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Verifying the Absence of Common Runtime Errors
in Computer Programs

Steven M. German

ABSTRACT

The Runcheck verifier is a working prototype system for proving the absence of runtime errors
such as arithmetic overflow, array subscripting out of range, accessing an unln~tiallzed variable,
and dereferencing a null pointer. Such errors cannot be detected at compile time by most
compilers. Runcheck accepts Pascal programs documented with assertions and proves that the
assertions are consistent with the program and that no runtime errors can occur.

Runcheck is designed to guarantee the complete absence of runtime errors; in this respect it differs
from the anomaly detection or data flow approach, whikh attempts to uncover runtime errors but
cannot guarantee their absence. Another important distinction from'previous approaches is that
Runcheck is based on a detailed, rigorous semantic definition of the programming language and its
data types (including pointers). 1,ecause the implementation contains a general purpose theorem
prover, proofs can be arbitrarily detailed.

The thesis begins by presenting an axiomatic definition of Pascal for proving the absence of
runtime errors. Our definition is similar to Hoare's axiom system, but it takes into account certain
restrictions which have not been considered In previous axiomatic definitions. The definition is
based on a special pr'edicate, DEF(x), which is true if x has a properly initialized value. We
discuss the problem of introducing uninitialized variables in an axiomatic definition, and construct
models of the data types from nonstandard models of the integers to justify our new approach to
uninitialized variables.

The thesis contains many examples of verified programs of various levels of difficulty. The
verification of a four page example program is discussed in detail.

The final section draws on experience with Runcheck and the Stanford Pascal Verifier to discuss
some of the major issues concerning verification and software reliability, including how verification
can contribute to reliability even if absolute correctness cannot be obt.&ined, and which applications
of program verification may be feasible for large programs.

1 Copyright (C) 1981 by Steven M. German
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Introduction

In most programming languages, there are various undefined conditions and illegal

operations such as arithmetic overflow and array subscripting out of range. We call

these conditions runtime errors because they are violations of language or

implementation imposed restrictions on program execution. Current compilers do not

attempt to detect runtime errors during compilation, though they commonly insert

special code to test for certain errors during execution. This approach is costly in

execution time and compiled progrw- :--_i, and of course gives no assurance that a

program will run to completion.

The occurrence of a runtime error may depend on the values of data supplied to a

program. For this reason, any technique for assuring the absence of runtime errors

rnust be based on some method for specifying programs. Showing the absence of

runtime errors is thus a natural problem in program verificationi.

We have been developing an automatic verifier for proving the absence of runtime

errors in the language Pasca!. The Runcheck system takes as input a Pascal program

with entry, exit and optional invariant assertions, and proves that the specifications

are consistent with the program and that no runtime errors can occur. Invariant

assertions are not required in many cases because the system is able to generate simple

invariants a..tomatically, but more subtle invariants must be supplied by the user.

The system currently checks for the following kinds of errors: accessing a vari--ble

that has not been assigned a value, array subscripting out of range, subrange type
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error, dereferencing d NIL pointer, arithmetic overflow, division by zero, control stack

overflow, exceeding heap storage bounds, and UNION type selection errors.

The language accepted by the verifier includes verifiable UNION types instead of

Pascal's variant records. (Chapter 2 discusses the problems of variants and the details

of our UNION typas.) The verifier and our semantic definition uf Pascal de not yet

include REAL or SET types, but pointers are permitted.

This thesis presents an extended axiomatic definition of Pascal, which is the logical

basis of Runcheck. The extended definition is similar to the familiar Iboare axiom

system [HW73], but it takes into account certain restrictions on the computation that

have riot been considered in previous axiomatic language definitions.

Although the details of ouir semantic definition refer specifically to Pascal, most of the

ideas are broadly applicable. The rtntime errors which exist in Pascal are also

prasent ir. many other languages, and the ideas in our semantic definition can be

adopted to other languages with additional kinds of errors. ADA [Ic79] is an

especially interesting case, it should be possible to define much of the language by

generalizing our definition of Pascal. For instance, the problem of generalizing our

definition to allow dynamic subrange types is discussed briefly in Chapter 1.

The thesis also discusses our practical experience with proving the absence of runtime

errors, so that the reader can judge both the potential and limitations of this form of

verification. So far, a large number of short but nontrivial programs have been

vsrified. Chapter 3 explains in detail the complete sequence of steps followed in

c,1 -rying out the verification of an interesting four page program. A list of other

progr-nms that have been verified is in the Appendix.if



Introduction

Obviously, the notion of runtime error does not include every kind of prog amming

error. The runtime errors for a language are the conditions under which programs

cannot continue to execute or continued execution would give undetermined results.

For a program to be useful, one needs to know more about it than that it does not

have runtime errors. Consider a program which is iitended to copy a list made of

pointers and records; it can have an error which causes it to produce the wrong result

without any runtime errors in the sense we are using. Runcheck makes it possible to

verify such a program at several levels of detail. For the least detailed verification,

the program is submitted to Runcheck without additional specifications related to list

copying. In this case, Runcheck attempts to prove only that the prog.ra 4s free from

runtime errors. In general, it may be necessary for the user to supply some

soecifications and invariants even at this level of detail. For instance, the program

may have a control stack overflow unless the input is acyclic. User supplied

invariants would be needed in case the simple invariants generated automatically by

the system are not sufficier.: to prove absence of runtime errors. A more detailed

verification could be obtained by adding specifications saying that the result of the

program is a copy of the input. An even more de'iled verification could establish

bounds on the performance of the program, such as the maximum number of times

each statement is executed as a function of the input [LS771.

The purpose of Runcheck is to automate the routine aspects of the least detailed

verifications, while still allowing the user to supply additional information for more

detailed verifications. Thus although Runcheck is primarily used to perform shallow

verifications, it provides a general logical framework for proving detailed properties.

Every program verified by Runcheck is assured to have, as a minimum, the property

that no runtime errors can occur if the entry assertion is satisfied.

I



Other Related Work

There has been some previous consideration of proving the absence of runtime errors

in the program verification literature, but to our knowledge all previous approaches

that have resulted in working implementations have been lacking in generality in

comparison with Runcheck. We have both developed a general formalism for

showing the absence of runtime errors and developed a working implementation. In

[Si74J, for instance, techniques are presented for proving absence of certain runtime

errors and termination for a class of flowgraph programs, but the techniques have not

been implemented. A special purpose system for checking array subscript bounds in

described in (SI77. Our system handles a wider class of runtime errors and is more

general in the case of array subscripts. For example, the system described in (S177]

cannot verify correct subscripting in Example I of Chapter 1.

Less closely related to our work is an approach called data flow analysis, which has

been used to detect some kinds of anomolies in programs, as in [FO76], which

describes the use of data flow techniques to detect such errors as references to

uninitialized variables. But there are major differences between data flow analysis

and our verification approach:

1) Runcheck is based on a model of computation which is sufficiently faithful to the

programming language that if the absence of runtime errors can be proven, no errors

wili occur during actual execution. Data flow methods obtain efficiency by using

computation models which are too weak to assure absence of errors in a language as

complex as Pascal. Typical data flow methods do not incorporate accurate models of

complex data structures. In [FO76], arrays are treated as simple variables:
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Static data flow analysis systems such as DAVE are incapable of
evaluating subscript expressions and hence cannot determine which
array element is being referenced by a given subscript expression.
Thus, as stated earlier, in DAVE and in many other program analysis

F systems arrays are treated as though they were simple variables,
This avoids the problem of being unable to evaluate subscrirt
expressions, but often causes a weakening or blurring of analytic
results. As an example, consider the program shown in FigurE 19.
... we see that there are two data flow anomolies present. DAVE,

however, treats R as a simple variable ... and no data flow
anomolies will be detected.1

2) The other side of the coin is that very general systems such as Runcheck cannot

have a g- •ranteed high level of efficiency. Thus it is necessary to investigate the

range of practicality of general approaches by experimenting with working

implementations, as we have done. This subject is discussed further in Chapters 3

and 4.

3) Data flow ter~niques are usually intended to operate oin the program alone without

additional specifications or assertions supplied by the user. This mode of operation

minimizes effort required to submit a program to the analyzer but limits flexibility

and leads to greater effort and uncertainty in interpreting the results of the automatic

analysis. Automatic analyzers are often unable to show absence of runtime errors

without additional information from the user because i) many programs depend for

their correct functioning on restrictions in their inputs, and ii) the necessary reasoning

about the internal operation of programs if often too subtle without some assistance

such as user supplied inductive assertions. If a program analyzer is unable for either

reason to determine that a program is free from errors, the user must investigate the

program further by himself to determine whether it is actually flawed. Runcheck

I [F076, p. 327]

-. ------... nL~sA-
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-,- user a choice of either a shallow analysis requiring little user effort or a

,e .horough analysis with more effort.

Althc'ig"- his thesis is not primarily concerned with invariant generation, it may

clarify th,; ielationship between Runcheck and data flow analysis if we point out that

sound but incomplete program analyzers can galher information for later use in a

general logical framework such as the extended semantics. Data flow techniques can

be used to produce a sound but incomplete analysis of a program. For instance,

!CH78] is concerned with the discovery of some of the linear relations among the

scalar variables in a program. Of necessity, any such analysis must be incomplete in

languages as rich as Pascal, but the results are sufficient in many cases for checking

errors such as array subscripting. In Runcheck, simple invariants are generated

automatically by a heuristic analyzer called the documenter. This frees the user from

supplying many simple invariants that are needed for proofs. The current

document-r is less thorough than [CH78) for linear relations; on the other hand it

deals with a broader class, producing some nonlinear relations and some assertions

about array initialization. Runcheck's current heuristics are related to some of the

methods previously developed by the author and described in [GW 75). We plan to

investigate the possible role of data flow techniques in future versions of the

documenter.

Theta Outline

This thesis is divided into four chapters. Chapter 1 introduces the extended semantic

definition of Pascal. Among the topics covered are the problems of developing an



Thesis Outline

accurate lcogca[ mrodel of uninitialized variables, a precise definition of expression

evaluation with function calls, and a practical method for verifying prograns with

procedural parameters. Chapter I concludes by discussing one of the main potential

problems for the user of a verifier, the need to write detailed and repetitious

assertions. We develop some simple logical properties of the extended definition

which are exploited by Runcheck to reduce the need for such detailed assertions.

Chapter 2 applies the ideas of the extended semantics to a special problem in data

structures: Pascal's variant records. We find that programs with variants can be

handled in our semantics, but only with an undesirable restriction. At this point the

discussion leaves the narrowly verific:ation oriented point of view of Chapter 1, and

proceeds to consider a range of language design, application, and implementation

issues. Chapter 2 concludes by proposing new verifiable constructs to replace variants

and eliminate the undesirable restrictions.

Chapter 3 presents a detailed case study of the process of verifying a moderate sized

program with Runcheck. The discussion focuses on some of the strengths and

weaknesses of verification as a practical tool, and attempts to convey a sense of the

degree of effort required to verify programs of moderate complexity.

In Chapter 4 we present our general conclusions concerning the usefulness of

verification as a tool for improving the reliability of pro'gramns.



Chapter 1. An Extended Semantic Definition of Pascal for
Proving the Absence of Common Runtime Errors

The extended semantic definition of Pascal which is the logical basis of Runcheck is

similar to the familiar Hoare axiom system [HW73], but it takes into account certain

restrictions on the computation that have not been considered in previous axiomatic

language definitions. An earlier approach to formalizing the extended semantics is

presented in collaboration with D. Luckharn and D. Oppen in [GLO].

*1 Our axiomatic definition of Pascal consists of some first order theories plus axioms

and inference rules for reasoning about programs. One of the first order theories

concerns a predicate, DEF(x), which is true of expressions having a well defined

value. The other first order theories are familiar ones such as arithmetic. Runcheck

is more than a direct implementation of these logical components; practical program

verifier should provide as much assistance as possible, for example, in generating

inductive assertions. All of the example programs discussed in the thesis have been

handled completely automatically by the system.

The theorems in the Hoare axiom system are of the form P{A}Q. Intuitively, this

formula states that if P holds before executing a program A, then if and when A

terminates, Q will hold. In [Ho69, HW7SJ and elsewhere, the relation P{A}Q is taken

to be true if there is a runtime error in executing A. Moare chose to make the

interpretation that if an error occurred, the effect of the program would be

"undefined," as if it had failed to terminate.

In our extended semantics, P[AJJQ is defined to mean that if P holds, then A executes

without runtime errors, and if A terminates Q will hold. Since virtually all piograms

are intended to execute without runtime errors, a proof of PffAJJQ is much more useful

!-!



Extended Semantics 1-2

than one of P{A}q, from a practical point of view.' If it is possible to verify the

runtme erorchecking code - an increase of efficiency witimout loss of reliability.

Asteextended semantics is a convenient system for showing the absence of certain

errors in programs that are not intended to terminate.

As is the case in other partial correctness definitions, we do not consider it an error if

a program fails to terminate. The difference between our definition and c-thers is that

P[lAJIQ can hold for nonterrninating A only if A is well behaved, with nothing that

would a priori be considered a runtime error such as an arithmetic overflow,

subscripting error, or control stack overflow. These specific errors are violations of

the programming language; the fact of nontermination itself is not. Nevertheless, it is

often desirable to be able to prove termination of a program. Proofs of termination

can be carried out in a partial correctness semantics by showing the existence of

bounds on the number of iterations in loops and on the depth of calls. If one wished

to introduce termination as an optional part of program specifications, it would be

straightforward to formalize the notion of a time bound in our logic. Since proofs of

termination often require much more detail than proofs of the absence of runtime

errors, one would have to decide in each case whether the additional effort to prove

termination was worthwhile.

Our pr'oof system is general purpose in that any partial correctness specification can

be expressed by choosing P and Q. Absence of runtime errors is proven together with

other properties. There are other possible formulations; one could develop a proof

1There are cases where the difficulty of proving absence of all runtimne errors outweighs the
additional benefit. A practical approach in such cases is to leave some errors unchecked; seej Chapter 3.
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system based on statements of the form SAFEIP, A], meaning that if P holds

beforehand, then A executes without runtime error. The disadvantage of such a

system is that proofs of the absence of runtime errors often require lemmas about

more general properties of the program.

For example, consider a simple program which searches in an array A for an element

equal to KEY. The elements are stored in A[I],... ,A[N-l]. The fast linear search

stores the key in the last position of the array A before searching, so that the search

loop does not have to test whether the index has become greater than N. The result

of the search is returned in the variable I.

Ezample 1: Fast linear table search.

VAR N:INTEGER;
TYPE ARR=ARRAY[1 :N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);
ENTRY DEF(N) A 1<N A N<MAXINT;

BEGIN
ACN]:=KEY;
I:21;

WHILE ACI]oKEY DO I:=I+1;
END;

This program depends on the fact that A[NI has the value KEY throughout execution

of the loop. Otherwise, if the key was not found in A, the loop would continue and

attempt to access A[N+I], causing a subscripting error. It is necessary to prove that

A(NJ-KEY is an invariant of the loop, and in our extended semantics, such lemmas

can be proven together in one step with the proof of absence of runtime errors.

The procedure SEARCH is presented to the Runcheck system with an ENTRY

assertion stating that N has a value between I and MAXINT, the largest integer.

The system is able in this case to verify absence of subscripting errors, arithmetic
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overflow, and uninitialized variable errors (the use of the value of a variable before it

has been assigned a value), automatically, given only the ENTRY assertion and

program text as shown in Example I. In particular, the necessary loop invariants

including A[NJ-KEY are generated automatically without any effort on the part of

the user. The reader is warned not to form an opinion of the system's capabilities on

the basis of this small introductory example 2 alone; a variety of more interesting

programs have been handled by the system. Some of them can be found in section

7 of this chapter and in the Appendix at the end of the thesis.

2 Note, however, that none of the three previous implementations mentioned in the Introduction,
[F076, S177, CH78], is able to show absence of subscripting errors in this example; [CH78] does
not treat relations on subscripted variables, and the implementation in [S177] would be unable
to generate the necessary invariant.
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1. Chapter OutoLne

Chapter 1 is divided into nine sections and two appendices. Section 2 contains

important definitions, particularly the definitions of the language and notation of the

extended semantics. Section 3 is concerned with the predicate DEF, which is true

of expressions having a well defined value. Section 4 presents some of the basic

inference rules of the extended semantics. Section 5 presents a precise axiomatic

definition of the evaluation of expressions in Pascal. In section 6, the definition of

expression evaluation is used as the basis of a definition of Pascal statements,

functions, and procedures. Section 7 develops some properties of the extended

definition that are valuable when verifying actual programs. Section 8 discusses

some generalizations of the extended definition, including a new method of verifying

programs with pr'icedure parameters. Following this is a discussion of our general

conclusions. Finally. Appendix I-A gives details of the implementation of the

extended semantics in Runcheck, based on the principles developed in section 7,

and Appendix I-B discusses the details of a definition of simultaneous substitution

for disjoint Pascal variables.

JF
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2. Prelmoinaries

2.1 General definitions

#T reference class (see [LS79]), used to represent the sot of values of a
dereferenced pointer of type tT.

#TcP= value of the variable PT where P has type IT. Throughout this paper,
first order language terms of the form RcPz will denote Pascal expressions of the form
Pt. Any Pascal expression Involving pointers can be translated Into this notation,
provided that the types of the pointer variables have been specified. For further
details, refer to [LS79].

POINTERSTO(#T) set of all pointer values of type MT.

<A, [I), E> value of the array A after assigning the value E In the Ith position.
(R, .F, E> value of R after R.F:=E.
(#T, cPý, E> value of #T after Pt:=E, where P has type tT.

Functions mapping Pascal expressions into types:

type(E) the type of an expression E.
indextype(A) value is R if A has type ARRAY(R] OF S.

Phrases used in a special sense:

The phrase simple variable is synonymous with both variable identifier and declared

variable. A selected variable is a component of a variable identifier (e.g. ALI] is a

selected variable.). A Pascal variable is either a variable identifier or a selected

variable [JW75].

Simultaneous Substitution for Identifiers.

If P(X) is a formula where X a Exl,... ,xn] Is an ordered set of free variable
identifiers, then P(A), where A = zal,... ,an] is an ordered set of terms, stands for
the result of simultaneously substituting the al for the xi in P.
If the set X of free variable Identifiers of a formula P(X) Is partitioned into subsets Xl
and X2, then P(XI, X2) stands for P(X), and P(A1, A2). where Al and A2 are ordered

sets of terms, stands for the result of simultaneously substituting in P the terms in Al
for the variables Xl and the terms in A2 for the variables X,.

..................................................
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Subs~tiution for a Pascal Variablo,

P where v is any term denoting a Pascal variable, Is defined recurslvely as follows.

P where x Is an Identifier, stands for P with t 3ubstituted for x.

v

t°-<v,oo,3t) Jv~f v

2.2 Disjoint Pascal Variables

Intuitively, two Pascal variables are disjoint iff an assignment to one of them cannot

affect the value of the other. It is obvious that in languages with array subscripting

and pointers, disjointness is a dynamic property - it depends on the values of

variables. For instanca, A.i] and A(j] are disjoint iff ivj.

If vl, . . . ,vn are disjoint °ascal variables, it is possible to define the simultaneous

suabstitution

PIv1 vn
tl '"tn

of n expressions for n Pascal variables, in termi of the sequential sub.titutions defined

above in 2.1. This definition and the formal definition of disjointness are needed

only for the procedure call rules; details are presented in Appendix I-B.

'1-
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2.3 Formulas in the extended semantics

The syntax of formulas is ordinary, and is included here mainly for reference. A

formulal is a pure first order formula. The syntactic category of program statements

includes all executable Pascal statements plus some additional statements which are

used only at intermediate steps during proofs. The new statement types, known as

evaluation statements and assume statements, do not initially appear in prograus, but

can be introduced by certain rules during the course of a proof. Evaluationl
statements correspond to the action of evaluating an expression or computing the

location of a variable. Assume statements are used by some of the proof rules to

record previously justified logical assumptions at points within the body of an

executable program.

Implicitly associated with each formula is a set of declarations of constants, variables,

types, and defined procedures and functions, correspondirg to a static scope in a

program. The syntactic distinction between declared and undeclared symbols ,s made

with respE,-t to the scope. It is assumed that all name conflicts in the scope are

remtvfu by ren-.rming. Also, for read.bility, we will feel free throughout the thesis to

oinit pzrentheses whenever the formula can be determined from operator precedence.

(varatable>::= (declared variable> j (undeclared variable>

(cp>::v •Pascal bulit In function>
< (dclIared function sign>
<(urpdclared function sign>

(term>::= (variable> I <constant> (op> ((termlist>)
((term> <Infix arithmetic operator> <term>)

<termIIst>::= ((term> [, <tern>]*]

(predicate>::= (declared boolean functioii sign>
(Pascal bilit in predicate (->, #, <, <)

LI (undeclared predicate sign>

(i



Preliminaries 1-9

<atomic::.= (predicate> (<termilt>) I True I False

(formulal >::= (<formulal> (logical connective> (formulal >) < -formulal >
Y (undeclared variable> ((formula1>)
<I atomic>

(<statement>::= <Pascal executable statement>
I (assume statement>

< (evaluation statement>

I <statement>; <statement>

<assuma statement>::= ASSUME (formula1>

<evaluation statement>::= Eval (Pascal expression>
Locate (Pascal variable>

<subprogram declaration>::= <Pascal function declaration>
O(Pascal procedure declaration>

(formula of unextended definition>::= (formulal>
(formula1> (<statement>) (formula1>
< (formulal> {(subprogram declaration>} <formulal>

<formula>::= <formulal>
<formula1> IE(statement)" (formula1>

I <formula1> [<'(subprogram declaration>3] (formula1 >

Throughout the paper, we will distinguish between the type of an expression and its

sort in the many sorted first order language. By the type of an expression, we mean

its Pascal type according to the scope. By the sort of an expression, we mean its sort

in the first order language. Except for subranges, the sort of an expression is the

same as its type. Integer and integer subrange expressions are of sort integer.

Similarly, expressions whose type is a subrange of an enumerated type have the same

sort as the enumeration. A sort will be said to cover both the type with the same

name and all subranges of the type.

To be well formed, a statement must satisfy the syntax and type requirements of the

programming language CJW75]. Because of the correspondence between types and

sorts, an expression satisfies the type requirements of the programming language iff it
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is a well formed term according to the sorts. A formulal is a first order formula

which may contain free occurrences of declared and undeclared variables. Each term

or atomic formula whose outer sign is declared or Pascal predefined, must also satisfy

the type requirements of the programming language.

2.4 Notation for the extended aemantieo

The axioms and inference rules in the extended semantic definition are actually

schemes, or infinite sets of axioms and rules; in this respect, our system is no different

from previous axiomatic definitions. When a scheme is applied, information from the

program scope mut he substituted in certain places. To specify the infcrrmation that

is to be substituted, wc use a meta notation. An expression involving a function or

predicate sign in Bold Itallca indicates a term or formula to be substituted. Instances

of the axiom or rule are formed by evaluating the italicized meta expression to

produce a term or formul,.. For example, the rule for assignment to a whole variable

is:

P jEEval yýj Inrange(y, typO(X)) A i

P j x .= y ] 0Q

Consider a typical context:

TYPE s-I ..500;
VAR g:3; h:INTEGER;

g := h+4;

Since g is a subrange variable, the assignment statement will cause a subrange error

unless h+4 is in the correct range. Inrenge(y, type(x)) is the notatior, for a formula

which asserts that the value of y is in the range of the variable x. In the context of
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the example, the desired instance of tiLe rule is:

P [Eva, h+4] 1:sh+4 A h+4sOO A 019

P [~g =h+41] 0

2.5 Formula Constructing Functions

Inraxge((ezpression), (type))

Inrange is a function mapping <expression> x <type> -, <formulal>. The expression

must be of a sort which covers the type.

If type Is a subrange a..b,
Inrange(expresslon, type) - aSexpresaaon A expressionsb.

otherwiso,
Inrange(expresaion, type) TRUE.

DisJoi*nt((Pascal variable), (Pascal variable))

The function Disjoint maps a pair of Pascal variables into a formulal which is true

iff the variables are disjoint. Refer to Appendix I-B for a detailed definition of

Disjoint.

DisJoint-set((set of Pascal variables>)

For any finite set of Pascal variables, Disjoint-set constructs a formula] which is true

iff all pairs of variables in the set are disjoint.
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3. Theory of definednes: the predioate DEF

There are a number of possible ways to include the concept of an uninitialized

L1 variable in a programming langu~age definition. What we need is some way to keep

track of which variables have been assigned well defined values at any point during

execution of a program. For the moment, let us restrict attention to simple integer

program variables. We will be considering the two related questions:

What mathematical model should be used to represent the values of and

operations on integer variables which can be uninitialized?

What first order axioms will be used to prove statements about the model?

As an initial model of definedness, it is natural to assume the existence of a single

undefined value 0 not contained in the set of integers 2, and to let integer program

variables range over the extended domain r - Z u [a}. In such a model, we can show

that a program never uses the value of an uninitialized variable by showing that

whenever a value is accessed, the value is not equal to 0. Thus we can assign the

predicate DEF(X) its intended meaning, "X has a defined value," by defining

DEF(X) w X ,, 1 in this model.

A somewhat subtle point, to which we will return later, is that it is not necessary in

the model to assume variables have the initial value 0 if we want to prove absence of

uninitialized variable errors. When we develop the semantics of executable

statements, our approach will be to make no assumptions about initial values: a

variable may sta ' out having any value in the domain. However, we consider a

program free from errors in accessing a variable only if we can prove that in all

executions, the value accessed is not equal to 01. The only way for a variable to



Theory of definedness: the predicate DEF 1-13

become restricted to be unequal to 0 is for it to be assigned a defined value. Thus we

can prove absence of uninitialized variable errors without making any assumption

about the initial values of variables.

A problem arises if we try to formulate a first order theory of the domain 2Z. Since

arithmetic operations such as + and - must be extended to total functions on r, we

have to choose interpretations for terms such as 0 • a and I +- . It is not hard to see

that no matter what extension is chosen, a domain with only one nonstandard element

cannot satisfy the familiar theory of arithmetic on the integers. Letting 0+1 - 01 in

the model would invalidate the sentence Vx x+1ox, while if we let 0+1 - n, for some

integer constant n, it would would follow that a was an integer in Z. In fact, it is well

known that nonstandard models of first order Peano arithmetic must have at least a

countably infinite number of nonstandard elements (this is discussed in logic texts, for

example, EBM77, En72]). We can retain a domain with one undefined element only

by adopting an unconventional theory of arithmetic containing sentences such as

Yx (DEF(x) m x+lux) instead of Vx x+1,ix. Since all integer calculations in such a

theory would be cluttered with references to DEF, we will choose to modify the initial

approach by using a larger domain to retain the familiar theory.

Our intended model of definedness for integer variables is now the following: let 8*

be a nonstandard model of arithmetic with domain 7*. Then define DEFS*(X) to be

true for the standard integers and false elsewhere in Z*.

We now turn attention to the first order theories involved. Let Lz be the first order

language of the theory of arithmetic. With no loss of generality, choose LZ such that

it does not contain the symbol DEF. (The reason for this choice will become apparent

shortly.) Let EZgLZ be some "reasonable" set of axioms for integer arithmetic. Also

4 4
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choose standard theories 2E for enumerated sorts and EDS for the assignment,

selection, and extension operations on complex data structures. We will need the

notion of equality of compound data objects (DSI); other details of a theory of data

structures can be found in [LS79].

DS1 a) if x and y are expressions of a record sort, and fl,... 1 fn are the field names,
x=y 0 (x.fl =y.fl ... A x.fnmy.fn).

DSlb) if x and y are expressions of sort ARRAY[a. . b] OF t,
x=y n (VI a&5L0b x[i]=y[i]).

DS1 c) If s and t are reference classes of the same sort,
s=t n POINTERSTO(s)=POINTERSTO(t) A (VpePOINTERSTO(s) scpz = tcpn)

We now list the axioms EDEF of the theory of DEF.

DEF1) for every constant c, DEF(c) is an axiom.

DEF2) if e is of an enumerated sc.rt (cl ... cn),
DEF(e) ' ezclv .. . ve=cn.

