proofs 4-8

maintained over a long period of time, it can reach a high level of reliability without

having been verified. But the verifier helps us to reach this result much more
: quickly. Of course, this depends on the availability of the proper specifications. ‘10
reiterate our previous comments, |) partial specifications (eg. specifying that a
program should be free from runtime errors) are often the most practical, and 2) if we
really do not know how to specify some aspect of a program, there are strong grounds

for believing that the program cannot possibly be reliable.

In the remainder of this section, we will discuss the reliability of the major
components of a verifier. For concreteness, we will consider the Stanford verifier, but i

cur comments also apply to Runcheck, which is a version of the Stanford verifier, and

to verifiers in general.

PR

1 1e three main components of the Stanford vérifier are a parser, much like the front
en.. of a compiler, the verification condition generator (VCG), which implements the
semantic definition of Pascal, and the theorem prover, which is independent of the

programming language accepted by the verifier.

The parser component consists of a table driven context free parser and semantic
routines which use a symbol table to perform the usual semantic checking performed
by compilers. None of this is new technology; the parser is very reliable because

standard compiler construction is now routine. |

VCG converts the parse tree of the program with assertions into a set of first order

formulas whose validity implies the consistency of the program and assertions. The
question of VCG's reliability reduces to two separate issues. One is whether there is a
problem in the axiomatic definition; the other is the correctness of the VCG j
implementation. Roughly speaking, the uitimate question relating to the soundness of

the axiomatic definition is whether the intuitive semantics of Pascal is a model of the

' formal definition. There have been formal demonstrations of consistency between the

i
b

Concerning False Proofs 4-9

axiomatic definition and other semantic definitions,! but consistency proofs cannot
completely resolve the issue of whether a formal semantics corresponds to the intuitive
semantics. Fortunately, the language Pascal and its axiomatic definition have received
widespread attention. The existence of a body of published literature correcting and
refining the original definition is evidence of the formation of a strong consensus

about the definition’s correctness.

An interesting question beyond the scope of this thesis is: How does one account for
the existence of agreement on the intuitive semantics of Pascal or other programming
languages? One could name languages for which agreement would be much less
certain. Looking for answers close at hand, one finds the factors of clean language
design, and the conservatism cf the language — its dependence on only previously
well known conr:pts. The same considerations apply to the unde-sicndability of
programs in general. One can only speculate about deeper expianations. Perhaps the
experience with programming languages can tell us something about language itself.
The commonly observed tendancy of programming languages to guide and constrain
thought may indicate that we use programming languages as languages in some sense
(IWh56], Part 4 [We7l]). Perhaps the process of acquiring the general rules of a
programming language from fragmentary explanations and examples is related to (and

can be explained in terms of) the process of learning a language.

One of the most controversial aspects of verification has to do with the fact that
sometimes it is difficult to formally define part of a language. When this happens,
there are several possibilities. It may be that we simply don't know enough about
how to give a concise definition, and that further research could find ways of doing it.
It may be that the feature represents poor language design: inherently difficult to
describe and understand. The third possibility is that the feature represents a

desirable form of complexity in the language. Complexity is not undesirable per se,

1 it we choose to regard a compiler as a kind of formal |anguage definition, then proofs of
compiler correctness can be viewed as another form of consistency proof.

']

ik

-

|

Concerning False Proofs 4-10

and there is a trade off between the expressive power of a language and the

complexity of programs written in the language.

If we cannot give a concise, understandable definition of part of a language. it will
probably be difficult to build all of the tools needed for programming — not just the
verifier, but compilers, optimizers, debugging tools, and program analyzers of all
kinds. Even if these tools can be constructed, they may be less reliable, because it will
be more difficult for implementors to understand and agree on the semantics. So
difficulty in formal definition is a warning that there may be further troubles with a
language design. Formal definability gives the langauge designer another way to test
a design, in addition to the usual ways based on experience with other languages and
difficulty of implementation, etc. Designs can contain unpleasant surprises -
combinations of features that interact in unexpected ways. When designs are judged
solely by their intuitive semantics, the surprises can remain hidden, because intuitive

semantics tend to be incomplete.

The most difficult issue in the soundness of VCG is the language definition, but a little
should be said about the VCG implementation. For the most part, VCG is a
straightforward translation of the axiomatic definition into operational form. The
actual program for VCG cou.Jd be generated automatically from a table of the inference
rules. It would not be difficult to verify that formulas constructed by VCG correspond

exactly to the axiomatic definition.

Different considerations affect the soundness of the first order theorem prover. The
concept of soundness is readily specified, but the theorem prover employs novel and
somewhat complicated algorithms. The implementation is more complicated than it
might be if efficiency was not of prime importance. A major part of the current
theorem prover is a program for determining the satisfiability of a set of linear
inequalities using the simplex algorithm. Here, the algorithm is well known but its

implementation is rather complicated. In general, verification of the theorem prover

Concerning False Proofs 4-11

is somewhat beyond the current state of the art, but since the specifications are not

difficult, it may eventually be possible to verify much of it.

o i "

L At present, the reliability of the theorem prover rests largely on tne alertness of users
in reporting problems. Herein lies a serious misunderstanding on the part of
verification critics. Among those who have not used a program verifier, there is
belief in a third myth of verification: that one simply submits a program and waits i
until the verifier responds with either VERIFIED or NOT VERIFIED, i.e. that the system 3
‘ l does all the work by itself and that there is no reason for its results not to be accepted ;
uncritically. In reality, any new nontrivial verification is an undertaking in which
the user must interact with the verifier to produce a proof. In the course of the ;
interaction, a program is usually submitted many times with different documentation. |
After each run, the user examines the output of the theorem prover in the form of
| partially simplified verification conditions and summaries of the steps taken in the
proof. The user must study these results closely; they contain the clues needed for

understanding why the proof was not completed. Analysis of simplified verification

T e e B Bt i . 38 AT

conditions is a special skill that one must learn in order to use the verifier. In the

process of analyzing a VC, une notes which consequents were provable and which

were not, and one must understand how the documentation in the program was used
to prove one formula but why it did not suffice to prove some other. Implementation
errors in the theorem prover can have svveral pessible consequences: false proofs,
inability to find proofs that should be found, or both. Evidently, problems in the
latter two categories will be uncovered more readily than problems that cause only

false proofs, but when false proofs do occur, they often introduce noticeable

‘ discrepancies between what has been proved and what has not. The output of the
theorem prover, such as the proof summary, has to be studied closely enough that it is

likely that even flaws that produce only false proofs will eventually be uncovered.

In summary, the operation of the theorem prover is scrutinized more than other parts

' of the vecifier in the course of normal use, anc flaws in the theorem prover can be

Concerning False Proofs 4-12

detected because they result in noticeable deviations from the familiar laws of logic or
arithmetic. This alone does not guarantee that all implementation errors will be
quickly detected, but it does provide considerable og_ .~ *nity for concensus through

use — opportunity of which verification critics seem to be unaware.

The importance of the simplex algorithm in the theorem prover is a good illustration
of the type of reasoning needed in program verification, and why it is sometimes best
left to machines. A typical proof of the absence of runtime errors requires reasoning
about a set of sparse linear inequalities of program variables. The necessary
reasoning could be done by hand, but it tends to be long ard uninteresting. Under

these conditions, the simplex solver is much faster and more reliable.

Programs based on the simplex algorithm are used heavily by planners, economists,
and engineers to make decisions in which there are high penalties for errors. The
problems solved in these applications are actually much larger than those which occur
in program verification. The standard of reliability in ordinary applications of linear
programming is high, but users are given no absolute guarantee of reliability. Is such

a standard inadequate for determining the correctness of computer programs?

A verifier in wide use concentrates experience and testing in the same way that
compilers and other software tools do. Programs produced using the verifier are used
on many cases. If a program has been faisely. verified, it is likely that the problem
will eventually be discovered by the users of the program, and such a bug will of
course be of great interest to the the implementors of the verfier who will then correct
the problem. The situation is much the same as the maintanence of compiler
implementations. We do not trust compilers to be absolutely correct, but if a compiler
has been carefully maintained and in wide use for a long period of time, we have

great confidence in it.

