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HOTATION

ASI Aircraft airspeed indicator reading, knots

o standard uensity at which ASI is calibrated

Cp pressure coefficient

h total head

P static pressure

q dynamic pressure

Ap difference between boor and corrected towed static

4iq differcnce between corrected towed dynamic and boom dynamic
pressure

v velocity or airspeed, knots

Suffixes

L free strean undisturbed values

b boom probe values

t towed probe values

DOPP Longitudinal doppler values

ASI refers to ASI



1. INTRODUCTION

A series of trials, using a Sea King Mk. 50 helicopter,
has been conducted with the aim of obtaianing reliable flight test data
relating to the aircraft's bechaviour over a wide range of flight
conditions. This information, including both steady state and dynamic
response data, will form the basis of a data bank for validating the
A.R.L. mathematical model of this aircraft.

Unfortunately, because of the siting of the aircraft's
pitot static probes the static pressure in their vicinity does not
register the desired free stream value. Pressure error corrections
(P.E.C.) have therefore to be applied to the Air Speed Indicator (A.S.I.)
and altimeter readings. The P.E.C. values given in the Operating Data
Manuall (0.p.M.) vary greatly depending on airspeed and flow direction.
For the present work more accurate data are required and therefore an
instrumented nose boom was installed sc that both airspeed and flow
direction could be measured in a region less disturbed by the aircraft
flow field and rotor downwash.

This note describes the calibration of the boom-mounted
pitot static probe against a reference trailing probe whose performance
is known f1om wind tunnel calibration. A wide range of flight
conditions, covering climb, descent and level flight was used from
which the probe P.E.C. could be determined. Two corrections have to
be applied to flight test data.-

(a) to airspeed as deduced from the boom probe
dynamic pressure,

{b) to altitude as deduced from the boom static
pressure {absolute).

Flow direction is derived from angles of attack and
sideslip registered by a pair of vanes mounted aft of the boom probe.
More details of these sensors are available in Ref. 2.

2. DESCRIPTION OF TESTS

2.1 Probe Details

2.1.1 Boom mounted probe

Dimensions of the boom and its associated sensors are
gaven in Fig. 1 while Fig. 2 is a photograph of the installation on the
aircraft. ‘“he boom length chosen was sufficient to render the sensors
clear of direct downwash ceffects for forward airspeeds greater than
30 knots. The method of attachment tco the aircraft, using a pin-
jointed mounting together with wire bracing, allowed a comparatively
small boom diameter to be used while keeping the boom's natural
frequency akove the hlade frequency of =17 Hz.



Bearing in mind the wide range of sideslip/attack angles
expected in tne trials a hemispherical nose geomctry3 was chosen for
the probe. Rclevant dimensions are shown in Fig. 3 and further details
are available in Ref. 2.

2.1.2 Towed reicrence probe

This probe is trailed from the aircraft to which it is
attached by a steel wirc cable 150 ft in length. P.V.C. pressure leads
are taped to the cable and transmit the static and total pressures to
transducers housed in the aircraft. The probe design is the result
of further development, by A.R.D.U.*, of a U.S. design to improve the
probe's flying qualities. ©Details are presented in Fig. 4 and a
photograph of the probe undergoing wind tunnel calibration is shown
in Fig. 5.

2.1.3 Probe calibration in wind tunnel

Results of calibrations of each probe in the A.R.L. Locw
Speed Wind Tunnel are taken from Ref. 2 and shown in Figs. 6,7. &s
can be seen, the towed probe static holes have a positive pressure
coefficient corresponding to a velocity error of aliout l%. Because
of this probe's self-aligning properties the effect of flow incidence
was examined for a limited range only.

In Fig. 7 the boom probe's dependence on flow angle is
shown for incidences up to 30°. Values are in coefficient form
refererced to data at zero incidence and vary in a similar manner to
that shown in Ref. 3 for the sane probe design. The absolute pressurc
coefficient was not determined because in practice the probe always
operates in the region of upstream influence of the aircraft. The
P.E.C. determnined here combines both effects.

2.2 Pressure Measurement and Fre-flight Checks

The arrangement of pressure transducers and associated
pressure lines is shown schematically in Fig. 8. All transducers
were by Setra Systems Inc. and were excited by 24v unregulated d.c.
Output was 5v d.c. at the nominal pressure rance. Details are as
follows: -~

(a) Boom pitot-static Type 236, nominal range l.4 kPa but
(differential) linearity is maintained up to 3.4 kbPa

(b) Boom static (akLsolute) Type 236, nominal range 85 - 110 kPa

(c) Towed pitot-static Type 23€, nominal range 3.4 kPa
(differential)

{a) Boom/towed static Type 237, nominal range 1.4 kPa
(differential)

- - S < P P Y " > W S > G . e > G A A - - - - - - - - -

* Aircraft Research and Development Unit. Royal Australian Air Force.