DEF3a) DEF(a)ADEF(bj n DEF(a q4 b)
where S is an operator In {+, -, ,, =, !, <, <, AND, OR, NOT)

DEF3b) DEF(a)ADEF(b)AbIO D DEF(a/b)ADEF(a DIV b)ADEF(a MOD b)

DEF4a) If x is an expression of sort ARRAY!:a. . b] OF t,
DEF(x) m (VI a:SiAI:b n DEF(x[i])).

DEF4b) if r Is of a Pascal record sort, and fl, . . . fn are the record field names,
DEF(r) m DEF(r.f 1 )A . .. ADEF(r.fn).

DEF4c) if #t is of a reference class sort,
DEF(#t) w (VpcPOINTERSTO(#t) (poNIL z DEF(#*tcp-)).

The resulting theory of DEF is still not logically complete, e.g. because it does not say

much about the undefined values. But we should not expect to find such details in a

programming language definition. All of the properties needed for proving absence of

errors in programs have been included.

As the final step in introducing DEF, we will look at a many sorted model of each
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sort under the combined axioms E - EZ u EDEF U E U EDS, and show why the

theories are satisfied in the intended models.

Integers and Integer Subranges. Recall that integers and integer subranges have the

same sort in the first order logic. Therefore, subrange restrictionr are not expressed in

the first order logic; they are introduced only in the logic of programs. The model 8*

applies to both integer and integ r subrange variables.

Because we chose Lz not to contain the symbol DEF, the intended interpretation

DEFB*(x) trivially satisfies EZ. The other axioms for the integer sort are DEFI,

DEF3, and in the case of integer components in compound data structures, DEF4 and

EDS. DEFI is satisfied because DEF3*(x) is true for standard integers. Observe that

DEF3 is satisfied because Z is closed under all arithmetic operations. The remaining

cases of pointers and compound data structures are explained in later sections.

Let us now see what could have gone wrong if DEF had been included in LZ. We

wanted our treatment of DEF to work with any reasonable EZ; this freed us from the

problem of choosing a particular theory of arithmetic. One reasonable component of

EZ is an axiom scheme for Peano induction. For simplicity, let us consider a scheme

for induction or the natural numbers; with trivial changes, our comments will apply

to the integers.

6(0) A Vn (O(n) 6(n1)) z Vx W(x). (P)

Instances of the axiom scheme are formed by substituting a formula of Lz for W(x) in

P, In pa A-icular, if DEF(x) was a formula in Lz, we would have

DEF(O) A Vx (DEF(x) = DEF(x+1)) Y Yx DEF(x) in EZ. From DEF I and DEF3, it
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would be possible to deduce Vx DEF(x), contradicting the intended interpretation, in

which there are values for which DEF(x) is false. Obviously, the predicate DEF would

be of no use if its only interpretation was true for all values; we avoided this

difficulty by assuring that DEF was not part of the theory of arithmetic.

One final point is that there are many models of the integer sort under the axioms E.

No first order theory uniquely defines the mathematical notion "X is an integer," and

so no matter what set of axioms we supply, there wili be models in which DEF is true

foe nonstandard values. Because the axioms in EDEF do not require DEF to he false

for any value, one nonstandard interpretation is DEF(x) a True. The existence of

nonstandard interpretations does not detract in any way from our use of DEF to

prove absence of runtime errors. Since 8* with DE1:* is a model of the integer sort

under E, theorems derived from E are true statements about 8* and DEF8*.

Enumerated Sorts. Let 'tY1E en =(e ..... cn). Then a model (6 for the sort en :an be

defined by 68" Z•, cIS = i, and DEFO(x) a 1:sxen. The standard operations and

relations on en are defined in the obvious way. A point of caution is that we must

not have x=cl v ... v x, n in the theory of an enumerated sort - this would lead to

the problem with OEF(x) m True. Instead, we have axiom DEF2, which permits values

which are not DEF. Note that the same model is used for a subrange of en.

Pointers. A model of pointers must deal with two kinds of objects: pointer values and

reference classes or sets of dynamic variables. In this section we assume familiarity

with pointer semantics as presented in [LS79]; our purpose is to show how to model

the defined and undefir,-c values in a way which satisfies EDEF and reasunable

choices of Z;DS.

. --,' .* .• • ,-;
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For pointer sorts without the pt operation, the only interpreted symbols are NIL and

DEF. For any pointer sort we will assign the structure V= (l Q , NILO, DEF 10) with

F II=:2, NILS a 0 and DEFO = DEF8*. Note that we use a single construction even for

recursive pointer types. Now consider an arbitrary pointer definition TYPE ptr = t.

Using I and the preceeding se..ions, there is a model for the sort t under the

combined axioms E if t is a simple sort. Let us assume for the moment that given

sorts t1,,. . . ,tn, a many sorted model Xi of E for each t, ane - scalar type s, that we

can form a many sorted model WE[s; Xi] for the sort ARRAY [s] OF ti, and a model

fl . ; fn; 21; ... ; Xn] for the sort RECORD fl:tl; ... ; fn:tn END. Therefore, let

us assume in general that there is a many sorted model X of the sort t Then by

constructing the reference class, we can form a many sorted model for all of the

operations on sort ptr.

In our model, a reference class consists of two components, a function mapping Z* into

IZI, and an integer indicating the number of dynamic variables which have been

created. To insure that equality between reference classes depends only on the values

of the currently existing dynamic variables, we assign a single value tO c IJI to all

members of the reference class outside of the currently existing variables.

More formally, a reference class is an ordered pair (m: Z* n -E 2) such that n2O

and Yx ((x(1 v x>n) m(x) = tO).

We now assign interpretations to the predicates and functions on pointers and

reference classes. Let r = (m,n) be a reference class and p a pointer.

"V .- .. .. • -. ..- .



Theory of definedness: the predicate DEF 1-18

P1) rcpz M e(p)

P2) POINTERSTO(r) o (I Oslsn}

P3) (r, cpm, e) 44 (m',n)

where ml(p) = e and m'(q) = m(q) for q'p.

P4) r u {q} * (m, n+1)
provided q i n+1.

P5) DEF(r) +# VI (lslsn D DEF(m(1)))

Notes: P2) POINTERSTO(r) is the set of all pointers to dynamic variables which have

been allocated in reference class r. P4) The extension operator r u {q} represents the

result of allocating a new dynamic variable in r, q is a new pointer of type ptr which

points to the new dynamic variable. Later in this chapter we will use extension to

define the Pascal NEW procedure.

The reader can easily check that this interpretation satisfies the standard properties of

pointers and reference classes and that DSI and EDEF are also satisfied.

Remark. the theory of reference classes in [LS79] is weak; it does not include an

induction principle for reasoning about non-constant sequences of pointer operations.

If we had a stronger theory of data structures, EDS+ " EDOS, how would the

interpretations of reference classes and DEF be affected? To answer this questio.n, we

have to delimit the class of reasonable theories of data structures. If we omit the

interpretation of DEF for reference classes and consider the intended interpretations

of data structures, axiom DEF4c will define the relation DEF on reference classes of

variables of sort t to be DEF(r) a Vx (1sxsn n DEF(m(x))) where r = (m, n). A

definition of this form is consistent in a reasonable choice of EDS+ even with

induction; furthermore, DEF on reference classes of variables of sort t will be the

trivially true relation iff DEF is trivially true on sort t As long as EDS+ is chosen so
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that I) it is satisfied by the intended interpretation of the theory of data structures

without DEF, and 2) DEF is not trivially true for sort t in the intended interpretation,

then the complete axiom system will have a model in which DEF has the desired

meaning on reference classes.

Arrays and Records. The construction of a domain of array vilues for the theory of

sort ARRAY [a.. b] OF t is analogous to the construction of the set of reference classes

of dynamic variables of sort t The array values are triples

(m: Z* -+ ITI, ni t Z, n2 t Z) where ni and n2 are integer values corresponding to the

index bounds a and b. Record values in the model are elements of the direct product

of the domains corresponding to each of the record components. Selection is

interpreted in the obvious way.

As in the case of reference classes, DEF is assured to have the desired meaning if ED)S

contains a reasonable inductive theory.

3.1 The relationship between DEF and lnarange

In Pascal, every subrange type is bounded by two consth-nts,3 a.. b. Thus according

to the definition of Inrange, Inrange(x, s) implies DEF(x), if s is a subrange. This

follows from the properties of the < ordering of the integers. For example, it is a

theorem in the theories of integer ordering and DEF that Vx ((1Sx A x<4) • DEF(x)),

because the standard properties of integer ordering imply that

Vx ((1ýSx A x_4) (x=l v x=2 v x=3 v x=4))

3 More flexible languages are discussed in section 8
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and each of these constants is DEF. Note, however, that

VxYyVz (DEF(x) A DEF(z) A XSY A ysz) ý DEF(y) (3.1)

is not a theorem in the combined axiom system; it cannot be proven by induction orl

the integers because EZ does not contain any instances involving DEF. In fact, there

are nonstandard irterpretations of the theories of DEF and integers for whicl'

formula 3.1 is not satisfied.

Also note that it is not necessary for a variable to be Inrange if it is DEFR under the

axioms of DEF, there can be a variable of a declared subrange type, whose value is

both DEF and not Inrange. In the definition of P [EA] Q, no program is permitted to

assign a value to a subrange variable unless the value is Inrange. If P [EA7 -olds, a

subrange variable can be out of bounds only before it has been assigned a Ae.

MEL
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4. Fundamental i"ferezce rules.

The following two rules are included in both the unextended and extended

defini•iu,

Concatenation of programs. (CONCAT)

P {A) Q, Q {B) R P IA] Q, Q [B] R

P (A; B) R P TA; BI] R

Consequence rule. (CONSEQ)

PmQ, Q (A) R, RnS P:Q, Q 'AE] R, RmS

P (A) S P [A] S

These rules will be used implicitly, beginning in the next seztion on the semantics of

expression evaluation. Later, after P ([A] 0 has been defined, we will develop its

logical relationship to P (A) Q in more detail.

I

tiI

I
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5. Expres.ion Evaluation.

This section introduces and defines evaluation statements. Evaluation statements have

the forms

Eval (Pascal expression>
Locate <Pascal variable>

and in the extended semantics, they can be combined with Pascal statements and

assertion statements to form the general statements which appear inside brackets in a

formula P [A] 0. Evaluation statements will he used in section 6 to define the

conditions for error free execution of Pascal statements containing expressions and

variables.

The statement Eval E corresponds to the action of evaluating the expression E, which

nay not have side effects. P [Eval EJ] Q is defined tr, mean that if P holds then E

evaluates without runtime error, and if E terminates then 0 will hold. Since . does

not have side effects, P and Q refer to states with the same values for variables. By

having two assertions, it is possible to make partial correctness statements about

function calls. For instance, if f is a (strictly) partial function,

PWx [Eval fOx)]l Q(x, fx))

may be a provably true statement about the evaluation of f(x), while the pure first

order statement

PWx :) O(x, O~x))

would not be true since it does not account for divergence of f(x).

The other form of evaluation statement, Locate V, corresponds to the action of

computing the location of a variable. The difference between this and evaluating a

-~ ---.LJ
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t variable is that to compute a location, all of the subscripts must be evaluated and all

dereferenced pointers must be evaluated, but the variable itself need not have a value.

For instance, to execute the assignment statement A[jl:me, the subscript j must have a

value in the correct range, but the left hand side AQj] is not required to have a value.

The definition of A~j]:me is expressed in terms of Locate AtjJ, and Eval e, since the

right hand side must yield a value. The formula P [ELocate Vjj Q is defined to mean

that if P is true, then the location of V can be computed without execution errors, and

if the computation terminates, Q~ will hold.

The exact meaning of expression evaluation is often a point of confusion in

programming languages and definitions. The definitions presented here assume that

sufficient restrictions are used to prevent side effects. Pascal [IW'75) assumes a fixed

order of evaluation within statements and expressions, so the final value of an

expression is well determined even in the presence of side effects. It is a simple

matter to replace a function definition which has side effects by an equivalent

procedure definition, by adding a new VAR parameter to return the function value.

Thus it is possible to rewrite a Pascal program in which functions have side effects

into an equivalent program in which function calls are replaced by procedure calls

and all expressions are free of side effects. This transformation would convert the

evaluation of Lm expression with side effects into a sequence of procedure calls

involving some new variables to store temporary values. Sincc this transformation

can be easily mechanized, our Pascal semantics are indirectly applicable even to

programs with function side effects.

If runtime errors are not being considered, as in the original Hoare axiom system,

function calls without side effects can be defined by the following rule,
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If(X1, . . ,Xn,G) {Function f(X1 :tl; .. ;Xn:tn):tf; B) 0f(X1, ,. . ,Xn,G),
P (Eval Al; ... ;Eval An) If(Al, ... ,An,G) A (Of(A1,... ,An,G) 2 Q) V
---------------------------------------------------------------------. (F l)

P (Eval f(A1,.. An)) Q

which states that evaluation of f(AI,... ,An) can be reduced to the evaluation of

A l,. An in order, followed by the application of f, if If and Of are shown to be

valid entry and exit assertions for f. G is the set of read only global variables, and B

is the body of the function f.

A fine point to be considered at the practical level is that some compilers change the

order of evaluation within expressions if there are no side effects. If the evaluation

of an expression terminates, it terminates with the same result under all orderings.

Since the truth of P (Eval E) Q depends only on whether evaluation of E terminates

and the value of each subexpression, all orders of evaluation are equivalent with

respect to P (Eval E) a. The truth of P (Eval E) Q can be determined by choosing any

possible ordering and considering whether it is true for that ordering. Rule Fl above,

depends on choosing one ordering. Thus F I is correct even if there is reordering.

The situation is different when proving absence of runtimt errors. Then, different

possible orders of evaluation must be considered separately. For instance, an

expression such as f(x)+a[i] might have a runtime error if i is out of range. If f(x) is

evaluated first and does not terminate, the error cannot occur. But if the order is

changed and ati] is evaluated first, the error could occur. Since different orders of

evaluation can give different results, we define P TEval EMl 0 to be true iff every order

of execution is error free and O will hold after every terminating execution.

Another complication is the possibility of short circuit evaluation in Boolean

expressions. In evaluating an expression such as r AND s, when the value of r is False,

ki
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Pascal permits compilers to omit the evaluation of s. The expression r AND s is

assumed to have the value False because r is False. Observe that if 3 does not

terminate or if it has a runtime error, the short circuit has a different partial

correctness semantics from full evaluation. For example,

P lEEval r AND a]i False

may be true for full evaluation but not for short circuit. Short circuit evaluation is

really a form of branching within expressions. The axiomatic definition assumes that

full evaluation is used. Some languages, such as ADA, permit short circuit evaluation

in certain contexts but require the user to explicitly request it. This seems to be a

cleaner approach, and we show below (rule ESS) how it can be formalized in the

extended semantics.

In summary, our detailed semantic definition of Pascal icatements will be based on

partial correctness assertions' about evaluation of expressions and variables. It is

argued that even in the absence of side effects, the definition of expression evaluation

should as a practical matter account for possible variations in the order of evaluation.

We will give an axiomatic definition that does not assume any fixed ordering. On

the other hand, function call rule Fl can be used if evaluation order is fixed, or if

runtime errors are not considered.

The rules defining P lEEval a]j 0 are as follows:

Ezpresslon evaluation.

P [Locate VIj DEF(V) A Q
---- ---- ---- ---- ---- (El)

P [Eval V]j Q

(V is any Pascal variable.)

(=
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P [Eval AQ Q
-----------------------. (E2)
P [Eval ( A)j] Q

(where * is one of the monadic operators,+, -, NOT)

The following rule for evaluation of an operator expression contains three conditions.

The first two assert that A and B evaluate wit&ut runtime error if P holds. These

conditions make the rule independent of any fixed order of evaluation, by requiring

either operand to evaluate correctly if evaluated first. The third condition states that

after both operands have been evaluated, Q4 must hold. Since there are no side effects

and the first two conditions have established that the operands evaluate without

errors, the order in the third condition is not significant. Notice, though, that the first

condition is redundant because the third one also requires A to evaluate safely. In

stating the rest of the rules, we will omit redundant conditions such as this.

P lEval A]I True,
P l'Eval BIJ True,
P n'Eval A; Eval Bf] Q
--------------------. (E3)
P EEval A®BJI Q

(where 0 is a relation sign or booloan connective.)

Rule E3S formalizes evaluation of ADA comditions. In ADA, the boolean conditions for

controlling IF and WHILE statements etc. can have one of the forms

(expression> AND THEN <expression>
(expression> OR ELSE <expression>

which indicate that the left hand expression is to be evaluated first, after which the

right hand expression will be evaluated only if its value is needed to determine the

value of the condition. The following rule for evaluation of A AND THEN B states that

it must always be possible to evaluate A, and that I) if A is false, Q must hold, and 2)

if A is true, it must be possible to evaluate B, after which 0, must hold.

.•J-.•,,•.•.••'• •.' -.. ,•:1',.-,. •:_.•;..T..• ..T...... •--.,• _-.'• ... J• '• -- "Jd •,7 . ... " "- " . .. ..... . ...
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P l'Eval AM -A : Q,
P l'Eval A; ASSUME A; Eval B1 Q

(E3S)
P t[Eval A AND THEN BJI Q

Maxint is an undeclared integer variable representing the range on which integer

arithmetic operators do not overflow. The axiomatic definition makes no assumption

about the values of Maxint. In order to prove absence of overflow, the user must

supply assertions relating Maxint to the computations in the program.

P EEval B]] True,
P EEval A; Eval BIJ -MAXINTsA:B<MAXINT A Q
-----------------------------------------. (E4)
P lEval A0B0 Q

(where 9 Is one of the arithmetic operators, +, -,

P lEEval B]] True,
P [Eval A; Eval BI BPO A Q
-----------------------------------------. (E5)
P [Eval AQBJ Q

(where 9 Is DIV, MOD, or/)

Maxint can have any value such that integer arithmetic does not overflow in the

range -MWaxlnt.. Maxint Note that many computers use twos complement arithmetic,

in which the smallest negative integer has an absolute value one greater than the

largest positive integer. This situation (and other possible number systems with

asymmt.:rical ranges) can be mor," accurately modeled by introducing a separate

variable Minint to stand for the smallest integer, and making the obvious changes in

rules E2, E4, and E5.

The following rule defines the evaluation of a function call f(A1, ... ,An), where each

of the Al is a value parameter and G is a list of read only global variables. For error

free evaluation of the function call, each of the Al must evaluate and yield a value in

the proper range. The second the third premises EA the rule state that if If and Of

are valia entry and exit assertions for f, then they can be used to show PlEEval f(A)JIO.

-: ... -. •, ., . ... .,
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If the parameters A and G satisfy the entry condition If, then Of- will hold on exit.

Also, f(A,G) will be. DEF and Inrange - these properties are assured by the

declaration rule.

for I= 1, . nP [Eval A13 Inrange(Ai, ti),
If(Xl, . . . Xn,G) (Function f(X1 :ti; . .. ;Xn:tn):tf; B) Of(Xl, . . . ,Xn,G),
P [Eval All;... ;EvaI An]j If(A,G) A (Of (AMG A DEFMfAG) A Inrange(f(A,G), tf) z Q)()

P Dval f (All, . An)3J Q

Location Validity.

P [Locate V3j P(i
(this is an axiom for any declared variable Identifier V)

P [Locate R3 Q (2

P 11Locate R.F)J Q
(where R Is of a record type with a XF field)

P lEEval Z3I ZP1NIL A Q (a

P [Locate ZTJJ Q
(where Z Is of a pointer type)

P [Eval 13l True,
P [Locate A; Eval 11 Inrange(l, Indertype(A)) A Q L4

P (Locate AEIJ1J Q
(where A is of an array type)

Example 2: Show Q [Eval aClJ+pt3 True, where

Q a DEF(i) A 051:5 100 A DEF(a~iJ) A Os5a(iJ:526 A DEF(p) A pdiNIL A p1=6 A 1 0O00:MAXINT

with the variable declarations
VAR a: ARRAY[0: 100J OF INTEGER;
VAR i: INTEGER;
VAR p: tINTEGER;

By applying the inference rules in reverse, we can find simpler sufficient conditions

for the formula to be true. We will continue to work backwards until we reach
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sufficient conditions that are obviously true. At this ioint, the formula will be

proven, because it will be possible to construct a formal proof by starting with the

final conditions and applying the inference rules until the original formula is deduced.

The first step is tu use rule E4 in reverse, reducing the problem of proving a

statement about Eval a[i(+pt to proving statements about Eval a[i] and Eval pT.

Q [Eval pt] True, (5.1)
and Q [Eval aDl; Eval pt] -MAXINT s a[i]+pt s MAXINT. (6.2)

Before finishing the example, we pause to mention a fact about the extended

semantics which is helpful in removing redundancy from proofs. Since expressions do

not have side effects, we can assume in proofs that the state does not change when an

expression is evaluated. The following lemma states this fact in a useful form.

Aemma. I- P lEEval eQ] Truo, iff I- P I[Eval eQi P.
1- P [Locate eli True, iff I- P [Locate eji P.

Another point about redundancy is that when applying the inference rules directly to

prove P [Eval E:i 0, the proof of error free execution of some subexpressions may

appear many times. A mechanical evaluator of the preconditions can easily take the

rz.petition into account and only verify each subexpression once.

Continuing the example, show 5.1:

Q [Eval p13 True

Q [Locate pt]] DEF(pt) (by El)

0 -EEval p3J p,,NIL A DEF(pt) (by L3)

Q [Locate p3 DEF(p) A p,,NIL A DEF(pt) (by Ell)

SQ : (DEF(p) A poNIL A DEF(pt)) (by Li and CONSEQ)

True. (by definition of 0)

(i
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Next, show Q lEval allIl True

Q [Locate a[1l3 DEF(a[l]) (by El)

- Q (Eval i]j DEF(a[l]),
and Q[Locate A; Eval I1 OisilO0 A DEF(a[I]) (by L4)

These last two formulas are trivially provable, since the assertion Q, implies that i has

a value, and the whole variable A is always a valid location by Li. Having shown

that both a[i] and pT evaluate without any errors, we can use the CONCAT rule to

infer that one can be evaluated after the other, i.e.

Q (Eval a[l]; Evai pt) True (by CONCAT). (5.3)

It only remains to show that there is no overflow, formula 5.2.

Q {Eval a[l]; Eval pt) -MAXINT -s a[i]+pt < MAXINT

4- Q : -MAXINT < a[il+pt s MAXINT
(by CONSEQ and lemma applied to 5.3)

- True.

Ezample 3: User defined partial functions in expressions.

VAR x: INTEGER;

VAR a- ARRAYEO:I100 OF BOOLEAN;

FUNCTION sqrt(n: INTEGER): INTEGER;

ENTRY True;
EXIT Ossqrt-n
BEGIN

% if n < 0, then loop forever without execution errors;
otherwise, set sqrt ,- integer part of square root n.

END;

Suppose the function sqrt has been defined to correctly return the Integer square

root of n unless n Is negative, in which case It loops forever without runtime errors.
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Using the function declaration rule which will be given In section 6.3, It Is possible to

prove

True [Function sqrt(n:INTEGER):INTEGER; bodyl 0:5sqrt(n):5n. (5.4)

The entry and exit specifications of sqrt can then be used to -show that If sqrt is

called with an argument x whose value is less than 100, thi. location of the variabie

a~sqrt(x)] can be computed without runtime error.

DEF(X) A x~s1 00 [Locate a~s qrt(x)J1J True

DEF(X) Ax x 100 EEvai sqrt(x)]J True, (5.5)

and DEF(X) A x~s100 (Locate a; Evai sqrt(x)Jj 0:5sqrt(x):s100 (by L-4) (5.6)

Using the function cail rule E6, the first part 5.5 reduces to

DEF(x) A xs 100 [Evil sqrt(x)JJ True

DEF(x) A x~sl 10(Eval x]j True,

and True [Function sqrt(n: INTEGER): INTEGER; body]j Ossqrt(x):Sx,

and DEF(X) A x~s100 [Eval x3j True A (0:5sqrt(X):SX A DEF(sqrt(x )) True)

which are all true.

The second part 5.6 can be simplified

DEF(x) A xs 100 (Loca-te a; Eval sqrt(x)JJ 05sqrt(x):s 100

4- DEF(X) A x~s100 EEvai sqrt(x)fl 0:5sqrt(x)s 100 (by Li and CONCAT)

-DEF(X) A x:5100 EEval X]l (0!5sqrt(X):SX A DEF(sqrt(x)) nO:Ssqrt(x$:s100)
(by E6)

DEF(X) A XS100
[Locate x]I DEF(x) A (0~ssqrt(x):sX A DEF(sqrt(x)) )O~ssqrt(x)sl100)

(by El)

DEF(X) A X:Sl10O : DEF(x) A (Ossqrt(x):sX A DEF(sqrt(x)) O 0ssqrt(x):s100)
(by Li and CONSEQ)

~-True
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6. Extended axiomatic semantics of Pascal

6.1 Assume statements

The meaning of tl; statement ASSUME L is that L can be assumed to be a true

assertion at a c,.rtain point in a program. Assume statements do not initially appear

in programs, but carn be introduced during the course of a proof, to record logical

assumptions which hold at poitts within a program. For instance, the rule for IF

statements reduces a formula involving IF L THEN S1 ELSE S2 to two formulas for the

two cases of the condition L. In one formula, the statement ASSUME L records the

assumption that L was true, and in the other formula, ASSUME -L records the

assumption that L was false.

(PAL) n Q
---------------. (ASSUME)

P EASSUME L) Q(

6.2 E'.ecutable statements

Assagnment statements

The following rule applies to all assignment statements.

P a:Eval eji True, Pv

P ELocate pv; Eval el Inrange(e, type(pv)) A Qpe
----------------------------------------------- ...----., (ASSIGN)
P I[pv := ei Q

where pv Is any Pascal variable

In order for P jEpv := eji Q to hold, it is necessary for the assignment to execute

without any runtime errors, and for O to be true in the updated state. The rule
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requires the right hand side, e, to evaluate without runtime error &id to yield an

initialized value;, the location calculation for left hand side pv is also required to be

free from errors. If pv is a subrange variable, the Inrange clause requires the value

of e to be in the correct range. The updated formula Q is formed by substituting e

for the Pascal variable pv, using the definition of substitution given in section 2.1.

IF statements

P nERval L; ASSUME L; S1i] Q,
P EEval L; ASSUME -L; S21 Q

P E[IF L THEN S1 ELSE S2]] 0

CASE statements

for =1,. . n, P [Eval X; ASSUME X=C1 ; SoJl Q,
P n'Eval xli Xe{C1 ... Cn

(CASE)
P n'CASE X OF C1:S1 ; ... ;Cn:Sn]] Q

The Ci are lists of constants for each branch of the CASE statement. The second

condition requires the CASE expremsion X to evaluate to one of the constants in one

of the Ci.

S-7... . .,
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NEW procedure

The following axiom states that the effect of the Pascal statement NEW(x), where x is

a variable identifier of a pointer type, is to change the value of x to a new pointer

value xo, and to add the new value xo to the reference class.
Q#T Ix ]NWx] NE1

-(xO e POINTERSTO(#T)) A DEF(xO) , xOoNIL z Q [NE#W(x) {}NEW1)
i#T u {xO) 1x0

where x is an Identifier of type tT (pointer to object of type T),
xO is a fresh identifier not appearing in 0,
#T is the reference class for type T,
#T u {xO} stands for the reference class after adding an object pointed to by xO.

The antecedents on the left side of the rule state that I) the value xO generated by

NEW is a new pointer, not a pointer to the reference class #T, 2) xO has an initialized

value, and 3) xO is not the pointer NIL. The term #T u {xO) represents the new

reference class after the dynamic variable xOT has been allocated. A more complete

discussion of POINTERSTO and the operation of adding new elements to a reference

class can be found in [LS79).

"A ne following rule reduces a NEW statement involving a selected variable to a NEW

statement with an argument which is an identifier.

P [NEW(SO); S:=SO1 Q
-----------------------. (NEW 2)
P [NEW(S)l 0

where SO is a new identifier not appearing in the scope, P, or 0.
the. ration VAR SO: type(S) is added to the scope.
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WHILE stateruts

p •I,
I [Eval B; ASSUME B; S1 I,
I [Eval BIJ -,B m Q
------------------....---------- (W HILE1)
P I[INVARIANT I WHILE B DO S3 Q

In this rule, the invariant is chosen to be true before each evaluation of the While test

B. The rule can be rearranged to correspond to other choices of invariants.

6.3 Functions and procedures

6.3.1 Function declaration

With the function declaration rule, one can infer that I and 0 are valid entry exit

specifications for a function f, if for inputs satisfying I, the body of the function

executes without runtime errors and assigns a final value to the function which

satisfies the exit assertion 0.