Finally, we must mention another factor which contributes to the discovery of bugs in

Ai. e - A s f PR i

A S ittt S i flaosia i i o andinlee it bingin o

Con erning False Proofs 4-13

3

f ‘ the verifier: the great challenge2 of tinding a false proof.

-l i
!

] | ‘
:
t
l
‘
]
]
]
3
1
3 '

2 and satisfaction

b 3. Verification and Fault Tolerant Programming

Another canard from verification critics it that program verification encourages the
' ~ construction of less robust programs. The argument is that if we put trust in proofs
of correctness, we will remove safeguards that are needed in case something does go
; wrong with a program. Thus if a program is falsely verified, the consequences will

be more serious than before.

This argument rests on an incompleta view of program verification. To be verifiable,

| a program must be cleanly designed, and surely that cannot hurt its reliability.

! Furthermore, verification can contribute to the reliability of error handling in
programs. If we have proven that certain errors, such as runtime errors, will not
occur, this does not imply that we have to make no provision for these errors, but
rather that the value of considering them has been greatly reduced. Depending on the
application, we may want to provide protection from hardware errors or illegal data
If we want to have error handling code, program verification gives us the best way to
make it reliable. Error handlers are normally one of the least reliable parts of

programming because they are executed infrequently and are difficult to test.

——

Through program verification we can consider the effect of error handling

systematically, in all the possible cases. |

-~ - e - p e

LT T VSN Sy ~.a,JAn.aL..‘.lm-".|A 2

4-15

4. Verification and Testing

Of course we tested it, but why would anyone sver try to set N to -1?
Programmer’s Proverb

Now that we have developed the idea of verification contributing to reliability by
heiping to form strong agreements about the correctness of programs, we in & position
to compare verification with testing. Under what conditions can testing lead to a
consensus? Without precise specifications, there can be only weak agreements on the
correctness of programs. As we will see, this is not the only similarity between

verification and testing if testing is to give strong assurance.

To develop a reliable program with the least effort, it is useful to combine the two
methods. Testing is an efficient way to find problems in a new program, but as a
program becomes more reliable testing becomes unproductive. When the obvious

errors have been corrected after testing, it is time to turn to verification.

Program testing can be many things, ranging from a user selecting a few test values
and examining the results to automatic testing based on formal specifications. While
one cannot anticipate every conceivabie strategy, we do have certain general

observations.

Many automated testing strategies attempt to select data very carefully, for instance, to
drive a program through a chosen tequence of statements, or to falsify an assertion.
But it is exceedingly hard to algorithmically select data which satisfies complicated
constraints involving, say, complex data structures or nonlinear arithmetic, and so

these strategies are seriously limited.

If many test points are to be used, there must be some automatic way of determining
if the program has functioned correctly or not. Thus the problems of formalizing

specifications are the same as for program verification. Specification languages for

|
]
1
|
|
!

7 TTTEm e o T
S A . b iy .t oo s ‘:_-ﬂ

Y

Verification and Testing 4-16

testing are more restricted because the specifications have to be able to be effectively

evaluated, which is not a requirement in program verification.

Testing strategies which treat the program as more than a black box, which do
! something interesting with the text, must be based on a formal semantics of the
s programming language. This takes us another step closer to program verification, in |

that the correctness of the semantic definition and the correctness of its

implementation in the tester become issues. The cost of an error here is possible

failure to find the errors in an incorrect program, because the tester could decide

incorrectly not to test that case of it.

Finally, it is worth noting that if we have formal specifications and language i
semantics and are trying to decide which parts to test of a program which is already
fairly reliable, one of the best ways would be t: try to prove the program correct!
Parts of a verification which cannot be completed correspond to paths which should

be tested. .

Conclusion: if automatic testing tools capable to giving strong assurance about

F program currectness are ever developed, it is likely that they will be based on !

verification technology such as semantic definitions, specification methods, and

theorem provers for reasoning about programs.

417

§. Shallow verifications vs. Deep proof::

3 In our view, the natural domain of program verification is in relatively shallow
proofs: completely verifying only relatively transparent programs, verifying shallow
' properties of more complicated programs, verifying deep properties of subtle programs
relative to a set of assumed lemmas. There is an important distinction to be made
between informal proofs such as those used to justi'y new algorithms, and
verifications. Verification is rigorous analysis of actual programs. The value of
verifying relative to a set of assumed lemmas is that one can use a concise kernel of
assumptions, developed through careful study, to justify in detail the correctness of
complicated programs. One of the basic things that happens in writing a program is

that one starts with some known truths and assumptions 2hout data, and gradually

diffuses them throughout a long program text until they are no longer readily

identifiable3 Verification gives assurance that no additional assumptions have been

!
f
b
?
t

infused.

Fuil verification of deep properties will probably continue to be too expensive, but
there is much value in rigo-cus checking of even relatively shallow semantic
properties. Consider, for instance, the ususal syntax and semantic checking performed
by a compiler in a higher level language. Intellectually, nothing could be easier than
to write a program that is syntactically correct. Yet the checking performed by
compilers is invaluable in actual use. Program verification may be viewed as a means

of extending this checking to stronger semantics, freeing the programmer to

concentrate fully on the more substantive and creative aspects of a problem, just as

current checking in compilers frees the programmer from the necessity of consiaering i

certain simple but common kinds of errors.

3 it is sometimes proposed to meke program development a formal activity, so that one would
keep track of assumptions throughout the transformation of a program from an initial abstract
: statement to the final result. This approach may be practical in some cases, but in general i.
| appears to be too rigid. It also seems to be based on the assumption of specifying programs
compietely, which we fee: will be more the exception than the rule.

e . iRt namionattiisnmmain) T v T " .
i, —_ _— R ——— _M_

k Shallow verifications vs. Deep proofs 4-18]

i

Profound errors cannot be completely prevented, but many kinds of simple errors can
be. An additional benefit of verifying the absence of common errors, as in Runcheck,
! is that a shallow error often reveals a deeper problem. And so, the process of

!
‘ verifying a program with Runcheck cften tells us about much more than its runtime

errors.

s g

- - - e e e

8. Survey of large programs

At one point during his visit to Stanford University, the author collected large Pascal
programs from a number of people at the Artificial Intelligence Laboratory, and spent
several days reading them to see what kinds of difficulties would be encountered in
proving the absence of runtime errors. Among the programs studied were two Pascal
compilers and a hefty micro-assembler. The most important finding was that
verifying the absence of runtime errors for these large programs did not appear to
involve subtleties of specification or theorem proving beyond what had been
encountered with small programs such as those in the Appendix. The problems of
proving large programs were much the same as the problems of proving small
programs, only spread out over more pages. We are reasonably confident that the
approach in Chapter 3, for verifying a moderate sized program, could be applied to
nonnuimeri-al programs on the order of, say, 100 pages long, with no more and

possibly much less than a proportionate increase in effort.

Of course, as in Chapter 3, vie would have to enforce certain restrictions such as
absence of aliasing, and we would expect .5 find a few places where too much detail
would be required, so that we would either rewrite a small portion or leave it
unchecked. As we have mentioned before, the value of verification in this case is the
elimination of surprises from the program. It can still fail for deep reasons, but we

can rule out the small slipups which are so commoun in programming.

Our estimate of the difficuity of verifying a large program is based on the
assumption that the individual procedures would all be small; the current
implementation of Runcheck cannot efficiently analyze an individual procedure more
than about a page long unless the user provides internal assertions to suhdivide it
logically. It would be very useful to add data flow techniques to Runcheck for fast
but undetailed interprocedural analysis. The way we imagine this working is that the

entire program would first be subjected to interprocedural data flow analysis, and the

as 2 et ;
e e RTSIEENS P RSV A T SN O TRV IR o

Survey of large programs 4-20

system would make a new program listing containing true assertions discovered thus
far. The user would then add additional assertions and work with Runcheck to

verify each procedure in detail.