Referring to liq. 8 again it can be seen that the static
pressure differential transducer registers the pressure difference thot
would exist if the towed probe was flying at the aircraft altitude,
because the same hyarostatic gradient exists inside and outside the
pressure leads. On the other hand, a small difference occurs in the
free strcam dynamic pressure at the two probe altitudes because of thec
density grauient. For the present work this amounts to at most 0.4%,
and is allowed for in data reduction.

In situ pre-flight chcecks of the transducers were
carried out by surrounding the relevant probe pressure holes with a
scaled sleeve which could be pumped to pressure levels needed to simulate
expected ASI and altimeter readings in flight.

2.3 Flight Details

Calibration flights with the towed probe attached werc
carried out during the course of Flights 1 and 5 of the test schedule.
Data presented here were cbtained towards the end of Flight 1 and at
the start of Flight 5. The two sets of data thus correspond to
different trimmed pitch angles because of differing fuel loads. The
calibrations in climb/descent conditions were made during Flight 1
only. The level flight calibrations of Flight 5 were made over a set
course and at a fixed height during successive flights past cameras
set up on Point Perperdicular, Jervis Eay. The purpose of flying
this course was to enable the shape of the towed probe cable to be
determined from photographs taken at a series of flight speeds.

2.4 Data Handling

_ Data were recorded on the A.R.L. flight data package
describeé in Ref. 4 and later transcribed on to the ARL-PDP-10
computer system. Final processing was carried out using the routines
given in Ref. 5.

Relations linking the various measured and reduced
parameters are given in Appendix A.

3. RESULTS AND DISCUSSION

3.1 Position Error Correction to Airspeed

3.1.1 Level flight

Table 1 presents a listing of all flight data corrected
where necessary as in Appendix A. Typical results are shown in
Fig..Y where the boom probe dynamic pressure is plotted against
trailinc probe dynamic pressure data for Flight 1. Points to .be noted
are, firstly, rotor downwash effects on the boom probe prevent the
curve passing through the origin, and also, the points undulate about
a straight line. With this behaviour a simple pressure coefficient
can not Le used to relate the twe sets of dynamic pressure measurements.
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As shown in Fig. 8, separate transducers measured each
dynamic pressure. In addition. the static pressure differential of
the probes was separatcly measured thus providing redundancy in the
measurenents. Assuming steady flight conditions, and after correction
for density variation with altitude, the total head should be the
same for cach probe and therefore the difference between the two
uynumic pressures should agree witn the directly-measured static
ditferential. As shown in Fig. 1l0a, b, for both flights this agreement
is not realised and a consistent discrepancy exists between the
direct measurement of Ap and that value derived from the two dynamic
pressure measurements, Ag. Naturally, because of the less direct
nethod of obtaining Agq one would expect a higher degree of scatter
than for the Ap values, and this does occur. However, the overall
discrepancy is greater than would be expected in view of the deqree of
repeatability found in pre-flight transducer checks.

Several possibilities exist as to the source of this
disagreement. Obviously, any of tne three transducers involved may
e reading a spurious pressure or giving a spurious reading of a
true pressure. Factors producing the former could be leakage, gas
evolution in the tubing and unexpectedly large flow angles at the
probes. MNo evidence of leakage has been detected during pre~flight
calibration, and the boom mounted vanes confirm that flow angles
are well within the design range of the probe. The towed probe, as
far as could be seen, "flew" in a stable aligned fashion.
Consideration of these factors suggests that the presence of one or
more spuricus transducer outputs is a more probable cause of the
discrepancy. Some change in transducer calibration is implied and
whilst good repeatability was obtained during pre-flight routines,
no information is available to indicate how they are affected by the
vibrational environment in flight.

In the light of the foreqgoing discussion, the following
rationale has been adopted for computation of the P.E.C. Firstly,
because values of Ap are directly determined and exhibit a smoother -
variation than Aq with airspeed, they are accerted as the true boom
static pressure excess over free stream. Secondly, the boom dynamic
pressure values are accepted because, as will be shown later, the
P.E.C.'s derived therefrom produce better agreement with O.D.M.
values than the P.E.C. derived from the towed probe dynawic pressure.
The discrepancy. in texms of velocity, is nevertheless, only about
3 knots as is shown in Fig. 11 where, for the case of Flight 5, the
values of towed probe velocity, Vi, are compared with thosze of Ve.
derived from the measured values of boom dynamic pressure corrected
for position error. The relativity shown between V¢ and Ve naturally
reflects that between fLu and Ap previously shown in Fig. 10a, b.

Also shown on Fig. ll are measured longitudinal Doppler velocities
which may be validly included because the calibrations of Flight 5
were made on repeated flights in the same direction over a set course
inte a steady wind. The substantialiy linear variation with Vb adds



further support to the rationale adopted. Np the other hand. the A%1
values are e:tremely non linear and it follows that I'.k.C's ot tnus
instrument will vary similarly. Values of the P.E.C.s for the measur::
boom velocity, V),» and also for the ASI are shown in Figs. 1l2a, L for
Flights 1 and 5 respectively. The boom correction is sensibly indej.e:n-
dent of airspeed and has a value of 7.5 * 1 knots for both flights.