I(X1,.... Xn,G) A DEF(X1)A ). .. AEF(Xn) A Inrang.(Xl,tl)A^... ^/nrange(Xn,tn)
'[BI O(f,X1,... ,Xn,G) A DEF(f) A Inrange(f, tf)

---------------------------------------------------------------.. ----------------. (FFD
I(X1,.. ,Xn,G) [rFunction f(Xl :tl ; ... ;Xn:tn):tf; BIj O(f(X1 ... Xn),Xl, . .,Xn,G)

where f has the function declaration
FUNCTION f(X1 :tl; ... ;Xn:tn):tf;
GLOBAL G;
ENTRY I(X1, ... Xn,G);
EXIT O(f,X1, .... Xn,G);
B;

The rule requires that the function have only value parameters Xi ...1 ,Xn and a set

of read only globals G. The rule assumes that each of the value parameters has an

initialized value in the correct range, this assumption is justified by the call rule,
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which checks the actual parameters. If global variables are accessed, the entry i

assertion must assert that they have been initialized.

In the exit assertion O(fX1, . . . ,Xn), the variable f stands for the value returned by

the function. The rule checks that the body assigns f a value in the correct range. As

we will see in section 7.4, the condition Inrange(f, tf) appearing after execution of

the body is redundant. Because the declaration rule requires f to be DEF after

execution of the body, it is not necessary to require f to be Inrange.

6.3.2 Note on Global Variables

Runcheck requires the user to declare lists of all global variables that could potentially

be accessed or altered by each subprogram. The system checks the lists by a syntactic

examination of the subprogram body. For instance, a global variable g which is used

in an assignment statement g := e, must be declared read write. Also, if the body of p

contains calls to q, then all globals listed for q must be listed for p.

Reference classes are a special case of global variabl,- which are implicitly accessed or

altered although they do not appear explicitly in the executable program text. If a

subprogram evaluates pt, this is considered an implicit access to a reference class. An

assignment pt := e is considered an implicit write to the reference class. The system

requires all reference classes which are used as globals of a subprogram to be

explicitly listed by the user as global parameters.

The presence of a pointer formal parameter does not necessarily imply that a

reference class will be accessed or altered by a subprogram. For instance, a procedure

p with a VAR formal parameter x which is a pointer to an integer,
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TYPE Ptr - tINTEGER;

PROCEDURE p(VAR x: ptr);
BEGIN x := NIL END;

may assign to x without altering the reference class #INTEGER. No globals would be

listed for this procedure, since it changes only the pointer x and not any of the integer

variables pointed to.

On the other hand, in a procedure p2 which assigns to xl, it would be necessary to

list the reference class #INTEGER as a read write global,

TYPE ptr z TINTEGER;

PROCEDURE p2(VAR x: ptr);
GLOBAL (VAR #INTEGER);
BEGIN xt := 0 END;

because an integer variable accessed by a pointer is changed.

Observe that depending on the actual argument, a call to the procedure p above could

have the effect of changing a reference class, as in the call

TYPE ptr = tINTEGER;
ptr2 = Tptr;

VAR y: ptr2;

p(yt); % changes #ptr %

which changes the reference class #ptr of variables of type ptr which are accessed by

pointers. In this case #ptr is not considered a global, although the call rules do

account for the fact that part of #ptr is altered by being passed as a VAR parameter.

Which reference class is altered in this example depends on the call, not on the

definition of p. For example, in the call

11 11 A F11-I-
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TYPE ptr a TINTEGER;
ptrarray a ARRAY[1 ..100] OF ptr;
ptrptrarray I tptrarray;

VAR z: ptrptrarray:

p(zt[5o));

z is a pointer to variables of type ptrarray, zi is a, array of pointer variables, and

0'[50] is a pointer to an integer, and hence the correct type to be an argument to

procedure p. The variable which p changes in this case is an elemckt of an array

accessed by a pointer, and this causes a change to the reference class #ptrarray.

The ability of a procedure with a VAR pointer parameter to change different

reference classes depending on the actual parineter, is exactly analogous to the ability

of a procedure with a VAR integer parameter to change components of different

integer arrays.

PROCEDURE q(VAR x: INTEGER);
BEGIN x:= 0 END; % no globals %

The first call in

TYPE are r ARRA'v[I ..500] OF INTEGER;
VAR v1, v2: arr;

q(vl 1503);
q(v2160]);

alters part of v 1, but the second one alters part of v2.
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8.3.3 Procedure delairation

I(X,Y,G) A DEF(X1 )A ... ADEF(Xm) A Inrang*(Xl ,tl )A... Anrange(Xm,tm)
E1B3 O(X,Y,G)

I(X,Y,G) 'Procedure p(Xl :tl; ... ;Xm:tm; VAR Yi :ul; ... ; VAR Yn:un); B]] O(X,Y,G)

where p has the procAdure declaration

PROCEDURE p(Xl :tl; ... ;Xm:tm; VAR Y1 :ul; ... ; VAR Yn:un);
GLOBAL GR, VAR GW;
ENTRY I(X,Y,G);
EXIT O(X,Y,G);
B;
GR are the readonly global variables,
GW are the read write global variables,
G stands for the set of all global variables, GR u GW.

Like the function declaration rule, the procedure declaration rulp. assumes that the

value parameters are initialized by each call with values in the correct range. On the

other hand, there is nothing unusual about procedures that work correctly with

uninitialized VAR parameters. Consider a simple procedure p which is called with an

integer j and two array variables, x and y, and assigns x[j] the value y[j].

TYPE s = 1..100;
TYPE arr = ARRAY[s] OF INTEGER;

PROCEDURE p(J: s; VAR x, y: arr);
BEGIN

xJjl := yEj];
END;

Since the procedure does not test the range of j before executing the assignment, a call

to p will produce a subscripting error v less j is between I and 100. Also, the actual

variable supplied for y[j] must have been assigned a value before the call to p. No

other restrictions are needed to assure error free execution. In particular, p will work

regardless of whether x has been initialized, and regardless of whether portions of y

other than y[j] have been initialized. For instance, the following sequence executes

without errors.

!,mom,"
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VAR a, b: arr;
VAR k: INTEGER;

BEGIN
k :a 50;
b[k] := 1000;
p(k, a, b);

% now a[50J = 1000 %
END;

The behavior of p can be specified by providing it with entry and exit assertions.

TYPE s = 1..100,
TYPE arr a ARRAY[s] OF INTEGER;

PROCEDURE p(j: s; VAR x, y: arr);
INITIAL y = yO;
ENTRY DEF(y(I'J);
EXITy yO A x[j]=y[j];
BEGIN

xj]= y[jE;
END;

The entry assertion states that y[j] has a value when p is called. Note that since j is

a value parameter with a subrange type, the declaration rule assumes that it will be

supplied with a value in the correct range - this will be checked by the call rule.

The Initial statement simply introduces a new name yO to stand for the initial value

of y at the time of entry to the procedure. The exit assertion states that the value of 1

y is unchanged, and that x~j] is equal to y~j].

To summarize the point of this example, all of the rules for subprograms assume that

value parameters must be supplied with initialized values in the correct range. This

is our interpretation of what it means to correctly call a subprogram with a value

parameter. No such assumption can be made for VAR parameters, and so it is

necessary to describe the behavior of each one by means of entry and exit assertions.

It is of course possible for there to be implementations of Pascal, in which calls with

' I
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value parameters will produce the desired results in some cases even if the actual

parameter is not fully initialized. This is merely an artifact of certain possible

implementation techniques. Our deffinition attempts to capture what is meant by the

language itself, and is intended to be sufficiently restrictive to be consistent with all

possible implementations.

As was mentioned earlier, the initial value of local variables is nct specified by the

function or procedure declaration rules. Another approach, which seems reasonable at

first glance, is to assert that every local is initially undefined. This is not needed in

the extended semantics, '--cause for P [A]l Q to be valid, every variable must be

assigned a value which is DEE before its value is used.

The deciaracion rules could be modified to specify an initial value for locals, but this

would unnecessarily complicate the definition and lead to confusion in applying the

extended semantics. It would be possible to introduce a new constant C. for each sort

to stand for the initial value. The axioms would be changed to state that for each of

these constants, -DEF(C 5,), and also -'DEF(t) for terms t formed by selecting components

Uf Cs. For each local L, L=C, would be added as a premissr in the declaration rule.

But this is an unnecessary complication. Also, it does not accurately model the

implementation of Pascal, in which initial values are left unspecified to reduce

overhead. For this reason, it would give confusing results in practice. If a program,

A, never used two variables of the same sort, x and y, and otherwise executed without

errors, it would be possible to prove that the variables were equal after the program,

P (A) x=y.

Such a result differs from the implementation and probably conceals a programming

error.
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6.3.4 Procedure call

The procedure call rule requires each value parameter to evaluate without runtime

error, yielding a value in the correct range, and each VAR parameter to yield a

location without runtime error.

for 1=1, ... ,m, P [Evel Alfl lnrange(Ai, ti),

for i=1, .. . ,n, P [jLocate VI]J True,

I(X,Y,G) [Procedure p(X1 :t 1; . .. ;Xm:tm; VAR Y1 :ul;. .. ; VAR Yn:un); B]] O(X,Y,G),

P [lEval Al; ... ;Eval Am; Locate V1;... ;Locate VnJ] Disjoint-set(V u G) A I(A,V,G)

A YZGB £i(AZGRG) : QV1 Vn GWl GWk

A , ( ( , G , ) ''IZ1 " Zn GB1 GBk )
--------------------- (PC1)

P [p(Al ... ,Ani,,Vl, .... WVfQ Q

Each of the actual VAR parameters, Vi, must be a distinct Pascal variable not in GW.

Note that this definition depends on the definition of substitution when Vi is not an

identifier.

M! -] M
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7. Metatheory of the extended definition

In this section, we discuss some properties of the extended definition which are

helpful in reducing the complexity of program specifications and the length of proofs.

By itself, the extended semantics is not a complete solution to the problem of verifying

the absence of common errors. In practice, there are two main kinds of difficulty in

doing actual verifications. These practical difficulties were carefully considered in the

design of the Runcheck system.
-II

The problem of redundancy in proofs is solved in Runcheck by a special simplifier

which efficiently eliminates redundant verification conditions.

A more serious problem is the need for lengthly, detailed specifications and inductive

assertions in programs. Several distinct approaches are needed to deal with this

problem. In Appendix I-A, we discuss the derived WHILE rule, which shows how

the extended definition reduces the need for detailed documentation. The derived

WHILE rule and other rules are logically justified by certun simple properties of the

theory of the extended definition, which are presented in the remainder of this

section.

7.1 Ordinary Semantics Le.mma
]

Any specification for an executable statement A which is provable in the extended

definition is also provable in the ordinary definition (this does not apply if A. is a

subprogram declaration).

Lem=a 7.1 If t- P [A[ Q, then I- P {A) Q.



Metatheory of the extended definition 1-44

The significance of this lemma is that all specifications, even those involving DEF,

are theorems of the ordinary system.4 The extended definition only places more

restrictions on the allowable computations. Consistency of the extended definition is a

direct consequence of this lemma.

7.2 Specification lemma

When proving complicated specifications for a program, it is sometimes helpful to

prove the specifications without considering possible runtime errors, and then prove

separately that no errors occur. In this way, the details about runtime errors can be

isolated in the proof. The next lernma says that proofs in the extended definition can

always be factored in this manner.

Lemzma 7.2 If F P (A} Q, and I- P1 [ AI Q1, then I- PAP1 AI QAQ1.

The reason for this is that if both P (A) Q, and P1 JI' Q1 can be proven separately,

then it is always oossible to combine the procfs to show PAP JAI) QAO1.

The design of the automatic Docimenter in Runcheck is based on this lemma. The

documenter constructs inductwve assertions 5 that are val id in the ordinary semantics.

The a.,sertions can thern be assumed true in proofs in the extended semantics. Thus

the documenter does not have to consider possible runtime errors while constructing

the invariants.

SIn the case of built in procedures, it is necessary to choose slightly nonstandard definitions if
the resulting system ie to be complete with respect to specifications involving DEF. The
"orainarv" system that we have in mind has axioms stating that the results of built in
procedures such as READ and NEW are DEF.

5 Refer to [Ge78] for details of the doc'Jmenter



Metatheory of the extended definition 1-45

7.3 LESSDEF lemma

One of the basic properties of the extended definition is that if P [S'] 0 holds, S

cannot assign an uninitialized value to any variable. Over any sequence of

statements that executes without runtime error, the extent of variable initialization

cannot decrease.

LESSDEF(x, y), a predicate for two terms of the same sort, is defined to be true if y is

at least as completely initialized as x.

LD1) If x and y are of the same simple sort,
LESSDEF(x, y) a DEF(x):,DEF(y).

LD2) If x and y are of the same record sort, and the field names are f1, .... fn,
LESSDEF(x, y) u LESSDEF(x.f 1, y.f 1 )A... ^LESSDEF(x.fn, y.fn).

LD3) if x and y are of sort ARRAY[a..b] OF t,
LESSDEF(x, y) a (VJ a5jfb : LESSDEF(x[J], y0j3)).

LD4) if x and y are of sort REFCLASS(t) for some t,
LESSDEF(x, y) m (Vp•POINTERSTO(x) LESSDEF(xcpm, ycp•)).

The LESSDEF lemma says that for any variable in a program that executes without

errors, the final value will be at least as fully initialized as the initial value.

Lemma 7.3 If I- P [EA[ True, and v Is a declared variable idantifier then,

I- P A v'=v [A[] LESSDEF(v', v)

where v' Is a new Identiflar not appearing in P, A, or the sc,,le.

In Runcheck, the lemma is used to reduce the need for detailed assertions on loops

and procedures. If a variable is known to be DEF before entering a loop, it is not

necessary to state in the invariant that it continues to be DEF. Similar assertions

about VAR parameters can be omitted from procedure specifications.

S.---.V, j- ., _=• _• -_ . • • •. •
.....,,,•, -,'P- "• . •. | 1m m •. ,#• ff~s • ...,=,w.ml~m • .. . - - a ...
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Example 4: Merging two sorted arrays

This example shows how Runcheck uses the Lessdef lemma to reduce the need for

repetitious, detailed assertions. The program takes as input previously sorted arrays

A and B of length 100 and merges their content! into the array C, which has length

200. The user has supplied only an ENTRY assertion saying that A and B are fully

initialized, and an EXIT assertion saying that C is fully initialized. The interesting

aspect of this example is that the initialization of C takes place in two loops. The

first loop partially initializes C, merging elements from A and B until either A or B

has been completely transferred. Then the initialization of C continues in either the

second loop or the third loop.

TYPE INARR=ARRAYE1:100] OF INTEGER;
TYPE OUTARR=ARRAY[1:200] OF INTEGER;
VAR I,J,N:INTEGER;
VAR A,B:INARR; C:OUTARR;
ENTRY DEF(A)ADEF(B);
EXIT DEF(C);
BEGIN
N:=1 00;

J:=l ;

INVARIANT DEFRANGE( ?, I+J-2, C)
A 1 -IAIN+1 A IJ A JJN+I

WHILE (I<sN) AND (J-<N) DO
BEGIN

IF A[I]sB[JJ THEN BEGIN C[I+J-1]:=A[I]; 1:=I+1 END
ELSE BEGIN C[I+J-1j:=B(JJ; J:=J+l END;

END;

INV/ARIANT DEFRANGF.(P+N, I+N- 1, C) A 1'91 A 1-<N+ 1
WHILE IsN DO BEGIII C[I+NJ:=A[I]; 1:=4+1 END;

INVARIANT DEFRANGE(J'+N, J+N- 1, C) A J'<J A J<N+ I
WHILE JsN DO BEGIN CEJ+N]:=B(JJ; J:=J+l END;
END

The system will verify

DEF(A) A DEF(B) [body)] DEF(C)

wi ýim
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i.e, that the program does not ha re any execution errors and that no elements of C

are missed. All of the other variables are initialized before the first loop. Still, it is

necessary to prove that they are DEF each time they are accessed. In the case of a

variable such as I, Runcheck uses the Lessdef lemma to infer that it has a value

everywhere in the program after the assignnment I:-l. Even though I is changed on I

the first loop, it is not necessary to write DEF(I) (or A, B, J, N) as an invariant.

In many array programs, the arrays are either supplied as fully initialized parameters,

or are initialized at the beginning. Without the Lessdef lemma, it would be necessary

to have invariants repeating the fact that an array or other data structure is DEF at

various points within a prof, -m.

Consider now the more complicated case of proving DEF(C). The system

automatically generates the statements shown in bold italics. By examining the first

loop, one can see that at any time, values have been assigned to the positions

Celi],. .. ,CeI+J-2]. This fact is discovered by the system and is expressed in the

invariant as :

DEFRANGE(1, 
I+J-2, C).

DEFRANGE :s a special predicate used to express that a subrange of an array is

DEF. Its definition is

DEFRANGE(x,y,a) P (Vi xsIsy : DEF(a[iJ)).

The invariant for the second loop states that C[I'+N, ... ,C[I+N-1J are DEF, where I'

stands for the value of I before entering the second loop. Similarly, the assertion for

the third loop states that C[J'+NJ,. . ,C[J+N-1J have been assigned values. The

I..
system also produces the arithmetic inequalities shown on each loop.

P-
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To be able to prove the exit assertion, DEF(C), it iv necessary to show that all of

C ].... ,C[200] have values after the third loop. Notice that each invariant only

describes the initializations done by its own loop. For instance, the third invariant

only deals with the last part of C, and does no. repeat the fact that the first part of C

is initialized by the first loop. Runcheck uses the Lessdef lemma to infer that the first

part of C continues to be DEF, even though that fact is not included in the later

invariants. Thus the invariants shown are sufficient to prove that C is fully

initailized on exit. The documenter's assertions are also sufficient to show that the

program executes safely.

7.4 ILarange lemma

The Inrange lemma says that a program for which P [A3 T7rue holds cannot causr-. the

value of a subrange variable to become out of range (when started in a state which

satisfies P). If a subrange variable is known to always be DEF at some point in a

program that executes without errors, then the variable must be Inrange at that point.

To begin, we define Inrange*, a formula constructor similar to Inrange. The

difference between the two is that Inrange asserts that a subrange variable is in the

correct range and is always true for other types, while Inrange* asserts that every

subrange variable contained as a component of its argument is in the correct range.

DeftL~itton. Inrange* Is a mapping (pascal varlsble> x (type> -+ (formula>. For simple
types, Inrange*(v, t) Is true if Inrange(v, t) Is. Inrange*(v, t) Is true for a compound
type If Inrange*(c, type(c)) is true for every component c of v.

The idea of the Inrange lemma is a characterization of the possible sets of states of

programs that always execute without runtime errors. Any actual execution must

begin in the outermost block with all variables uninitialized. Data needed by the

.1
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program is obtained by a READ procedure which always returns values that are DEF

and Inrange. Given that the program always runs without errors, what do we know

about the set of all possible states if it terminates? Variables that the program assigns

to every time it is run will always be DEF and Inrange* at the end. Variables that

are never touched by the program will be completely unspecified at the end.

Variables assigned to on some runs but not on others can be -,DEF at the end, or can

have a value dependent on the values of the other variables. If the value is

dependent on the other variables, it must be an Inrange* value. The essential point

is: If a program determines the value of a variable, the value must be Inraige*. If a

variab!e is always DEF at the end of a program, then it must always be Inrange*.

Definition. Let X be the set of simple components nf the declared variables. For

instance If v is declared

VAR v: ARRAY [1-.2 OF RECORD f:iNTEGER; g:BOOLEAN END;

then X will contain the variables v(1 ].f, v[2].f, v[1 J.g, v[2].g. Note that X is a set of

variables, not a set of the values the variables. A state of a program is an

assignment of values to each of the elements of X. To refer conveniently to the value

of a given variable y*X and the overall state, we will use the notation that the y-form

of a state is a pair <z,Z>, where z stands Aor the value of y, and Z stands for the

values of the variables in X-{y}.

A set S of states Is DEF-convex for the variable y, Iff

for all Z,
(Yz <z,Z>eSy n DEF(z)) implies (Yw <wZ>eS y Inrange(w, type(y))).

where Sy is the set of states In S, represented in y-form.

A set of states of X is DEF-convex Iff it is DEF-convex for every variable in X. A

S... ' . .. . : : -.: - • , •-• • -- - iI... •--... .. . . ... . - - .2 .. . . . .. . . . ...--
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formula containing free occurrences of declared variables Is DEF-convex 1ff It Is

satisfiled by a DEF-convex set at states.

Ezamplas az.,ume the declared variables are
VAR x: INTEGER;
VAR y: 1.10;

(7.1) True, False both DEF-canvex
(7.2) y=2 DEF-convex
(7.3) y=40 not DEF~-convex
(7.4) yp,4O DEF-convex
(7.5) DEF(y) not DEF-convex
(7.6) x=1 Y=2 DEF-convex
(7.7) xal y=40 not DEF-convex

If S is the set of final states of a program that does not have runtime errors, then S is

DEF-convex. In the examples, a program can set y to 2, so '7.2 is DEF-convex, but '7.3

cannot be DEF-convex because 40 is out of range. Although yo'4O is DEF-convex, it

is not a possible set of final states - the DEF-convex sets include more than final

states sets. To attempt to characterize only final states would require much more

detail than we need here. Note that '7.5 is too weak to be a final set of states because

it includes both 7.2 (a possible set) and 7.3 (an impossible set).

Lemma 7.4a If a program Is started in a DEF-convex set of states and alwaysI executes without runtime error, then the final set of states will be DEF-convex.

It follows Lhat if a program always leaves a variable DEF when it halts, the variable

must be Inrange* at the end.

Lemmay 7.41b If B Is a Pascal statement, pv Is a Pascal variable, P Is a DEF-convex

predicate, and I- P [B]I DEF(pv), then I- P E13 Inrange*(pv, type(pv)).

The restriction on P in this lemma is necessary. Recall that extended semantics does

not specify the initial values of varlables, and that subrange type variables have the

'7a
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Metatheory of the extended definition 1-51

same sort as the base type of the subrange. Consequently, there is nothing that says a

subrange variable cannot be out of range if its value is not assigned by the program.

The following formula is a a theorem, even if the variable S declared with a

subrange of only 1.. 100.

- S8.500 [emptyJ] DEF(S) A S=500.

Of course, the extended definition checks that any program that uses the value of S

first assigns it a value in the proper range.

Runcheck makes use of a restriction that the entry assertion for the outermost block of

a program must be DEF-convex.6 With this assumption, Runcheck can infer bounds

on the value of a subrange variable if it is known to be DEF. In some cases, this can

permit lengthly assertions to be omitted. For instance, if a complex data structure

contains subrange variables and the entire data structure is DEF, bounds for the

subrange variables can be deduced without any additional assertions. By induction

on the depth of procedure calls, the lemma can also be applied to formal parameters

when reasoning about a procedure body. Since a value parameter v must be DEF on

entry, lnrange*(v,t) must be true initially. Variable parameters do not have to be

DEF on entry, but if the value is used somewhere in a procedure body it must be

possible to prove that the variable is DEF and the Inrange lemma applies at that

point.

6 In an actual Pascal program, no assumptions can be made about the initial values of variables

declared in an outermost block. To b6 strictly realistic, the verifier should not permit entry
assertions there. They are permitted as a small convenience; a main block with an entry
assertion is considered to be a shorthand for a procedure with globals. The significance of this
is that the truth of the entry assertion must be assured by some calling program i.e. it ýs
possible to declare a procedure with an entry assertion that is not DEF-convox, but its actual
set of entry states is then a DEF-convex restriction of the declared entry condliion.

ia,]
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Example 5: Constructing a Spanning Tree.

The following program is a simple algorithm [Se 70] for finding a spanning tree of

an undirected loop-free graph with E edges and V vertices. If the graph is

disconnected, it grows a spanning forest. The graph is entered as a table of edges in
the arrays IA and JA, so that the vertices of the kth edge are IAk and JAM. The

program stores the indices of the spanning tree's edges in T[l,.... T[V-P], where P

is set to the number of trees in the spanning forest.

This example illustrates the use of subranges and the inrange lemma to strengthen the

entry assertion of a procedure. Since 1A and JA are tables of vertices, they have been

declared as arrays of subrange values IV. It is typical in graph manipulating

programs to use a value stored in one array to compute an index into another array.

Here, the variable I is set to JACK] and then VA[(I is accessed. For the latter access to

be in the subscript range I:V of VA on eve,-y iteration, all elements of IA must have

been in the range initially. Because IA and JA are value parameters, their initial

values must be DEF, and by the inrange lemma, Runcheck can infer that the elements

are in tWe correct range. Similar reasoning is required for other array accesses.

6-- -- ---
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VAR E,V:INTEGER;

PROCEDURE SPANNING(IA,JA: ARRAY[1 :EJ OF 1 :V;
VAR P: INTEGER;
VAR T: ARRAY[1 :V-1 I OF INTEGER);

ENTRY DEF(E) A DEF(V) A 1:E A 2<V;
EXIT TRUE;
VAR I,J,K,C,N,R: INTEGER;
VAR VA: ARRAY[1 :V) OF INTEGER;

BEGIN
C:2O;
N:=O;
FOR K:=I TO V INVARIANT 1IK A K,,V+I A DEFRANGE( 7,K- 1,VA)

DO VACK]:=O;
FOR K:=1 TO E

INVARIANT ISK A K<E+l A O:N A O£C A N:K-? A CKK-1 A K:V+N-1
DO BEGIN

IF K-N:V-1 THEN GOTO 1;
.--iA[K];

J:=JA[K];
IF VA[I]=O THEN
BEGIN

TEK-N]:=K;
IF VA[JJ-O THEN BEGIN

C:=C÷I;
VA[J]:=C;

VAEI]:=C;
END
ELSE VA(I]:=VA[J];

END
ELSE IF VA[J]=O THEN
BEGIN

T[K-NJ:=K; VA[J]:=VA[I];
END
ELSE IF VAEI],VA[J] THEN
BEGIN

T(K-N]:=K; 1:=VA[1J; J:=VA(JJ;
FOR R:=1 TO V INVARIANT I7R A R(V+#7

DO IF VA[RJ=J THEN VA[R):=I;
END
ELSE N:=N÷I

END;
1: P:=V-E+N;
END;

Note that IA and JA could have been declared as arrays of INTEGER, and the

restriction on the values could have been part of the entry assertion. Expressing the
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restriction would involve a quantified assertion such as

Yx (1UxsE z lsIANxIsV).

This is both more difficult to write than the subrange type specification, and it causes

dh

i dificuty n thoze proing

S.1
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8. Geueralizations of the extended semantics

8.1 Dynamic subranges

There are programming languages more flexible than Pascal, which allow declaration

of dynamic subranges. ADA, in particular, has flexible dynamic type declarations. A

reasonable extension to Pascal is to permit subrange declarations involving

expressions, e.g.

TYPEs= 1..2*x;

The expressions for the bounds are evaluated each time the scope is entered, and the

range of s is fixed for the duration. Dynamic arrays can be obtained by using a

dynamic subrange as the index type fCr an array etc.

The extended semantics can be adopted to handle dynamic subranges by defining

Inrange(e. s) to refer to the values obtained when the expressions for the bounds on s

are evaluated. The declaration rules for functions and procedures would be changed

to check for error free evaluation of the expressions in the type declarations. Also,

depending on the restrictions in the programming language, renaming would be

needed to distinguish between the initial values of the variables appearing in the type

declar2±ion and the values assigned after the dynamic declaration was evaluated.

8.2 Bounds on depth of recursion and dynamic variable allocation

Like the bound for arithmetic overflow, bounds on recursion and heap storage are

implementation dependent. In critical applications, the actual bounds may be set in

advance, and one might want to verify that the available storage will be sufficient. In

gw &j.. mi
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other cases, the particular bound is not important, but it might be useful to verify that

a program does not attempt unlimited recursion etc.