© mm e o pewes

ST S SIS R T i‘J,.‘AM:thJ

sl 7t

4-21

7. Additional techniques for larger prograias

As experiments with Runcheck have shown, verification of shallow properties is
potentially a highly practical process for real programs (see Chapter 8). This section

discusses some of the other ways in which verification can contribute to the reliability

of larger programs.

7.1 Core verification

While it is not reasonable to expect a large software system to consist entirely of
concise, easily specified algorithms, well structured systems usually contain a core of
smaller modules with well defined f-inctions. Outside of the core we would expect to
find code which is more diffuse and difficult to specify. But if we can assure that the
central parts of a large system function as expected, much will have been
accomplished. The cost of program verification in this case is small relative to the
size of a system, and because the correct functioning of the core affects everything

else, the benefit in reliability is relatively high for each part that is verified.

7.2 Standardization of program specifications

After some years of experience, the writing of certain classes of programs passes from
a new experiment to a well understood technique. Sirailarly, we learn how to specify
classes of programs, and develop collections of useful specification concepts. One of
the goals of the Stanford program verification project has been the creation of sets of
stanrlard specification concepts and lemmas, comparable to standard subroutine
libraries. When one is confronted with the problem of verifying a new instance of a
familiar type of program, the library specification techniques may not always work as
is, but more often, they provide the bulk of the concepts and lemmas needed, and can

be readily modified for new applications.

s aeelembat e e L sodaan L hate .l Sl

ISP

CaNaicb atai o Li o o 4

!
i
}

Additional techniques for larger programs 4-22

7.3 Program maintenance

It is widely recognized that the major cost in software development is incurred in
maintanence over the lifetime of a program and not in the initial design and coding.
Syntax based software tools have heiped most to reduce the cost of initial coding; they

are much less helpful during extended maintainace.

Verification of core components can reduce the cost of maintaince by making a system
easier to debug should problems occur. Specifications can be developed incrementally,
and modified or extended through sxperience. In ordinary programming, one can fix
a bug, only to have it recur much later, after many other changes have been made. In
large systems where complete formal specifications are not used, it might be practical
to develop partial specifications during the lifetime of a program. As problems are
encountered, instead of merely patching them and hoping that they do not recur, one
could specify the absence oi the problem and verify its absence in the corrected
program. Re-verifying a shallow property of a program after a small modification is
generally much less work than the original verification, because most of the
specifications and documentation remain unchanged, and the details of the proof will

be filled out automatically by the theorem prover.

ey

4-23

8. Verification's Impact

At the present time, the direct benefits of program verification are less important than
the indirect benefits in the form of increased understanding of programming and
programming languages. In recent years, the most significant new ideas in the area of
programming languages have not occurred in isolation; without new requirements for
programming, research in programming languages would stagnate. Program
verification has been one of the most important influences, along with parallelism and

distributed systems, artificial intelligence, and more recently, microelectronics.

There is a strong parallel between the directions now being taken in program
verification and the path successfully followed several years ago in the field of
computer assisted manipulation of mathematical formulas. The MACSYMA [Ma75]
project, in particular, has developed a very successful formula manipulation system,
but the outcome of work in this field is slightly different from initial expectations.
The desire to build powerful formula manipulation systems sparked a fundamental
reexamination of certain areas of mathematics, such as the theory of integration,
which had been previously felt to be well understood. The resuits of these
investigations included both new understanding of mathematical formulas, and new
efficient algorithms for their manipulation. MACSYMA is not a fully automatic system.
It is usually used interactively, with the user deciding on what steps to take, and the
system then doing lengthly calculations at his command. The system is now widely
used by scientific researchers in many fields to do symbolic calculations that would

otherwise be intractible [M 79].

The parallels between the fields of symbolic manipulation and program verification
are striking. Program verification is seeking a more systematic understanding of the
basic ideas of programming, ideas which are already as familiar to us as are the
basics of doing algebraic manipulations by hand. We have learned that programming
need not be entirely haphazard. Valuable new algorithms have been developed for

manipulating programs and their proofs.

st Bk ik ., Rt i -+

o

Verification's Impact 4-24

Also striking are the parallels betwe:n certains criticisms of program verification and
possible criticisms of automatic formula manipulation which we now know to be
unsustainable. First of all, if a computer program for formula rnanipulation is not
absolutely assured to give correct results, how can it possibly contribute to scientific
research? In fact, large systems such as MACSYMA do sometimes have bugs, which are
detected and corrected in the normal course of use by a community of users. For the
applications in which MACSYMA is used, users evidently must feel that the computer is
the most cost effective way of doing certain calculations relative to the cost of other

methods and the amount of risk of an incorrect answer in the different methods.

Another ob jection is the high computational cemplexity of manipulating mathematical
formulas, which seems to rule out automatically sclving equations in many domains.
Formula manipulation systems have found wide use in spite of this, partly oecause
they are interactive and have efficient algorithms for some operations that are not
intractible. Apparently the great efficiency of the operations provided more than
makes up for whatever costs the user incurs in interacting with a machine and its
inflexible formalisms, as against solving a problem completely by hand. Perhaps
builders of verification systems should learn from this to provide for a better division

f work between user and machine.

For instance, the Stanford Pascal Verifier does not currently permit quantification in
assertions. To represent quantified assertions, the user introduces new, uninterpreted
predicates, and then adds implicitly quantified axioms in the form of inference rules
for use by the theorem prover [Su'76, SVG79). Operation of the verifier is \hen
completely automatic. However, experience has shown that this approach is
unworkable in all but the simplest situations. One is forced to constantly balance th:
rules between generality and efficiency. When the verifier fails to prove a ume
formula, the user must enter an ordeal of modifying inference rules by excruciating
trial and error. How much simpler it would be to permit explicit quantification by

r:quiring the user to supply an instantiation for each instance [We77)!

R il o -t A e S T . ey
- - — - ey e nd ol . - s cabos e V. iy

Verification'’s Impact 4-25

What should we infer from the great difficulty thus far in applying verification to

large programs? Research in program verification has led to successful developments

|
|

in a number of areas including formal semantics of programming languages, methods
for specifying programs, and methods for automating verifications, but the most
practical combinations of these techniques will be somewhat different from what was
initially envisioned. There are many approaches that are likely to be practical, but
we also have to recognize that with some of the most direct applications, the odds are
highly unfavorable. We are just beginning to find the areas in which program

verification can be applied to greatest a“vantage.

UL TR NPT, TR AL P i

[
!
1
'
:
i

R

References

[Ba63] F.L. Bauer, Algorithm 153 Gomory, Comm. ACM 6 (February 1963), 68.

(BM77]] Bell and M. Machover, 4 Course in Mathematical Logic, North-Holland,
Amsterdam, 1977.

[Bo63] J- Boothroyd, Algorithm 201 Shellsort, Comm. ACM 6 (August 1963), p.445.

(BH77] P Brinch Hansen, The Architecture of Concurrent Programs, Prentice Hall,
Englewood Cliffs, N.]J,, 1977.

[C179] EM. Clarke, Programming Language Constructs for Which It is Impossible
to Obtain Good Hoare Axiom Systems,]J. ACM 26, 1 (January 1979),
pp.129-147.

(CH78] P. Cousot ar.d N. Halbwachs, Automatic Discovery of Linear Restraints
Among Variables of a Program, Proceedings of the Fifth ACM
Sympasium on Principles of Programming Languages, January 1978.

(DLP79] R.A. De Millo, R.]. Lipton, and A.]. Perlis, Social Processes and Proofs of
Theorems and Programs, Comm. ACM 22, 5, May 1979, pp.271-280.

[BLISS] Digital Equipment Corporation, BLISS~-10 Programmer’s Reference Manual,

[En72]

[FO76]

[GW75]

[GeT8)

Maynard Massachusetts, 1978.

H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, New
York, 1972.

L.D. Fosdick and L.]. Osterweil, Data Flow Analysis in Software

Reliability, Computing Surveys, Vol. 8, No. 3, September 1976, pp. 305~
830.

S.M. German and B. Wegbreit, A Synthesizer of Inductive Assertions, IEEE
Trans. on Software Engineering, SE-1, | (March 1975), pp.68-75.