‘ihe ASI correction, V, - ASI, varies considerably with speed and, in
the case of I'light 5, has a mean value of 3 knots, the same value az
given in the 0.D.i1. for lcvel flight. For Flight 1 the correction is
generally 2 knots nigher, probakly reflecting the different pitch
altitude in trirmed fliught associated with a different fuel load
distribution. Tne variaticn of pitch attitude with speed is shown in
Fig. 13 for the two cases.

Referring back to Figs. 12a, b and the (P.E.C.),qq
graphs, additional curves are drawn which would have applied
if the towed probe velccities, Vi, were accepted as being the corrazct
airspeed. 1In such a case the P.E.C. values are increased on averacge
ty 3 knots and when compared with the 0.D.i. values appear less
credible.

3.1.2 Climb and descent

Unfortunately, when data for the climb and descent
cases are considered, pressure stabilisation effects in the long
trailing probe leads markedly affect the value of Ap and thus preclude
the usual calculation of V,. Hhowever, because the two leads to the
towed dynamic pressure transducer are similar, no error occurs in this
pressure. Therefore in presenting data for the boom performance :in
climb and descent, the trailing probe velozTity, V.. must be used.
Because of the self-aligning properties of the towed prcbe no error
should occur, otuner than the error of = 3 knots estimated in the
previous section. Fig. 14 shows values of Vi - Vp, obtained for four
torque settings in climb and descent during Flight 1 together with
the level flight values. Generally, the climb/descent values are
spreac about the level flight data in random fashion, virtually
independent of speed and the wide range of flow angles incident at the
bcom probe at the various torque setlings. Angles of attack obtained
<rom vane data are shown in Fig. 15 together with aircraft pitch
attitude anu the deduced climb/descent angle for 3 indicated airspecds.

It is concluded that the P.E.C. previously determinec
in level flight is applicable to all other flight conditions within
the range of these calibrations. The benefit of using the boom probe
can also be gauged when comparison is made with the P.E.C's to be
applied to the ASI system. Fiqg. 16 shows data from the present teste °
together with recommended ASI corrections derived from the O.D.M.

The manual specifies only 'climb' and 'autorotation' not the actual
rates of these manoeuvres.
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3.2 Position krror Correction to Altitude

Altitudes derived from static pressure measurements neea
to be corrected for the boom static-pressure position error. The
correction is a function of speed, as shouwn by the relationship for
pressure srror

bp = p; - P, = CPp X Q-

Thus provided Cpy, is known, the calculated pressure error can be
expressed in terms cf an altitude change.

A more workable relationship, with the altitude error
given as a function of the airspeed error is given by Coulthard (Ref. ¢!
namely

AH =~ 0.09 x (P.E.C.) x V

Thus, for P.E.C. = 7.5 knots then a maximum altitude correction of
80 ft must be applied at the highest speed of 110 knots.

4, CONCLUSIONS

1, Position error has been determined for a nose-boom mour:zel
pitot-static probe installed on a Sea King Mk 50 helicopter. The
reference probe was a towed, cone-stabilised, pitot-static probe which
trailed below the aircraft.

2. The position error correction to be applied to the
indicated nose boom velocity is sensibly constant in the speed range
35 to 110 knots, including both climb and descent in the torque range
10% to 100%. It has a value of 7.5 * 1 knot.

3. The correction was derived by directly measuring the
static pressure difference between the boom and towed probes. Aan
alternative measure of the correction derived from dynamic pressure
differed by about 3 knots. Erratic behaviour of a dynamic pressure
transducer is suspected.

4. Corrections to altitude arising from position error vary
linearly with airspeed and amount to 80 £t at 110 knots.



1. Corrections to Measured bData

Data presented in Table 1 have been corrected where necesscry
using expressions set out below.

(a) Boom probe dynamic pressure, qb = H - pb

In neariy free stream q, = E=-p_

whence free stream dynamic pressure g, may be deduced, namely
9 = 9, + Py = P,) = q, + 8p
(b) Differential static pressure, P, - Py
We have Ap = P~ P, = (pb - pt) + (pt - p)

where Py ~ Pa is drrived from the known pressure coefficient*.Cps

of the towed probe according to the relation

pt Pe ¥ Cps X q,

Th A - + Cp X
en p = (p - p) P X 4,

(c) Towed probe differential pressure, 9.
Using the known coefficient*, Cpq and the expression below,

= -0 i
we have 9y 1 -pq) where U, 1S the measured value

Tem
of dynamic pressure.
A further correctionf /, allows for the difference in air density

between the altitudes at which the two probes are moving is shown
in Fig. Al.

Thus (1- Cpq)/(ot/pm)

G T 9

As discussed in the main text the value of ¢, should agree with c¢.
Unfortunately a discrepancy exists which is thought to originate
in the towed probe transducer.

2. Calculation of Velocity

Velocity, V (knots) is derived from the relevant dynamic
pressure, ¢ {(Pascal), by the relation

v = 2.4847q .

* Obteined from wind tunnel calibrations.
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FIG. 5 TRAILING PROBE TESTING IN A.R.L. 9X7 WIND TUNNEL
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