To describe bounds on depth of calls, two new undeclared integer variables are

introduced in the procedure call rule. The variable Stkslze represents the maximum

depth of callini; Stkptr represents the current depth. The procedure call rule is

modified to enforce a restriction that Stkptr<Stksize. Neither variable can be

assigned to by the program. Stkptr is 0 on entry to a main program, and each level of

function or procedure calling increases it by 1. With these additions, the procedure

call rule is

for 1=1 . ,m, P lEEval All Inrange(Ai, ti),

for I=1, .. ,n, P []Locate VIII True,

I(X,Y,G,S) [rProcedure p(X1 :tl; ... ;Xm:tm; VAR Y1 :ul; . .. ; VAR Yn:un); B]] O(X,Y,G,S);

P [Eval Al; ... ;Eval Am; Locate Vi; ... ;Locate Vn]] Disjoint-set(V u G)
A I(A,V,G,Stkptr+l ,Stkslze)
A VZ,GB (O(A,Z,GR,GB,Stkptr+l,Stksize)

V1 Vn GW1 GWk
MQIZ1 Zn GB1 ''" GBk

A Stkptr+1<5Stksize
(PC2)

P [p(A.,.. Am,V1, .. . Vn)]] Q

where S stands for the set of variables (Stkptr, Stksize}. Note that in practical

applications, it might be important to use some measure of the actual amount of stack

space used by a program instead of just the depth of recursion. It would be simple to

define a different function that depended e.g., on the number and types of variables

in the procedure, for incrementing Stackptr. To measure the heap storage used,

counters can be added to the rules for NEW statements.

( 1I
aA
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Example 6: Recursive Tree Traversal.

Type PTR is detined to be a pointer to a record with A and .B fields of type PTP.

The recursive procedure WALK simply does a depth first walk on a tree P. To

avoid stack overflow, P must not lead to any cyclic list structure and there must be

enough room on the stack for DEPTH(P, #REC) procedure calls, so Stacksze must be

greater than or equal to Stackptr+DEPTH(P, #REC). Stackptr and Stacksize are

declared as VIRTUAL variables to indicate that they may appear in assertions, but may

not be used in executable parts of the program. ACYCLIC and DEPTH are user defined

symbols for documenting programs that operate on trees. The assertion DEF(#REC)

states that every allocated record in the heap of type REC is fully initialized. This

assures that WALK will not encounter uninitialized dynamic variables.

TYPE PTR=tREC;
REC=RECORD A:PTR; B:PTR END;

VIRTUAL VAR Stackptr, Stacksize: INTEGER;

PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P, #REC) A DEF(#REC) A Stacksize > Stackptr+DEPTH(P, #REC);
EXIT TRUE;

BEGIN
IF PoNIL THEN BEGIN WALK(PI.A); WALK(Pt.B) END;
END;

The proof depends on two lemmas about acyclic list structure. If p is a pointer to

acyclic list structure in the reference clas. er, then pT.f points to acyclic list structure.

If p points to acyclic list structure, then the depth of pT.f is less than the depth of p.

ACYCLIC(p, #r) A poNIL ACYCLIC(pt.f, #r)
ACYCLIC(p, #r) A poNIL = DEPTH(pt.f, #r) < DEPTH(p, #r)-1

(where .f Is .A or .B)
i

The lemmas are provided by the user to the system in the form of inference rules

[SVG79] to be used by the theorem prover.

kP
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8.3 Procedure Valued Parameters

Procedure (and function) valued formal parameters in Pascal have the weakness that

the arguments of formal procedures are not declared. It is not possible to determine

syntactically whether a procedure valued formal parameter is called with the right

number and type of arguments. It is a simple matter to tighten the language by

introducing more detailed declarations; if this is done, the usual syntactic checks can

be performed for procedure valued parameters, and they can be included in the

axiomatic definition.7 As an example of a program using more detailed declarations,

Sum(a,b,f) computes the sum of f(x) when x ranges from a to b.

FUNCTION Sum(a,b:INTEGER; f:FUNCTION(INTEGER):INTEGER): INTEGER;
VAR I,s:INTEGER;
BEGIN

s:=O;

FOR i:ua TO b DO s:=s+f(l);
Sum:=s

END;

Clarke [C179] shows that any sound and complete axiomatic definition of procedure

valued parameters in a language with recursion, static scoping, read write global

variables, and internal procedure declarations, must depend on some method of

making assertions about the state of the runtime stack of local variables. Such an

approach would greatly complicate both the semantic definition and the process of

specifying and verifying programs. Instead, we will make the restriction that

functions or procedures with globals may not be passed as parameters. With this

restriction, procedure valuece parameters can be introduced in a natural manner.

This section discusses extensions planned but not yet implemented in the verifier. A
treatment of the consistency and completeness of our axiom system for procedure valued
parameters without global variables is in preparation.

LM
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"The specification method will be to declare an Entry and Exit assertion for each

formal parameter; these will be used in the ordinary call rules when the formal is

called. When a procedure parameter is passed, the caHl rules wil! check that the actual

satisfies the declared specifications of the formal.

Nesting of procedure parameters is permitted to any finite depth. Thus a procedure

can have a procedire parameter which takes anoth2r procedure as one of its

parnmeters, but self application of procedures is not possible. The various

possibilities are illustrated in the example below: a procedure p has value pararrmeters

U, variable parameters V, a function parameter s, and a procedure parameter q. The

procedure q takes a function parameter r.

The main specification given for p is a set of entry-exit assertions, Ip and Op. An

occurrence in the assertions of the formal function parameter s as a function sign

stands for the value of the functional parameter, and not for a constant function. The j
assertions may be thought of as first order schemes, which the procedure call rule

adopts to particular calls by substituting the actual function sign for the formal s. To

distinguish this kind of substitution from sustitution for free variables, the following

notation will be used.

Notation: Q[f](X) is a formula containinig the function sign f and free variables X.
After a particular formula Q[f](X) has been introduced, we will write Q[g](Y) to stand
for the result of replacing the function sign f by g and substituting Y for X in Q.

Each formal procedure parameter has a declaration in p of its entry-exit assertions.

The declaration; are like ordinary procedure declarations, except that the reserved

word FORMAL is used in place of the procedure body. Since the formal parameter q

takes a function r as an argument, the declaration of q has a declaration for r nested

inside it.

L. . ... . . .. . i ,. .. .. •i' ..l,•.. ',i ii,~~i~, ,l".l• , ,,'"
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Declarations with procedure and function formals.

PROCEDURE p(U; VAR V;
FUNCTION s(Y):t;
PROCEDURE q(W; Function r(Y):t));

FUNCTION s(Y):t; % specifications of formal parameter s %
ENTRY Is(Y);
EXIT Os[s](Y,s);
FORMAL;

PROCEDURE q(W; Function r(Y):t); % specifications of q %
Function r(Y):t; . specifications of formal parameter of q %

ENTRY Ir(Y);
EXIT Or[r](Y,r);
FORMAL;

ENTRY Iq[r](W);
EXIT Oq(rJ(W);
FORMAL.;

GLOBAL GR, VAR GW;
ENTRY [p(s](U,V,G);
EXIT Op[s](U,V,G); % specifications of P %

BEGIN pbody END; % executable statements of p %

In this example, the Entry and Exit specifications for p state that the value

parameters U, variable parameters V, function parameter s, and global parameters G,

must satisfy Ip[s](U,V,G) on entry to p, and Op~s](U,V,G) on exit. Furthermore, the

actual parameter supplied for s must have the property that if Is(Y) holds for the

value parameters Y to s, then Os will hold for the result of S. The specifications for

q are similar, but have further specifications for r nested within them in the same

way that the specifications for s are nested in p.

Notation: In the following rules, entry-exit assertions enclosed In brackets, (I,O),
are Included in the procedure headers as an abbreviation for the full procedure
declarations as shown above.

The idea of the declaration rule is to use the declared entry exit specifications of the

formal parameters, in this case s and q, to prove the specifications for p. Then for
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calls to p, the call rule will check that the actual function and procedure parameters

satisfy the specifications declared for s and q.

The following example of the declaration rule states that we can infer that Ip and Op

are valid entry exit specifications for p if it is possible to prove that Ip and Op are

valid for the body of p (8.3), under the assumptions (8.1 and 8.2) that s has

specifications (IsOs> and q has specifications (IqOq).

Ezalmple Procedure declasation.

{Is(Y) [Function a(Y):t; FORMAL] Osrs](Y,s), (8.1)
Iqlr](W) [Procedure q(W; r:(Ir,Or)); FORMALI Oq[r](W)) (8.2)

I- Ip[C](U,V,G) A DEF(U) A Inrange(Ui,tI) 'pbody] Op[s](U,V,G) (8.3)

Ip(s](U,V,G)
[Procedure p(U; V; s-(!s,Os); q(W; r:(Ir,Or)):(Iq,Oq)); pbody] OpIs](U,V,G)

If s and q we~re actual defined subprograms (instead of formals), any properties of

them needed for proving p could be deduced from their definitions by the declaration

rule. But the actual bodies corresponding to s and q are not fixed. The declaration

rule for p compensates for this by allowing us to introduce assumptions about s and q

into the proof of p. These assumptions must then be justified for the actual

parameters whenever p is called; this is done in the call rule.

~. (
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Example Procedure call..

f I=1,... m, P [Eval AIJI Inrange(AI, ti), (8.4)

for I=1,. . ,n, P TLocate 81Q True, (8.5)

S[p[,s](U,V,G)[,(iProcedure p(U; V; s:(Is,Os); q(W; r:4Ir,Or)):.CIq,Oq)); pbody]] Op[s](U,V,G),

(8.6)
Is(Y) lFunction c(Y):t; cbody(Y)] Os[c](Y,c), (8.7)

[q[r](X) [Procedure d(X; r:(Ir,Or)); dbody(X,r)]] Oq[r](X), (8.8)

P [Eval Al; ... ;Eval Am; Locate B13;. .. ;Locate Bn]] Disjoint-set(B u G)
A Ip[c](A,B,G) IB1 Bn GWl GWk
A VZ,GB (Op~c](A,Z,GR,GB) ... "' ) (8.9)

Z1 Zn G131 GBk
P [p(A,B,c,d)] Q

For the procedure call, conditions 8.4, 0.5 and 8.6 aare as before. Condition 8.7 checks

that the actual function parameter c satisfies the specificaions of s; 8.8 checks the

entry-exit assertions for the actual procedure d. In 8.7, cbody(Y) stands for the body

of the actual parameter c, if c is a declared function in the context of the call. In case

c happens to be a formal parameter of another procedure, say q, cbody(Y) is taken to

be the reserved word FORMAL, and 8.7 c:an be justified by the assumption about c

in the declaration rule for q.

Crucial to these two rules are the type declarations, which syrtactically enforce the

requirement that each subprogram parameter accept only a fixed type and hence only

a fixed depth of nesting of formal parameters. In the example, s has no procedural

parameters; let us call this depth zero. Then the depth of q is one, and of p two.

Because of the type declarations, each actual parameter to a subprogram must have

the same depth as the corresponding formal. Observe that this prevents self

application of procedures, which could lead to circu lar proofs such as would occur if

an assumption about p was used to deduce a property of p in the declaration rule.

I .. . .--- af " • _ _ _. ,• ,
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The rules are justified by the fact that each assumption introduced for a formal

parameter in the declaration rule is verified for the corresponding actual in the call

rule. Note that in any e~ecution, the actual value of each formal parameter must be

traceable back to a declared (non formal) subprogram with the same depth.

It can be easily seen that the two new rules are only a means of transferring and

rebinding entry exit specifications which must eventually be justified using the

original rules without procedure parameters. Consider the case of a procedure p

which has a formal parameter s declared as FUNCTION s(Y):t, so that p's depth of

nesting of formals is one. The aA-tual value supplied for s may be passed to p through

many levels of procedure calls, but ultimately any specifications for s must be proven

with the ordinary declaration rule. Thus any specifications that can be proven for p

are ultimately based on the ordinary function declaration rule. Similarly, the

specifications of a procedure q of depth two are based on specifications of procedures

of depth less than two. In this way, all deductions with the two new rules can be

traced back to the ordinary rules. What ha~s been added is the ability to transfer

specifications, corresponding to the added capability in the language for transferring

declared procedures by parameter passing.
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9. Discussaion

Our definition of Pascal describes some important aspects of the language that have

not been included in previous axiomatic definitions. We began by recalling that a

proof of P (A) Q does not give any assurance that a program will be free from.

runtime errors, and argued that a stronger relation, P EQ Q, is a better indicator of

program reliability. As part of our presentation of Pascal semantics, we have

developed a precise and comprehensive definition of the evaluation of expressions

and Pascal variables, using partial correctness statements to account for function calls

within expressions. Previous axiomatic definitions have not dealt fully with the

semantics of function calls within expressions. We then used the definition of

evaluation to define Pascal statements, procedures and functions. The complete

definition is very concise, although it captures many complicated details of the

language. One of the crucial advantages of our axiomatic technique is its simplicity;

absent are the clouds of obscuring notation commonly found in denotational

definitions. The clarity and simplicity of our approach are of greatest importance

when the definition is actually used to verify programs; because program

specifications and the proofs are also simple and understandable, the user is free to

concentrate on the real issues surrounding a program and its correctness.

Our axiomatic definition has been part of a development with the goal of building a

useful automatic verifier. This has influenced the definition in several ways. One

important requirement for useful verification is to have convenient methods for

specifying programs. In Runcheck, specifications are greatly simplified by having a

single predicate, DEF, as the basis of all predicates referring to variable initialization.

The LessdeL' and In~range le-.nma-, also eliminate the need for certain kinds of detail in

specifications. Although the idea of derived inference rules is by no means new, this
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technique is more useful in practice than has been previously realized.
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Appendix I-A. Development of the WEILE Rule

This section explains the actual While rule used in Runcheck. The rule of section

section 6.2,

' ~P~l
I [Eval B; ASSUME B; S] I,
I [Eval B] -B D Q
-------------------------------. (W HILE1)
P [INVARIANT I WHILE B DO S'] Q

does not help to reduce the need for detailed invariants and is not convenient to use

in practice. The implemented rule has four additional features:

1) It adds an invariant referring to the evaluation of the While test, B. B is

evaluated once on each iteration, and so it must be an invariant of the loop that B

(.,n evaluate safely.

2) It makes it unnecessary for the invariant to refer to variables which cannot be

changed in the loop. This has been previously called a frame azxiom ILL75, Su76].

3) It applies the Lessdef lemma, adding to the invariant the information that variables

changed on the loop cannot become less fully initialized.

4) Runcheck's automatic documenter generates invariants which are valid in the

unextended semantics. Because proofs in the extended semantics can be separated,

with part done in the ordinary semantics (Specification lemma), the extended While

rule can assume the validity of documenter invariant.,. 'ithout reproving them.

We now discuss the implementation of these changes.

I) From the definition of P J[Eval e]l Qa one can write down a sufficient precondition

,ii
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for e to evaluate without error. This formula will be called PRE[Eval e; Truel As an

example, if the test of a While loop is f(a)+tO0 and f has the declaration

FUNCTION f(x: INTEGER): c:d;
ENTRY I(x);
EXIT O(x);

then the condition

PRE[Eval f(a)+bSO; True]
[JEF(a) A DEF(b) A I(a)

A (O(a) A DEF(f(a)) A csf(a)<d • -MAXINT5f(a)+b<MAXINT)

is added as an invariant of the loop.

2) The variable identifiers are divided into a subset X which are not changed in the

body of the loop and a subset Y which may be changed. A set of new unique

variables, Y', is introduced. The extended form of the frame rule is

P(XY) M I(XY),
P(X,Y)AI(X,Y') lEEval B(X,Y'); Assume B(X,Y'); S(X,Y')' I(X,Y),
P(X,Y)AI(X,Y') a:Eval B(X,Y')]] -B(X,Y') : Q(X,YI)

P(X,Y) [Invarlant I(X,Y) While B(X,Y) Do S(X,Y)JJ Q(X,Y)

where the Y variables stand for the values of variables before the loop and the Y'

variables stand for the values of variables during or after tie loop.

3) For each variable, y, which can be changed in the body, Lessdef(y, y') can be

assumed to be a valid invariant.

4) Documenter invariants D(X,YY') can be assumed valid.

The final rule is:

k ' -s --
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P(X,Y~ p I(X,Y)APRE, f
P(X,Y)AI(X,Y')APREALesSdef(Y,YI)

AD(X,Y,Y') [Eval B(X,YI); Assume B(X,Y'); S(X,Y9Jj I(X,Y9)APRE,

P(X,Y)AJ(.X,Y')APREALessdef(Y,Y')

--- --- --- -- --- --- --- -- --- --- --- -- --- --- --- -- --- --- -- (W HILE2)

P(X,Y) [Ilnvariant I(X,Y) While B(X,Y) Do S(X,Y)Jj Q(X,Y)

where PRE is PRE[Eval B;TRUEJ.

-AI
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Appendji 1-B: Simultaneous Substitution for Disjoint Variables

In this section, we present the definitions of disjointness for Pascal variables and

f substitution disjoint Pascal variables. To begin, we need to define

the translation of a Pascal variable into a standard representation as a sequence

consisting of a main variable identifier followed by zero or more selectors. In the

following. <el,... ,er.- denotes a sequence of n terms, and the operator * stands for

concatenaci-r. o.€ finit,. sequences.

The function Seq(v): <Pascal variable> -) <term sequence> is defined as follows:

Seq(id) = <i0> if Id is an idertifier
Seq(v.f) = Seq(v). (.f>
Seq(v[il) = Seq(v) <I>
Seq(vt) = <#t. v> where #t is the reference class

Deflnitior. of Disjoiat(v, w)

Let v and w be Pascal variables and Seq(v) = <vO, ... vn>, Soq(w) = <wO, ... wm>,

and assnrie msn. Then Disjoint(v, w) is the following formula:

if vO and wO are distinct identifiers, then Disjoint(v, w) - True;

otherwise, Disjoint,v, w) -+ (vluwl v ... v vmwm)

The current implementation of Runcheck uses a much more restrictive defi,',ition of

disjointness (it only compares vO and wO); this restriction is not essential and will be

removed in a later version.

Simultaneous Sutsttution

We can now define a simultaneous substitution of n terms el, ... ,en for disjoint-1Jr
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I!

viv , ,vn. Let Seq(vi) - <vio,. . . vi> for i I ., ,n. Let t 1, .. . tn and dij for

i.I,... ,n, j - I, ... ,mi, be new identifiers not appearing in P, the vi or the ei.

Define Unseq: <term sequence> -* <Pascal variable> to be the inverse of Seq;

Unseq(Seq(v)) - v.

Then we can define

v1 vnSel "en

PIun~tq(<v1 o,dl 1 ,...,dlmi>) iunsaq(<vno,dn1 ,...,dnmn>)
= ,[ tl " tn

... t...1  .I d... d ... Idnmn

"'" le11l n "' Iv11 ""IVlml ,vn,! |Vnmn

Example R. 1: Simultaneously swapping ati] with a~j] and changing i.

Sa[i] a[J] i
P(aiJ)1 aQ] a[i] i+1

= P(aIj)t[dlJ ia[d2 I t 1 t2 t3 dl id2

= P(<<a, [J), a[l]>, [I], aUj]>, i+1, J)

Note that <<a, [j), a[i]>, [i], a~ji> stands for the value of the array a after first

assigning the value abi] to the jth position, and assigning a[j] to tne ith position.
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Ezamiple B.E: Swapping two variables accessed by pointers.

Consider the effect of simultaneously interchanging xT and yt, where x and y are

pointer variables.

TYPE ptr = tINTEGER;
VAR x, y: PTR;

I #INTEGERcxD #INTEGERCyo

P #INTEGERcy'a #INTEGERcxm

- P(x, y, <(#INTEGER, cym, #INTEGERcxZ>, cxz, #INTEGERcy•>)

The final value of the reference class #INTEGER is exactly analogous to the final value

of the array a in example B.l.

• ". r . .. • - • • .. . •- ... . .. • : ,•.• •-,; • • - -Z ":: • ''-• - i• _ - - - _ ..--- - -- -... .L .• '- - - -, • •Z -''



Chapter 2. Verification with Variant Records, Unions, and
Data Representation Mappings.

The challenge in programming language design comes from the interplay between

conflicting concerns of generality, efficiency, reliability and elegance, In this chapter,

we apply the idea of the error checking axiomatic semantics to Pascal variant records.

The main rationale for providing variant records was to enable programs to use less

space than would be used with ordinary records. It is well known that there is an

apparent flaw in the design of variants in Pascal: they can be used as a loophole to

violate the type restraints of the language. In most situations, enforcement of typing

contributes to reliability by preventing simple programming errors. We will see,

though, that a loophole in typing can be used in ways wl....h contrib~ute to the

efficiency and generality of the language.

Section I of this chapter introduces Pascal variants and their applications. Variants

can be added to our error checking semantics if we prohibit type violations. We will

define a new error, viriant access error, which occurs when the value of a variant

record is used in a way which would violate typing. It will then be possible to prove
in the extended semantics that no type violations occur.

This would be the end of the story if reliability was the only concern; however, we

like to preserve the benefits of intentional use of the loophole.

Thus we propose to replace variants by two new language features. Union data types,

to be discussed in section 2, permit a variable to have different formats at different

times without permitting type violations and without the other implementation

problems of variants. In section 3 we will consider a separate mechanism for

intentional conversion between values of different types. Interconversion between two

( ~2-1
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different types will be permitted under controlled conditions to prevent the

construction of invalid values. 'The combination of these two new mechanisms retains

the generality of variants while offering a higher level of reliability.
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1. Variant Records

Although the discussion refers to variants as they appear in Pascal, all of our remarks

will apply to other languages with a similar notion of data type. Types in Pascal are

quite conventional; there are a number of prirmitive types (e.g. BOOLEAN, INTEGER,

CHARACTER, REAL), and then defined types:

Enumerated - E = (cl ... , cn);

Subrange - S = cl. c2;

Array - A = ARRAY [s3 OF t;

Record - R a RECORD Idl :tl; . .;ldn:tn END

Pointer - P = tt;

Another important assumption in the discussion is that variable declarations are

strongly typed. This will be understood to mean that the range of values of a

variable is restricted to permit efficient compilation. In Pascal, for instance, strong

typing means that every variable or expression has a single Pascal type which can be

determined statically from the type and variable declarations. A compiler takes

advantage of strong typing by generating code that is efficient for the expected range

of values, and which may not even have the correct function outside of the range.

In Pascal, variant record definitions have the form:

---------------------------
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V = RECORD
f:t;

f:t;
CASE tagid:e OF

ci: (f:t; ... fit);

Cn: (f:t; ., fit);.
END;

where e is an enumerated type or subrange, and the ci are constants of type e. The

CASE clause is called the variant part. The variable tagid is of type e, and is oi~tional.

A variant record provides a single type having several different formats. Each case

in the variant part is a possible format. All the fields preceding the variant part are

always present. In the variant part, one of the cases can be selected at any time, and

only the fields for that case are present.

The various cases are represented in storage as overlapping variables. Thus when

the fields for one case are used, the fiel'•s for the other cases may get overwritten with

meaningless data.

For example, compare the type R, an ordinary record type with three components,

with V, a variant record type:

R = RECORD A:tl; B:t2; C;t3 END;

V = RECORD A:tl; CASE BOC..EAN OF TRUE:(B:t2); FALSE:(C:t3) END;

The variant record always has an A field, and depending on which case is current,

has either a .B field or a .C field. In this example, there is no tag field. It is not

possible to tell from the variable itself which case is being represented. Even if a tag

fif:d is used, Pascal does not guarantee that the tag will have the correct value. It is

.4".4 
-
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up to the user to set the tag, and there is nothing to prevent access to one of the non-

current fields.

1.1 Uses of Variants

The most common use of variants is to allow uniform access to records with different

structures. Because of strong typing, it is not ordinarily possible for one variable to

range over records with different structures. Variants provide a single type that

satisfies the requirements of strong typing. In the previous example, type V includes

records with either A and .B or .A and .C. This is useful in data processing

applications, for instance, to create a file of records in which different details are

stored depending on the individual. An ordinary record with three fields can slways

be used in place of the variant in this application, but it would take more space.

There are other important uses of variants, but they are less respectable. For various

reasons, one sometimes wants to violate typing by taking a value of one type and

interpreting it as another type. in Pascal, variants are a loophole for such violations,

because it is possible to select a fielW from the wrong case.

As an example, consider how variants can be used to convert between pointers and

integer values.

TYPE ptr = tt;
TYPE v % RECORD CASE tag:BOOLEAN OF

TRUE:(f:ptr);
FALSE:(g:INTEGER)
END;

VAR p:ptr; x:v; n:INTEGER;

BEGIN
NEW(p);
x.tag:= TR' ;
X.f:=p;
x.teg:=FALSE;

S-. a- - *
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l:=x.g
END;

Since Pascal does not define input or output operations for pointer values, a user with

knowledge of the language implementation might use variants to convert between ptr

and integer values. This fragment might be used under the assumption that variables

of types ptr and integer ocetipy the same amount of space. A pointer variable p is

initialized by a NEW statement, and then because x.f and x~g overlap in storage, the

pointer value can be stored in the integer variable n.

[n general, a variant access error will be said to occur when accessing the value of a

field which has been changed by an assignment to an overlapping variable in another

case. The access error can illegally *convert" between any two types.

Obviously, conversions of this kind are very dangerous and to use them without

sufficient precaution is poor programming practice. Pascal can be criticized for

permitting insecure conversions. In the next section, we introduce a union constructI

that does not have this problem. On the other hand, occasionally there is a legitimate

need for conversions that are not defined in Pascal. One couid argue that Pascal's

success as a systems programming language is in part due to its flexibility-

permitting the type violations in a few critical places.

The type violations are needed infrequently, but when they are needed they can be a

major factor in the efficiency or generality of a program. For instance, on machines

without floating arithmetic hardware, certain operations on reals can be done more

efficiently by special purpose bit operations than by the general floating point

routines. The bits of real variable can be directly accessed in most Pascal

implementations by illegally converting to type SET 1 .. n OF BOOLEAN, where n is the

word size. This trick depends on the fact that sets are represented as packed bit

vectors.
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Insecure conversions for the sake of generality are sometimes needed in systems

programming. In an operating system written in a high level language, such as

Brinch Hansen's SOLO written in Concurrent Pascal [BH77), there may be low level

operations on storage that are applicable to all types. A procedure for transferring a

page to a disk can use any block of the right size, regardless of the type of the

variables stored there. Concurrent I --al has a special provision for this kind of

conversion: a formal parameter can be declared1 UNIV, meaning the actual must match

in internal size, but not in type.

This line of thought suggests that unions alone are not a complete replacement ior

variants. Naturally, permitting insecure conversions raises a number of language

design issues. How should the me~aning of the conversion be defined? What

restrictions are needed, and how can they be enforced? An approach to these issues

will be discussed in section 3, where we introduce further language extensions for

uniform access to arbitrary types. These operations sometimes have complex

preconditions that are expensive to test at runtime. Since they are used in few places

in a program, it is reasonable to verify correct useage.

Much of verification's impact on language design has been to suggest restrictions that

make verification more practical. But verification can also lead to the removal of

restrictions: the programmer can be given certain kinds of freedom that are not

usually present in high level languages, with a verifier to check that the new

operations are used safely.

1.2 Assignment and selection on variant records

This section presents the axiomatic definition of the assignment and selectionj

operations for oi dinary records and then considers the differences with variant

records. Vari-int access error is defined. Some of the properties of standard records

ilk.4 i
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do not hold for variants. The variant selection error results in an undefinable state,

making it necessary to restrict program executions.

The basic operatios r.ssoa ,ated with record variables are selection and assignment of

components. The value of a record variable is determined by the valuFes of its

components. This was expressed by the axiom EQ&

EQa) x=y M (x.f 1 =y.f 1 A ... A x.fnty.fn)
where f1 .... fn are the field names for record type t.

The notation <r, .f, e> stands for the record r after ass ..,ng r.f:-e. In this notation,

assignment to a component is defined by:

P((a, Jf, e>) {a.f e) P(a).

For non-variant records, the azsignment operator has the following property:

RECI) <a, .f, e>.g m IF .f=.g THEN e ELSE a.g

and the following familiar properties which are consequences of RECII and the

definition of equality:

REC2) <a, .f, a.f) a

REC3) <<a, .f, e>, .f, g> = <a, .f, g>

REC4) .f.,.g :) <<a, .f, e>, .g, h) = <<a, .g, h>, .f, 0>

(In writing a field selector .f, f Is understood to be a variable
rang;nv; over identifiers, and .f=.g it f and g are the same identifier.)