S5.M. German, Automating Proofs of the Absence of Common Runtime
Errors, Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages, January 1978.

R-1

[GLO]

,‘; [Ho69]

f. [Ho71]
(HW7s]
[1c79]

(ILL75]

[JW75]

[KL76]

[KR78]

(Kn68)

[Kn71]

(La64]

R-2

S.M. German, D.C. Luckham and D.C. Oppen, Extended Pascal Semantics
for Proving the Absence of Common Runtime Errors, unpublished
manuscript (1277); available from Stanford Program Verification
Group.

CAR. Hoare, An axiomatic basis for computer programming, Comm. ACM
12, 10 (Oct. 1969), pp.576-581.

C.AR. Hoare, Proof of a Program: FIND, Comm. ACM 14, 1 (Jan. 1971),
pp-39-45.

C.AR. Hoare and N. Wirth, An Axiomatic Definition of the Programming
Language Pascal, Acta Informatica, Vol. 2, 1973, pp.335-355.

J.D. Ichbiah et al, Preliminary ADA Reference Manual, in ACM Sigplan
Notices, Volume 14, Number 6, June 1979

S. Igarashi, R.L. London and D.C. Luckham, Automatic Program
Verification I: Logical Basis and its Implementation, Acta Informatica,
Volume 4, 1975, pp.145-182.

K. Jensen and N. Wirth, Pascal User Manual and Report, second edition,
Springer-Verlag, New York, 1975,

R.A. Karp and D.C. Luckham, Verification of Fairness in an
Implementation of Monitors, 2nd Intl. Conference on Software
Engineering, San Francisco, .976.

B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice
Hall, Englewood Cliffs, N.]J., 1978.

D.E. Knuth, The Art of Computer Programming, Vol. | - Fundamental
Algorithms, Addison Wesley, Reading Mass., 1968.

D.E. Knuth, Mathematical Analysis of Algorithms, in Proceedings of the
IFIP Congress 1971, Nort'1-Holland Press, 1972.

H. Langmaack, Algorithm 263 Gomory 1, Collected Algorithms from
CACM, (June 1964).

- T TR e Cs g Ty " Ran e T e = .
- A e e . e i T __—._Mﬁ

[P O T

—

(Lo75]

(Ls77]

(LSs79)

(Ma75)]

(M79]

[Se70]

(Si74] '

RL. London, A View of Program Verification, Proceedings of the
International Conference on Reliable Software, IEEE, Long Beach,

Calif., April 1975, pp.534-545.

D.C. Luckham and N. Suzuki, Proof of Termination Within a Weak Logic
of Programs, Acta Informatica, Volume 8, 1977, pp.21-36.

D.C. Luckham and N. Suzuki, Verification of Array, Record, and Pointer
Opecations in Pascal, ACM TOPLAS |, 2 (October 1979), pp.226-244.

Mathiab Group, MACSYM A Reference Manual, Version 8, Project MAC,
MIT, Cambridge, Ma,, 1875.

Proceedings of the 1979 MACSYMA Users Conference, Washington, D.C,,
MIT Laboratory for Computer Science, june 1979.

J.J. Seppanen, Algorithm 399 Spanning Tree, Collected Algorithms from
CACM, (May 1970).

R.L. Sites, Proving that Computer Programs Terminate Cleanly, Computer
Science Department Report CS 418, Stanford University, May 1974.

[SVG79] Stanford Verification Group, Stanford Pascal Verifier User Manual, Report

(Su76]

rs1v7]

[We77]

[WeTl]

[Whss6]

No. 11, STAN-CS-79-721, Stanford Uriversity, March 1979,

N. Suzuki, Automatic. Verification of Programs with Complex Data
Structures, Ph.D. dissertation, Dept. of Computer Science, Stanford
University, 1976.

N. Suzuki and K. Ishihata, [mplementation of an Array Bound Checker,
Proc. Fourth ACM Symposium on Principles of Program ming
Languages, January 1977, pp.132-148.

B. Wegbreit, Constructive Methods in Program Verification, IEEE Trans.
Software Engineering, SE-3, 3 (May 1977), pp.193-209.

G.M. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinold, New York, 1971.

B.L. Wtiorf, Language, T houzht, and Reality, M 1.T. Press, Cambridge,
Mass,, 1956.

[P RU

Appendix

] : This appendix contains lists of programs which have been verified with Runcheck.

The examples are divided into three levels of difficulty:

i
1) examples which can be verified by Runcheck, when the user supplies
only the entry and exit asserticas.

B

2) examples which require simple invariants supplied by the user.
8) examples which require more detailed assertions.

The errors checked in most cases are accessing an uninitialized variable,
dereferencing a NIL. pointer, subscript or subrange value out of range, and division
by zero. Arithmetic overflow was checked in those examples which contain assertions

about MAXINT. In part 8, there is a small example of absence of stack overflow for a

recursive procedure.

A few examples in parts | and 2 cannot be completely verified without a great deal of

additional detail. The difficulties are indicated in each case.

Inductive assertions generated automatically by Runcheck are shown in Bo/d Italics.

DCOMMENT assertions are generated from preliminary analysis of the program text
and entry assertions, while underlined INVARIANT assertions #re generated from

analysis of temporarily unprovable verification conditions.

e imba L

T

T T

I e et e I

A-2

Appendix - Part 1.

Example 1: Fast linear array search

PASCAL
VAR N:INTEGER;
TYPE ARR=ARRAY[1:N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);

ENTRY DEF(N) A 1<N A NSMAXINT;

EXIT 1<I A IsN;

BEGIN
A[NI1:=KEY;
I:=1;
DCOMMENT 1£1
INVARIANT TRUE
WHILE A[IJ=KEY DO I:=I+1;
END;

T e e e g e i

Appendix - Part 1.

Exampie 2: Bubble sort

PASCAL

VAR MAXINT:INTEGER;

VAR N:INTEGER;

TYPE NARRAY=ARRAY[1:N] OF INTEGER;

PROCEDURE SORT (VAR A:NARRAY);
GLOBAL(N,MAXINT);
ENTRY DEF(A)ADEF(N)A1<NANSMAXINT;
VAR B:BOOLEAN;
I, J, TEMP:INTEGER;
BEGIN
I:=1;
J:=1;
DCOMMENT ISN A 1<J A 141
INVARIANT TRUE
WHILE (IsN-1) DO
BEGIN

J'eJd;

DCOMMENT J'<J

INVARIANT TRUE

WHILE (JsN-I) DO

BEGIN

IF ALJI>A[J+1] THEN BEGIN TEMP:=A[JU]; A[J]:=A[J+1]; A[J+1]:=TEMP END;

Jisd+1
END;
I:=l+1;
Ji=1
END
END;

Appendix - Part 1.

Example 3: Merging two arrays

PASCAL
TYPE INARR=ARRAY[1:100] OF INTEGER;
TYPE OUTARR=ARRAY[1:200] OF INTEGER;

VAR L,J,N:INTEGER;
VAR A,B:INARR; C:OUTARR;

ENTRY DEF(A)ADEF(B);
EXIT DEF(C);

BEGIN
N:=100;
I:=1;
Ji=1;
DCOMMENT 1<J A 1SI AISN+T A JSN+1 A DEFRANGE(1, I+4=2,C)
INVARIANT TRUE
WHILE (IsN) AND (J<N) DO
BEGIN
IF A[I]<B[J] THEN BEGIN C[I+J-11:=A[1]; I:=1+1 END
ELSE BEGIN C[I+J-11:=B[J]; J:=J+1 END;
END;
I'«lI;
DCOMMENT I'S1 A ISN+1 A DEFRANGE(I'+N, I+N-1, C)
INVARIANT TRUE
WHILE I<N DO BEGIN C[I1+N]:=A[1]; I:=I+1 END;

J'eJd;

DCOMMENT J'SJ A JSN+1 A DEFRANGE(J'+N, J*+N-1,C)
INVARIANT TRUE

WHILE JsN DO BEGIN C{J+N]:=B[J]; J:=J+1 END;