We will now try to adopt the record axioms to variants by making restrictions which

leave undefined certain operations on overlapping fields. For convenience, assume

that we are considering a variant type having ordinary fields f 1,... ,fn, and that each

variant case has only one field from among cl,... ,cn. To begin, we must define

selection and equality on a variant field.
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VREC1) <a, .c, e>.c =e

<a, .f, e>.c = a.c

<a, .c, e>.f = a.f

The first line leaves undefined the result of selecting a variant field other than the

one which has been most recently been assigned. The second and third parts state

that ordinary fields are disjoint from the variant fields.

We could either define equality in the same way as for ordinary records, or say that

two variant records are equal if all of the ordinary fields are equal and the same

variant was last assigned in both records and to the same value. Note that Pascal's

equality operator does not apply to compound types, so it is irrelevant that the second

definition would be expensive if implemented. In fact, the definition of equality used

for ordinary records would not be very useful for variants because with the definition

of variant selection, there is no way to reason about the value of a variant field after

another variant field has been assigned to. The result is that equality would not be

provable in most cases.

Consequences REC2 and RECS continue to apply without change, but REC4 does not

apply to variants. It states that the order of assignments to different fields does not

affect the final value of a record, which is not true if fields overlap.

Thus far we have a first order theory of variants corresponding to the theory of

ordinary records without error checking. We can now generalize the error checking

semantics to include variants if we can do three things: dcafine what it means for a

variant record to be DEF, and give inference rules for Eval v.c and Locate v.c. We

have previously defined the semantics of Pascal statements in terins of Eval and

Locate, so that once we have the proper definitions of DEF, Eval, and Locate, the

semantics will generalize to programs with variants. Recall that a variant access error

occurs when a program attempts to die the value of the wrong field; we can prove

absence of the errors by giving a sufficiently restricted definition of Eval v.c.

t" ' . . .. . .. . ... . .
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A variant record will be DEF if one of its variant fields is DEF.

DEF3d) DEF(v) a DEF(v.tl) A ... A DEF(v.fn) A (DEF(v.cl) v ... v DEF(v.cm))

With this definition, we will be able to use inference rules El and L2 without change

for variants. They are repeated below in the case of v.c.

P [Locate v.cx] DEF(v.c) A Q
------------------------------. (E l)
P lEEval v.cJJ Q

P E[Locate v3I Q
(L2)

P [[Locate v.cJI Q

Observe that variant access error is prohibited because there is no way to show

DEF((a,.cI,e>.cj) if ci is different from cj. In conclusion, the concept of DEF is

sufficient to guarantee safe accessing of variant records,

1.3 Practical problems with variants.

The inclusion of variants in Pascal is a design flaw that makes it impossible to

implement garbage collection for dynamic variables. In a type such as

Type vuRECORD CASE BOOLEAN OF
TRUE:(f:INTEGER);
FALSE:(g:tt)

END;

it is not possible to determine at runtime whether to trace the .g field of a variable

during garbage collection marking. Another factor that prevents garbage collection is

that pointer variables do not have an initial value.

A special feature of Pascal's NEW statement permits the case of a dynamic variant

variable to be permanently set when the variable is allocated. The minimum amount

"M l -jv -
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of storage needed for the particular case can be allocated. This is less than the space

for the variant record, which is the maximum space for all cases. The restrictions

needed to prevent disasterous errors involving this feature are difficult to enforce at

runtime.

TYPE rec = RECORD CASE tag: e OF a: ); b: (...) END;
ptr a t rec;

VAR p, q: ptr;

NEW(q); allocate variable of type rec

NEW(p, a); allocate variable with variant fixed to a.

Since p? may be a variable which occupies less space than qT, assignments to pt must

be executed carefully or adjacent variables will be overwritten. In particular,

assignments pt:.v should be permitted only if v is case a, and pt.b:.v should not be

permitted. Note that if pl is passed as a VAR parameter, the restrictions must be

observed inside the called procedure. To implement this, it would be necessary to

associate extra information with all variant variables so that the restrictions could be

detected at runtime.

In principle, it is possible to treat these restrictions as runtime errors and verify their

absence. To do so, it is necessary to change the model of data structures. The

restrictions are a function of the location of a variable, not its value as percieved at

the user level. The increased complexity that would be needed in the model would

not be justified by this feature alone, although formalization of locations in the

ur.derlying logic would have other benefits such as a practical basis for verifying

programs with aliasing.

L
.,• ;I
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-2. Unions.

This section introduces the Union data type. The combination of unions and

necessary restrictions on aliasing gives a language in which access errors can be

readily detected at runtime, and without the other practical problems associated with

variant records.

A UNION type declaration has the form

TYPE untype = UNION al: t1; ... ; an: tn END;

where the ti are types and the ai are constants of an enumerated type or integer

subrange. If the ai are of an enumerated typc, the type must have been declared

previously, and each of its elements must appear once in the UNION declaration.

Assuming that u and u i are variables of a union type untype above and x is a

variable of one of the ti types, then the following operations are defined:

VAR u, ul: untype;
X: ti;

SELECTION u:ai returns thq ai component of u.

At any time, only one of the components of u exits. Selection of u:ai is an error if the

tag of u is not ai. The error can be detected at runtime because the tag always has

the correct value.

TAG function TAG(u) returns one of the constants al, the current tag.

CONSTRUCTORS untype:ai(x) returns a value of untype with tag al.

As a consequence of the declaration of untype, separate constructor functions are

defined for each of the ai. The constructor untype.ai takes values of type ti and

converts them into values of the union type.

..... L .
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ASSIGNMENTS

U :a ul;

u:ai := x; valid only If TAG(u)=al

u untype:ai(x);

u :x; Implicitly applies construction

Assignment to a union variable of a value of the same type is always permitted. An

assignment to a component of a union variable, as in the second statement, is

permitted only if that component currently exists in u. In the third statement, u is set

to the union value constructed from the value of x. The fourth statement is

equivalent to the third one- it is pos~ible to determine from the mismatch between the

types of u and x, that the constructor untype-ai must applied.

Example The data structure and basic operations of LISP as defined in Pascal with

union types.

TYPE TAGS a (A,D,N);
LISP = tU;
DTPR = RECORD

CAR: LISP;
CDR: LISP

END;
ATOM = RECORD

VALUE: LISP;
PLIST: LISP

END;
U = UNION

D: DTPR;
A: ATOM;
N: INTEGER

END;

PROCEDURE CONS(X,Y: LISP; VAR RESULT: LISP);
GLOBAL (VAR U);
EXIT TAG(RESULTt)D A RESULTt:D.CAR=X A RESULTt:D.CDR=Y;
VAR CELL: DTPR;
BEGIN
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NEW(RESULT);
CELL.CAR:=X;
CELL.CDR:zY;
RESULTt:=U:D(CELL)

END;

FUNCTION CAR(X: LISP): LISP;
GLOBAL ( U);
ENTRY TAG(Xt)=D;
EXIT TRUE;
BEGIN

CAR:=Xt:D.CAR
END;

PROCED iRE PLUS(X,Y: LISP; VAR RESULT: LISP);
GLOBAL(VAR U);
ENTRY TAG(Xt)xN A TAG(YI)=N;
EXIT TAG(RESULTt)=N A RESULT?:N=XT:N+Yt:N;
BEGIN

NEW(RESULT):
RESULTt:=Xt:N÷YI:N;

% note Implicit application of U:N(., to
convert INTEGER to type U %

END;

2.1 Aliasing Restriction for Unions

If aliasing is permitted, it is possible to subvert runtime tag checking in the language

implementation by binding one case of a union variable and then changing the case

with a global assignment.



Unions. -15

TYPE Intorchar: UNION 1 :INTEGER; 2:CHAR END;
VAR u: Intorchar;

PROCEDURE p(VAR x:INTEGER);
GLOBAL(VAR u)
VAR c:CHAR;

u : u:2(c) % changes global value of tag to 2 % ...
Sbut, note x is still bound to u:1 %

BEGIN % in main procedure %

U :- 612; 7% sets u to INTEGER case, TAG(u) u 1 %
p(u:1);

END

This example achieves an il.ag-Al overlap between types INTEGER and CHAR,

because after the assignment in procedure p, the integer parameter x will overlap with

the CHAR case of intorchar.

2.2 Axiomatic definition of Unions.

The value of a union variable u is a function of the tag and the current component.

Ul) TAG(u) a t n u a untype:t(u:t)

Constructors and the tag function have the additional properties:

U2) (untype:t(x)):t a x

U3) TAG(untype:t(x)) z t

Assignment to a union component u.t is defined only if the tag of u is already equal

to t before the assignment. The tag remains unchanged after an assignment to u.-t. To

change the tag, it is necessary to replace the entire union variable.

(-
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U4) TAG(u) = t <u,:t,e>:t = untype:t(e)

U5) TAG(<u,:t,e>) = TAG(u).

Some consequences of the definition of assignment are:

<u,:t,e>:t e

<u,:t,u:t> u

((u,:t,e>,:t,ft = <u,:t,f>

The restrictions on unions in programs are expressed as for variants, by defining

DEF, Eval, and Locate.

DEF3e) DEF(x) D DEF(untype:t(x))

P n'Locate u:tA DEF(u:t) A Q
------------------------------. (El)
P REval u:tJ] Q

P [[Locate uj] TAG(u)=t A Q
----------------------------. (L2)
P [[Locate u:t] Q



2-17

3. Data Representation Mappings

This section develops the idea that it is sometimes useful to hav'e an efficient

mapping between arbitrary types. Specifically, we propose two new operators:

LOWER:t(x), a one to one mapping of Pascal values of type t into boolean arrays of

sufficient size, and LIFT:t(y), the inverse mapping. The particular mapping used will

be implementation dependent. The length of the array in the result of LOWER:t(x)

will be giveni in each implementation by the expression SIZE(t). Sorjie programs using

LIFT and LOWER can be written with knowledge of the sizes of the types but

without any dependence un the particular mapping used. For instance, conversion of

an arbitrary type to boolean arrays of a fixed size could be used in a way similar to

Concurrent Pascal's universal parameters, for implementing read and write procedures

in operating systems. Other applications may depend on detailed knowledge of the

mapping-, such programs will not be portable, but we will have techniques for

showing that they are free from runtime errors.

Additional applications in systems programming involve the need to convert between

addresses and pointers, for instance, in a storage allocator written in a high level

language, or in a linking loader for a system in which a program is represented as a

pointer to code. To relocate code, it may necessary to convert between a format used

for storage, such as arrays of integers, and the machine dependent instruction format.

This can be done efficiently if one has knowledge of the mapping implemented by

LIFT and LOWER. There are many additional applications involving instruction

formats in operating systems. For instance, it is common for hardware input-output

devices to depend on control words which must be constructed dynamically. These

have formats with integer or character valued fields, for example.

A straightforward extension of our presentation of LIFT and LOWER would be to

allow the programmer to declare certain properties of the mapping to be used. For

instance, in mapping a record with two fields onto bit arrays of size n, one might
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specify that the first field should be mapped into bits l:m and the second field intc,

m+l:n. These specifications would be represented in the axiomatic definition as

additional entry-exit assumptions for the functions LIFT and LOWER.

Alternatively, if the mapping is fixed by a language implementation, the details could

be formalized and used to give a verification valid for just that implementation.

Some system programming languages such as C [KR 78] and BLISS [BLISS] allow

unrestricted mapping between different types. In contrast, our approach is intended

conitrol access between types to prevent the construction of invalid values. Since all

values to be converted must pass through the operators LIFT and LOWER, we can

prevent two kinds of conversion errors which are undetectable in less restricted

* languges:

1) Errors involving an improper storage location. Each implementation of LIFT and

LOWER will assure that conversion results are returned in a storage location of the

proper size and alignment. Proper alignment is especially important when lifting to

produce a pointer result or an integer more than one byte long.

2) Construction of an invalid value in a proper storage location. This error is

roughly equivalent to the construction of an uninitialized value which can then be

accessed. Our approach is to specify sufficient preconditions for LIFT to assure that

the result is always DEF and Inrange*. It will be possible to use the preconditions to

verify that programs using LIFT and LOWER are free from runtime errors.

3.1 Axiomatic Theory of LEFT and LOWER

The operators LIFT and LOWER can be added to the error checking semantics by

adding some first order axioms. As usual, conditions for error free use of the

operators will be expressed by asserting the conditions under which their results are(EF
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LLU) Any value can be lowered, yielding a well defined value.
DEF(x) 2 DEF(LOWER:t(x))

LL2) The function LOWER is one to one.
LOWER:t(x)=LOWER:t(y) a xuy

LL3) If LOWER:t and then LIFT:t are applied to a well defined value, the result is the
same value.

DEF(x) A Inrange*(x,t) : LIFT:t(LOWER:t(x))zx

Because LIFT and LOWER are added to the language as functions, they cannot be

used to assign an invalid value to a vi~riauie. It is syntactically illegal to use a

function application in a place where a variable is required, such as on the left side of

an assignment. Example:

LOWER:t(x)[nJ :a TRUE; -- unsyntactic.

The permitted manipulations involving a type t must at some point use LIFT:t, whose

precondition ensures that the values are meaningful.

barray :a LOWER:t(x);
barray[n] := TRUE;
x :z LIFT:t(barray); -- checks value of barray.

3.2 Universal Value Parameter

Since all types having the same internal size can be lowered to a common boolean

array type, an array parameter in a routine can be used as a universal value

parameter.

. "
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Ezxample: Universal WRITE procedure.

CONST n=
PROCEDURE WRITE(x: ARRAY[1 :n) OF BOOLEAN);

i ~TYPE t=

VAR x,. t;

BEGIN WRITE(LOWER:t(x)); ...

Note that the usual compile time type checking will require that SIZE(t) be equal to n.

3.3 An example of direct access to pointers.

There is a well known programming technique for representing doubly linked circular

lists, using space for only one pointer in each record. Consider a sequence of records

Ri, and for cach record Rk set

Rk.llnk a address(Rk_.) XOR address(Rk÷l),

where XOR is bitwise exclusive or.

Now if we are accessing Rk and have the address of RkI, we can compute the

address of Rk+l by XORing the two addresses, and similarly, from Rk and Rk+], it is

i.ossible to get back to Rk_.l

The following program fragment illustrates the use of LIFT and LOWER to

implement this XORed pointer representation. A record type REC is declared having

a LINK field of type BITS, an array of booleans large enough to store the result of

lowerithg a pointer. XOR is defined to operate on the boolean arrays. Its definition

is not shown here., but its specifications are used in verifying the program fragment.
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In the program, the variables pl, p2, and p3, are first set to point ýo new records.

Then each record is linked to the other two creating a circular list. Finally, LIFT is

used to move left from pI giving p3 and right from p I giving p2. A final assertion
in the programn states that the new pointers created wkiile moving have the correct

values. The program and final assertion can be verified using axioms LLI-3.

TYPE
ptratrec;

bit=ARRAY[ 1:SIZE(ptr)] OF B00LEAN;
rec"RECORD info:t; link:bit,% END;

VAR pl ,p2,p3,1,r:ptr;

FUNCTION xor(a,b:bits):bits; external;
% specifications of xor:

xor(a,b)=xor(b,a)
xor(a,xor(a,b))ab %

BEGIN
NEW(p 1); % allocate 3 RECs %
NEW(p2);
NEW(p3); .% set up circular list %
pl.link : xor(LOWER(p3), LOWER(p2');
p2.iink x, (LOWER(pl), LOWER(p3));p3.1ink : xor(LOWER(p2), LOWER(pl));

% set I to left link of p1 %
I := LIFT:ptr(xor(p 1 t.lnk, LOWER(p2)));

% set r to right link of pl %
r : UFT:ptr(xor(LOWER(p3), pl t.link));

% check links %
ASSERT lup3 A rap2;
END;

The critical part of this program is verifying that the arguments to LIFT are in the

image of type ptr. In a language implementation without automatic garbage

collection, a pointer value created by a NEW statement remains an element of the type

unless it is explicitly deallocated. Thus after the three NEW statements, the values p 1,

p2 and pS are all DEF. Using the specifications of xor, it can be shown that the
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arguments given to LIFT are equal to LOWER(p3) and LOWER(p2). This satisfies

the precondition for definedkiess of LIFT:ptr in LL3.

I!
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Chapter 3. An Example of Verification with Runcheck

This chapter illustrates the actual process of verifying a program of moderate size

with Runcheck. The program plays the game of Kalah with the computer acting as

board and scorekeeper. Because the program was written for actual use instead of for

purposes of illustration, it initially presented various difficulties for verification. We

will discuss some small modifications that were made to simplify the verification, and

the actual sequence that was followed of assigning assertions, using the verifier, and

gradually fillig in and correcting the assertions until the absence of runtime errors

was verified for the entire program.

The full process of verifying the program will be emphasized instead of simply

presenting the final result, for two reasons. Fin, the example conveys a sense of the

amount cf effort required to verify shallow properties of moderate sized programs.

We would also like to show that verification should not be considered a totally

separate activity to be undertaken only after a final version of the program has been

written. Attempting to specify and verify a program often leads to a clearer

understanding of its structure. Discovering that there are difficulties in specifying or

verifying part of a program can help a programmer to improve the clarity of the

program.

Here is a sample run of the program (inputs typed by the user are underlined):

.RUN KALAH

KALAH - TYPE 'H' FOR HELP

3 3 3 3 3 3
0 0

3 3 3 3 3 3

TCP PLAYS H

KALAH - AN ANCIENT GAME OF AFRICA AND THE MIDDLE EAST.

S-I
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;RS CHOOSE WHO IS TO GO FIRST. THE FIRST PLAYER IS o
C, ., ' OP AND THE SECOND 15 CALLED BOTTOM. EACH PLAYER HAS 6
kr AID A KALAH. THE INTEGER ASSOCIATED WITH EACH PIT TELLSITH- ,!N,BER OF STONES IT CONTAINS. EACH PLAYER IN TURN CHOOSES A
pir UY hNi¶RING THE NUMBER OF THE PIT GIVEN BELOW. THE STONES IN
THE P;TY•i DISTRIBUTED TO EACH PIT IN A COUNTER-CLOCKWISE
DIRECTioN. IF THERE ARE ENOUGH STONES TO GO BEYOND YOUR KALAH,
THEY ARE T'STRIBUTED TO YOUR OPPONENT'S PITS. IF THE LAST STONE
LANDS IN tOUR KALAH, YOU GET ANOTHER TURN. IF THE LAST STONE
LANDS IN AN EMPTY PIT ON YOUR SIDE, YOU CAPTURE ALL OF THE
OPPONENT'S STONES IN THE OPPOSITE PIT AND ALL STONES INVOLVED
ARE PLACED IN YOUR KALAH.

THE GAME ENDS WHEN ALL THE PITS ON ONE SIDE ARE EMPTY. THE
OTHER PLAYER ADDS THE REMAINING STONES TO HIS KALAH. THE
WINNER HAS THE GREATEST NUMBER OF STONES AND IS AWARDED THE
DIFFERENCE BETWEEN HIS STONES AND HIS OPPONENT'S TOWARDS A ROUND.
THE FIRST PLAYER TO GET 18 WINS THE ROUND. THE LOSER CHOOSES
WHO GOES FIRST IN THE NEXT GAME.

T = TOP; B = BOTTOM; K = KALAH

iT 2T 3T 4T 5T 6T
KT KB

6B 5B 4B 3B 2B 1B

3 3 3 3 3 3
0 0

3 3 3 3 3 3

Top plays first, mcving 3 so that the last stone lands in his kalah, giving him another

turn. He then plays 6, capturing the stones in bottom's third pit.

TOP PLAYS 3
4 4 0 3 3 3

1 0
3 3 3 3 3 3

TOP PLAYS 6
4 -4 0 4 4 0
3 3 0 3 3 3

Bottom then plays 2, dropping a stone in his kalah and wrapping around to leave the

last stone in top's 6.

BOTTOM PLAYS 2
4 4 0 4 4 1

5 13 3 0 3 0 4
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TOP PLAYS 3

T = TOP; B = BOTTOM; K = KALAH

IT 2T 3T 4T ST 6T
KT KB

6B 5B 4B 3B 2B 1B

4 4 0 4 4 1
3 3 0 3 0 4

Top then mistakenly enters 3, an illegal move because it is an empty pit, and the
program reminds him of the positions. The game continues until all of top's pits a;e

empty, and then the program prints out the score.

SCORE - TOP 14 BOTTOM 22 - BOTTOM WINS BY 8

EXIT

• ........................
t



3-4

1. Initial preparation

The first step in verifying the program was to read it through, looking for syntax

changes needed for it to be accepted by the verifier. The program bad been W -itten

in standard PDP-10 Pascal, and the language accepted by the verifier [SVG79] has a

number of additional restrictions. For instance, type checking is very strict in the

READ and WRITE procedures. In the verifier version of the program, device TTY was

declared to be a file of integers, and a large number of WRITE statements for printing

strings (such as the program's help instructions) had to be removed. It is also

necessary in the current verifier to list explicitly, for each procedure, the readonly or

read-write global variables.

Some of the restriction- in the verifier are present to insure that the complete effect of

every program can be captured within the, VCG semantics. In some cases t. s may

have made the verifier too restrictive. The alternatives to the current situation are

either to develop full semantic definitions for some cspects of Pascal not now

permitted, or to use intentionally weak semantics, permitting some operations such as

terminal output to appear in programs without fully defining their effects.

At this point, two other small changes were made in the program text to simplify

verification. One of the changes was to remove aliased variables from a procedure

call - the procedure call rules in the verifier do not permit aliasing, although in

principle more general rules could be developed. Depending on whether or not one

allows aliasing, there may be a trade off between the conciseness and efficiency of

programs, and the complexity of specification and verification. The example which

we will consider shows that aliasing can add difficulty to understanding and verifying

a program even if it is permitted by the procedure call rule. In the process of

studying the effect of aliasing, a cleaner way of organizing part of the program was

discovered.

V.-.~r
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Another change was made in the program only to simplify the verification. The

orignal errogrsanoematmni would have been acetbeu necessary to perorm mbeneore

orunigina prrogramnoesatmni would have be-en acetbeu neoressry to serowm abseneo

dealdverifications of other large portions of the program. It is frequently the case

thatthecorrectness of some small portion of a program is dependent cn the

preservation of a global property by many other portions. In such cases it is often

better, both from the standpoint of verification and that of gond programming,

practice, to consider modifyin~g the program to eliminate the unnecessary dependency.

. .----- ~- - - - -.- . ., -. ......
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2. A look at Aliasing

In the program, each player's row of pits is represented as a variable of type
SIOE = ARRAY [0.. PITCOUNT] OF INTEGER, where PITCOUNT is the number of pits for

each player, and the zero position is the Kalah. The state of the game is maintained

in the global variables TOP and BOTTOM of type SIDE-

CONST
PITCOUNT = 6; % NUMBER OF PITS FOR EACH PLAYER. (NORMALLY 6) %
STONES = 3; % STARTING NUMBER OF STONES PER PIT. (NORMALLY PITCOUNT;2) %

TYPE
POSITION = O:PITCOUNT;
SIDE = ARRAY [POSITION] OF INTEGER;

VAR
TOP, BOTTOM: SIDE;

A procedure PRINTBOARD is called to print out the current state of the board. Note

that TOP and BOTTOM are referenced as read-only globals.

PROCEDURE PRINTBOARD;
VAR

PIT: POSITION;
BEGIN

WRITE(TTY,' I);

FOR PIT :L" 1 TO PICOUNT DO
WRITE(TTY,TOP[PITr: 4);

WRITELN(TTY);
WRITE(TTY,TOP[O]: 4);
FOR PIT :a 1 TO PITCOUNT DO

WRnI"E(TTY,' ');
WRITELN(TTY,BOTTOM[ 0]: 4);
WRITE(TTY,' ');
FOR PIT :a PITCOUNT DOWNTO 1 DO

WRITE(TTY,BOTTOM[P]T]: 4);

WRITELN(TTY);
WRWELN(TTY)

END; % PRINTBOARD %

Dividing the board up into TOP and BOTTOM poses a problem when it comes to

writing the part of the program for moving the stones. Moves that wrap around the

- .1 ,-I.Ln.4--... . ... . . ....... . . . ...
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end or capture stones require access to both sides of the board. It is inconvenient to

refer to the sides as TOP and BOTTOM in these parts of the program; one wants instead

to refer to the sides as the side making the current play and the opposite side. In the

program, this is accomplished by calling a procedure PLAY to rebind the two sides to

the variables US (whichever side is currently moving) and THEM (the other side).

PROCEDURE PLAY(VAR US, THEM: SIDE; TOPPLAY: BOOLEAN);
% CALLED FOR EACH PLAY. RETURNS FALSE WHEN ONE PLAYERS TURN ENDS. .

Ideally, in this plan for the program, the procedure PLAY should be symmetric between

the two sides, referring to them only by the names US and THEM. The effect of calling

PLAY would then depend only on the values of the arguments, and not on their names.

This plan was not carried out fully. PRINTBOARD is called within PLAY, and since TOP

and BOTTOM are globals of PRINTBOARD, they are globals of PLAY. In the procedure

calls PLAY(TOP,BOTTOM,TRUE) and PLAY(BOTTOM,TGf',FALSE), TOP and BOTTOM become

aliases with US and THEM.

The ability to refer to a variable by different names leads to programs that are

concise and efficient, but difficult to understand and specify. 1 It is often the case that

a procedure which will be called with ali•asing cannot be understood from its text

alone - one is forced to look outside to the caller. In reading and understanding the

text of a procedure, aliasing is an exceptional case, one tends to think of each

identifier as a distinct variable. Aliasing lends itself to misunderstanding not so much

because it introduces complexity, but because (at least in current programming

languages) the complexity is concealed.

Here is an outline of the nect'n•' , variable and procedure declarations in which the

aliasing occurs:

1 EQUIVALENCE statements in FORTRAN are an extreme example.

•,u
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VAR TOP, BOTTOM:SIDE;

PROCEDURE PRINTBOARD;
BEGIN ... END; % (refers to TOP and BOTTOM) %

PROCEDURE PLAY(VAR US, THEM:SIDE; TOPPLAY:BOOLEAN);

PROCEDURE READMOVE

REPEAT
PRINTBOARD;
IF TOPPLAY THEN WRITE(TTY, 'TOP PLAYS ');

ELSE WRITE(TTY, 'BOTTOM PLAYS ');

END;

END;

BEGIN 7. Main Routine %
... PLAY(TOP,BOTTOM,TRUE); ... PLAY(BOTTOM,TOP,FALSE); ...

END;

The tirst thing to notice is that because TOP and BOTTOM are always passed as

globals, there is no direct indication in the text that they are referenced in PLAY. One

can discover that the variables are used only by noting the call on PRINTBOARD and

referring back to its definition. The next point of difficulty in understanding that is

likely to occur while reading the text of PLAY is that one may notice that TOP and

BOTTOM are referenced as globals but not changed, and mistakenly infer that the

values of TOP and BOTTOM seen by PRINTBOARD are th, initial values from the time

when PLAY is entered. Of course this is not the case, but to understand, one would

have to read the main routine and see the aliasing procedure call. The combination

of global variables and aliasing encourages the construction of programs in which

local details cannot be understood unless one has thoroughly examined the entire

program.

If we change PRINTBOARD to take the two sides as parameters instead of as globals, the

aliasing in PLAY can be eliminated by making the call on PRINTBOARD conditional.

;vL I
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Notation: in this chapter, the original program is displayed in upper case, all changes

and additions for verification are shown in lower case.

IF TOPPLAY rHEN
begin printboard(us, them); WRITE(TTY, 'TOP PLAYS 1) end

else begin printboard(them, us); WRITE(TTY, 'BOTTOM PLAYS ') end;

The conditionality was implicit before in the pattern of aliasing; this veriion of the

program makes it explicit. Some of the complexity of the program has been

transferred from variable bindings to an explicit test, with a small cost in execution

time.

The new version can be more readily understood and since it performs the same

function, its specifications should be no more complicated than the original's. In order

to specify the original program, it would have been necessary to describe in some way

the functional dependence on the names of the parameters achieved by aliasing. The

new version has the advantage that it can be described independently of the names of

the actual parameters.

Explicitly writing out the arguments to PRINTBOARD calls attention to the functional

messiness of PLAY and READMOVE. The program could be further improved by

separating the operations of printing the board and announcing the current player

from the operations of reading a move and changing the board. The printing

operations are based on the identification of the sides as TOP and BOTTOM, while the

reading and moving operations are symmetric and the proceduires for them are clearer

are more efficient without references to TOP and BOTTOM.

(• • ., jj .• ," ..,•••• • •
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3. Wbhen to leave a potential error

A procedure NOROCKS i% called after each move to test whether all of the pits on one

side have become empty, indicating that the game is finished. The WHILE loop in the

procedure NOROCKS presents a typical difficulty: the index PIT can become negative,

giving a subscripting error, if the parameter US is an array of all Leros. The actual

parameters supplied to NOROCKS are always one of the sides, TOP and BOTTOM. Since

the zero position in a side is the Kalah, it is not possible for all the entries in US to be

zero: the rules of the game as enforced by the program make it impossible for one

player to capture all of the stones, and so if all of the pits on a side are empty, there

must be stones in the Kalah.

PROCEDURE NOROCKS(VAR US: SIDE);
% TESTS FOR THE TERMINATION CONDITION OF THE GAME. 7%
VAR

PIT: POSITION;
BEGIN

PIT := PIT•;OUNT;
WHILE (JS[PITJ=O) DO

PIT = PIT - 1;
IF PIT = 0 THEN BEGIN

TURNDONE :* TRUE;
GAMEOVER : TRUE

END
END; % ROCKS %

In order to verify the necessary entry condition on US, it would be necessary to invent

an invariant for the sides, and show that it is maintained throughout the program

whenever one of the sides is changed. This verification is quite feasible, but requires

much more detail than usual. There are a number of alternatives; the question

becomes whether the detailed verification is worthwhile. This in turn depends on

one's reason for verifying the program. For this illustration, we chose to assume that

the verification was mainly intended to assure absence anomalies that could produce

runtime errors. Given this limited purpose, a reasondble way to proceed was to

modify the test of the WHILE loop to assure absence of runtime errors locally,
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regardless of the value of US, while maintaining functional equivalence under the

assumption that US would always have a non-zero elemrant.

WHILE (US[PIT],O) and (pit1O) DO PIT :a PIT - 1;

Changing the program is consistent with the belief that verification of shallow

properties is not intended to give an absolute guarantee of correctness, but rather to

extend the range of mechanical checking performed on a pzcrarn. The program must

not be regarded as a sacred, immutable text carved in stone, to be verified and then

pronounced infallible. The verifier is a tool for programming; it will be used to the

extent that it helps to reduce the total amount of effort needed to produce high

quality programs. Since we are not attempting to verify the detailed properties of the

Kalah program the programmer must still attempt to make it work correcdy by the

usual methods. Using a minimum of effort, Runcheck will show the absence of a

potentially large number of common problems which cannot be detected during

compilation.

If one is, unsure that the assumption about US will be maintained, it may be better to

test the assumption at runtime and ah.)rt the program if an error is detected. Failure

of the ass, mptlol indicates a riajor fiaw in thd operation of the program, which

could be masked by strengthening the WHILE test. This approach explicitly leaves

open the possibility of an error in one statement. Verification is still of great value

with this approach, because all of the other posslole rurutime errors have been

cli-jine..ed, and tie 'emaining one can be tested • runtime at a small cost.

WHILL (JS[PITI-O) CO
begin

testassertlon pit)O;
PIT:. PIT - 1;

and;

, J, .
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4. Intil assignment of assertions

After modifying the program, each procedure was examined and a trial set of entry

and exit assertions was written. It is not necessary (or usually possible) for the

assertions to be exactly right at this stage. From experience, it seems best to assign

assertions fairly quickly and then use the verifier as a guide for filling in whatever is

missing.

% KALAH - AN ANCIENT GAME OF AFRICA AND THE MIDDLE EAST. %
% JOHN RAMSDELL DEC 1979 %

CONST
PiTCOUNT a 6; % NUMBER OF PITS FOR EACH PLAYER. (NORMALLY 6) %
STONES z 3; % STARTING NUMBER OF STONES PER PIT. (NORMALLY PITCOUNT/2) %

% A MORE INTERESTING GAME FOR EXPERTS RESULTS BY SETTING STONES %
% TO A VALUE BETWEEN PITCOUNT/2+1 AND PITCOUNT. %
TYPE

POSITION a O:PITCOUNT;
SIDE a ARRAY [POSITION] OF INTEGER;

VAR
tty: file of Integer;
PIT: POSITION;
TOP, BOTTOM: SIDE;
GAMEOVER: BOOLEAN;

PROCEDURE PRINTBOARD(top,bottom:slde);
globaJ(var tty);
entry def(top)Adef(bottom)Adef(pltcount);
exit true;
VAR

PIT: POSITION;
BEGIN

% WRITE(TTY,' 1); %
FOR PIT := 1 TO PITCOUNT Invariant true DO

WRITE(TTY,TOP[PIT]);
%. WRITELN(TIY); %

WRITE(TTY,TOP[OJ);
%, FOR PIT:a 1 TO PITCOUNT DO

WRITE(TTY,' ');V.
WRITE(TTY,BOTTOM[O]);

%. WRITE(TTY,' ');V
FOR PIT := PITCOUNT DOWNTO 1 invariant true DO

WRITE(TTY,BOTrOM[PIT]);
%. WRITELN(TTY);V,

LI i
I , .... , _ ..
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% WRITELN(TTY);%
END; % PRINTBOARD %

PROCEDURE HELP;
exit true;
BEGIN

% (prints instructionu shown in the sample protocol) %
END; %. HELP %.

PROCEDURE HELPMOVE;
global(var tty);
entry def(pitcoiint);
exit true;
VAR

PIT: POSITION;
BEGIN

%. WRITELN(TTY);%
% WRITEIN(TTY,'T TOP; B = BOTTOM; K z KALAH'),V%
% WRITELW(TTY);%
% WRITE(MTT:' ');%

FOR PIT := 1 TO PITCOUNT invariant true DO
WRITE(TTY,PIT %., 'T'%);

% WRITELN(TTY);%
V% WRITE(TTY.' KT');%

FOR PIT := 1 TO PITCOUNT invariant true DO
WRITE(TTY, 0 V' 'V.);

% WRITELN(TTY,' KB');%
% WRITE(TTY,' 9;%

FOR PIT := PITCOUNT DOWNTO 1 invariant true DO
WFITE(TTY,PIT %, 18S%);

% WF ITELN(TTY);%
% WFITELN(TTY)%

END; % HELPMOVE %

PROCEDURE PLAY(VAR US, THEM: SIDE; TOPPLAY: BOOLEAN);
% CALLED FOR EACH PLAY. RETURNS FALSE WHEN ONE PLAYERS TURN ENDS. %
global(var tty,gameover),
entry def(us)Adef(them)Adef(pltcount);
exit def(us)Adef(them)Adef(gameover);
VAR

PIT: POSITION;
LASTPIT, STONES: INTEGER;
TURNDONE! BOOLEAN;

PROCEDURE READMOVE(VAR PIT: POSITION);
global(us,them,topplay;var tty);
entry def(us)Adef(them)Adef(topplay)Adef(pltcount)AO<pitcount;
exit def(plt)AO<pltApit<=pltcount;



Initial asignment of -'ssertions 3-14

VAR
GOODMOVE: BOOLEAN;
NUM: INTEGER;

BEGIN
GOVuMOVE :a fALSE;
REPEAT

IF TOPPLAY THEN
begin
printboard(us,them);
WRITE(TTY,O %TOP PLAYS 1%)

t end

ELSE
begin
printboard(them,us);
WRITE(TTY,1 %'BOTTOM PLAYS 1%);
end;

READ(TTY,NUM);
IF NUM > PIrCOUNT THEN

HELP
ELSE IF NUM > 0 THEN

IF US[NUM] 0 0 THEN BEGIN
PIT :a NUM;
GOODMOVE := TRUEEND;

IF NOT GOODMOVE THEN
HELPMOVE

UNTIL GOODMOVE Invariant true
END; % READMOVE %

FUNCTION MODULUS(NUMBER, BASE: INTEGER), INTEGER;
entry base>1 ;
exit O(=moduius A moduius(ubase-1;
BEGIN

IF NUMBER > 0 THEN
MODULUS := NUMBER MOD BASE

ELSE BEGIN
REPEAT

NUMBER := NUMBER + BASE;
UNTIL NUMBER 0> 0
Invariant number(ubase-1;
MODULUS :a NUMBER

END
END; % MODULUS %

PROCEDURE MOVE(VAR US, THEM: SIDE; PIT: POSITION);
global(var stones);
entry def(stones)A^l•stonesAdef(pitcount)Adef(us)Adef(them)

Adef(pit)AO(zpItApItSpItcount;

(I
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exit def(us)Adef(them)Adef(stones);
VAR

INDEX- POSITION;
SMALL: INTEGER;

BEGIN % DISTRIBUTES STONES TO THE PITS. %
STONES :a STONES - PIT - 1;
SMALL :a -STONES;
IF SMALL < 0 THEN

SMALL :r, 0;
FOR INDEX :z PIT DOWNTO SMALL Invariant true DO

US[INDEX] :z US[INDEX] + 1;
IF STONES > 0 THEN

MOVE(THEM, US, PITCOUNT)
END; % MOVE %

PROCEDURE NOROCKS(VAR US: SIDE);
% TESTS FOR THE TERMINATION CONDITION OF THE GAME. %
global(var turrncone;var gameover);
entry def(us)Adef(pltcount)Adef(turndone)Adef(gameover);
exit def(us)Adef(turndone)Adef(gamoover);
VAR

PIT: POSITION;
BEGIN

PIT := PITCOUNT;
Invariant O<apitApit(=pitcount
WHILE (US[PIT]=0) and (pit>G) DO

PIT :z PIT - 1;
IF PIT a 0 THEN '3 'IN

TURNDONE :z T.U=;
GAMEOVER :a TRUE

END
END; % ROCKS %

BEGIN % PLAY %
REPEAT

READMOVL(PIT);
% THE STONE THAT MOVED THE FURTHEST ENDS UP IN LASTPIT. %
LASTPIT :z MODULUS(PIT - US[PIT], 2 * PITCOUNT + 2);

STONES :z US[PIT];
US[PIT] :z 0;
MOVE(US, THEM, PIT - 1); % MOVE STONES TO NEW PITS. %.
TURNDONE :z TRUE;
IF LASTPIT x O THEN

TURNDONE :a FALSE % REPLAY IF LAST STONE ENDS IN KALAH. %
ELSE IF LASTPIT <( PITCOUNT THEN

IF US[LASTPIT] w 1 THEN
IF THEM[PITCOUNT + 1 - LASTPIT] 0 0 THEN BEGIN

% CAPTURE OPPONENTS STONES. %
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USO]: US[OJ + THEM[PITCOUNT + 1 - LASTPIT] 1;
THEM[PITCOUNT + 1 - LASTPIT] 0;
US[LAGTPIT] :a 0

END;
.% TEST FOR END OF GAME. %

NOROCKS(US);
NOROCKS(THEM)

UNTIL TURNDONE Invarnant true
END; % PLAY %

en'try true;
exit true;
BEGIN % KALAH %V

GAMEOVER := FALSE;
TOPEOJ := 0; % INITALIZE GAME. %V
BOTTOM[O] := 0;
FOR PIT := 1 TO PITCOUNT Invarient true DO BEGIN

TOP[PIT] := STONES;
BOTTOM[PITJ := STONES

END;
% WRITELN(TTY);%
% WRITELN(TTY,'KALAH - TYPE "H" FOR HELP');%
% WRITELN(TTY);%

REPEAT % PLAY GAME. %

PLAY(TOP, BOTTOM, TRUE);
IF NOT GAMEOVER THEN

PLAY(BOTTOM, TOP, FALSE)
UNTIL GAMEOVER Invariant true;
% GAME OVER - PRINT FINAL SCORE. %
FOR PIT := 1 TO PITCOUNT Invariant true DO BEGIN

TOPO]= TOP[OJ + TOP(PIT];
BOTTOM[O] := BOTTOMEO] + BOTTOM[PITJ

END;
V% WRITE, PI(TTY);%
% WRITE(TTY,'SCORE - TOP', TOP[OJ: 4, ' BOTTOM', BOTTOM[O]: 4,' -);

% IF TOP[O] > BOTTOM[O] THEN
WRITELN(TTY,'TOP WINS BY', TOP[OJ - BOTTOM[O]: 4)

ELSE IF TOP[O] < BOTTOM[0J THEN
WRITELN(TTY,'BOTTOM WINS BY', BOTTOM[O] - TOPEO]: 4)

ELSE
WRIrELN(TTY,'NO WINNER')

END.
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5. Using Runcheck

5.1 Verifying the program

Initially, several tries were needed before the program with assertions passed all of the

verifier's syntax checks. Eventually, the program was accepted, and the verifier

produced some additional loop invariants and generated the verification conditions.

A large number of the conditions did not simplify to True.

1. The Exit condition for MODULUS was not provable, because the verifier has no

built in knowledge of the function MOD, and no inference rules had been given. The

following axioms were added for the next try:

O5X A O<y : Os(x MOD y)<y,
DEF(x) A DEF(y) n DEF(x MOD y)

2. In the procedure PLAY, there were a large number of unproven conditions of the i
form O<US[PIT]. It was not immediately clear what had caused this problem, so

further consideration was postponed.

3. There were also unproven conditions of the form DEF(GAMEOVER) for PLAY.

Looking back at the program listing, it was recalled that the variable GAMEOVER is set

to TRUE by the procedure NOROCKS to signal. the end of the game. GAMEOVER is

initially set to FALSE in the main procedure, and is tested there after each call to the

procedure PLAY. In the first assignment of assertions, DEF(GAMEOVER) had been used

as an entry and exit assertion for NOROCKS, and as an exit assertion in PLAY, but not

as an entry assertion. The unprovable conditions for PLAY resulted from the missing

entry condition, which was acided for the next try. Since GAMEOVER is assiined to in

NOROCKS but never referenced there or in PLAY, it would also have been possible to

delete all of the entry and exit assertions for GAMEOVER from the two procedures.

The verifier would still be able to prove DEF(GAMEOVER) at the points where it is
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referenced in the main procedure, because GAMEOVER is initialized to FALSE and, by

the Lessdef lemma, cannot later become uninitialized.

4. For the procedure READMOVE, there were unproven conditions DEF(PIT) and

lSPITs6. These resulted from the exit assertion, which was not provable when
leaving the main REPEAT loop, because the invariant had initially been simply set to

TRUE Note that since PITCOUNT was declared a constant, the verifier substituted the

value 6 wherever it originally occurred in an assertion. The loop in READMOVE reads

numbers from the terminal until a legal move is entered, and then sets PIT to the

number read, which must be between 1 and PITCOIJNT, and sets GOODMOVE to TRUE.

For the next try, the invariant was set to

GOODMOVE=TRUE m (DEF(PIT) A 1-PIT A PIT_<PITCOUNT).

It is interesting to note in passing that the invariant for PIT cannot be expressed as a

conjunction of linear inequalities, because of the dependence on the variable

GOODMOVE. Specialized methods for automatically generating linear loop invariants

have been studied by some researchers; our experience indicates that non-convex

asertions are required with sufficient frequency that a verifier based solely on

automatically gen-rated convex assertions, without user assistance, would be of very

limited usefulness even for verifying shallow properties such as absence of runtime

errors.

After making the changes mentioned above, the verifier was run again, and only the

conditions O<US(PITJ in PLAY remained unproven. Looking at the body of PLAY, it

was observed that the variable STONES is assigned the value US[PIT) and then the

procedure MOVE is called with an entry assertion containing 1-SSTONES. This is how

OCUS[PITJ appeared in the VC for PLAY.

On entry to MOVE, STONES is set to the number to stones to be distributed, which

must Lt greater than 0. The entry condition 1sSTONES is always satisfied when

- t- , . . IM ) t•-it t
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MOVE is called, but looking at the program, it was realized that the assertion should

not be needed for proving absence of runtime errors in MOVE. The condition was

deleted from the entry assertion, and when the verifier was used a third time, all of

the VCs were completely proven.

It would have also been possible to establish the truth of O(US[PITJ in PLAY by

strengthening the exit assertion of the procedure READMOVE, which always sets PIT to

a value such that OC(US[PIT] is true.

5.2 Generalilzin the verification

Once an initial verification has been obtained, it is sometimes worthwhile to

experiment further to see what will happen if some of the initial assumptions are

lifted. In the Kalah program, PITCOUNT and STONES are declared as integer constants

with values 6 and 3, but a comment in the program suggests using other values for a

more interesting game. In order to check for absence of runtime errors for all possible

settings, PITCOUNT and STONES were redeclared to be variables in the outermost block.

The entire program was 0hen reverified with only the initial assumptions

DEF(PITCOUNT) A 1sPITCOUNT A DEF(STONES),

showing thai PITCOUNT could be any positive constant and STONES could have any

value. The effect of this generalization is difficult to achieve by ordinary means such

as program testing.



Chapter 4. Verification and the Reliability of Computer
Programs

The principles of program verification arz' ;aw well understood, but wha can we say

of the practice? That at present we are able to specify and verify small and often

very intricate programs. That a few large programs have been specified and verified

with a great deal of effort. And that in addition to increasin~g cconfidence in

co-rect programs, experience with the verifiei: shows it to be extremely helpful for

finding errors in programs.

Can verification become a practical tool for increasing the reliability of larger

programs? Among the myths which have hindered realistic understanding ot this

question is the belief that verification can or should somehow attempt to eliminate all

programming errors. Verification is expensive and cannot guarantee correctness in

any absolute sense. As a practical tool, verification will be used only to the extent

that i! is a cost competitive way of obtaining a desired degree of reliability.

We say that something is reliable if we can put our trust in it. To decide whether

something is reliable, we have to know the ways in which it is likely to fail. For

physical objects such as bridges and integrated circuits, reliability can be easily

observed and measured: simply use something and wait for it to stop working. For

instance, if we wanted to measure the reliability of an integrated circuit, we could

operate it under a variety of conditions of voltage, temperature, and vibration, and see

how well it performed its intended function. When we speak of the reliability of

computer programns, we mean something that is different in an important s,-nse.

Computer programs are pure function without materials or assembly which can

behave in unpredictable ways. The failure of a program is a failure of functional

design; the question of reliability for programs is more closely analogous to th'l

-;estion of whether a circuit perfoims the proper function under ideal conditions( 4-1
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than the question of reliability of circuits. Correctness of function is much more of an

issue for programs than for circuits or bridges because the functions can be so.1, complex. Reliability is a subtle issue for programs because the intended function is

often incompletely or incorrectly understood.

One of the remarkable unities in physical science is the applicability of half a

handful of probability distributions to a broad range of phenomena. Social scientists

have also made use of simple probabilistic assumptions in their models, perhaps with

less justification. But we can see no justification for treatments that attempt to apply

to software the models of reliability that have been developed for various areas of

engineering. Ideas which help us to understand the failures of physical systems such

as circuits or bridges will tell us little about design errors in programs.

Because individuals often have incorrect or incomplete ideas about the intended

functions of a program, programs used by many people are unlikely to be reliable

unless different users can reach a precise agreement that a program fulfills its

intended function. In our view, the value of verification is that it helps people to

reach very strong and precise agreements about programs. The nature of such an

agreement, which we will simply call a con~senisus, can be best appreciated through a

detailed, pragmatic examination of the verification process.

In the remainder of this chapter we will draw on experience with Runcheck and the

Stanford Pascal Verifier to clarify several practical issues.

f ~1) H-ow verification contributes to reliability even in the absence of

2) What kinds of applications of program verification appear to be
feasible for large programs.

3) How verification can be combined with other methods such as testing.

(c
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While knowledge of the theory underlying the formal operations of verification is

now widespread, the human aspects of verification, such as the amount of labor

required and the effects of human errors, have been rarely discussed. We hope that

the observations in this chapter will contribute to more realistic understanding of

verification.

Throughout this chapter we will be developing a new view of the meaning of

program verification. The classical view has been that verification sought to

assimilate programming into formal mathematics, thereby elevating it above

uncertainty. Our new view emphasizes the use of mathematical methods to reach a

consensus, or strong agreement among users about the correctness of a program. Of

course, there are many methods including testing and informal design reviews, which

can give some degree of confidence in programs. But we view verification as a tool

which can be used to form a stronger consensus than would be otherwise possible.



1. Program Specification and Consensus

[ ~Imvplicit in the notion of reliability is the view that it is not sufficient for a programl

to faithfully perform some function unless that function can be well understood by

users. It is essential for the creators of a reliable program to communicate its function

through precise and understandable documentation.

One of the most freq~uently raised criticisms of program verification is that the true

objectives of a program are usually known only informally to the programmer, while

to apply program verification, it is neccessary to develop formal program

specifications. Since these specifications may be in error, or may inaccur-tely or

incompletely reflect the programmer's informal intentions, program verification canr

give absolute assurance that intentions will be fulfilled. In our view, there is s

validity to this criticism: the problems of formalizing specifications - e not to

trivialized and no mathematical procedure can demonstrate the consistency of

informal ideas. But it would be naive to infer directly from this argument, as some

critics have, that program verification is doomed to be unable to increase our

confidence in and the reliability of programs.

If there is one thing that is common to all of science and engineering, it iz; use of

formal r-athematical methods to investigate informal intuitions and intentions.

Science and engineering derive their power from transitions of informal ideas to

precise mathematical descriptions. Until formalized, a theory can never be subjected

to critical scientific analysis. Similarly, the effort to make sure that computer

programs accomplish a desired objective must be based on precise, understandable

descriptions of the purpose. If we are tr-uly unable to make a precise, understandable

statement or the purpose of program, how likely is it that the program can ever be

reliable?( When can we say that a computer application performs the desired function? If just
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one person conceives the function, his mental concept may be incomplete or not in

agreement with other people. So it is best to say that a number of people should

f agree that the function is the right one. Given a set of specifications, different people

can study it and attempt to reach agreement that it corresponds to the informal

notions each of them holds. Without precise specifications, what methods are there to

reach such an agreement? To have a number of different people attempt to review a

very large program without precise specifications is impractical and unlikely to give

strong assurance. (Although review of a program may be a helpful step in

formulating precise specifications. In programs, it is difficult to suppress details which

distract from readability. More important, specifications can be structured for ease of

understanding instead of effective, efficient execution.

We do not mean do suggest that it is possible in every case for the purpose of a

program to be stated precisely. On the contrary, there may ')e programs which, for

instance, attempt to compose music or amusing anecdotes, for which no precise

statement of purpose can exist. Different people, by testing such a program very I

thoroughly, could come to some agreement among themselves that on the examples

they have seen, the program does accomplish an informally stated purpose. In such a

talented. But even if such an agreement has been reached, a program of this type

canno~t be said to belong to the category of reliable software, because by te~sting alone

against an ill defined set of criteria, we can develop no strong assurance that the next

composition generated by the program will not be found to be unmusical or

unamusing. The point of this example is that there are limits to the notion of reliable

software, that some programs can be useful without being reliable. But if the purpose

of a program cannot be stated with sufficient precision for people to react. a

consensus, it is hard to see how it can be reliable.

What about informal specifications? They are certainly useful for many purposes.

Specifications can be shortened in two ways: by referring to definitions that are
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generally known, trust'ng each reader to have the same understanding, or by

becoming less precise. To the extent that "informal" means "imprecise," informal

specifications will be unable to contribute to reliability.

Finally, we have to say a few words about a second myth of verification: that

specifications should always describe the program completely. There is a common

criticism of verification which goes, "There are things in many programs which are

hard to specify independently and completely. Therefore verification cannot

contribute to reliability." Runcheck is based on the idea of verifying very incomplete

specifications - only enough to show absence of runtime errors. We feel that,

contrary to myth, many other important aipplications of verification will depend on

partial specifications which can be written and checked relatively easily.
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2. Concerninig Falbe Proofs

One of the central arguments against the effectivenesE of programn verification is that

individual verifications are unlikely to command the attention of a large critical

audience, and therefore errors in proofs are unlikely to be detected [DLP79J. In our

view, there can be no absolute assurance of the validity of proofs. However, a close

look at the theory and construction of a verifier (Stanford Pascal Verifier or

Runcheck) will show that it has the potential to be at least as reliable as any other

stable, widely used piece of software. Whatever errors may happen to be in a verifier

are very like!,y to be detected as it is used, resulting in a stable, reliable system even in

the absence of a verification of the verifier.

One may ask what the value of verification is if the reliability of the verifier is not

of a fundamentally different nature than that of other reliable programs. Over the

course of time, a verifier .onicentrates the experience of its designers and users and the

users of verified programs. Faults which are discovered can be corrected, and so will

not affect later users.

A verifier is the center of a consensus between people who propose verification

methods, implementors of the verifier, its users, an~d the users of verified programs.

Any fault in the verifier is observable by one or more groups (more about this later),

and can then b,- corrected. The process we are describing is a familiar one-

verification is the application of the scientific method to the field of programming.

The ultimate source of the verifier's reliability is not some set of absolute truths, but

rather the process by which scientific theories are validated. At any time, a proof

produced by the verifier should represent our best thinking about what constitutes a

valid proof. New users are spared from repeating old mistakes.

The advantage given by the verifier is that the experience concentrated in it can be

applied in one shot to new programs. If a new program is heavily used and carefully

I i
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maintained over a long period of time, it can reach a high level of reliability without

having been verified. But the verifier helps us to reach this result miuch more

quickly. Of course, this depends on the availability of the proper specifications. *1 o

reiterate our previous comments, 1) partial specifications (e.g. specifying that a

programn should be free from runtime errors) are often the most practical, arnd 2) if we

really do not know how to specify some aspect of a program, there are strong grounds

for believing that the program cannot possibly be reliable.

In the remainder of this section, we will discuss the reliability of the major

our comments also apply to Runcheck, which is a version of the Stanford verifier, and

to verifiers in general.

I ie three main components of the Stanford v~rifier are a parser, much like the front

en-. of a compiler, the verification condition generator (VCG), which implements the

semantic definition of Pascal, and the theorem prover, which is independent of the

programming language accepted by the verifier.

The parser component consists of a table driven context free parser and semantic

routines which use a symbol table to perform the u.;ual semantic checking performed

by compilers. None of this is new technology; the parser is very reliable because

standard compiler construction is now routine.

VCG converts the parse tree of the program with assertions into a set of first order

formulas whose validity implies the consistency of the program and asertions. The

question of VCG's reliability reduces to two separate issues. One is whether there is a

problem in the axiomatic definition; the other is the correctness of the VCG

implementation. Roughly speaking, the ultimate question relating to the soundness of

the axiomatic definition is whether the intuitive semantics of Pascal is a model of the

formal definition. There have been formal demonstrations of cnnsistency between the
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axiomatic definition and other semantic definitions,1 but consistency proofs cannot

completely resolve the issue of whether a formal semantics corresponds to the intuitive

semantics. Fortunately, the language Pascal and its axiomatic definition have received

widespread attention. The existence of a body of published literature correcting and

refining the original definition is evidence of the formation of a strong consensus

about the definition's correctness.

An interesting question beyond the scope of this thesis is: How does one account for

the existence of agreement on the intuitive semantics of Pascal or other programming
languages? One could name languages for which agreement would be much less

certain. Looking for answers close at hand, one finds the factors of clean language

* design, and the conservatism cif the language - its dependence on only previously

well known conr jpts. The same considerations apply to the Lunde-s,.ndability of

programs in general. One can only speculate about deeper explanations. Perhaps the

experience with programming languages can tell us something about language itself.

The commonly observed tendlancy of programming languages to guide and constrain

thought may indicate that we use programming languages as languages in some sense

([Wh56), Part 4 [We7lJ). Perhaps the process of acquiring the general rules of a

programming language from fragmentary explanations and examples is related to (and

can be explained in terms of) the process of learning a language.

One o'r the most controversial aspects of verification has to do with the fact that

sometimes it is difficult to formally define Elart of a language. When this happens,

there are several possibilities. It may be that we simply don't know enough about

how to give a concise definition, and that further research could find ways of doing it.