END

mthkilind A

—— — T e —— e — P ‘—.———ﬁ

Appendix - Part 1. A-5

Example 4: Insertion sort

|

]
PASCAL {
VAR N:INTEGER; i
TYPE ARR=ARRAY[1:N] OF INTEGER;

o PROCEDURE INSERTSORT(VAR K:ARR);
! GLOBAL(N);

ENTRY DEF(K)ADEF(N)A25N;

EXIT TRUE;

} LABEL 5; |
o VAR 1,J,X:INTEGER; .
BEGIN
Ji=2; :
DCOMMENT 2<J A J-NS 1 3
INVARIANT TRUE !
WHILE J<N DO i
BEGIN ;
I:=J-1; ;
X:=K[J1; 3
I'el;
DCOMMENT ISI'
INVARIANT TRUE
: WHILE X<K[I] DO
S BEGIN K[I+11:=K[I]; I:=I-1; IF I<1 THEN GO TO 5; END;
| 5: KlI+1l:=X;
Jisd+1;
END;
END;

B e P ——
- aituians otk

Appendix - Part 1. A-6

Example 5: Sort by selecting the smallest ’,

PASCAL i
VAR N: INTEGER; R
TYPE SARRAY=ARRAY [1:N] OF INTEGER;

, PROCEDURE SELECTSORT(A:SARRAY);
| GLOBAL(N);

ENTRY N21ADEF(N);

EXIT TRUE;
; VAR I, J, K, X: INTEGER;

BEGIN
I:=1;

DCOMMENT I-N< 1 A 1K1
. INVARIANT TRUE ,-
; WHILE IKN DO i
;- BEGIN i

¢k . it ©

Jisl+1;

X:=A[1];

K:=I;

XeX; K'eK; J'ed; .

DCOMMENT J=-NS 1T A X<X' A K'SK A J'SJ

INVARIANT TRUE A (JON v A[J]2X) 5> KXN |

WHILE JsN DO '
BEGIN '
IF X>A[J] THEN BEGIN X:=A[J]; K:=J; END;
J:=d+1
END;

AlK]:=AL[1];

Al1):=X;

I:=I+1;

END;

END;

Appendix - Part 1. A7

Example 6: Reading a file into an array, without duplications

This simple program reads integer values from an external file F and stores them
without duplication in an array A. After each value is read, the inner loop compares
it to the values previously stored in A. In adition to the ususal index bound checks, it
: is necessary ro show that the inner loop accesses only the initialized portion of A

PASCAL

VAR N:INTEGER:

i ARR=ARRAY [1:N] OF INTEGER;
INFILE=FILT OF INTEGER;

VAR A:ARR; F:INFiLE; J,K:INTEGER;
ENTRY DEF(N) A 1sN;
EXIT DEF(A);

S —

BEGIN
J:=0;
DCOMMENT 0<J A JXN A DEFRANGE(1, J, A)
INVARIANT TRUE
' WHILE J=N DO BEGIN
B Ki=J+1;
: READ(F,ATKI);
Jied;
DCOMMENT 0O<J A JSJ'
INVARIANT TRUE
WHILE J=0 DO 'F A[J]}=A[K] THEN
BEGIN
i Ji=K-1;
| GOTO 1;
» END
ELSE J:=d-1;

END

Note that on each iteration of the outer icop, J is either unchanged or set to J+l.
Because the READ statement is executed on each iteration, the documenter can assert
that the array A is initialized in the range 1 to J. This assertion is available on the
inner loop to show that only the initialized portions of A are examined.

R A M o

; PASCAL
- TYPE RARRAY=ARRAY [1:100] OF REAL;

END.

Appendix - Part !.

Example 7: Quicksort

PROCEDURE QUICKSORT(VAR A:RARRAY;

L.,R:INTEGERY);

ENTRY DEF(A) A(LCR > (1SLALS100 A 1sRARs100));
\ EXIT TRUE;
: VAR X:REAL; VAR LEFT,RIGHT:INTEGER;
‘ BEGIN
IF L<R THEN
BEGIN
LEFT:=L; RIGHT:=R; X:=A[L);
INVARIANT TRUE A RIGHTSLEFT > LEFTS 100
DCOMMENT LSLEFTARIGHTSR
WHILE (LEFT<RIGHT) DO

BEGIN

RIGHT'~RIGHT;

INVARIANT TRUE

DCOMMENT RIGHTS RIGHT'ALEFTSRIGHT

WHILE (A[RIGHT12X) AND (LEFT<RIGHT)
DO RIGHT:=RIGHT-1;

A[LEFT1:=A[RIGHT;

LEFT'LEFT;

INVARIANT TRUE

DCOMMENT LEFT'SLEFTALEFTSRIGHT

WHILE (A[LEFT]<X) AND (LEFT<RIGHT)
DO LEFT:=LEFT+1;

A[RIGHT]:=A[LEFT]
END;

A[LEFT]:=X;
QUICKSORT(A,L,LEFT-1);
QUICKSORT(A,LEFT+1,R);

A-8

Appendix -~ Part 1.

Example 8: Shellisort [Bo63]

VAR N,MAXINT:INTEGER;
TYPE ARR=ARRAY[1:N] OF INTEGER;

PROCEDURE SHELL(VAR A:ARR);
ENTRY DEF(A)ADEF(N)A1SNAMAXINT2N+1;
EXIT TRUE;

LABEL 1;
VAR LJ,K,M,W:INTEGER;

BEGIN
M:=N DIV 2;
INDEX1<0; M'eM;
INVARIANT TRUE
DCOMMENT M=M' DIV EXP(2 INDEX1) A OSINDEX1
WHILE M=O DO BEGIN
K:=N-M;
FOR J:=1 TO K INVARIANT TRUE
DCOMMENT 1<€J A JSK+1
DO BEGIN
Ii=d;
INDEX2«0; I'eI;
INVARIANT TRUE
DCOMMENT I-I's=INDEX2xM A OSINDEX2
WHILE I21 DO
BEGIN
IF ALI+M]zA[I] THEN GO TO 1;
W:=A[1]; A[I]:=A[1+M]; A[I+M]:=W;
I:=I-M
INDEX2+~INDEX2+i;
END;
1: END;
M:=M DIV 2;
INDEX 1«~INDEX1+1;
END;
END;

A-9

Appendix - Part 1.

Example 9: Binary Search
TYPE NARRAY=ARRAY([1:N] OF INTEGER;

PROCEDURE BINSRCH(A:NARRAY;M,X:INTEGER;
VAR Y:INTEGER);

ENTRY DEF(N)A1<NAMAXINT22sN+1;

EXIT DEF(Y);

VAR LOW,HIGH,MID:INTEGER;
BEGIN
LOW:=1; HIGH:=N;
INVARIANT TRUE A (LOW2HIGH > LOWSN)
DCOMMENT 1<LOW A HIGHSN
WHILE LOWCHIGH CO
BEGIN
MID:=(LOW + HIGH)DIV 2;
IF X<A[MID] THEN LOW:= MID4+1 ELSE HIGH:=MID
END;
IF X=A[LOW] THEN Y:=LOW ELSE Y:=0
END;

Appendix - Part 1.

Example 10: INSITU Permutation [Kn71]

; PASCAL

i VAR N:INTEGER;

TYPE SUBRANGE= 1:N;

TYPE NARRAY=ARRAY [SUBRANGE] OF INTEGER;

FIUNCTION P(J:SUBRANGE):SUBRANGE;
1 ENTRY TRUE;

EXIT TRUE;

EXTERNAL;

PROCEDURE INSITU(VAR X:NARRAY);
GLOBAL(N);

ENTRY (N21)ADEF(N)ADEF(X);

| EXIT TRUE;

VAR J, K, L, Y: INTEGER;
BEGIN
J:=1;
DCOMMENT 1<J A J=NL1
INVARIANT TRUE
WHILE J<N DO
BEGIN.
K:=P(J);
INVARIANT TRUE A ‘J(K o> K<N)
} WHILE K > J DO
K:=P(K);
IF K = J THEN
BEGIN
Y:=X[J];
L:=P(K);
INVARIANT TRUE A TSK A KEN A (Lrd 2 1L A LEN)

e T T NIRRT TN T TR T TR T, TR ATy o memsememe

WHILE L » J DO
BEGIN
X[K1:=X[L];
K:=L;
L:=P(K)
END;
X[K]:=Y;
END;
Ji=d+1:
END;
END;

.
Lm——:ﬁ: T T T T avyenne. o e

Appendix - Part 1.