It may be that the feature represents poor language design: inherently difficult to

describe and understand. The third possibility is that the feature represents a

desirable farm of complexity in the language. Complexity is not undesirable per se,

1 If we choose to regard a compiler as a kind of formal language definition, then proofs of
compiler correctness can be viewed as another form of consistency proof.

~~~ .4>4.
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and there is a trade off between the expressive power of a language and the

complexity of programs w-itten in the language.

If we cannot give a concise, understandable definition of part of a language. it will

probably be difficult to build all of the tools needed for programming - not just the

verifier, but compilers, optimizers, debugging tools, and program analyzers of all

kinds. Even if these tools can be constructed, they may be less reliable, because it will

be more difficult for implementors to understand and agree on the semantics. So

difficulty in formal definition is a warning that there may be further troubles with a

language design. Formal definability gives the langauge designer another way to test

a design, in addition to the usual ways based on experience with other languages and

difficulty of implementation, etc. Designs can contain unpleasant surprises-

combinations of features that interact in unexpected ways. When designs are judged

solely by their intuitive semantics, the surprises can remain hidden, because intuitive

semantics tend to be incomplete.

The most difficult issue in the soundness of VCG is the language definition, but a little

should be said about the VCG implementation. For the most part, VCG is a

straightforward translation of the axiomatic definition into operational form. The

actual program fnr VCG coi.-.J be generated automatically from a table of the inference

rules. It would not be difficult to verify that formulas constructed by VCG currespond

exactly to the axiomatic definition.

Different considerations affect the soundness of the first order theorem prover. The

concept of soundness is readily specified, but the theorem prover employs novel and

somewhat complicated algorithms. The implementation is more complicated than it

might be if efficiency was not of prime importance. A major part of the current

theorem prover is a program for determining the satisfiability of a set of linear

inequalities using the simplex algorithm. Here, the algorithm is well known but its( implementation is rather complicated. In general, verification of the theorem prover
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is somewhat beyond the current state of the art, but since the specifications are not

difficult, it may eventually be possible to verify much of it.

At present, the reliability of the theorem prover rests largely on the alertness of users

in reporting problems. Herein lies a serious misunderstanding on the part of

verification critics. Among those who have not used a program verifier, there is

belief in a third myth of verification: that one simply submits a program and wa-its

until the verifier responds with either VERIFIED or NOT VERIFIED, i.e. that the system

does all the work by itself and that there is no reason for its results not to be accepted

uncritically. In reality, any new nontrivial verification is an undertaking in which

the user must interact with the verifier to produce a proof. In the course of the

interaction, a program is usually submitted many times with different documentation.

After each run, the user examines the output of the theorem prover in the form of

partially simplified verification conditions and summaries of the steps taken in the

proof. The user must study these results closely; they contain the clues neededi for

understanding why the proof was not completed. Analysis of simplified verification

conditions is a special skill that one must learn in order to use the verifier. In theI

process of analyzing a VC, une notes which consequerits were provable and which

were not, and one must understand how the documentation in the program was. used

to prove one formula but why it did not suffice to prove some other. Implementation

errors in the th,-orem prover can have st;'reral pcv'.sible consequences: false proofs,

inability to find proofs that should be found, or both. Evidently, problems in the

latter two categories will be uncovered more readily than problems that cause onlyI false proofs, but when false proofs do occur, they often introduce noticeable

discrepancies between what has been proved and what has not. The output of the

theorem prover, such as the proof summary, has to be studied closely enough that it is

likely that even flaws that produce only false proofs will eventually be uncovered.

In summary, the operation of the theorem prover is scrutinized more than other parts

of the veAfier in the course of normal use, and flaws in the theorem prover can be

-. - 'Z~. * . ...i ..
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detected because they result in noticeable deviations from the familiar laws of logic or

arithmetic. This alone does not guarantee that all implemientation errors will be

quickly detected, but it does provide considerable op,., ý-nity for concensus through

use - opportunity of which verification critics seem to be unaware.

F .The importance of the simplex algorithm in the theorem prover is a good illustration

of the type of reasoning needed in program verification, and why it is sometimes best

left to machines. A typical proof of the absence of runtime errors requires reasoning

about a set of sparse linear inequalities of program variables. The necessary

reasoning could be done by hand, but it tends to be long and uninteresting. Under

these conditions, the simplex solver is much faster and more reliable.

Programs based on the simplex algorithm are used heavily by planners, economists,

and engineers to make decisions in which there are high penalties for errors. The

problems solved in these applications are actually much larger than those which occur

in program verification. The standard of reliability in ordinary applications of linear

programming is high, but users are given no absolute guarantee of r'eliability. Is such

a standard inadequate for determining the correctness of computer programs?

A verifier in wide use concentrates experience and testing in the same way that

compilers and other software tools do. Programs produced using the verifier are used

on many cases. If a program has been falsely. verified, it is likely that the problem

will eventually be discovered by the users of the program, and such a bug will of

course be of great interest to the the implementors of the verfier who will then correct

the problem. The situation is much the same as the maintanence of compiler

u-nplementations. We do not trust compilers to be absolutely correct, but if a compiler

has been carefully maintained and in wide use for a long period of time, we have

great confidence in it.

Finally, we must mention another factor which contributes to the discovery of bugs in

fi
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the verifier: the great chdllenge2 of l'inding a false proof.

r I

2 and satisfaction
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3. Verification and Fault Tolerant Programoming:

Another canard from verification critics it that program verification encourages the

construction of less robust programs. The argument is that if we put trust in proofs

of correctness, we will remove safeguards that are needed in case something does go

wrong with a program. Thus if a program is falsely verified, the consequences will

be more serious than before.

This argument rests on an incomplete view of program verification. To be verifiable,

a program must be cleanly designed, and surely that cannot hurt its reliability.

Furthermore, verification can contribute to the reliability of error handling in

programs. If we have proven that certain errors, such as runtime errors, will not

occur, this does not imply that we have to make no provision for these errors, but

rather that the value of considering them has been greatly reduced. Depending on the

application, we may want to provide protection from hardware errors or illegal datla.

If we want to have error handling code, program verification gives us the best way to

make it reliable. Error handlers are normally one of the least reliable parts of

programming because they are executed infrequently and are difficult to test.

Through program verification we can consider the effect of error handling

systematically, in all the possible cases.
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4. Verification and Testing

Of course we tested it, but why would anyone ever try to set N to -1?
Programmer's Proverb

Now that we have developed the idea of verification contributing to reliability by

helping to form strong agreements about the correctness of programs, we in -. position

to compare verification with testing. Under what conditions can testing lead to a

consensus? Without precise specifications, there can be only weak agreements on the

correctness of programs. As we will see., this is not the only similarity between

verification and testing if testing is to give strong assurance.

To develop a reliable program with the least effort, it is useful to combine the two

methods. Testing is an efficient way to find problems in a new program, but as a

program becomes more reliable testing becomjes. unproductive. When the obvious

errors have been corrected after testing, it is time to turn to verification.

.Program testing can be many things, ranging from a user selecting a few test values

and examining the results to automatic testing based on formal specifications. While

one cannot anticipate every conceivab~e strategy, we do have certain general

observations.

Many automated testing strategies attempt to select data very carefully, for instance, to

drive a program through a chosen !equence of statements, or to falsify an assertion.

But it is exceedingly hard to algorithmically select data which satisfies complicated

constraints involving, say, complex data structures or nonlinear arithmetic, and so

these strategies are seriously limited.

If many test points are to be used, there must be some automatic way of determining

if the program has functioned correctly or not. Thus the problems of formalizing( specifications are the same as for program verification. Specification languages for
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testing are more restricted because the specifications have to be able to be effectively

evaluated, which is not a requirement in program verification.

Testing strategies which treat the program as more than a black box, which do

something interesting with the text, must be based on a formal semantics of the

programming language. This takes us another step closer to program verification, in

that the correctness of the semantic definition and the correctness of its

implementation in the tester become issues. The cost of an error here is possible

failure to find the errors in an incorrect program, because the tester could decide

incorrectly not to test that case of it.

Finally, it is worth noting that if we have formal specifications and language

semantics and are trying to decide which parts to test of a program which is already

fairly reliable, one of the best ways would be tti try to prove the program correct!

Parts of a verification which cannot be completed correspond to paths which should

be tested.

Conclusion: if automatic testing tools capable to giving strong assurance about

program cc~rrectness are ever developed, it is likely that they will be based on

verification technology such as semantic definitions, specification methods, and

theorem provers for reasoning about programs.
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6. Shallow verifications vs. Deep proof&'

In our view, the natural domain of program verification is in relatively shallow

proofs: completely verifying only relatively transparent programs, verifying shallow

properties of more complicated programs, verifying deep properties of subtle programs

relative to a set of assumed lemmas. There is ant important distinction to be made

between informal proofs such as those used to justiry new algorithms, and

vwrifications. Verification is rigorous analysis of actual programs. The value of

verifying relative to a set of assumed lemmas is that one can use a concise kernel of

assumptions, developed through careful study, to justify in detail the correctness of

complicated programs. One of the basic things that happens in writing a program is

that one starts with some known truths and assumptions aout clata, and gradually

diffuses them throughout a long program text until they are no longer readily

identifiable.3 Verification gives assurance that no additional assumptions have been

infused.

Full verification of deep properties will probably continue to be too expensive, but

there is much value in rigorr-us checking of even relatively shallow semantic

properties. Consider, for instan:e, the ususal syntax and semantic checking performed

by a compiler in a higher level language. Intellectually, nothing could be easier than

to write a program that is syntactically correct. Yet the checking performed by

compilers is invaluable in actual use. Program verification may be viewed as a means

of extending this checking to stronger semantics, freeing the programmer to

concentrate fully on the more substantive and creative aspects of a problem, just as

current checking in compilers frees the programmer from the necessity of consiaering

certain simple but common kinds of errors.

3 It is sometimes proposed to make program development a formal activity, so that one would
keep track of assumptions throughout the transformation of a program from an initial abstract
statement to the final result. This approach may be practical in some cases, but in general i,
appears to be too rigid. It also seems to be based on the assumption of specifying programs
completely, which we fee; will be more the exception than the rule.

aI
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Profound errors cannot be completely prevented, but many kinds of simple errors can

be. An additional benefit of verifying the absence of common errors, as in Runcheck,

is that a shallow error often reveals a deeper problem. And so, the process of

verifying a program ývith Runcheck cften tells us about much more than its runtime

errors.

iii
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8. Survey of large programs

At one point during his visit to Stanford University, the author collected large Pascal

programs from a number of people at the Artificial Intelligence Laboratory, and spent

several days reading them to see what kinds of difficulties would be encountered in

proving the absence of runtime errors. Among the programs studied were two Pascal

compilers and a hefty micro-assembler. The most important finding was that

verifying the absence of runtime errors for these large programs did not appear to

involve subtleties of specification or theorem proving beyond what had been

encountered with small programs such as those in the Appendix. The problems of

proving large programs were much the same as the problems of proving small

programs, only spread out over more pages. We are reasonably confident that the

approach in Chapter 3, for verifying a moderate sized program, could be applied to

nonnuinerj-al programs on the order of, say, 100 pages long, with no more and

possibly much less than a proportionate increase in effort.

Of course, as in Chapter 3, we would have to enforce certain restrictions such as

absence of aliasing, and we would expect .- find a few places where too much detail

would be required, so that we would either rewrite a small portion or leave it

unchecked. As we have mentioned before, the value of verification in this case is the

elimination of surprises from the program. It can still fail for deep reasons, but we

can rule out the small slipups which are so common in programming.

Our estimate of the difficulty of verifying a large program is based on the

assumptiofi that the individual procedures would all be small; the current

implementation of Runcheck cannot efficiently analyze an individual procedure more

than about a page long unless the user provides internal assertions to subdivide it

logically. It would be very useful to add data flow techniques to Runcheck for fast

but undetailed interprocedural analysis. The way we imagine this working is that the

entire program would first be subjected to interprocedural data flow analysis, and the
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system would make a new program listing containing true assertions discovered thus

far. The user would then add additional assertions and work with Runcheck to

verify each procedure in detail.

L...g.
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7. Additional techniques for larger programs

As experiments with Runcheck have shown, verification of shallow properties is

potentially a highly practical process for real programs (see Chapter 3). This section

V discusses some of the other ways in which verification can contribute to the reliability

of larger programs.

7.1 Core verification

While it is not reasonable to expect a large software system to consist entirely of

concise, easily specified algorithms, well structured systems usually contain a core of

smaller modules with well defined f~inctions. Outside of the core we would expect to

find code which is more diffuse and difficult to specify. But if we can assure that the

central parts of a large system function as expected, much will have been

accomplished. The cost of program verification in this case is small relative to the

size of a sy.,tem, and because the correct functioning of the core affects everything

else, the benefit in reliability is relatively high for each part that is verified.

7.2 Standardization of program specifications

After some years of experience, the writing of certain classes of programs passes fromI

a new experiment to a well understood technique. Simnilarly, we learn how to specify

classes of programs, and develop collections of useful specification concepts. One of

the goals of the Stanford program verification project has been the creation of sets of

standard specification concepts and lemmas, comparable to standard subroutine

libraries. When one is confronted with the problem of verifying a new instance of a

familiar type of program, the library specification techniques may not always work as

is, but more often, they provide the bulk of the concepts and lemmas needed, and can( be readily modified for new applications.
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7.3 Program maintenance

It is widely recognized that the major cost in software development is incurred in

maintanence over the lifetime of a program and not in the initial design and coding.

Syntax based software tools have helped most to reduce the cost of initial coding, they

are much less helpful during extended maintainace.

Verification of core components can reduce the cost of maintaince by making a system

easier to debug should problems occur. Specifications can be developed incrementally,

and modified or extended through experience. In ordinary programming, one can fix

a bug, only to have it reLur much later, after many other changes have been made. In

large systems where complete formal specifications are not used, it might be practical

to develop partial specifications during the lifetime of a program. As problems are

encountered, instead of merely patching them and hoping that they do not recur, one

could specify the absence of the problem and verify its absence in the corrected

program. Re-verifying a shallow property of a program after a small modification is

generally much less work than the original verification, because most of the

specifications and documentation remain unchanged, and the details of the proof will

be filled out automatically by the theorem prover. I

al
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8. Verification's Impact

At the present time, the direct benefits of program verification are less important than

the indirect benefits in the form of increased understanding of programming and

programming languages. In recent years, the most significant new ideas in the area of

programming languages have not occurred in isolation; without new requirements for

programming, research in programming languages would stagnate. Program

verification has been one of the most important influences, along with parallelism and

distributed systems, artificial intelligence, and more recently, microelectronics.

There is a strong parallel between the directions now being taken in program

verification and the path successfully followed several years ago in t'e field of

computer assisted manipulation of mathematical formula.s. The MACSYMA [Ma75]

project, in particular, has developed a very successful formula manipulation system,

but the outcome of work in this field is slightly different from initial expectations.

The desire to build powerful formula manipulation systems sparked a fundamental

reexamination of certain areas of mathematics, such as the theory of integration,

which had been previously felt to be well understood. The results of these

investigations included both new understanding of mathematical formulas, and new

efficient algorithms for their manipulation. MACSYMA is not a fully automatic system.

It is usually used interactively, with the user deciding on what steps to take, and the

system then doing lengthly calculations at his command. The system is now widely

used by scientific researchers in many fields to do symbolic calculations that would

otherwise be intractible [M79].

The parallels between the fields of symbolic manipulation and program verification

are striking. Program verification is seeking a more systematic understanding of the

basic ideas of programming, ideas which are already as familiar to us as are the

basics of doing algebraic manipulations by hand. We have learned that programming

need not be entirely haphazard. Valuable new algorithms have been developed for

manipulating programs and their proofs.

(TL. . .. ,.
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Also striking are the parallels betwe'n certains criticisms of program verification and

possible criticisms of automatic formula manipulation which we now know to be

unsustainable. First of all, if a computer program for formula manipulation is not

absolutely assured to give correct results, how can it possibly contribute to scientific

research? In fact, large systems such as MACSYMA do sometimes have bugs, which are

detected and corrected in the normal course of use by a community of users. For the

applications in which MACSYMA is used, users evidently must feel that the computer is

the most cost effective way of doing certain calculations relative to the cost of other

methods and the amount of risk of an incorrect answer in the different methods.

Another objection is the high computational complexity of manipulating mathematical

formulas, which seems to rule out automatically solving equations in many domains.

Formula manipulation systems have found wide use in spite of this, partly because

they are interactive and have efficient algorithms for some operations that are not

intractible. Apparently the great efficiency of the operations provided more than

makes up for whatever costs the user incurs in interacting with a machine and its

inflexible formalisms, as against solving a problem completely by hand. Perhaps

builders of verification systems should learn from this to provide for a better division

3f work between user and machine.

For instance, the Stanford Pascal Verifier does not currently permit quantification in

assertions. To represent quantified assertions, the user introduces new, uninterpreted

predicates, and then adds implicitly quantified axioms in the form of inference rules

for use by the theorem prover [Su76, SVG79]. Operation of the verifier is Lhen

completely automatic. Howevcr, experience has shown that this approach is

unworkable in all but the simplest situations. One is forced to constantly balance tho

rules between generality and efficiency. When the verifier fails to prove a ui'1e

formula, the user must enter an ordeal of modifying inference rules by excruciating

trial and error. How much simpler it would be to permit explicit quantification by

r'-quiring the user to supply an instantiation for each instance [We'77)!

k'
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What should we infer from the great difficulty thus far in applying verification to

large programns? Research in program verification has led to successful developments

in a number of areas including formal semantics of programming languages, methods

for specifying programs, and methods for automating verifications, but the most

practical combinations of these techniques will be somewhat different from what was

initially envisioned. There are many approaches that are likely to be pra-tical, but

we also have to recognize that with somne of the most direct applications, the odds are

highly unfavorable. We are just beginning to find the areas in which program

verification can be applied to greatest a'4vantage.



References

[Ba63] F.L. Bauer, Algorithm 153 Gomory, Comm. ACM 6 (February 1963), 68.

[BM77] J. Bell and M. Machover, A Course in Mathematical Logic, North-Holland,

Amsterdam, 1977.

[Bo63] J. Boothroyd, Algorithm 201 Shellsort, Comm. ACM 6 (August 1963), p.44 5 .

[BH77] P Brinch Hansen, The Architecture of Concurrent Programs, Prentice Hall,

Englewood Cliffs, N.J., 1977.

[C179] E.M. Clarke, Programming Language Constructs for Which It is Impossible

to Obtain Good Hoare Axiom Systems, J. ACM 26, 1 (January 1979),

pp.12 9-1 4 7.

[CH78] P. Cousot ar~d N. Halbwachs, Automatic Discovery of Linear Restraints
Among Variables of a Program, Proceedings of the Fifth ACM

Symposium on Principles of Programming Languages, January 1978.