Example i11: TREESORT

PASCAL
VAR ARRAYSIZE:INTEGER;
TYPE TREEARRAY=ARRAY [1:ARRAYSIZE] OF INTEGER;

PROCEDURE TREESORT3(VAR A:TREEARRAY; L:INTEGER);

GLOBAL (ARRAYSIZE);
ENTRY DEF(A)A2sLALSARRAYSIZE;
EXIT TRUE;

VAR WORK:INTEGER; I:INTEGER;

PROCEDURE SIFTUP(VAR M:TREEARRAY; I0,N:INTEGER);

GLOBAL (ARRAYSIZE);

ENTRY DEF(M) A 1SI0AIO<ARRAYSIZE A 1<NAN<ARRAYSIZE A 10<N;

EXIT TRUE;
LABEL 7;

VAR COPY,I:INTEGER; J:INTEGER;
BEGIN
1:=10; COPY:=M[I]; J:=2xI;
Jied;

DCOMMENT I0KI A ISJ+1 A J'SJ A JE2xN+2

INVARIANT TRUE A ISARRAYSIZE
WHILE J<N DO
BEGIN

IF JCN THEN IF MUJ+11>MLJ] THEN J:=J+1;

IF M[J1>COPY THEN

BEGIN
M[11:=M[J];
I:=J;
J:=2+];
END
ELSE GO TO 7;
END;
7: M[I1:=COPY;
END;
BEGIN
I:=L DIV 2;
I'el;

DCOMMENT 1£IAILI’
INVARIANT TRUE
WHILE 122 DO
BEGIN SIFTUP(A,I,L); I:=I-1 END;
I:=L;
I'el;
DCOMMENT 1<I A IS
INVARIANT TRUE

PP W R P

e ——————

IOV §

Appendix - Part |. A-18

WHILE 22 DO
BEGIN
SIFTUP(A,1,1);
WORK:=A[1]; A[13:=AlI]; A[1]:=WORK;
I:=I-1
END

N SR TN TUSIIS PRFTRNNS

END;

e e A Aih s

et S s b

P R S DR v pmersv sy

——

B SRST e

—m -

Appendix - Part &, A-14

Example 12: Gomory all-integer programming [Ba63]

PASCAL

VAR M,N:INTEGER;

TYPE TARRAY=ARRAY[1:N-1] OF INTEGER;
TYPE CARRAY=ARRAY[1:N] OF INTEGER;
TYPE MATRIX=ARRAY[O:M, 1:N] OF INTEGER;

FUNCTION ABS(A:INTEGER):REAL; EXIT TRUE; EXTERNAL;
FUNCTION EDIV(A.B:INTEGER):INTEGER; EXIT TRUE; EXTERNAL;

PROCEDURE GOMORY(VAR A:MATRIX);
GLOBAL(M,N);

ENTRY DEF(A)ADEF{M)ADEF(N)AN23AM21;
EXIT TRUE;

VAR 1,K,J,L,R:INTEGER;
VAR LAMBDA:REAL;
VAR T:TARRAY; C:CARRAY;

BEGIN
INVARIANT TRUE
WHILE TRUE DO
BEGIN _
FOR I:=1 TO M INVARIANT TRUE
DO IF ALI,NI<O THEN BEGIN R:=I; GO TO 2; END;

GO TO 5,
2: FOR K:=1 7O N-1 INVARIANT TRUE DO IF ALR,KJ<0O THEN GO TO 4;
GO TO 6;
4: L:=zK;
L'el;
FOFR J:=K+1 TC N-1
DCOMMENT L'SL

INVARIANT TRUE A LEN
DO IF A[R,JIKO THEN
BEGIN
1:=0;
INVARIANT TRUE
1000: WHILE A[1,J]=A[1,L] DO I:=I+1;
IF ALLJICALLL] THEN L:=d;
END;
FOR J:=1 TO N-1 DCOAPMENT DEFRANGE(1,J-1,T) DO IF A[R,J1<O THEN
BEGIN
IF ALO,L1=0 THEN T[J]1:=EDIV(A[0,J1,A[0,L]) ELSE T[J1:=1;
END;
LAMBDA:=ABS(EDIV(A[R,13,T[11));
FOR J:=2 TO N-1 INVARIANT TRUE DO IF A[R,J1<O THEN
BEGIN

ool vl . A SUFSPPIRFE I R S SRS NV LT N A T

Appendix - Part 1. A-15

IF ABS(EDIV(ALR,J],T[U1))>LAMBDA THEN
LAMBDA:=ABS(EDIV(A[R,J],T{4]));

r ‘ END;
3 FOR J:=1 TO N INVARIANT TRUE DO IF J=L THEN
. ' BEGIN
CLJ1:=EDIV{A[R,J],LAMBDA);
IF C[J]=»O THEN
FOR I:=0 TO M INVARIANT TRUE

|
:

‘ DO ALLJJ:=ALLJ1+CLUIALLLY;
END;
] END;
6: %go here if no solution%
5: END;

Note: checking the subscripting for the WHILE loop at label 1000 is very difficult.
This loop scans down two columns of the matrix A until it finds an index I such that
AlLLJ] = A[1,L]. The J and L columns always differ in at least one place because the i
initial value of A contains a diagonal portion, and each column is only changed by !
adding multiples of another column. While these facts could be formalized in the ;
verifier, it would not be of practical value. The loop could be changed to a FOR loop, i
or left alone. -

O BT S SR S WPy LA

e

Appendix - Part 2.

Example 13: Spanning tree [Se70]

i
]
]
'l
i
]

In this example, declarations of the three array types have been made more restricted
than would otherwise be necessary, to help express loop invariants. An IF statement
at label 2, which terminates the program, is optional but its inclusion simplifies the
verification and makes the program more efficient. Without the IF statement, proof of i

correct subscripting on the array T[1 .. V-1] would involve the fact that a spanning !

tree for a graph with V vertices has V-1 edges.
VAR E,V:INTEGER;
TYPE EARRAY=ARRAY [1:E] OF 1:V;

TYPE VINTARRAY=ARRAY[1:V-1] OF INTEGER;
TYPE VARRAY=ARRAY [1:V] OF O:E;

PROCEDURE SPANNING(IA,JA:EARRAY; VAR P:INTEGER; VAR T:VINTARRAY);

GLOBAL (E,V);

ENTRY DEF(E) A DEF(V) A 1SE A 25V,
EXIT TRUT ;

LABEL 1,2,

VAR [,J,K,C,N,R:INTEGER;

VAR VA:VARRAY;

BEGIN
C:=0;
N:=0;
DCOMMENT 1<K A KSV+1 A DEFRANGE(1,K-1,VA)
FOR K:=1 TO V INVARIANT TRUE DO VA[K]:=0;
DCOMMENT 1<K A KSE+1 A OSN A OSC A NSK-T A CSKK-1
FOR K:=1 TO E INVARIANT TRUE A (K2V+N-1 2 KSV+N-1) DO
BEGIN
2: IF K-N=V-1 THEN GOTO 1;
I:=IA[K]; J:=JA[K];
IF VA[I]=0 THEN
BEGIN
TIK-N}:=K;
IF VA[J]=0 THEN BEGIN
C:=C+1;
vALJ):=C;
VALIl:=C;
END
ELSE VA[1):=VALJ];

END

T S g e wmmmme e e il " T e E—
—emsotmtiny - ——

Appendix ~ Part 2. A-17
1
t ELSE IF VA[J]=O THEN
E BEGIN
3 T{K-N1:=K; VA[J1:=VALI];
F END
4 ELSE IF VA[I»VA[J] THEN
.' BEGIN
f TCK-NJ:=K; L:=VALI]; J:=VALJ];
| DCOMMENT 1SR A RSV+1
' FOR R:=1 TO V INVARIANT TRUE DO
IF VA[R]=J THEN VA[R):=I;
END
! ELSE N:=N+1
END;
' 1: P:sV-E+N;
! END;

.

. . . —— R S . b
R B IPRIY S AMMJi

v S TEm e St T EeR oy omemR eEe TR e

Appendix - Part 2. A-18 F
Example 14: Routines to read in and multiply matrices - check for Overflow.

SUM(A,B,1.J,K) stands for finite sum of A[1J[LJ+«BL[LI[J] for L from 1 to K.

PC(A,B,MAXINT) is the weakest precondition to multiply A and B with this program
without overfiow.

PC(A,B,MAXINT) implies that V1,JK, A[IJIK)«B[KI[J] is inrange, and also VIJK :
SUM(A,B,1,J,K) is inrange. ;

PASCAL

VAR M,N,P:INTEGER;

TYPE NVEC=ARRAY[1:N] OF INTEGER;

TYPE PVEC=ARRAY[1:P] OF INTEGER;

TYPE MPARRAY=ARRAY[1:M] OF PVEC;
TYPE PNARRAY=ARRAY[1:P] OF NVEC;

TYPE MNARRAY=ARRAY[1:M] OF NVEC;
TYPE INFILE=FILE OF INTEGER;

b

- VAR MAXINT:INTEGER; |
VAR A:MPARRAY;B:PNARRAY;C:MNARRAY;
VAR 1,J,K,S:INTEGER;

PROCEDURE READMP(VAR A:MPARRAY);
%initialize A by reading in a matrix.%
GLOBAL(M,N,P,MAXINT);

ENTRY DEF(M)ADEF(N)ADEF(P)AM+1<MAXINTAP+1<MAXINTA 1sMAXINT; }
EXIT DEF(A); !
VAR F:INFILE;
VAR I,K:INTEGER;

BEGIN

I:=1;

DCOMMENT 1£!1

INVARIANT DEFRANGE(1,I-1,A)

WHILE IsM DO BEGIN
K:=1;
DCOMMENT 1<K
INVARIANT DEFRANGE(1,K-1,A[1])
WHILE K<P DO BEGIN READ(F A[1]1[K]); K:=K+1 END;
Ii=l+1;
END;

END;

-

Ty Ty

Appendix - Part 2. A-19

PROCEDURE READPN(VAR A:PNARRAY);EXIT DEF(A);EXTERNAL;

PROCEDURF MULTIPLY;
GLOBAL(A,B,C,1,J,K,S,M,N,P,MAXINT);
%main procedure:matrix multiply, c:=asb%
ENTRY 1SMAXINTADEF(M)ADEF(N)ADEF(P)
A 1SM A M+1SMAXINT A 15N A N+1SMAXINT A 1<P A P+1<SMAXINT;
EXIT DEF(C);
BEGIN
READMP(A);READPN(B);
ASSUME PC(A,B,MAXINT);
I:=1;
DCOMMENT 11 A IEM+1
INVARIANT DEFRANGE(1,I-1,C)
%assert first I-1 columns of c are defined%
WHILE I<M DO BEGIN
Ji=1;
DCOMMENT 1<£J A JEN+1
INVARIANT DEFRANGE(1,J-1,C[1])
%assert first I-1 columns and first J-1 rows of column I are defined%
WHILE JsN DO
BEGIN
S:=20; K:=1;
DCONMMENT 1<K A KS<P+1
INVARIANT S=SUM(A,B,I,J.K-1)
%note since C is not accessed, no invariant for C needed%
WHILE K<P DO
BEGIN
S:=S+AL[I1[K]+B[K][J];
K:zK+1
END;
ClI{41:=5;
Jizd+1
END;
I:=1+1
END
END;

This example illustrates a practical limitation of verifying the absence of certain
errors, especially arithmetic overflow: the precondition PC for absence of overflow
while multiplying A and B is so detailed, that it would be impractical to try to prove
it was satisfied each time MULTIPLY was called. Of course, we could prove PC by
showing some stronger and simpler condition on the matrices, but in many
applications it would be just as well to leave this as a potential source of overflows,
and to provide an error handler.

Appendix - Part 2. A-20

Example 15: Functions for maintaining Queues for Monitors (K L.76]

PASCAL

VAR N,PN: INTEGER;

TYPE NINTEGER=O:N;

TYPE PNINTEGER=1:PN;

TYPE NARRAY = ARRAY [1:N] OF NINTEGER;

TYPE MONITOR = RECORD LINK: NINTEGER;
INUSE: INTEGER END;

TYPE PROCARRAY = ARRAY [1:PN] OF MONITOR;

PROCEDURE ADD(M:PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; P: NINTEGER);

ENTRY (P » O)ADEF(PROCAR)ADEF(PLINK);
EXIT PROCAR[M].LINK=»O;

% Insert P into the queue pointed to by the monitor M %
VAR X: INTEGER;

BEGIN
IF PROCARIMI.LINK=0 THEN
BEGIN
PLINKLP] := 0;
PROCAR[MI].LINK := P;
END ELSE
BEGIN

X := PROCARLMI.LINK;
INVARIANT TRUE
WHILE PLINK[X1=0 DO
X := PLINKIX];

PLINK[P] := O;
PLINKIX] := P;

END;

END;

PROCEDURE REMOVE(M: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; VAR RESULT: INTEGER);

GLOBAL(N);

INITIAL PROCAR=PROCARO;

ENTRY DEF(PROCAR)ADEF(PLINK)A ~(PROCAR[M].LINK = O};

EXIT (<PROCARO,[M].LINK,PLINKIPROCARO[M].LINK]> = PROCAR) A
(PROCARO[MI.LINK = RESULT) A
1<RESULTARESULT<N;

VAR X: INTEGER;

BEGIN
% Remove first item from a queue; update distance from head

B S S TN U ORI S ST S M

, -, o
AN RL N #g

Appendix - Part 2. A-21

for remaining items %
X :=2 PROCARIMI.LINK;
RESULT := PROCAR[M].LINK;
PROCAR[MI.LINK := PLINK[PROCARIM].LINK];
END;

et o kb o

PROCEDURE ENTER(M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; VAR AP: NINTEGER);
GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A —(AP = Q) ;
EXIT TRUE; ;
VAR TEMPLINK: INTEGER; 3
BEGIN
% ENTER MUTUAL EXCLUSION STATE %
IF (PROCARLM].INUSE = Q) THEN PROCAR[M1.INUSE := 1 % 1
{ ELSE
| BEGIN 3
ADD(M,PROCAR,PLINK,AP); ;
% BLOCK(AP); ;
NOTE: The procedure ADD by making PCOUNTL. - 2]
nonzero (which it does by inserting it into some
queue), indicates the process AP is blocked
(inactive or asleep). %
IF (PROCARIREADYQ].LINK = O) THEN
REMOVE(READYQ,PROCAR,PLINK,TEMPLINK);
% Removing from the READYQ (if it is not empty) is how]
a process finally gets going. Of course, in a real
machine this item would get put into a processor and
resume execution in that processor. % {
END;
% EXIT MUTUAL EXCLUSION STATE %
END;

PROCEDURE EXIT(M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;]
VAR PLINK: NARRAY); '

GLOBAL(N);

ENTRY DEF(PROCAR)ADEF(PLINK);

EXIT TRUE;

VAR TEMPLINK: INTEGER;
BEGIN
% ENTER MUTUAL EXCLUSION STATE; %
I PROCAR[MI].LINK = O THEN PROCAR[M1.INUSE := O
ELSE
.~ BEGIN
; REMOVE(M,PROCAR,PLINK,TEMPLINK);
‘ ADD(READYQ,PROCAR,PLINK,TEMPLINK);

s o O U PR PSRy IR W, | S, DS 7

*

Appendix - Part 2. A--22

% Adding to the READYQ is how a process is made READY %
% Here, the original algorithm put the calling procedure
into the READYQ and then removed the head of the READYQ.
It is more consistend with usage in the rest of these
routiries to delete these two calls, and just let the procedure
doing the exit resume execution. %
END;
% EXIT MUTUAL EXCLUSION STATE ; %
END;