CDLP791 RA. De Millo, R.J. Lipton, and A.J. Perlis, Social Processes and Proofs of

Theorems and Programs, Comm. ACM 22, 5, May 1979, pp.2 7 1-280.

[BLISS] Digital Equipment Corporation, BLISS-1O Programmer's Reference Manual,

Maynard Massachusetts, 1973.

[En72] H.B. Enderton, 4 Mathematical Introduction to Logic, Academic Press, New

York, 1972.

[F076] L.D. Fosdick and L.J. Osterweil, Data Flow Analysis in Software

Reliability, Computing Surveys, Vol. 8, No. 3, September 1976, pp. 305-

330.

[GW75J S.M. German and B. Wegbreit, A Synthesizer of Inductive Assertions, IEEE

Trans. on Software Engineering, SE-I, I (March 1975), pp.68-75.

[Ge78] S.M. German, Automating Proofs of the Absence of Common Runtime

Errors, Prceedings of the Fifth ACM Symposium on Principles of

Programming Languages, January 1978.

R-1

L~.



R-2

[GLO] S.M. German, D.C. Luckharm and D.C. Oppen, Extended Pascal Semantics

for Proving the Absence of Common Runtime Errors, unpublished
manuscript (1977); available from Stanford Program Verification

Group.

[Ho69] C-A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM
12, 10 (Oct. 1969), pp.576-581.

[Ho7l] CA.R. Hoare, Proof of a Program: FIND, Comm. ACM 14, 1 (Jan. 1971),

pp.39 - 4 5.

[HW73] CAR.. Hoare and N. Wirth, An Axiomatic Definition of the Programming

Language Pascal, Acta Informatica, Vol. 2, 1973, pp.3 35-35 5.

[Ic79] J.D. Ichbiah et al, Preliminary ADA Reference Manual, in ACM Sigplan

Notices, Volume 14, Number 6, June 1979.

EILL75] S. Igarashi, R.L. London and D.C. Luckham, Automatic Program
Verification I: Logical Basis and its Implementation, Acta Informatica,

Volume 4, 1975, pp.14 5-182.

[JW75] K. Jensen and N. Wirth, Pascal User Manual and Report, second edition,

Springer-Verlag, New York, 1975.

EKL76] RA. Karp and D.C. Luckham, Verification of Fairness in an
Implementation of Monitors, 2nd Intl. Conference on Software
Engineering, San Francisco, .976.

[KR78) B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice

Hall, Englewood Cliffs, N.J., 1978.

EKn68] D.E. Knuth, The Art of Computer Programming, Vol. I - Fundamental

Algorithms, Addison Wesley, Reading Mass., 1968.

[Kn7l] D.E. Knuth, Mathematical Analysis of Algorithms, in Proceedings of the

IFIP Congress 1971, Norti-Holland Press, 1972.

[La64] H. Langmaack, Algorithm 263 Gomory i, Collected Algorithms from

CACM, (June 1964).



R-3

[Lo75] R.L. London, A View of Program Verification, Proceedings of the
International Conference on Reliable Software, IEEE, Long Beach,

Calif., April 1975, pp.534-545.

[LS77] D.C. Luckham and N. Suzuki, Proof of Termination Within a Weak Logic

of Programs, Acta Informatica, Volume 8, 1977, pp.21-36.

[LS79] D.C. Luckham and N. Suzuki, Verification of Array, Record, and Pointer
Operations in Pascal, ACM TOPLAS 1, 2 (October 1979), pp.226-244.

[Ma75] Mathlab Group, MACSYMA Reference Manual, Version 8, Project MAC,
MIT, Cambridge, Ma., 1975.

[M79] Proceedings of the 1979 MACSYMA Users Conference, Washington, D.C.,

MIT Laboratory for Computer Science, June 1979.

[Se70] J.J. Seppanen, Algorithm 399 Spanning Tree, Collected Algorithms from

CA.CM, (May 1970).

[Si74] R.L. Sites, Proving that Computer Programs Terminate Cleanly, Computer
Science Department Report CS 418, Stanford University, May 1974.

[SVG79] Stanford Verification Group, Stanford Pascal Verifier User Manual, Report

No. 11, STAN--CS-79--/ 3l, Stanford University, March 1979.

[Su76] N. Suzuki, Autornatir. Verification of Programs with Complex Data
Structures, Ph.D. dissertation, Dept. of Computer Science, Stanford

University, i976.

[SI77] N. Suzuki and K. Ishihata, Implementation of an Array Bound Checker,

Proc. Fourth ACM Symposium on Principles of Prograrr.-ning

Languages, January 1977, pp.132-143.

[We77] B. Wegbreit, Constructive Methods in Program Verification, IEEE Trans.
Software Engineering, SE-3, 3 (May 1977), pp. 193-209.

[We71] G.M. Weinberg, The Psychology of Computer Programming, Van Nostrand

Reinold, New York, 1971.

[Wh56] B.L. Whorf, Language, Thourht, and Reality, MI.T. Press, Cambridge,

Mass., 1956.

iw



Appendix

This appendix contains lists of programs which have been verified with Runcheck.

The examples are divided into three levels of difficulty:

1) examples which can be verified by Runcheck, when the user supplies
only the entry and exit asserticns.

2) examples which require simple invariants supplied by the user.

3) examples which require more detailed assertions.

The errors checked in most cases are: accessing an uninitialized variable,

dereferencing a NIL pointer, subscript or subrange value out of range, and division

by zero. Arithmetic overflow was checked in those examples which contain assertions

about MAXINT. In part 3, there is a small example of absence of !lack overflow for a

recursive procedure.

A few examples in parts I and 2 cannot be completely verified without a great deal of

additional detail. The difficulties are indicated in each case.

Inductive assertions generated automatically by Runcheck are shown in Bold ftallc&

DCOMMENT assertions are generated from preliminary analysis of the program text

and entry assertions, while underlined INVARIANT assertions sze generated from

analysis of temporarily unprovable verification conditions.

A-I
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Appendix - Part 1.

Example 1: Fast linear array search

PASCAL
VAR N:INTEGER;
TYPE ARR=ARRAY[1 :N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);
ENTRY DEF(N) A 1-5N A N<MAXINT;
EXIT 1:5I A IsN;

BEGIN
A[N]:=KEY;

DCOMMENVT 191

INVARIANT TRUE
WHILE A[I]JKEY DO I:=I+l;

END;

(I
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Example 2: Bubble sort

PASCAL

VAR MAXINT:NTEGER;
VAR N:INTEGER;

TYPE NARRAY=ARRAY[1 :N] OF INTEGER;

PROCEDURE SORT (VAR A:NARRAY);
GLOBAL(N,MAXINT);
ENTRY DEF(A)ADEF(N)^IsNAMMAXINT;
VAR B:BOOLEAN;

I, J, TEMP:INTEGER;

BEGIN
I:=1;

DCOMMENT IN A I J A 191
INVARIANT TRUE
WHILE (IJsN-1) DO

BEGIN
J'4-j;
DCOMMENfT Jl-<J
INVARIANT TRUE
WHILE (J<N-I) DO
BEGIN

IF A(JJ>A[J+1 I THEN BEGIN TEMP:=A[JJ; A[J]:=A[J+l ]; A[J+1 ]:=TEMP END;
J:=J+1
END;

I:=1+1;
J:=l

END
END;

S--.--'--- --
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Example 3: Merging two arrays

PASCAL

TYPE INARR-ARRAY[ 1:100] OF INTEGER;
TYPE OUTARR-ARRAY[1:200J OF INTEGER;

VAR I,J,N:INTEGER;
VAR A,B:INARR; C:OUTARR;

ENTRY DEF(A)ADEF(B);
EXIT DEF(C);

BEGIN
N:=1 00;N:=IO;
I:1:=l;

DCOMMENT 1__J A 1 _I A I._N+I A J.<N+I A DEFRANGE(7, I+J-2, C)
INVARIANT TRUE
WHILE (IsN) AND (J<N) DO

BEGIN
IF A[I]sB[J] THEN BEGIN C[I+J-1]:fA[I]; I:=I+l END

ELSE BEGIN C[I+J-1J]:=B[J]; J:=J+l END;
END;

DCOMMENT I'FI A IKN+ 1 A DEFRANGE(I'+N, J+N- 1, C)
INVARIANT TRUE
WHILE I<N DO BEGIN C[I+N]:=A[I]; I:=I+1 END;

J, 4.J;
DCOMMENT J'SJ A JS N+I A DEFRANGE(J'+N, J+N- 1, C)
INVARIANT TRUE
WHILE J<N DO BEGIN CCJ+N]:=B[J]; J:=J+l END;
END
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Example 4: Insertion sort

PASCAL
VAR N:INTEGER;
TYPE ARR=ARRAY[1 :N] OF INTEGER;

PROCEDURE INSERTSORT(VAR K:ARR);
GLOBAL(N);
ENTRY DEF(K)ADEF(N)A2<N;
EXIT TRUE;

LABEL 5;
VAR I,J,X:INTEGER;
BEGIN
J:=2;

DCOMMENT 29J A J-N9 I
INVARIANT TRUE
WHILE J<N DO

BEGIN
I:=J-1 ;

X:=K[J];

DCOMMENT 1I<'
INVARIANT TRUE
WHILE X<K[IJ DO

BEGIN K[I+1]:=K[I]; I:=I-1; IF I<1 THEN GO TO 5; END;
5: K[I+I]:=X;

J:=J+l;
END;

END;

I
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Example 5: Sort by selecting the smallest

PASCAL
VAR N: INTEGER;
TYPE SARRAY=ARRAY [1 :N) OF INTEGER;

PROCEDURE SELECTSORT(A:SARRAY);
GLOBAL(N);
ENTRY N> IADEF(N);
EXIT TRUE;
VAR I, J, K, X: INTEGER;

BEGIN

DCOMMENT I-NS I A 1 I
INVARIANT TRUE
WHILE I<N DO

BEGIN
J:=1+1;
X:=A[I];
K:=I;
X'4-X; KI'#K; J'*.-I;

DCOMMENT J-N, I A X•X' A K'SK A J'•J
INVARIANT TRUE A (J>N v A[J,2X) z K.N
WHILE JsN DO

BEGIN
IF X>A[J] THEN BEGIN X:=A[JJ; K:=J; END;
J:=J+1
END;

A[K]:=A[I];
A[I]:=X;
J:=I+l1;

END;
END;

* '~-- *.--. . --.- * * .•
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Example: 6: Reading a file into an array, without duplications

This simple program reads integer values from an external file F and stores them
without duplication in an array A. After each value is read, the inner loop compares
it to the values previously stored in A. In adition to the ususal index bound checks, it
is necessary vo show that the inner loop accesses only the initialized portion of A

PASCAL
VAR N:INTEGER.

ARR=ARRAY [1 :N] OF INTEGER;
!NFILE=FILF. OF INTEGER;

VAR A:ARR; F:INFLE; J,K:INTEGER;
ENTRY DEF(N) A 1 sN;
EXIT DEF(A);

BEGIN
J:=O;
DCOMMENT OKJ A J.•N A DEFRANGE(1, J, A)
INVARIANT TRUE
WHILE JN DO BEGIN

K:=J+I;
READ(F,A[K]);

DCOMMENT 0•J A J•J'
INVARIANT TRUE
WHILE JO DO .rF A[J]=A[K] THEN

BEGIN
J:=K-1;
GOTO 1;

END
ELSE J:=J-1;

J:=K;

1: END;
END

Note that ont each iteration of the outer i,, Jt is either unchanged or set to J+l.
Because the READ statement is, executed on each iteration, the documenter can assert
that the array A is initialized in the range I to J. This assertion is available on the
inner loop to show that only the initialized portions of A are examined.
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Example 7: Quicksort

PASCAL
TYPE RARRAY=ARRAY [ 1: 100) OF REAL;

PROCEDURE QUICKSORT( VAR A:RARRAY;F. L,R:INTEGER);
ENTRY DEF(A) AMLR :D (1s5-LtL 100 A 1:SRARs 100A

VAR X:REAL; VAR LEFT, RIGHT: INTEGER;
BEGIN
IF L<R THEN

BEGIN

IN VARIANT TRUE A RIGHT• LEFT LEFTS 700
DCOMMENT L&LEFTARIGHTSR

BHLE(EGT<IN HD
WHIEG(EF(IN HD

RIGHT'*-RIGHT;
INVARIANT TRUE
OCOMMENT RIGHTS RIGHT'ALEFT• RIGHT

WHILE (A[RIGHT]hX) AND (LEFT<RIGHT) i
A(LEFTJ:=A[RIGHTJ;

LEF'T1..LEFr;
INVARIANT TRUE
OCOMMENfT LEFT'.CLEFTALEFTS RIGHT
WHILE (AELEFTI:SX) AND (LEFT(RIGHT)

DO LEFT:=LEFT+1;

A[RIGHTJ:-ACLEFTJ
END;

A[LEFTJ:=X;
QUICKSORT(A,L,LEFT- 1);
QUIC KSORT(A, LEFT+ 1 ,R);
END;

END.
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Example 8: Shelisort [Bo6a) A

VAR N,MAXINT:INTEGER;
TYPE ARR=ARRAY[1 :NJ OF INTEGER;

PROCEDURE SHELL(VAR A:ARR);
ENTRY DEF(A)^DEF(N)A1 SNAMAXINT>N+1;
EXIT TRUE;

LABEL 1;
VAR I,J,K,M,W:INTEGER;

BEGIN
M:=N DIV 2;
INDEX 1 0.0; M'.M;
INVARIANT TRUE
DCOMMENT M'M' DIV EXP(2,[NDEXI) A OKINDEX1
WHILE MoO DO BEGIN
K:=N-M;
FOR J:=1 TO K INVARIANT TRUE

DCOMMENT lKJ A J:CK+I
DO BEGIN
I:=J;
INDEX24.O; I's-I(
INVARIANT TRUE
DCOMMENT I-I'w-INDEX2*M A O.<INDEX2
WHILE 1Ž DO

BEGIN
IF A[I+MJ.A[I) THEN GO TO 1;
W:=A[I]; ACI]:=A[I+MJ; A(I+M]:=W;
I:=I-M
INDEX2*.INDEX2+ I
END;

1: END;
M:=M DIV 2;
INDEX I -INDEX 1 + 1,
END;
END;
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Example 9: Binary Search

TYPE NARRAYzARRAY[1 :NJ OF INTEGER;

PROCEDURE BINSRCH(A: NARRAY;M,X: INTEGER;
VAR Y:INTEGER);

ENTRY DEF(N)A1 (NAMAXINTa2*N+1;

r EXIT DEF(Y);

VAR LOW,HIGH,MID: INTEGER;
BEGIN
LOW:=1; HIGH:=N;
INVARIANT TRUE A (LOWZHIGH LOWIN)
DCOMMENT 1•<LOW A HJGHKN
WHILE LOW(HIGH 10

BEGIN
MID:=(LOW + HIGH)DIV 2;
IF X<A[MIDJ THEN LOW:z MID*1 ELSE HIGH:=MID

END;
IF XzA[LOWJ THEN Y:=LOW ELSE Y:zO
END;

L ýL_ zzz-_ý_=ýI-
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Example 10: INSITU Permutation [Kn7l]

PASCAL
VAR N:INTEGER;
TYPE SUBRANGE= 1:N;
TYPE NARRAY=ARRAY (SUBRANGE] OF INTEGER;

FUNCTION P(J:SUBRANGE):SUBRANGE;
ENTRY TRUE;
EXIT TRUE;
EXTERNAL;

PROCEDURE INSITU(VAR X:NARRAY);
GLOBAL(N);
ENTRY (N>1I)ADEF(N)ADEF(X);
EXIT TRUE;

VAR J, K, L, Y: INTEGER;
BEGIN

J:=! ;

DCOMMENT 1.J A J-N 1I
INVARIANT TRUE
WHILE JsN DO
BEGIN

K:=P(J);
INVARIANT TRUE A (J<K = KN)
WHILE K> J DO

K:=P(K);
IF K = J THEN
BEGIN

Y:=XEJ];
L:=P(K);

INVARIANT TRUE A IKK A K:.N A (LOJ n 1.L A L.N)
WHILE L P, J DO
BEGIN

X(K]:=XEL];
K:=L;
L:=P(K)

END;
X[K]:=Y;

END;
J:=E+l
END;

END;
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Example i1: TREESORT

PASCAL
VAR ARRAYSIZE:INTEGER;
TYPE TREEARRAY=ARRAY [1:ARRAYSIZE] OF INTEGER;
PROCEDURE TREESORT3(VAR A:TREEARRAY; L:INTEGER);
GLOBAL (ARRAYSIZE);
ENTRY DEF(A)A2sLALsARRAYSIZE;

EXIT TRUE;

VAR WORK:INTEGER; I:INTEGER;

PROCEDURE SIFTUP(VAR M:TREEARRAY; IO,N:INTEGER);
GLOBAL (ARRAYSIZE);
ENTRY DEF(M) A 1<IOAIO<ARRAYSIZE A 1<NAN<_ARRAYSIZE A IO<N;
EXIT TRUE;
LABEL 7;

VAR COPY,I:INTEGER; J:INTEGER;

BEGIN
1:=IO; COPY:=M[I]; J:=2*I;

DCOMMENT 10<1 A lJ+1 A J'KJ A J•2*N+2
INVARIANT TRUE A IARRAYSIZE
WHILE JsN DO

BEGIN
IF J<N THEN IF MLJ+1]>M[J] THEN J:=J+l;
IF M[J]>COPY THEN

BEGIN

M[I]:=M[J];
I:=J;

J:=2*I;
END

ELSE GO TO 7;
END;

7: M[I]:=COPY;
END;

BEGIN
I:=L DIV 2;

DCOMMENT 1-I A 1_1'
INVARIANT TRUE
WHILE 1Ž2 DO

BEGIN SIFTUP(A,I,L); 1:=I-1 END;

1:=L;

DCOMMENT 1_1 A I•I"

INVARIANT TRUE
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WHILE 1Ž2 DO
BEGIN
SIFTUP(A, 1,I);
WORK.=A[1 J; A[1]:=A[I]; A[I]:=WORK;
I:E-1
END

END;

I

~.. . . .~.
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Example 12: Gomory all-integer programming [Ba63]

PASCAL
VAR M,N:INTEGER;
TYPE TARRAY=ARRAY[1 :N-1] OF INTEGER;
TYPE CARRAY=ARRAY[1 :N] OF INTEGER;
TYPE MATRIX=ARRAY[O:M, 1 :NJ OF INTEGER;

FUNCTION ABS(A:INTEGER):REAL; EXIT TRUE; EXTERNAL;
FUNCTION EDIV(A.B:INTEGER):INTEGER; EXIT TRUE; EXTERNAL;

PROCEDURE GOMORY(VAR A:MATRIX);
GLOBAL(M,N);
ENTRY DEF(A)ADEFfM)ADEF(N)AN>3AM^_ 1;
EXIT TRUE;

VAR I,K,J,L,R:INTEGER;
VAR LAMBDA:REAL;
VAR T:TARRAY; C:CARRAY;

BEGIN
INVARIANT TRUE
WHILE TRUE DO

BEGIN
FOR I:=1 TO M INVARIANT TRUE

DO iF A[I,N]<O THEN BEGIN R:=I; GO TO 2; END;
GO TO 5; i

2: FOR K:=I T0 N-1 INVARIANT TRUE DO IF AER,K]<O THEN GO TO 4;
GO TO 6;

4: L:=K;
L'*.L;
FOP. J:=K+I TO N-1

DCOMMENT L'•L
INVARIANT TRUE A L•N
DO IF A[R,J]<O THEN

BEGIN
I:=O;
INVARIANT TRUE

1000: WHILE A[I,J]=A[I,LJ DO I:=1+1;
IF A[I,J]<A[I,L] THEN L:-J;

END;
FOR J:=1 TO N-1 DCOARMPIENT DEFRANGE(I,J-1,T) DO IF A[R,J]<O THEN

BEGIN
IF A[O,LJ1 O THEN T[J]:=EDIV(A[O,J],A[O,L]) ELSE T[J]:=1;

END;
LAMBDA:=ABS(EDIV(A[R, 1 ],T[1 ]));
FOR J:=2 TO N-1 INVARIANT TRUE DO IF A[R,J]<O THEN

BEGIN

Ii
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IF ABS(EDIV(A[R,J],T[J]))>LAMBDA THEN
LAMBDA:-ABS(EDIV(A[R,J],T[J)));

END;
FOR J:=l TO N INVARIANT TRUE DO IF JoL THEN

BEGIN
C[J: =EDIV(A[R,J],LAMBDA);
IF C'J]PO THEN

FOR I:=O TO M INVARIANT TRUE
DO A[I,JJ:=A[I,JJ+C[J]*A[I,L);

END;
END;

6: %go here If no solutlon%
5: END;

Note: checking the subscripting for the WHILE loop at label 1000 is very difficult.
This loop scans down two columns of the matrix A until it finds an index I such that
A[I,J) o A[I,LI. The J and L columns always differ in at least one place because the
initial value of A contains a diagonal portion, and each column is only changed by
adding multiples of another column. While these facts could be formalized in the
verifier, it would not be of practical value. The loop could be changed to a FOR loop,
or left alone.

* ,
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Example 13: Spanning tree [Se70]

In this example, declarations of the three array types have been made more restricted

than would otherwise be necessary, to help express loop invariants. An IF statement
at label 2, which tezminates the program, is optional but its inclusion simplifies the
verification and makes the program more efficient. Without the IF statement, proof of

correct subscripting on the array T[1 .. V-1 would involve the fact that a spanning
tree for a graph with V vertices has V-1 edges.

VAR E,V:INTEGERi

TYPE EARRAY=ARRAY [1 :EJ OF 1 :V;
TYPE VINTARRAY=ARRAYE1 :V-1 OF INTEGER;
TYPE VARRAY=ARRAY [1:V] OF O:E;

PROCEDURE SPANNING(IA,JA:EARRAY; VAR P:INTEGER; VAR T:VINTARRAY);
GLOBAL (E,V);
ENTRY DEF(E) A DEF(V) A 1sE A 2_V;
EXIT TRUr ;

LABEL 1,2;
VAR I,J,K,C,N,R:INTEGER;
VAR VA:VARRAY;

BEGIN
C:=O;
N:=O;

DCOMMENT 1_<K A K<V+1 A DEFRANGE(1,K-,I,VA)
FOR K:=I TO V INVARIANT TRUE DO VA[K]:=O;
DCOMMENT 1•K A K•E+I A O.N A OC A NJK-1 A C.(K-1
FOR K:=I TO E INVARIANT TRUE A (K*V+NI : K•V+N-1) DO
BEGIN
2: IF K-N=V-1 THEN GOTO 1;

I:=IA[K]; J:=JA[K]; =

IF VA[I]=O THEN
BEGIN

T[K-N]:=K;
IF VA[JJ=O THEN BEGIN

C:=C+l;
VA[J]:=C;
VA[I]:=C;
END
ELSE VA(I]:=VA[J];

END

- . -. -.~. ..
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ELSE IF VA[JJ.O THEN
BEGIN

T[K-N]:.K; VA[J]:-VA[I);
END
ELSE IF VA[I],oVA[J] THEN
BEGIN

T[K-N]:-K; I:-VA[I]; J:-VA[J);
DCOMMENT I j R A RI V+ I
FOR R:=l TO V INVARIANT TRUE DO

IF VA[R]=J THEN VA'R]:=I;
END
ELSE N:=N+I

END;
1: P:-V-E+N;
END;

-. . . ..~ L .
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Example 14: Routines to read in and multiply matrices - check for Overflow.

SUM(A,B,IJ,K) stands for finite -sum of A[I][L]*B[L][J] for L from 1 to K.

PC(A,B,MAXINT) is the weakest precondition to multiply A and B with this program
without overflow.

PC(A,B,MAXINT) Implies that YI,J,K, A[I][K],B[K][J] is inrange, and also VI,J,K
SUM(A,B,I,J,K) is inrange.

PASCAL

VAR M,N,P:INTEGER;
TYPE NVEC=ARRAY[1:N] OF INTEGER;
TYPE PVEC=ARRAY[1 :P] OF INTEGER;
TYPE MPARRAY=ARRAY[1 :M] OF PVEC;
TYPE PNARRAY=ARRAY[1 :P] OF NVEC;
TYPE MNARRAY=ARRAY[1 :M] OF NVEC;
TYPE INFILE=FILE OF INTEGER;

VAR MAXINT:INTEGER;
VAR A:MPARRAY;B:PNARRAY;C:MNARRAY;
VAR I,J,K,S:INTEGER;

PROCEDURE READMP(VAR A:MPARRAY);
%initialize A by reading in a matrix.%
GLOBAL(M,N,P,MAXINT);
ENTRY DEF(M)ADEF(N)ADEF(P)AM+ 1 _MAXINTAP+ 1 <MAXINT^ 1 •MAXINT;
EXIT DEF(A);
VAR F:INFILE;
VAR IKINTEGER;

BEGIN
I:=l;
DCOMMENT 1-<1
INVARIANT DEFRANGE(1 ,I-1 ,A)
WHILE I<sM DO BEGIN

K::I ;
DGOMMENT ISK
INVARIANT DEFRANGE( 1,K-1 ,A[1])
WHILE K_<P DO BEGIN READ(FA[D][K]); K:=K+l END;
I:=I1l ;
END;

END;
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PROCEDURE READPN(VAR A:PNARRAY);EXIT DEF(A);EXTERNAL;

PROCEDURF MULTIPLY;
GLOBAL(A,B,C,I,J,K,S,M,N,P,MAXINT);
%main procedure:matrix multiply, c:=a*b%
ENTRY 1 SMAXINTADEF(M)ADEF(N)ADEF(P)

A 1^SM A M+1sMAXINT A lSN A N+1I<MAXINT A I<P A P+1sMAXINT;
EXIT DEF(C);
BEGIN
READMP(A);READPN(B);
ASSUME PC(A,B,MAXINT);
I:=1 ;

DCOMMENT 1II A ISM+ I
INVARIANT DEFRANGE(1,I-1,C)
%assert first I-1 columns of c are defined%
WHILE IsM DO BEGIN

DCOMMENT I KJ A JN+ I
INVARIANT DEFRANGE(1,J-1,C[I])
%assert first 1-1 columns and first J-1 rows of column I are defined%
WHILE JsN DO
BEGIN
S:=O; K:=I;

DCOMMENT ?•K A KKP+I
INVARIANT S=SUM(A,B,I,J,K-1)
%note since C Is not accessed, no invariant for C needed%
WHILE KsP DO
BEGIN
S:=S+A[I][K]*B(K][J];
K:-K+1
END;

C[I][J]:=S;
d:fJ+l
END;

I:=I+1
END
END;

This example illustrates a practical limitation of verifying the absence of certain
errors, especially arithmetic overflow: the precondition PC for absence of overflow
while multiplying A and B is so detailed, that it would be impractical to try to prove
it was satisfied each time MULTIPLY was called. Of course, we could prove PC by
showing some stronger and simpler condition on the matrices, but in many
applications it would be just as well to leave this as a potential source of overflows,
and to provide an error handler.

At
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Example 15: Functions for maintaining Queues for Monitors [KL76]

PASCAL
VAR N,PN: INTEGER;
TYPE NINTEGER=O:N;
TYPE PNINTEGER= :PN;
TYPE NARRAY = ARRAY [1 :NJ OF NINTEGER;
TYPE MONITOR = RECORD LINK: NINTEGER;

INUSE: INTEGER END;
TYPE PROCARRAY = ARRAY [l:PNJ OF MONITOR;

PROCEDURE ADD(M:PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; P: NINTEGER);

ENTRY (P # O)ADEF(PROCAR)ADEF(PLINK);
EXIT PROCAR[M).LINKoO;

% Insert P into the queue pointed to by the monitor M %
VAR X: INTEGER;

BEGIN
IF PROCAR[MJ.LINK=O THEN
BEGIN

PLINK[P] := 0;
PROCAR[M).LINK := P;

END ELSE
BEGIN

X := PROCAREMJ.LINK;

INVARIANT TRUE
WHILE PLINK[XIoO DO

X := PLINKEXJ;
PLINKEP) : 0;
PLINKEX] : P;

END;
END;

PROCEDURE REMOVE(M: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; VAR RESULT: INTEGER);

GLOBAL(N);
INITIAL PROCAR=PROCARO;
ENTRY DEF(PROCAR)ADEF(PLUNK)A -. (PROCAR[MI.LINK = 0);
EXIT (<PROCARO,[MJ.LINK,PLINKEPROCARO(M].LINK]> = PROCAR) A

(PROCARO[MJ.LINK = RESULT) A
1<RESULTARESULTsN;

VAR X: INTEGER;
BEGIN
% Remove first item from a queue; update distance from head

• =-•.-•-' ',•--•'•";'• - • '-, .. .. = -•,.• . • ,.I, . . . .. Z Q ... ill'l . ... " -
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for remaining Items %
X := PRQ)CAR[M].LINK;
RESULT := PROCAR[MJ.LINK;
PROCAR[MJ.LINK := PLINK[PROCAR[M].LINK];
END;

PROCEDURE ENTER(M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; VAR AP: NINTEGER);

GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A -(AP = 0)
EXIT TRUE;
VAR TEMPLINK: INTEGER;
BEGIN
% ENTER MUTUAL EXCLUSION STATE %
IF (PROCAR[M].INUSE = 0) THEN PROCAR[M].INUSE : 1 %
ELSE
BEGIN

ADD(M,PROCAR,PLINK,AP);
% BLOCK(AP);
NOTE: The procedure ADD by making PCOUNT.,
nonzero (which It does by Inserting it Into some
queue), indicates the process AP is blocked
(inactive or asleep). %

IF (PROCAR[READYQ].LINK o 0) THEN

REMOVE(READYQ,PROCAR,PLINK,TEMPLINK);
% Removing from the READYQ (if it Is not empty) is how

a process finally gets going. Of course, in a real
machine this item would get put into a processor Pnd
resume execution In that processor. %

END;
% EXIT MUTUAL EXCLUSION STATE %
END;

PROCEDURE EXIT(M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY);

GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK);
EXIT TRUE;

VAR TEMPLINK: INTEGER;
BEGIN
% ENTER MUTUAL EXCLUSION STATE ; %
ItF PROCAR[M].LINK = 0 THEN PROCAR[M].INUSE 0

4 ELSE
BEGIN

REMOVE(M,PROCAR,PLINK,TEMPLINK);
ADD(READYQ,PROCAR,PLINK,TEMPLINK);

Ki
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% Adding to the READYQ Is how a process Is made READY %
% Here, the original algorithm put the calling procedure

Into the READYQ and then removed the head of the READYQ.
It is more consistend with usage in the rest of these
routines to delete these two calls, and just let the procedure
doing the exit resume execution. %

END;
% EXIT MUTUAL EXCLUSION STATE; %
END;

PROCEDURE WAIT(CV, M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;
VAR PLINK: NARRAY; AP: NINTEGER);

GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A -(AP = 0);
EXIT TRUE;

%A process AP wishes to wait for condition CV (others
who request to wait will be served earlier). While
waiting, wake up the first thing in monitor M if anything
Is there %

VAR TEM.'LINK: INTEGER;
BEGIN
% ENTER MUTUAL EXCLUSION STATE; %
IF (PROCAR[M].LINK = 0) THEN

PRCCARCMJ.INUSE : 0 ELSE
BEGIN

REMOVE(M,PROCAR,PLINK,TEMPLINK);
ADD(READYQ,PROCAR,PLINK,TEMPLINK);
% Adding to the READYQ is how a process is made READY. %

END;
ADD(CV,PROCAR,PLINK,AP);
% BLOCK(AP);
NOTE: The procedure ADD, by making PCOUNT[AP]

nonzero (which it does by Inserting it into some
queue), indicates the process AP is blocked
(nonactive or asleep). %

IF (PROCAR[READYQJ.LINK - 0) THEN
REMOVE(READYQ, PROCAR,PLINK,TEMPLINK);

% Removing from the READYQ (if it is not empty) is how
a pro ;ess finally gets going. Of course, in a real
machine this item would get put into a processor and
resume execution in that processor. %

% EXIT MUTUAL EXCLUSION STATE; %

END;
PROCEDURE SIGNAL( CV, M, READYQ: PNINTEGER; VAR PROCAR: PROCARRAY;

VAR PLINK: NARRAY; AP: NINTEGER);
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GLOBAL(N);
ENTRY DEF(PROCAR)ADEF(PLINK)ADEF(AP)A -(AP a0);

EXIT T1RUE;
VAR TEMPLINK: INTEGER;
BEGIN

7.ENTER MUTUAL EXCLUSION STATE; %.
IF (PROCAR [CVJ.LINK o 0) THEN
BEGIN

REMOVE (CV,PROCAR,PLINKTEMPLINK);
ADD(M,PROCAR,PLINK,AP);
%. BLOCK(AP);
NOTE: The procedure ADD, by making PCOUNT[APJ
nonzero (which It does by Inserting It into some
queue), indicates the process AP Is blocked
(nonactive or asleep). %.
ADD (-EADYQ,PROCAR,PLINK,TEMPLINK);
%. Adding tu the READVQ Is how a process is made READY. %.
REMOVE (READYQ,PROCAR,PLINK,TEMPLINK);

%Removing from the READYQ (if It is not empty) Is how
a process finally gets going. Of course, in a real
machine this item would get put Into a processor and
resume execution In that processor. %.

END;
% EXIT MUTUAL EXCLUSION STATE;V

END;

WIN I
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Example 16: Deutsch-Schorr-Wa-ite List Marking algorithm [KnG8]

PASCAL
LABEL 1,2;
TYPE LISTO WORD;
TYPE WORD=RECORD FL:.INTEGER;

M:INTEGER;
HD:LIST;
TL:LIST

END;
VAR W,Z,ZO,X:LIST;
ENTRY DEF(ZO)ADEF(#WORD);

EXIT I RUE;

BEGIN
Z:=ZO; X:=NIL;

1:
ASSERT DEF(X)ADEF(Z)ADEF(#WORD);
IF CZ=NIL) THEN GOTO 2:
IF (Zt.M1l) THEN GOTO 2;
Zt.M:1l;
W:=Zt.HD;
Zt.HD:=X;

2! GOTO 1;

ASSERT DEF(X)ADEF(Z)ADEF(#WORD);
IFXoNIL THEN

IF XT.FL=O THEN
BEGIN
Xt.FL:=1;

GOTO 1
END ELSE
BEGIN
W:=Xt.TL;Xt.TL:=Z;Z:=X;X=W;
GOTO 2
END

END.;
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Example 17: Root and Sentinel (linked list insertion)

PASCAL
TYPE REFTIWORD;

WORD=RECOIRD IKEY:INTEGER;C(OUNT: INTEGER; NEXT: REF END;

PROCEDURE SEAR CH(X: INTEGER; SEN TINEL: REF VAR ROOT:REF);
GLOBAL (VAR #WORD);
ENTRY (SENT INELT .NEXT= NIL *DEF(ROOT)ADEF(#ORD)

A'dENTINELoiNILt..ROr1TxNIL
AREAC H(#Wi.'RD, HOOT, SiNTINELQ;

EXIT DEF(#WORD);

VAR Wi ,W2:REF;
BEGIN W :=ROOT;

SENTINELT.KEY:=X;
IF W1 =SENTINEL THEN
BEGIN

NEW(ROOT);
ROO'tt.KEY:=X; ROO11. COUNT:=1; ROOTT.NEXT:=SENTINEL;

END ELSE
IF W1 T.KEY =X THEN W1lICOUNT:=W1t.COUN 1 , e ELSE
BEGIN

REPEAT W2:=W1; W :=W21.NEXT;
UNTIL W1 T.KEY=X
INVARIANT

(SENTINELT.KFY=X)

APlEACH(#WORD,W1 ,SENTINEL);
IF *41 zSENTINEL THEN
BEGIN

W2:=R001; NEW(RooTr);
ROOT T.KEY:=X; ROOTT.COUNT:=1; ROOTt.NEXT:W2;

END ELSE
BEGIN

W1 t.COUNT =W1 t.COUNT+l;
W2T.NEXT-=W1 tNEXT;
Wi t.NExT:=ROOT; ROOT:1'Wi

END;EN

END;.

oil' mi
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Example 18: Hoare's FIND tHa7lJ

PINVARIANT(I,N,R,A) 3 p Is5psN A R:SA~pJ

OINVARIANT(M,J,R,A) 3 q Msq~sJ A A~ql:sR

PASCAL
VAR K: INTEGER;
TYPE SARRAY=ARRAY El :KJ OF INTEGER;
PROCEDURE FIND(FINTEGER; A: SARRAY);
GLOBAL(K);
ENTRY 1 --ýFA FSK A DEF(K);
EXIT TRJE;
LABEL 10;
VAR R,I,J,W,N,M : INTEGER;
BEGIN

N:=K
OCOMMENVT KSM A N•K
INVARIANT (M~sF)A(F~sN)
WHILE M <(N DO

BEGIN
R:=A(F); I:=M; J:=N;
1`4-J; J'*-J;
OCOMMENT .'S i A 1'•I

INVARIANT ((IS5J)D)(PINVARIANT(I,N,R,A)AQINVARIANT(M,J,R,A)))
WHILE IsJ DO

BEGIN

DCOMMENVT l"•SI
INVARIANT PINVARIANT(I,N,R,A)
WHILE AEIJ<R DO BEGIN 1:=1+1; END;

OCOMMENT JKJ"
INVARIANT QINVARIANT(M,J,R,A)
WHILE R(AEJ) DO BEGIN J:=J-1; END;
IF Is5 J THEN

BEGIN
W:ME[I); AEIJ:=AEJ); A[J]:=W;
IF 1=J THEN 1:=1;
1:2141; J:=J-1;
END;

END;
IF F :5J THEN N:=J ELSE IF 1sF THEN M:4I ELSE GOTO 10
END;

10:
END;



Appendix - Part 3. A-27

Example 19: Recursive Tree Traversal (absence of stack overflow)

PASCAL

TYPE PTR=tREC;
REC=RECORD A:PTR; B:PTR END;

VIRTUAL VAR STACKPTR,STACKSIZE:INTEGER;

PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P,#REC) A DEF(#REC) A STACKPTRSSTACKSIZE-DEPTH(P,#REC);
EXIT TRUE;

BEGIN
IF PrNIL THEN BEGIN WALK(Pt.A); WALK(Pt.B) END;
END;

11
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