PROCEDURE WAIT(CV, M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; AP: NINTEGER);

GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A =(AP = 0);
EXIT TRUE;

%A process AP wishes to wait for condition CV (others
who request to wait will be served earlier). While
waiting, wake up the first thing in monitor M if anything
is there %

VAR TEMTLINK: INTEGER;

BEGIN

% ENTER MUTUAL EXCLUSION STATE; %

IF (PROCARLMI.LINK = 0) THEN
PRCCARELM1.INUSE := O ELSE

BEGIN
REMOVE(M,PROCAR,PLINK,TEMPLINK);
ADD(READYQ,PROCAR,PLINK, TEMPLINK);

% Adding to the READYQ is how a process is made READY. %

END;

ADD(CV,PROCAR,PLINK,AP);

% BLOCK(AP);

NOTE: The procedure ADD, by making PCOUNT[AP]
nonzero (which it does by inserting it into some
queua), indicates the process AP is blocked
(nonactive or asleep). %

IF (PROCARLREADYQ].LINK = O0) THEN
REMOVE(READYQ,PROCAR,PLINK,TEMPLINK);

% Removing from the READYQ (if it is not empty) is how
a pro .ess finally gets going. Of course, in a real
machine this item would get put into & processor and
resume execution in that processor. %

% EXIT MUTUAL EXCLUSION STATE; %

END;
PROCEDURE SIGNAL(CV, M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; AP: NINTEGER);

O

!

-
1
1
1

Appendix - Part 2. A-23

GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A ~(AP = 0);
EXIT TRUE;
VAR TEMPLINK: INTEGER;
BEGIN
% ENTER MUTUAL EXCLUSION STATE; %
i IF (PROCAR[CVI.LINK » 0O) THEN
{ BEGIN
REMOVE(CV,PROCAR,PLINK,TEMPLINK);
ADD(M,PROCAR,PLINK,AP);
% BLOCK(AP);
NOTE: The procedure ADD, by making PCOUNT[AP]
i nonzero (which it does by inserting it into some
queue), indicates the process AP is blocked
(nonactive or asleep). % !
| ADD("EADYQ,PROCAR,PLINK, TEMPLINK);
% Adding tv the READYQ is how a process is made READY. % !
REMOVE(READYQ,PROCAR,PLINK, TEMPLINK); 4
% Removing from the READYQ (if it is not empty) is how
a process finally gets going. Of course, in a real
machine this item would get put into a processor and
resume exacution in that processor. %
END;]
% EXIT MUTUAL EXCLUSION STATE ; %
END;

R A o ki o

e e T
PUOR RPN LSO T

Appendix - Part 2.

Example 16: Deutsch-Schorr-Waite List Marking algorithm (K n68]

PASCAL
LABEL 1,2;
TYPE LIST=TWORD;
TYPE WORD=RECORD FL:INTEGER;
M:INTEGER;
HD:LIST;
TL:LIST
END;
VAR W,Z,20,X:LIST;

ENTRY DEF(ZO)ADEF(#WORD);
EXIT 1RUE;

BEGIN
Z:=20; X:=NIL;
1:
ASSERT DEF(X)ADEF(Z)ADEF(#WORD);
IF {Z=NIL) THEN GOTO 2:
IF (Zt.M=1) THEN GOTO 2;
2t M:=1;
W:=Z1.HD;
Z1 HD:=X;
X:=Z;
Z:=W;
GOTO 1;

ASSERT DEF(X)ADEF(Z)ADEF(#WORD);
IF X=NIL THEN
IF X1.FL=O THEN
BEGIN
X1LFL:=1;

W:=X1 HD;X1.HD:=Z;Z:=X1.TL; X1.TL:=W;

GOTO 1
END ELSE
BEGIN

W:=aX1.TL; X1, TL:=Z;Z:=X; X:=W;

GOTO 2
END
END.;

T

AT T

Rt Jad ol

Appendix - Pait 3.

Example 17: Root and Sentinel (linked list insertion)

PASCAL

TYPE REF=TWORD;
WORD=RECORD KEY:INTEGER;CCUNT:INTEGER;NEXT:REF END;

PROCEDURE SEARCH(X:INTEGER;SENTINEL:REF;VAR ROOT:REF);

GLOBAL (VAR #WORD);

ENTRY (SENTINELI.NEXT=NIL; JEF(ROOT)ADEF(#WORD)
ASENTINEL=NILAROCG i=NIL
AREACH(#WURD,ROOT,SENTINEL);

EXIT DEF(#WORD);

VAR W1 ,W2:REF;

BEGIN W1:=RO0T;
SENTINELT.KEY:=X;
IF W1=SENTINEL THEN

BEGIN
NEW{ROOT);
ROO: 1.KEY:=X; ROOTTI.COUNT:=1; RONTT.NEXT:=SENTINEL;
END ELSE
IF W1T.KEY =X THEN W1* .COUNT:=W11.COUN, -1 ELSE
BEGIN

REPEAT W2:=W1; W1:=W21.NEXT;
UNTIL W11T.KEY=X
INVARIANT
(SENTINELT.KFY=X)
AW INILAW2=NILASENTINEL=NILADEF(W2)
AREACH(#WORD,W1,SENTINEL);
IF ~¥1=SENTINEL THEN
BEGIN
W2:=R00T; NEW(ROOT);
ROOTT.KEY:=X; ROOTT,COUNT:=1; ROOTT1.NEXT:=W2;
END ELSE
BEGIN
W11.COUNT:=W11.COUNT+1;
W21T.NEXT:=W1*t.NEXT;
W11 NEXT:=ROOT; ROOT:=W1
END

A-25

i

cadkin

e RSNy

Appendix - Part 3. A-26

Example 18: Hoare’s FIND [Ho71]

PINVARIANT(I,N,R,A) = 3p I<p<N A RsA[p]

QINVARIANT(M,J,R,A) = 3g MsqsJ A AlqlsR

PASCAL
VAR K: INTEGER;
1 TYPE SARRAY=ARRAY [1:K] OF INTEGER;
PROCEDURE FIND(F:INTEGER; A:SARRAY);
GLOBAL(K);
; ENTRY 1<F A FsK A DEF(K);
3 EXIT TRJE;
LABEL 10;
1 VAR R,[,J,W,N,M : INTFGER;
BEGIN
M:=1;
N:=K;
DCOMMENT 1<M A NLK
INVARIANT (MsF)A(F<N)
WHILE M < N DO
BEGIN
R:=A[F]; I:=M; J:=N;
Pel; J'ed; .
DCOMMENT J<J' A I'S]
INVARIANT ((IsJ)>(PINVARIANT(I,N,R,A)AQINVARIANT(M,J,R,A)))
WHILE IsJ DO
BEGIN
I'eI;
DCOMMENT I'*<1
INVARIANT PINVARIANT(I,N,R,A)
WHILE A[IJ<R DO BEGIN I:=I+1; END;
Jied;
DCOMMENT J<J"
INVARIANT QINVARIANT(M,J,R,A)
WHILE R<A[J] DO BEGIN J:=J=-1; END;
IF I < J THEN
BEGIN
w:=A[I]; Al11:=A[J]; ALJ]:=W;
IF I=J THEN I:=T;

L:=1+1; J:=d-1;
END;
7 END;
? IF F <J THEN N:=J ELSE IF IsF THEN M:=I ELSE GOTO 10
; END;
y 10:
END;

AR o/ e e AT .

Appendix - Part 3. A-27 ‘

)
|
1

Example 19: Recursive Tree Traversal (absence of stack overflow)
PASCAL

TYPE PTR=tREC;
REC=RECORD A:PTR; B:PTR END;
VIRTUAL VAR STACKPTR,STACKSIZE:INTEGER;

PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P,#REC) A DEF(#REC) A STACKPTR<STACKSIZE-DEPTH(P,#REC);
EXIT TRUE;

BEGIN 1
IF P=NIL THEN BEGIN WALK(PT.A); WALK(P1.B) END; |
END;

A Al

N N —— - - .- e [g -
o e T T L L T e it . - I M

